MT48H16M16LFB5-75G [MICRON]

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM; 256MB : 16梅格×16 , 8梅格×32移动SDRAM
MT48H16M16LFB5-75G
型号: MT48H16M16LFB5-75G
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
256MB : 16梅格×16 , 8梅格×32移动SDRAM

动态存储器
文件: 总71页 (文件大小:1814K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Features  
Mobile SDRAM  
MT48H16M16LF – 4 Meg x 16 x 4 banks  
MT48H8M32LF – 2 Meg x 32 x 4 banks  
Table 1:  
Addressing  
16 Meg x 16  
Features  
• Fully synchronous; all signals registered on positive  
edge of system clock  
8 Meg x 32  
2 Meg x 32 x 4  
banks  
4 Meg x 16 x 4  
banks  
Configuration  
• VDD/VDDQ = 1.70–1.95V  
• Internal, pipelined operation; column address can  
be changed every clock cycle  
8K  
8K  
Refresh count  
8K (A0–A12)  
4 (BA0, BA1)  
512 (A0–A8)  
4K (A0–A11)  
4 (BA0, BA1)  
512 (A0–A8)  
Row addressing  
Bank addressing  
Column addressing  
• Four internal banks for concurrent operation  
• Programmable burst lengths: 1, 2, 4, 8, or continuous  
1
page  
• Auto precharge, includes concurrent auto precharge  
• Auto refresh and self refresh modes  
LVTTL-compatible inputs and outputs  
• On-chip temperature sensor to control refresh rate  
• Partial-array self refresh (PASR)  
Table 2:  
Key Timing Parameters  
CL = CAS (READ) latency  
Clock Rate  
(MHz)  
Data Data  
Setup Hold  
Access Time  
• Deep power-down (DPD)  
• Selectable output drive (DS)  
Speed  
Grade CL = 2 CL = 3 CL = 2 CL = 3 Time Time  
• 64ms refresh period (8,192 rows)  
-75  
-8  
104  
100  
133  
125  
8ns  
9ns  
6ns  
7ns  
1.5ns  
2.5ns  
1ns  
1ns  
Marking  
Options  
• VDD/VDDQ  
H
1.8V/1.8V  
• Configuration  
16M16  
8M32  
16 Meg x 16 (4 Meg x 16 x 4 banks)  
8 Meg x 32 (2 Meg x 32 x 4 banks)  
• Plastic “green” package  
54-ball VFBGA (8mm x 9mm)  
90-ball VFBGA (8mm x 13mm)  
• Timing – cycle time  
7.5ns at CL = 3  
BF  
B5  
-75  
-8  
8ns at CL = 3  
• Power  
Standard IDD2P/IDD7  
Low IDD2P/IDD7  
None  
L
• Operating temperature range  
Commercial (0° to +70°C)  
Industrial (–40°C to +85°C)  
• Design revision  
None  
IT  
:G  
Notes: 1. For continuous page burst, contact factory  
for availability.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF__1.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
1
Products and specifications discussed herein are subject to change by Micron without notice.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Table of Contents  
Table of Contents  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Functional Block Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Ball Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Ball Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Burst Length (BL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
CAS Latency (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Operating Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Write Burst Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Extended Mode Register (EMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Temperature-Compensated Self Refresh (TCSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Driver Strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
COMMAND INHIBIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
NO OPERATION (NOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
LOAD MODE REGISTER (LMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
ACTIVE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
PRECHARGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
BURST TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
AUTO REFRESH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
SELF REFRESH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Deep Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Bank/Row Activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
READs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
WRITEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
PRECHARGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Power-Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Deep Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Clock Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Burst Read/Single Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Concurrent Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
READ with Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
WRITE with Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Timing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LFTOC.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
2
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
List of Figures  
List of Figures  
Figure 1:  
Figure 2:  
Figure 3:  
Figure 4:  
Figure 5:  
Figure 6:  
Figure 7:  
Figure 8:  
256Mb Mobile SDRAM Part Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
16 Meg x 16 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
8 Meg x 32 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
54-Ball FBGA (Top View) – 8mm x 9mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
90-Ball VFBGA (Top View) – 8mm x 13mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Mode Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
CAS Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
EMR Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Activating a Specific Row in a Specific Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Example: Meeting tRCD (MIN) When 2 < tRCD (MIN)/tCK < 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
READ Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Consecutive READ Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Random READ Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
READ-to-WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
READ-to-WRITE with Extra Clock Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
READ-to-PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Terminating a READ Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
WRITE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
WRITE Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
WRITE-to-WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Random WRITE Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
WRITE-to-READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
WRITE-to-PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Terminating a WRITE Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
PRECHARGE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Clock Suspend During WRITE Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Clock Suspend During READ Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
READ with Auto Precharge Interrupted by a READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
READ with Auto Precharge Interrupted by a WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
WRITE with Auto Precharge Interrupted by a READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
WRITE with Auto Precharge Interrupted by a WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Typical Self Refresh Current vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Initialize and Load Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Clock Suspend Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Auto Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Self Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
READ – without Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
READ – with Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Single READ – without Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Single READ – with Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Alternating Bank Read Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
READ – DQM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
WRITE – without Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
WRITE – with Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Single WRITE – without Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Single WRITE – with Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Alternating Bank Write Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
WRITE – DQM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
54-Ball VFBGA (8mm x 9mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
90-Ball VFBGA (8mm x 13mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Figure 9:  
Figure 10:  
Figure 11:  
Figure 12:  
Figure 13:  
Figure 14:  
Figure 15:  
Figure 16:  
Figure 17:  
Figure 18:  
Figure 19:  
Figure 20:  
Figure 21:  
Figure 22:  
Figure 23:  
Figure 24:  
Figure 25:  
Figure 26:  
Figure 27:  
Figure 28:  
Figure 29:  
Figure 30:  
Figure 31:  
Figure 32:  
Figure 33:  
Figure 34:  
Figure 35:  
Figure 36:  
Figure 37:  
Figure 38:  
Figure 39:  
Figure 40:  
Figure 41:  
Figure 42:  
Figure 43:  
Figure 44:  
Figure 45:  
Figure 46:  
Figure 47:  
Figure 48:  
Figure 49:  
Figure 50:  
Figure 51:  
Figure 52:  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LFLOF.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
3
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
List of Tables  
List of Tables  
Table 1:  
Table 2:  
Table 3:  
Table 4:  
Table 5:  
Table 6:  
Table 7:  
Table 8:  
Table 9:  
Table 10:  
Table 11:  
Table 12:  
Table 13:  
Table 14:  
Table 15:  
Table 16:  
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Key Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
VFBGA Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Burst Definition Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Truth Table – Commands and DQM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Truth Table – CKE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Truth Table – Current State Bank n, Command to Bank n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Truth Table – Current State Bank n, Command to Bank m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
DC Electrical Characteristics and Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Electrical Characteristics and Recommended AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . .46  
AC Functional Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
IDD Specifications and Conditions (x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
IDD Specifications and Conditions (x32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
IDD7 – Self Refresh Current Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LFLOT.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
4
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
General Description  
Figure 1:  
256Mb Mobile SDRAM Part Numbering  
Power  
Example Part Number: MT48H8M32LFB5-75LIT  
Mobile  
V
DD  
/
MT48  
Package  
Speed  
Temp. Revision  
Configuration  
VDD  
Q
Revision  
:G Design Revision  
V
DD/VDD  
Q
H
1.8V/1.8V  
Operating Temp.  
Commercial  
IT Industrial  
Configuration  
16 Meg x 16 16M16LF  
Power  
8 Meg x 32  
8M32LF  
Standard IDD2P/IDD  
7
L
Low IDD2P/IDD7  
Speed Grade  
tCK = 7.5ns  
tCK = 8.0ns  
Package  
BF  
B5  
8 x 9 VFBGA (lead-free)  
8 x 13 VFBGA (lead-free)  
-75  
-8  
General Description  
®
The Micron 256Mb Mobile SDRAM is a high-speed CMOS, dynamic random-access  
memory containing 268,435,456-bits. It is internally configured as a quad-bank DRAM  
with a synchronous interface (all signals are registered on the positive edge of the clock  
signal, CLK). Each of the x16s 67,108,864-bit banks is organized as 8,192 rows by 512  
columns by 16 bits. Each of the x32s 67,108,864-bit banks is organized as 4,096 rows by  
512 columns by 32 bits.  
Read and write accesses to the SDRAM are burst oriented; accesses start at a selected  
location and continue for a programmed number of locations in a programmed  
sequence. Accesses begin with the registration of an ACTIVE command, which is then  
followed by a READ or WRITE command. The address bits registered coincident with the  
ACTIVE command are used to select the bank and row to be accessed. The address bits  
registered coincident with the READ or WRITE command are used to select the starting  
column location for the burst access.  
The SDRAM provides for programmable read or write burst lengths (BLs) of 1, 2, 4, or 8  
page locations with a read burst terminate option. An auto precharge function may be  
enabled to provide a self-timed row precharge that is initiated at the end of the burst  
sequence.  
The 256Mb SDRAM uses an internal pipelined architecture to achieve high-speed opera-  
tion. It also allows the column address to be changed on every clock cycle to achieve a  
high-speed, fully random access. Precharging one bank while accessing one of the other  
three banks will hide the precharge cycles and provide seamless high-speed, random-  
access operation.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
5
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Functional Block Diagrams  
The 256Mb SDRAM is designed to operate in 1.8V low-power memory systems. An auto  
refresh mode is provided, along with a power-saving deep power-down mode. All inputs  
and outputs are LVTTL-compatible.  
SDRAM offers substantial advances in DRAM operating performance, including the  
ability to synchronously burst data at a high data rate with automatic column-address  
generation, the ability to interleave between internal banks in order to hide precharge  
time, and the capability to randomly change column addresses on each clock cycle  
during a burst access.  
Functional Block Diagrams  
Figure 2:  
16 Meg x 16 SDRAM  
BA1  
0
0
1
1
BA0  
0
1
0
1
Bank  
0
1
2
3
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
Bank3  
CAS#  
RAS#  
Bank2  
Bank1  
EXT MODE  
REGISTER  
REFRESH  
13  
COUNTER  
MODE REGISTER  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
13  
BANK0  
MEMORY  
ARRAY  
2
2
15  
8,192  
UDQM,  
LDQM  
13  
(8,192 x 512 x 16)  
DECODER  
DATA  
OUTPUT  
REGISTER  
Sense amplifiers  
8,192  
16  
DQ0–  
DQ15  
I/O GATING  
2
16  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A0–A12,  
BA0, BA1  
ADDRESS  
REGISTER  
15  
DATA  
INPUT  
REGISTER  
2
16  
256  
(x16)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
9
9
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
6
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Functional Block Diagrams  
Figure 3:  
8 Meg x 32 SDRAM  
BA1  
0
0
1
1
BA0  
0
1
0
1
Bank  
0
1
2
3
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
CAS#  
RAS#  
BANK2  
BANK1  
EXT MODE  
REGISTER  
REFRESH  
COUNTER  
13  
MODE REGISTER  
14  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
12  
BANK0  
MEMORY  
ARRAY  
4
4
4,096  
DQM0-  
DQM3  
12  
(4,096 x 512 x 32)  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
4,096  
32  
DQ0–  
DQ31  
I/O GATING  
2
32  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A0–A11,  
BA0, BA1  
ADDRESS  
REGISTER  
14  
DATA  
INPUT  
REGISTER  
2
32  
512  
(x32)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
9
9
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
7
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Ball Assignments  
Ball Assignments  
Figure 4:  
54-Ball FBGA (Top View) – 8mm x 9mm  
9
1
2
3
4
5
6
7
8
A
B
C
D
E
VSS DQ15 VSSQ  
DQ14 DQ13 VDDQ  
DQ12 DQ11 VSSQ  
DQ10 DQ9 VDDQ  
VDDQ DQ0  
VDD  
VSSQ DQ2 DQ1  
VDDQ DQ4 DQ3  
VSSQ DQ6 DQ5  
VDD LDQM DQ7  
CAS# RAS# WE#  
DQ8 DNU  
UDQM CLK  
VSS  
CKE  
A9  
F
G
H
J
A12  
A8  
A11  
A7  
BA0 BA1  
CS#  
A10  
VDD  
A6  
A0  
A3  
A1  
A2  
VSS  
A5  
A4  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
8
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Ball Assignments  
Figure 5:  
90-Ball VFBGA (Top View) – 8mm x 13mm  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
DQ26 DQ24  
VSS  
VDD  
VDDQ  
DQ22  
DQ17  
NC  
DQ23  
VSSQ  
DQ20  
DQ18  
DQ16  
DQM2  
A0  
DQ21  
DQ19  
VDDQ  
VDDQ  
VSSQ  
VDD  
DQ28  
VSSQ  
VSSQ  
VDDQ  
VSS  
VDDQ  
VSSQ  
DQ27 DQ25  
DQ29 DQ30  
DQ31  
DQM3  
A5  
NC  
A3  
F
A2  
G
H
J
A4  
A6  
A10  
A1  
A7  
A8  
NC  
A9  
NC  
BA1  
A11  
CLK  
CKE  
BA0  
CAS#  
VDD  
CS#  
RAS#  
DQM0  
VSSQ  
VDDQ  
VDDQ  
DQ4  
K
L
DQM1  
VDDQ  
VSSQ  
VSSQ  
DQ11  
NC  
VSS  
DQ9  
WE#  
DQ7  
DQ5  
DQ3  
VSSQ  
DQ0  
DNU  
DQ8  
DQ10  
M
N
P
DQ6  
DQ1  
VDDQ  
VDD  
DQ12 DQ14  
VDDQ  
VSSQ  
VSS  
R
DQ13 DQ15  
DQ2  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
9
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Ball Descriptions  
Ball Descriptions  
Table 3:  
VFBGA Ball Descriptions  
54-Ball VFBGA 90-Ball VFBGA Symbol  
Type  
Description  
F2  
F3  
J1  
J2  
CLK  
CKE  
Input  
Clock: CLK is driven by the system clock. All SDRAM input signals  
are sampled on the positive edge of CLK. CLK also increments  
the internal burst counter and controls the output registers.  
Input  
Clock enable: CKE activates (HIGH) and deactivates (LOW) the  
CLK signal. Deactivating the clock provides precharge power-  
down and SELF REFRESH operation (all banks idle), ACTIVE  
power-down (row active in any bank), Deep power-down (all  
banks idle), or CLOCK SUSPEND operation (burst/access in  
progress). CKE is synchronous except after the device enters  
power-down and self refresh modes, where CKE becomes  
asynchronous until after exiting the same mode. The input  
buffers, including CLK, are disabled during power-down and self  
refresh modes, providing low standby power.  
G9  
J8  
CS#  
Input  
Chip select: CS# enables (registered LOW) and disables  
(registered HIGH) the command decoder. All commands are  
masked when CS# is registered HIGH. CS# provides for external  
bank selection on systems with multiple banks. CS# is considered  
part of the command code.  
F7, F8, F9  
F1, E8  
K7, J9, K8  
CAS#,  
RAS#, WE#  
Input  
Input  
Command inputs: RAS#, CAS#, and WE# (along with CS#) define  
the command being entered.  
K9, K1, F8, F2  
UDQM  
LDQM,  
DQM0–  
DQM3  
Input/output mask: DQM is sampled HIGH and is an input mask  
signal for write accesses and an output enable signal for read  
accesses. Input data is masked during a WRITE cycle. The output  
buffers are placed in a High-Z state (two-clock latency) during a  
READ cycle. For the x16, LDQM corresponds to DQ0–DQ7 and  
UDQM corresponds to DQ8–DQ16. For the x32, DQM0  
corresponds to DQ0–DQ7, DQM1 corresponds to DQ8–DQ15,  
DQM2 corresponds to DQ16–DQ23, and DQM3 corresponds to  
DQ24–DQ31. DQM0–DQM3 (or LDQM and UDQM if x16) are  
considered same state when referenced as DQM. DQM loading is  
designed to match that of DQ balls.  
G7, G8  
J7, H8  
BA0, BA1  
A0–A12  
Input  
Input  
Bank address input(s): BA0 and BA1 define to which bank the  
ACTIVE, READ, WRITE, or PRECHARGE command is being  
applied. These balls also provide the op-code during a LOAD  
MODE REGISTER (LMR) command. BA0 and BA1 become “Don’t  
Care” when registering an ALL BANK PRECHARGE (A10 HIGH).  
H7, H8, J8, J7, G8, G9, F7, F3,  
J3, J2, H3, H2, G1, G2, G3, H1,  
H1, G3, H9, G2, H2, J3, G7, H9  
G1  
Address inputs: A0–A12 are sampled during the ACTIVE  
command (row-address A0–A12) and READ/WRITE command  
(column-address A0–A8 [x32]; column-address A0–A8 [x16]; with  
A10 defining auto precharge) to select one location out of the  
memory array in the respective bank. A10 is sampled during a  
PRECHARGE command to determine if all banks are to be  
precharged (A10 HIGH) or bank selected by BA0, BA1. The  
address inputs also provide the op-code during a LMR command.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
10  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Ball Descriptions  
Table 3:  
VFBGA Ball Descriptions (Continued)  
54-Ball VFBGA 90-Ball VFBGA Symbol  
Type  
Description  
Data input/output: Data bus.  
A8, B9, B8, C9, R8, N7, R9, N8, DQ0–DQ31  
C8, D9, D8, E9, P9, M8, M7, L8,  
E1, D2, D1, C2, L2, M3, M2, P1,  
C1, B2, B1, A2 N2, R1, N3, R2,  
E8, D7, D8, B9,  
I/O  
C8, A9, C7, A8,  
A2, C3, A1, C2,  
B1, D2, D3, E2  
A7, B3, C7, D3 B2, B7, C9, D9,  
E1, L1, M9, N9,  
VDDQ  
VSSQ  
Supply  
Supply  
DQ power: Provide isolated power to DQ for improved noise  
immunity.  
P2, P7  
A3, B7, C3, D7 B8, B3, C1, D1,  
E9, L9, M1, N1,  
DQ ground: Provide isolated ground to DQ for improved noise  
immunity.  
P3, P8  
A9, E7, J9  
A1, E3, J1  
A7, F9, L7, R7  
A3, F1, L3, R3  
VDD  
VSS  
NC  
Supply  
Supply  
Core power supply.  
Ground.  
E3, E7, H3, H7,  
K3  
Internally not connected: These could be left unconnected, but  
it is recommended they be connected to Vss.  
E2  
K2  
DNU  
Input  
E2 is a TEST pin that must be tied to VSS or VssQ in normal  
operation.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
11  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Functional Description  
Functional Description  
In general, a 256Mb SDRAM is quad-bank DRAM that operates at 1.8V and includes a  
synchronous interface (all signals are registered on the positive edge of the clock signal,  
CLK).  
Read and write accesses to the SDRAM are burst oriented; accesses start at a selected  
location and continue for a programmed number of locations in a programmed  
sequence. Accesses begin with the registration of an ACTIVE command, which is then  
followed by a READ or WRITE command. The address bits registered coincident with the  
ACTIVE command are used to select the bank and row to be accessed (BA0 and BA1  
select the bank, A0–A12 select the row for x16, and A0–A11 select the row for x32). The  
address bits (A0–A8 for x16 and A0–A8 for x32) registered coincident with the READ or  
WRITE command are used to select the starting column location for the burst access.  
Prior to normal operation, the SDRAM must be initialized. The following sections  
provide detailed information covering device initialization, register definition,  
command descriptions, and device operation.  
Initialization  
SDRAM must be powered up and initialized in a predefined manner. Operational proce-  
dures other than those specified may result in undefined operation. The initialization for  
mobile SDRAM is as follows.  
1. Simultaneously apply power to VDD and VDDQ.  
2. After power supplies have settled, apply a stable clock signal. Stable clock is defined as  
a signal cycling within timing constraints specified for the clock pin.  
3. Wait at least 100µs. During this period NOP or COMMAND INHIBIT commands  
should be applied. No other command other than NOP or COMMAND INHIBIT is  
allowed during this period.  
4. Preform a PRECHARGE ALL command to place the SDRAM into an all banks idle  
state.  
t
5. Wait at least RP time. During this time NOP or COMMAND INHIBIT commands must  
be applied.  
6. Issue an AUTO REFRESH command.  
t
7. Wait at least RFC time, during which only NOP or COMMAND INHIBIT commands  
are allowed.  
8. Issue an Auto Refresh command.  
t
9. Wait at least RFC time, during which only NOP or COMMAND INHIBIT commands  
are allowed.  
10. Issue a LOAD MODE REGISTER command with BA1=0, andBA0=0, to program the  
mode register with desired values.  
t
11. Wait MRD time. Only NOP or COMMAND INHIBIT commands may be applied dur-  
ing this time.  
12. Issue a LOAD MODE REGISTER command with BA1=1, and BA0=0, to program the  
extended mode register with desired values.  
t
13. Wait MRD time. Only NOP or COMMAND INHIBIT commands may be applied dur-  
ing this time.  
The Mobile SDRAM is now initialized and can accept any valid command.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
12  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Register Definition  
Register Definition  
Mode Register  
There are two MRs in the component: mode register and extended mode register (EMR).  
The mode register is illustrated in Figure 6 on page 14. The mode register is used to  
define the specific mode of operation of the SDRAM. This definition includes the selec-  
tion of a burst length (BL), a burst type, a CAS latency (CL), an operating mode and a  
write burst mode, as shown in Figure 6 on page 14. The mode register is programmed via  
the LMR command and will retain the stored information until it is programmed again  
or the device loses power.  
M0–M2 mode register bits specify the BL, M3 specifies the type of burst, M4–M6 specify  
the CL, M7 and M8 specify the operating mode, M9 specifies the write burst mode, and  
M10 and M11 should be set to zero.  
The mode register must be loaded when all banks are idle, and the controller must wait  
t
MRD before initiating the subsequent operation. Violating either of these requirements  
will result in unspecified operation.  
Burst Length (BL)  
Read and write accesses to the SDRAM are burst oriented, with the BL being program-  
mable, as shown in Figure 6 on page 14. The BL determines the maximum number of  
column locations that can be accessed for a given READ or WRITE command. BL = 1, 2,  
4, 8 locations are available for both the sequential and the interleaved burst types.  
Reserved states should not be used, as unknown operation or incompatibility with  
future versions may result.  
When a READ or WRITE command is issued, a block of columns equal to the BL is effec-  
tively selected. All accesses for that burst take place within this block, meaning that the  
burst will wrap within the block if a boundary is reached. The block is uniquely selected  
by A1–A8 when BL = 2, A2–A8 when BL = 4, and A3–A8 when BL = 8. The remaining (least  
significant) address bit(s) is (are) used to select the starting location within the block.  
Burst Type  
Accesses within a given burst may be programmed to be either sequential or interleaved;  
this is referred to as the burst type and is selected via bit M3.  
The ordering of accesses within a burst is determined by the BL, the burst type, and the  
starting column address, as shown in Table 4 on page 15.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
13  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Register Definition  
Figure 6:  
Mode Register Definition  
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address Bus  
M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Mode  
Register (Mx)  
0
0
Burst Length  
Reserved  
CAS Latency  
WB OP Mode  
BT  
Program  
M12, M11, M10 = “0, 0, 0”  
to ensure compatibility  
with future devices.  
Burst Length  
M2 M1M0  
M3 = 0  
M3 = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
2
2
Mode Register Definintion  
Base mode register  
Reserved  
M13  
M14  
4
8
4
8
0
1
0
1
0
0
1
1
Reserved  
Reserved  
Extended mode register  
Reserved  
Reserved Reserved  
Reserved Reserved  
M9  
0
Write Burst Mode  
Reserved  
Reserved  
Programmed burst length  
1
Single location access  
Burst Type  
M3  
0
M8 M7  
Operating Mode  
Normal operation  
M6–M0  
Valid  
Sequential  
Interleaved  
0
0
1
All other states reserved  
CAS Latency  
Reserved  
Reserved  
2
M6 M5 M4  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3
Reserved  
Reserved  
Reserved  
Reserved  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
14  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Register Definition  
Table 4:  
Burst Definition Table  
Order of Accesses Within a Burst  
Burst Length Starting Column Address  
Type = Sequential  
Type = Interleaved  
2
A0  
0
0-1  
1-0  
0-1  
1-0  
1
4
A1  
0
A0  
0
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
0
1
1
0
1
1
8
A2  
0
A1  
0
A0  
0
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
CAS Latency (CL)  
The CL is the delay, in clock cycles, between the registration of a READ command and  
the availability of the first piece of output data. The latency can be set to two or three  
clocks.  
If a READ command is registered at clock edge n, and the latency is m clocks, the data  
will be available by clock edge n + m. The DQs will start driving as a result of the clock  
edge one cycle earlier (n + m - 1), and provided that the relevant access times are met,  
the data will be valid by clock edge n + m. For example, assuming that the clock cycle  
time is such that all relevant access times are met, if a READ command is registered at T0  
and the latency is programmed to two clocks, the DQs will start driving after T1 and the  
data will be valid by T2, as shown in Figure 7 on page 16.  
Reserved states should not be used as unknown operation or incompatibility with future  
versions may result.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
15  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Register Definition  
Figure 7:  
CAS Latency  
T0  
T1  
T2  
T3  
CLK  
COMMAND  
DQ  
READ  
NOP  
t
NOP  
t
LZ  
OH  
D
OUT  
t
AC  
CL = 2  
T1  
T0  
T2  
T3  
T4  
CLK  
COMMAND  
READ  
NOP  
NOP  
NOP  
t
t
LZ  
OH  
D
OUT  
DQ  
t
AC  
CL = 3  
DON’T CARE  
UNDEFINED  
Operating Mode  
Write Burst Mode  
The normal operating mode is selected by setting M7 and M8 to zero; the other combi-  
nations of values for M7 and M8 are reserved for future use.  
Reserved states should not be used as unknown operation or incompatibility with future  
versions may result.  
When M9 = 0, the BL programmed via M0–M2 applies to both READ and WRITE bursts;  
when M9 = 1, the programmed BL applies to READ bursts, but write accesses are single-  
location accesses.  
Extended Mode Register (EMR)  
The low-power EMR controls the functions beyond those controlled by the MR. These  
additional functions are special features of the mobile device. They include tempera-  
ture-compensated self refresh (TCSR) control, partial-array self refresh (PASR), and  
output drive strength.  
The low-power EMR is programmed via the MODE REGISTER SET command and  
retains the stored information until it is programmed again or the device loses power.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
16  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Register Definition  
Figure 8:  
EMR Definition  
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address Bus  
E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 E0  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Extended Mode  
Register  
1
0
set to “0”  
DS  
TCSR1  
PASR  
Mode Register Definintion  
Standard mode register  
Reserved  
Driver Strength  
Full strength driver  
Half strength driver  
E13  
0
1
E14  
0
0
E6 E5  
0
0
0
1
0
1
1
1
Extended mode register  
Reserved  
Quarter strength driver  
Eighth strength driver  
1
1
0
1
E12 E11 E10 E9 E8 E7  
E6–E0  
Valid  
E2 E1 E0 Partial Array Self Refresh Coverage  
Normal operation  
All other states reserved  
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
Full array  
Half array  
Quarter array  
0
1
1
1
0
0
1
0
1
Reserved  
Reserved  
One-eighth array  
1
1
1
1
0
1
One-sixteenth array  
Reserved  
Notes: 1. On-die temperature sensor is used in place of TCSR. Setting these bits will have no effect.  
The EMR must be loaded when all banks are idle and no bursts are in progress, and the  
controller must wait the specified time before initiating any subsequent operation.  
Violating either of these requirements results in unspecified operation. Once the values  
are entered, the EMR settings will be retained even after exiting deep power-down mode.  
Temperature-Compensated Self Refresh (TCSR)  
On this version of the Mobile SDR SDRAM, a temperature sensor is implemented for  
automatic control of the self refresh oscillator on the device. Therefore, it is recom-  
mended not to program or use the temperature-compensated self refresh control bits in  
the extended mode register.  
Programming of the TCSR bits has no effect on the device. The self refresh oscillator will  
continue refresh at the factory programmed optimal rate for the device temperature.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
17  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Register Definition  
Partial-Array Self Refresh (PASR)  
For further power savings during self refresh, the partial-array self refresh (PASR) feature  
allows the controller to select the amount of memory that will be refreshed during self  
refresh. The following refresh options are available.  
1. All banks (banks 0, 1, 2, and 3).  
2. Two banks (banks 0 and 1; BA1=0).  
3. One bank (bank 0; BA1 = BA0 = 0).  
4. Half bank (bank 0; BA1 = BA0 = row address MSB = 0).  
5. Quarter bank (bank 0; BA1 = BA0; row address MSB = row address MSB -1 = 0).  
WRITE and READ commands occur to any bank selected during standard operation, but  
only the selected banks in PASR will be refreshed during self refresh. It is important to  
note that data in banks 2 and 3 will be lost when the two-bank option is used.  
Driver Strength  
Bits E5 and E6 of the EMR can be used to select the driver strength of the DQ outputs.  
This value should be set according to the applications requirements.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
18  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Commands  
Commands  
Table 5 provides a quick reference of available commands. This is followed by a written  
description of each command. Three additional Truth Tables appear following “Opera-  
tions” on page 23. These tables provide current state/next state information.  
Table 5:  
Truth Table – Commands and DQM Operation  
Notes 1 and 2 apply to all commands  
Name (Function)  
CS# RAS# CAS# WE# DQM  
ADDR  
DQs Notes  
H
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
X
X
X
X
X
X
X
4
COMMAND INHIBIT (NOP)  
X
4
NO OPERATION (NOP)  
X
Bank/Row  
Bank/Col  
5
ACTIVE (Select bank and activate row)  
READ (Select bank and column, and start READ burst)  
WRITE (Select bank and column, and start WRITE burst)  
H
H
H
L/H  
L/H  
X
6
6
L
Bank/Col Valid  
H
L
X
X
3, 7, 8  
BURST TERMINATE or deep power-down  
(Enter deep power-down mode)  
L
L
L
L
H
L
L
X
X
Code  
X
X
X
9
PRECHARGE (Deactivate row in bank or banks)  
H
10, 11  
AUTO REFRESH or SELF REFRESH  
(Enter self refresh mode)  
L
X
X
L
X
X
L
X
X
L
X
X
X
L
Op-Code  
X
12  
LOAD MODE REGISTER  
X
X
Active  
High-Z  
Write enable/output enable  
Write inhibit/output High-Z  
H
Notes: 1. CKE is HIGH for all commands shown except SELF REFRESH and deep power-down.  
2. All states and sequences not shown are reserved and/or illegal.  
3. The purpose of the BURST TERMINATE command is to stop a data burst, thus the command  
could coincide with data on the bus. However, the DQs column reads a don’t care state to  
illustrate that the BURST TERMINATE command can occur when there is no data present.  
4. DESELECT and NOP are functionally interchangeable.  
5. BA0–BA1 provide bank address and A0–A12 provide row address.  
6. BA0–BA1 provide bank address; A0–A9 provide column address; A10 HIGH enables the auto  
precharge feature (nonpersistent), and A10 LOW disables the auto precharge feature.  
7. Applies only to read bursts with auto precharge disabled; this command is undefined (and  
should not be used) for READ bursts with auto precharge enabled and for WRITE bursts.  
8. This command is a BURST TERMINATE if CKE is HIGH, deep power-down if CKE is LOW.  
9. A10 LOW: BA0–BA1 determine which bank is precharged. A10 HIGH: all banks are pre-  
charged and BA0–BA1 are “Don’t Care.”  
10. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.  
11. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except  
for CKE.  
12. BA0–BA1 select either the standard mode register or the extended mode register (BA0 = 0,  
BA1 = 0 select the standard mode register; BA0 = 0, BA1 = 1 select extended mode register;  
other combinations of BA0–BA1 are reserved.) A0–A12 provide the op-code to be written to  
the selected mode register.  
COMMAND INHIBIT  
The COMMAND INHIBIT function prevents new commands from being executed by the  
SDRAM, regardless of whether the CLK signal is enabled. The SDRAM is effectively dese-  
lected. Operations already in progress are not affected.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
19  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Commands  
NO OPERATION (NOP)  
The NO OPERATION (NOP) command is used to perform a NOP to an SDRAM which is  
selected (CS# is LOW). This prevents unwanted commands from being registered during  
idle or wait states. Operations already in progress are not affected.  
LOAD MODE REGISTER (LMR)  
The MR is loaded via inputs A0–A12, BA0, and BA1. (See “Mode Register” on page 13.)  
The LMR and LOAD EXTENDED MODE REGISTER (LEMR) commands can only be  
issued when all banks are idle, and a subsequent executable command cannot be issued  
t
until MRD is met.  
ACTIVE  
READ  
The ACTIVE command is used to open (or activate) a row in a particular bank for a  
subsequent access. The value on the BA0, BA1 inputs selects the bank, and the address  
provided selects the row. This row remains active (or open) for accesses until a  
PRECHARGE command is issued to that bank. A PRECHARGE command must be issued  
before opening a different row in the same bank.  
The READ command is used to initiate a burst read access to an active row. The value on  
the BA0, BA1 inputs selects the bank, and the address provided selects the starting  
column location. The value on input A10 determines whether or not auto precharge is  
used. If auto precharge is selected, the row being accessed will be precharged at the end  
of the read burst; if auto precharge is not selected, the row will remain open for subse-  
quent accesses. Read data appears on the DQs subject to the logic level on the DQM  
inputs two clocks earlier. If a given DQM signal was registered HIGH, the corresponding  
DQs will be High-Z two clocks later; if the DQM signal was registered LOW, the DQs will  
provide valid data.  
WRITE  
The WRITE command is used to initiate a burst write access to an active row. The value  
on the BA0, BA1 inputs selects the bank, and the address provides the starting column  
location. The value on input A10 determines whether or not auto precharge is used. If  
auto precharge is selected, the row being accessed will be precharged at the end of the  
write burst; if auto precharge is not selected, the row will remain open for subsequent  
accesses. Input data appearing on the DQs is written to the memory array subject to the  
DQM input logic level appearing coincident with the data. If a given DQM signal is regis-  
tered LOW, the corresponding data will be written to memory; if the DQM signal is regis-  
tered HIGH, the corresponding data inputs will be ignored, and a write will not be  
executed to that byte/column location.  
PRECHARGE  
The PRECHARGE command is used to deactivate the open row in a particular bank or  
the open row in all banks. The bank(s) will be available for a subsequent row access a  
t
specified time ( RP) after the precharge command is issued. Input A10 determines  
whether one or all banks are to be precharged, and in the case where only one bank is to  
be precharged, inputs BA0, BA1 select the bank. Otherwise BA0, BA1 are treated as  
“Don’t Care.” Once a bank has been precharged, it is in the idle state and must be acti-  
vated prior to any READ or WRITE commands being issued to that bank.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
20  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Commands  
BURST TERMINATE  
AUTO REFRESH  
The BURST TERMINATE command is used to truncate fixed-length bursts. The most  
recently registered READ or WRITE command prior to the BURST TERMINATE  
command will be truncated, as shown in “Operations” on page 23.  
AUTO REFRESH is used during normal operation of the SDRAM and is analogous to  
CAS#-BEFORE-RAS# (CBR) refresh in conventional DRAM. This command is non persis-  
tent, so it must be issued each time a refresh is required. All active banks must be  
PRECHARGED prior to issuing an AUTO REFRESH command. The AUTO REFRESH  
t
command should not be issued until the minimum RP has been met after the  
PRECHARGE command, as shown in “Operations” on page 23.  
The addressing is generated by the internal refresh controller. This makes the address  
bits “Don’t Care” during an AUTO REFRESH command. The 256Mb SDRAM requires  
t
8,192 AUTO REFRESH cycles every 64ms ( REF). Providing a distributed AUTO REFRESH  
command every 7.8125µs will meet the refresh requirement and ensure that each row is  
refreshed. Alternatively, 8,192 AUTO REFRESH commands can be issued in a burst at the  
t
minimum cycle rate ( RFC), once every 64ms.  
SELF REFRESH  
The SELF REFRESH command can be used to retain data in the SDRAM, even if the rest  
of the system is powered down. When in the self refresh mode, the SDRAM retains data  
without external clocking. The SELF REFRESH command is initiated like an AUTO  
REFRESH command, except CKE is disabled (LOW). Once the SELF REFRESH command  
is registered, all the inputs to the SDRAM become “Don’t Care” with the exception of  
CKE, which must remain LOW.  
Once self refresh mode is engaged, the SDRAM provides its own internal clocking,  
causing it to perform its own auto refresh cycles. The SDRAM must remain in self refresh  
t
mode for a minimum period equal to RAS and may remain in self refresh mode for an  
indefinite period beyond that.  
The procedure for exiting self refresh requires a sequence of commands. First, CLK must  
be stable (stable clock is defined as a signal cycling within timing constraints specified  
for the clock ball) prior to CKE going back HIGH. Once CKE is HIGH, the SDRAM must  
t
have NOP commands issued (a minimum of two clocks) for XSR because time is  
required for the completion of any internal refresh in progress.  
Upon exiting the self refresh mode, AUTO REFRESH commands must be issued every  
7.8125µs or less as both SELF REFRESH and AUTO REFRESH utilize the row refresh  
counter.  
Auto Precharge  
Auto precharge is a feature which performs the same individual-bank precharge func-  
tion described above, without requiring an explicit command. This is accomplished by  
using A10 to enable auto precharge in conjunction with a specific READ or WRITE  
command. A precharge of the bank/row that is addressed with the READ or WRITE  
command is automatically performed upon completion of the READ or WRITE burst.  
Auto precharge is non persistent in that it is either enabled or disabled for each indi-  
vidual READ or WRITE command.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
21  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Commands  
Auto precharge ensures that the precharge is initiated at the earliest valid stage within a  
burst. The user must not issue another command to the same bank until the precharge  
t
time ( RP) is completed. This is determined as if an explicit PRECHARGE command was  
issued at the earliest possible time, as described for each burst type in “Operations” on  
page 23.  
Deep Power-Down  
Deep power-down is an operating mode used to achieve maximum power reduction by  
eliminating the power to the memory array. Data will not be retained once the device  
enters deep power-down mode.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
22  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Operations  
Bank/Row Activation  
Before any READ or WRITE commands can be issued to a bank within the SDRAM, a row  
in that bank must be “opened.” This is accomplished via the ACTIVE command, which  
selects both the bank and the row to be activated (see Figure 9).  
After opening a row (issuing an ACTIVE command), a READ or WRITE command may be  
t
t
issued to that row, subject to the RCD specification. RCD (MIN) should be divided by  
the clock period and rounded up to the next whole number to determine the earliest  
clock edge after the ACTIVE command on which a READ or WRITE command can be  
t
entered. For example, a RCD specification of 20ns with a 125 MHz clock (8ns period)  
results in 2.5 clocks, rounded to 3. This is reflected in Figure 10 on page 24, which covers  
t
t
any case where 2 < RCD (MIN)/ CK 3. (The same procedure is used to convert other  
specification limits from time units to clock cycles.)  
A subsequent ACTIVE command to a different row in the same bank can only be issued  
after the previous active row has been “closed” (precharged). The minimum time  
t
interval between successive ACTIVE commands to the same bank is defined by RC.  
A subsequent ACTIVE command to another bank can be issued while the first bank is  
being accessed, which results in a reduction of total row-access overhead. The minimum  
time interval between successive ACTIVE commands to different banks is defined by  
t
RRD.  
Figure 9:  
Activating a Specific Row in a Specific Bank  
CLK  
CKE HIGH  
CS#  
RAS#  
CAS#  
WE#  
ROW  
ADDRESS  
A0–A11  
BANK  
ADDRESS  
BA0, BA1  
DON´T CARE  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
23  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
t
t
t
Figure 10: Example: Meeting RCD (MIN) When 2 < RCD (MIN)/ CK < 3  
T0  
T1  
T2  
T3  
CLK  
t
t
t
CK  
CK  
CK  
READ or  
WRITE  
COMMAND  
ACTIVE  
NOP  
NOP  
t
RCD (MIN)  
DON’T CARE  
READs  
READ bursts are initiated with a READ command, as shown in Figure 11.  
The starting column and bank addresses are provided with the READ command, and  
auto precharge is either enabled or disabled for that burst access. If auto precharge is  
enabled, the row being accessed is precharged at the completion of the burst. For the  
generic READ commands used in the following illustrations, auto precharge is disabled.  
During READ bursts, the valid data-out element from the starting column address will  
be available following the CL after the READ command. Each subsequent data-out  
element will be valid by the next positive clock edge. Figure 7 on page 16 shows general  
timing for each possible CL setting.  
Figure 11: READ Command  
CLK  
CKE  
CS#  
HIGH  
RAS#  
CAS#  
WE#  
COLUMN  
ADDRESS  
A0–A8  
A9, A11  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
A10  
BANK  
ADDRESS  
BA0, BA1  
DON’T CARE  
Upon completion of a burst, assuming no other commands have been initiated, the DQs  
will go High-Z.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
24  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Data from any READ burst may be truncated with a subsequent READ command, and  
data from a fixed-length READ burst may be immediately followed by data from a READ  
command. In either case, a continuous flow of data can be maintained. The first data  
element from the new burst follows either the last element of a completed burst or the  
last desired data element of a longer burst that is being truncated. The new READ  
command should be issued x cycles before the clock edge at which the last desired data  
element is valid, where x = CL - 1.  
Figure 7 on page 16 shows for CL of two and three; data element n + 3 is either the last of  
a burst of four or the last desired of a longer burst. The 256Mb SDRAM uses a pipelined  
architecture. A READ command can be initiated on any clock cycle following a previous  
READ command. Full-speed random read accesses can be performed to the same bank,  
as shown in Figure 12 on page 25, or each subsequent READ may be performed to a  
different bank.  
Figure 12: Consecutive READ Bursts  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
COMMAND  
X = 1 cycle  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
D
n + 1  
OUT  
DOUT  
DOUT  
D
OUT  
n
n + 2  
n + 3  
b
CL = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
X = 2 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
DOUT  
n
n + 1  
n + 2  
n + 3  
b
CL = 3  
DON’T CARE  
Note:  
Each READ command may be to either bank. DQM is LOW.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
25  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Figure 13: Random READ Accesses  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
COMMAND  
ADDRESS  
DQ  
READ  
READ  
READ  
READ  
NOP  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
n
a
x
m
CL = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
READ  
READ  
READ  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
n
a
x
m
CL = 3  
DON’T CARE  
Note:  
Each READ command may be to either bank. DQM is LOW.  
Data from any READ burst may be truncated with a subsequent WRITE command, and  
data from a fixed-length READ burst may be immediately followed by data from a  
WRITE command (subject to bus turnaround limitations). The WRITE burst may be  
initiated on the clock edge immediately following the last (or last desired) data element  
from the READ burst, provided that I/O contention can be avoided. In a given system  
design, there may be a possibility that the device driving the input data will go Low-Z  
before the SDRAM DQs go High-Z. In this case, at least a single-cycle delay should occur  
between the last read data and the WRITE command.  
The DQM input is used to avoid I/O contention, as shown in Figure 14 on page 27 and  
Figure 15 on page 28. The DQM signal must be asserted (HIGH) at least two clocks prior  
to the WRITE command (DQM latency is two clocks for output buffers) to suppress data-  
out from the READ. Once the WRITE command is registered, the DQs will go High-Z (or  
remain High-Z), regardless of the state of the DQM signal, provided the DQM was active  
on the clock just prior to the WRITE command that truncated the READ command. If  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
26  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
not, the second WRITE will be an invalid WRITE. For example, if DQM was LOW during  
T4 (as in Figure 15 on page 28) then the WRITEs at T5 and T7 would be valid, while the  
WRITE at T6 would be invalid.  
The DQM signal must be de-asserted prior to the WRITE command (DQM latency is  
zero clocks for input buffers) to ensure that the written data is not masked. Figure 12 on  
page 25 shows the case where the clock frequency allows for bus contention to be  
avoided without adding a NOP cycle, and Figure 13 on page 26 shows the case where the  
additional NOP is needed.  
A fixed-length READ burst may be followed by, or truncated with, a PRECHARGE  
command to the same bank (provided that auto precharge was not activated). The  
PRECHARGE command should be issued x cycles before the clock edge at which the last  
desired data element is valid, where x = CL - 1. This is shown in Figure 16 on page 28 for  
each possible CL; data element n + 3 is either the last of a burst of four or the last desired  
of a longer burst. Following the PRECHARGE command, a subsequent command to the  
t
same bank cannot be issued until RP is met. Note that part of the row precharge time is  
hidden during the access of the last data element(s).  
In the case of a fixed-length burst being executed to completion, a PRECHARGE  
command issued at the optimum time (as described above) provides the same operation  
that would result from the same fixed-length burst with auto precharge. The disadvan-  
tage of the PRECHARGE command is that it requires that the command and address  
buses be available at the appropriate time to issue the command; the advantage of the  
PRECHARGE command is that it can be used to truncate fixed-length page bursts.  
Figure 14: READ-to-WRITE  
T0  
T1  
T2  
T3  
T4  
CLK  
DQM  
READ  
NOP  
NOP  
NOP  
WRITE  
COMMAND  
ADDRESS  
BANK,  
COL n  
BANK,  
COL b  
t
CK  
t
HZ  
DOUT  
n
DIN b  
DQ  
t
DS  
DON’T CARE  
Note:  
CL = 3. The READ command may be to any bank, and the WRITE command may be to any  
bank. If a burst of one is used, then DQM is not required.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
27  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Figure 15: READ-to-WRITE with Extra Clock Cycle  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
DQM  
READ  
NOP  
NOP  
NOP  
NOP  
WRITE  
COMMAND  
ADDRESS  
BANK,  
COL b  
BANK,  
COL n  
t
HZ  
D
OUT  
n
D
IN  
b
DQ  
t
DS  
DON’T CARE  
Note:  
CL = 3. The READ command may be to any bank, and the WRITE command may be to any  
bank.  
Figure 16: READ-to-PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
COMMAND  
ADDRESS  
DQ  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
X = 1 cycle  
BANK a,  
BANK  
(a or all)  
BANK a,  
ROW  
COL  
n
D
OUT  
D
n + 1  
OUT  
DOUT  
DOUT  
n + 3  
n
n + 2  
CL = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
COMMAND  
ADDRESS  
DQ  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
X = 2 cycles  
BANK a,  
BANK  
(a or all)  
BANK a,  
ROW  
COL  
n
D
OUT  
DOUT  
D
OUT  
DOUT  
n + 3  
n
n + 1  
n + 2  
CL = 3  
DON’T CARE  
Note:  
DQM is LOW.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
28  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Fixed-length READ bursts may be truncated with a BURST TERMINATE command,  
provided that auto precharge was not activated. The BURST TERMINATE command  
should be issued x cycles before the clock edge at which the last desired data element is  
valid, where x = CL - 1. This is shown in Figure 17 for each possible CL; data element n +  
3 is the last desired data element of a longer burst.  
Figure 17: Terminating a READ Burst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
X = 1 cycle  
BANK,  
COL n  
D
OUT  
D
n + 1  
OUT  
D
OUT  
DOUT  
n + 3  
n
n + 2  
CL = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
COMMAND  
ADDRESS  
DQ  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
X = 2 cycles  
BANK,  
COL n  
D
OUT  
D
OUT  
D
n + 2  
OUT  
DOUT  
n + 3  
n
n + 1  
CL = 3  
DON’T CARE  
Note:  
DQM is LOW.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
29  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
WRITEs  
WRITE bursts are initiated with a WRITE command, as shown in Figure 18 on page 30.  
The starting column and bank addresses are provided with the WRITE command, and  
auto precharge is either enabled or disabled for that access. If auto precharge is enabled,  
the row being accessed is precharged at the completion of the burst. For the generic  
WRITE commands used in the following illustrations, auto precharge is disabled.  
During WRITE bursts, the first valid data-in element will be registered coincident with  
the WRITE command. Subsequent data elements will be registered on each successive  
positive clock edge. Upon completion of a fixed-length burst, assuming no other  
commands have been initiated, the DQs will remain High-Z and any additional input  
data will be ignored (see Figure 19).  
Figure 18: WRITE Command  
CLK  
CKE HIGH  
CS#  
RAS#  
CAS#  
WE#  
COLUMN  
ADDRESS  
A0–A8  
A9, A11, A12  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
A10  
BANK  
ADDRESS  
BA0, BA1  
VALID ADDRESS  
DON’T CARE  
Data for any WRITE burst may be truncated with a subsequent WRITE command, and  
data for a fixed-length WRITE burst may be immediately followed by data for a WRITE  
command. The new WRITE command can be issued on any clock following the previous  
WRITE command, and the data provided coincident with the new command applies to  
the new command. An example is shown in Figure 20 on page 31. Data n + 1 is either the  
last of a burst of two or the last desired of a longer burst. The 256Mb SDRAM uses a pipe-  
lined architecture. A WRITE command can be initiated on any clock cycle following a  
previous WRITE command. Full-speed random write accesses within a page can be  
performed to the same bank, as shown in Figure 19 on page 31, or each subsequent  
WRITE may be performed to a different bank.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
30  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Figure 19: WRITE Burst  
T0  
T1  
T2  
T3  
CLK  
WRITE  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
DIN  
DIN  
n + 1  
n
DON’T CARE  
Note:  
BL = 2. DQM is LOW.  
Figure 20: WRITE-to-WRITE  
T0  
T1  
T2  
CLK  
WRITE  
NOP  
WRITE  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
BANK,  
COL b  
D
IN  
D
IN  
DIN  
b
n
n + 1  
DON’T CARE  
Note:  
BL = 2. DQM is LOW. Each WRITE command may be to any bank.  
Data for any WRITE burst may be truncated with a subsequent READ command, and  
data for a fixed-length WRITE burst may be immediately followed by a READ command.  
Once the READ command is registered, the data inputs will be ignored, and WRITEs will  
not be executed. An example is shown in Figure 21 on page 32. Data n + 1 is either the  
last of a burst of two or the last desired of a longer burst.  
Data for a fixed-length WRITE burst may be followed by, or truncated with, a  
PRECHARGE command to the same bank (provided that auto precharge was not acti-  
t
vated). The PRECHARGE command should be issued WR after the clock edge at which  
the last desired input data element is registered. The auto precharge mode requires a  
t
WR of at least one clock plus time (see note 24 on page 52), regardless of frequency.  
In addition, when truncating a WRITE burst, the DQM signal must be used to mask  
input data for the clock edge prior to, and the clock edge coincident with, the  
PRECHARGE command. An example is shown in Figure 21 on page 32. Data n + 1 is  
either the last of a burst of two or the last desired of a longer burst. Following the  
PRECHARGE command, a subsequent command to the same bank cannot be issued  
t
until RP is met.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
31  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
In the case of a fixed-length burst being executed to completion, a PRECHARGE  
command issued at the optimum time (as described above) provides the same operation  
that would result from the same fixed-length burst with auto precharge. The disadvan-  
tage of the PRECHARGE command is that it requires that the command and address  
buses be available at the appropriate time to issue the command; the advantage of the  
PRECHARGE command is that it can be used to truncate fixed-length bursts.  
Figure 21: Random WRITE Cycles  
T0  
T1  
T2  
T3  
CLK  
WRITE  
WRITE  
WRITE  
WRITE  
COMMAND  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
ADDRESS  
DQ  
D
IN  
D
IN  
D
IN  
DIN  
x
m
n
a
DON’T CARE  
Note:  
Each WRITE command may be to any bank. DQM is LOW.  
Figure 22: WRITE-to-READ  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
WRITE  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
BANK,  
COL b  
DIN  
D
IN  
D
OUT  
DOUT  
b + 1  
n
n + 1  
b
DON’T CARE  
Note:  
BL = 2. The WRITE command may be to any bank, and the READ command may be to any  
bank. DQM is LOW. CL = 2 for illustration.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
32  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Figure 23: WRITE-to-PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
t
t
WR@ CK 15ns  
DQM  
t
RP  
NOP  
NOP  
NOP  
WRITE  
NOP  
PRECHARGE  
ACTIVE  
COMMAND  
ADDRESS  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
t
WR  
D
n
IN  
DIN  
n + 1  
DQ  
t
t
WR@ CK < 15ns  
DQM  
t
RP  
NOP  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
ACTIVE  
COMMAND  
ADDRESS  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
t
WR  
D
n
IN  
DIN  
n + 1  
DQ  
DON’T CARE  
Note:  
DQM could remain LOW in this example if the WRITE burst is a fixed length of two.  
Figure 24: Terminating a WRITE Burst  
T0  
T1  
T2  
CLK  
BURST  
TERMINATE  
NEXT  
COMMAND  
WRITE  
COMMAND  
BANK,  
COL n  
(Address)  
(Data)  
ADDRESS  
DIN  
DQ  
n
DON’T CARE  
Note:  
DQMs are LOW.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
33  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Fixed-length or WRITE bursts can be truncated with the BURST TERMINATE command.  
When truncating a WRITE burst, the input data applied coincident with the BURST  
TERMINATE command will be ignored. The last data written (provided that DQM is  
LOW at that time) will be the input data applied one clock previous to the BURST  
TERMINATE command. This is shown in Figure 22 on page 32, where data n is the last  
desired data element of a longer burst.  
PRECHARGE  
The PRECHARGE command (see Figure 25) is used to deactivate the open row in a  
particular bank or the open row in all banks. The bank(s) will be available for a subse-  
t
quent row access some specified time ( RP) after the precharge command is issued.  
Input A10 determines whether one or all banks are to be precharged, and in the case  
where only one bank is to be precharged, inputs BA0, BA1 select the bank. When all  
banks are to be precharged, inputs BA0, BA1 are treated as “Don’t Care.” Once a bank has  
been precharged, it is in the idle state and must be activated prior to any READ or WRITE  
commands being issued to that bank.  
Figure 25: PRECHARGE Command  
CLK  
CKE  
HIGH  
CS#  
RAS#  
CAS#  
WE#  
A0–A9, A11, A12  
A10  
All Banks  
Bank Selected  
BANK  
ADDRESS  
BA0, BA1  
VALID ADDRESS  
DON’T CARE  
Power-Down  
Power-down occurs if CKE is registered LOW coincident with a NOP or COMMAND  
INHIBIT when no accesses are in progress. If power-down occurs when all banks are  
idle, this mode is referred to as precharge power-down; if power-down occurs when  
there is a row active in any bank, this mode is referred to as active power-down. Entering  
power-down deactivates the input and output buffers, excluding CKE, for maximum  
power savings while in standby. The device may not remain in the power-down state  
longer than the refresh period (64ms) since no REFRESH operations are performed in  
this mode.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
34  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
The power-down state is exited by registering a NOP or COMMAND INHIBIT and CKE  
t
HIGH at the desired clock edge (meeting CKS). See Figure 24.  
Figure 26: Power-Down  
( (  
) )  
( (  
) )  
CLK  
> t  
CKS  
t
CKS  
CKE  
( (  
) )  
( (  
) )  
( (  
) )  
COMMAND  
NOP  
NOP  
ACTIVE  
t
All banks idle  
RCD  
Input buffers gated off  
t
RAS  
t
RC  
Enter power-down mode  
Exit power-down mode  
DON’T CARE  
Deep Power-Down  
Deep power-down mode is a maximum power savings feature achieved by shutting off  
the power to the entire memory array of the device. Data in the memory array will not be  
retained once deep power-down mode is executed. Deep power-down mode is entered  
by having all banks idle then CS# and WE# held LOW with RAS# and CAS# HIGH at the  
rising edge of the clock, while CKE is LOW. CKE must be held LOW during deep power-  
down.  
To exit deep power-down mode, CKE must be asserted HIGH. Upon exit of Deep Power-  
Down mode, at least 200µs of valid clocks with either NOP or COMMAND INHIBIT  
commands are applied to the command bus, followed by a full Mobile SDRAM initializa-  
tion sequence, is required.  
Clock Suspend  
The clock suspend mode occurs when a column access/burst is in progress and CKE is  
registered LOW. In the clock suspend mode, the internal clock is deactivated, “freezing”  
the synchronous logic.  
For each positive clock edge on which CKE is sampled LOW, the next internal positive  
clock edge is suspended. Any command or data present on the input balls at the time of  
a suspended internal clock edge is ignored; any data present on the DQ balls remains  
driven; and burst counters are not incremented, as long as the clock is suspended. (See  
examples in Figure 27 and Figure 28 on page 37.)  
Clock suspend mode is exited by registering CKE HIGH; the internal clock and related  
operation will resume on the subsequent positive clock edge.  
Burst Read/Single Write  
The burst read/single write mode is entered by programming the write burst mode bit  
(M9) in the MR to a logic 1. In this mode, all WRITE commands result in the access of a  
single column location (burst of one), regardless of the programmed BL. READ  
commands access columns according to the programmed BL and sequence, just as in  
the normal mode of operation (M9 = 0).  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
35  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Concurrent Auto Precharge  
An access command (READ or WRITE) to a second bank while an access command with  
auto precharge enabled on a first bank is executing is not allowed by SDRAM, unless the  
SDRAM supports concurrent auto precharge. Micron SDRAM support concurrent auto  
precharge. Four cases where concurrent auto precharge occurs are defined in the “READ  
with Auto Precharge” and “WRITE with Auto Precharge” sections.  
READ with Auto Precharge  
1. Interrupted by a READ (with or without auto precharge): A READ to bank m will inter-  
rupt a READ on bank n, CL later. The precharge to bank n will begin when the READ  
to bank m is registered (see Figure 29 on page 37).  
2. Interrupted by a WRITE (with or without auto precharge): A WRITE to bank m will  
interrupt a READ on bank n when registered. DQM should be used two clocks prior to  
the WRITE command to prevent bus contention. The precharge to bank n will begin  
when the WRITE to bank m is registered (see Figure 30 on page 38).  
Figure 27: Clock Suspend During WRITE Burst  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
CKE  
INTERNAL  
CLOCK  
NOP  
WRITE  
NOP  
NOP  
COMMAND  
ADDRESS  
BANK,  
COL n  
D
n
IN  
D
n + 1  
IN  
DIN  
n + 2  
DIN  
DON’T CARE  
Note:  
For this example, BL = 4 or greater, and DM is LOW.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
36  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Figure 28: Clock Suspend During READ Burst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
CKE  
INTERNAL  
CLOCK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
D
OUT  
D
OUT  
D
n + 2  
OUT  
DOUT  
n + 3  
n
n + 1  
DON’T CARE  
Note:  
For this example, CL = 2, BL = 4 or greater, and DQM is LOW.  
Figure 29: READ with Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
READ with Burst of 4  
Interrupt Burst, Precharge  
t
Idle  
BANK n  
t
RP - BANK n  
RP - BANK m  
Internal  
States  
Precharge  
Page Active  
READ with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
D
OUT  
DOUT  
DOUT  
DOUT  
a
a + 1  
d
d + 1  
CL = 3 (bank n)  
CL = 3 (bank m)  
DON’T CARE  
Note:  
DQM is LOW.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
37  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Figure 30: READ with Auto Precharge Interrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
WRITE - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page  
Active  
READ with Burst of 4  
Page Active  
Interrupt Burst, Precharge  
t
Idle  
WR - BANK m  
BANK n  
t
RP - BANK  
n
Internal  
States  
Write-Back  
WRITE with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
1
DQM  
D
OUT  
DIN  
d
D
d + 1  
IN  
D
d + 2  
IN  
DIN  
d + 3  
DQ  
a
CL = 3 (bank n)  
DON’T CARE  
Note:  
DQM is HIGH at T2 to prevent DOUT a +1 from contending with DIN d at T4.  
WRITE with Auto Precharge  
1. Interrupted by a READ (with or without auto precharge): A READ to bank m will inter-  
rupt a WRITE on bank n when registered, with the data-out appearing CL later. The  
t
t
precharge to bank n will begin after WR is met, where WR begins when the READ to  
bank m is registered. The last valid WRITE to bank n will be data-in registered one  
clock prior to the READ to bank m (see Figure 31 on page 39).  
2. Interrupted by a WRITE (with or without auto precharge): A WRITE to bank m will  
interrupt a WRITE on bank n when registered. The precharge to bank n will begin  
t
t
after WR is met, where WR begins when the WRITE to bank m is registered. The last  
valid data WRITE to bank n will be data registered one clock prior to a WRITE to bank  
m (see Figure 32 on page 39).  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
38  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Operations  
Figure 31: WRITE with Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
WRITE with Burst of 4  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
t
RP - BANK n  
t
WR - BANK n  
Internal  
States  
t
RP - BANK m  
Page Active  
READ with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
DIN  
D
a + 1  
IN  
DOUT  
DOUT  
a
d
d + 1  
CL = 3 (bank m)  
DON’T CARE  
Note:  
DQM is LOW.  
Figure 32: WRITE with Auto Precharge Interrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
BANK n  
WRITE - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
WRITE with Burst of 4  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
t
RP - BANK n  
t
WR - BANK n  
Internal  
States  
t
WR - BANK m  
Write-Back  
Page Active  
WRITE with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
DIN  
D
a + 1  
IN  
D
a + 2  
IN  
DIN  
DIN  
DIN  
D
IN  
a
d
d + 1  
d + 2  
d + 3  
DON’T CARE  
Note:  
DQM is LOW.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
39  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Truth Tables  
Truth Tables  
Table 6:  
Truth Table – CKE  
Notes: 1–4  
CKEn-1  
CKEn  
Current State  
Commandn  
Actionn  
Notes  
L
L
H
L
Power-down  
Self refresh  
X
Maintain power-down  
Maintain self refresh  
Maintain clock suspend  
Maintain deep power-down  
Exit power-down  
X
Clock suspend  
Deep power-down  
Power-down  
X
X
8
5
8
6
7
L
COMMAND INHIBIT or NOP  
X
Deep power-down  
Self refresh  
Exit deep power-down  
Exit self refresh  
COMMAND INHIBIT or NOP  
X
Clock suspend  
All banks idle  
All banks idle  
All banks idle  
Reading or writing  
Exit clock suspend  
H
H
COMMAND INHIBIT or NOP  
BURST TERMINATE  
AUTO REFRESH  
VALID  
Power-down entry  
Deep power-down entry  
Self refresh entry  
8
Clock suspend entry  
H
See Table 8 on page 43  
Notes: 1. CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previous  
clock edge.  
2. Current state is the state of the SDRAM immediately prior to clock edge n.  
3. COMMANDn is the command registered at clock edge n, and ACTIONn is a result of COM-  
MANDn.  
4. All states and sequences not shown are illegal or reserved.  
5. Exiting power-down at clock edge n will put the device in the all banks idle state in time for  
clock edge n + 1 (provided that tCKS is met).  
6. Exiting self refresh at clock edge n will put the device in the all banks idle state once tXSR is  
met. COMMAND INHIBIT or NOP commands should be issued on any clock edges occurring  
during the tXSR period. A minimum of two NOP commands must be provided during tXSR  
period.  
7. After exiting clock suspend at clock edge n, the device will resume operation and recognize  
the next command at clock edge n + 1.  
8. Deep power-down is power savings feature of this Mobile SDRAM device. This command is  
BURST TERMINATE when CKE is HIGH and deep power-down when CKE is LOW.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
40  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Truth Tables  
Table 7:  
Truth Table – Current State Bank n, Command to Bank n  
Notes: 1–6; notes appear below table  
Current State  
CS# RAS# CAS# WE# Command (Action)  
Notes  
Any  
H
X
X
X
COMMAND INHIBIT (NOP/Continue previous operation)  
NO OPERATION (NOP/Continue previous operation)  
ACTIVE (Select and activate row)  
L
H
H
H
Idle  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
H
L
7
7
AUTO REFRESH  
L
L
LMR  
L
H
L
L
11  
10  
10  
8
PRECHARGE  
Row active  
H
H
L
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE (Deactivate row in bank or banks)  
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE (Truncate READ burst, start PRECHARGE)  
BURST TERMINATE  
L
H
L
L
Read  
(auto precharge  
disabled)  
H
H
L
H
L
10  
10  
8
L
H
H
L
L
H
H
H
L
L
9
Write  
(auto precharge  
disabled)  
H
L
10  
10  
8
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE (Truncate WRITE burst, start PRECHARGE)  
BURST TERMINATE  
L
H
H
L
H
L
9
Notes: 1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Table 6 on page 40) and  
after tXSR has been met (if the previous state was self refresh).  
2. This table is bank-specific, except where noted; i.e., the current state is for a specific bank  
and the commands shown are those allowed to be issued to that bank when in that state.  
Exceptions are covered in the notes below.  
3. Current state definitions:  
Idle:  
Row active:  
The bank has been precharged, and tRP has been met.  
A row in the bank has been activated, and tRCD has been met. No data  
bursts/accesses and no register accesses are in progress.  
A READ burst has been initiated, with auto precharge disabled, and has  
not yet terminated or been terminated.  
Read:  
Write:  
A WRITE burst has been initiated, with auto precharge disabled, and has  
not yet terminated or been terminated.  
4. The following states must not be interrupted by a command issued to the same bank. COM-  
MAND INHIBIT or NOP commands, or allowable commands to the other bank should be  
issued on any clock edge occurring during these states. Allowable commands to the other  
bank are determined by its current state and Table 7, and according to Table 8 on page 43.  
Precharging:  
Starts with registration of a PRECHARGE command and ends when  
tRP is met. Once tRP is met, the bank will be in the idle state.  
Starts with registration of an ACTIVE command and ends when tRCD  
is met. Once tRCD is met, the bank will be in the row active state.  
Starts with registration of a READ command with auto precharge  
enabled and ends when tRP has been met. Once tRP is met, the bank  
will be in the idle state.  
Row activating:  
Read w/auto-  
precharge enabled:  
Write w/auto-  
precharge enabled:  
Starts with registration of a WRITE command with auto precharge  
enabled and ends whentRP has been met. Once tRP is met, the bank  
will be in the idle state.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
41  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Truth Tables  
5. The following states must not be interrupted by any executable command; DESELECT or  
NOP commands must be applied on each positive clock edge during these states.  
Refreshing:  
Starts with registration of an AUTO REFRESH command and ends  
when tRFC is met. Once tRFC is met, the Mobile SDRAM will be in the  
all banks idle state.  
Accessing MR:  
Precharging all:  
Starts with registration of an LMR command and ends when tMRD  
has been met. Once tMRD is met, the Mobile SDRAM will be in the  
all banks idle state.  
Starts with registration of a PRECHARGE ALL command and ends  
when tRP is met. Once tRP is met, all banks will be in the idle state.  
6. All states and sequences not shown are illegal or reserved  
7. Not bank-specific; requires that all banks are idle.  
8. May or may not be bank-specific; if all banks are to be precharged, all must be in a valid  
state for precharging.  
9. Not bank-specific; BURST TERMINATE affects the most recent READ or WRITE burst, regard-  
less of bank.  
10. READs or WRITEs listed in the Command (Action) column include READs or WRITEs with  
auto precharge enabled and READs or WRITEs with auto precharge disabled.  
11. Does not affect the state of the bank and acts as a NOP to that bank.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
42  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Truth Tables  
Table 8:  
Truth Table – Current State Bank n, Command to Bank m  
Notes: 1–6; notes appear below and on next page  
Current State  
CS# RAS# CAS# WE# Command (Action)  
Notes  
Any  
H
L
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
X
L
X
H
X
H
L
X
H
X
H
H
L
COMMAND INHIBIT (NOP/Continue previous operation)  
NO OPERATION (NOP/Continue previous operation)  
Any command otherwise allowed to bank m  
ACTIVE (Select and activate row)  
Idle  
Row activating,  
active, or  
precharging  
H
H
L
7
7
READ (Select column and start READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
L
H
H
L
L
Read  
(auto precharge  
disabled)  
L
H
H
L
ACTIVE (Select and activate row)  
H
H
L
7, 8  
7, 9  
10  
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
L
H
H
L
L
Write  
(auto precharge  
disabled)  
L
H
H
L
ACTIVE (Select and activate row)  
H
H
L
7, 11  
7, 12  
10  
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE  
L
H
H
L
L
Read  
(with auto  
precharge)  
L
H
H
L
ACTIVE (Select and activate row)  
H
H
L
7, 13, 14  
7, 13, 15  
10  
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
L
H
H
L
L
Write  
(with auto  
precharge)  
L
H
H
L
ACTIVE (Select and activate row)  
H
H
L
7, 13, 16  
7, 13, 17  
10  
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE  
L
H
L
Notes: 1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Table 6 on page 40) and  
after tXSR has been met (if the previous state was self refresh).  
2. This table describes alternate bank operation, except where noted; i.e., the current state is  
for bank n and the commands shown are those allowed to be issued to bank m (assuming  
that bank m is in such a state that the given command is allowable). Exceptions are covered  
in the notes below.  
3. Current state definitions:  
Idle:  
The bank has been precharged, and tRP has been met.  
A row in the bank has been activated, and tRCD has been met. No  
data bursts/accesses and no register accesses are in progress.  
A READ burst has been initiated, with auto precharge disabled, and  
has not yet terminated or been terminated.  
Row active:  
Read:  
Write:  
A WRITE burst has been initiated, with auto precharge disabled, and  
has not yet terminated or been terminated.  
Read w/auto-  
precharge enabled:  
Starts with registration of a READ command with auto precharge  
enabled and ends when tRP has been met. Once tRP is met, the bank  
will be in the idle state.  
Write w/auto-  
precharge enabled:  
Starts with registration of a WRITE command with auto precharge  
enabled and ends when tRP has been met. Once tRP is met, the bank  
will be in the idle state.  
4. AUTO REFRESH, SELF REFRESH and LMR commands may only be issued when all banks are  
idle.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
43  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Truth Tables  
5. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank  
represented by the current state only.  
6. All states and sequences not shown are illegal or reserved.  
7. READs or WRITEs to bank m listed in the Command (Action) column include READs or  
WRITEs with auto precharge enabled and READs or WRITEs with auto precharge disabled.  
8. For a READ without auto precharge interrupted by a READ (with or without auto pre-  
charge), the READ to bank m will interrupt the READ on bank n, CL later (see Figure 11 on  
page 24).  
9. For a READ without auto precharge interrupted by a WRITE (with or without auto pre-  
charge), the WRITE to bank m will interrupt the READ on bank n when registered (see  
Figure 12 on page 25 and Figure 13 on page 26). DQM should be used one clock prior to the  
WRITE command to prevent bus contention.  
10. Burst in bank n continues as initiated.  
11. For a WRITE without auto precharge interrupted by a READ (with or without auto pre-  
charge), the READ to bank m will interrupt the WRITE on bank n when registered (see  
Figure 20 on page 31), with the data-out appearing CL later. The last valid WRITE to bank n  
will be data-in registered one clock prior to the READ to bank m.  
12. For a WRITE without auto precharge interrupted by a WRITE (with or without auto pre-  
charge), the WRITE to bank will interrupt the WRITE on bank n when registered (see  
Figure 18 on page 30). The last valid WRITE to bank n will be data-in registered one clock  
prior to the READ to bank m.  
13. Concurrent auto precharge: Bank n will initiate the auto precharge command when its  
burst has been interrupted by bank m burst.  
14. For a READ with auto precharge interrupted by a READ (with or without auto precharge),  
the READ to bank m will interrupt the READ on bank n, CL later. The PRECHARGE to bank n  
will begin when the READ to bank m is registered.  
15. For a READ with auto precharge interrupted by a WRITE (with or without auto precharge),  
the WRITE to bank m will interrupt the READ on bank n when registered. DQM should be  
used two clocks prior to the WRITE command to prevent bus contention. The PRECHARGE  
to bank n will begin when the WRITE to bank m is registered.  
16. For a WRITE with auto precharge interrupted by a READ (with or without auto precharge),  
the READ to bank m will interrupt the WRITE on bank n when registered, with the data-out  
appearing CL later. The PRECHARGE to bank n will begin after tWR is met, where tWR  
begins when the READ to bank m is registered. The last valid WRITE bank n will be data-in  
registered one clock prior to the READ to bank m.  
17. For a WRITE with auto precharge interrupted by a WRITE (with or without auto precharge),  
the WRITE to bank m interrupt the WRITE on bank n when registered. The PRECHARGE to  
bank n will begin after tWR is met, where tWR begins when the WRITE to bank m is regis-  
tered. The last valid WRITE to bank n will be data registered one clock to the WRITE to  
bank m.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
44  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Electrical Specifications  
Electrical Specifications  
Absolute Maximum Ratings  
Stresses greater than those listed in Table 9 may cause permanent damage to the device.  
This is a stress rating only, and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
Table 9:  
Absolute Maximum Ratings  
Voltage/Temperature  
Min  
Max  
Units  
–0.3  
–0.3  
–55  
+2.7  
+2.7  
+150  
V
Voltage on VDD/VDDQ supply relative to VSS (1.8V)  
Voltage on inputs, NC or I/O balls relative to VSS (1.8V)  
Storage temperature plastic  
Table 10: DC Electrical Characteristics and Operating Conditions  
Notes: 1, 5, 6; notes appear on page 51 and 52; VDD/VDDQ = 1.7–1.95V  
Parameter/Condition  
Symbol  
Min  
Max  
Units  
Notes  
VDD  
VDDQ  
VIH  
1.7  
1.7  
1.95  
1.95  
V
V
Supply voltage  
I/O supply voltage  
0.8 × VDDQ VDDQ + 0.3  
V
22  
22  
Input high voltage: Logic 1; All inputs  
Input low voltage: Logic 0; All inputs  
Output high voltage: All inputs: Iout = –4mA  
Output low voltage: All inputs: Iout = 4mA  
VIL  
–0.3  
0.9 × VDDQ  
+0.3  
V
VOH  
VOL  
II  
V
0.2  
1.0  
V
–1.0  
µA  
Input leakage current:  
Any input 0V VIN VDD (All other balls not under test = 0V)  
Operating temperature  
+70  
+85  
°C  
TA (commercial)  
TA (industrial)  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
45  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Electrical Specifications  
Table 11: Electrical Characteristics and Recommended AC Operating Conditions  
Notes: 5, 6, 8, 9, 11; notes appear on page 51 and 52  
AC Characteristics  
-75  
-8  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Units  
Notes  
CL = 3  
CL = 2  
tAC (3)  
tAC (2)  
tAH  
6
8
7
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
tCK  
ns  
ns  
ns  
Access time from CLK (pos. edge)  
9
1
1.5  
3
1
2.5  
3
Address hold time  
Address setup time  
CLK high-level width  
CLK low-level width  
Clock cycle time  
tAS  
tCH  
tCL  
3
3
CL = 3  
CL = 2  
tCK (3)  
tCK (2)  
tCKH  
tCKS  
tCMH  
tCMS  
tDH  
7.5  
9.6  
1
8
23  
23  
10  
1
CKE hold time  
2.5  
1
2.5  
1
CKE setup time  
CS#, RAS#, CAS#, WE#, DQM hold time  
CS#, RAS#, CAS#, WE#, DQM setup time  
Data-in hold time  
1.5  
1
2.5  
1
tDS  
1.5  
2.5  
Data-in setup time  
CL = 3  
CL = 2  
tHZ (3)  
tHZ (2)  
tLZ  
6
9
7
9
10  
10  
Data-out High-Z time  
1
2.5  
1.8  
44  
1
Data-out Low-Z time  
tOH  
2.5  
1.8  
48  
72  
20  
Data-out hold time (load)  
tOHN  
tRAS  
tRC  
tRCD  
tREF  
tRFC  
tRP  
tRRD  
tT  
tWR  
tXSR  
25  
Data-out hold time (no load)  
ACTIVE-to-PRECHARGE command  
ACTIVE-to-ACTIVE command period  
ACTIVE-to-READ or WRITE delay  
Refresh period (8,192 rows)  
AUTO REFRESH period  
120,000  
64  
120,000  
64  
67.5  
19  
80  
19  
2
80  
19  
2
PRECHARGE command period  
ACTIVE bank a to ACTIVE bank b command  
Transition time  
0.3  
15  
80  
1.2  
0.5  
15  
80  
1.2  
7
31  
20  
WRITE recovery time  
Exit SELF REFRESH to ACTIVE command  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
46  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Electrical Specifications  
Table 12: AC Functional Characteristics  
Notes: 5, 6, 8, 9,11 notes appear on page 51 and 52  
Parameter  
Symbol  
-75  
-8  
Units  
Notes  
tCCD  
tCKED  
tPED  
tDQD  
tDQM  
tDQZ  
1
1
1
0
0
2
0
5
2
1
1
2
2
3
2
1
1
1
0
0
2
0
5
2
1
1
2
2
3
2
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
17  
14  
READ/WRITE command to READ/WRITE command  
CKE to clock disable or power-down entry mode  
CKE to clock enable or power-down exit setup mode  
DQM to input data delay  
14  
17  
17  
DQM to data mask during WRITEs  
17  
DQM to data High-Z during READs  
tDWD  
tDAL  
17  
WRITE command to input data delay  
Data-in to ACTIVE command  
15, 21  
16, 21  
17  
tDPL  
Data-in to PRECHARGE command  
tBDL  
Last data-in to burst STOP command  
Last data-in to new READ/WRITE command  
Last data-in to PRECHARGE command  
LMR command to ACTIVE or REFRESH command  
Data-out High-Z from PRECHARGE command  
tCDL  
17  
tRDL  
16, 21  
25  
tMRD  
tROH(3)  
tROH(2)  
CL = 3  
CL = 2  
17  
17  
Table 13:  
IDD Specifications and Conditions (x16)  
Notes: 1, 5, 6, 11, 13; notes appear on page 51 and 52; VDD/VDDQ = 1.7–1.95V  
Max  
Parameter/Condition  
Symbol  
-75  
-8  
Units  
Notes  
IDD1  
65  
60  
mA  
1, 18,  
19  
Operating current:  
Active mode; BL = 1; READ or WRITE; tRC = tRC (MIN)  
IDD2P  
IDD2N  
IDD3P  
300  
20  
5
300  
20  
5
µA  
mA  
mA  
30  
Standby current:  
Power-down mode; All banks idle; CKE = LOW  
Standby current:  
Non-power-down mode; All banks idle; CKE = HIGH  
1, 12,  
19  
Standby current:  
Active mode; CKE = LOW; CS# = HIGH; All banks active; No accesses in  
progress  
IDD3N  
IDD4  
25  
90  
25  
85  
mA  
mA  
1, 12,  
19  
Standby current:  
Active mode; CKE = HIGH; CS# = HIGH; All banks active after tRCD met;  
No accesses in progress  
1, 18,  
19  
Operating current:  
Burst mode; READ or WRITE; All banks active, half DQs toggling every  
cycle  
Auto refresh current:  
CKE = HIGH; CS# = HIGH  
tRFC = tRFC (MIN)  
tRFC = 7.8125µs  
IDD5  
IDD6  
100  
5
95  
5
mA  
mA  
1, 12,  
18 19,  
26  
IZZ  
10  
10  
µA  
29, 30  
Deep power-down  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
47  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Electrical Specifications  
Table 14:  
IDD Specifications and Conditions (x32)  
Notes: 1, 5, 6, 11, 13; notes appear on page 51 and 52; VDD/VDDQ = 1.7–1.95V  
Max  
Parameter/Condition  
Symbol  
-75  
-8  
Units  
Notes  
IDD1  
95  
90  
mA  
1, 18,  
19  
Operating current:  
Active mode; BL = 1; READ or WRITE; tRC = tRC (MIN)  
IDD2P  
IDD2N  
IDD3P  
300  
20  
5
300  
20  
5
µA  
mA  
mA  
30  
Standby current:  
Power-down mode; All banks idle; CKE = LOW  
Standby current:  
Non-power-down mode; All banks idle; CKE = HIGH  
1, 12,  
19  
Standby current:  
Active mode; CKE = LOW; CS# = HIGH; All banks active; No accesses in  
progress  
IDD3N  
IDD4  
25  
25  
115  
95  
mA  
mA  
mA  
1, 12,  
19  
Standby current:  
Active mode; CKE = HIGH; CS# = HIGH; All banks active after tRCD met;  
No accesses in progress  
120  
100  
1, 18,  
19  
Operating current:  
Burst mode; READ or WRITE; All banks active, half DQs toggling every  
cycle  
Auto refresh current:  
tRFC = tRFC (MIN)  
IDD5  
1, 12,  
18, 26  
CKE = HIGH; CS# = HIGH  
tRFC = 7.8125µs  
IDD6  
IZZ  
5
5
mA  
µA  
19, 27  
29, 30  
10  
10  
Deep power-down  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
48  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Electrical Specifications  
Table 15:  
IDD7 – Self Refresh Current Options  
Notes: 2, 28, 30; notes appear on page 51 and page 52  
Temperature-Compensated Self Refresh  
Parameter/Condition  
Maximum  
Temperature  
Low IDD7  
Option “L”  
Standard IDD7  
Units  
85ºC  
70ºC  
45ºC  
15ºC  
85ºC  
70ºC  
45ºC  
15ºC  
85ºC  
70ºC  
45ºC  
15ºC  
85ºC  
70ºC  
45ºC  
15ºC  
85ºC  
70ºC  
45ºC  
15ºC  
220  
175  
140  
125  
200  
150  
130  
115  
185  
140  
120  
115  
175  
125  
115  
110  
170  
120  
110  
105  
300  
210  
190  
180  
275  
180  
160  
150  
265  
160  
140  
140  
255  
150  
130  
125  
250  
140  
120  
115  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Self refresh current:  
CKE = LOW – 4-bank refresh  
Self refresh current:  
CKE = LOW – 2-bank refresh  
Self refresh current:  
CKE = LOW – 1-bank refresh  
Self refresh current:  
CKE = LOW – Half-bank refresh  
Self refresh current:  
CKE = LOW – Quarter-bank refresh  
Figure 33: Typical Self Refresh Current vs. Temperature  
150  
Full Array  
1/2 Array  
125  
1/4 Array  
1/8 Array  
100  
75  
50  
25  
0
1/16 Array  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
49  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Electrical Specifications  
Table 16: Capacitance  
Note: 2; notes appear on page 51 and 52  
Parameter  
Symbol  
Min  
Max  
Units  
CI1  
CI2  
CIO  
1.5  
2.0  
2.0  
4.5  
4.5  
6.0  
pF  
pF  
pF  
Input capacitance: CLK  
Input capacitance: All other input-only balls  
Input/output capacitance: DQs  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
50  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Notes  
Notes  
1. All voltages referenced to VSS.  
2. This parameter is sampled. VDD, VDDQ = +1.8V; T = 25°C; ball under test biased at  
A
0.9V; f = 1 MHz.  
3. IDD is dependent on output loading and cycle rates. Specified values are obtained  
with minimum cycle time and the outputs open.  
4. Enables on-chip refresh and address counters.  
5. The minimum specifications are used only to indicate cycle time at which proper  
operation over the full temperature range (–40°C T +85°C for T on IT parts) is  
A
A
ensured.  
6. An initial pause of 100µs is required after power-up, followed by two AUTO REFRESH  
commands, before proper device operation is ensured. (VDD and VDDQ must be pow-  
ered up simultaneously. VSS and VSSQ must be at same potential.) The two AUTO  
t
REFRESH command wake-ups should be repeated any time the REF refresh require-  
ment is exceeded.  
7. AC characteristics assume T = 1ns.  
t
8. In addition to meeting the transition rate specification, the clock and CKE must tran-  
sit between VIH and VIL (or between VIL and VIH) in a monotonic manner.  
9. Outputs measured for 1.8V at 0.9V with equivalent load:  
Q
20pF  
Test loads with full DQ driver strength. Performance will vary with actual system DQ  
bus capacitive loading, termination, and programmed drive strength.  
t
10. HZ defines the time at which the output achieves the open circuit condition; it is not  
t
a reference to VOH or VOL. The last valid data element will meet OH before going  
High-Z.  
11. AC timing and IDD tests have VIL and VIH, with timing referenced to VIH/2 = crossover  
t
point. If the input transition time is longer than T (MAX), then the timing is refer-  
enced at VIL (MAX) and VIH (MIN) and no longer at the VIH/2 crossover point.  
12. Other input signals are allowed to transition no more than once every two clocks and  
are otherwise at valid VIH or VIL levels.  
13. IDD specifications are tested after the device is properly initialized.  
t
14. Timing actually specified by CKS; clock(s) specified as a reference only at minimum  
cycle rate.  
t
t
15. Timing actually specified by WR plus RP; clock(s) specified as a reference only at  
minimum cycle rate.  
16. Timing actually specified by WR.  
t
17. Required clocks are specified by JEDEC functionality and are not dependent on any  
timing parameter.  
18. The IDD current will increase or decrease proportionally according to the amount of  
frequency alteration for the test condition.  
19. Address transitions average one transition every two clocks.  
20. CLK must be toggled a minimum of two times during this period.  
t
t
21. Based on CK = 7.5ns for -75, CK = 8ns for -8, at CL = 3.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
51  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Notes  
22. VIH overshoot: VIH (MAX) = VDDQ + 2V for a pulse width 3ns, and the pulse width  
cannot be greater than one third of the cycle rate. VIL undershoot: VIL (MIN) = –2V for  
a pulse width 3ns.  
23. The clock frequency can only be changed during clock stop, power-down, or while in  
a self-refresh mode.  
t
24. Auto precharge mode only. The precharge timing budget ( RP) begins at 7ns for -8  
after the first clock delay, after the last WRITE is executed. May not exceed limit set for  
precharge mode.The clock frequency can only be changed during  
25. Parameter guaranteed by design.  
26. CKE is HIGH during refresh command period RFC (MIN) else CKE is LOW.  
t
27. The IDD6 limit is actually a nominal value and does not result in a fail value.  
28. Values for IDD7 for 70°C, 45°C, 15°C, and IDD7 1/2-bank and 1/4-bank are sampled  
only. Values for IDD7 4-bank, 2-bank, and 1-bank for 85°C are 100 percent tested.  
29. Deep power-down current is a nominal value at 25°C. This parameter is not tested.  
30. Test conditions include 500ms delay prior to measurement.  
t
31. Auto precharge mode only. The precharge timing budget ( RP) begins at 7.5ns for -75  
and 7ns for -8 after the first clock delay, after the last WRITE is executed. For auto pre-  
t
charge mode, at least one clock cycle is required during WR.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
52  
©2006 Micron Technology, Inc. All rights reserved.  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Timing Diagrams  
Figure 34: Initialize and Load Mode Register  
Tn + 1  
T0  
T1  
To + 1  
Tp + 1  
Tq + 1  
Tr + 1  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CLK  
CKE  
t
CK  
t
t
CKS  
CKH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CMS CMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
1
COMMAND  
NOP  
PRE  
AR  
AR  
LMR  
LMR  
VALID  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
DQM  
ADDR  
A10  
t
t
AS AH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
VALID  
CODE  
CODE  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
VALID  
VALID  
CODE  
CODE  
t
t
t
t
AS AH  
AS AH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
BA0 = L,  
BA1 = L  
BA0=L,
BA0, BA1  
DQ  
BA1 = H  
High-Z  
( (  
((  
))  
((  
))  
((  
))  
((  
))  
((  
))  
((  
))  
)
)
T = 100µs  
t
3
t
3
t
2
t
2
t
MRD  
MRD  
RFC  
RFC  
RP  
Power-up:  
VDD and  
CLK stable  
Load Extended  
Mode Register  
Precharge  
all banks  
Load Mode  
Register  
DON’T CARE  
Notes: 1. PRE = PRECHARGE command; AR = AUTO REFRESH command; LMR = LOAD MODE REGISTER  
command.  
2. Only NOPs or COMMAND INHIBITs may be issued during tRFC time.  
3. At least one NOP or COMMAND INHIBIT is required during tMRD time.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
53  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 35: Power-Down Mode  
T0  
T1  
T2  
Tn + 1  
Tn + 2  
( (  
) )  
( (  
) )  
t
CK  
t
CL  
CLK  
CKE  
t
CH  
t
t
CKS  
CKS  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS CMH  
PRECHARGE  
( (  
) )  
( (  
) )  
COMMAND  
DQM  
NOP  
NOP  
NOP  
ACTIVE  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ADDR  
A10  
ROW  
ROW  
ALL BANKS  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
BANK  
BANK(S)  
High-Z  
( (  
) )  
Two clock cycles  
Input buffers gated off while in  
power-down mode  
Precharge all  
active banks  
All banks idle  
All banks idle, enter  
power-down mode  
Exit power-down mode  
DON’T CARE  
Notes: 1. Violating refresh requirements during power-down may result in a loss of data.  
See Table 11 on page 46.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
54  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 36: Clock Suspend Mode  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
CK  
t
CL  
CLK  
CKE  
t
CH  
t
t
CKS CKH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
DQM  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
t
t
CMS  
CMH  
t
AS  
t
AH  
2
ADDR  
COLUMN m  
COLUMN e  
t
AS  
t
AH  
A10  
t
AS  
t
AH  
BA0, BA1  
BANK  
BANK  
t
AC  
t
AC  
t
OH  
t
HZ  
t
DS  
t
DH  
D
OUT  
m
D
OUT m + 1  
D
OUT  
e
DOUT e + 1  
DQ  
t
LZ  
DON’T CARE  
UNDEFINED  
Notes: 1. For this example, BL = 2, CL = 3, and auto precharge is disabled.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
55  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 37: Auto Refresh Mode  
T0  
T1  
T2  
Tn + 1  
CL  
To + 1  
( (  
) )  
( (  
) )  
t
CLK  
CKE  
t
t
( (  
( (  
CK  
CH  
) )  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
COMMAND  
DQM  
PRECHARGE  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
) )  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ADDR  
A10  
ROW  
ROW  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BANK(S)  
BA0, BA1  
DQ  
BANK  
( (  
( (  
) )  
) )  
High-Z  
( (  
) )  
( (  
) )  
t
t
t
RFC  
RP  
RFC  
Precharge all  
active banks  
DON’T CARE  
UNDEFINED  
Notes: 1. Each AUTO REFRESH command performs a REFRESH cycle. Back-to-back commands are not  
required.  
See Table 11 on page 46.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
56  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 38: Self Refresh Mode  
T0  
T1  
T2  
Tn + 1  
To + 1  
To + 2  
( (  
) )  
( (  
) )  
t
CL  
CLK  
CKE  
t
( (  
) )  
( (  
) )  
t
CK  
CH  
t
> t  
RAS  
CKS  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
COMMAND  
DQM  
PRECHARGE  
NOP  
NOP  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ADDR  
A10  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
BANK(S)  
High-Z  
( (  
) )  
( (  
) )  
t
t
XSR  
RP  
Precharge all  
active banks  
Enter self refresh mode  
Exit self refresh mode  
(Restart refresh time base)  
CLK stable prior to exiting  
self refresh mode  
DON’T CARE  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
57  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 39: READ – without Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
CK  
t
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMH  
CMS  
DQM  
t
AS  
t
AH  
ROW  
ROW  
COLUMN  
m
ADDR  
t
AS  
t
AH  
ALL BANKS  
ROW  
ROW  
A10  
SINGLE BANK  
DISABLE AUTO PRECHARGE  
BANK  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK(S)  
t
BANK  
t
t
AC  
AC  
AC  
t
t
t
t
t
OH  
AC  
OH  
OH  
OH  
DOUT  
m
DOUT  
m
+ 1  
DOUT  
m
+ 2  
DOUT m + 3  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CL  
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
Notes: 1. For this example, BL = 4, CL = 2, and the READ burst is followed by a manual PRECHARGE.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
58  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 40: READ – with Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
t
CMH  
CMS  
DQM  
t
t
AS  
AH  
ROW  
ROW  
COLUMN m  
ADDR  
t
t
AS  
AH  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
BANK  
t
t
t
AC  
AC  
AC  
OH  
t
t
t
t
t
OH  
AC  
OH  
OH  
DOUT  
m
DOUT m + 1  
DOUT m + 2  
DOUT m + 3  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CL  
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
Notes: 1. For this example, BL = 4, CL = 2.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
59  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 41: Single READ – without Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
2
2
COMMAND  
ACTIVE  
NOP  
READ  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
NOP  
t
t
CMH  
CMS  
DQM  
t
t
AS  
AH  
ROW  
ROW  
COLUMN m  
ADDR  
t
t
AS  
AH  
ALL BANKS  
SINGLE BANK  
BANK(S)  
ROW  
ROW  
A10  
DISABLE AUTO PRECHARGE  
BANK  
t
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
OH  
AC  
DOUT m  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CL  
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
Notes: 1. For this example, BL = 4, CL = 2, and the READ burst is followed by a manual PRECHARGE.  
2. PRECHARGE command not allowed or tRAS would be violated.  
See Table 11 on page 46.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
60  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 42: Single READ – with Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
2
2
COMMAND  
ACTIVE  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
ACTIVE  
NOP  
t
t
CMH  
CMS  
DQM  
t
t
AS  
AH  
ROW  
ROW  
COLUMN m  
ADDR  
t
t
AS  
AH  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
AS  
t
AH  
BA0, BA1  
BANK  
BANK  
BANK  
t
AC  
t
OH  
DOUT m  
DQ  
t
t
CL  
HZ  
RCD  
t
t
RP  
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
Notes: 1. For this example, BL = 4, CL = 2, and the READ burst is followed by a manual PRECHARGE.  
2. PRECHARGE command not allowed or tRAS would be violated.  
See Table 11 on page 46.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
61  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 43: Alternating Bank Read Accesses  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
DQM  
ACTIVE  
NOP  
READ  
t
NOP  
ACTIVE  
NOP  
READ  
NOP  
ACTIVE  
t
CMS  
CMH  
t
t
AH  
AS  
2
COLUMN b  
ROW  
ROW  
ROW  
COLUMN  
m
ADDR  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
ROW  
A10  
t
AS  
t
AH  
BANK 0  
BANK 0  
BANK 3  
BANK 3  
BA0, BA1  
BANK 0  
t
AC  
t
AC  
t
AC  
t
AC  
t
AC  
t
AC  
t
OH  
t
OH  
t
OH  
t
OH  
t
OH  
D
OUT  
m
D
OUT  
m
+ 1  
DOUT  
m
+ 2  
DOUT  
m
+ 3  
DOUT b  
DQ  
t
LZ  
t
t
RCD - bank 0  
t
RCD - bank 0  
CL - bank 0  
RP - bank 0  
t
RAS - bank 0  
t
RC - bank 0  
t
t
RCD - bank 4  
CL - bank 4  
RRD  
DON’T CARE  
UNDEFINED  
Notes: 1. For this example, BL = 4, CL = 2.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
62  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 44: READ – DQM Operation  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
t
CMH  
CMS  
DQM  
t
t
AS  
AH  
ROW  
COLUMN m  
ADDR  
t
t
AS  
AH  
ENABLE AUTO PRECHARGE  
ROW  
A10  
DISABLE AUTO PRECHARGE  
BANK  
t
t
AS  
AH  
BA0, BA1  
BANK  
t
AC  
t
t
t
t
t
OH  
AC  
OH  
AC  
OH  
DQ  
DOUT  
m
D
OUT m + 2  
DOUT m + 3  
t
t
LZ  
LZ  
t
t
HZ  
HZ  
t
RCD  
CL  
DON’T CARE  
UNDEFINED  
Notes: 1. For this example, CL = 2.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
63  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 45: WRITE – without Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM  
t
t
t
t
AH  
AS  
ADDR  
ROW  
t
ROW  
ROW  
BANK  
COLUMN  
m
AS  
AH  
ALL BANKS  
ROW  
t
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANK  
BANK  
AS  
AH  
BANK  
BA0, BA1  
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DIN  
m
DIN  
m
+ 1  
DIN  
m
+ 2  
DIN m  
+ 3  
DQ  
t
t
RP  
t
2
RCD  
WR  
t
RAS  
t
RC  
DON’T CARE  
Notes: 1. For this example, BL = 4, and the WRITE burst is followed by a manual PRECHARGE.  
2. 15ns is required between <DIN m + 3> and the PRECHARGE command, regardless of fre-  
quency.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
64  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 46: WRITE – with Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM  
t
t
t
t
AH  
AS  
ADDR  
ROW  
t
ROW  
ROW  
BANK  
COLUMN m  
AS  
AH  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
AS  
AH  
BANK  
BANK  
BA0, BA1  
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DIN m  
DIN m + 1  
DIN m + 2  
DIN m + 3  
DQ  
t
t
RP  
t
2
RCD  
WR  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
Notes: 1. For this example, BL = 4.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
65  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 47: Single WRITE – without Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
3
3
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
NOP  
t
t
CMH  
CMS  
DQM  
t
t
AS  
AH  
ROW  
COLUMN m  
ADDR  
t
t
AS  
AH  
ALL BANKS  
ROW  
ROW  
A10  
SINGLE BANK  
BANK  
DISABLE AUTO PRECHARGE  
BANK  
t
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
DH  
DS  
DIN m  
DQ  
t
t
2
WR  
t
RCD  
RP  
t
RAS  
t
RC  
DON’T CARE  
Notes: 1. For this example, BL = 1, and the WRITE burst is followed by a manual PRECHARGE.  
2. 15ns is required between <DIN m> and the PRECHARGE command, regardless of frequency.  
3. PRECHARGE command not allowed or tRAS would be violated.  
See Table 11 on page 46.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
66  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 48: Single WRITE – with Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
3
3
3
NOP  
COMMAND  
ACTIVE  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
ACTIVE  
NOP  
t
t
CMH  
CMS  
DQM  
t
t
AH  
AS  
ROW  
ROW  
COLUMN  
m
ADDR  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK  
BANK  
t
t
DH  
DS  
DQ  
DIN m  
t
t
t
RCD  
RP  
WR  
t
RAS  
t
RC  
DON’T CARE  
Notes: 1. For this example, BL = 1, and the WRITE burst is followed by a manual PRECHARGE.  
2. 15ns is required between <DIN m> and the PRECHARGE command, regardless of frequency.  
3. WRITE command not allowed or tRAS would be violated.  
See Table 11 on page 46.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
67  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 49: Alternating Bank Write Accesses  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
DQM  
ACTIVE  
NOP  
WRITE  
NOP  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
t
t
AH  
AS  
2
ROW  
ROW  
ROW  
ROW  
ROW  
COLUMN m  
COLUMN b  
ADDR  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
A10  
t
t
AH  
AS  
BANK 0  
BANK 0  
BANK 1  
t
BANK 1  
BA0, BA1  
BANK 0  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
DS DH  
DS DH  
DS DH  
DS DH  
DS DH  
DS DH  
DS DH  
DS DH  
DIN m  
DIN m + 1  
DIN m + 2  
DIN m + 3  
DIN b  
DIN b + 1  
DIN b + 2  
DIN m + 3  
DQ  
t
t
t
t
RCD - bank 0  
WR - bank 0  
RP - bank 0  
RCD - bank 0  
t
RAS - bank 0  
t
t
RC - bank 0  
WR - bank 1  
t
t
RCD - bank 1  
RRD  
DON’T CARE  
Notes: 1. For this example, BL = 4.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
68  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Timing Diagrams  
Figure 50: WRITE – DQM Operation  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
DQM  
ACTIVE  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
NOP  
t
CMS CMH  
t
t
t
t
AH  
AS  
ADDR  
ROW  
t
COLUMN m  
AS  
AH  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
DISABLE AUTO PRECHARGE  
BANK  
AS  
AH  
BA0, BA1  
BANK  
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DIN m  
DIN m + 2  
DIN m + 3  
DQ  
t
RCD  
DON’T CARE  
Notes: 1. For this example, BL = 4.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
69  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Package Dimensions  
Package Dimensions  
Figure 51: 54-Ball VFBGA (8mm x 9mm)  
0.65 0.05  
SEATING  
PLANE  
A
0.10 A  
SOLDER BALL MATERIAL:  
96.5% Sn, 3% Ag, 0.5% Cu  
SUBSTRATE MATERIAL: PLASTIC LAMINATE  
MOLD COMPOUND: EPOXY NOVOLAC  
54X Ø0.45  
SOLDER BALL  
DIAMETER REFERS  
TO POST REFLOW  
CONDITION. THE PRE-  
REFLOW DIAMETER  
IS 0.42 ON A 0.40  
6.40  
0.80  
MICRON LOGO  
TO BE LASED  
BALL A1 ID  
BALL A1 ID  
TYP  
BALL A1  
SMD BALL PAD.  
4.50 0.05  
BALL A9  
6.40  
C
9.00 0.10  
L
3.20  
0.80 TYP  
C
L
3.20  
4.00 0.05  
8.00 0.10  
1.00 MAX  
Notes: 1. All dimensions are in millimeters.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
70  
256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM  
Package Dimensions  
Figure 52: 90-Ball VFBGA (8mm x 13mm)  
0.65 0.05  
SEATING PLANE  
SOLDER BALL MATERIAL:  
96.5% Sn, 3%Ag, 0.5% Cu  
A
0.10 A  
SUBSTRATE MATERIAL:  
PLASTIC LAMINATE  
MOLD COMPOUND:  
EPOXY NOVOLAC  
90X Ø0.45  
DIMENSIONS APPLY  
TO SOLDER BALLS POST  
REFLOW. THE PRE-  
REFLOW DIAMETER IS  
0.42 ON A 0.40 SMD  
BALL PAD  
6.40  
0.80 TYP  
BALL A1 ID  
BALL A1 ID  
BALL A1  
BALL A9  
11.20 0.10  
C
L
13.00 0.10  
5.60 0.05  
6.50 0.05  
C
L
1.00 MAX  
3.20  
4.00 0.05  
8.00 0.10  
Notes: 1. All dimensions are in millimeters.  
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992  
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range  
for production devices. Although considered final, these specifications are subject to change, as further product  
development and data characterization sometimes occur.  
PDF:09005aef8219eeeb/Source: 09005aef8219eedd  
MT48H16M16LF_2.fm - Rev F 4/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
71  

相关型号:

MT48H16M16LFB5-75ITG

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFB5-75LG

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFB5-75LITG

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFB5-8G

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFB5-8ITG

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFB5-8LG

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFB5-8LITG

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFBF-75G

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFBF-75ITG

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFBF-75LG

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFBF-75LITG

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON

MT48H16M16LFBF-8G

256Mb: 16 Meg x 16, 8 Meg x 32 Mobile SDRAM
MICRON