MT47H256M4HV-3L [MICRON]

DDR2 SDRAM; DDR2 SDRAM
MT47H256M4HV-3L
型号: MT47H256M4HV-3L
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

DDR2 SDRAM
DDR2 SDRAM

动态存储器 双倍数据速率
文件: 总131页 (文件大小:9265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1Gb: x4, x8, x16 DDR2 SDRAM  
Features  
DDR2 SDRAM  
MT47H256M4 – 32 Meg x 4 x 8 banks  
MT47H128M8 – 16 Meg x 8 x 8 banks  
MT47H64M16 – 8 Meg x 16 x 8 banks  
Options1  
Marking  
Features  
Configuration  
VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V  
JEDEC-standard 1.8V I/O (SSTL_18-compatible)  
Differential data strobe (DQS, DQS#) option  
4n-bit prefetch architecture  
256 Meg x 4 (32 Meg x 4 x 8 banks)  
128 Meg x 8 (16 Meg x 8 x 8 banks)  
64 Meg x 16 (8 Meg x 16 x 8 banks)  
256M4  
128M8  
64M16  
FBGA package (Pb-free) – x16  
84-ball FBGA (8mm x 12.5mm)  
Rev. G, H  
FBGA package (Pb-free) – x4, x8  
HR  
HQ  
Duplicate output strobe (RDQS) option for x8  
DLL to align DQ and DQS transitions with CK  
8 internal banks for concurrent operation  
Programmable CAS latency (CL)  
60-ball FBGA (8mm x 11.5mm)  
Rev. G  
Posted CAS additive latency (AL)  
FBGA package (Pb-free) – x4, x8  
WRITE latency = READ latency - 1 tCK  
Selectable burst lengths (BL): 4 or 8  
Adjustable data-output drive strength  
64ms, 8192-cycle refresh  
60-ball FBGA (8mm x 10mm) Rev. H  
FBGA package (lead solder) – x16  
CF  
84-ball FBGA (8mm x 12.5mm)  
Rev. G, H  
HW  
FBGA package (lead solder) – x4, x8  
On-die termination (ODT)  
60-ball FBGA (8mm x 11.5mm)  
Rev. G  
HV  
JN  
Industrial temperature (IT) option  
RoHS-compliant  
FBGA package (lead solder) – x4, x8  
60-ball FBGA (8mm x 10mm) Rev. H  
Supports JEDEC clock jitter specification  
Timing – cycle time  
1.875ns @ CL = 7 (DDR2-1066)  
2.5ns @ CL = 5 (DDR2-800)  
2.5ns @ CL = 6 (DDR2-800)  
3.0ns @ CL = 4 (DDR2-667)  
3.0ns @ CL = 5 (DDR2-667)  
3.75ns @ CL = 4 (DDR2-533)  
-187E  
-25E  
-25  
-3E  
-3  
-37E  
Self refresh  
Standard  
Low-power  
Operating temperature  
Commercial (0°C TC 85°C)  
Industrial (–40°C TC 95°C;  
–40°C TA 85°C)  
None  
L
None  
IT  
AT  
:G/:H  
Automotive (–40°C TC , TA 105ºC)  
Revision  
1. Not all options listed can be combined to  
define an offered product. Use the Part  
Catalog Search on www.micron.com for  
product offerings and availability.  
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
1
© 2004 Micron Technology, Inc. All rights reserved.  
Products and specifications discussed herein are subject to change by Micron without notice.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Features  
Table 1: Key Timing Parameters  
Data Rate (MT/s)  
Speed Grade  
CL = 3  
CL = 4  
533  
CL = 5  
667  
800  
667  
667  
667  
n/a  
CL = 6  
800  
800  
800  
n/a  
CL = 7  
1066  
n/a  
tRC (ns)  
54  
-187E  
-25E  
-25  
400  
400  
400  
400  
400  
400  
533  
55  
533  
n/a  
55  
-3E  
667  
n/a  
54  
-3  
533  
n/a  
n/a  
55  
-37E  
533  
n/a  
n/a  
55  
Table 2: Addressing  
Parameter  
256 Meg x 4  
128 Meg x 8  
64 Meg x 16  
Configuration  
Refresh count  
Row address  
Bank address  
Column address  
32 Meg x 4 x 8 banks  
8K  
16 Meg x 8 x 8 banks  
8K  
8 Meg x 16 x 8 banks  
8K  
A[13:0] (16K)  
BA[2:0] (8)  
A[13:0] (16K)  
BA[2:0] (8)  
A[9:0] (1K)  
A[12:0] (8K)  
BA[2:0] (8)  
A[9:0] (1K)  
A[11, 9:0] (2K)  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
2
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Features  
Figure 1: 1Gb DDR2 Part Numbers  
Example Part Number: MT47H128M8HQ-37E  
-
:
MT47H  
Configuration  
Package  
Speed  
Revision  
:G/:H Revision  
Low power  
Configuration  
256 Meg x 4  
128 Meg x 8  
64 Meg x 16  
L
256M4  
128M8  
64M16  
IT Industrial temperature  
AT Automotive temperature  
Speed Grade  
t
t
t
t
t
t
Package  
Pb-free  
-187E  
-25E  
-25  
CK = 1.875ns, CL = 7  
CK = 2.5ns, CL = 5  
CK = 2.5ns, CL = 6  
CK = 3ns, CL = 4  
CK = 3ns, CL = 5  
CK = 3.75ns, CL = 4  
84-ball 8mm x 12.5mm FBGA  
60-ball 8mm x 11.5mm FBGA  
60-ball 8mm x 10.0mm FBGA  
Lead solder  
HR  
HQ  
CF  
-3E  
-3  
-37E  
84-ball 8mm x 12.5mm FBGA  
60-ball 8mm x 10mm FBGA  
60-ball 8mm x 11.5mm FBGA  
HW  
JN  
HV  
1. Not all speeds and configurations are available in all packages.  
Note:  
FBGA Part Number System  
Due to space limitations, FBGA-packaged components have an abbreviated part marking that is different from the  
part number. For a quick conversion of an FBGA code, see the FBGA Part Marking Decoder on Micron’s Web site:  
http://www.micron.com.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
3
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Contents  
State Diagram .................................................................................................................................................. 9  
Functional Description ................................................................................................................................... 10  
Industrial Temperature .............................................................................................................................. 10  
Automotive Temperature ........................................................................................................................... 11  
General Notes ............................................................................................................................................ 11  
Functional Block Diagrams ............................................................................................................................. 12  
Ball Assignments and Descriptions ................................................................................................................. 15  
Packaging ...................................................................................................................................................... 19  
Package Dimensions .................................................................................................................................. 19  
FBGA Package Capacitance ......................................................................................................................... 22  
Electrical Specifications – Absolute Ratings ..................................................................................................... 23  
Temperature and Thermal Impedance ........................................................................................................ 23  
Electrical Specifications – IDD Parameters ........................................................................................................ 26  
IDD Specifications and Conditions ............................................................................................................... 26  
IDD7 Conditions .......................................................................................................................................... 27  
AC Timing Operating Specifications ................................................................................................................ 31  
AC and DC Operating Conditions .................................................................................................................... 41  
ODT DC Electrical Characteristics ................................................................................................................... 42  
Input Electrical Characteristics and Operating Conditions ............................................................................... 43  
Output Electrical Characteristics and Operating Conditions ............................................................................. 46  
Output Driver Characteristics ......................................................................................................................... 48  
Power and Ground Clamp Characteristics ....................................................................................................... 52  
AC Overshoot/Undershoot Specification ......................................................................................................... 53  
Input Slew Rate Derating ................................................................................................................................ 55  
Commands .................................................................................................................................................... 68  
Truth Tables ............................................................................................................................................... 68  
DESELECT ................................................................................................................................................. 72  
NO OPERATION (NOP) .............................................................................................................................. 73  
LOAD MODE (LM) ..................................................................................................................................... 73  
ACTIVATE .................................................................................................................................................. 73  
READ ......................................................................................................................................................... 73  
WRITE ....................................................................................................................................................... 73  
PRECHARGE .............................................................................................................................................. 74  
REFRESH ................................................................................................................................................... 74  
SELF REFRESH ........................................................................................................................................... 74  
Mode Register (MR) ........................................................................................................................................ 74  
Burst Length .............................................................................................................................................. 75  
Burst Type ................................................................................................................................................. 76  
Operating Mode ......................................................................................................................................... 76  
DLL RESET ................................................................................................................................................. 76  
Write Recovery ........................................................................................................................................... 77  
Power-Down Mode .................................................................................................................................... 77  
CAS Latency (CL) ........................................................................................................................................ 78  
Extended Mode Register (EMR) ....................................................................................................................... 79  
DLL Enable/Disable ................................................................................................................................... 80  
Output Drive Strength ................................................................................................................................ 80  
DQS# Enable/Disable ................................................................................................................................. 80  
RDQS Enable/Disable ................................................................................................................................. 80  
Output Enable/Disable ............................................................................................................................... 80  
On-Die Termination (ODT) ........................................................................................................................ 81  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
4
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Off-Chip Driver (OCD) Impedance Calibration ............................................................................................ 81  
Posted CAS Additive Latency (AL) ............................................................................................................... 81  
Extended Mode Register 2 (EMR2) .................................................................................................................. 83  
Extended Mode Register 3 (EMR3) .................................................................................................................. 84  
Initialization .................................................................................................................................................. 85  
ACTIVATE ...................................................................................................................................................... 88  
READ ............................................................................................................................................................. 90  
READ with Precharge ................................................................................................................................. 94  
READ with Auto Precharge .......................................................................................................................... 96  
WRITE .......................................................................................................................................................... 101  
PRECHARGE ................................................................................................................................................. 111  
REFRESH ...................................................................................................................................................... 112  
SELF REFRESH .............................................................................................................................................. 113  
Power-Down Mode ....................................................................................................................................... 115  
Precharge Power-Down Clock Frequency Change .......................................................................................... 122  
Reset ............................................................................................................................................................. 123  
CKE Low Anytime ...................................................................................................................................... 123  
ODT Timing .................................................................................................................................................. 125  
MRS Command to ODT Update Delay ........................................................................................................ 127  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
5
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
List of Tables  
Table 1: Key Timing Parameters ...................................................................................................................... 2  
Table 2: Addressing ......................................................................................................................................... 2  
Table 3: FBGA 84-Ball – x16 and 60-Ball – x4, x8 Descriptions .......................................................................... 17  
Table 4: Input Capacitance ............................................................................................................................ 22  
Table 5: Absolute Maximum DC Ratings ........................................................................................................ 23  
Table 6: Temperature Limits .......................................................................................................................... 24  
Table 7: Thermal Impedance ......................................................................................................................... 25  
Table 8: General IDD Parameters .................................................................................................................... 26  
Table 9: IDD7 Timing Patterns (8-Bank Interleave READ Operation) ................................................................. 27  
Table 10: DDR2 IDD Specifications and Conditions (Die Revisions E, G, and H) ................................................ 28  
Table 11: AC Operating Specifications and Conditions .................................................................................... 31  
Table 12: Recommended DC Operating Conditions (SSTL_18) ........................................................................ 41  
Table 13: ODT DC Electrical Characteristics ................................................................................................... 42  
Table 14: Input DC Logic Levels ..................................................................................................................... 43  
Table 15: Input AC Logic Levels ..................................................................................................................... 43  
Table 16: Differential Input Logic Levels ........................................................................................................ 44  
Table 17: Differential AC Output Parameters .................................................................................................. 46  
Table 18: Output DC Current Drive ................................................................................................................ 46  
Table 19: Output Characteristics .................................................................................................................... 47  
Table 20: Full Strength Pull-Down Current (mA) ............................................................................................ 48  
Table 21: Full Strength Pull-Up Current (mA) ................................................................................................. 49  
Table 22: Reduced Strength Pull-Down Current (mA) ..................................................................................... 50  
Table 23: Reduced Strength Pull-Up Current (mA) .......................................................................................... 51  
Table 24: Input Clamp Characteristics ........................................................................................................... 52  
Table 25: Address and Control Balls ............................................................................................................... 53  
Table 26: Clock, Data, Strobe, and Mask Balls ................................................................................................. 53  
Table 27: AC Input Test Conditions ................................................................................................................ 54  
Table 28: DDR2-400/533 Setup and Hold Time Derating Values (tIS and tIH) ................................................... 56  
Table 29: DDR2-667/800/1066 Setup and Hold Time Derating Values (tIS and tIH) .......................................... 57  
Table 30: DDR2-400/533 tDS, tDH Derating Values with Differential Strobe ..................................................... 60  
Table 31: DDR2-667/800/1066 tDS, tDH Derating Values with Differential Strobe ............................................ 61  
Table 32: Single-Ended DQS Slew Rate Derating Values Using tDSb and tDHb .................................................. 62  
Table 33: Single-Ended DQS Slew Rate Fully Derated (DQS, DQ at VREF) at DDR2-667 ..................................... 62  
Table 34: Single-Ended DQS Slew Rate Fully Derated (DQS, DQ at VREF) at DDR2-533 ..................................... 63  
Table 35: Single-Ended DQS Slew Rate Fully Derated (DQS, DQ at VREF) at DDR2-400 ..................................... 63  
Table 36: Truth Table – DDR2 Commands ..................................................................................................... 68  
Table 37: Truth Table – Current State Bank n – Command to Bank n ............................................................... 69  
Table 38: Truth Table – Current State Bank n – Command to Bank m .............................................................. 71  
Table 39: Minimum Delay with Auto Precharge Enabled ................................................................................. 72  
Table 40: Burst Definition .............................................................................................................................. 76  
Table 41: READ Using Concurrent Auto Precharge ......................................................................................... 96  
Table 42: WRITE Using Concurrent Auto Precharge ....................................................................................... 102  
Table 43: Truth Table – CKE ......................................................................................................................... 117  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
6
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
List of Figures  
Figure 1: 1Gb DDR2 Part Numbers ................................................................................................................... 3  
Figure 2: Simplified State Diagram ................................................................................................................... 9  
Figure 3: 256 Meg x 4 Functional Block Diagram ............................................................................................. 12  
Figure 4: 128 Meg x 8 Functional Block Diagram ............................................................................................. 13  
Figure 5: 64 Meg x 16 Functional Block Diagram ............................................................................................. 14  
Figure 6: 60-Ball FBGA – x4, x8 Ball Assignments (Top View) ........................................................................... 15  
Figure 7: 84-Ball FBGA – x16 Ball Assignments (Top View) .............................................................................. 16  
Figure 8: 84-Ball FBGA Package (8mm x 12.5mm) – x16 ................................................................................... 19  
Figure 9: 60-Ball FBGA Package (8mm x 11.5mm) – x4, x8 ............................................................................... 20  
Figure 10: 60-Ball FBGA (8mm x 10mm) – x4, x8 ............................................................................................. 21  
Figure 11: Example Temperature Test Point Location ..................................................................................... 24  
Figure 12: Single-Ended Input Signal Levels ................................................................................................... 43  
Figure 13: Differential Input Signal Levels ...................................................................................................... 44  
Figure 14: Differential Output Signal Levels .................................................................................................... 46  
Figure 15: Output Slew Rate Load .................................................................................................................. 47  
Figure 16: Full Strength Pull-Down Characteristics ......................................................................................... 48  
Figure 17: Full Strength Pull-Up Characteristics ............................................................................................. 49  
Figure 18: Reduced Strength Pull-Down Characteristics ................................................................................. 50  
Figure 19: Reduced Strength Pull-Up Characteristics ...................................................................................... 51  
Figure 20: Input Clamp Characteristics .......................................................................................................... 52  
Figure 21: Overshoot ..................................................................................................................................... 53  
Figure 22: Undershoot .................................................................................................................................. 53  
Figure 23: Nominal Slew Rate for tIS .............................................................................................................. 58  
Figure 24: Tangent Line for tIS ....................................................................................................................... 58  
Figure 25: Nominal Slew Rate for tIH .............................................................................................................. 59  
Figure 26: Tangent Line for tIH ...................................................................................................................... 59  
Figure 27: Nominal Slew Rate for tDS ............................................................................................................. 64  
Figure 28: Tangent Line for tDS ...................................................................................................................... 64  
Figure 29: Nominal Slew Rate for tDH ............................................................................................................ 65  
Figure 30: Tangent Line for tDH ..................................................................................................................... 65  
Figure 31: AC Input Test Signal Waveform Command/Address Balls ............................................................... 66  
Figure 32: AC Input Test Signal Waveform for Data with DQS, DQS# (Differential) ........................................... 66  
Figure 33: AC Input Test Signal Waveform for Data with DQS (Single-Ended) .................................................. 67  
Figure 34: AC Input Test Signal Waveform (Differential) ................................................................................. 67  
Figure 35: MR Definition ............................................................................................................................... 75  
Figure 36: CL ................................................................................................................................................ 78  
Figure 37: EMR Definition ............................................................................................................................. 79  
Figure 38: READ Latency ............................................................................................................................... 82  
Figure 39: WRITE Latency ............................................................................................................................. 82  
Figure 40: EMR2 Definition ........................................................................................................................... 83  
Figure 41: EMR3 Definition ........................................................................................................................... 84  
Figure 42: DDR2 Power-Up and Initialization ................................................................................................. 85  
Figure 43: Example: Meeting tRRD (MIN) and tRCD (MIN) .............................................................................. 88  
Figure 44: Multibank Activate Restriction ....................................................................................................... 89  
Figure 45: READ Latency ............................................................................................................................... 91  
Figure 46: Consecutive READ Bursts .............................................................................................................. 92  
Figure 47: Nonconsecutive READ Bursts ........................................................................................................ 93  
Figure 48: READ Interrupted by READ ........................................................................................................... 94  
Figure 49: READ-to-WRITE ............................................................................................................................ 94  
Figure 50: READ-to-PRECHARGE – BL = 4 ...................................................................................................... 95  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
7
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Figure 51: READ-to-PRECHARGE – BL = 8 ...................................................................................................... 95  
Figure 52: Bank Read – Without Auto Precharge ............................................................................................. 97  
Figure 53: Bank Read – with Auto Precharge ................................................................................................... 98  
Figure 54: x4, x8 Data Output Timing – tDQSQ, tQH, and Data Valid Window .................................................. 99  
Figure 55: x16 Data Output Timing – tDQSQ, tQH, and Data Valid Window ..................................................... 100  
Figure 56: Data Output Timing – tAC and tDQSCK ......................................................................................... 101  
Figure 57: Write Burst ................................................................................................................................... 103  
Figure 58: Consecutive WRITE-to-WRITE ...................................................................................................... 104  
Figure 59: Nonconsecutive WRITE-to-WRITE ................................................................................................ 104  
Figure 60: WRITE Interrupted by WRITE ....................................................................................................... 105  
Figure 61: WRITE-to-READ ........................................................................................................................... 106  
Figure 62: WRITE-to-PRECHARGE ................................................................................................................ 107  
Figure 63: Bank Write – Without Auto Precharge ............................................................................................ 108  
Figure 64: Bank Write – with Auto Precharge ................................................................................................. 109  
Figure 65: WRITE – DM Operation ................................................................................................................ 110  
Figure 66: Data Input Timing ........................................................................................................................ 111  
Figure 67: Refresh Mode ............................................................................................................................... 112  
Figure 68: Self Refresh .................................................................................................................................. 114  
Figure 69: Power-Down ................................................................................................................................ 116  
Figure 70: READ-to-Power-Down or Self Refresh Entry .................................................................................. 118  
Figure 71: READ with Auto Precharge-to-Power-Down or Self Refresh Entry .................................................. 118  
Figure 72: WRITE-to-Power-Down or Self Refresh Entry ................................................................................ 119  
Figure 73: WRITE with Auto Precharge-to-Power-Down or Self Refresh Entry ................................................. 119  
Figure 74: REFRESH Command-to-Power-Down Entry ................................................................................. 120  
Figure 75: ACTIVATE Command-to-Power-Down Entry ................................................................................ 120  
Figure 76: PRECHARGE Command-to-Power-Down Entry ............................................................................ 121  
Figure 77: LOAD MODE Command-to-Power-Down Entry ............................................................................ 121  
Figure 78: Input Clock Frequency Change During Precharge Power-Down Mode ........................................... 122  
Figure 79: RESET Function ........................................................................................................................... 124  
Figure 80: ODT Timing for Entering and Exiting Power-Down Mode .............................................................. 126  
Figure 81: Timing for MRS Command to ODT Update Delay .......................................................................... 127  
Figure 82: ODT Timing for Active or Fast-Exit Power-Down Mode ................................................................. 127  
Figure 83: ODT Timing for Slow-Exit or Precharge Power-Down Modes ......................................................... 128  
Figure 84: ODT Turn-Off Timings When Entering Power-Down Mode ............................................................ 128  
Figure 85: ODT Turn-On Timing When Entering Power-Down Mode ............................................................. 129  
Figure 86: ODT Turn-Off Timing When Exiting Power-Down Mode ............................................................... 130  
Figure 87: ODT Turn-On Timing When Exiting Power-Down Mode ................................................................ 131  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
8
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
State Diagram  
State Diagram  
Figure 2: Simplified State Diagram  
CKE_L  
Initialization  
sequence  
OCD  
default  
Self  
refreshing  
PRE  
Idle  
all banks  
precharged  
Setting  
MRS  
EMRS  
(E)MRS  
REFRESH  
Refreshing  
Precharge  
power-  
down  
CKE_L  
Automatic Sequence  
Command Sequence  
ACT  
ACT = ACTIVATE  
CKE_H = CKE HIGH, exit power-down or self refresh  
CKE_L = CKE LOW, enter power-down  
(E)MRS = (Extended) mode register set  
PRE = PRECHARGE  
CKE_L  
Activating  
PRE_A = PRECHARGE ALL  
READ = READ  
READ A = READ with auto precharge  
REFRESH = REFRESH  
Active  
power-  
down  
SR = SELF REFRESH  
WRITE = WRITE  
WRITE A = WRITE with auto precharge  
Bank  
active  
WRITE  
READ  
Writing  
Reading  
READ  
WRITE  
READ A  
WRITE A  
Writing  
with  
auto  
Reading  
with  
auto  
PRE, PRE_A  
Precharging  
precharge  
precharge  
1. This diagram provides the basic command flow. It is not comprehensive and does not  
identify all timing requirements or possible command restrictions such as multibank in-  
teraction, power down, entry/exit, etc.  
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
9
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Functional Description  
Functional Description  
The DDR2 SDRAM uses a double data rate architecture to achieve high-speed opera-  
tion. The double data rate architecture is essentially a 4n-prefetch architecture, with an  
interface designed to transfer two data words per clock cycle at the I/O balls. A single  
read or write access for the DDR2 SDRAM effectively consists of a single 4n-bit-wide, one-  
clock-cycle data transfer at the internal DRAM core and four corresponding n-bit-wide,  
one-half-clock-cycle data transfers at the I/O balls.  
A bidirectional data strobe (DQS, DQS#) is transmitted externally, along with data, for  
use in data capture at the receiver. DQS is a strobe transmitted by the DDR2 SDRAM  
during READs and by the memory controller during WRITEs. DQS is edge-aligned with  
data for READs and center-aligned with data for WRITEs. The x16 offering has two data  
strobes, oneforthelowerbyte(LDQS, LDQS#)andonefortheupperbyte(UDQS, UDQS#).  
The DDR2 SDRAM operates from a differential clock (CK and CK#); the crossing of CK  
going HIGH and CK# going LOW will be referred to as the positive edge of CK. Com-  
mands (address and control signals) are registered at every positive edge of CK. Input  
data is registered on both edges of DQS, and output data is referenced to both edges of  
DQS as well as to both edges of CK.  
Read and write accesses to the DDR2 SDRAM are burst-oriented; accesses start at a se-  
lected location and continue for a programmed number of locations in a programmed  
sequence. Accesses begin with the registration of an ACTIVATE command, which is  
then followed by a READ or WRITE command. The address bits registered coincident  
with the ACTIVATE command are used to select the bank and row to be accessed. The  
address bits registered coincident with the READ or WRITE command are used to select  
the bank and the starting column location for the burst access.  
The DDR2 SDRAM provides for programmable read or write burst lengths of four or  
eight locations. DDR2 SDRAM supports interrupting a burst read of eight with another  
read or a burst write of eight with another write. An auto precharge function may be  
enabled to provide a self-timed row precharge that is initiated at the end of the burst  
access.  
As with standard DDR SDRAM, the pipelined, multibank architecture of DDR2 SDRAM  
enables concurrent operation, thereby providing high, effective bandwidth by hiding  
row precharge and activation time.  
A self refresh mode is provided, along with a power-saving, power-down mode.  
All inputs are compatible with the JEDEC standard for SSTL_18. All full drive-strength  
outputs are SSTL_18-compatible.  
Industrial Temperature  
The industrial temperature (IT) option, if offered, has two simultaneous requirements:  
ambient temperature surrounding the device cannot be less than –40°C or greater than  
+85°C, and the case temperature cannot be less than –40°C or greater than +95°C. JE-  
DEC specifications require the refresh rate to double when TC exceeds +85°C; this also  
requires use of the high-temperature self refresh option. Additionally, ODT resistance  
and the input/output impedance must be derated when TC is < 0°C or > +85°C.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
10  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Functional Description  
Automotive Temperature  
The automotive temperature (AT) option, if offered, has two simultaneous require-  
ments: ambient temperature surrounding the device cannot be less than –40°C or  
greater than +105°C, and the case temperature cannot be less than –40°C or greater  
than +105°C. JEDEC specifications require the refresh rate to double when TC exceeds  
+85°C; this also requires use of the high-temperature self refresh option. Additionally,  
ODT resistance and the input/output impedance must be derated when TC is < 0°C or >  
+85°C.  
General Notes  
The functionality and the timing specifications discussed in this data sheet are for the  
DLL-enabled mode of operation.  
Throughout the data sheet, the various figures and text refer to DQs as “DQ.” The DQ  
term is to be interpreted as any and all DQ collectively, unless specifically stated oth-  
erwise. Additionally, the x16 is divided into 2 bytes: the lower byte and the upper byte.  
For the lower byte (DQ0–DQ7), DM refers to LDM and DQS refers to LDQS. For the  
upper byte (DQ8–DQ15), DM refers to UDM and DQS refers to UDQS.  
Complete functionality is described throughout the document, and any page or dia-  
gram may have been simplified to convey a topic and may not be inclusive of all  
requirements.  
Any specific requirement takes precedence over a general statement.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
11  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Functional Block Diagrams  
Functional Block Diagrams  
The DDR2 SDRAM is a high-speed CMOS, dynamic random access memory. It is inter-  
nally configured as a multibank DRAM.  
Figure 3: 256 Meg x 4 Functional Block Diagram  
ODT  
Bank 7  
Bank 6  
CKE  
CK  
CK#  
Bank 7  
Bank 6  
Control  
logic  
Bank 5  
Bank 5  
Bank 4  
Bank 4  
Bank 3  
Bank 3  
Bank 2  
Bank 1  
CS#  
RAS#  
CAS#  
WE#  
Bank 2  
ODT control  
Vdd Q  
CK, CK#  
DLL  
Bank 1  
Bank 0  
sw1 sw2 sw3  
COL0, COL1  
MUX  
Bank 0  
14  
row-  
address  
latch  
4
4
4
4
Memory array  
(16,384 x 512 x 16)  
Refresh  
counter  
16,384  
14  
Mode  
registers  
sw1 sw2 sw3  
Row-  
address  
MUX  
4
16  
and  
decoder  
Read  
latch  
DRVRS  
R1  
R1  
R2  
R2  
R3  
R3  
DATA  
17  
DQ0–DQ3  
DQS, DQS#  
DM  
14  
Sense amplifiers  
8,192  
2
DQS  
generator  
DQS, DQS#  
16  
Input  
registers  
1
sw1 sw2 sw3  
1
1
R1  
R1  
R2  
R2  
R3  
R3  
I/O gating  
DM mask logic  
1
1
1
4
4
4
4
2
A0–A13,  
BA0–BA2  
1
4
Address  
register  
Bank  
WRITE  
FIFO  
and  
17  
1
control  
logic  
Mask  
3
512  
(x16)  
1
RCVRS  
16  
drivers  
4
4
4
4
sw1 sw2 sw3  
Column  
decoder  
4
CK out  
CK in  
16  
CK, CK#  
R1  
R1  
R2  
R2  
R3  
R3  
Column-  
address  
counter/  
latch  
9
Data  
11  
2
2
COL0, COL1  
Vss Q  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
12  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Functional Block Diagrams  
Figure 4: 128 Meg x 8 Functional Block Diagram  
ODT  
Bank 7  
Bank 6  
CKE  
CK  
CK#  
Bank 7  
Bank 6  
Control  
logic  
Bank 5  
Bank 5  
Bank 4  
Bank 4  
Bank 3  
Bank 3  
Bank 2  
Bank 1  
CS#  
RAS#  
CAS#  
WE#  
Bank 2  
ODT control  
Vdd Q  
CK, CK#  
DLL  
Bank 1  
Bank 0  
COL0, COL1  
MUX  
sw1 sw2 sw3  
Bank 0  
14  
row-  
address  
latch  
8
8
8
8
Memory array  
(16,384 x 256 x 32)  
Refresh  
counter  
16,384  
14  
Mode  
registers  
sw1 sw2 sw3  
Row-  
address  
MUX  
8
32  
and  
decoder  
Read  
latch  
DRVRS  
R1  
R1  
R2  
R2  
R3  
R3  
Data  
17  
DQ0–DQ7  
14  
Sense amplifers  
8,192  
2
DQS  
generator  
UDQS, UDQS#  
LDQS, LDQS#  
32  
Input  
registers  
2
sw1 sw2 sw3  
2
2
R1  
R1  
R2  
R2  
R3  
R3  
I/O gating  
DM mask logic  
2
2
2
8
8
8
8
2
DQS, DQS#  
RDQS#  
A0–A13,  
BA0–BA2  
2
4
Address  
register  
Bank  
control  
logic  
WRITE  
FIFO  
and  
17  
2
Mask  
3
256  
(x32)  
2
RCVRS  
32  
drivers  
8
sw1 sw2 sw3  
Column  
decoder  
8
8
CK out  
CK in  
32  
CK,CK#  
RDQS  
DM  
R1  
R1  
R2  
R2  
R3  
R3  
Column-  
address  
counter/  
latch  
8
8
Data  
10  
2
8
2
COL0, COL1  
Vss Q  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
13  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Functional Block Diagrams  
Figure 5: 64 Meg x 16 Functional Block Diagram  
ODT  
Bank 7  
Bank 6  
CKE  
CK  
CK#  
Bank 7  
Bank 6  
Control  
logic  
Bank 5  
Bank 5  
Bank 4  
Bank 4  
Bank 3  
Bank 3  
Bank 2  
Bank 1  
CS#  
RAS#  
CAS#  
WE#  
Bank 2  
Bank 1  
ODT control  
sw1 sw2 sw3  
Vdd Q  
CK, CK#  
DLL  
Bank 0  
COL0, COL1  
16  
Bank 0  
13  
row-  
address  
latch  
Memory array  
(8,192 x 256 x 64)  
Refresh  
counter  
8,192  
16  
16  
16  
13  
Mode  
registers  
sw1 sw2 sw3  
Row-  
address  
MUX  
16  
64  
and  
decoder  
Read  
latch  
DRVRS  
R1  
R1  
R2  
R2  
R3  
R3  
MUX  
DATA  
16  
DQ0–DQ15  
13  
Sense amplifier  
16,384  
4
DQS  
generator  
UDQS, UDQS#  
LDQS, LDQS#  
64  
Input  
registers  
2
sw1 sw2 sw3  
2
2
R1  
R1  
R2  
R2  
R3  
R3  
I/O gating  
DM mask logic  
2
2
UDQS, UDQS#  
LDQS, LDQS#  
A0–A12,  
BA0–BA2  
2
8
Address  
register  
Bank  
WRITE  
FIFO  
and  
16  
2
2
control  
logic  
Mask  
3
256  
(x64)  
2
2
RCVRS  
64  
drivers  
16  
16  
16  
16  
16  
16  
16  
16  
sw1 sw2 sw3  
Column  
decoder  
16  
CK out  
CK in  
64  
CK, CK#  
R1  
R1  
R2  
R2  
R3  
R3  
Column-  
address  
counter/  
latch  
8
2
Data  
10  
UDM, LDM  
4
COL0, COL1  
Vss Q  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
14  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Ball Assignments and Descriptions  
Ball Assignments and Descriptions  
Figure 6: 60-Ball FBGA – x4, x8 Ball Assignments (Top View)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
NC, RDQS#/NU  
V
V
V
DQS#/NU V  
DD  
SS  
SSQ  
DDQ  
V
NF, DQ6  
DM, DM/RDQS  
DQS  
V
NF, DQ7  
SSQ  
SSQ  
DQ1  
V
V
V
DQ0  
V
DDQ  
DDQ  
DDQ  
DDQ  
V
NF, DQ4  
DQ3  
DQ2  
V
NF, DQ5  
SSQ  
SSQ  
V
V
V
V
CK  
V
REF  
DDL  
SS  
SSDL  
DD  
CKE  
BA0  
A10  
A3  
WE#  
BA1  
A1  
RAS# CK#  
CAS# CS#  
ODT  
G
H
J
BA2  
A2  
A6  
A0  
A4  
V
DD  
V
A5  
SS  
K
L
A7  
A9  
A11  
RFU  
A8  
V
SS  
A12  
V
RFU  
A13  
DD  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
15  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Ball Assignments and Descriptions  
Figure 7: 84-Ball FBGA – x16 Ball Assignments (Top View)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
VDD  
DQ14  
VDDQ  
DQ12  
VDD  
NC  
VSS  
VSSQ UDQS#/NU VDDQ  
VSSQ  
DQ9  
UDM  
VDDQ  
UDQS  
VDDQ  
DQ10  
VSSQ  
DQ8  
VSSQ  
DQ15  
VDDQ  
DQ13  
VSSQ DQ11  
NC  
VSSQ  
DQ1  
VSSQ  
VREF  
CKE  
BA0  
A10  
A3  
VSS  
LDM  
VDDQ  
DQ3  
VSS  
VSSQ LDQS#/NU VDDQ  
F
DQ6  
LDQS  
VDDQ  
DQ2  
VSSDL  
RAS#  
CAS#  
A2  
VSSQ  
DQ0  
VSSQ  
CK  
DQ7  
VDDQ  
DQ5  
VDD  
G
H
J
VDDQ  
DQ4  
VDDL  
K
L
WE#  
BA1  
A1  
CK#  
CS#  
A0  
ODT  
BA2  
VSS  
M
N
P
VDD  
A5  
A6  
A4  
A7  
A9  
A11  
A8  
VSS  
R
VDD  
A12  
RFU  
RFU  
RFU  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
16  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Ball Assignments and Descriptions  
Table 3: FBGA 84-Ball – x16 and 60-Ball – x4, x8 Descriptions  
Symbol  
Type  
Description  
A[12:0] (x16)  
,A[13:0] (x4, x8)  
Input  
Address inputs: Provide the row address for ACTIVATE commands, and the column ad-  
dress and auto precharge bit (A10) for READ/WRITE commands, to select one location out  
of the memory array in the respective bank. A10 sampled during a PRECHARGE com-  
mand determines whether the PRECHARGE applies to one bank (A10 LOW, bank selected  
by BA[2:0] or all banks (A10 HIGH). The address inputs also provide the op-code during a  
LOAD MODE command.  
BA[2:0]  
CK, CK#  
CKE  
Input  
Input  
Input  
Bank address inputs: BA[2:0] define to which bank an ACTIVATE, READ, WRITE, or PRE-  
CHARGE command is being applied. BA[2:0] define which mode register, including MR,  
EMR, EMR(2), and EMR(3), is loaded during the LOAD MODE command.  
Clock: CK and CK# are differential clock inputs. All address and control input signals are  
sampled on the crossing of the positive edge of CK and negative edge of CK#. Output  
data (DQ and DQS/DQS#) is referenced to the crossings of CK and CK#.  
Clock enable: CKE (registered HIGH) activates and CKE (registered LOW) deactivates  
clocking circuitry on the DDR2 SDRAM. The specific circuitry that is enabled/disabled is  
dependent on the DDR2 SDRAM configuration and operating mode. CKE LOW provides  
precharge power-down and SELF REFRESH operations (all banks idle), or ACTIVATE power-  
down (row active in any bank). CKE is synchronous for power-down entry, power-down  
exit, output disable, and for self refresh entry. CKE is asynchronous for self refresh exit.  
Input buffers (excluding CK, CK#, CKE, and ODT) are disabled during power-down. Input  
buffers (excluding CKE) are disabled during self refresh. CKE is an SSTL_18 input but will  
detect a LVCMOS LOW level after VDD is applied during first power-up. After VREF has  
become stable during the power-on and initialization sequence, it must be maintained  
for proper operation of the CKE receiver. For proper SELF REFRESH operation, VREF must  
be maintained.  
CS#  
Input  
Input  
Chip select: CS# enables (registered LOW) and disables (registered HIGH) the command  
decoder. All commands are masked when CS# is registered high. CS# provides for exter-  
nal bank selection on systems with multiple ranks. CS# is considered part of the com-  
mand code.  
LDM, UDM, DM  
Input data mask: DM is an input mask signal for write data. Input data is masked when  
DM is sampled HIGH along with that input data during a WRITE access. DM is sampled on  
both edges of DQS. Although DM balls are input-only, the DM loading is designed to  
match that of DQ and DQS balls. LDM is DM for lower byte DQ[7:0] and UDM is DM for  
upper byte DQ[15:8].  
ODT  
Input  
On-die termination: ODT (registered HIGH) enables termination resistance internal to  
the DDR2 SDRAM. When enabled, ODT is only applied to each of the following balls:  
DQ[15:0], LDM, UDM, LDQS, LDQS#, UDQS, and UDQS# for the x16; DQ[7:0], DQS, DQS#,  
RDQS, RDQS#, and DM for the x8; DQ[3:0], DQS, DQS#, and DM for the x4. The ODT input  
will be ignored if disabled via the LOAD MODE command.  
RAS#, CAS#, WE#  
Input  
I/O  
Command inputs: RAS#, CAS#, and WE# (along with CS#) define the command being  
entered.  
DQ[15:0] (x16)  
DQ[3:0] (x4)  
DQ[7:0] (x8)  
Data input/output: Bidirectional data bus for 64 Meg x 16.  
Bidirectional data bus for 256 Meg x 4.  
Bidirectional data bus for 128 Meg x 8.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
17  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Ball Assignments and Descriptions  
Table 3: FBGA 84-Ball – x16 and 60-Ball – x4, x8 Descriptions (Continued)  
Symbol  
Type  
Description  
DQS, DQS#  
I/O  
Data strobe: Output with read data, input with write data for source synchronous oper-  
ation. Edge-aligned with read data, center-aligned with write data. DQS# is only used  
when differential data strobe mode is enabled via the LOAD MODE command.  
LDQS, LDQS#  
UDQS, UDQS#  
RDQS, RDQS#  
I/O  
I/O  
Data strobe for lower byte: Output with read data, input with write data for source  
synchronous operation. Edge-aligned with read data, center-aligned with write data.  
LDQS# is only used when differential data strobe mode is enabled via the LOAD MODE  
command.  
Data strobe for upper byte: Output with read data, input with write data for source  
synchronous operation. Edge-aligned with read data, center-aligned with write data.  
UDQS# is only used when differential data strobe mode is enabled via the LOAD MODE  
command.  
Output  
Redundant data strobe: For x8 only. RDQS is enabled/disabled via the LOAD MODE com-  
mand to the extended mode register (EMR). When RDQS is enabled, RDQS is output with  
read data only and is ignored during write data. When RDQS is disabled, ball B3 becomes  
data mask (see DM ball). RDQS# is only used when RDQS is enabled and differential data  
strobe mode is enabled.  
VDD  
VDDQ  
VDDL  
VREF  
VSS  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Power supply: 1.8V ±0.1V.  
DQ power supply: 1.8V ±0.1V. Isolated on the device for improved noise immunity.  
DLL power supply: 1.8V ±0.1V.  
SSTL_18 reference voltage (VDDQ/2).  
Ground.  
VSSDL  
VSSQ  
NC  
DLL ground: Isolated on the device from VSS and VSSQ.  
DQ ground: Isolated on the device for improved noise immunity.  
No connect: These balls should be left unconnected.  
NF  
No function: x8: these balls are used as DQ[7:4]; x4: they are no function.  
NU  
Not used: For x16 only. If EMR(E10) = 0, A8 and E8 are UDQS# and LDQS#. If EMR(E10) =  
1, then A8 and E8 are not used.  
NU  
Not used: For x8 only. If EMR(E10) = 0, A2 and E8 are RDQS# and DQS#. If EMR(E10) = 1,  
then A2 and E8 are not used.  
RFU  
Reserved for future use: Row address bits A13 (x16 only), A14, and A15.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
18  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Packaging  
Packaging  
Package Dimensions  
Figure 8: 84-Ball FBGA Package (8mm x 12.5mm) – x16  
0.8 ±0.1  
Seating  
plane  
A
0.12 A  
84X Ø0.45  
Solder ball material:  
Pb-free – (SAC305) SnAgCu  
Pb – (Eutectic) SnPbAg  
8 ±0.1  
0.25 MIN  
Ball A1 ID  
Dimensions apply to  
solder balls post-reflow  
on Ø0.35 SMD ball pads.  
Ball A1 ID  
9
8
7
3
2
1
A
B
C
D
E
F
G
H
J
11.2 CTR  
12.5 ±0.1  
0.8 TYP  
K
L
M
N
P
R
Exposed  
gold-plated pad  
1.2 MAX  
0.8 TYP  
1.0 MAX X 0.7 NOM  
nonconductive floating pad  
6.4 CTR  
1. All dimensions are in millimeters.  
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
19  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Packaging  
Figure 9: 60-Ball FBGA Package (8mm x 11.5mm) – x4, x8  
0.8 ±0.1  
Seating  
plane  
A
0.12 A  
60X Ø0.45  
Solder ball material:  
Pb-free – (SAC305) SnAgCu  
Ball A1 ID  
Pb – (Eutectic) SnPbAg  
Dimensions apply to solder  
balls post-reflow on  
Ball A1 ID  
9
8
7
3
2
1
Ø0.35 SMD ball pads.  
A
B
C
D
E
F
11.5 ±0.1  
8 CTR  
G
H
J
K
L
0.8 TYP  
0.8 TYP  
Exposed  
gold-plated pad  
1.0 MAX X 0.7  
nonconductive  
floating pad  
1.2 MAX  
0.25 MIN  
6.4 CTR  
8 ±0.1  
1. All dimensions are in millimeters.  
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
20  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Packaging  
Figure 10: 60-Ball FBGA (8mm x 10mm) – x4, x8  
0.8 ±0.1  
Seating  
Plane  
A
0.12 A  
60X Ø0.45  
Solder ball material:  
Pb-free – (SAC305) SnAgCu  
Pb – (Eutectic) SnPbAg  
Dimensions apply to  
solder balls post-reflow  
on Ø0.35 SMD ball pads.  
Ball A1 ID  
Ball A1 ID  
9
8
7
3
2 1  
A
B
C
D
E
F
8 CTR  
10 ±0.15  
G
H
J
K
L
0.8 TYP  
0.8 TYP  
1.2 MAX  
0.25 MIN  
1.0 X 0.73 MAX  
exposed  
6.4 CTR  
gold-plated pad  
nonconductive floating pad  
8 ±0.15  
1. All dimensions are in millimeters.  
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
21  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Packaging  
FBGA Package Capacitance  
Table 4: Input Capacitance  
Parameter  
Symbol Min Max Units Notes  
Input capacitance: CK, CK#  
CCK  
CDCK  
CI  
1.0 2.0  
0.25 pF  
1.0 2.0 pF  
0.25 pF  
pF  
1
Delta input capacitance: CK, CK#  
2, 3  
1, 4  
2, 3  
Input capacitance: Address balls, bank address balls, CS#, RAS#, CAS#, WE#, CKE, ODT  
Delta input capacitance: Address balls, bank address balls, CS#, RAS#, CAS#, WE#, CKE,  
ODT  
CDI  
Input/output capacitance: DQ, DQS, DM, NF  
CIO  
2.5 4.0  
0.5  
pF  
pF  
1, 5  
2, 3  
Delta input/output capacitance: DQ, DQS, DM, NF  
CDIO  
1. This parameter is sampled. VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V, VREF = VSS, f = 100  
MHz, TC = 25°C, VOUT(DC) = VDDQ/2, VOUT (peak-to-peak) = 0.1V. DM input is grouped  
with I/O balls, reflecting the fact that they are matched in loading.  
Notes:  
2. The capacitance per ball group will not differ by more than this maximum amount for  
any given device.  
3.  
ΔC are not pass/fail parameters; they are targets.  
4. Reduce MAX limit by 0.25pF for -25, -25E, and -187E speed devices.  
5. Reduce MAX limit by 0.5pF for -3, -3E, -25, -25E, and -187E speed devices.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2004 Micron Technology, Inc. All rights reserved.  
22  
1Gb: x4, x8, x16 DDR2 SDRAM  
Electrical Specifications – Absolute Ratings  
Electrical Specifications – Absolute Ratings  
Stresses greater than those listed may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at these or any other condi-  
tions outside those indicated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
Table 5: Absolute Maximum DC Ratings  
Parameter  
Symbol  
VDD  
Min  
–1.0  
–0.5  
–0.5  
–0.5  
–5  
Max  
2.3  
2.3  
2.3  
2.3  
5
Units  
Notes  
VDD supply voltage relative to VSS  
VDDQ supply voltage relative to VSSQ  
VDDL supply voltage relative to VSSL  
Voltage on any ball relative to VSS  
V
V
1
1, 2  
1
VDDQ  
VDDL  
V
VIN, VOUT  
II  
V
3
µA  
Input leakage current; any input 0V VIN VDD; all other  
balls not under test = 0V  
IOZ  
–5  
5
µA  
Output leakage current; 0V VOUT VDDQ; DQ and ODT dis-  
abled  
VREF leakage current; VREF = Valid VREF level  
IVREF  
–2  
2
µA  
1. VDD, VDDQ, and VDDL must be within 300mV of each other at all times; this is not re-  
quired when power is ramping down.  
Notes:  
2.  
VREF 0.6 × VDDQ; however, VREF may be VDDQ provided that VREF 300mV.  
3. Voltage on any I/O may not exceed voltage on VDDQ  
.
Temperature and Thermal Impedance  
It is imperative that the DDR2 SDRAM device’s temperature specifications, shown in  
Table 6 (page 24), be maintained in order to ensure the junction temperature is in the  
proper operating range to meet data sheet specifications. An important step in maintain-  
ing the proper junction temperature is using the device’s thermal impedances correct-  
ly. The thermal impedances are listed in Table 7 (page 25) for the applicable and  
available die revision and packages.  
Incorrectly using thermal impedances can produce significant errors. Read Micron tech-  
nical note TN-00-08, “Thermal Applications” prior to using the thermal impedances  
listed in Table 7. For designs that are expected to last several years and require the flexi-  
bility to use several DRAM die shrinks, consider using final target theta values (rather  
than existing values) to account for increased thermal impedances from the die size re-  
duction.  
The DDR2 SDRAM device’s safe junction temperature range can be maintained when  
the TC specification is not exceeded. In applications where the device’s ambient temper-  
ature is too high, use of forced air and/or heat sinks may be required in order to satisfy  
the case temperature specifications.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
23  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Electrical Specifications – Absolute Ratings  
Table 6: Temperature Limits  
Parameter  
Symbol  
TSTG  
TC  
Min  
–55  
0
Max  
150  
85  
Units  
°C  
Notes  
1
Storage temperature  
Operating temperature: commercial  
Operating temperature: industrial  
°C  
2, 3  
TC  
–40  
–40  
95  
°C  
2, 3, 4  
4, 5  
TA  
85  
°C  
1. MAX storage case temperature TSTG is measured in the center of the package, as shown  
in Figure 11. This case temperature limit is allowed to be exceeded briefly during pack-  
age reflow, as noted in Micron technical note TN-00-15, “Recommended Soldering  
Parameters.”  
Notes:  
2. MAX operating case temperature TC is measured in the center of the package, as shown  
in Figure 11.  
3. Device functionality is not guaranteed if the device exceeds maximum TC during opera-  
tion.  
4. Both temperature specifications must be satisfied.  
5. Operating ambient temperature surrounding the package.  
Figure 11: Example Temperature Test Point Location  
Test point  
Length (L)  
0.5 (L)  
0.5 (W)  
Width (W)  
Lmm x Wmm FBGA  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
24  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Electrical Specifications – Absolute Ratings  
Table 7: Thermal Impedance  
Substrate  
θ JA (°C/W)  
θ JA (°C/W)  
θ JA (°C/W)  
Die Revision Package  
(pcb)  
2-layer  
4-layer  
2-layer  
4-layer  
2-layer  
4-layer  
2-layer  
4-layer  
Airflow = 0m/s Airflow = 1m/s Airflow = 2m/s θ JB (°C/W) θ JC (°C/W)  
G1  
60-ball  
84-ball  
60-ball  
84-ball  
66.5  
49.2  
60.2  
44  
49.6  
40.4  
44.5  
35.7  
55.5  
45.7  
52.0  
42.7  
43.1  
36.4  
39.3  
32.8  
49.5  
42.3  
46.5  
39.6  
30.3  
30  
5.9  
5.6  
5.7  
5.6  
26.1  
26.1  
35.6  
35.2  
32.5  
32.3  
H1  
72.5  
54.5  
68.8  
51.3  
1. Thermal resistance data is based on a number of samples from multiple lots and should  
be viewed as a typical number.  
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
25  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Electrical Specifications – IDD Parameters  
Electrical Specifications – IDD Parameters  
IDD Specifications and Conditions  
Table 8: General IDD Parameters  
IDD Parameters  
CL (IDD  
tRCD (IDD  
tRC (IDD  
tRRD (IDD) - x4/x8 (1KB)  
tRRD (IDD) - x16 (2KB)  
-187E  
7
-25E  
5
-25  
6
-3E  
4
-3  
5
-37E  
4
-5E  
3
Units  
tCK  
ns  
)
)
13.125  
58.125  
7.5  
12.5  
57.5  
7.5  
15  
12  
15  
15  
15  
)
60  
57  
60  
60  
55  
ns  
7.5  
10  
7.5  
10  
7.5  
10  
7.5  
7.5  
10  
ns  
10  
10  
10  
ns  
tCK (IDD  
tRAS MIN (IDD  
tRAS MAX (IDD  
tRP (IDD  
tRFC (IDD - 256Mb)  
tRFC (IDD - 512Mb)  
tRFC (IDD - 1Gb)  
)
1.875  
45  
2.5  
2.5  
45  
3
3
3.75  
45  
5
ns  
)
45  
45  
45  
40  
ns  
)
70,000  
13.125  
75  
70,000  
12.5  
75  
70,000  
15  
70,000  
12  
70,000  
15  
70,000  
15  
70,000  
15  
ns  
)
ns  
75  
75  
75  
75  
75  
ns  
105  
105  
127.5  
195  
105  
127.5  
195  
105  
127.5  
195  
105  
127.5  
195  
105  
127.5  
195  
105  
127.5  
195  
ns  
127.5  
195  
ns  
tRFC (IDD - 2Gb)  
ns  
tFAW (IDD) - x4/x8 (1KB)  
tFAW (IDD) - x16 (2KB)  
Defined by pattern in Table 9 (page 27)  
Defined by pattern in Table 9 (page 27)  
ns  
ns  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
26  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Electrical Specifications – IDD Parameters  
IDD7 Conditions  
The detailed timings are shown below for IDD7. Where general IDD parameters in  
Table 8 (page 26) conflict with pattern requirements of Table 9, then Table 9 require-  
ments take precedence.  
Table 9: IDD7 Timing Patterns (8-Bank Interleave READ Operation)  
Speed  
Grade IDD7 Timing Patterns  
Timing patterns for 8-bank x4/x8 devices  
-5E  
-37E  
-3  
A0 RA0 A1 RA1 A2 RA2 A3 RA3 A4 RA4 A5 RA5 A6 RA6 A7 RA7  
A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D  
A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D  
A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D  
A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D D  
-3E  
-25  
-25E  
-187E  
Timing patterns for 8-bank x16 devices  
-5E  
-37E  
-3  
A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D  
A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 RA5 D A6 RA6 D A7 RA7 D D D  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D D D  
-3E  
-25  
-25E  
-187E  
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D D D A4 RA4 D D D D A5 RA5 D D D D A6 RA6 D  
D D D A7 RA7 D D D D  
1. A = active; RA = read auto precharge; D = deselect.  
Notes:  
2. All banks are being interleaved at tRC (IDD) without violating tRRD (IDD) using a BL = 4.  
3. Control and address bus inputs are stable during deselects.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
27  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Electrical Specifications – IDD Parameters  
Table 10: DDR2 IDD Specifications and Conditions (Die Revisions E, G, and H)  
Notes: 1–7 apply to the entire table  
-25E/  
-25  
-3E/  
-3  
Parameter/Condition  
Symbol Configuration -187E  
-37E  
70  
-5E  
70  
Units  
Operating one bank active-  
precharge current:  
IDD0  
x4, x8  
x16  
115  
180  
90  
85  
mA  
150  
135  
110  
110  
tCK = tCK (IDD), tRC = tRC (IDD), tRAS  
= tRAS MIN (IDD); CKE is HIGH, CS# is  
HIGH between valid commands; Ad-  
dress bus inputs are switching; Data  
bus inputs are switching  
Operating one bank active-read-  
precharge current: IOUT = 0mA; BL  
= 4, CL = CL (IDD), AL = 0; tCK = tCK  
(IDD), tRC = tRC (IDD), tRAS = tRAS  
MIN (IDD), tRCD = tRCD (IDD); CKE is  
HIGH, CS# is HIGH between valid  
commands; Address bus inputs are  
switching; Data pattern is same as  
IDD4W  
IDD1  
x4, x8  
x16  
130  
210  
110  
175  
100  
130  
95  
90  
mA  
120  
115  
Precharge power-down current:  
All banks idle; tCK = tCK (IDD); CKE  
is LOW; Other control and address  
bus inputs are stable; Data bus in-  
puts are floating  
IDD2P  
x4, x8, x16  
7
7
7
7
7
mA  
mA  
Precharge quiet standby  
current: All banks idle;  
tCK = tCK (IDD); CKE is HIGH, CS# is  
HIGH; Other control and address  
bus inputs are stable; Data bus in-  
puts are floating  
IDD2Q  
x4, x8  
x16  
60  
90  
50  
75  
40  
65  
40  
45  
35  
40  
Precharge standby current: All  
banks idle; tCK = tCK (IDD); CKE is  
HIGH, CS# is HIGH; Other control  
and address bus inputs are switch-  
ing; Data bus inputs are switching  
IDD2N  
x4, x8  
x16  
60  
95  
50  
80  
40  
70  
40  
50  
35  
40  
mA  
mA  
mA  
Active power-down current: All  
banks open; tCK = tCK (IDD); CKE is  
LOW; Other control and address  
bus inputs are stable; Data bus in-  
puts are floating  
IDD3Pf  
IDD3Ps  
Fast exit  
MR12 = 0  
50  
10  
40  
10  
30  
10  
30  
10  
30  
10  
Slow exit  
MR12 = 1  
Active standby current: All banks  
open; tCK = tCK (IDD), tRAS = tRAS  
MAX (IDD), tRP = tRP (IDD); CKE is  
HIGH, CS# is HIGH between valid  
commands; Other control and ad-  
dress bus inputs are switching; Data  
bus inputs are switching  
IDD3N  
x4, x8  
x16  
70  
95  
60  
85  
55  
75  
45  
60  
40  
55  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
28  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Electrical Specifications – IDD Parameters  
Table 10: DDR2 IDD Specifications and Conditions (Die Revisions E, G, and H) (Continued)  
Notes: 1–7 apply to the entire table  
-25E/  
-25  
-3E/  
-3  
Parameter/Condition  
Symbol Configuration -187E  
-37E  
110  
125  
180  
-5E  
90  
Units  
Operating burst write current:  
All banks open, continuous burst  
writes; BL = 4, CL = CL (IDD), AL = 0;  
tCK = tCK (IDD), tRAS = tRAS MAX  
(IDD), tRP = tRP (IDD); CKE is HIGH,  
CS# is HIGH between valid com-  
mands; Address bus inputs are  
switching; Data bus inputs are  
switching  
IDD4W  
IDD4R  
IDD5  
x4  
x8  
190  
210  
405  
145  
160  
315  
120  
135  
200  
mA  
105  
160  
x16  
Operating burst read current:  
All banks open, continuous burst  
reads, IOUT = 0mA; BL = 4, CL = CL  
(IDD), AL = 0; tCK = tCK (IDD), tRAS =  
tRAS MAX (IDD), tRP = tRP (IDD); CKE  
is HIGH, CS# is HIGH between valid  
commands; Address bus inputs are  
switching; Data bus inputs are  
switching  
Burst refresh current: tCK = tCK  
(IDD); REFRESH command at every  
tRFC (IDD) interval; CKE is HIGH, CS#  
is HIGH between valid commands;  
Other control and address bus in-  
puts are switching; Data bus inputs  
are switching  
x4  
x8  
190  
210  
420  
145  
160  
320  
120  
135  
220  
110  
125  
180  
90  
mA  
105  
160  
x16  
x4, x8  
x16  
265  
300  
235  
280  
215  
270  
210  
250  
205  
240  
mA  
Self refresh current: CK and CK#  
at 0V; CKE 0.2V; Other control  
and address bus inputs are floating;  
Data bus inputs are floating  
IDD6  
x4, x8, x16  
7
5
7
5
7
5
7
5
7
5
mA  
mA  
IDD6L  
Operating bank interleave read  
current: All bank interleaving  
reads, IOUT = 0mA; BL = 4, CL = CL  
(IDD), AL = tRCD (IDD) - 1 × tCK (IDD);  
tCK = tCK (IDD), tRC = tRC (IDD), tRRD  
= tRRD (IDD), tRCD = tRCD (IDD); CKE  
is HIGH, CS# is HIGH between valid  
commands; Address bus inputs are  
stable during deselects; Data bus in-  
puts are switching; See on page  
for details  
IDD7  
x4, x8  
x16  
425  
520  
335  
440  
280  
350  
270  
330  
260  
300  
1.  
Notes:  
IDD specifications are tested after the device is properly initialized. 0°C TC +85°C.  
2. VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V, VDDL = +1.8V ±0.1V, VREF = VDDQ/2.  
3. IDD parameters are specified with ODT disabled.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2004 Micron Technology, Inc. All rights reserved.  
29  
1Gb: x4, x8, x16 DDR2 SDRAM  
Electrical Specifications – IDD Parameters  
4. Data bus consists of DQ, DM, DQS, DQS#, RDQS, RDQS#, LDQS, LDQS#, UDQS, and  
UDQS#. IDD values must be met with all combinations of EMR bits 10 and 11.  
5. Definitions for IDD conditions:  
LOW  
VIN VIL(AC)max  
HIGH  
Stable  
VIN VIH(AC)min  
Inputs stable at a HIGH or LOW level  
Floating Inputs at VREF = VDDQ/2  
Switching Inputs changing between HIGH and LOW every other clock cycle (once per  
two clocks) for address and control signals  
Switching Inputs changing between HIGH and LOW every other data transfer (once  
per clock) for DQ signals, not including masks or strobes  
6. IDD1, IDD4R, and IDD7 require A12 in EMR to be enabled during testing.  
7. The following IDD values must be derated (IDD limits increase) on IT-option and AT-op-  
tion devices when operated outside of the range 0°C TC 85°C:  
When  
TC 0°C  
IDD2P and IDD3P(SLOW) must be derated by 4%; IDD4R and IDD5W must be derat-  
ed by 2%; and IDD6 and IDD7 must be derated by 7%  
When  
TC 85°C  
IDD0, IDD1, IDD2N, IDD2Q, IDD3N, IDD3P(FAST), IDD4R, IDD4W, and IDD5W must be derat-  
ed by 2%; IDD2P must be derated by 20%; IDD3P(SLOW) must be derated by  
30%; and IDD6 must be derated by 80% (IDD6 will increase by this amount if  
TC < 85°C and the 2X refresh option is still enabled)  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
30  
© 2004 Micron Technology, Inc. All rights reserved.  
AC Timing Operating Specifications  
Table 11: AC Operating Specifications and Conditions  
Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table;  
VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V  
AC Characteristics  
Parameter Symbol Min  
Clock  
cycle time  
-187E  
-25E  
-25  
-3E  
-3  
-37E  
-5E  
Max Min Max Min Max Min Max Min Max Min Max Min Max Units Notes  
CL = 7 tCK (avg) 1.875  
CL = 6 tCK (avg) 2.5  
CL = 5 tCK (avg) 3.0  
CL = 4 tCK (avg) 3.75  
8.0  
8.0  
ns  
6, 7, 8,  
9
3.0  
3.75  
5.0  
2.5  
2.5  
3.75  
5.0  
8.0  
8.0  
8.0  
8.0  
2.5  
3.0  
3.75  
5.0  
8.0  
8.0  
8.0  
8.0  
8.0  
3.0  
3.0  
5.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
3.75  
5.0  
CL = 3 tCK (avg) 5.0  
8.0  
5.0  
8.0  
5.0  
8.0  
t
CK high-level width CH (avg) 0.48  
CK low-level width tCL (avg) 0.48  
0.52  
0.52  
0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 tCK  
0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.52 tCK  
10  
11  
Half clock period  
tHP  
MIN = lesser of tCH and tCL  
MAX = n/a  
ps  
ps  
ps  
ps  
Absolute tCK  
tCK (abs)  
tCH (abs)  
tCL (abs)  
MIN = tCK (AVG) MIN + tJITper (MIN)  
MAX = tCK (AVG) MAX + tJITper (MAX)  
Absolute CK  
high-level width  
MIN = tCK (AVG) MIN × tCH (AVG) MIN + tJITdty (MIN)  
MAX = tCK (AVG) MAX × tCH (AVG) MAX + tJITdty (MAX)  
Absolute CK  
low-level width  
MIN = tCK (AVG) MIN × tCL (AVG) MIN + tJITdty (MIN)  
MAX = tCK (AVG) MAX × tCL (AVG) MAX + tJITdty (MAX)  
Period jitter  
Half period  
Cycle to cycle  
tJITper  
tJITdty  
tJITcc  
tERR2per –132  
tERR3per –157  
tERR4per –175  
tERR5per –188  
–90  
–75  
90  
75  
–100 100 –100 100 –125 125 –125 125 –125 125 –125 125  
–100 100 –100 100 –125 125 –125 125 –125 125 –150 150  
ps  
ps  
ps  
ps  
12  
13  
14  
15  
180  
200  
200  
250  
250  
250  
250  
Cumulative error,  
2 cycles  
132  
157  
175  
188  
250  
425  
–150 150 –150 150 –175 175 –175 175 –175 175 –175 175  
–175 175 –175 175 –225 225 –225 225 –225 225 –225 225  
–200 200 –200 200 –250 250 –250 250 –250 250 –250 250  
–200 200 –200 200 –250 250 –250 250 –250 250 –250 250  
–300 300 –300 300 –350 350 –350 350 –350 350 –350 350  
–450 450 –450 450 –450 450 –450 450 –450 450 –450 450  
Cumulative error,  
3 cycles  
ps  
ps  
ps  
ps  
ps  
15  
15  
Cumulative error,  
4 cycles  
Cumulative error,  
5 cycles  
15, 16  
15, 16  
15  
Cumulative error,  
6–10 cycles  
tERR6–  
10per  
tERR11–  
50per  
–250  
–425  
Cumulative error,  
11–50 cycles  
Table 11: AC Operating Specifications and Conditions (Continued)  
Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table;  
VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V  
AC Characteristics  
-187E  
-25E  
-25  
-3E  
-3  
-37E  
-5E  
Parameter Symbol Min  
Max Min Max Min Max Min Max Min Max Min Max Min Max Units Notes  
DQS output access tDQSCK –300 +300 –350 +350 –350 +350 –400 +400 –400 +400 –450 +450 –500 +500  
time from CK/CK#  
ps  
19  
DQS read preamble tRPRE  
MIN = 0.9 × tCK  
MAX = 1.1 × tCK  
tCK 17, 18,  
19  
DQS read  
postamble  
tRPST  
tLZ1  
MIN = 0.4 × tCK  
MAX = 0.6 × tCK  
tCK 17, 18,  
19, 20  
t
CK/CK# to DQS  
Low-Z  
MIN = AC (MIN)  
ps  
19, 21,  
22  
t
MAX = AC (MAX)  
DQS rising edge to  
CK rising edge  
tDQSS  
tDQSH  
tDQSL  
tDSS  
MIN = –0.25 × tCK  
MAX = +0.25 × tCK  
MIN = 0.35 × tCK  
MAX = n/a  
MIN = 0.35 × tCK  
MAX = n/a  
MIN = 0.2 × tCK  
MAX = n/a  
tCK  
tCK  
tCK  
tCK  
tCK  
18  
18  
18  
18  
18  
DQS input-high  
pulse width  
DQS input-low  
pulse width  
DQS falling to CK  
rising: setup time  
DQS falling from  
CK rising:  
tDSH  
MIN = 0.2 × tCK  
MAX = n/a  
hold time  
Write preamble  
setup time  
tWPRES  
tWPRE  
tWPST  
MIN = 0  
MAX = n/a  
MIN = 0.35 × tCK  
MAX = n/a  
MIN = 0.4 × tCK  
MAX = 0.6 × tCK  
ps  
23, 24  
18  
DQS write  
preamble  
tCK  
DQS write  
postamble  
tCK 18, 25  
tCK  
WRITE command  
to first DQS  
transition  
MIN = WL - tDQSS  
MAX = WL + tDQSS  
Table 11: AC Operating Specifications and Conditions (Continued)  
Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table;  
VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V  
AC Characteristics  
-187E  
-25E  
-25  
-3E  
-3  
-37E  
-5E  
Parameter  
Symbol Min Max Min Max Min Max Min Max Min Max Min Max Min Max Units Notes  
DQ output access  
time from CK/CK#  
tAC  
–350 +350 –400 +400 –400 +400 –450 +450 –450 +450 –500 +500 –600 +600  
ps  
ps  
19  
DQS–DQ skew,  
DQS to last DQ  
valid, per group,  
per access  
tDQSQ  
175  
200  
200  
240  
240  
300  
350  
26, 27  
DQ hold from next  
DQS strobe  
tQHS  
tQH  
250  
300  
300  
340  
340  
400  
450  
ps  
ps  
ps  
ps  
ns  
ps  
ps  
ps  
ps  
28  
DQ–DQS hold, DQS  
to first DQ not valid  
MIN = tHP - tQHS  
MAX = n/a  
26, 27,  
28  
CK/CK# to DQ, DQS  
High-Z  
tHZ  
MIN = n/a  
19, 21,  
29  
MAX = tAC (MAX)  
MIN = 2 × tAC (MIN)  
MAX = tAC (MAX)  
MIN = tQH - tDQSQ  
MAX = n/a  
CK/CK# to DQ  
Low-Z  
tLZ2  
19, 21,  
22  
Data valid output  
window  
DVW  
tDSb  
tDHb  
tDSa  
tDHa  
tDIPW  
26, 27  
DQ and DM input  
setup time to DQS  
0
50  
50  
100  
100  
175  
300  
300  
100  
225  
350  
350  
150  
275  
400  
400  
26, 30,  
31  
DQ and DM input  
hold time to DQS  
75  
125  
250  
250  
125  
250  
250  
175  
300  
300  
26, 30,  
31  
DQ and DM input  
setup time to DQS  
200  
200  
26, 30,  
31  
DQ and DM input  
hold time to DQS  
26, 30,  
31  
DQ and DM input  
pulse width  
MIN = 0.35 × tCK  
MAX = n/a  
tCK 18, 32  
Table 11: AC Operating Specifications and Conditions (Continued)  
Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table;  
VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V  
AC Characteristics  
-187E  
-25E  
-25  
-3E  
-3  
-37E  
-5E  
Parameter  
Symbol Min Max Min Max Min Max Min Max Min Max Min Max Min Max Units Notes  
Input setup time  
Input hold time  
Input setup time  
Input hold time  
Input pulse width  
tISb  
tIHb  
tISa  
tIHa  
tIPW  
tRC  
125  
200  
325  
325  
0.6  
175  
250  
375  
375  
0.6  
175  
250  
375  
375  
0.6  
200  
275  
400  
400  
0.6  
200  
275  
400  
400  
0.6  
250  
375  
500  
500  
0.6  
350  
475  
600  
600  
0.6  
ps  
ps  
ps  
ps  
31, 33  
31, 33  
31, 33  
31, 33  
tCK 18, 32  
ACTIVATE-to-  
ACTIVATE delay,  
same bank  
54  
55  
55  
54  
55  
55  
55  
ns  
18, 34  
ACTIVATE-to-READ  
or WRITE delay  
tRCD  
tRAS  
13.125  
40  
12.5  
40  
15  
40  
12  
40  
15  
40  
15  
40  
15  
40  
ns  
ns  
18  
ACTIVATE-to-  
PRECHARGE delay  
70K  
70K  
70K  
70K  
70K  
70K  
70K  
18, 34,  
35  
PRECHARGE period  
tRP  
tRPA  
tRPA  
13.125  
13.125  
15  
12.5  
12.5  
15  
15  
15  
12  
12  
15  
15  
15  
18  
15  
15  
15  
15  
20  
ns  
ns  
ns  
18, 36  
18, 36  
18, 36  
PRE-  
<1Gb  
CHARGE  
ALL period  
17.5  
18.75  
1Gb  
ACTIVATE x4, x8  
tRRD  
tRRD  
7.5  
10  
7.5  
10  
7.5  
10  
7.5  
10  
7.5  
10  
7.5  
10  
7.5  
10  
ns  
ns  
18, 37  
18, 37  
-to-  
x16  
ACTIVATE  
delay  
different  
bank  
4-bank  
activate  
period  
(1Gb)  
x4, x8  
x16  
tFAW  
tFAW  
35  
45  
35  
45  
35  
45  
37.5  
50  
37.5  
50  
37.5  
50  
37.5  
50  
ns  
ns  
18, 38  
18, 38  
Table 11: AC Operating Specifications and Conditions (Continued)  
Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table;  
VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V  
AC Characteristics  
-187E  
-25E  
-25  
-3E  
-3  
-37E  
-5E  
Parameter  
Symbol Min Max Min Max Min Max Min Max Min Max Min Max Min Max Units Notes  
Internal READ-to-  
PRECHARGE delay  
tRTP  
7.5  
2
7.5  
2
7.5  
2
7.5  
2
7.5  
2
7.5  
2
7.5  
2
ns  
18, 37,  
39  
CAS#-to-CAS#  
delay  
tCCD  
tCK  
18  
Write recovery time  
tWR  
tDAL  
15  
tWR +  
tRP  
15  
tWR +  
tRP  
15  
tWR +  
tRP  
15  
tWR +  
tRP  
15  
tWR +  
tRP  
15  
tWR +  
tRP  
15  
tWR +  
tRP  
ns  
ns  
18, 37  
40  
Write AP recovery  
+ precharge time  
Internal WRITE-to-  
READ delay  
tWTR  
tMRD  
tRFC  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
10  
ns  
tCK  
ns  
18, 37  
18  
LOAD MODE cycle  
time  
2
2
2
2
2
2
2
REFRESH- 256Mb  
75  
75  
75  
75  
75  
75  
75  
18, 41  
to-  
ACTIVATE  
or to  
-REFRESH  
interval  
512Mb  
1Gb  
105  
105  
105  
105  
105  
105  
105  
127.5  
197.5  
127.5  
197.5  
127.5  
197.5  
127.5  
197.5  
127.5  
197.5  
127.5  
197.5  
127.5  
197.5  
2Gb  
Average periodic  
refresh  
(commercial)  
tREFI  
tREFIIT  
tREFIAT  
tDELAY  
7.8  
3.9  
3.9  
7.8  
3.9  
3.9  
7.8  
3.9  
3.9  
7.8  
3.9  
3.9  
7.8  
3.9  
3.9  
7.8  
3.9  
3.9  
7.8  
3.9  
3.9  
µs  
µs  
µs  
ns  
18, 41  
18, 41  
18, 41  
42  
Average periodic  
refresh  
(industrial)  
Average periodic  
refresh  
(automotive)  
CKE LOW to CK,  
CK# uncertainty  
MIN limit = tIS + tCK + tIH  
MAX limit = n/a  
Table 11: AC Operating Specifications and Conditions (Continued)  
Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table;  
VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V  
AC Characteristics  
-187E  
-25E  
-25  
-3E  
-3  
-37E  
-5E  
Parameter  
Symbol Min Max Min Max Min Max Min Max Min Max Min Max Min Max Units Notes  
Exit SELF REFRESH  
to nonREAD  
command  
tXSNR  
MIN limit = tRFC (MIN) + 10  
MAX limit = n/a  
ns  
Exit SELF REFRESH  
to READ command  
tXSRD  
tISXR  
MIN limit = 200  
MAX limit = n/a  
MIN limit = tIS  
tCK  
ps  
18  
33, 43  
18  
Exit SELF REFRESH  
timing reference  
Exit active MR12 tXARD  
MAX limit = n/a  
3
2
2
2
2
2
2
tCK  
tCK  
power-  
down to  
READ  
= 0  
MR12  
= 1  
10 - AL  
8 - AL  
8 - AL  
7 - AL  
7 - AL  
6 - AL  
6 - AL  
18  
command  
Exit precharge  
power-down and  
active power-down  
to any  
tXP  
3
2
2
2
2
2
2
tCK  
18  
nonREAD  
command  
CKE MIN HIGH/  
LOW time  
tCKE  
MIN = 3  
MAX = n/a  
tCK 18, 44  
Table 11: AC Operating Specifications and Conditions (Continued)  
Not all speed grades listed may be supported for this device; refer to the title page for speeds supported; Notes: 1–5 apply to the entire table;  
VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V  
AC Characteristics  
-187E  
-25E  
-25  
-3E  
-3  
-37E  
-5E  
Parameter  
Symbol Min Max Min Max Min Max Min Max Min Max Min Max Min Max Units Notes  
ODT to power-  
down entry latency  
tANPD  
tAXPD  
4
3
3
3
8
3
8
3
8
3
8
tCK  
tCK  
tCK  
18  
18  
18  
ODT power-down  
exit latency  
ODT turn-on delay tAOND  
ODT turn-off delay tAOFD  
11  
10  
10  
2
2.5  
tCK 18, 45  
ODT turn-on  
tAON  
tAC  
tAC  
MIN = tAC (MIN)  
MIN = tAC (MIN)  
MAX = tAC (MAX) + 700  
MIN = tAC (MIN)  
MAX = tAC (MAX) + 1,000  
ps  
19, 46  
(MIN) (MAX) MAX = tAC (MAX) + 600  
+
2,575  
ODT turn-off  
tAOF  
MIN = tAC (MIN)  
ps  
ps  
47, 48  
49  
MAX = tAC (MAX) + 600  
ODT turn-on  
(power-down  
mode)  
tAONPD  
tAC  
(MIN) tCK +  
tAC  
2 ×  
MIN = tAC (MIN) + 2,000  
MAX = 2 × tCK + tAC (MAX) + 1,000  
+
2,000 (MAX)  
+
1,000  
ODT turn-off  
(power-down  
mode)  
tAOFPD  
tMOD  
MIN = tAC (MIN) + 2,000  
ps  
ns  
MAX = 2.5 × tCK + tAC (MAX) + 1,000  
ODT enable from  
MRS command  
MIN = 12  
MAX = n/a  
18, 50  
1Gb: x4, x8, x16 DDR2 SDRAM  
1. All voltages are referenced to VSS.  
Notes:  
2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at  
nominal reference/supply voltage levels, but the related specifications and the opera-  
tion of the device are warranted for the full voltage range specified. ODT is disabled for  
all measurements that are not ODT-specific.  
3. Outputs measured with equivalent load (see Figure 15 (page 47)).  
4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.0V in the test environment,  
and parameter specifications are guaranteed for the specified AC input levels under nor-  
mal use conditions. The slew rate for the input signals used to test the device is 1.0 V/ns  
for signals in the range between VIL(AC) and VIH(AC). Slew rates other than 1.0 V/ns may  
require the timing parameters to be derated as specified.  
5. The AC and DC input level specifications are as defined in the SSTL_18 standard (that is,  
the receiver will effectively switch as a result of the signal crossing the AC input level  
and will remain in that state as long as the signal does not ring back above [below] the  
DC input LOW [HIGH] level).  
6. CK and CK# input slew rate is referenced at 1 V/ns (2 V/ns if measured differentially).  
7. Operating frequency is only allowed to change during self refresh mode (see Figure 78  
(page 122)), precharge power-down mode, or system reset condition (see Reset  
(page 123)). SSC allows for small deviations in operating frequency, provided the SSC  
guidelines are satisfied.  
8. The clock’s tCK (AVG) is the average clock over any 200 consecutive clocks and  
tCK (AVG) MIN is the smallest clock rate allowed (except for a deviation due to allowed  
clock jitter). Input clock jitter is allowed provided it does not exceed values specified.  
Also, the jitter must be of a random Gaussian distribution in nature.  
9. Spread spectrum is not included in the jitter specification values. However, the input  
clock can accommodate spread spectrum at a sweep rate in the range 8–60 kHz with an  
additional one percent tCK (AVG); however, the spread spectrum may not use a clock  
rate below tCK (AVG) MIN or above tCK (AVG) MAX.  
10. MIN (tCL, tCH) refers to the smaller of the actual clock LOW time and the actual clock  
HIGH time driven to the device. The clock’s half period must also be of a Gaussian distri-  
bution; tCH (AVG) and tCL (AVG) must be met with or without clock jitter and with or  
without duty cycle jitter. tCH (AVG) and tCL (AVG) are the average of any 200 consecu-  
tive CK falling edges. tCH limits may be exceeded if the duty cycle jitter is small enough  
that the absolute half period limits (tCH [ABS], tCL [ABS]) are not violated.  
11. tHP (MIN) is the lesser of tCL and tCH actually applied to the device CK and CK# inputs;  
thus, tHP (MIN) the lesser of tCL (ABS) MIN and tCH (ABS) MIN.  
12. The period jitter (tJITper) is the maximum deviation in the clock period from the average  
or nominal clock allowed in either the positive or negative direction. JEDEC specifies  
tighter jitter numbers during DLL locking time. During DLL lock time, the jitter values  
should be 20 percent less those than noted in the table (DLL locked).  
13. The half-period jitter (tJITdty) applies to either the high pulse of clock or the low pulse  
of clock; however, the two cumulatively can not exceed tJITper.  
14. The cycle-to-cycle jitter (tJITcc) is the amount the clock period can deviate from one cycle  
to the next. JEDEC specifies tighter jitter numbers during DLL locking time. During DLL  
lock time, the jitter values should be 20 percent less than those noted in the table (DLL  
locked).  
15. The cumulative jitter error (tERRnper), where n is 2, 3, 4, 5, 6–10, or 11–50 is the amount  
of clock time allowed to consecutively accumulate away from the average clock over  
any number of clock cycles.  
16. JEDEC specifies using tERR6–10per when derating clock-related output timing (see notes  
19 and 48). Micron requires less derating by allowing tERR5per to be used.  
17. This parameter is not referenced to a specific voltage level but is specified when the de-  
vice output is no longer driving (tRPST) or beginning to drive (tRPRE).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
38  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
18. The inputs to the DRAM must be aligned to the associated clock, that is, the actual clock  
that latches it in. However, the input timing (in ns) references to the tCK (AVG) when  
determining the required number of clocks. The following input parameters are deter-  
mined by taking the specified percentage times the tCK (AVG) rather than tCK: tIPW,  
tDIPW, tDQSS, tDQSH, tDQSL, tDSS, tDSH, tWPST, and tWPRE.  
19. The DRAM output timing is aligned to the nominal or average clock. Most output param-  
eters must be derated by the actual jitter error when input clock jitter is present; this  
will result in each parameter becoming larger. The following parameters are required to  
be derated by subtracting tERR5per (MAX): tAC (MIN), tDQSCK (MIN), tLZDQS (MIN), tLZDQ  
(MIN), tAON (MIN); while the following parameters are required to be derated by sub-  
tracting tERR5per (MIN): tAC (MAX), tDQSCK (MAX), tHZ (MAX), tLZDQS (MAX), tLZDQ  
(MAX), tAON (MAX). The parameter tRPRE (MIN) is derated by subtracting tJITper (MAX),  
while tRPRE (MAX), is derated by subtracting tJITper (MIN). The parameter tRPST (MIN) is  
derated by subtracting tJITdty (MAX), while tRPST (MAX), is derated by subtracting tJITd-  
ty (MIN). Output timings that require tERR5per derating can be observed to have offsets  
relative to the clock; however, the total window will not degrade.  
20. When DQS is used single-ended, the minimum limit is reduced by 100ps.  
21. tHZ and tLZ transitions occur in the same access time windows as valid data transitions.  
These parameters are not referenced to a specific voltage level, but specify when the  
device output is no longer driving (tHZ) or begins driving (tLZ).  
22. tLZ (MIN) will prevail over a tDQSCK (MIN) + tRPRE (MAX) condition.  
23. This is not a device limit. The device will operate with a negative value, but system per-  
formance could be degraded due to bus turnaround.  
24. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE command.  
The case shown (DQS going from High-Z to logic LOW) applies when no WRITEs were  
previously in progress on the bus. If a previous WRITE was in progress, DQS could be  
HIGH during this time, depending on tDQSS.  
25. The intent of the “Don’t Care” state after completion of the postamble is that the DQS-  
driven signal should either be HIGH, LOW, or High-Z, and that any signal transition  
within the input switching region must follow valid input requirements. That is, if DQS  
transitions HIGH (above VIH[DC]min), then it must not transition LOW (below VIH[DC]) prior  
to tDQSH (MIN).  
26. Referenced to each output group: x4 = DQS with DQ0–DQ3; x8 = DQS with DQ0–DQ7;  
x16 = LDQS with DQ0–DQ7; and UDQS with DQ8–DQ15.  
27. The data valid window is derived by achieving other specifications: tHP (tCK/2), tDQSQ,  
and tQH (tQH = tHP - tQHS). The data valid window derates in direct proportion to the  
clock duty cycle and a practical data valid window can be derived.  
28. tQH = tHP - tQHS; the worst case tQH would be the lesser of tCL (ABS) MAX or  
tCH (ABS) MAX times tCK (ABS) MIN - tQHS. Minimizing the amount of tCH (AVG) offset  
and value of tJITdty will provide a larger tQH, which in turn will provide a larger valid  
data out window.  
29. This maximum value is derived from the referenced test load. tHZ (MAX) will prevail  
over tDQSCK (MAX) + tRPST (MAX) condition.  
30. The values listed are for the differential DQS strobe (DQS and DQS#) with a differential  
slew rate of 2 V/ns (1 V/ns for each signal). There are two sets of values listed: tDSa, tDHa  
and tDSb, tDHb. The tDSa, tDHa values (for reference only) are equivalent to the baseline  
values of tDSb, tDHb at VREF when the slew rate is 2 V/ns, differentially. The baseline val-  
ues, tDSb, tDHb, are the JEDEC-defined values, referenced from the logic trip points. tDSb  
is referenced from VIH(AC) for a rising signal and VIL(AC) for a falling signal, while tDHb is  
referenced from VIL(DC) for a rising signal and VIH(DC) for a falling signal. If the differen-  
tial DQS slew rate is not equal to 2 V/ns, then the baseline values must be derated by  
adding the values from Table 30 (page 60) and Table 31 (page 61). If the DQS differ-  
ential strobe feature is not enabled, then the DQS strobe is single-ended and the  
baseline values must be derated using Table 32 (page 62). Single-ended DQS data tim-  
ing is referenced at DQS crossing VREF. The correct timing values for a single-ended DQS  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
39  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
strobe are listed in Table 33 (page 62)–Table 35 (page 63) on Table 33 (page 62),  
Table 34 (page 63), and Table 35 (page 63); listed values are already derated for slew  
rate variations and converted from baseline values to VREF values.  
31. VIL/VIH DDR2 overshoot/undershoot. See AC Overshoot/Undershoot Specification  
(page 53).  
32. For each input signal—not the group collectively.  
33. There are two sets of values listed for command/address: tISa, tIHa and tISb, tIHb. The tISa,  
tIHa values (for reference only) are equivalent to the baseline values of tISb, tIHb at VREF  
when the slew rate is 1 V/ns. The baseline values, tISb, tIHb, are the JEDEC-defined values,  
referenced from the logic trip points. tISb is referenced from VIH(AC) for a rising signal  
and VIL(AC) for a falling signal, while tIHb is referenced from VIL(DC) for a rising signal and  
VIH(DC) for a falling signal. If the command/address slew rate is not equal to 1 V/ns, then  
the baseline values must be derated by adding the values from Table 28 (page 56) and  
Table 29 (page 57).  
34. This is applicable to READ cycles only. WRITE cycles generally require additional time  
due to tWR during auto precharge.  
35. READs and WRITEs with auto precharge are allowed to be issued before tRAS (MIN) is  
satisfied because tRAS lockout feature is supported in DDR2 SDRAM.  
36. When a single-bank PRECHARGE command is issued, tRP timing applies. tRPA timing ap-  
plies when the PRECHARGE (ALL) command is issued, regardless of the number of banks  
open. For 8-bank devices (1Gb), tRPA (MIN) = tRP (MIN) + tCK (AVG) (Table 11 (page 31)  
lists tRP [MIN] + tCK [AVG] MIN).  
37. This parameter has a two clock minimum requirement at any tCK.  
38. The tFAW (MIN) parameter applies to all 8-bank DDR2 devices. No more than four bank-  
ACTIVATE commands may be issued in a given tFAW (MIN) period. tRRD (MIN) restriction  
still applies.  
39. The minimum internal READ-to-PRECHARGE time. This is the time from which the last 4-  
bit prefetch begins to when the PRECHARGE command can be issued. A 4-bit prefetch is  
when the READ command internally latches the READ so that data will output CL later.  
This parameter is only applicable when tRTP/(2 × tCK) > 1, such as frequencies faster than  
533 MHz when tRTP = 7.5ns. If tRTP/(2 × tCK) 1, then equation AL + BL/2 applies. tRAS  
(MIN) has to be satisfied as well. The DDR2 SDRAM will automatically delay the internal  
PRECHARGE command until tRAS (MIN) has been satisfied.  
40. tDAL = (nWR) + (tRP/tCK). Each of these terms, if not already an integer, should be roun-  
ded up to the next integer. tCK refers to the application clock period; nWR refers to the  
tWR parameter stored in the MR9–MR11. For example, -37E at tCK = 3.75ns with tWR  
programmed to four clocks would have tDAL = 4 + (15ns/3.75ns) clocks = 4 + (4) clocks =  
8 clocks.  
41. The refresh period is 64ms (commercial) or 32ms (industrial and automotive). This equa-  
tes to an average refresh rate of 7.8125µs (commercial) or 3.9607µs (industrial and  
automotive). To ensure all rows of all banks are properly refreshed, 8192 REFRESH com-  
mands must be issued every 64ms (commercial) or 32ms (industrial and automotive). The  
JEDEC tRFC MAX of 70,000ns is not required as bursting of AUTO REFRESH commands is  
allowed.  
42. tDELAY is calculated from tIS + tCK + tIH so that CKE registration LOW is guaranteed pri-  
or to CK, CK# being removed in a system RESET condition (see Reset (page 123)).  
43. tISXR is equal to tIS and is used for CKE setup time during self refresh exit, as shown in  
Figure 68 (page 114).  
44. tCKE (MIN) of three clocks means CKE must be registered on three consecutive positive  
clock edges. CKE must remain at the valid input level the entire time it takes to achieve  
the three clocks of registration. Thus, after any CKE transition, CKE may not transition  
from its valid level during the time period of tIS + 2 × tCK + tIH.  
45. The half-clock of tAOFD’s 2.5 tCK assumes a 50/50 clock duty cycle. This half-clock value  
must be derated by the amount of half-clock duty cycle error. For example, if the clock  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
40  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
AC and DC Operating Conditions  
duty cycle was 47/53, tAOFD would actually be 2.5 - 0.03, or 2.47, for tAOF (MIN) and 2.5  
+ 0.03, or 2.53, for tAOF (MAX).  
46. ODT turn-on time tAON (MIN) is when the device leaves High-Z and ODT resistance be-  
gins to turn on. ODT turn-on time tAON (MAX) is when the ODT resistance is fully on.  
Both are measured from tAOND.  
47. ODT turn-off time tAOF (MIN) is when the device starts to turn off ODT resistance. ODT  
turn off time tAOF (MAX) is when the bus is in High-Z. Both are measured from tAOFD.  
48. Half-clock output parameters must be derated by the actual tERR5per and tJITdty when  
input clock jitter is present; this will result in each parameter becoming larger. The pa-  
rameter tAOF (MIN) is required to be derated by subtracting both tERR5per (MAX) and  
tJITdty (MAX). The parameter tAOF (MAX) is required to be derated by subtracting both  
tERR5per (MIN) and tJITdty (MIN).  
49. The -187E maximum limit is 2 × tCK + tAC (MAX) + 1000 but it will likely be  
3 x tCK + tAC (MAX) + 1000 in the future.  
50. Should use 8 tCK for backward compatibility.  
AC and DC Operating Conditions  
Table 12: Recommended DC Operating Conditions (SSTL_18)  
All voltages referenced to VSS  
Parameter  
Symbol  
VDD  
Min  
1.7  
Nom  
1.8  
Max  
1.9  
Units Notes  
Supply voltage  
V
V
1, 2  
2, 3  
2, 3  
4
VDDL supply voltage  
I/O supply voltage  
I/O reference voltage  
I/O termination voltage (system)  
VDDL  
1.7  
1.8  
1.9  
VDDQ  
VREF(DC)  
VTT  
1.7  
1.8  
1.9  
V
0.49 × VDDQ  
VREF(DC) - 40  
0.50 × VDDQ  
VREF(DC)  
0.51 × VDDQ  
VREF(DC) + 40  
V
mV  
5
1.  
Notes:  
VDD and VDDQ must track each other. VDDQ must be VDD.  
2. VSSQ = VSSL = VSS.  
3. VDDQ tracks with VDD; VDDL tracks with VDD  
.
4. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in the  
DC level of the same. Peak-to-peak noise (noncommon mode) on VREF may not exceed  
±1 percent of the DC value. Peak-to-peak AC noise on VREF may not exceed ±2 percent  
of VREF(DC). This measurement is to be taken at the nearest VREF bypass capacitor.  
5. VTT is not applied directly to the device. VTT is a system supply for signal termination  
resistors, is expected to be set equal to VREF, and must track variations in the DC level of  
VREF  
.
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
41  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
ODT DC Electrical Characteristics  
ODT DC Electrical Characteristics  
Table 13: ODT DC Electrical Characteristics  
All voltages are referenced to VSS  
Parameter  
Symbol  
Min  
Nom  
Max  
Units  
Notes  
RTT1(EFF)  
60  
75  
90  
1, 2  
RTT effective impedance value for 75Ω setting  
Ω
EMR (A6, A2) = 0, 1  
RTT2(EFF)  
RTT3(EFF)  
ΔVM  
120  
40  
150  
50  
180  
60  
6
1, 2  
1, 2  
3
RTT effective impedance value for 150Ω setting  
EMR (A6, A2) = 1, 0  
Ω
Ω
RTT effective impedance value for 50Ω setting  
EMR (A6, A2) = 1, 1  
Deviation of VM with respect to VDDQ/2  
–6  
%
1. RTT1(EFF) and RTT2(EFF) are determined by separately applying VIH(AC) and VIL(DC) to the ball  
being tested, and then measuring current, I(VIH[AC]), and I(VIL[AC]), respectively.  
Notes:  
2. Minimum IT and AT device values are derated by six percent when the devices operate  
between –40°C and 0°C (TC ).  
3. Measure voltage (VM) at tested ball with no load.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
42  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Electrical Characteristics and Operating Conditions  
Input Electrical Characteristics and Operating Conditions  
Table 14: Input DC Logic Levels  
All voltages are referenced to VSS  
Parameter  
Symbol  
VIH(DC)  
VIL(DC)  
Min  
VREF(DC) + 125  
–300  
Max  
Units  
mV  
1
Input high (logic 1) voltage  
Input low (logic 0) voltage  
VDDQ  
VREF(DC) - 125  
mV  
1. VDDQ + 300mV allowed provided 1.9V is not exceeded.  
Note:  
Table 15: Input AC Logic Levels  
All voltages are referenced to VSS  
Parameter  
Symbol  
VIH(AC)  
VIH(AC)  
VIL(AC)  
Min  
VREF(DC) + 250  
VREF(DC) + 200  
–300  
Max  
Units  
mV  
1
Input high (logic 1) voltage (-37E/-5E)  
VDDQ  
VDDQ  
1
Input high (logic 1) voltage (-187E/-25E/-25/-3E/-3)  
Input low (logic 0) voltage (-37E/-5E)  
mV  
VREF(DC) - 250  
VREF(DC) - 200  
mV  
Input low (logic 0) voltage (-187E/-25E/-25/-3E/-3)  
VIL(AC)  
–300  
mV  
1. Refer to AC Overshoot/Undershoot Specification (page 53).  
Note:  
Figure 12: Single-Ended Input Signal Levels  
1,150mV  
VIH(AC)  
1,025mV  
VIH(DC)  
936mV  
918mV  
900mV  
882mV  
864mV  
VREF + AC noise  
VREF + DC error  
VREF - DC error  
VREF - AC noise  
775mV  
VIL(DC)  
650mV  
VIL(AC)  
1. Numbers in diagram reflect nominal DDR2-400/DDR2-533 values.  
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
43  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Electrical Characteristics and Operating Conditions  
Table 16: Differential Input Logic Levels  
All voltages referenced to VSS  
Parameter  
Symbol  
VIN(DC)  
VID(DC)  
VID(AC)  
VIX(AC)  
VMP(DC)  
Min  
Max  
VDDQ  
Units Notes  
DC input signal voltage  
–300  
mV  
mV  
mV  
mV  
mV  
1, 6  
2, 6  
3, 6  
4
DC differential input voltage  
AC differential input voltage  
AC differential cross-point voltage  
Input midpoint voltage  
250  
500  
VDDQ  
VDDQ  
0.50 × VDDQ - 175  
850  
0.50 × VDDQ + 175  
950  
5
1. VIN(DC) specifies the allowable DC execution of each input of differential pair such as CK,  
CK#, DQS, DQS#, LDQS, LDQS#, UDQS, UDQS#, and RDQS, RDQS#.  
Notes:  
2. VID(DC) specifies the input differential voltage |VTR - VCP| required for switching, where  
VTR is the true input (such as CK, DQS, LDQS, UDQS) level and VCP is the complementary  
input (such as CK#, DQS#, LDQS#, UDQS#) level. The minimum value is equal to VIH(DC)  
VIL(DC). Differential input signal levels are shown in Figure 13.  
-
3. VID(AC) specifies the input differential voltage |VTR - VCP| required for switching, where  
VTR is the true input (such as CK, DQS, LDQS, UDQS, RDQS) level and VCP is the comple-  
mentary input (such as CK#, DQS#, LDQS#, UDQS#, RDQS#) level. The minimum value is  
equal to VIH(AC) - VIL(AC), as shown in Table 15 (page 43).  
4. The typical value of VIX(AC) is expected to be about 0.5 × VDDQ of the transmitting device  
and VIX(AC) is expected to track variations in VDDQ. VIX(AC) indicates the voltage at which  
differential input signals must cross, as shown in Figure 13.  
5. VMP(DC) specifies the input differential common mode voltage (VTR + VCP)/2 where VTR is  
the true input (CK, DQS) level and VCP is the complementary input (CK#, DQS#). VMP(DC)  
is expected to be approximately 0.5 × VDDQ  
.
6. VDDQ + 300mV allowed provided 1.9V is not exceeded.  
Figure 13: Differential Input Signal Levels  
1
2.1V  
VIN(DC)max  
VDDQ = 1.8V  
2
CP  
1.075V  
0.9V  
X
5
4
3
VID(DC)  
VIX(AC)  
VMP(DC)  
6
VID(AC)  
0.725V  
X
2
TR  
1
VIN(DC)min  
–0.30V  
1. TR and CP may not be more positive than VDDQ + 0.3V or more negative than VSS - 0.3V.  
Notes:  
2. TR represents the CK, DQS, RDQS, LDQS, and UDQS signals; CP represents CK#, DQS#,  
RDQS#, LDQS#, and UDQS# signals.  
3. This provides a minimum of 850mV to a maximum of 950mV and is expected to be  
VDDQ/2.  
4. TR and CP must cross in this region.  
5. TR and CP must meet at least VID(DC)min when static and is centered around VMP(DC)  
6. TR and CP must have a minimum 500mV peak-to-peak swing.  
.
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
44  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Electrical Characteristics and Operating Conditions  
7. Numbers in diagram reflect nominal values (VDDQ = 1.8V).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
45  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Output Electrical Characteristics and Operating Conditions  
Output Electrical Characteristics and Operating Conditions  
Table 17: Differential AC Output Parameters  
Parameter  
Symbol  
VOX(AC)  
Vswing  
Min  
0.50 × VDDQ - 125  
1.0  
Max  
Units Notes  
AC differential cross-point voltage  
AC differential voltage swing  
0.50 × VDDQ + 125  
mV  
mV  
1
1. The typical value of VOX(AC) is expected to be about 0.5 × VDDQ of the transmitting de-  
vice and VOX(AC) is expected to track variations in VDDQ. VOX(AC) indicates the voltage at  
which differential output signals must cross.  
Note:  
Figure 14: Differential Output Signal Levels  
VDDQ  
VTR  
Crossing point  
VOX  
Vswing  
VCP  
VSSQ  
Table 18: Output DC Current Drive  
Parameter  
Symbol  
IOH  
IOL  
Value  
–13.4  
13.4  
Units  
mA  
Notes  
1, 2, 4  
2, 3, 4  
Output MIN source DC current  
Output MIN sink DC current  
mA  
1.  
2.  
Notes:  
For IOH(DC); VDDQ = 1.7V, VOUT = 1,420mV. (VOUT - VDDQ)/IOH must be less than 21Ω for  
values of VOUT between VDDQ and VDDQ - 280mV.  
For IOL(DC); VDDQ = 1.7V, VOUT = 280mV. VOUT/IOL must be less than 21Ω for values of VOUT  
between 0V and 280mV.  
3. The DC value of VREF applied to the receiving device is set to VTT.  
4. The values of IOH(DC) and IOL(DC) are based on the conditions given in Notes 1 and 2. They  
are used to test device drive current capability to ensure VIH,min plus a noise margin and  
VIL,max minus a noise margin are delivered to an SSTL_18 receiver. The actual current val-  
ues are derived by shifting the desired driver operating point (see output IV curves)  
along a 21Ω load line to define a convenient driver current for measurement.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
46  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Output Electrical Characteristics and Operating Conditions  
Table 19: Output Characteristics  
Parameter  
Min  
Nom  
Max  
Units  
Ω
Notes  
1, 2  
Output impedance  
Pull-up and pull-down mismatch  
Output slew rate  
See Output Driver Characteristics (page 48)  
0
4
5
1, 2, 3  
1, 4, 5, 6  
Ω
1.5  
V/ns  
1.  
Notes:  
Absolute specifications: 0°C TC +85°C; VDDQ = +1.8V ±0.1V, VDD = +1.8V ±0.1V.  
2. Impedance measurement conditions for output source DC current: VDDQ = 1.7V;  
VOUT = 1420mV; (VOUT - VDDQ)/IOH must be less than 23.4Ω for values of VOUT between  
VDDQ and VDDQ - 280mV. The impedance measurement condition for output sink DC cur-  
rent: VDDQ = 1.7V; VOUT = 280mV; VOUT/IOL must be less than 23.4Ω for values of VOUT  
between 0V and 280mV.  
3. Mismatch is an absolute value between pull-up and pull-down; both are measured at  
the same temperature and voltage.  
4. Output slew rate for falling and rising edges is measured between VTT - 250mV and  
VTT + 250mV for single-ended signals. For differential signals (DQS, DQS#), output slew  
rate is measured between DQS - DQS# = –500mV and DQS# - DQS = +500mV. Output  
slew rate is guaranteed by design but is not necessarily tested on each device.  
5. The absolute value of the slew rate as measured from VIL(DC)max to VIH(DC)min is equal to  
or greater than the slew rate as measured from VIL(AC)max to VIH(AC)min. This is guaran-  
teed by design and characterization.  
6. IT and AT devices require an additional 0.4 V/ns in the MAX limit when TC is between –  
40°C and 0°C.  
Figure 15: Output Slew Rate Load  
V
= V  
/2  
25Ω  
Reference  
TT  
DDQ  
Output  
(V  
point  
)
OUT  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
47  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Output Driver Characteristics  
Output Driver Characteristics  
Figure 16: Full Strength Pull-Down Characteristics  
120  
100  
80  
60  
40  
20  
0
0.0  
0.5  
1.0  
OUT (V)  
1.5  
V
Table 20: Full Strength Pull-Down Current (mA)  
Voltage (V)  
0.0  
Min  
0.00  
Nom  
0.00  
Max  
0.00  
0.1  
4.30  
5.63  
7.95  
0.2  
8.60  
11.30  
16.52  
22.19  
27.59  
32.39  
36.45  
40.38  
44.01  
47.01  
49.63  
51.71  
53.32  
54.9  
15.90  
23.85  
31.80  
39.75  
47.70  
55.55  
62.95  
69.55  
75.35  
80.35  
84.55  
87.95  
90.70  
93.00  
95.05  
97.05  
99.05  
101.05  
0.3  
12.90  
16.90  
20.40  
23.28  
25.44  
26.79  
27.67  
28.38  
28.96  
29.46  
29.90  
30.29  
30.65  
30.98  
31.31  
31.64  
31.96  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
56.03  
57.07  
58.16  
59.27  
60.35  
1.6  
1.7  
1.8  
1.9  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
48  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Output Driver Characteristics  
Figure 17: Full Strength Pull-Up Characteristics  
0
–20  
–40  
–60  
–80  
–100  
–120  
0
0.5  
1.0  
1.5  
VDDQ - VOUT (V)  
Table 21: Full Strength Pull-Up Current (mA)  
Voltage (V)  
0.0  
Min  
Nom  
0.00  
Max  
0.00  
0.00  
0.1  
–4.30  
–5.63  
–7.95  
0.2  
–8.60  
–11.30  
–16.52  
–22.19  
–27.59  
–32.39  
–36.45  
–40.38  
–44.01  
–47.01  
–49.63  
–51.71  
–53.32  
–54.90  
–56.03  
–57.07  
–58.16  
–59.27  
–60.35  
–15.90  
–23.85  
–31.80  
–39.75  
–47.70  
–55.55  
–62.95  
–69.55  
–75.35  
–80.35  
–84.55  
–87.95  
–90.70  
–93.00  
–95.05  
–97.05  
–99.05  
–101.05  
0.3  
–12.90  
–16.90  
–20.40  
–23.28  
–25.44  
–26.79  
–27.67  
–28.38  
–28.96  
–29.46  
–29.90  
–30.29  
–30.65  
–30.98  
–31.31  
–31.64  
–31.96  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
49  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Output Driver Characteristics  
Figure 18: Reduced Strength Pull-Down Characteristics  
70  
60  
50  
40  
30  
20  
10  
0
0.0  
0.5  
1.0  
OUT (V)  
1.5  
V
Table 22: Reduced Strength Pull-Down Current (mA)  
Voltage (V)  
0.0  
Min  
0.00  
Nom  
0.00  
Max  
0.00  
0.1  
1.72  
2.98  
4.77  
0.2  
3.44  
5.99  
9.54  
0.3  
5.16  
8.75  
14.31  
19.08  
23.85  
28.62  
33.33  
37.77  
41.73  
45.21  
48.21  
50.73  
52.77  
54.42  
55.80  
57.03  
58.23  
59.43  
60.63  
0.4  
6.76  
11.76  
14.62  
17.17  
19.32  
21.40  
23.32  
24.92  
26.30  
27.41  
28.26  
29.10  
29.70  
30.25  
30.82  
31.41  
31.98  
0.5  
8.16  
0.6  
9.31  
0.7  
10.18  
10.72  
11.07  
11.35  
11.58  
11.78  
11.96  
12.12  
12.26  
12.39  
12.52  
12.66  
12.78  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
50  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Output Driver Characteristics  
Figure 19: Reduced Strength Pull-Up Characteristics  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.0  
0.5  
1.0  
1.5  
VDDQ - VOUT (V)  
Table 23: Reduced Strength Pull-Up Current (mA)  
Voltage (V)  
0.0  
Min  
Nom  
0.00  
Max  
0.00  
0.00  
0.1  
–1.72  
–2.98  
–4.77  
0.2  
–3.44  
–5.99  
–9.54  
0.3  
–5.16  
–8.75  
–14.31  
–19.08  
–23.85  
–28.62  
–33.33  
–37.77  
–41.73  
–45.21  
–48.21  
–50.73  
–52.77  
–54.42  
–55.8  
0.4  
–6.76  
–11.76  
–14.62  
–17.17  
–19.32  
–21.40  
–23.32  
–24.92  
–26.30  
–27.41  
–28.26  
–29.10  
–29.69  
–30.25  
–30.82  
–31.42  
–31.98  
0.5  
–8.16  
0.6  
–9.31  
0.7  
–10.18  
–10.72  
–11.07  
–11.35  
–11.58  
–11.78  
–11.96  
–12.12  
–12.26  
–12.39  
–12.52  
–12.66  
–12.78  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
–57.03  
–58.23  
–59.43  
–60.63  
1.7  
1.8  
1.9  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
51  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Power and Ground Clamp Characteristics  
Power and Ground Clamp Characteristics  
Power and ground clamps are provided on the following input-only balls: Address balls,  
bank address balls, CS#, RAS#, CAS#, WE#, ODT, and CKE.  
Table 24: Input Clamp Characteristics  
Minimum Power Clamp Current  
(mA)  
Minimum Ground Clamp Current  
(mA)  
Voltage Across Clamp (V)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.1  
0.1  
1.0  
1.0  
2.5  
2.5  
4.7  
4.7  
6.8  
6.8  
9.1  
9.1  
11.0  
13.5  
16.0  
18.2  
21.0  
11.0  
13.5  
16.0  
18.2  
21.0  
Figure 20: Input Clamp Characteristics  
25  
20  
15  
10  
5
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8  
Voltage Across Clamp (V)  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2004 Micron Technology, Inc. All rights reserved.  
52  
1Gb: x4, x8, x16 DDR2 SDRAM  
AC Overshoot/Undershoot Specification  
AC Overshoot/Undershoot Specification  
Some revisions will support the 0.9V maximum average amplitude instead of the 0.5V  
maximum average amplitude shown in Table 25 and Table 26.  
Table 25: Address and Control Balls  
Applies to address balls, bank address balls, CS#, RAS#, CAS#, WE#, CKE, and ODT  
Specification  
-3/-3E  
Parameter  
-187E  
-25/-25E  
-37E  
-5E  
Maximum peak amplitude allowed for overshoot area  
(see Figure 21)  
0.50V  
0.50V  
0.50V  
0.50V  
0.50V  
0.50V  
Maximum peak amplitude allowed for undershoot area  
(see Figure 22)  
0.50V  
0.50V  
0.50V  
0.50V  
Maximum overshoot area above VDD (see Figure 21)  
Maximum undershoot area below VSS (see Figure 22)  
0.5 Vns  
0.5 Vns  
0.66 Vns  
0.66 Vns  
0.80 Vns 1.00 Vns 1.33 Vns  
0.80 Vns 1.00 Vns 1.33 Vns  
Table 26: Clock, Data, Strobe, and Mask Balls  
Applies to DQ, DQS, DQS#, RDQS, RDQS#, UDQS, UDQS#, LDQS, LDQS#, DM, UDM, and LDM  
Specification  
-3/-3E  
Parameter  
-187E  
-25/-25E  
-37E  
-5E  
Maximum peak amplitude allowed for overshoot area  
(see Figure 21)  
0.50V  
0.50V  
0.50V  
0.50V  
0.50V  
Maximum peak amplitude allowed for undershoot area  
(see Figure 22)  
0.50V  
0.50V  
0.50V  
0.50V  
0.50V  
Maximum overshoot area above VDDQ (see Figure 21)  
Maximum undershoot area below VSSQ (see Figure 22)  
0.19 Vns  
0.19 Vns  
0.23 Vns  
0.23 Vns  
0.23 Vns  
0.23 Vns  
0.28 Vns 0.38 Vns  
0.28 Vns 0.38 Vns  
Figure 21: Overshoot  
Maximum amplitude  
Overshoot area  
VDD/VDDQ  
VSS/VSSQ  
Time (ns)  
Figure 22: Undershoot  
VSS/VSSQ  
Undershoot area  
Maximum amplitude  
Time (ns)  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
53  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
AC Overshoot/Undershoot Specification  
Table 27: AC Input Test Conditions  
Parameter  
Symbol  
Min  
Max  
Units  
Notes  
Input setup timing measurement reference level address  
balls, bank address balls, CS#, RAS#, CAS#, WE#, ODT,  
DM, UDM, LDM, and CKE  
VRS  
See Note 2  
1, 2, 3, 4  
Input hold timing measurement reference level address  
balls, bank address balls, CS#, RAS#, CAS#, WE#, ODT,  
DM, UDM, LDM, and CKE  
VRH  
See Note 5  
1, 3, 4, 5  
Input timing measurement reference level (single-ended)  
DQS for x4, x8; UDQS, LDQS for x16  
VREF(DC)  
VRD  
VDDQ × 0.49 VDDQ × 0.51  
VIX(AC)  
V
V
1, 3, 4, 6  
Input timing measurement reference level (differential)  
CK, CK# for x4, x8, x16; DQS, DQS# for x4, x8; RDQS,  
RDQS# for x8; UDQS, UDQS#, LDQS, LDQS# for x16  
1, 3, 7, 8, 9  
1. All voltages referenced to VSS.  
Notes:  
2. Input waveform setup timing (tISb) is referenced from the input signal crossing at the  
VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the device under  
test, as shown in Figure 31 (page 66).  
3. See Input Slew Rate Derating (page 55).  
4. The slew rate for single-ended inputs is measured from DC level to AC level, VIL(DC) to  
VIH(AC) on the rising edge and VIL(AC) to VIH(DC) on the falling edge. For signals referenced  
to VREF, the valid intersection is where the “tangent” line intersects VREF, as shown in  
Figure 24 (page 58), Figure 26 (page 59), Figure 28 (page 64), and Figure 30  
(page 65).  
5. Input waveform hold (tIHb) timing is referenced from the input signal crossing at the  
VIL(DC) level for a rising signal and VIH(DC) for a falling signal applied to the device under  
test, as shown in Figure 31 (page 66).  
6. Input waveform setup timing (tDS) and hold timing (tDH) for single-ended data strobe is  
referenced from the crossing of DQS, UDQS, or LDQS through the Vref level applied to  
the device under test, as shown in Figure 33 (page 67).  
7. Input waveform setup timing (tDS) and hold timing (tDH) when differential data strobe  
is enabled is referenced from the cross-point of DQS/DQS#, UDQS/UDQS#, or LDQS/  
LDQS#, as shown in Figure 32 (page 66).  
8. Input waveform timing is referenced to the crossing point level (VIX) of two input signals  
(VTR and VCP) applied to the device under test, where VTR is the true input signal and VCP  
is the complementary input signal, as shown in Figure 34 (page 67).  
9. The slew rate for differentially ended inputs is measured from twice the DC level to  
twice the AC level: 2 × VIL(DC) to 2 × VIH(AC) on the rising edge and 2 × VIL(AC) to 2 ×  
VIH(DC) on the falling edge. For example, the CK/CK# would be –250mV to +500mV for  
CK rising edge and would be +250mV to –500mV for CK falling edge.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
54  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Input Slew Rate Derating  
For all input signals, the total tIS (setup time) and tIH (hold time) required is calculated  
by adding the data sheet tIS (base) and tIH (base) value to the ΔtIS and ΔtIH derating  
value, respectively. Example: tIS (total setup time) = tIS (base) + ΔtIS.  
tIS, the nominal slew rate for a rising signal, is defined as the slew rate between the last  
crossing of VREF(DC) and the first crossing of VIH(AC)min. Setup nominal slew rate (tIS) for  
a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the  
first crossing of VIL(AC)max  
.
If the actual signal is always earlier than the nominal slew rate line between shaded  
“VREF(DC) to AC region,” use the nominal slew rate for the derating value (Figure 23  
(page 58)).  
If the actual signal is later than the nominal slew rate line anywhere between the sha-  
ded “VREF(DC) to AC region,” the slew rate of a tangent line to the actual signal from the  
AC level to DC level is used for the derating value (see Figure 24 (page 58)).  
tIH, the nominal slew rate for a rising signal, is defined as the slew rate between the last  
crossing of VIL(DC)max and the first crossing of VREF(DC). tIH, nominal slew rate for a fall-  
ing signal, is defined as the slew rate between the last crossing of VIH(DC)min and the first  
crossing of VREF(DC)  
.
If the actual signal is always later than the nominal slew rate line between shaded “DC  
to VREF(DC) region,” use the nominal slew rate for the derating value (Figure 25  
(page 59)).  
If the actual signal is earlier than the nominal slew rate line anywhere between shaded  
“DC to VREF(DC) region,” the slew rate of a tangent line to the actual signal from the DC  
level to VREF(DC) level is used for the derating value (Figure 26 (page 59)).  
Although the total setup time might be negative for slow slew rates (a valid input signal  
will not have reached VIH[AC]/VIL[AC] at the time of the rising clock transition), a valid  
input signal is still required to complete the transition and reach VIH(AC)/VIL(AC)  
.
For slew rates in between the values listed in Table 28 (page 56) and Table 29  
(page 57), the derating values may obtained by linear interpolation.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
55  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Table 28: DDR2-400/533 Setup and Hold Time Derating Values (tIS and tIH)  
CK, CK# Differential Slew Rate  
2.0 V/ns 1.5 V/ns 1.0 V/ns  
Command/Address Slew Rate (V/ns)  
ΔtIS  
ΔtIH  
+94  
ΔtIS  
ΔtIH  
+124  
+119  
+113  
+105  
+75  
ΔtIS  
ΔtIH  
+154  
+149  
+143  
+135  
+105  
+81  
Units  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+187  
+179  
+167  
+150  
+125  
+83  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
+89  
+83  
+75  
+45  
+21  
+51  
0
0
+30  
+60  
–11  
–14  
+19  
+16  
+49  
+46  
–25  
–31  
+5  
–1  
+35  
+29  
–43  
–54  
–13  
–24  
+17  
+6  
–67  
–83  
–37  
–53  
–7  
–23  
–110  
–175  
–285  
–350  
–525  
–800  
–1,450  
–125  
–188  
–292  
–375  
–500  
–708  
–1,125  
–80  
–95  
–50  
–65  
–145  
–255  
–320  
–495  
–770  
–1,420  
–158  
–262  
–345  
–470  
–678  
–1,095  
–115  
–225  
–290  
–465  
–740  
–1,390  
–128  
–232  
–315  
–440  
–648  
–1,065  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
56  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Table 29: DDR2-667/800/1066 Setup and Hold Time Derating Values (tIS and tIH)  
Command/  
Address Slew  
Rate (V/ns)  
CK, CK# Differential Slew Rate  
1.5 V/ns  
2.0 V/ns  
1.0 V/ns  
ΔtIS  
+150  
+143  
+133  
+120  
+100  
+67  
ΔtIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
ΔtIS  
+180  
+173  
+163  
+150  
+160  
+97  
ΔtIH  
+124  
+119  
+113  
+105  
+75  
ΔtIS  
+210  
+203  
+193  
+180  
+160  
+127  
+60  
ΔtIH  
+154  
+149  
+143  
+135  
+105  
+81  
Units  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+51  
0
+30  
+30  
+60  
–5  
–14  
+25  
+16  
+55  
+46  
–13  
–31  
+17  
–1  
+47  
+29  
–22  
–54  
+8  
–24  
+38  
+6  
–34  
–83  
–4  
–53  
+36  
–23  
–60  
–125  
–188  
–292  
–375  
–500  
–708  
–30  
–95  
0
–65  
–100  
–168  
–200  
–325  
–517  
–1,000  
–70  
–158  
–262  
–345  
–470  
–678  
–1,095  
–40  
–128  
–232  
–315  
–440  
–648  
–1,065  
–138  
–170  
–295  
–487  
–970  
–108  
–140  
–265  
–457  
–940  
–1,125  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
57  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Figure 23: Nominal Slew Rate for tIS  
CK  
CK#  
t
t
t
t
IH  
IH  
IS  
IS  
V
DDQ  
V
IH(AC)min  
V
to AC  
region  
REF  
V
IH(DC)min  
Nominal  
slew rate  
V
REF(DC)  
Nominal  
slew rate  
V
V
IL(DC)max  
VREF to AC  
region  
IL(AC)max  
V
SS  
ΔTF  
ΔTR  
V
(DC) - V  
IL(AC)max  
V
- V  
Setup slew rate  
rising signal  
REF  
Setup slew rate  
falling signal  
IH(AC)min REF(DC)  
=
=
ΔTF  
Δ
TR  
Figure 24: Tangent Line for tIS  
CK  
CK#  
t
t
t
t
IH  
IH  
IS  
IS  
V
DDQ  
V
V
IH(AC)min  
V
to AC  
region  
REF  
Nominal  
line  
IH(DC)min  
Tangent  
line  
V
REF(DC)  
Tangent  
line  
V
V
IL(DC)max  
Nominal  
line  
V
to AC  
region  
REF  
IL(AC)max  
ΔTF  
ΔTR  
V
SS  
Tangent line (V  
- V  
)
Setup slew rate  
rising signal  
IH[AC]min  
REF[DC]  
=
ΔTR  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
58  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Figure 25: Nominal Slew Rate for tIH  
CK  
CK#  
t
t
t
t
IS  
IH  
IH  
IS  
VDDQ  
VIH(AC)min  
VIH(DC)min  
DC to V  
REF  
region  
Nominal  
slew rate  
VREF(DC)  
Nominal  
slew rate  
DC to V  
region  
REF  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
Figure 26: Tangent Line for tIH  
CK  
CK#  
t
t
t
t
IS  
IH  
IH  
IS  
V
DDQ  
V
IH(AC)min  
Nominal  
line  
V
IH(DC)min  
DC to V  
REF  
region  
Tangent  
line  
V
REF(DC)  
Tangent  
line  
Nominal  
line  
DC to V  
region  
REF  
V
IL(DC)max  
V
IL(AC)max  
V
SS  
ΔTR  
ΔTF  
Tangent line (V  
- V  
)
Tangent line (V  
- V  
)
REF[DC]  
Hold slew rate  
rising signal  
Hold slew rate  
falling signal  
REF[DC]  
IL[DC]max  
IH[DC]min  
=
=
ΔTR  
ΔTF  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
59  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Table 30: DDR2-400/533 tDS, tDH Derating Values with Differential Strobe  
All units are shown in picoseconds  
DQS, DQS# Differential Slew Rate  
1.8 V/ns 1.6 V/ns 1.4 V/ns  
DQ  
Slew  
Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
(V/ns) tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
125  
83  
0
45  
21  
0
125  
83  
0
45  
21  
0
125  
83  
0
45  
21  
0
5
95  
12  
1
33  
12  
–2  
24  
13  
–1  
24  
10  
–7  
–11 –14 –11 –14  
25  
11  
–7  
22  
5
–25 –31 –13 –19  
23  
5
17  
–6  
–31 –42 –19 –30  
–18  
17  
–7  
6
–43 –59 –31 –47 –19 –35  
–23  
–11  
–74 –89 –62 –77 –50 –65 –38 –53  
–127 –140 –115 –128 –103 –116  
1. For all input signals, the total tDS and tDH required is calculated by adding the data  
sheet value to the derating value listed in Table 30.  
Notes:  
2. tDS nominal slew rate for a rising signal is defined as the slew rate between the last  
crossing of VREF(DC) and the first crossing of VIH(AC)min. tDS nominal slew rate for a falling  
signal is defined as the slew rate between the last crossing of VREF(DC) and the first cross-  
ing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate line  
between the shaded “VREF(DC) to AC region,” use the nominal slew rate for the derating  
value (see Figure 27 (page 64)). If the actual signal is later than the nominal slew rate  
line anywhere between the shaded “VREF(DC) to AC region,” the slew rate of a tangent  
line to the actual signal from the AC level to DC level is used for the derating value (see  
Figure 28 (page 64)).  
3. tDH nominal slew rate for a rising signal is defined as the slew rate between the last  
crossing of VIL(DC)max and the first crossing of VREF(DC). tDH nominal slew rate for a falling  
signal is defined as the slew rate between the last crossing of VIH(DC)min and the first cross-  
ing of VREF(DC). If the actual signal is always later than the nominal slew rate line  
between the shaded “DC level to VREF(DC) region,” use the nominal slew rate for the de-  
rating value (see Figure 29 (page 65)). If the actual signal is earlier than the nominal  
slew rate line anywhere between shaded “DC to VREF(DC) region,” the slew rate of a tan-  
gent line to the actual signal from the DC level to VREF(DC) level is used for the derating  
value (see Figure 30 (page 65)).  
4. Although the total setup time might be negative for slow slew rates (a valid input signal  
will not have reached VIH[AC]/VIL[AC] at the time of the rising clock transition), a valid in-  
put signal is still required to complete the transition and reach VIH(AC)/VIL(AC)  
.
5. For slew rates between the values listed in this table, the derating values may be ob-  
tained by linear interpolation.  
6. These values are typically not subject to production test. They are verified by design and  
characterization.  
7. Single-ended DQS requires special derating. The values in Table 32 (page 62) are the  
DQS single-ended slew rate derating with DQS referenced at VREF and DQ referenced at  
the logic levels tDSb and tDHb. Converting the derated base values from DQ referenced  
to the AC/DC trip points to DQ referenced to VREF is listed in Table 34 (page 63) and  
Table 35 (page 63). Table 34 provides the VREF-based fully derated values for the DQ  
(tDSa and tDHa) for DDR2-533. Table 35 provides the VREF-based fully derated values for  
the DQ (tDSa and tDHa) for DDR2-400.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
60  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Table 31: DDR2-667/800/1066 tDS, tDH Derating Values with Differential Strobe  
All units are shown in picoseconds  
DQS, DQS# Differential Slew Rate  
1.8 V/ns 1.6 V/ns 1.4 V/ns  
DQ  
Slew  
Rate  
2.8 V/ns  
2.4 V/ns  
2.0 V/ns  
1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
(V/ns) tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
100  
67  
0
63  
42  
0
100  
67  
0
63  
42  
0
100  
67  
0
63  
42  
0
112  
79  
12  
7
75  
54  
124  
91  
24  
19  
11  
2
87  
66  
136  
103  
36  
31  
23  
14  
2
99  
78  
36  
22  
5
148 111 160 123 172 135  
115  
48  
43  
35  
26  
14  
90  
48  
127 102 139 114  
12  
24  
60  
55  
47  
38  
26  
0
60  
46  
72  
67  
59  
50  
38  
12  
72  
58  
–5  
–14  
–5  
–14  
–5  
–14  
–2  
10  
34  
–13 –31 –13 –31 –13 –31  
–1  
–19  
–7  
17  
29  
41  
–22 –54 –22 –54 –22 –54 –10 –42  
–30  
–18  
–47  
–6  
6
18  
–34 –83 –34 –83 –34 –83 –22 –71 –10 –59  
–35  
–23  
–65  
–11  
–53  
–60 –125 –60 –125 –60 –125 –48 –113 –36 –101 –24 –89 –12 –77  
0.4 –100 –188 –100 –188 –100 –188 –88 –176 –76 –164 –64 –152 –52 –140 –40 –128 –28 –116  
1. For all input signals the total tDS and tDH required is calculated by adding the data  
Notes:  
sheet value to the derating value listed in Table 31.  
2. tDS nominal slew rate for a rising signal is defined as the slew rate between the last  
crossing of VREF(DC) and the first crossing of VIH(AC)min. tDS nominal slew rate for a falling  
signal is defined as the slew rate between the last crossing of VREF(DC) and the first cross-  
ing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate line  
between the shaded “VREF(DC) to AC region,” use the nominal slew rate for the derating  
value (see Figure 27 (page 64)). If the actual signal is later than the nominal slew rate  
line anywhere between shaded “VREF(DC) to AC region,” the slew rate of a tangent line  
to the actual signal from the AC level to DC level is used for the derating value (see Fig-  
ure 28 (page 64)).  
3. tDH nominal slew rate for a rising signal is defined as the slew rate between the last  
crossing of VIL(DC)max and the first crossing of VREF(DC). tDH nominal slew rate for a falling  
signal is defined as the slew rate between the last crossing of VIH(DC)min and the first cross-  
ing of VREF(DC). If the actual signal is always later than the nominal slew rate line  
between the shaded “DC level to VREF(DC) region,” use the nominal slew rate for the de-  
rating value (see Figure 29 (page 65)). If the actual signal is earlier than the nominal  
slew rate line anywhere between the shaded “DC to VREF(DC) region,” the slew rate of a  
tangent line to the actual signal from the DC level to VREF(DC) level is used for the derat-  
ing value (see Figure 30 (page 65)).  
4. Although the total setup time might be negative for slow slew rates (a valid input signal  
will not have reached VIH[AC]/VIL[AC] at the time of the rising clock transition), a valid in-  
put signal is still required to complete the transition and reach VIH(AC)/VIL(AC)  
.
5. For slew rates between the values listed in this table, the derating values may be ob-  
tained by linear interpolation.  
6. These values are typically not subject to production test. They are verified by design and  
characterization.  
7. Single-ended DQS requires special derating. The values in Table 32 (page 62) are the  
DQS single-ended slew rate derating with DQS referenced at VREF and DQ referenced at  
the logic levels tDSb and tDHb. Converting the derated base values from DQ referenced  
to the AC/DC trip points to DQ referenced to VREF is listed in Table 33 (page 62). Ta-  
ble 33 provides the VREF-based fully derated values for the DQ (tDSa and tDHa) for  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
61  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
DDR2-667. It is not advised to operate DDR2-800 and DDR2-1066 devices with single-  
ended DQS; however, Table 32 would be used with the base values.  
Table 32: Single-Ended DQS Slew Rate Derating Values Using tDSb and tDHb  
Reference points indicated in bold; Derating values are to be used with base tDSb- and tDHb--specified values  
DQS Single-Ended Slew Rate Derated (at VREF  
1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns 0.8 V/ns  
)
2.0 V/ns  
1.8 V/ns  
0.6 V/ns  
0.4 V/ns  
DQ (V/ns)  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
130 53 130 53 130 53 130 53 130 53 145 48 155 45 165 41 175 38  
97  
32  
97  
32  
97  
32  
97  
32  
97  
32 112 27 122 24 132 20 142 17  
30 –10 30 –10 30 –10 30 –10 30 –10  
25 –24 25 –24 25 –24 25 –24 25 –24  
55 –18 65 –22 75 –25  
50 –32 60 –36 70 –39  
45 –15  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
40 –29  
17 –41 17 –41 17 –41 17 –41 17 –41 32 –46 42 –49 52 –53 61 –56  
5
–64  
5
–64  
5
–64  
5
–64  
5
–64 20 –69 30 –72 40 –75 50 –79  
–93 –98 18 –102 28 –105 38 –108  
–147 17 –150  
–78 –198 –78 –198 –78 –198 –78 –198 –78 –198 –63 –203 –53 –206 –43 –210 –33 –213  
–7  
–93  
–7  
–93  
–7  
–93  
–7  
–93  
–7  
8
–28 –135 –28 –135 –28 –135 –28 –135 –28 –135 –13 –140 –3 –143  
7
Table 33: Single-Ended DQS Slew Rate Fully Derated (DQS, DQ at VREF) at DDR2-667  
Reference points indicated in bold  
DQS Single-Ended Slew Rate Derated (at VREF  
1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns 0.8 V/ns  
DQ (V/ns) tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
)
2.0 V/ns  
1.8 V/ns  
0.6 V/ns  
0.4 V/ns  
2.0  
1.5  
1.0  
330 291 330 291 330 291 330 291 330 291 345 286 355 282 365 29 375 276  
330 290 330 290 330 290 330 290 330 290 345 285 355 282 365 279 375 275  
330 290 330 290 330 290 330 290 330 290  
347 290 347 290 347 290 347 290 347 290  
355 282 365 278 375 275  
372 282 382 278 392 275  
345 285  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
362 285  
367 290 367 290 367 290 367 290 367 290 382 285 392 282 402 278 412 275  
391 290 391 290 391 290 391 290 391 290 406 285 416 281 426 278 436 275  
426 290 426 290 426 290 426 290 426 290 441 285 451 282 461 278 471 275  
472 290 472 290 472 290 472 290 472 290 487 285 497 282 507 278 517 275  
522 289 522 289 522 289 522 289 522 289 537 284 547 281 557 278 567 274  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
62  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Table 34: Single-Ended DQS Slew Rate Fully Derated (DQS, DQ at VREF) at DDR2-533  
Reference points indicated in bold  
DQS Single-Ended Slew Rate Derated (at VREF  
1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns 0.8 V/ns  
DQ (V/ns) tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
)
2.0 V/ns  
1.8 V/ns  
0.6 V/ns  
0.4 V/ns  
2.0  
1.5  
1.0  
355 341 355 341 355 341 355 341 355 341 370 336 380 332 390 329 400 326  
364 340 364 340 364 340 364 340 364 340 379 335 389 332 399 329 409 325  
380 340 380 340 380 340 380 340 380 340  
402 340 402 340 402 340 402 340 402 340  
405 332 415 328 425 325  
427 332 437 328 447 325  
395 335  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
417 335  
429 340 429 340 429 340 429 340 429 340 444 335 454 332 464 328 474 325  
463 340 463 340 463 340 463 340 463 340 478 335 488 331 498 328 508 325  
510 340 510 340 510 340 510 340 510 340 525 335 535 332 545 328 555 325  
572 340 572 340 572 340 572 340 572 340 587 335 597 332 607 328 617 325  
647 339 647 339 647 339 647 339 647 339 662 334 672 331 682 328 692 324  
Table 35: Single-Ended DQS Slew Rate Fully Derated (DQS, DQ at VREF) at DDR2-400  
Reference points indicated in bold  
DQS Single-Ended Slew Rate Derated (at VREF  
1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns 0.8 V/ns  
DQ (V/ns) tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
)
2.0 V/ns  
1.8 V/ns  
0.6 V/ns  
0.4 V/ns  
2.0  
1.5  
1.0  
405 391 405 391 405 391 405 391 405 391 420 386 430 382 440 379 450 376  
414 390 414 390 414 390 414 390 414 390 429 385 439 382 449 379 459 375  
430 390 430 390 430 390 430 390 430 390  
452 390 452 390 452 390 452 390 452 390  
455 382 465 378 475 375  
477 382 487 378 497 375  
445 385  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
467 385  
479 390 479 390 479 390 479 390 479 390 494 385 504 382 514 378 524 375  
513 390 513 390 513 390 513 390 513 390 528 385 538 381 548 378 558 375  
560 390 560 390 560 390 560 390 560 390 575 385 585 382 595 378 605 375  
622 390 622 390 622 390 622 390 622 390 637 385 647 382 657 378 667 375  
697 389 697 389 697 389 697 389 697 389 712 384 722 381 732 378 742 374  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
63  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Figure 27: Nominal Slew Rate for tDS  
1
DQS  
1
DQS#  
t
t
t
DS  
t
DH  
DH  
DS  
VDDQ  
VIH(AC)min  
V
to AC  
region  
REF  
VIH(DC)min  
Nominal  
slew rate  
VREF(DC)  
Nominal  
slew rate  
VIL(DC)max  
V
to AC  
region  
REF  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
V
REF(DC) - VIL(AC)max  
VIH(AC)min  
-
VREF(DC)  
Setup slew rate  
falling signal  
Setup slew rate  
rising signal  
=
=
ΔTF  
ΔTR  
1. DQS, DQS# signals must be monotonic between VIL(DC)max and VIH(DC)min  
.
Note:  
Figure 28: Tangent Line for tDS  
1
DQS  
1
DQS#  
t
t
t
DS  
t
DS  
DH  
DH  
V
DDQ  
V
V
IH(AC)min  
Nominal  
line  
V
to AC  
REF  
region  
IH(DC)min  
Tangent line  
V
REF(DC)  
Tangent line  
V
V
IL(DC)max  
IL(AC)max  
Nominal line  
V
to AC  
region  
REF  
ΔTR  
ΔTF  
V
SS  
Tangent line (V  
- V )  
IL[AC]max  
Tangent line (V  
- V )  
REF[DC]  
REF[DC]  
IH[AC]min  
Setup slew rate  
falling signal  
Setup slew rate  
rising signal  
=
=
ΔTF  
ΔTR  
1. DQS, DQS# signals must be monotonic between VIL(DC)max and VIH(DC)min  
.
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
64  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Figure 29: Nominal Slew Rate for tDH  
1
DQS  
1
DQS#  
t
t
t
t
IS  
IH  
IH  
IS  
VDDQ  
VIH(AC)min  
VIH(DC)min  
DC to V  
REF  
region  
Nominal  
slew rate  
VREF(DC)  
Nominal  
slew rate  
DC to V  
region  
REF  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
Hold slew rate  
VREF(DC)  
-
Δ
VIL(DC)max  
TR  
VIH(DC)min  
-
VREF(DC)  
Hold slew rate  
rising signal  
=
=
falling signal  
Δ
TF  
1. DQS, DQS# signals must be monotonic between VIL(DC)max and VIH(DC)min  
.
Note:  
Figure 30: Tangent Line for tDH  
1
DQS  
1
DQS#  
t
t
t
t
IS  
IH  
IH  
IS  
VDDQ  
VIH(AC)min  
Nominal  
line  
VIH(DC)min  
DC to V  
REF  
region  
Tangent  
line  
VREF(DC)  
Tangent  
line  
DC to V  
region  
REF  
Nominal  
line  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
Tangent line (V  
- V  
)
Tangent line (V  
- V  
)
REF[DC]  
REF[DC]  
IL[DC]max  
IH[DC]min  
Hold slew rate  
rising signal  
Hold slew rate  
falling signal  
=
=
ΔTR  
ΔTF  
1. DQS, DQS# signals must be monotonic between VIL(DC)max and VIH(DC)min  
.
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
65  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Figure 31: AC Input Test Signal Waveform Command/Address Balls  
CK#  
CK  
t
t
t
t
IH  
IS  
IH  
b
IS  
b
b
b
Logic levels  
VDDQ  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)min  
VIL(AC)min  
VSSQ  
VREF levels  
t
t
IH  
t
t
IH  
IS  
a
IS  
a
a
a
Figure 32: AC Input Test Signal Waveform for Data with DQS, DQS# (Differential)  
DQS#  
DQS  
t
t
t
t
DH  
DS  
DH  
DS  
b
b
b
b
Logic levels  
VDDQ  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSSQ  
VREF levels  
t
t
t
DS  
a
t
DH  
a
DS  
DH  
a
a
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
66  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Input Slew Rate Derating  
Figure 33: AC Input Test Signal Waveform for Data with DQS (Single-Ended)  
VREF  
DQS  
t
t
t
t
DH  
DS  
DH  
DS  
b
b
b
b
Logic levels  
VDDQ  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSSQ  
VREF levels  
t
t
t
DS  
a
t
DH  
a
DS  
DH  
a
a
Figure 34: AC Input Test Signal Waveform (Differential)  
VDDQ  
VTR  
Crossing point  
Vswing  
VIX  
VCP  
VSSQ  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
67  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Commands  
Commands  
Truth Tables  
The following tables provide a quick reference of available DDR2 SDRAM commands,  
including CKE power-down modes and bank-to-bank commands.  
Table 36: Truth Table – DDR2 Commands  
Notes: 1–3 apply to the entire table  
CKE  
Previous Current  
BA2–  
Function  
Cycle  
Cycle  
CS# RAS# CAS# WE#  
BA0 An–A11 A10 A9–A0 Notes  
LOAD MODE  
REFRESH  
H
H
H
L
H
H
L
L
L
L
L
L
L
L
H
H
X
H
L
BA  
X
OP code  
4, 6  
X
X
X
X
X
X
X
X
X
SELF REFRESH entry  
SELF REFRESH exit  
L
L
L
X
H
H
L
X
H
L
X
H
H
X
4, 7  
6
Single bank  
PRECHARGE  
H
H
L
BA  
X
X
L
X
X
All banks PRECHARGE  
Bank ACTIVATE  
WRITE  
H
H
H
H
H
H
L
L
L
L
L
H
H
L
L
H
L
X
H
BA  
BA  
Row address  
4
H
Column  
address  
L
H
L
Column 4, 5, 6,  
address  
Column 4, 5, 6,  
address  
Column 4, 5, 6,  
address  
Column 4, 5, 6,  
8
WRITE with auto  
precharge  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
BA  
BA  
BA  
Column  
address  
8
READ  
H
H
Column  
address  
8
READ with auto  
precharge  
Column  
address  
H
address  
8
NO OPERATION  
Device DESELECT  
Power-down entry  
H
H
H
X
X
L
L
H
H
L
H
X
X
H
X
H
H
X
X
H
X
H
H
X
X
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
9
9
Power-down exit  
L
H
H
L
X
X
X
X
1. All DDR2 SDRAM commands are defined by states of CS#, RAS#, CAS#, WE#, and CKE at  
the rising edge of the clock.  
Notes:  
2. The state of ODT does not affect the states described in this table. The ODT function is  
not available during self refresh. See ODT Timing (page 125) for details.  
3.  
4.  
X” means “H or L” (but a defined logic level) for valid IDD measurements.  
BA2 is only applicable for densities 1Gb.  
5. An n is the most significant address bit for a given density and configuration. Some larg-  
er address bits may be “Don’t Care” during column addressing, depending on density  
and configuration.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
68  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Commands  
6. Bank addresses (BA) determine which bank is to be operated upon. BA during a LOAD  
MODE command selects which mode register is programmed.  
7. SELF REFRESH exit is asynchronous.  
8. Burst reads or writes at BL = 4 cannot be terminated or interrupted. See Figure 48  
(page 94) and Figure 60 (page 105) for other restrictions and details.  
9. The power-down mode does not perform any REFRESH operations. The duration of power-  
down is limited by the refresh requirements outlined in the AC parametric section.  
Table 37: Truth Table – Current State Bank n – Command to Bank n  
Notes: 1–6 apply to the entire table  
Current  
State  
CS#  
H
L
RAS#  
CAS#  
WE#  
X
H
H
H
L
Command/Action  
DESELECT (NOP/continue previous operation)  
NO OPERATION (NOP/continue previous operation)  
ACTIVATE (select and activate row)  
REFRESH  
Notes  
Any  
X
H
L
X
H
H
L
Idle  
L
L
L
7
L
L
L
LOAD MODE  
7
Row active  
L
H
H
L
L
H
L
READ (select column and start READ burst)  
WRITE (select column and start WRITE burst)  
PRECHARGE (deactivate row in bank or banks)  
READ (select column and start new READ burst)  
WRITE (select column and start WRITE burst)  
PRECHARGE (start PRECHARGE)  
8
L
L
8
L
H
L
L
9
Read (auto  
precharge  
disabled)  
L
H
H
L
H
L
8
L
L
8, 10  
L
H
L
L
9
8
8
9
Write  
L
H
H
L
H
L
READ (select column and start READ burst)  
WRITE (select column and start new WRITE burst)  
PRECHARGE (start PRECHARGE)  
(auto pre-  
charge disa-  
bled)  
L
L
L
H
L
1. This table applies when CKEn - 1 was HIGH and CKEn is HIGH and after tXSNR has been  
Notes:  
met (if the previous state was self refresh).  
2. This table is bank-specific, except where noted (the current state is for a specific bank  
and the commands shown are those allowed to be issued to that bank when in that  
state). Exceptions are covered in the notes below.  
3. Current state definitions:  
The bank has been precharged, tRP has been met, and any READ burst is com-  
plete.  
Idle:  
Row  
A row in the bank has been activated, and tRCD has been met. No data bursts/  
active: accesses and no register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled and has not yet  
terminated.  
Write: A WRITE burst has been initiated with auto precharge disabled and has not yet  
terminated.  
4. The following states must not be interrupted by a command issued to the same bank.  
Issue DESELECT or NOP commands, or allowable commands to the other bank, on any  
clock edge occurring during these states. Allowable commands to the other bank are  
determined by its current state and this table, and according to Table 38 (page 71).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
69  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Commands  
Precharge:  
Starts with registration of a PRECHARGE command and ends when tRP  
is met. After tRP is met, the bank will be in the idle state.  
Read with au- Starts with registration of a READ command with auto precharge ena-  
to precharge bled and ends when tRP has been met. After tRP is met, the bank will  
enabled:  
be in the idle state.  
Row activate: Starts with registration of an ACTIVATE command and ends when  
tRCD is met. After tRCD is met, the bank will be in the row active state.  
Write with au- Starts with registration of a WRITE command with auto precharge ena-  
to precharge bled and ends when tRP has been met. After tRP is met, the bank will  
enabled:  
be in the idle state.  
5. The following states must not be interrupted by any executable command (DESELECT or  
NOP commands must be applied on each positive clock edge during these states):  
Refresh:  
Starts with registration of a REFRESH command and ends when tRFC is  
met. After tRFC is met, the DDR2 SDRAM will be in the all banks idle state.  
Accessing  
mode  
register:  
Starts with registration of the LOAD MODE command and ends when  
tMRD has been met. After tMRD is met, the DDR2 SDRAM will be in the  
all banks idle state.  
Precharge Starts with registration of a PRECHARGE ALL command and ends when  
all:  
tRP is met. After tRP is met, all banks will be in the idle state.  
6. All states and sequences not shown are illegal or reserved.  
7. Not bank-specific; requires that all banks are idle and bursts are not in progress.  
8. READs or WRITEs listed in the Command/Action column include READs or WRITEs with  
auto precharge enabled and READs or WRITEs with auto precharge disabled.  
9. May or may not be bank-specific; if multiple banks are to be precharged, each must be  
in a valid state for precharging.  
10. A WRITE command may be applied after the completion of the READ burst.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
70  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Commands  
Table 38: Truth Table – Current State Bank n – Command to Bank m  
Notes: 1–6 apply to the entire table  
Current State  
CS#  
H
L
RAS# CAS# WE#  
Command/Action  
DESELECT (NOP/continue previous operation)  
NO OPERATION (NOP/continue previous operation)  
Any command otherwise allowed to bank m  
ACTIVATE (select and activate row)  
READ (select column and start READ burst)  
WRITE (select column and start WRITE burst)  
PRECHARGE  
Notes  
Any  
X
H
X
L
X
H
X
H
L
X
H
X
H
H
L
Idle  
X
L
Row  
active, active,  
or precharge  
L
H
H
L
7
7
L
L
L
H
H
L
L
Read (auto  
precharge  
disabled)  
L
L
H
H
L
ACTIVATE (select and activate row)  
READ (select column and start new READ burst)  
WRITE (select column and start WRITE burst)  
PRECHARGE  
L
H
H
L
7
L
L
7, 8  
L
H
H
L
L
Write (auto pre-  
charge  
disabled)  
L
L
H
H
L
ACTIVATE (select and activate row)  
READ (select column and start READ burst)  
WRITE (select column and start new WRITE burst)  
PRECHARGE  
L
H
H
L
7, 9, 10  
7
L
L
L
H
H
L
L
Read (with  
auto  
precharge)  
L
L
H
H
L
ACTIVATE (select and activate row)  
READ (select column and start new READ burst)  
WRITE (select column and start WRITE burst)  
PRECHARGE  
L
H
H
L
7
L
L
7, 8  
L
H
H
L
L
Write (with  
auto  
precharge)  
L
L
H
H
L
ACTIVATE (select and activate row)  
READ (select column and start READ burst)  
WRITE (select column and start new WRITE burst)  
PRECHARGE  
L
H
H
L
7, 10  
7
L
L
L
H
L
1. This table applies when CKEn - 1 was HIGH and CKEn is HIGH and after tXSNR has been  
Notes:  
met (if the previous state was self refresh).  
2. This table describes an alternate bank operation, except where noted (the current state  
is for bank n and the commands shown are those allowed to be issued to bank m, assum-  
ing that bank m is in such a state that the given command is allowable). Exceptions are  
covered in the notes below.  
3. Current state definitions:  
Idle:  
The bank has been precharged, tRP has been met, and any READ  
burst is complete.  
Row active:  
Read:  
A row in the bank has been activated and tRCD has been met.  
No data bursts/accesses and no register accesses are in progress.  
A READ burst has been initiated with auto precharge disabled  
and has not yet terminated.  
Write:  
A WRITE burst has been initiated with auto precharge disabled  
and has not yet terminated.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
71  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Commands  
READ with auto  
The READ with auto precharge enabled or WRITE with auto pre-  
precharge enabled/ charge enabled states can each be broken into two parts: the  
WRITE with auto  
access period and the precharge period. For READ with auto pre-  
precharge enabled: charge, the precharge period is defined as if the same burst was  
executed with auto precharge disabled and then followed with  
the earliest possible PRECHARGE command that still accesses all  
of the data in the burst. For WRITE with auto precharge, the pre-  
charge period begins when tWR ends, with tWR measured as if  
auto precharge was disabled. The access period starts with regis-  
tration of the command and ends where the precharge period  
(or tRP) begins. This device supports concurrent auto precharge  
such that when a READ with auto precharge is enabled or a  
WRITE with auto precharge is enabled, any command to other  
banks is allowed, as long as that command does not interrupt  
the read or write data transfer already in process. In either case,  
all other related limitations apply (contention between read da-  
ta and write data must be avoided).  
The minimum delay from a READ or WRITE command with auto precharge enabled to  
a command to a different bank is summarized in Table 39 (page 72).  
4. REFRESH and LOAD MODE commands may only be issued when all banks are idle.  
5. Not used.  
6. All states and sequences not shown are illegal or reserved.  
7. READs or WRITEs listed in the Command/Action column include READs or WRITEs with  
auto precharge enabled and READs or WRITEs with auto precharge disabled.  
8. A WRITE command may be applied after the completion of the READ burst.  
9. Requires appropriate DM.  
10. The number of clock cycles required to meet tWTR is either two or tWTR/tCK, whichever  
is greater.  
Table 39: Minimum Delay with Auto Precharge Enabled  
Minimum Delay  
From Command (Bank n)  
To Command (Bank m)  
READ or READ with auto precharge  
WRITE or WRITE with auto precharge  
PRECHARGE or ACTIVATE  
(with Concurrent Auto Precharge) Units  
WRITE with auto precharge  
(CL - 1) + (BL/2) + tWTR  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
(BL/2)  
1
(BL/2)  
(BL/2) + 2  
1
READ with auto precharge  
READ or READ with auto precharge  
WRITE or WRITE with auto precharge  
PRECHARGE or ACTIVATE  
DESELECT  
The DESELECT function (CS# HIGH) prevents new commands from being executed by  
the DDR2 SDRAM. The DDR2 SDRAM is effectively deselected. Operations already in  
progress are not affected. DESELECT is also referred to as COMMAND INHIBIT.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
72  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Commands  
NO OPERATION (NOP)  
The NO OPERATION (NOP) command is used to instruct the selected DDR2 SDRAM to  
perform a NOP (CS# is LOW; RAS#, CAS#, and WE are HIGH). This prevents unwanted  
commands from being registered during idle or wait states. Operations already in pro-  
gress are not affected.  
LOAD MODE (LM)  
ACTIVATE  
The mode registers are loaded via bank address and address inputs. The bank address  
balls determine which mode register will be programmed. See Mode Register (MR)  
(page 74). The LM command can only be issued when all banks are idle, and a subse-  
quent executable command cannot be issued until tMRD is met.  
The ACTIVATE command is used to open (or activate) a row in a particular bank for a  
subsequent access. The value on the bank address inputs determines the bank, and the  
address inputs select the row. This row remains active (or open) for accesses until a pre-  
charge command is issued to that bank. A precharge command must be issued before  
opening a different row in the same bank.  
READ  
The READ command is used to initiate a burst read access to an active row. The value  
on the bank address inputs determine the bank, and the address provided on address  
inputs A0–Ai (where Ai is the most significant column address bit for a given configura-  
tion) selects the starting column location. The value on input A10 determines whether  
or not auto precharge is used. If auto precharge is selected, the row being accessed will  
be precharged at the end of the read burst; if auto precharge is not selected, the row will  
remain open for subsequent accesses.  
DDR2 SDRAM also supports the AL feature, which allows a READ or WRITE command  
to be issued prior to tRCD (MIN) by delaying the actual registration of the READ/WRITE  
command to the internal device by AL clock cycles.  
WRITE  
The WRITE command is used to initiate a burst write access to an active row. The value  
on the bank select inputs selects the bank, and the address provided on inputs A0–Ai  
(where Ai is the most significant column address bit for a given configuration) selects  
the starting column location. The value on input A10 determines whether or not auto  
precharge is used. If auto precharge is selected, the row being accessed will be pre-  
charged at the end of the WRITE burst; if auto precharge is not selected, the row will  
remain open for subsequent accesses.  
DDR2 SDRAM also supports the AL feature, which allows a READ or WRITE command  
to be issued prior to tRCD (MIN) by delaying the actual registration of the READ/WRITE  
command to the internal device by AL clock cycles.  
Input data appearing on the DQ is written to the memory array subject to the DM input  
logic level appearing coincident with the data. If a given DM signal is registered LOW,  
the corresponding data will be written to memory; if the DM signal is registered HIGH,  
the corresponding data inputs will be ignored, and a WRITE will not be executed to that  
byte/column location (see Figure 65 (page 110)).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
73  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Mode Register (MR)  
PRECHARGE  
The PRECHARGE command is used to deactivate the open row in a particular bank or  
the open row in all banks. The bank(s) will be available for a subsequent row activation  
a specified time (tRP) after the PRECHARGE command is issued, except in the case of  
concurrent auto precharge, where a READ or WRITE command to a different bank is  
allowed as long as it does not interrupt the data transfer in the current bank and does  
not violate any other timing parameters. After a bank has been precharged, it is in the  
idle state and must be activated prior to any READ or WRITE commands being issued to  
that bank. A PRECHARGE command is allowed if there is no open row in that bank (idle  
state) or if the previously open row is already in the process of precharging. However,  
the precharge period will be determined by the last PRECHARGE command issued to  
the bank.  
REFRESH  
REFRESH is used during normal operation of the DDR2 SDRAM and is analogous to CAS#-  
before-RAS# (CBR) REFRESH. All banks must be in the idle mode prior to issuing a  
REFRESH command. This command is nonpersistent, so it must be issued each time a  
refresh is required. The addressing is generated by the internal refresh controller. This  
makes the address bits a “Don’t Care” during a REFRESH command.  
SELF REFRESH  
The SELF REFRESH command can be used to retain data in the DDR2 SDRAM, even if  
the rest of the system is powered down. When in the self refresh mode, the DDR2  
SDRAM retains data without external clocking. All power supply inputs (including Vref)  
must be maintained at valid levels upon entry/exit and during SELF REFRESH operation.  
The SELF REFRESH command is initiated like a REFRESH command except CKE is  
LOW. The DLL is automatically disabled upon entering self refresh and is automatically  
enabled upon exiting self refresh.  
Mode Register (MR)  
The mode register is used to define the specific mode of operation of the DDR2 SDRAM.  
This definition includes the selection of a burst length, burst type, CAS latency, operat-  
ing mode, DLL RESET, write recovery, and power-down mode, as shown in Figure 35  
(page 75). Contents of the mode register can be altered by re-executing the LOAD  
MODE (LM) command. If the user chooses to modify only a subset of the MR variables,  
all variables must be programmed when the command is issued.  
The MR is programmed via the LM command and will retain the stored information  
until it is programmed again or until the device loses power (except for bit M8, which is  
self-clearing). Reprogramming the mode register will not alter the contents of the mem-  
ory array, provided it is performed correctly.  
The LM command can only be issued (or reissued) when all banks are in the precharged  
state (idle state) and no bursts are in progress. The controller must wait the specified  
time tMRD before initiating any subsequent operations such as an ACTIVATE com-  
mand. Violating either of these requirements will result in an unspecified operation.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
74  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Mode Register (MR)  
Burst Length  
Burst length is defined by bits M0–M2, as shown in Figure 35. Read and write accesses  
to the DDR2 SDRAM are burst-oriented, with the burst length being programmable to  
either four or eight. The burst length determines the maximum number of column loca-  
tions that can be accessed for a given READ or WRITE command.  
When a READ or WRITE command is issued, a block of columns equal to the burst  
length is effectively selected. All accesses for that burst take place within this block,  
meaning that the burst will wrap within the block if a boundary is reached. The block is  
uniquely selected by A2–Ai when BL = 4 and by A3–Ai when BL = 8 (where Ai is the most  
significant column address bit for a given configuration). The remaining (least signifi-  
cant) address bit(s) is (are) used to select the starting location within the block. The  
programmed burst length applies to both read and write bursts.  
Figure 35: MR Definition  
1
2
BA2 BA1 BA0 An A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address Bus  
16 15 14  
n
12 11 10  
PD WR  
9
8
7
6
5
4
3
2
1
0
Mode Register (Mx)  
0
MR  
0
DLL TM CAS# Latency BT Burst Length  
M2 M1 M0  
Burst Length  
M12 PD Mode  
Mode  
Normal  
Test  
M7  
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
Fast exit  
(normal)  
Reserved  
Reserved  
4
1
1
Slow exit  
(low power)  
8
DLL Reset  
No  
M8  
0
Reserved  
Reserved  
Reserved  
Reserved  
1
Yes  
Write Recovery  
M11 M10 M9  
Reserved  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
8
Burst Type  
Sequential  
Interleaved  
M3  
0
1
CAS Latency (CL)  
M6 M5 M4  
Reserved  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
M15 M14  
Mode Register Definition  
3
4
5
6
7
0
0
1
1
0
1
0
1
Mode register (MR)  
Extended mode register (EMR)  
Extended mode register (EMR2)  
Extended mode register (EMR3)  
1.  
Notes:  
M16 (BA2) is only applicable for densities 1Gb, reserved for future use, and must be  
programmed to “0.”  
2. Mode bits (Mn) with corresponding address balls (An) greater than M12 (A12) are re-  
served for future use and must be programmed to “0.”  
3. Not all listed WR and CL options are supported in any individual speed grade.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
75  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Mode Register (MR)  
Burst Type  
Accesses within a given burst may be programmed to be either sequential or inter-  
leaved. The burst type is selected via bit M3, as shown in Figure 35. The ordering of  
accesses within a burst is determined by the burst length, the burst type, and the start-  
ing column address, as shown in Table 40. DDR2 SDRAM supports 4-bit burst mode  
and 8-bit burst mode only. For 8-bit burst mode, full interleaved address ordering is  
supported; however, sequential address ordering is nibble-based.  
Table 40: Burst Definition  
Burst Length  
Starting Column Address  
Order of Accesses Within a Burst  
(A2, A1, A0)  
Burst Type = Sequential  
Burst Type = Interleaved  
0, 1, 2, 3  
4
0 0  
0 1  
0, 1, 2, 3  
1, 2, 3, 0  
1, 0, 3, 2  
1 0  
2, 3, 0, 1  
2, 3, 0, 1  
1 1  
3, 0, 1, 2  
3, 2, 1, 0  
8
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
Operating Mode  
DLL RESET  
The normal operating mode is selected by issuing a command with bit M7 set to “0,”  
and all other bits set to the desired values, as shown in Figure 35 (page 75). When bit M7  
is “1,” no other bits of the mode register are programmed. Programming bit M7 to “1”  
places the DDR2 SDRAM into a test mode that is only used by the manufacturer and  
should not be used. No operation or functionality is guaranteed if M7 bit is “1.”  
DLL RESET is defined by bit M8, as shown in Figure 35. Programming bit M8 to “1” will  
activate the DLL RESET function. Bit M8 is self-clearing, meaning it returns back to a  
value of “0” after the DLL RESET function has been issued.  
Anytime the DLL RESET function is used, 200 clock cycles must occur before a READ  
command can be issued to allow time for the internal clock to be synchronized with the  
external clock. Failing to wait for synchronization to occur may result in a violation of  
the tAC or tDQSCK parameters.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
76  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Mode Register (MR)  
Write Recovery  
Write recovery (WR) time is defined by bits M9–M11, as shown in Figure 35 (page 75).  
The WR register is used by the DDR2 SDRAM during WRITE with auto precharge opera-  
tion. During WRITE with auto precharge operation, the DDR2 SDRAM delays the inter-  
nal auto precharge operation by WR clocks (programmed in bits M9–M11) from the last  
data burst. An example of WRITE with auto precharge is shown in Figure 64 (page 109).  
WR values of 2, 3, 4, 5, 6, 7, or 8 clocks may be used for programming bits M9–M11. The  
user is required to program the value of WR, which is calculated by dividing tWR (in  
nanoseconds) by tCK (in nanoseconds) and rounding up a noninteger value to the next  
integer; WR (cycles) = tWR (ns)/tCK (ns). Reserved states should not be used as an un-  
known operation or incompatibility with future versions may result.  
Power-Down Mode  
Active power-down (PD) mode is defined by bit M12, as shown in Figure 35. PD mode  
enables the user to determine the active power-down mode, which determines perform-  
ance versus power savings. PD mode bit M12 does not apply to precharge PD mode.  
When bit M12 = 0, standard active PD mode, or “fast-exit” active PD mode, is enabled.  
The tXARD parameter is used for fast-exit active PD exit timing. The DLL is expected to  
be enabled and running during this mode.  
When bit M12 = 1, a lower-power active PD mode, or “slow-exit” active PD mode, is  
enabled. The tXARDS parameter is used for slow-exit active PD exit timing. The DLL can  
be enabled but “frozen” during active PD mode because the exit-to-READ command  
timing is relaxed. The power difference expected between IDD3P normal and IDD3P low-  
power mode is defined in the DDR2 IDD Specifications and Conditions table.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
77  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Mode Register (MR)  
CAS Latency (CL)  
The CAS latency (CL) is defined by bits M4–M6, as shown in Figure 35 (page 75). CL is  
the delay, in clock cycles, between the registration of a READ command and the availa-  
bility of the first bit of output data. The CL can be set to 3, 4, 5, 6, or 7 clocks, depending  
on the speed grade option being used.  
DDR2 SDRAM does not support any half-clock latencies. Reserved states should not be  
used as an unknown operation otherwise incompatibility with future versions may result.  
DDR2 SDRAM also supports a feature called posted CAS additive latency (AL). This fea-  
ture allows the READ command to be issued prior to tRCD (MIN) by delaying the  
internal command to the DDR2 SDRAM by AL clocks. The AL feature is described in  
further detail in Posted CAS Additive Latency (AL) (page 81).  
Examples of CL = 3 and CL = 4 are shown in Figure 36; both assume AL = 0. If a READ  
command is registered at clock edge n, and the CL is m clocks, the data will be available  
nominally coincident with clock edge n + m (this assumes AL = 0).  
Figure 36: CL  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK#  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
DQS, DQS#  
DO  
DO  
DO  
DO  
DQ  
n
n + 1  
n + 2  
n + 3  
CL = 3 (AL = 0)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK#  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
DQS, DQS#  
DO  
DO  
DO  
DO  
DQ  
n
n + 1  
n + 2  
n + 3  
CL = 4 (AL = 0)  
Transitioning data  
Don’t care  
1. BL = 4.  
2. Posted CAS# additive latency (AL) = 0.  
3. Shown with nominal tAC, tDQSCK, and tDQSQ.  
Notes:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
78  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Extended Mode Register (EMR)  
Extended Mode Register (EMR)  
The extended mode register controls functions beyond those controlled by the mode  
register; these additional functions are DLL enable/disable, output drive strength, on-  
die termination (ODT), posted AL, off-chip driver impedance calibration (OCD), DQS#  
enable/disable, RDQS/RDQS# enable/disable, and output disable/enable. These func-  
tions are controlled via the bits shown in Figure 37. The EMR is programmed via the LM  
command and will retain the stored information until it is programmed again or the  
device loses power. Reprogramming the EMR will not alter the contents of the memory  
array, provided it is performed correctly.  
The EMR must be loaded when all banks are idle and no bursts are in progress, and the  
controller must wait the specified time tMRD before initiating any subsequent opera-  
tion. Violating either of these requirements could result in an unspecified operation.  
Figure 37: EMR Definition  
1
2
BA2 BA1 BA0 An A12  
A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address bus  
Extended mode  
16 15 14  
n
12 11 10  
Out  
9
8
7
6
5
4
3
2
1
0
register (Ex)  
0
MRS  
RTT  
0
OCD Program  
Posted CAS# RTT ODS DLL  
RDQS DQS#  
Outputs  
Enabled  
Disabled  
E0  
DLL Enable  
E12  
0
0
1
E6 E2 RTT (Nominal)  
Enable (normal)  
Disable (test/debug)  
1
0
0
1
1
0
1
0
1
RTT disabled  
75Ω  
E11 RDQS Enable  
150Ω  
E1  
0
Output Drive Strength  
0
1
No  
50Ω  
Full  
Yes  
1
Reduced  
3
E10 DQS# Enable  
Posted CAS# Additive Latency (AL)  
E5 E4 E3  
0
1
Enable  
Disable  
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
E9 E8 E7 OCD Operation  
3
0
0
0
1
1
0
0
1
0
1
0
1
0
0
1
OCD exit  
Reserved  
Reserved  
Reserved  
4
5
6
Reserved  
Enable OCD defaults  
Mode Register Set  
E15 E14  
0
1
0
1
Mode register (MR)  
0
0
1
1
Extended mode register (EMR)  
Extended mode register (EMR2)  
Extended mode register (EMR3)  
1.  
Notes:  
E16 (BA2) is only applicable for densities 1Gb, reserved for future use, and must be pro-  
grammed to “0.”  
2. Mode bits (En) with corresponding address balls (An) greater than E12 (A12) are re-  
served for future use and must be programmed to “0.”  
3. Not all listed AL options are supported in any individual speed grade.  
4. As detailed in the Initialization (page 85) section notes, during initialization of the  
OCD operation, all three bits must be set to “1” for the OCD default state, then set to  
“0” before initialization is finished.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
79  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Extended Mode Register (EMR)  
DLL Enable/Disable  
The DLL may be enabled or disabled by programming bit E0 during the LM command,  
as shown in Figure 37 (page 79). These specifications are applicable when the DLL is  
enabled for normal operation. DLL enable is required during power-up initialization  
and upon returning to normal operation after having disabled the DLL for the purpose  
of debugging or evaluation. Enabling the DLL should always be followed by resetting  
the DLL using the LM command.  
The DLL is automatically disabled when entering SELF REFRESH operation and is auto-  
matically re-enabled and reset upon exit of SELF REFRESH operation.  
Anytime the DLL is enabled (and subsequently reset), 200 clock cycles must occur be-  
fore a READ command can be issued to allow time for the internal clock to synchronize  
with the external clock. Failing to wait for synchronization to occur may result in a viola-  
tion of the tAC or tDQSCK parameters.  
Anytime the DLL is disabled and the device is operated below 25 MHz, any AUTO RE-  
FRESH command should be followed by a PRECHARGE ALL command.  
Output Drive Strength  
The output drive strength is defined by bit E1, as shown in Figure 37. The normal drive  
strength for all outputs is specified to be SSTL_18. Programming bit E1 = 0 selects nor-  
mal (full strength) drive strength for all outputs. Selecting a reduced drive strength  
option (E1 = 1) will reduce all outputs to approximately 45 to 60 percent of the SSTL_18  
drive strength. This option is intended for the support of lighter load and/or point-to-  
point environments.  
DQS# Enable/Disable  
The DQS# ball is enabled by bit E10. When E10 = 0, DQS# is the complement of the  
differential data strobe pair DQS/DQS#. When disabled (E10 = 1), DQS is used in a single-  
ended mode and the DQS# ball is disabled. When disabled, DQS# should be left float-  
ing; however, it may be tied to ground via a 20Ω to 10kΩ resistor. This function is also  
used to enable/disable RDQS#. If RDQS is enabled (E11 = 1) and DQS# is enabled (E10 =  
0), then both DQS# and RDQS# will be enabled.  
RDQS Enable/Disable  
The RDQS ball is enabled by bit E11, as shown in Figure 37. This feature is only applica-  
ble to the x8 configuration. When enabled (E11 = 1), RDQS is identical in function and  
timing to data strobe DQS during a READ. During a WRITE operation, RDQS is ignored  
by the DDR2 SDRAM.  
Output Enable/Disable  
The OUTPUT ENABLE function is defined by bit E12, as shown in Figure 37. When ena-  
bled (E12 = 0), all outputs (DQ, DQS, DQS#, RDQS, RDQS#) function normally. When  
disabled (E12 = 1), all outputs (DQ, DQS, DQS#, RDQS, RDQS#) are disabled, thus remov-  
ing output buffer current. The output disable feature is intended to be used during IDD  
characterization of read current.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
80  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Extended Mode Register (EMR)  
On-Die Termination (ODT)  
ODT effective resistance, RTT(EFF), is defined by bits E2 and E6 of the EMR, as shown in  
Figure 37 (page 79). The ODT feature is designed to improve signal integrity of the mem-  
ory channel by allowing the DDR2 SDRAM controller to independently turn on/off ODT  
for any or all devices. RTT effective resistance values of 50Ω, 75Ω, and 150Ω are selecta-  
ble and apply to each DQ, DQS/DQS#, RDQS/RDQS#, UDQS/UDQS#, LDQS/LDQS#,  
DM, and UDM/LDM signals. Bits (E6, E2) determine what ODT resistance is enabled by  
turning on/off “sw1,” “sw2,” or “sw3.” The ODT effective resistance value is selected by  
enabling switch “sw1,” which enables all R1 values that are 150Ω each, enabling an ef-  
fective resistance of 75Ω (RTT2 [EFF] = R2/2). Similarly, if “sw2” is enabled, all R2 values  
that are 300Ω each, enable an effective ODT resistance of 150Ω (RTT2[EFF] = R2/2).  
Switch “sw3” enables R1 values of 100Ω, enabling effective resistance of 50Ω. Reserved  
states should not be used, as an unknown operation or incompatibility with future ver-  
sions may result.  
The ODT control ball is used to determine when RTT(EFF) is turned on and off, assuming  
ODT has been enabled via bits E2 and E6 of the EMR. The ODT feature and ODT input  
ball are only used during active, active power-down (both fast-exit and slow-exit  
modes), and precharge power-down modes of operation.  
ODT must be turned off prior to entering self refresh mode. During power-up and initi-  
alization of the DDR2 SDRAM, ODT should be disabled until the EMR command is  
issued. This will enable the ODT feature, at which point the ODT ball will determine the  
RTT(EFF) value. Anytime the EMR enables the ODT function, ODT may not be driven  
HIGH until eight clocks after the EMR has been enabled (see Figure 80 (page 126) for  
ODT timing diagrams).  
Off-Chip Driver (OCD) Impedance Calibration  
The OFF-CHIP DRIVER function is an optional DDR2 JEDEC feature not supported by  
Micron and thereby must be set to the default state. Enabling OCD beyond the default  
settings will alter the I/O drive characteristics and the timing and output I/O specifica-  
tions will no longer be valid (see Initialization (page 85) for proper setting of OCD  
defaults).  
Posted CAS Additive Latency (AL)  
Posted CAS additive latency (AL) is supported to make the command and data bus effi-  
cient for sustainable bandwidths in DDR2 SDRAM. Bits E3–E5 define the value of AL, as  
shown in Figure 37. Bits E3–E5 allow the user to program the DDR2 SDRAM with an AL  
of 0, 1, 2, 3, 4, 5, or 6 clocks. Reserved states should not be used as an unknown opera-  
tion or incompatibility with future versions may result.  
In this operation, the DDR2 SDRAM allows a READ or WRITE command to be issued  
t
prior to RCD (MIN) with the requirement that AL tRCD (MIN). A typical application  
using this feature would set AL = tRCD (MIN) - 1 × tCK. The READ or WRITE command  
is held for the time of the AL before it is issued internally to the DDR2 SDRAM device.  
RL is controlled by the sum of AL and CL; RL = AL + CL. WRITE latency (WL) is equal to  
RL minus one clock; WL = AL + CL - 1 × tCK. An example of RL is shown in Figure 38  
(page 82). An example of a WL is shown in Figure 39 (page 82).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
81  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Extended Mode Register (EMR)  
Figure 38: READ Latency  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
Command  
DQS, DQS#  
ACTIVE n  
READ n  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
RCD (MIN)  
AL = 2  
DO  
DO  
n + 1  
DO  
DO  
n + 3  
DQ  
n
n + 2  
CL = 3  
RL = 5  
Transitioning Data  
Don’t Care  
1. BL = 4.  
Notes:  
2. Shown with nominal tAC, tDQSCK, and tDQSQ.  
3. RL = AL + CL = 5.  
Figure 39: WRITE Latency  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK#  
CK  
ACTIVE n  
WRITE n  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
RCD (MIN)  
DQS, DQS#  
AL = 2  
CL - 1 = 2  
DI  
DI  
DI  
DI  
DQ  
n
n + 1  
n + 2  
n + 3  
WL = AL + CL - 1 = 4  
Transitioning Data  
Don’t Care  
1. BL = 4.  
2. CL = 3.  
Notes:  
3. WL = AL + CL - 1 = 4.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
82  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Extended Mode Register 2 (EMR2)  
Extended Mode Register 2 (EMR2)  
The extended mode register 2 (EMR2) controls functions beyond those controlled by  
the mode register. Currently all bits in EMR2 are reserved, except for E7, which is used  
in commercial or high-temperature operations, as shown in Figure 40. The EMR2 is pro-  
grammed via the LM command and will retain the stored information until it is program-  
med again or until the device loses power. Reprogramming the EMR will not alter the  
contents of the memory array, provided it is performed correctly.  
Bit E7 (A7) must be programmed as “1” to provide a faster refresh rate on IT and AT  
devices if TC exceeds 85°C.  
EMR2 must be loaded when all banks are idle and no bursts are in progress, and the  
controller must wait the specified time tMRD before initiating any subsequent opera-  
tion. Violating either of these requirements could result in an unspecified operation.  
Figure 40: EMR2 Definition  
1
2
BA2  
BA1 BA0 An A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address bus  
Extended mode  
register (Ex)  
16 15 14  
n
12 11 10  
9
0
8
0
7
6
5
0
4
0
3
0
2
0
1
0
0
0
0
0
0
SRT  
0
MRS  
0
0
E15 E14  
Mode Register Set  
E7  
0
SRT Enable  
0
0
1
1
0
1
0
1
Mode register (MR)  
1X refresh rate (0°C to 85°C)  
2X refresh rate (>85°C)  
Extended mode register (EMR)  
Extended mode register (EMR2)  
Extended mode register (EMR3)  
1
1.  
Notes:  
E16 (BA2) is only applicable for densities 1Gb, reserved for future use, and must be pro-  
grammed to “0.”  
2. Mode bits (En) with corresponding address balls (An) greater than E12 (A12) are re-  
served for future use and must be programmed to “0.”  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
83  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Extended Mode Register 3 (EMR3)  
Extended Mode Register 3 (EMR3)  
The extended mode register 3 (EMR3) controls functions beyond those controlled by  
the mode register. Currently all bits in EMR3 are reserved, as shown in Figure 41. The  
EMR3 is programmed via the LM command and will retain the stored information until  
it is programmed again or until the device loses power. Reprogramming the EMR will  
not alter the contents of the memory array, provided it is performed correctly.  
EMR3 must be loaded when all banks are idle and no bursts are in progress, and the  
controller must wait the specified time tMRD before initiating any subsequent opera-  
tion. Violating either of these requirements could result in an unspecified operation.  
Figure 41: EMR3 Definition  
1
2
BA2  
BA1 BA0 An A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address bus  
Extended mode  
16 15 14  
MRS  
n
12 11 10  
9
8
7
6
5
4
3
2
1
0
register (Ex)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
E15 E14  
Mode Register Set  
0
0
1
1
0
1
0
1
Mode register (MR)  
Extended mode register (EMR)  
Extended mode register (EMR2)  
Extended mode register (EMR3)  
1.  
Notes:  
E16 (BA2) is only applicable for densities 1Gb, is reserved for future use, and must be  
programmed to “0.”  
2. Mode bits (En) with corresponding address balls (An) greater than E12 (A12) are re-  
served for future use and must be programmed to “0.”  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
84  
© 2004 Micron Technology, Inc. All rights reserved.  
Initialization  
Figure 42: DDR2 Power-Up and Initialization  
DDR2 SDRAM must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in unde-  
fined operation. Figure 42 illustrates, and the notes outline, the sequence required for power-up and initialization.  
VDD  
VDDL  
VDDQ  
1
tVTD  
1
VTT  
VREF  
Tk0  
Tl0  
Tm0  
Tg0  
Th0  
Ti0  
Tj0  
Te0  
Tf0  
Tc0  
Td0  
Tb0  
T0  
Ta0  
t
CK  
CK#  
CK  
t
CL  
t
CL  
LVCMOS  
low level  
SSTL_18  
low level  
2
2
CKE  
ODT  
10  
REF  
7
14  
Valid  
5
6
8
9
10  
REF  
11  
12  
13  
LM  
3
Command  
LM  
PRE  
LM  
LM  
LM  
PRE  
LM  
LM  
NOP  
15  
DM  
16  
Address  
Code  
Code  
Code  
A10 = 1  
Code  
Code  
Code  
Code  
A10 = 1  
Valid  
High-Z  
High-Z  
High-Z  
15  
DQS  
15  
DQ  
R
tt  
4
3
t
t
t
t
t
t
t
t
t
MRD  
t
T = 400ns (MIN)  
t
T = 200µs (MIN)  
RPA  
MRD  
MRD  
MRD  
MRD  
RPA  
RFC  
See no te 10  
RFC  
MRD  
MRD  
Power-up:  
EMR(2)  
EMR(3)  
EMR  
V
and stable  
DD  
MR without  
DLL RESET  
EMR with  
OCD default  
EMR with  
OCD exit  
clock (CK, CK#)  
200 cycles of CK are required before a READ command can be issued  
Normal  
operation  
MR with  
DLL RESET  
Indicates a Break in  
Time Scale  
Don’t care  
1Gb: x4, x8, x16 DDR2 SDRAM  
1. Applying power; if CKE is maintained below 0.2 × VDDQ, outputs remain disabled. To  
guarantee RTT (ODT resistance) is off, VREF must be valid and a low level must be applied  
to the ODT ball (all other inputs may be undefined; I/Os and outputs must be less than  
VDDQ during voltage ramp time to avoid DDR2 SDRAM device latch-up). VTT is not ap-  
plied directly to the device; however, tVTD should be 0 to avoid device latch-up. At  
least one of the following two sets of conditions (A or B) must be met to obtain a stable  
supply state (stable supply defined as VDD, VDDL, VDDQ, VREF, and VTT are between their  
minimum and maximum values as stated in Table 12 (page 41)):  
Notes:  
A. Single power source: The VDD voltage ramp from 300mV to VDD,min must take no lon-  
ger than 200ms; during the VDD voltage ramp, |VDD - VDDQ| 0.3V. Once supply voltage  
ramping is complete (when VDDQ crosses VDD,min), Table 12 specifications apply.  
VDD, VDDL, and VDDQ are driven from a single power converter output  
VTT is limited to 0.95V MAX  
VREF tracks VDDQ/2; VREF must be within ±0.3V with respect to VDDQ/2 during supply  
ramp time; does not need to be satisfied when ramping power down  
VDDQ VREF at all times  
B. Multiple power sources: VDD VDDL VDDQ must be maintained during supply voltage  
ramping, for both AC and DC levels, until supply voltage ramping completes (VDDQ  
crosses VDD,min). Once supply voltage ramping is complete, Table 12 specifications apply.  
Apply VDD and VDDL before or at the same time as VDDQ; VDD/VDDL voltage ramp time  
must be 200ms from when VDD ramps from 300mV to VDD,min  
Apply VDDQ before or at the same time as VTT; the VDDQ voltage ramp time from when  
VDD,min is achieved to when VDDQ,min is achieved must be 500ms; while VDD is ramp-  
ing, current can be supplied from VDD through the device to VDDQ  
VREF must track VDDQ/2; VREF must be within ±0.3V with respect to VDDQ/2 during sup-  
ply ramp time; VDDQ VREF must be met at all times; does not need to be satisfied  
when ramping power down  
Apply VTT; the VTT voltage ramp time from when VDDQ,min is achieved to when VTT,min  
is achieved must be no greater than 500ms  
2. CKE requires LVCMOS input levels prior to state T0 to ensure DQs are High-Z during de-  
vice power-up prior to VREF being stable. After state T0, CKE is required to have SSTL_18  
input levels. Once CKE transitions to a high level, it must stay HIGH for the duration of  
the initialization sequence.  
3. For a minimum of 200µs after stable power and clock (CK, CK#), apply NOP or DESELECT  
commands, then take CKE HIGH.  
4. Wait a minimum of 400ns then issue a PRECHARGE ALL command.  
5. Issue a LOAD MODE command to the EMR(2). To issue an EMR(2) command, provide  
LOW to BA0, and provide HIGH to BA1; set register E7 to “0” or “1” to select appropri-  
ate self refresh rate; remaining EMR(2) bits must be “0” (see Extended Mode Register 2  
(EMR2) (page 83) for all EMR(2) requirements).  
6. Issue a LOAD MODE command to the EMR(3). To issue an EMR(3) command, provide  
HIGH to BA0 and BA1; remaining EMR(3) bits must be “0.” Extended Mode Register 3  
(EMR3) for all EMR(3) requirements.  
7. Issue a LOAD MODE command to the EMR to enable DLL. To issue a DLL ENABLE com-  
mand, provide LOW to BA1 and A0; provide HIGH to BA0; bits E7, E8, and E9 can be set  
to “0” or “1;” Micron recommends setting them to “0;” remaining EMR bits must be  
“0.” Extended Mode Register (EMR) (page 79) for all EMR requirements.  
8. Issue a LOAD MODE command to the MR for DLL RESET. 200 cycles of clock input is re-  
quired to lock the DLL. To issue a DLL RESET, provide HIGH to A8 and provide LOW to  
BA1 and BA0; CKE must be HIGH the entire time the DLL is resetting; remaining MR bits  
must be “0.” Mode Register (MR) (page 74) for all MR requirements.  
9. Issue PRECHARGE ALL command.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
86  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
10. Issue two or more REFRESH commands.  
11. Issue a LOAD MODE command to the MR with LOW to A8 to initialize device operation  
(that is, to program operating parameters without resetting the DLL). To access the MR,  
set BA0 and BA1 LOW; remaining MR bits must be set to desired settings. Mode Register  
(MR) (page 74) for all MR requirements.  
12. Issue a LOAD MODE command to the EMR to enable OCD default by setting bits E7, E8,  
and E9 to “1,” and then setting all other desired parameters. To access the EMR, set BA0  
LOW and BA1 HIGH (see Extended Mode Register (EMR) (page 79) for all EMR require-  
ments.  
13. Issue a LOAD MODE command to the EMR to enable OCD exit by setting bits E7, E8, and  
E9 to “0,” and then setting all other desired parameters. To access the extended mode  
registers, EMR, set BA0 LOW and BA1 HIGH for all EMR requirements.  
14. The DDR2 SDRAM is now initialized and ready for normal operation 200 clock cycles af-  
ter the DLL RESET at Tf0.  
15. DM represents DM for the x4, x8 configurations and UDM, LDM for the x16 configura-  
tion; DQS represents DQS, DQS#, UDQS, UDQS#, LDQS, LDQS#, RDQS, RDQS# for the  
appropriate configuration (x4, x8, x16); DQ represents DQ0–DQ3 for x4, DQ–DQ7 for x8  
and DQ0–DQ15 for x16.  
16. A10 = PRECHARGE ALL, CODE = desired values for mode registers (bank addresses are  
required to be decoded).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
87  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
ACTIVATE  
ACTIVATE  
Before any READ or WRITE commands can be issued to a bank within the DDR2  
SDRAM, a row in that bank must be opened (activated), even when additive latency is  
used. This is accomplished via the ACTIVATE command, which selects both the bank  
and the row to be activated.  
After a row is opened with an ACTIVATE command, a READ or WRITE command may  
be issued to that row subject to the tRCD specification. tRCD (MIN) should be divided  
by the clock period and rounded up to the next whole number to determine the earliest  
clock edge after the ACTIVATE command on which a READ or WRITE command can be  
entered. The same procedure is used to convert other specification limits from time  
units to clock cycles. For example, a tRCD (MIN) specification of 20ns with a 266 MHz  
clock (tCK = 3.75ns) results in 5.3 clocks, rounded up to 6. This is shown in Figure 43,  
which covers any case where 5 < tRCD (MIN)/tCK ≤ 6. Figure 43 also shows the case for  
tRRD where 2 < tRRD (MIN)/tCK ≤ 3.  
Figure 43: Example: Meeting tRRD (MIN) and tRCD (MIN)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK#  
CK  
Command  
ACT  
Row  
NOP  
NOP  
ACT  
Row  
NOP  
NOP  
NOP  
Row  
NOP  
NOP  
RD/WR  
Col  
Address  
Bank x  
Bank y  
Bank z  
Bank y  
Bank address  
t
t
RRD  
RRD  
t
RCD  
Don’t Care  
A subsequent ACTIVATE command to a different row in the same bank can only be is-  
sued after the previous active row has been closed (precharged). The minimum time  
interval between successive ACTIVATE commands to the same bank is defined by tRC.  
A subsequent ACTIVATE command to another bank can be issued while the first bank is  
being accessed, which results in a reduction of total row-access overhead. The mini-  
mum time interval between successive ACTIVATE commands to different banks is  
defined by tRRD.  
DDR2 devices with 8 banks (1Gb or larger) have an additional requirement: tFAW. This  
requires no more than four ACTIVATE commands may be issued in any given tFAW  
(MIN) period, as shown in Figure 44 (page 89).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
88  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
ACTIVATE  
Figure 44: Multibank Activate Restriction  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK#  
CK  
Command  
ACT  
Row  
READ  
ACT  
Row  
NOP  
ACT  
Row  
READ  
Col  
ACT  
READ  
ACT  
Row  
READ  
NOP  
Col  
Row  
Col  
Col  
Address  
Bank address  
Bank a  
Bank a  
Bank b  
Bank b  
Bank c  
Bank c  
Bank d  
Bank d  
Bank e  
t
RRD (MIN)  
t
FAW (MIN)  
Don’t Care  
1. DDR2-533 (-37E, x4 or x8), tCK = 3.75ns, BL = 4, AL = 3, CL = 4, tRRD (MIN) = 7.5ns,  
tFAW (MIN) = 37.5ns.  
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
89  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
READ  
READ bursts are initiated with a READ command. The starting column and bank ad-  
dresses are provided with the READ command, and auto precharge is either enabled or  
disabled for that burst access. If auto precharge is enabled, the row being accessed is  
automatically precharged at the completion of the burst. If auto precharge is disabled,  
the row will be left open after the completion of the burst.  
During READ bursts, the valid data-out element from the starting column address will  
be available READ latency (RL) clocks later. RL is defined as the sum of AL and CL:  
RL = AL + CL. The value for AL and CL are programmable via the MR and EMR com-  
mands, respectively. Each subsequent data-out element will be valid nominally at the  
next positive or negative clock edge (at the next crossing of CK and CK#). Figure 45  
(page 91) shows examples of RL based on different AL and CL settings.  
DQS/DQS# is driven by the DDR2 SDRAM along with output data. The initial LOW state  
on DQS and the HIGH state on DQS# are known as the read preamble (tRPRE). The  
LOW state on DQS and the HIGH state on DQS# coincident with the last data-out ele-  
ment are known as the read postamble (tRPST).  
Upon completion of a burst, assuming no other commands have been initiated, the DQ  
will go High-Z. A detailed explanation of tDQSQ (valid data-out skew), tQH (data-out  
window hold), and the valid data window are depicted in Figure 54 (page 99) and Fig-  
ure 55 (page 100). A detailed explanation of tDQSCK (DQS transition skew to CK) and  
tAC (data-out transition skew to CK) is shown in Figure 56 (page 101).  
Data from any READ burst may be concatenated with data from a subsequent READ  
command to provide a continuous flow of data. The first data element from the new  
burst follows the last element of a completed burst. The new READ command should  
be issued x cycles after the first READ command, where x equals BL/2 cycles (see Fig-  
ure 46 (page 92)).  
Nonconsecutive read data is illustrated in Figure 47 (page 93). Full-speed random  
read accesses within a page (or pages) can be performed. DDR2 SDRAM supports the  
use of concurrent auto precharge timing (see Table 41 (page 96)).  
DDR2 SDRAM does not allow interrupting or truncating of any READ burst using BL = 4  
operations. Once the BL = 4 READ command is registered, it must be allowed to com-  
plete the entire READ burst. However, a READ (with auto precharge disabled) using BL  
= 8 operation may be interrupted and truncated only by another READ burst as long as  
the interruption occurs on a 4-bit boundary due to the 4n prefetch architecture of  
DDR2 SDRAM. As shown in Figure 48 (page 94), READ burst BL = 8 operations may  
not be interrupted or truncated with any other command except another READ com-  
mand.  
Data from any READ burst must be completed before a subsequent WRITE burst is al-  
lowed. An example of a READ burst followed by a WRITE burst is shown in Figure 49  
(page 94). The tDQSS (NOM) case is shown (tDQSS [MIN] and tDQSS [MAX] are de-  
fined in Figure 57 (page 103)).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
90  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
Figure 45: READ Latency  
T0  
T1  
T2  
T3  
T3n  
T4  
T4n  
T5  
CK#  
CK  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank a,  
Col n  
Address  
RL = 3 (AL = 0, CL = 3)  
DQS, DQS#  
DQ  
DO  
n
T0  
T1  
T2  
T3  
T4  
T4n  
T5  
T5n  
CK#  
CK  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank a,  
Col n  
Address  
AL = 1  
CL = 3  
RL = 4 (AL = 1 + CL = 3)  
DQS, DQS#  
DQ  
DO  
n
T0  
T1  
T2  
NOP  
T3  
T3n  
T4  
T4n  
T5  
CK#  
CK  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
Bank a,  
Col n  
Address  
RL = 4 (AL = 0, CL = 4)  
DQS, DQS#  
DQ  
DO  
n
Transitioning Data  
Don’t Care  
1. DO n = data-out from column n.  
Notes:  
2. BL = 4.  
3. Three subsequent elements of data-out appear in the programmed order following  
DO n.  
4. Shown with nominal tAC, tDQSCK, and tDQSQ.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
91  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
Figure 46: Consecutive READ Bursts  
T5n  
T6n  
T0  
T1  
NOP  
CCD  
T2  
T3  
T3n  
T4  
T4n  
T5  
T6  
CK#  
CK  
Command  
Address  
READ  
READ  
NOP  
NOP  
NOP  
NOP  
Bank,  
Bank,  
Col n  
Col b  
t
RL = 3  
DQS, DQS#  
DQ  
DO  
DO  
n
b
T0  
T1  
T2  
T2n  
T3  
T5n  
T6n  
T3n  
T4  
T4n  
T5  
T6  
CK#  
CK  
Command  
Address  
READ  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
Bank,  
Bank,  
Col n  
Col b  
t
CCD  
RL = 4  
DQS, DQS#  
DQ  
DO  
DO  
n
b
Transitioning Data  
Don’t Care  
1. DO n (or b) = data-out from column n (or column b).  
Notes:  
2. BL = 4.  
3. Three subsequent elements of data-out appear in the programmed order following  
DO n.  
4. Three subsequent elements of data-out appear in the programmed order following  
DO b.  
5. Shown with nominal tAC, tDQSCK, and tDQSQ.  
6. Example applies only when READ commands are issued to same device.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
92  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
Figure 47: Nonconsecutive READ Bursts  
T0  
T1  
T2  
T3 T3n T4 T4n T5  
T6 T6n T7 T7n T8  
CK#  
CK  
Command  
READ  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank,  
Bank,  
Address  
Col n  
Col b  
CL = 3  
DQS, DQS#  
DQ  
DO  
DO  
n
b
T0  
T1  
T2  
T3  
T4 T4n T5 T5n T6  
T7 T7n T8  
CK#  
CK  
Command  
READ  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank,  
Bank,  
Address  
Col n  
Col b  
CL = 4  
DQS, DQS#  
DQ  
DO  
DO  
n
b
Transitioning Data  
Don’t Care  
1. DO n (or b) = data-out from column n (or column b).  
Notes:  
2. BL = 4.  
3. Three subsequent elements of data-out appear in the programmed order following  
DO n.  
4. Three subsequent elements of data-out appear in the programmed order following  
DO b.  
5. Shown with nominal tAC, tDQSCK, and tDQSQ.  
6. Example applies when READ commands are issued to different devices or nonconsecu-  
tive READs.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
93  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
Figure 48: READ Interrupted by READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK#  
CK  
1
2
NOP  
3
2
NOP  
Command  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
READ  
READ  
4
Valid  
4
Valid  
Address  
A10  
5
Valid  
DQS, DQS#  
DQ  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
CL = 3 (AL = 0)  
t
CCD  
CL = 3 (AL = 0)  
Transitioning Data  
Don’t Care  
1. BL = 8 required; auto precharge must be disabled (A10 = LOW).  
Notes:  
2. NOP or COMMAND INHIBIT commands are valid. PRECHARGE command cannot be is-  
sued to banks used for READs at T0 and T2.  
3. Interrupting READ command must be issued exactly 2 × tCK from previous READ.  
4. READ command can be issued to any valid bank and row address (READ command at T0  
and T2 can be either same bank or different bank).  
5. Auto precharge can be either enabled (A10 = HIGH) or disabled (A10 = LOW) by the in-  
terrupting READ command.  
6. Example shown uses AL = 0; CL = 3, BL = 8, shown with nominal tAC, tDQSCK, and tDQSQ.  
Figure 49: READ-to-WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK#  
CK  
Command  
ACT n  
READ n  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS, DQS#  
t
RCD = 3  
WL = RL - 1 = 4  
DO  
DO  
n + 1  
DO  
n + 2  
DO  
n + 3  
DI  
DI  
n + 1  
DI  
DI  
n + 3  
DQ  
n
n
n + 2  
AL = 2  
CL = 3  
RL = 5  
Transitioning Data  
Don’t Care  
1. BL = 4; CL = 3; AL = 2.  
2. Shown with nominal tAC, tDQSCK, and tDQSQ.  
Notes:  
READ with Precharge  
A READ burst may be followed by a PRECHARGE command to the same bank, provided  
auto precharge is not activated. The minimum READ-to-PRECHARGE command spac-  
ing to the same bank has two requirements that must be satisfied: AL + BL/2 clocks and  
tRTP. tRTP is the minimum time from the rising clock edge that initiates the last 4-bit  
prefetch of a READ command to the PRECHARGE command. For BL = 4, this is the time  
from the actual READ (AL after the READ command) to PRECHARGE command. For  
BL = 8, this is the time from AL + 2 × CK after the READ-to-PRECHARGE command.  
Following the PRECHARGE command, a subsequent command to the same bank can-  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
94  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
not be issued until tRP is met. However, part of the row precharge time is hidden during  
the access of the last data elements.  
Examples of READ-to-PRECHARGE for BL = 4 are shown in Figure 50 and in Figure 51  
for BL = 8. The delay from READ-to-PRECHARGE period to the same bank is AL + BL/  
2 - 2CK + MAX (tRTP/tCK or 2 × CK) where MAX means the larger of the two.  
Figure 50: READ-to-PRECHARGE – BL = 4  
4-bit  
prefetch  
T1  
T0  
T2  
T3  
T4  
T5  
T6  
T7  
CK#  
CK  
Command  
READ  
NOP  
NOP  
PRE  
NOP  
NOP  
ACT  
NOP  
t
t
AL + BL/2 - 2CK + MAX ( RTP/ CK or 2CK)  
Address  
A10  
Bank a  
Bank a  
Bank a  
Valid  
Valid  
AL = 1  
CL = 3  
DQS, DQS#  
DQ  
t
RTP (MIN)  
DO  
DO  
DO  
DO  
t
t
RAS (MIN)  
RP (MIN)  
t
RC (MIN)  
Transitioning Data  
Don’t Care  
1. RL = 4 (AL = 1, CL = 3); BL = 4.  
Notes:  
tRTP 2 clocks.  
2.  
3. Shown with nominal tAC, tDQSCK, and tDQSQ.  
Figure 51: READ-to-PRECHARGE – BL = 8  
First 4-bit  
prefetch  
T1  
Second 4-bit  
prefetch  
T3  
T0  
T2  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
Command READ  
NOP  
NOP  
NOP  
NOP  
PRE  
NOP  
NOP  
ACT  
t
t
AL + BL/2 - 2CK + MAX ( RTP/ CK or 2CK)  
Address  
A10  
Bank a  
Bank a  
Bank a  
Valid  
Valid  
AL = 1  
CL = 3  
DQS, DQS#  
DQ  
DO  
DO  
DO  
DO  
DO  
DO  
RP (MIN)  
DO  
DO  
t  
t  
RTP (MIN)  
t  
RAS (MIN)  
t  
RC (MIN)  
Transitioning Data  
Don’t Care  
1. RL = 4 (AL = 1, CL = 3); BL = 8.  
Notes:  
tRTP 2 clocks.  
2.  
3. Shown with nominal tAC, tDQSCK, and tDQSQ.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
95  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
READ with Auto Precharge  
If A10 is high when a READ command is issued, the READ with auto precharge function  
is engaged. The DDR2 SDRAM starts an auto precharge operation on the rising clock  
edge that is AL + (BL/2) cycles later than the read with auto precharge command provi-  
ded tRAS (MIN) and tRTP are satisfied. If tRAS (MIN) is not satisfied at this rising clock  
edge, the start point of the auto precharge operation will be delayed until tRAS (MIN) is  
satisfied. If tRTP (MIN) is not satisfied at this rising clock edge, the start point of the  
auto precharge operation will be delayed until tRTP (MIN) is satisfied. When the inter-  
nal precharge is pushed out by tRTP, tRP starts at the point where the internal pre-  
charge happens (not at the next rising clock edge after this event).  
When BL = 4, the minimum time from READ with auto precharge to the next ACTIVATE  
command is AL + (tRTP + tRP)/tCK. When BL = 8, the minimum time from READ with  
auto precharge to the next ACTIVATE command is AL + 2 clocks + (tRTP + tRP)/tCK. The  
term (tRTP + tRP)/tCK is always rounded up to the next integer. A general purpose equa-  
tion can also be used: AL + BL/2 - 2CK + (tRTP + tRP)/tCK. In any event, the internal  
precharge does not start earlier than two clocks after the last 4-bit prefetch.  
READ with auto precharge command may be applied to one bank while another bank is  
operational. This is referred to as concurrent auto precharge operation, as noted in Ta-  
ble 41. Examples of READ with precharge and READ with auto precharge with applica-  
ble timing requirements are shown in Figure 52 (page 97) and Figure 53 (page 98),  
respectively.  
Table 41: READ Using Concurrent Auto Precharge  
Minimum Delay  
From Command (Bank n)  
To Command (Bank m)  
READ or READ with auto precharge  
WRITE or WRITE with auto precharge  
PRECHARGE or ACTIVATE  
(with Concurrent Auto Precharge) Units  
READ with auto precharge  
BL/2  
(BL/2) + 2  
1
tCK  
tCK  
tCK  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
96  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
Figure 52: Bank Read – Without Auto Precharge  
T1  
T0  
T2  
T3  
T4  
T5  
T6  
T7  
T7n  
T8  
T8n  
T9  
CK#  
CK  
t
t
CL  
t
CH  
CK  
CKE  
3
1
1
1
2
1
1
1
NOP  
Command  
ACT  
RA  
PRE  
ACT  
RA  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
4
t
RTP  
Col n  
Address  
A10  
All banks  
One bank  
RA  
RA  
5
6
Bank address  
Bank x  
Bank x  
Bank x  
Bank x  
t
CL = 3  
RCD  
t
RP  
3
t
RAS  
t
RC  
DM  
t
t
DQSCK (MIN)  
t
Case 1: AC (MIN) and DQSCK (MIN)  
t
RPST  
t
RPRE  
7
7
DQS, DQS#  
t
LZ (MIN)  
DO  
8
DQ  
n
t
LZ (MIN)  
t
t
t
AC (MIN)  
HZ (MIN)  
t
DQSCK (MAX)  
t
t
Case 2: AC (MAX) and DQSCK (MAX)  
t
RPST  
RPRE  
7
7
DQS, DQS#  
t
LZ (MAX)  
8
DO  
DQ  
n
t
t
t
AC (MAX)  
HZ (MAX)  
LZ (MIN)  
Transitioning Data  
Don’t Care  
1. NOP commands are shown for ease of illustration; other commands may be valid at  
these times.  
Notes:  
2. BL = 4 and AL = 0 in the case shown.  
3. The PRECHARGE command can only be applied at T6 if tRAS (MIN) is met.  
4. READ-to-PRECHARGE = AL + BL/2 - 2CK + MAX (tRTP/tCK or 2CK).  
5. Disable auto precharge.  
6.  
Don’t Care” if A10 is HIGH at T5.  
7. I/O balls, when entering or exiting High-Z, are not referenced to a specific voltage level,  
but to when the device begins to drive or no longer drives, respectively.  
8. DO n = data-out from column n; subsequent elements are applied in the programmed  
order.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
97  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
Figure 53: Bank Read – with Auto Precharge  
T1  
T0  
T2  
T3  
T4  
T5  
T6  
T7  
T7n  
T8  
T8n  
CK#  
CK  
t
t
t
CL  
CK  
CH  
CKE  
1
1
1
2,3  
READ  
1
1
1
1
1
NOP  
Command  
NOP  
ACT  
RA  
ACT  
RA  
NOP  
NOP  
NOP  
NOP  
NOP  
Address  
A10  
Col n  
4
RA  
RA  
Bank address  
Bank x  
Bank x  
Bank x  
AL = 1  
CL = 3  
t
t
RTP  
RCD  
t
RP  
t
RAS  
t
RC  
DM  
t
t
DQSCK (MIN)  
t
t
RPST  
Case 1: AC (MIN) and DQSCK (MIN)  
t
RPRE  
5
5
DQS, DQS#  
t
LZ (MIN)  
DO  
6
DQ  
n
t
LZ (MIN)  
t
t
HZ (MIN)  
AC (MIN)  
t
DQSCK (MAX)  
t
t
Case 2: AC (MAX) and DQSCK (MAX)  
t
t
RPST  
RPRE  
5
5
DQS, DQS#  
t
LZ (MAX)  
6
DO  
DQ  
n
t
t
t
HZ (MAX)  
LZ (MAX)  
AC (MAX)  
4-bit  
prefetch  
Internal  
precharge  
Transitioning Data  
Don’t Care  
1. NOP commands are shown for ease of illustration; other commands may be valid at  
these times.  
Notes:  
2. BL = 4, RL = 4 (AL = 1, CL = 3) in the case shown.  
3. The DDR2 SDRAM internally delays auto precharge until both tRAS (MIN) and tRTP (MIN)  
have been satisfied.  
4. Enable auto precharge.  
5. I/O balls, when entering or exiting High-Z, are not referenced to a specific voltage level,  
but to when the device begins to drive or no longer drives, respectively.  
6. DO n = data-out from column n; subsequent elements are applied in the programmed  
order.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
98  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
Figure 54: x4, x8 Data Output Timing – tDQSQ, tQH, and Data Valid Window  
T1  
T2  
T2n  
T3  
T3n  
T4  
CK#  
CK  
t
1
HP  
t
1
t
1
HP  
t
HP  
1
t 1  
HP  
t
t
1
HP  
HP  
2
t
2
t
2
t
2
DQSQ  
DQSQ  
DQSQ  
DQSQ  
DQS#  
3
DQS  
DQ (last data valid)  
4
4
4
4
4
4
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ (first data no longer valid)  
t
QH  
5
t
5
t
QH  
5
t
QH  
5
QH  
t
t
t
QHS  
t
QHS  
QHS  
QHS  
DQ (last data valid)  
T2  
T2  
T2n  
T2n  
T3  
T3n  
DQ (first data no longer valid)  
T3  
T3n  
6
All DQs and DQS collectively  
T2  
T2n  
T3  
T3n  
Earliest signal transition  
Latest signal transition  
Data  
Data  
valid  
window  
Data  
valid  
window  
Data  
valid  
window  
valid  
window  
1. tHP is the lesser of tCL or tCH clock transitions collectively when a bank is active.  
2. tDQSQ is derived at each DQS clock edge, is not cumulative over time, begins with DQS  
transitions, and ends with the last valid transition of DQ.  
Notes:  
3. DQ transitioning after the DQS transition defines the tDQSQ window. DQS transitions at  
T2 and at T2n are “early DQS,” at T3 are “nominal DQS,” and at T3n are “late DQS.”  
4. DQ0, DQ1, DQ2, DQ3 for x4 or DQ0–DQ7 for x8.  
5. tQH is derived from tHP: tQH = tHP - tQHS.  
6. The data valid window is derived for each DQS transition and is defined as tQH - tDQSQ.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
99  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
READ  
Figure 55: x16 Data Output Timing – tDQSQ, tQH, and Data Valid Window  
T1  
T2  
T2n  
T3  
T3n  
T4  
CK#  
CK  
1
1
1
1
1
1
HP  
t
t
t
t
t
t
HP  
HP  
HP  
HP  
HP  
2
2
2
2
DQSQ  
t
t
t
t
DQSQ  
DQSQ  
DQSQ  
LDSQ#  
3
LDQS  
4
4
4
4
4
4
4
4
DQ (last data valid)  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ (first data no longer valid)  
5
5
QH  
QHS  
t
t
5
5
QH  
QHS  
t
t
t
t
QH  
QH  
t
t
QHS  
QHS  
4
4
DQ (last data valid)  
T2  
T2  
T2n  
T2n  
T3  
T3n  
DQ (first data no longer valid)  
T3  
T3  
T3n  
T3n  
6
DQ0–DQ7 and LDQS collectively  
T2  
T2n  
Data valid  
window  
Data valid  
window  
Data valid  
window  
Data valid  
window  
2
2
2
2
DQSQ  
t
t
t
DQSQ  
t
DQSQ  
DQSQ  
UDQS#  
3
UDQS  
7
7
7
7
7
7
7
7
DQ (last data valid)  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ (first data no longer valid)  
5
t
5
5
5
QH  
QHS  
t
t
t
t
t
QH  
QH  
QH  
t
QHS  
t
QHS  
QHS  
7
7
6
DQ (last data valid)  
DQ (first data no longer valid)  
DQ8–DQ15 and UDQS collectively  
T2  
T2  
T2n  
T2n  
T3  
T3  
T3n  
T3n  
T2  
T2n  
T3  
T3n  
Data valid  
window  
Data valid  
window  
Data valid  
window  
Data valid  
window  
1. tHP is the lesser of tCL or tCH clock transitions collectively when a bank is active.  
2. tDQSQ is derived at each DQS clock edge, is not cumulative over time, begins with DQS  
transitions, and ends with the last valid transition of DQ.  
Notes:  
3. DQ transitioning after the DQS transitions define the tDQSQ window. LDQS defines the  
lower byte, and UDQS defines the upper byte.  
4. DQ0, DQ1, DQ2, DQ3, DQ4, DQ5, DQ6, or DQ7.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
100  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
WRITE  
5. tQH is derived from tHP: tQH = tHP - tQHS.  
6. The data valid window is derived for each DQS transition and is tQH - tDQSQ.  
7. DQ8, DQ9, DQ10, D11, DQ12, DQ13, DQ14, or DQ15.  
Figure 56: Data Output Timing – tAC and tDQSCK  
1
T0  
T1  
T2  
T3  
t
T3n  
T4  
T4n  
T5  
T5n  
T6  
T6n  
T7  
CK#  
CK  
t
HZ (MAX)  
2
2
t
t
DQSCK (MAX)  
DQSCK (MIN)  
LZ (MIN)  
t
t
RPST  
RPRE  
DQS#/DQS or  
3
LDQS#/LDQS/UDQ#/UDQS  
DQ (last data valid)  
DQ (first data valid)  
T3  
T3  
T3  
T3n  
T3n  
T4  
T4  
T4  
T4n  
T5  
T5n  
T5n  
T6  
T6  
T6n  
T6n  
T4n  
T4n  
T5  
T5  
4
All DQs collectively  
T3n  
T5n  
T6  
T6n  
t
t
5
t
5
t
HZ (MAX)  
LZ (MIN)  
AC (MIN)  
AC (MAX)  
1. READ command with CL = 3, AL = 0 issued at T0.  
Notes:  
2. tDQSCK is the DQS output window relative to CK and is the long-term component of  
DQS skew.  
3. DQ transitioning after DQS transitions define tDQSQ window.  
4. All DQ must transition by tDQSQ after DQS transitions, regardless of tAC.  
5. tAC is the DQ output window relative to CK and is the “long term” component of DQ  
skew.  
6. tLZ (MIN) and tAC (MIN) are the first valid signal transitions.  
7. tHZ (MAX) and tAC (MAX) are the latest valid signal transitions.  
8. I/O balls, when entering or exiting High-Z, are not referenced to a specific voltage level,  
but to when the device begins to drive or no longer drives, respectively.  
WRITE  
WRITE bursts are initiated with a WRITE command. DDR2 SDRAM uses WL equal to RL  
minus one clock cycle (WL = RL - 1CK) (see READ (page 73)). The starting column and  
bank addresses are provided with the WRITE command, and auto precharge is either  
enabled or disabled for that access. If auto precharge is enabled, the row being accessed  
is precharged at the completion of the burst.  
Note:  
For the WRITE commands used in the following illustrations, auto precharge is disabled.  
During WRITE bursts, the first valid data-in element will be registered on the first rising  
edge of DQS following the WRITE command, and subsequent data elements will be reg-  
istered on successive edges of DQS. The LOW state on DQS between the WRITE com-  
mand and the first rising edge is known as the write preamble; the LOW state on DQS  
following the last data-in element is known as the write postamble.  
The time between the WRITE command and the first rising DQS edge is WL ±tDQSS.  
Subsequent DQS positive rising edges are timed, relative to the associated clock edge,  
as ±tDQSS. tDQSS is specified with a relatively wide range (25% of one clock cycle). All of  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
101  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
WRITE  
the WRITE diagrams show the nominal case, and where the two extreme cases (tDQSS  
[MIN] and tDQSS [MAX]) might not be intuitive, they have also been included. Figure 57  
(page 103) shows the nominal case and the extremes of tDQSS for BL = 4. Upon comple-  
tion of a burst, assuming no other commands have been initiated, the DQ will remain  
High-Z and any additional input data will be ignored.  
Data for any WRITE burst may be concatenated with a subsequent WRITE command to  
provide continuous flow of input data. The first data element from the new burst is ap-  
plied after the last element of a completed burst. The new WRITE command should be  
issued x cycles after the first WRITE command, where x equals BL/2.  
Figure 58 (page 104) shows concatenated bursts of BL = 4 and how full-speed random  
write accesses within a page or pages can be performed. An example of nonconsecutive  
WRITEs is shown in Figure 59 (page 104). DDR2 SDRAM supports concurrent auto pre-  
charge options, as shown in Table 42.  
DDR2 SDRAM does not allow interrupting or truncating any WRITE burst using BL = 4  
operation. Once the BL = 4 WRITE command is registered, it must be allowed to com-  
plete the entire WRITE burst cycle. However, a WRITE BL = 8 operation (with auto  
precharge disabled) might be interrupted and truncated only by another WRITE burst  
as long as the interruption occurs on a 4-bit boundary due to the 4n-prefetch architec-  
ture of DDR2 SDRAM. WRITE burst BL = 8 operations may not be interrupted or  
truncated with any command except another WRITE command, as shown in Figure 60  
(page 105).  
Data for any WRITE burst may be followed by a subsequent READ command. To follow  
a WRITE, tWTR should be met, as shown in Figure 61 (page 106). The number of clock  
cycles required to meet tWTR is either 2 or tWTR/tCK, whichever is greater. Data for any  
WRITE burst may be followed by a subsequent PRECHARGE command. tWR must be  
met, as shown in Figure 62 (page 107). tWR starts at the end of the data burst, regard-  
less of the data mask condition.  
Table 42: WRITE Using Concurrent Auto Precharge  
From Command  
To Command  
Minimum Delay  
(Bank n)  
(Bank m)  
(with Concurrent Auto Precharge) Units  
WRITE with auto precharge  
READ or READ with auto precharge  
WRITE or WRITE with auto precharge  
PRECHARGE or ACTIVATE  
(CL - 1) + (BL/2) + tWTR  
tCK  
tCK  
tCK  
(BL/2)  
1
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
102  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
WRITE  
Figure 57: Write Burst  
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
CK#  
CK  
Command  
Address  
WRITE  
NOP  
NOP  
NOP  
NOP  
Bank a,  
Col b  
t
WL ± DQSS  
t
DQSS (NOM)  
5
DQS, DQS#  
DQ  
DI  
b
DM  
t
t
5
DQSS  
t
WL - DQSS  
DQSS (MIN)  
DQS, DQS#  
DQ  
DI  
b
DM  
t
t 5  
DQSS  
t
WL + DQSS  
DQSS (MAX)  
DQS, DQS#  
DQ  
DI  
b
DM  
Transitioning Data  
Don’t Care  
1. Subsequent rising DQS signals must align to the clock within tDQSS.  
Notes:  
2. DI b = data-in for column b.  
3. Three subsequent elements of data-in are applied in the programmed order following  
DI b.  
4. Shown with BL = 4, AL = 0, CL = 3; thus, WL = 2.  
5. A10 is LOW with the WRITE command (auto precharge is disabled).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
103  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
WRITE  
Figure 58: Consecutive WRITE-to-WRITE  
T0  
T1  
T1n  
T2  
T2n  
T3  
T3n  
T4  
T4n  
T5  
T5n  
T6  
CK#  
CK  
Command  
WRITE  
NOP  
CCD  
WRITE  
NOP  
NOP  
NOP  
NOP  
t
WL = 2  
WL = 2  
Bank,  
Bank,  
Address  
Col b  
Col n  
WL ± tDQSS  
t
DQSS (NOM)  
DQS, DQS#  
1
1
1
DI  
DI  
DQ  
b
n
DM  
Transitioning Data  
Don’t Care  
1. Subsequent rising DQS signals must align to the clock within tDQSS.  
Notes:  
2. DI b, etc. = data-in for column b, etc.  
3. Three subsequent elements of data-in are applied in the programmed order following  
DI b.  
4. Three subsequent elements of data-in are applied in the programmed order following  
DI n.  
5. Shown with BL = 4, AL = 0, CL = 3; thus, WL = 2.  
6. Each WRITE command may be to any bank.  
Figure 59: Nonconsecutive WRITE-to-WRITE  
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T4n  
T5  
T5n  
T6  
T6n  
CK#  
CK  
Command  
WRITE  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
WL = 2  
WL = 2  
Bank,  
Bank,  
Address  
Col b  
Col n  
t
t
WL ± DQSS  
DQSS (NOM)  
DQS, DQS#  
1
1
1
DI  
DI  
DQ  
b
n
DM  
Transitioning Data  
Don’t Care  
1. Subsequent rising DQS signals must align to the clock within tDQSS.  
Notes:  
2. DI b (or n), etc. = data-in for column b (or column n).  
3. Three subsequent elements of data-in are applied in the programmed order following  
DI b.  
4. Three subsequent elements of data-in are applied in the programmed order following  
DI n.  
5. Shown with BL = 4, AL = 0, CL = 3; thus, WL = 2.  
6. Each WRITE command may be to any bank.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
104  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
WRITE  
Figure 60: WRITE Interrupted by WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK#  
CK  
1
3
b
2
2
2
2
2
4
4
4
Valid  
WRITE  
a
WRITE  
Command  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
Valid  
5
5
Address  
A10  
Valid  
Valid  
6
Valid  
7
7
7
7
7
DQS, DQS#  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
a
a + 1  
a + 2  
a + 3  
b
b + 1  
b + 2  
b + 3  
b + 4  
b + 5  
b + 6  
b + 7  
WL = 3  
2-clock requirement  
WL = 3  
Transitioning Data  
Don’t Care  
1. BL = 8 required and auto precharge must be disabled (A10 = LOW).  
Notes:  
2. The NOP or COMMAND INHIBIT commands are valid. The PRECHARGE command cannot  
be issued to banks used for WRITEs at T0 and T2.  
3. The interrupting WRITE command must be issued exactly 2 × tCK from previous WRITE.  
4. The earliest WRITE-to-PRECHARGE timing for WRITE at T0 is WL + BL/2 + tWR where tWR  
starts with T7 and not T5 (because BL = 8 from MR and not the truncated length).  
5. The WRITE command can be issued to any valid bank and row address (WRITE command  
at T0 and T2 can be either same bank or different bank).  
6. Auto precharge can be either enabled (A10 = HIGH) or disabled (A10 = LOW) by the in-  
terrupting WRITE command.  
7. Subsequent rising DQS signals must align to the clock within tDQSS.  
8. Example shown uses AL = 0; CL = 4, BL = 8.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
105  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
WRITE  
Figure 61: WRITE-to-READ  
T6  
T7  
T8  
T9  
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T5  
T9n  
CK#  
CK  
Command  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
1
t
WTR  
Bank a,  
Col b  
Bank a,  
Col n  
Address  
t
t
WL ± DQSS  
DQSS (NOM)  
CL = 3  
CL = 3  
CL = 3  
2
DQS, DQS#  
DQ  
DI  
DI  
b
DM  
t
t
DQSS (MIN)  
WL - DQSS  
2
DQS, DQS#  
DQ  
DI  
DI  
DI  
b
DM  
t
t
DQSS (MAX)  
WL + DQSS  
2
DQS, DQS#  
DQ  
DI  
b
DM  
Transitioning Data  
Don’t Care  
1. tWTR is required for any READ following a WRITE to the same device, but it is not re-  
quired between module ranks.  
Notes:  
2. Subsequent rising DQS signals must align to the clock within tDQSS.  
3. DI b = data-in for column b; DO n = data-out from column n.  
4. BL = 4, AL = 0, CL = 3; thus, WL = 2.  
5. One subsequent element of data-in is applied in the programmed order following DI b.  
6. tWTR is referenced from the first positive CK edge after the last data-in pair.  
7. A10 is LOW with the WRITE command (auto precharge is disabled).  
8. The number of clock cycles required to meet tWTR is either 2 or tWTR/tCK, whichever is  
greater.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
106  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
WRITE  
Figure 62: WRITE-to-PRECHARGE  
T6  
T7  
T0  
T1  
T2  
T2n  
T3  
T3n  
T4  
T5  
CK#  
CK  
Command  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
PRE  
t
t
RP  
WR  
Bank a,  
Col b  
Bank,  
Address  
(a or all)  
t
t
DQSS (NOM)  
WL + DQSS  
1
DQS#  
DQS  
DI  
b
DQ  
DM  
t
t
DQSS (MIN)  
WL - DQSS  
1
DQS#  
DQS  
DI  
b
DQ  
DM  
t
t
DQSS (MAX)  
WL + DQSS  
1
DQS#  
DQS  
DI  
b
DQ  
DM  
Transitioning Data  
Don’t Care  
1. Subsequent rising DQS signals must align to the clock within tDQSS.  
Notes:  
2. DI b = data-in for column b.  
3. Three subsequent elements of data-in are applied in the programmed order following  
DI b.  
4. BL = 4, CL = 3, AL = 0; thus, WL = 2.  
5. tWR is referenced from the first positive CK edge after the last data-in pair.  
6. The PRECHARGE and WRITE commands are to the same bank. However, the PRECHARGE  
and WRITE commands may be to different banks, in which case tWR is not required and  
the PRECHARGE command could be applied earlier.  
7. A10 is LOW with the WRITE command (auto precharge is disabled).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
107  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
WRITE  
Figure 63: Bank Write – Without Auto Precharge  
T1  
T4  
T0  
T2  
T3  
T5  
T5n  
T6  
T6n  
T7  
T8  
T9  
CK#  
CK  
t
t
t
CL  
CK  
CH  
CKE  
1
1
1
1
2
1
1
1
NOP  
Command  
ACT  
RA  
NOP  
NOP  
PRE  
NOP  
NOP  
WRITE  
NOP  
NOP  
Col n  
Address  
A10  
All banks  
One bank  
RA  
3
4
Bank select  
Bank x  
Bank x  
Bank x  
t
t
WR  
RCD  
WL = 2  
t
RP  
t
t
RAS  
t
WL ± DQSS (NOM)  
5
DQS, DQS#  
t
t
t
DQSL DQSH WPST  
WPRE  
DI  
6
DQ  
n
DM  
Transitioning Data  
Don’t Care  
1. NOP commands are shown for ease of illustration; other commands may be valid at  
these times.  
Notes:  
2. BL = 4 and AL = 0 in the case shown.  
3. Disable auto precharge.  
4.  
Don’t Care” if A10 is HIGH at T9.  
5. Subsequent rising DQS signals must align to the clock within tDQSS.  
6. DI n = data-in for column n; subsequent elements are applied in the programmed order.  
7. tDSH is applicable during tDQSS (MIN) and is referenced from CK T5 or T6.  
8. tDSS is applicable during tDQSS (MAX) and is referenced from CK T6 or T7.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
108  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
WRITE  
Figure 64: Bank Write – with Auto Precharge  
T1  
T0  
T2  
T3  
T4  
T5  
T5n  
T6  
T6n  
T7  
T8  
T9  
CK#  
CK  
t
t
t
CL  
CK  
CH  
CKE  
1
1
2
1
1
1
1
1
1
NOP  
Command  
NOP  
ACT  
RA  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
Col n  
Address  
A10  
3
RA  
Bank select  
Bank x  
Bank x  
4
t
WR  
RCD  
WL = 2  
t
RP  
t
RAS  
t
WL ± DQSS (NOM)  
5
DQS, DQS#  
t
t
t
t
DQSL DQSH WPST  
WPRE  
DI  
6
DQ  
n
DM  
Transitioning Data  
Don’t Care  
1. NOP commands are shown for ease of illustration; other commands may be valid at  
these times.  
Notes:  
2. BL = 4 and AL = 0 in the case shown.  
3. Enable auto precharge.  
4. WR is programmed via MR9–MR11 and is calculated by dividing tWR (in ns) by tCK and  
rounding up to the next integer value.  
5. Subsequent rising DQS signals must align to the clock within tDQSS.  
6. DI n = data-in from column n; subsequent elements are applied in the programmed order.  
7. tDSH is applicable during tDQSS (MIN) and is referenced from CK T5 or T6.  
8. tDSS is applicable during tDQSS (MAX) and is referenced from CK T6 or T7.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
109  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
WRITE  
Figure 65: WRITE – DM Operation  
T9  
T10  
T11  
T1  
T0  
T2  
T3  
T4  
T5  
T6 T6n T7 T7n T8  
CK#  
CK  
t
t
CL  
t
CK  
CH  
CKE  
1
1
2
1
1
1
1
1
1
1
NOP  
Command  
ACT  
RA  
PRE  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
AL = 1  
WL = 2  
Address  
Col n  
All banks  
One bank  
A10  
RA  
3
Bank select  
4
Bank x  
Bank x  
Bank x  
5
t
t
WR  
RCD  
t
t
RPA  
RAS  
t
WL ± DQSS (NOM)  
6
DQS, DQS#  
t
t
t
DQSL DQSH WPST  
t
WPRE  
7
DI  
DQ  
n
DM  
Transitioning Data  
Don’t Care  
1. NOP commands are shown for ease of illustration; other commands may be valid at  
these times.  
Notes:  
2. BL = 4, AL = 1, and WL = 2 in the case shown.  
3. Disable auto precharge.  
4.  
Don’t Care” if A10 is HIGH at T11.  
5. tWR starts at the end of the data burst regardless of the data mask condition.  
6. Subsequent rising DQS signals must align to the clock within tDQSS.  
7. DI n = data-in for column n; subsequent elements are applied in the programmed order.  
8. tDSH is applicable during tDQSS (MIN) and is referenced from CK T6 or T7.  
9. tDSS is applicable during tDQSS (MAX) and is referenced from CK T7 or T8.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
110  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
PRECHARGE  
Figure 66: Data Input Timing  
T0  
T1  
T1n  
T2  
T2n  
T3  
T3n  
T4  
CK#  
CK  
1
2
3
1
t
2
DSS  
t
t
t
t
WL - DQSS (NOM)  
DSH  
DSS  
DSH  
DQS  
DQS#  
t
t
t
WPST  
DQSL  
DQSH  
t
WPRE  
DI  
DQ  
DM  
Transitioning Data  
Don’t Care  
1. tDSH (MIN) generally occurs during tDQSS (MIN).  
2. tDSS (MIN) generally occurs during tDQSS (MAX).  
Notes:  
3. Subsequent rising DQS signals must align to the clock within tDQSS.  
4. WRITE command issued at T0.  
5. For x16, LDQS controls the lower byte and UDQS controls the upper byte.  
6. WRITE command with WL = 2 (CL = 3, AL = 0) issued at T0.  
PRECHARGE  
Precharge can be initiated by either a manual PRECHARGE command or by an autopre-  
charge in conjunction with either a READ or WRITE command. Precharge will deacti-  
vate the open row in a particular bank or the open row in all banks. The PRECHARGE  
operation is shown in the previous READ and WRITE operation sections.  
During a manual PRECHARGE command, the A10 input determines whether one or all  
banks are to be precharged. In the case where only one bank is to be precharged, bank  
address inputs determine the bank to be precharged. When all banks are to be pre-  
charged, the bank address inputs are treated as “Don’t Care.”  
Once a bank has been precharged, it is in the idle state and must be activated prior to  
any READ or WRITE commands being issued to that bank. When a single-bank PRE-  
CHARGE command is issued, tRP timing applies. When the PRECHARGE (ALL) com-  
mand is issued, tRPA timing applies, regardless of the number of banks opened.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
111  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
REFRESH  
REFRESH  
The commercial temperature DDR2 SDRAM requires REFRESH cycles at an average in-  
terval of 7.8125µs (MAX) and all rows in all banks must be refreshed at least once every  
64ms. The refresh period begins when the REFRESH command is registered and ends  
tRFC (MIN) later. The average interval must be reduced to 3.9µs (MAX) when TC ex-  
ceeds +85°C.  
Figure 67: Refresh Mode  
T0  
T1  
Ta0  
Ta1  
T4  
T2  
T3  
Tb0  
Tb1  
Tb2  
CK#  
CK  
t
t
t
CL  
CK  
CH  
CKE  
1
1
1
1
2
1
1
NOP  
Command  
NOP  
PRE  
NOP  
NOP  
REF  
NOP  
REF  
NOP  
ACT  
RA  
Address  
A10  
All banks  
One bank  
Bank(s)3  
RA  
Bank  
BA  
4
4
4
DQS, DQS#  
DQ  
DM  
t
2
t
t
RP  
RFC (MIN)  
RFC  
Indicates a break in  
time scale  
Don’t Care  
1. NOP commands are shown for ease of illustration; other valid commands may be possi-  
ble at these times. CKE must be active during clock positive transitions.  
Notes:  
2. The second REFRESH is not required and is only shown as an example of two back-to-  
back REFRESH commands.  
3.  
Don’t Care” if A10 is HIGH at this point; A10 must be HIGH if more than one bank is  
active (must precharge all active banks).  
4. DM, DQ, and DQS signals are all “Don’t Care”/High-Z for operations shown.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
112  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
SELF REFRESH  
SELF REFRESH  
The SELF REFRESH command is initiated when CKE is LOW. The differential clock  
should remain stable and meet tCKE specifications at least 1 × tCK after entering self  
refresh mode. The procedure for exiting self refresh requires a sequence of commands.  
First, the differential clock must be stable and meet tCK specifications at least 1 × tCK  
prior to CKE going back to HIGH. Once CKE is HIGH (tCKE [MIN] has been satisfied  
with three clock registrations), the DDR2 SDRAM must have NOP or DESELECT com-  
mands issued for tXSNR. A simple algorithm for meeting both refresh and DLL require-  
ments is used to apply NOP or DESELECT commands for 200 clock cycles before  
applying any other command.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
113  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
SELF REFRESH  
Figure 68: Self Refresh  
Tb0  
Tc0  
Td0  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
2
CK#  
1
CK  
t
1
t
1
CK  
t
t
CL  
CH  
CK  
t
t
3
t
ISXR  
CKE  
IH  
1
CKE  
4
4
5
5
Valid  
Command  
NOP  
REF  
NOP  
NOP  
Valid  
t
IH  
6
ODT  
6
AOFD/ AOFPD  
t
t
7
Address  
Valid  
Valid  
DQS#, DQS  
DQ  
DM  
t
2, 5, 10  
XSNR  
t
9
8
t
CKE (MIN)  
RP  
t
7
2,  
XSRD  
Enter self refresh  
mode (synchronous)  
Exit self refresh  
mode (asynchronous)  
Indicates a break in  
time scale  
Don’t Care  
1. Clock must be stable and meeting tCK specifications at least 1 × tCK after entering self  
refresh mode and at least 1 × tCK prior to exiting self refresh mode.  
Notes:  
2. Self refresh exit is asynchronous; however, tXSNR and tXSRD timing starts at the first ris-  
ing clock edge where CKE HIGH satisfies tISXR.  
3. CKE must stay HIGH until tXSRD is met; however, if self refresh is being re-entered, CKE  
may go back LOW after tXSNR is satisfied.  
4. NOP or DESELECT commands are required prior to exiting self refresh until state Tc0,  
which allows any nonREAD command.  
5. tXSNR is required before any nonREAD command can be applied.  
6. ODT must be disabled and RTT off (tAOFD and tAOFPD have been satisfied) prior to enter-  
ing self refresh at state T1.  
7. tXSRD (200 cycles of CK) is required before a READ command can be applied at state Td0.  
8. Device must be in the all banks idle state prior to entering self refresh mode.  
9. After self refresh has been entered, tCKE (MIN) must be satisfied prior to exiting self  
refresh.  
10. Upon exiting SELF REFRESH, ODT must remain LOW until tXSRD is satisfied.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
114  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Power-Down Mode  
Power-Down Mode  
DDR2 SDRAM supports multiple power-down modes that allow significant power sav-  
ings over normal operating modes. CKE is used to enter and exit different power-down  
modes. Power-down entry and exit timings are shown in Figure 69 (page 116). Detailed  
power-down entry conditions are shown in Figure 70 (page 118)–Figure 77 (page 121).  
Table 43 (page 117) is the CKE Truth Table.  
DDR2 SDRAM requires CKE to be registered HIGH (active) at all times that an access is  
in progress—from the issuing of a READ or WRITE command until completion of the  
burst. Thus, a clock suspend is not supported. For READs, a burst completion is defined  
when the read postamble is satisfied; for WRITEs, a burst completion is defined when  
the write postamble and tWR (WRITE-to-PRECHARGE command) or tWTR (WRITE-to-  
READ command) are satisfied, as shown in Figure 72 (page 119) and Figure 73  
(page 119) on Figure 73 (page 119). The number of clock cycles required to meet tWTR  
is either two or tWTR/tCK, whichever is greater.  
Power-down mode (see Figure 69 (page 116)) is entered when CKE is registered low  
coincident with an NOP or DESELECT command. CKE is not allowed to go LOW during  
a mode register or extended mode register command time, or while a READ or WRITE  
operation is in progress. If power-down occurs when all banks are idle, this mode is  
referred to as precharge power-down. If power-down occurs when there is a row active  
in any bank, this mode is referred to as active power-down. Entering power-down deac-  
tivates the input and output buffers, excluding CK, CK#, ODT, and CKE. For maximum  
power savings, the DLL is frozen during precharge power-down. Exiting active power-  
down requires the device to be at the same voltage and frequency as when it entered  
power-down. Exiting precharge power-down requires the device to be at the same volt-  
age as when it entered power-down; however, the clock frequency is allowed to change  
(see Precharge Power-Down Clock Frequency Change (page 122)).  
The maximum duration for either active or precharge power-down is limited by the re-  
fresh requirements of the device tRFC (MAX). The minimum duration for power-down  
entry and exit is limited by the tCKE (MIN) parameter. The following must be main-  
tained while in power-down mode: CKE LOW, a stable clock signal, and stable power  
supply signals at the inputs of the DDR2 SDRAM. All other input signals are “Don’t  
Care” except ODT. Detailed ODT timing diagrams for different power-down modes are  
shown in Figure 82 (page 127)–Figure 87 (page 131).  
The power-down state is synchronously exited when CKE is registered HIGH (in con-  
junction with a NOP or DESELECT command), as shown in Figure 69 (page 116).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
115  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Power-Down Mode  
Figure 69: Power-Down  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
t
t
CL  
t
CH  
CK  
1
Command  
CKE  
NOP  
NOP  
NOP  
Valid  
Valid  
Valid  
t
2
CKE (MIN)  
t
IH  
t
IH  
t
2
CKE (MIN)  
t
IS  
Address  
Valid  
Valid  
Valid  
t
3 t 4  
XP , XARD  
t
5
XARDS  
DQS, DQS#  
DQ  
DM  
Enter  
Exit  
power-down  
mode  
power-down  
mode  
Don’t Care  
6
1. If this command is a PRECHARGE (or if the device is already in the idle state), then the  
power-down mode shown is precharge power-down. If this command is an ACTIVATE  
(or if at least one row is already active), then the power-down mode shown is active power-  
down.  
Notes:  
2. tCKE (MIN) of three clocks means CKE must be registered on three consecutive positive  
clock edges. CKE must remain at the valid input level the entire time it takes to achieve  
the three clocks of registration. Thus, after any CKE transition, CKE may not transition  
from its valid level during the time period of tIS + 2 × tCK + tIH. CKE must not transition  
during its tIS and tIH window.  
3. tXP timing is used for exit precharge power-down and active power-down to any non-  
READ command.  
4. tXARD timing is used for exit active power-down to READ command if fast exit is selec-  
ted via MR (bit 12 = 0).  
5. tXARDS timing is used for exit active power-down to READ command if slow exit is selec-  
ted via MR (bit 12 = 1).  
6. No column accesses are allowed to be in progress at the time power-down is entered. If  
the DLL was not in a locked state when CKE went LOW, the DLL must be reset after  
exiting power-down mode for proper READ operation.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
116  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Power-Down Mode  
Table 43: Truth Table – CKE  
Notes 1–4 apply to the entire table  
CKE  
Command (n)  
CS#, RAS#, CAS#,  
WE#  
Previous Cycle  
Current  
Cycle (n)  
Current State  
(n - 1)  
Action (n)  
Notes  
5, 6  
Power-down  
L
L
L
H
L
X
Maintain power-down  
Power-down exit  
Maintain self refresh  
Self refresh exit  
DESELECT or NOP  
X
7, 8  
Self refresh  
L
6
L
H
L
DESELECT or NOP  
7, 9, 10  
7, 8, 11, 12  
7, 8, 11  
Bank(s) active  
All banks idle  
H
H
DESELECT or NOP Active power-down entry  
L
DESELECT or NOP Precharge power-down  
entry  
H
H
L
Refresh  
Self refresh entry  
10, 12, 13  
14  
H
Shown in Table 36 (page 68)  
1. CKE (n) is the logic state of CKE at clock edge n; CKE (n - 1) was the state of CKE at the  
Notes:  
previous clock edge.  
2. Current state is the state of the DDR2 SDRAM immediately prior to clock edge n.  
3. Command (n) is the command registered at clock edge n, and action (n) is a result of  
command (n).  
4. The state of ODT does not affect the states described in this table. The ODT function is  
not available during self refresh (see ODT Timing (page 125) for more details and specif-  
ic restrictions).  
5. Power-down modes do not perform any REFRESH operations. The duration of power-  
down mode is therefore limited by the refresh requirements.  
6.  
X” means “Don’t Care” (including floating around VREF) in self refresh and power-  
down. However, ODT must be driven high or low in power-down if the ODT function is  
enabled via EMR.  
7. All states and sequences not shown are illegal or reserved unless explicitly described else-  
where in this document.  
8. Valid commands for power-down entry and exit are NOP and DESELECT only.  
9. On self refresh exit, DESELECT or NOP commands must be issued on every clock edge  
occurring during the tXSNR period. READ commands may be issued only after tXSRD  
(200 clocks) is satisfied.  
10. Valid commands for self refresh exit are NOP and DESELECT only.  
11. Power-down and self refresh can not be entered while READ or WRITE operations,  
LOAD MODE operations, or PRECHARGE operations are in progress. See SELF REFRESH  
(page 113) and SELF REFRESH (page 74) for a list of detailed restrictions.  
12. Minimum CKE high time is tCKE = 3 × tCK. Minimum CKE LOW time is tCKE = 3 × tCK.  
This requires a minimum of 3 clock cycles of registration.  
13. Self refresh mode can only be entered from the all banks idle state.  
14. Must be a legal command, as defined in Table 36 (page 68).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
117  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Power-Down Mode  
Figure 70: READ-to-Power-Down or Self Refresh Entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK#  
CK  
1
NOP  
Command  
READ  
NOP  
NOP  
NOP  
Valid  
Valid  
t
CKE (MIN)  
CKE  
Address  
Valid  
A10  
DQS, DQS#  
DQ  
DO  
DO  
DO  
DO  
RL = 3  
2
Power-down or  
self refresh entry  
Transitioning Data  
Don’t Care  
1. In the example shown, READ burst completes at T5; earliest power-down or self refresh  
entry is at T6.  
Notes:  
2. Power-down or self refresh entry may occur after the READ burst completes.  
Figure 71: READ with Auto Precharge-to-Power-Down or Self Refresh Entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK#  
CK  
1
Command  
NOP  
READ  
NOP  
NOP  
NOP  
Valid  
Valid  
t
CKE (MIN)  
CKE  
Valid  
Address  
A10  
DQS, DQS#  
DQ  
DO  
DO  
DO  
DO  
RL = 3  
Power-down or  
2
self refresh entry  
Transitioning Data  
Don’t Care  
1. In the example shown, READ burst completes at T5; earliest power-down or self refresh  
entry is at T6.  
Notes:  
2. Power-down or self refresh entry may occur after the READ burst completes.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
118  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Power-Down Mode  
Figure 72: WRITE-to-Power-Down or Self Refresh Entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
1
NOP  
Command  
WRITE  
NOP  
NOP  
NOP  
Valid  
Valid  
Valid  
t
CKE (MIN)  
CKE  
Address  
Valid  
A10  
DQS, DQS#  
DQ  
DO  
DO  
DO  
DO  
t
WL = 3  
WTR  
Power-down or  
self refresh entry  
1
Transitioning Data  
Don’t Care  
1. Power-down or self refresh entry may occur after the WRITE burst completes.  
Note:  
Figure 73: WRITE with Auto Precharge-to-Power-Down or Self Refresh Entry  
T0  
T1  
T2  
T3  
T4  
T5  
Ta0  
Ta1  
Ta2  
CK#  
CK  
1
Command  
WRITE  
NOP  
NOP  
NOP  
Valid  
Valid  
NOP  
Valid  
t
CKE (MIN)  
CKE  
Address  
Valid  
A10  
DQS, DQS#  
DQ  
DO  
DO  
DO  
DO  
2
WL = 3  
WR  
Power-down or  
self refresh entry  
Indicates a break in  
time scale  
Transitioning Data  
Don’t Care  
1. Internal PRECHARGE occurs at Ta0 when WR has completed; power-down entry may oc-  
cur 1 x tCK later at Ta1, prior to tRP being satisfied.  
Notes:  
2. WR is programmed through MR9–MR11 and represents (tWR [MIN] ns/tCK) rounded up  
to next integer tCK.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
119  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Power-Down Mode  
Figure 74: REFRESH Command-to-Power-Down Entry  
T0  
T1  
T2  
T3  
CK#  
CK  
Valid  
REFRESH  
NOP  
Command  
t
CKE (MIN)  
CKE  
t
1 x CK  
1
Power-down  
entry  
Don’t Care  
1. The earliest precharge power-down entry may occur is at T2, which is 1 × tCK after the  
Note:  
REFRESH command. Precharge power-down entry occurs prior to tRFC (MIN) being satis-  
fied.  
Figure 75: ACTIVATE Command-to-Power-Down Entry  
T0  
T1  
T2  
T3  
CK#  
CK  
Valid  
ACT  
NOP  
Command  
VALID  
Address  
t
CKE (MIN)  
CKE  
t
1
CK  
1
Power-down  
entry  
Don’t Care  
1. The earliest active power-down entry may occur is at T2, which is 1 × tCK after the ACTI-  
VATE command. Active power-down entry occurs prior to tRCD (MIN) being satisfied.  
Note:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
120  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Power-Down Mode  
Figure 76: PRECHARGE Command-to-Power-Down Entry  
T0  
T1  
T2  
T3  
CK#  
CK  
Valid  
PRE  
NOP  
Command  
Valid  
Address  
A10  
All banks  
vs  
Single bank  
tCKE (MIN)  
CKE  
1 x tCK  
1
Power-down  
entry  
Don’t Care  
1. The earliest precharge power-down entry may occur is at T2, which is 1 × tCK after the  
PRECHARGE command. Precharge power-down entry occurs prior to tRP (MIN) being sat-  
isfied.  
Note:  
Figure 77: LOAD MODE Command-to-Power-Down Entry  
T0  
T1  
T2  
T3  
T4  
CK#  
CK  
Command  
Valid  
LM  
NOP  
NOP  
1
Address  
Valid  
t
CKE (MIN)  
CKE  
t
2
t
MRD  
RP  
3
Power-down  
entry  
Don’t Care  
1. Valid address for LM command includes MR, EMR, EMR(2), and EMR(3) registers.  
2. All banks must be in the precharged state and tRP met prior to issuing LM command.  
3. The earliest precharge power-down entry is at T3, which is after tMRD is satisfied.  
Notes:  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
121  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Precharge Power-Down Clock Frequency Change  
Precharge Power-Down Clock Frequency Change  
When the DDR2 SDRAM is in precharge power-down mode, ODT must be turned off  
and CKE must be at a logic LOW level. A minimum of two differential clock cycles must  
pass after CKE goes LOW before clock frequency may change. The device input clock  
frequency is allowed to change only within minimum and maximum operating frequen-  
cies specified for the particular speed grade. During input clock frequency change, ODT  
and CKE must be held at stable LOW levels. When the input clock frequency is changed,  
new stable clocks must be provided to the device before precharge power-down may be  
exited, and DLL must be reset via MR after precharge power-down exit. Depending on  
the new clock frequency, additional LM commands might be required to adjust the CL,  
WR, AL, and so forth. Depending on the new clock frequency, an additional LM com-  
mand might be required to appropriately set the WR MR9, MR10, MR11. During the  
DLL relock period of 200 cycles, ODT must remain off. After the DLL lock time, the  
DRAM is ready to operate with a new clock frequency.  
Figure 78: Input Clock Frequency Change During Precharge Power-Down Mode  
Previous clock frequency  
T1 T2  
New clock frequency  
Ta2  
Ta4  
Ta1  
Ta3  
Tb0  
T0  
T3  
Ta0  
CK#  
CK  
t
t
CL  
t
t
CL  
CH  
CH  
t
t
CK  
CK  
t
1
t
2
2 x CK (MIN)  
1 x CK (MIN)  
t
3
CKE (MIN)  
CKE  
t
3
CKE (MIN)  
Command  
4
NOP  
NOP  
NOP  
LM  
NOP  
Valid  
Valid  
Valid  
Address  
Valid  
DLL RESET  
t
XP  
ODT  
High-Z  
High-Z  
DQS, DQS#  
DQ  
DM  
Enter precharge  
power-down mode  
Frequency  
change  
Exit precharge  
power-down mode  
t
200 x CK  
Indicates a break in  
time scale  
Don’t Care  
1. A minimum of 2 × tCK is required after entering precharge power-down prior to chang-  
ing clock frequencies.  
Notes:  
2. When the new clock frequency has changed and is stable, a minimum of 1 × tCK is re-  
quired prior to exiting precharge power-down.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
122  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Reset  
3. Minimum CKE high time is tCKE = 3 × tCK. Minimum CKE LOW time is tCKE = 3 × tCK.  
This requires a minimum of three clock cycles of registration.  
4. If this command is a PRECHARGE (or if the device is already in the idle state), then the  
power-down mode shown is precharge power-down, which is required prior to the  
clock frequency change.  
Reset  
CKE Low Anytime  
DDR2 SDRAM applications may go into a reset state anytime during normal operation.  
If an application enters a reset condition, CKE is used to ensure the DDR2 SDRAM de-  
vice resumes normal operation after reinitializing. All data will be lost during a reset  
condition; however, the DDR2 SDRAM device will continue to operate properly if the  
following conditions outlined in this section are satisfied.  
The reset condition defined here assumes all supply voltages (VDD, VDDQ, VDDL, and  
VREF) are stable and meet all DC specifications prior to, during, and after the RESET op-  
eration. All other input balls of the DDR2 SDRAM device are a “Don’t Care” during  
RESET with the exception of CKE.  
If CKE asynchronously drops LOW during any valid operation (including a READ or  
WRITE burst), the memory controller must satisfy the timing parameter tDELAY before  
turning off the clocks. Stable clocks must exist at the CK, CK# inputs of the DRAM be-  
fore CKE is raised HIGH, at which time the normal initialization sequence must occur  
(see Initialization). The DDR2 SDRAM device is now ready for normal operation after  
the initialization sequence. Figure 79 (page 124) shows the proper sequence for a RE-  
SET operation.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
123  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
Reset  
Figure 79: RESET Function  
T3  
T4  
T5  
T0  
T1  
T2  
Tb0  
Ta0  
t
CK  
CK#  
CK  
t
CL  
t
CL  
t
CKE (MIN)  
t
DELAY  
1
CKE  
ODT  
2
2
2
2
Command  
READ  
READ  
PRE  
NOP  
NOP  
NOP  
NOP  
3
DM  
Col n  
Col n  
Address  
A10  
All banks  
Bank address  
Bank a  
Bank b  
4
High-Z  
High-Z  
High-Z  
High-Z  
3
DQS  
3
DQ  
DO  
DO  
DO  
High-Z  
RTT  
t
System  
RESET  
RPA  
T = 400ns (MIN)  
5
Start of normal  
initialization  
sequence  
Indicates a break in  
time scale  
Unknown  
RTT On  
Transitioning Data  
Don’t Care  
1. VDD, VDDL, VDDQ, VTT, and VREF must be valid at all times.  
2. Either NOP or DESELECT command may be applied.  
Notes:  
3. DM represents DM for x4/x8 configuration and UDM, LDM for x16 configuration. DQS  
represents DQS, DQS#, UDQS, UDQS#, LDQS, LDQS#, RDQS, and RDQS# for the appropri-  
ate configuration (x4, x8, x16).  
4. In certain cases where a READ cycle is interrupted, CKE going HIGH may result in the  
completion of the burst.  
5. Initialization timing is shown in Figure 42 (page 85).  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
124  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
ODT Timing  
ODT Timing  
Once a 12ns delay (tMOD) has been satisfied, and after the ODT function has been ena-  
bled via the EMR LOAD MODE command, ODT can be accessed under two timing  
categories. ODT will operate either in synchronous mode or asynchronous mode, de-  
pending on the state of CKE. ODT can switch anytime except during self refresh mode  
and a few clocks after being enabled via EMR, as shown in Figure 80 (page 126).  
There are two timing categories for ODT—turn-on and turn-off. During active mode  
(CKE HIGH) and fast-exit power-down mode (any row of any bank open, CKE LOW,  
MR[12 = 0]), tAOND, tAON, tAOFD, and tAOF timing parameters are applied, as shown  
in Figure 82 (page 127).  
During slow-exit power-down mode (any row of any bank open, CKE LOW, MR[12] = 1)  
and precharge power-down mode (all banks/rows precharged and idle, CKE LOW),  
tAONPD and tAOFPD timing parameters are applied, as shown in Figure 83 (page 128).  
ODT turn-off timing, prior to entering any power-down mode, is determined by the pa-  
rameter tANPD (MIN), as shown in Figure 84 (page 128). At state T2, the ODT HIGH  
signal satisfies tANPD (MIN) prior to entering power-down mode at T5. When tANPD  
(MIN) is satisfied, tAOFD and tAOF timing parameters apply. Figure 84 (page 128) also  
shows the example where tANPD (MIN) is not satisfied because ODT HIGH does not  
occur until state T3. When tANPD (MIN) is notsatisfied, tAOFPD timing parameters apply.  
ODT turn-on timing prior to entering any power-down mode is determined by the pa-  
rameter tANPD, as shown in Figure 85 (page 129). At state T2, the ODT HIGH signal  
satisfies tANPD (MIN) prior to entering power-down mode at T5. When tANPD (MIN) is  
satisfied, tAOND and tAON timing parameters apply. Figure 85 (page 129) also shows  
the example where tANPD (MIN) is not satisfied because ODT HIGH does not occur  
until state T3. When tANPD (MIN) is not satisfied, tAONPD timing parameters apply.  
ODT turn-off timing after exiting any power-down mode is determined by the parame-  
ter tAXPD (MIN), as shown in Figure 86 (page 130). At state Ta1, the ODT LOW signal  
satisfies tAXPD (MIN) after exiting power-down mode at state T1. When tAXPD (MIN) is  
satisfied, tAOFD and tAOF timing parameters apply. Figure 86 (page 130) also shows  
the example where tAXPD (MIN) is not satisfied because ODT LOW occurs at state Ta0.  
When tAXPD (MIN) is not satisfied, tAOFPD timing parameters apply.  
ODT turn-on timing after exiting either slow-exit power-down mode or precharge power-  
down mode is determined by the parameter tAXPD (MIN), as shown in Figure 87  
(page 131). At state Ta1, the ODT HIGH signal satisfies tAXPD (MIN) after exiting power-  
down mode at state T1. When tAXPD (MIN) is satisfied, tAOND and tAON timing  
parameters apply. Figure 87 (page 131) also shows the example where tAXPD (MIN) is  
not satisfied because ODT HIGH occurs at state Ta0. When tAXPD (MIN) is not satisfied,  
tAONPD timing parameters apply.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
125  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
ODT Timing  
Figure 80: ODT Timing for Entering and Exiting Power-Down Mode  
Synchronous  
Synchronous or  
Asynchronous  
Synchronous  
tANPD (3 tCKs)  
tAXPD (8 tCKs)  
First CKE latched LOW  
First CKE latched HIGH  
CKE  
Any mode except  
self refresh mode  
Any mode except  
self refresh mode  
Active power-down fast (synchronous)  
Active power-down slow (asynchronous)  
Precharge power-down (asynchronous)  
Applicable modes  
tAOND/tAOFD  
tAOND/tAOFD  
tAOND/tAOFD (synchronous)  
tAONPD/tAOFPD (asynchronous)  
Applicable timing parameters  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
126  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
ODT Timing  
MRS Command to ODT Update Delay  
During normal operation, the value of the effective termination resistance can be  
changed with an EMRS set command. tMOD (MAX) updates the RTT setting.  
Figure 81: Timing for MRS Command to ODT Update Delay  
T0  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
1
EMRS  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
CK#  
CK  
2
2
ODT  
t
t
MOD  
AOFD  
t
IS  
0ns  
Internal  
TT setting  
Old setting  
Undefined  
New setting  
R
Indicates a break in  
time scale  
1. The LM command is directed to the mode register, which updates the information in  
EMR (A6, A2), that is, RTT (nominal).  
Notes:  
2. To prevent any impedance glitch on the channel, the following conditions must be met:  
tAOFD must be met before issuing the LM command; ODT must remain LOW for the  
entire duration of the tMOD window until tMOD is met.  
Figure 82: ODT Timing for Active or Fast-Exit Power-Down Mode  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK#  
CK  
t
t
t
CH  
CL  
CK  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Command  
Address  
CKE  
t
AOND  
ODT  
t
AOFD  
RTT  
t
t
AON (MIN)  
AOF (MAX)  
t
AOF (MIN)  
t
AON (MAX)  
R
TT Unknown  
RTT On  
Don’t Care  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
127  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
ODT Timing  
Figure 83: ODT Timing for Slow-Exit or Precharge Power-Down Modes  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK#  
CK  
t
t
t
CL  
CK  
CH  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Command  
Address  
CKE  
ODT  
t
AONPD (MAX)  
t
AONPD (MIN)  
RTT  
t
AOFPD (MIN)  
t
AOFPD (MAX)  
Transitioning RTT  
RTT Unknown  
RTT On  
Don’t Care  
Figure 84: ODT Turn-Off Timings When Entering Power-Down Mode  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK#  
CK  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
ANPD (MIN)  
CKE  
t
AOFD  
ODT  
RTT  
t
AOF (MAX)  
t
AOF (MIN)  
t
AOFPD (MAX)  
ODT  
RTT  
t
AOFPD (MIN)  
Transitioning RTT  
R
TT Unknown  
R
TT ON  
Don’t Care  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
128  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
ODT Timing  
Figure 85: ODT Turn-On Timing When Entering Power-Down Mode  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK#  
CK  
Command  
NOP  
NOP  
NOP  
NOP  
t
NOP  
NOP  
NOP  
ANPD (MIN)  
CKE  
ODT  
t
t
AOND  
t
AON (MAX)  
RTT  
AON (MIN)  
ODT  
RTT  
t
AONPD (MAX)  
t
AONPD (MIN)  
Transitioning RTT  
R
TT Unknown  
R
TT On  
Don’t Care  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
129  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
ODT Timing  
Figure 86: ODT Turn-Off Timing When Exiting Power-Down Mode  
T0  
T1  
T2  
T3  
T4  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
CK#  
CK  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
CKE  
t
AXPD (MIN)  
t
CKE (MIN)  
t
AOFD  
ODT  
t
AOF (MAX)  
R
TT  
t
AOF (MIN)  
t
AOFPD (MAX)  
ODT  
R
TT  
t
AOFPD (MIN)  
Indicates a break in  
time scale  
RTT Unknown  
RTT On  
Transitioning RTT  
Don’t Care  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
130  
© 2004 Micron Technology, Inc. All rights reserved.  
1Gb: x4, x8, x16 DDR2 SDRAM  
ODT Timing  
Figure 87: ODT Turn-On Timing When Exiting Power-Down Mode  
T0  
T1  
T2  
T3  
T4  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
CK#  
CK  
Command  
NOP  
NOP  
NOP  
NOP  
t
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
AXPD (MIN)  
CKE  
t
CKE (MIN)  
ODT  
t
AOND  
t
AON (MAX)  
RTT  
t
AON (MIN)  
ODT  
RTT  
t
AONPD (MAX)  
t
AONPD (MIN)  
Indicates a break in  
time scale  
RTT Unknown  
RTT On  
Transitioning RTT  
Don’t Care  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
www.micron.com/productsupport Customer Comment Line: 800-932-4992  
Micron and the Micron logo are trademarks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.  
Although considered final, these specifications are subject to change, as further product development and data characterization some-  
times occur.  
PDF: 09005aef821ae8bf  
1GbDDR2.pdf – Rev. T 02/10 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
131  
© 2004 Micron Technology, Inc. All rights reserved.  

相关型号:

MICRON
MICRON
MICRON
MICRON
MICRON
MICRON
MICRON
MICRON
MICRON
MICRON
MICRON
MICRON