MT48LC16M8A2FB-7EL [MICRON]

SYNCHRONOUS DRAM; 同步DRAM
MT48LC16M8A2FB-7EL
型号: MT48LC16M8A2FB-7EL
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

SYNCHRONOUS DRAM
同步DRAM

动态存储器
文件: 总59页 (文件大小:1835K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
128Mb: x4, x8, x16  
SDRAM  
MT48LC32M4A2 – 8 Meg x 4 x 4 banks  
MT48LC16M8A2 – 4 Meg x 8 x 4 banks  
MT48LC8M16A2 – 2 Meg x 16 x 4 banks  
SYNCHRONOUS  
DRAM  
For the latest data sheet, please refer to the Micron Web  
site: www.micron.com/dramds  
FEATURES  
• PC100-, and PC133-compliant  
• Fully synchronous; all signals registered on positive  
edge of system clock  
• Internal pipelined operation; column address can be  
changed every clock cycle  
• Internal banks for hiding row access/precharge  
• Programmable burst lengths: 1, 2, 4, 8, or full page  
• Auto Precharge, includes CONCURRENT AUTO  
PRECHARGE, and Auto Refresh Modes  
• Self Refresh Mode; standard and low power  
• 64ms, 4,096-cycle refresh  
PIN ASSIGNMENT (Top View)  
54-Pin TSOP  
x4 x8 x16  
x16 x8 x4  
-
-
-
-
V
DQ0  
DD  
1
2
3
4
5
6
7
8
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
Vss  
DQ7 NC  
NC DQ0  
DQ15  
VssQ  
DQ14  
DQ13  
-
NC  
DQ6 DQ3  
-
NC  
DQ5 NC  
-
NC  
DQ4 DQ2  
-
NC  
-
NC  
-
NC  
DQ0 DQ1  
-
NC  
NC DQ2  
V
DD  
Q
DQ1  
DQ2  
VssQ  
DQ3  
DQ4  
-
NC  
-
NC  
VDDQ  
DQ12  
DQ11  
VssQ  
DQ10  
DQ9  
VDDQ  
DQ8  
Vss  
-
NC  
-
NC  
-
V
DD  
Q
9
• LVTTL-compatible inputs and outputs  
• Single +3.3V 0.3V power supply  
NC DQ5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
DQ1 DQ3 DQ6  
-
-
NC  
-
-
NC  
-
-
VssQ  
NC  
-
NC DQ7  
OPTIONS  
• Configurations  
MARKING  
-
VDD  
-
-
NC  
-
NC DQML  
NC  
WE#  
CAS#  
RAS#  
CS#  
BA0  
BA1  
A10  
A0  
A1  
A2  
A3  
V
DQMH DQM DQM  
-
-
-
-
-
-
-
-
-
-
-
-
32 Meg x 4 (8 Meg x 4 x 4 banks)  
16 Meg x 8 (4 Meg x 8 x 4 banks)  
8 Meg x 16 (2 Meg x 16 x 4 banks)  
32M4  
16M8  
8M16  
CLK  
CKE  
NC  
A11  
A9  
A8  
A7  
A6  
A5  
A4  
Vss  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
• WRITE Recovery (tWR)  
-
tWR = “2 CLK”1  
A2  
-
-
• Package/Pinout  
-
-
Plastic Package – OCPL2  
54-pin TSOP II (400 mil)  
60-ball FBGA (8mm x 16mm)  
60-ball FBGA (11mm x 13mm)  
DD  
-
TG  
FB 3,6  
FC 3,6  
Note: The # symbol indicates signal is active LOW. A dash ()  
indicates x8 and x4 pin function is same as x16 pin function.  
32 Meg x 4 16 Meg x 8 8 Meg x 16  
8 Meg x 4 x 4 banks 4 Meg x 8 x 4 banks 2 Meg x 16 x 4 banks  
• Timing (Cycle Time)  
10ns @ CL = 2 (PC100)  
7.5ns @ CL = 3 (PC133)  
7.5ns @ CL = 2 (PC133)  
-8E 3,4,5  
-75  
-7E  
Configuration  
Refresh Count  
Row Addressing  
Bank Addressing  
4K  
4K  
4K  
4K (A0–A11)  
4 (BA0, BA1)  
4K (A0–A11)  
4 (BA0, BA1)  
1K (A0–A9)  
4K (A0–A11)  
4 (BA0, BA1)  
512 (A0–A8)  
• Self Refresh  
Standard  
Column Addressing 2K (A0–A9, A11)  
None  
L
Low power  
KEY TIMING PARAMETERS  
• Operating Temperature Range  
Commercial (0oC to +70oC)  
Industrial (-40oC to +85oC)  
None  
IT 3  
SPEED  
CLOCK  
ACCESS TIME SETUP HOLD  
GRADE FREQUENCY CL = 2* CL = 3* TIME  
TIME  
Part Number Example:  
-7E  
-7E  
-75  
-8E3,4,5  
-75  
-8E3 ,4,5  
143 MHz  
133 MHz  
133 MHz  
125 MHz  
100 MHz  
100 MHz  
5.4ns  
6ns  
6ns  
5.4ns  
1.5ns  
1.5ns  
1.5ns  
2ns  
1.5ns  
2ns  
0.8ns  
0.8ns  
0.8ns  
1ns  
0.8ns  
1ns  
MT48LC16M8A2TG-7E  
NOTE: 1. Refer to Micron Technical Note: TN-48-05.  
2. Off-center parting line.  
5.4ns  
6ns  
3. Consult Micron for availability.  
4. Not recommended for new designs.  
5. Shown for PC100 compatability.  
6. See page 59 for FBGA Device Marking Table.  
*CL = CAS (READ) latency  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 – Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
1
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE SUBJECT TO CHANGE BY MICRON WITHOUT NOTICE.  
128Mb: x4, x8, x16  
SDRAM  
FBGA BALL ASSIGNMENT  
(Top View)  
32 Meg x 4  
16 Meg x 8  
8 x 16mm and 11 x 13mm  
8 x 16mm and 11 x 13mm  
2
4
6
8
2
4
6
8
1
3
5
7
1
3
5
7
V
DD  
DQ7  
NC  
VDD  
A
B
C
D
E
A
B
C
D
E
Vss  
VssQ  
DQ3  
NC  
NC  
NC  
Vss  
VssQ  
DQ6  
NC  
DQ0  
NC  
NC  
NC  
VDD  
Q
VDDQ  
VssQ  
NC  
VssQ  
DQ2  
NC  
VDDQ  
DQ0  
NC  
V
DD  
DQ5  
NC  
Q
DQ1  
NC  
NC  
NC  
VssQ  
NC  
VssQ  
DQ4  
NC  
VDD  
Q
VDDQ  
DQ1  
DQ3  
F
VssQ  
NC  
F
VssQ  
NC  
VDDQ  
DQ2  
NC  
VDDQ  
G
H
J
G
H
J
NC  
NC  
NC  
NC  
NC  
Vss  
DQM  
CK  
NC  
Vss  
NC  
NC  
NC  
VDD  
WE#  
VDD  
WE#  
RAS#  
NC  
CAS#  
NC  
DQM  
CK  
CAS#  
NC  
NC  
NC  
NC  
K
L
K
L
NC  
NC  
RAS#  
NC  
CKE  
A9  
CS#  
BA0  
CKE  
CS#  
BA0  
M
N
P
M
N
P
BA1  
A0  
BA1  
A0  
A9  
A7  
A11  
A8  
A11  
A8  
A7  
A10  
A1  
A10  
A1  
A6  
A2  
A6  
A2  
A5  
A5  
R
R
VDD  
VDD  
A3  
A3  
A4  
A4  
Vss  
Vss  
Depopulated Balls  
Depopulated Balls  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
2
128Mb: x4, x8, x16  
SDRAM  
128Mb SDRAM PART NUMBERS  
PART NUMBER  
ARCHITECTURE  
32 Meg x 4  
32 Meg x 4  
32 Meg x 4  
16 Meg x 8  
16 Meg x 8  
16 Meg x 8  
8 Meg x 16  
A0-A11 select the row). The address bits registered  
coincident with the READ or WRITE command are used  
to select the starting column location for the burst  
access.  
The SDRAM provides for programmable READ  
or WRITE burst lengths of 1, 2, 4, or 8 locations, or the  
full page, with a burst terminate option. An auto  
precharge function may be enabled to provide a self-  
timed row precharge that is initiated at the end of the  
burst sequence.  
MT48LC32M4A2TG  
MT48LC32M4A2FC*  
MT48LC32M4A2FB*  
MT48LC16M8A2TG  
MT48LC16M8A2FC*  
MT48LC16M8A2FB*  
MT48LC8M16A2TG  
*See page 59 for FBGA Device Marking Table.  
The 128Mb SDRAM uses an internal pipelined  
architecture to achieve high-speed operation. This  
architecture is compatible with the 2n rule of prefetch  
architectures, but it also allows the column address to be  
changed on every clock cycle to achieve a high-speed,  
fully random access. Precharging one bank while access-  
ing one of the other three banks will hide the precharge  
cycles and provide seamless high-speed, random-access  
operation.  
The 128Mb SDRAM is designed to operate in 3.3V  
memorysystems.Anautorefreshmodeisprovided,along  
with a power-saving, power-down mode. All inputs and  
outputs are LVTTL-compatible.  
GENERAL DESCRIPTION  
The Micron® 128Mb SDRAM is a high-speed CMOS,  
dynamicrandom-accessmemorycontaining134,217,728  
bits. It is internally configured as a quad-bank DRAM  
withasynchronousinterface(allsignalsareregisteredon  
thepositiveedgeoftheclocksignal, CLK). Eachofthex4’s  
33,554,432-bit banks is organized as 4,096 rows by 2,048  
columns by 4 bits. Each of the x8’s 33,554,432-bit banks is  
organized as 4,096 rows by 1,024 columns by 8 bits. Each  
of the x16’s 33,554,432-bit banks is organized as 4,096  
rows by 512 columns by 16 bits.  
SDRAMs offer substantial advances in DRAM operat-  
ing performance, including the ability to synchronously  
burst data at a high data rate with automatic column-  
address generation, the ability to interleave between in-  
ternal banks in order to hide precharge time and the  
capabilitytorandomlychangecolumnaddressesoneach  
clock cycle during a burst access.  
Read and write accesses to the SDRAM are burst ori-  
ented; accesses start at a selected location and continue  
for a programmed number of locations in a programmed  
sequence. Accesses begin with the registration of an AC-  
TIVE command, which is then followed by a READ or  
WRITE command. The address bits registered coinci-  
dent with the ACTIVE command are used to select the  
bank and row to be accessed (BA0, BA1 select the bank;  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
3
128Mb: x4, x8, x16  
SDRAM  
TABLE OF CONTENTS  
Functional Block Diagram – 32 Meg x 4 ................  
Functional Block Diagram – 16 Meg x 8 ................  
Functional Block Diagram – 8 Meg x 16 ................  
Pin Descriptions .....................................................  
5
6
7
8
Concurrent Auto Precharge .............................. 26  
Truth Table 2 (CKE) ................................................ 28  
Truth Table 3 (Current State, Same Bank) ..................... 29  
Truth Table 4 (Current State, Different Bank)................. 31  
Absolute Maximum Ratings ................................... 33  
DC Electrical Characteristics  
and Operating Conditions ................................... 33  
IDD Specifications and Conditions ......................... 33  
Capacitance ............................................................ 34  
Functional Description.........................................  
Initialization ......................................................  
Register Definition ............................................  
mode register ................................................  
Burst Length............................................  
9
9
9
9
9
Burst Type ............................................... 10  
CAS Latency ............................................ 11  
AC Electrical Characteristics and Recommended  
Operating Conditions (Timing Table) ............. 34  
Operating Mode ...................................... 11  
Write Burst Mode .................................... 11  
Timing Waveforms  
Initialize and Load mode register...................... 37  
Power-Down Mode ............................................ 38  
Clock Suspend Mode ......................................... 39  
Auto Refresh Mode ............................................ 40  
Self Refresh Mode .............................................. 41  
Reads  
Read – Without Auto Precharge ................... 42  
Read – With Auto Precharge ........................ 43  
Single Read – Without Auto Precharge ........ 44  
Single Read – With Auto Precharge ............. 45  
Alternating Bank Read Accesses ................... 46  
Read – Full-Page Burst .................................. 47  
Read – DQM Operation ................................ 48  
Writes  
Commands ............................................................. 12  
Truth Table 1 (Commands and DQM Operation) ............ 12  
Command Inhibit ............................................. 13  
No Operation (NOP).......................................... 13  
Load mode register ............................................ 13  
Active ................................................................ 13  
Read ................................................................ 13  
Write ................................................................ 13  
Precharge ........................................................... 13  
Auto Precharge .................................................. 13  
Burst Terminate ................................................. 13  
Auto Refresh ...................................................... 14  
Self Refresh ........................................................ 14  
Operation................................................................ 15  
Bank/Row Activation ........................................ 15  
Reads ................................................................ 16  
Writes ................................................................ 22  
Precharge ........................................................... 24  
Power-Down ...................................................... 24  
Clock Suspend ................................................... 25  
Burst Read/Single Write .................................... 25  
Write – Without Auto Precharge ................. 49  
Write – With Auto Precharge ....................... 50  
Single Write – Without Auto Precharge....... 51  
Single Write – With Auto Precharge ............ 52  
Alternating Bank Write Accesses ................. 53  
Write – Full-Page Burst ................................. 54  
Write – DQM Operation .............................. 55  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
4
128Mb: x4, x8, x16  
SDRAM  
FUNCTIONAL BLOCK DIAGRAM  
32 Meg x 4 SDRAM  
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
BANK2  
CAS#  
RAS#  
BANK1  
REFRESH  
COUNTER  
12  
MODE REGISTER  
12  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
12  
BANK0  
MEMORY  
ARRAY  
1
1
4096  
DQM  
12  
(4,096 x 2,048 x 4)  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
4096  
4
DQ0-  
DQ3  
I/O GATING  
2
4
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A0-A11,  
BA0, BA1  
ADDRESS  
REGISTER  
14  
DATA  
INPUT  
REGISTER  
2
4
2048  
(x4)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
11  
11  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
5
128Mb: x4, x8, x16  
SDRAM  
FUNCTIONAL BLOCK DIAGRAM  
16 Meg x 8 SDRAM  
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
BANK2  
CAS#  
RAS#  
BANK1  
REFRESH  
COUNTER  
12  
MODE REGISTER  
12  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
12  
BANK0  
MEMORY  
ARRAY  
1
1
4096  
DQM  
12  
(4,096 x 1,024 x 8)  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
4096  
8
DQ0-  
DQ7  
I/O GATING  
2
8
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A0-A11,  
BA0, BA1  
ADDRESS  
REGISTER  
14  
DATA  
INPUT  
REGISTER  
2
8
1024  
(x8)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
10  
10  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
6
128Mb: x4, x8, x16  
SDRAM  
FUNCTIONAL BLOCK DIAGRAM  
8 Meg x 16 SDRAM  
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
BANK2  
CAS#  
RAS#  
BANK1  
REFRESH  
COUNTER  
12  
MODE REGISTER  
12  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
12  
BANK0  
MEMORY  
ARRAY  
2
2
4096  
DQML,  
DQMH  
12  
(4,096 x 512 x 16)  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
4096  
16  
DQ0-  
DQ15  
I/O GATING  
2
16  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A0-A11,  
BA0, BA1  
ADDRESS  
REGISTER  
14  
DATA  
INPUT  
REGISTER  
2
16  
512  
(x16)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
9
9
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
7
128Mb: x4, x8, x16  
SDRAM  
PIN DESCRIPTIONS  
TSOP PIN NUMBERS  
SYMBOL  
TYPE  
DESCRIPTION  
38  
CLK  
Input Clock: CLK is driven by the system clock. All SDRAM input signals are  
sampled on the positive edge of CLK. CLK also increments the internal  
burst counter and controls the output registers.  
37  
CKE  
Input Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CLK  
signal. Deactivating the clock provides PRECHARGE POWER-DOWN and  
SELF REFRESH operation (all banks idle), ACTIVE POWER-DOWN (row  
active in any bank) or CLOCK SUSPEND operation (burst/access in  
progress). CKE is synchronous except after the device enters power-  
down and self refresh modes, where CKE becomes asynchronous until  
after exiting the same mode. The input buffers, including CLK, are  
disabled during power-down and self refresh modes, providing low  
standby power. CKE may be tied HIGH.  
19  
CS#  
Input Chip Select: CS# enables (registered LOW) and disables (registered HIGH)  
the command decoder. All commands are masked when CS# is regis-  
tered HIGH. CS# provides for external bank selection on systems with  
multiple banks. CS# is considered part of the command code.  
16, 17, 18  
WE#, CAS#,  
RAS#  
Input Command Inputs: WE#, CAS#, and RAS# (along with CS#) define the  
command being entered.  
39  
x4, x8: DQM Input Input/Output Mask: DQM is an input mask signal for write accesses and  
an output enable signal for read accesses. Input data is masked when  
15, 39  
x16: DQML,  
DQMH  
DQM is sampled HIGH during a WRITE cycle. The output buffers are  
placed in a High-Z state (two-clock latency) when DQM is sampled HIGH  
during a READ cycle. On the x4 and x8, DQML (Pin 15) is a NC and  
DQMH is DQM. On the x16, DQML corresponds to DQ0-DQ7 and DQMH  
corresponds to DQ8-DQ15. DQML and DQMH are considered same state  
when referenced as DQM.  
20, 21  
BA0, BA1  
A0-A11  
Input Bank Address Inputs: BA0 and BA1 define to which bank the ACTIVE,  
READ, WRITE, or PRECHARGE command is being applied.  
23-26, 29-34, 22, 35  
Input Address Inputs: A0-A11 are sampled during the ACTIVE command (row-  
address A0-A11) and READ/WRITE command (column-address A0-A9,  
A11 [x4]; A0-A9 [x8]; A0-A8 [x16]; with A10 defining auto precharge) to  
select one location out of the memory array in the respective bank. A10  
is sampled during a PRECHARGE command to determine if all banks are  
to be precharged (A10 [HIGH]) or bank selected by BA0, BA1 (A10  
[LOW]). The address inputs also provide the op-code during a LOAD  
MODE REGISTER command.  
2, 4, 5, 7, 8, 10, 11, 13, 42, DQ0-DQ15 x16: I/O Data Input/Output: Data bus for x16 (4, 7, 10, 13, 42, 45, 48, and 51 are  
44, 45, 47, 48, 50, 51, 53  
2, 5, 8, 11, 44, 47, 50, 53  
5, 11, 44, 50  
40  
NCs for x8; and 2, 4, 7, 8, 10, 13, 42, 45, 47, 48, 51, and 53 are NCs for x4).  
x8: I/O Data Input/Output: Data bus for x8 (2, 8, 47, 53 are NCs for x4).  
x4: I/O Data Input/Output: Data bus for x4.  
DQ0-DQ7  
DQ0-DQ3  
NC  
No Connect: These pins should be left unconnected.  
Address input (A12) for the 256Mb and 512Mb devices  
36  
NC  
3, 9, 43, 49  
V
DDQ  
Supply DQ Power: Isolated DQ power on the die for improved noise immunity.  
6, 12, 46, 52  
V
SSQ  
Supply DQ Ground: Isolated DQ ground on the die for improved noise  
immunity.  
1, 14, 27  
V
DD  
SS  
Supply Power Supply: +3.3V 0.3V.  
Supply Ground.  
28, 41, 54  
V
128Mb: x4, x8, x16 SDRAM  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
©2001, Micron Technology, Inc.  
8
128Mb: x4, x8, x16  
SDRAM  
FUNCTIONAL DESCRIPTION  
Register Definition  
In general, the 128Mb SDRAMs (8 Meg x 4 x 4 banks,  
4 Meg x 8 x 4 banks and 2 Meg x 16 x 4 banks) are quad-  
bank DRAMs that operate at 3.3V and include a synchro-  
nous interface (all signals are registered on the positive  
edgeoftheclocksignal, CLK). Eachofthex4’s33,554,432-  
bit banks is organized as 4,096 rows by 2,048 columns by  
4 bits. Each of the x8’s 33,554,432-bit banks is organized  
as 4,096 rows by 1,024 columns by 8 bits. Each of the x16’s  
33,554,432-bit banks is organized as 4,096 rows by 512  
columns by 16 bits.  
MODE REGISTER  
The mode register is used to define the specific mode  
of operation of the SDRAM. This definition includes the  
selection of a burst length, a burst type, a CAS latency, an  
operating mode and a write burst mode, as shown in  
Figure 1. The mode register is programmed via the LOAD  
MODE REGISTER command and will retain the stored  
information until it is programmed again or the device  
loses power.  
Mode register bits M0-M2 specify the burst length,  
M3 specifies the type of burst (sequential or interleaved),  
M4-M6 specify the CAS latency, M7 and M8 specify the  
operating mode, M9 specifies the write burst mode, and  
M10 and M11 are reserved for future use.  
Read and write accesses to the SDRAM are burst ori-  
ented; accesses start at a selected location and continue  
for a programmed number of locations in a programmed  
sequence. Accesses begin with the registration of an AC-  
TIVE command, which is then followed by a READ or  
WRITEcommand. Theaddressbitsregisteredcoincident  
with the ACTIVE command are used to select the bank  
and row to be accessed (BA0 and BA1 select the bank, A0-  
A11 select the row). The address bits (x4: A0-A9, A11; x8:  
A0-A9; x16: A0-A8) registered coincident with the READ  
or WRITE command are used to select the starting col-  
umn location for the burst access.  
The mode register must be loaded when all banks are  
idle, and the controller must wait the specified time  
before initiating the subsequent operation. Violating ei-  
ther of these requirements will result in unspecified op-  
eration.  
Burst Length  
Read and write accesses to the SDRAM are burst ori-  
ented, with the burst length being programmable, as  
shown in Figure 1. The burst length determines the maxi-  
mum number of column locations that can be accessed  
for a given READ or WRITE command. Burst lengths of 1,  
2, 4, or 8 locations are available for both the sequential  
and the interleaved burst types, and a full-page burst is  
available for the sequential type. The full-page burst is  
used in conjunction with the BURST TERMINATE com-  
mand to generate arbitrary burst lengths.  
Priortonormaloperation, theSDRAMmustbeinitial-  
ized. The following sections provide detailed informa-  
tion covering device initialization, register definition,  
command descriptions and device operation.  
Initialization  
SDRAMs must be powered up and initialized in a  
predefined manner. Operational procedures other than  
those specified may result in undefined operation. Once  
power is applied to VDD and VDDQ (simultaneously) and  
the clock is stable (stable clock is defined as a signal  
cycling within timing constraints specified for the clock  
pin), the SDRAM requires a 100µs delay prior to issuing  
anycommandotherthanaCOMMANDINHIBITorNOP.  
Starting at some point during this 100µs period and con-  
tinuing at least through the end of this period, COM-  
MAND INHIBIT or NOP commands should be applied.  
Once the 100µs delay has been satisfied with at least  
one COMMAND INHIBIT or NOP command having been  
applied, a PRECHARGE command should be applied. All  
banks must then be precharged, thereby placing the  
device in the all banks idle state.  
Reserved states should not be used, as unknown op-  
eration or incompatibility with future versions may re-  
sult.  
WhenaREADorWRITEcommandisissued, ablockof  
columns equal to the burst length is effectively selected.  
All accesses for that burst take place within this block,  
meaning that the burst will wrap within the block if a  
boundary is reached. The block is uniquely selected by  
A1-A9, A11 (x4), A1-A9 (x8), or A1-A8 (x16) when the burst  
length is set to two; by A2-A9, A11 (x4), A2-A9 (x8), or A2-  
A8(x16)whentheburstlengthissettofour;andbyA3-A9,  
A11 (x4), A3-A9 (x8), or A3-A8 (x16) when the burst length  
is set to eight. The remaining (least significant) address  
bit(s) is (are) used to select the starting location within  
the block. Full-page bursts wrap within the page if the  
boundary is reached.  
Once in the idle state, two AUTO REFRESH cycles  
must be performed. After the AUTO REFRESH cycles are  
complete, the SDRAM is ready for mode register pro-  
gramming. Because the mode register will power up in an  
unknown state, it should be loaded prior to applying any  
operational command.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
9
128Mb: x4, x8, x16  
SDRAM  
Burst Type  
Accesses within a given burst may be programmed to  
be either sequential or interleaved; this is referred to as  
the burst type and is selected via bit M3.  
The ordering of accesses within a burst is determined  
by the burst length, the burst type and the starting col-  
umn address, as shown in Table 1.  
Table 1  
Burst Definition  
Burst  
Length  
Starting Column Order of Accesses Within a Burst  
Address  
Type = Sequential Type = Interleaved  
A0  
0
1
0-1  
1-0  
0-1  
1-0  
2
4
A1 A0  
A11  
A8  
A6 A5 A4  
A1  
Address Bus  
A10  
A7  
A3 A2  
A0  
A9  
0
0
1
1
0
1
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
11  
9
8
6
5
4
1
10  
7
3
2
0
Mode Register (Mx)  
Reserved* WB Op Mode CAS Latency  
BT  
Burst Length  
A2 A1 A0  
*Should program  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
Cn, Cn + 1, Cn + 2  
Cn + 3, Cn + 4...  
Cn - 1,  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
M11, M10 = 0, 0”  
to ensure compatibility  
with future devices.  
Burst Length  
M2 M1 M0  
M3 = 0  
M3 = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
1
2
8
4
8
Reserved  
Reserved  
Reserved  
Full Page  
Reserved  
Reserved  
Reserved  
Reserved  
Full  
Page  
(y)  
n = A0-A11/9/8  
(location 0-y)  
Not Supported  
Cn…  
Burst Type  
M3  
0
Sequential  
Interleaved  
NOTE: 1. For full-page accesses: y = 2,048 (x4), y = 1,024  
(x8), y = 512 (x16).  
1
2. For a burst length of two, A1-A9, A11 (x4), A1-A9  
(x8) or A1-A8 (x16) select the block-of-two burst;  
A0 selects the starting column within the block.  
3. For a burst length of four, A2-A9, A11 (x4), A2-A9  
(x8) or A2-A8 (x16) select the block-of-four burst;  
A0-A1 select the starting column within the block.  
4. For a burst length of eight, A3-A9, A11 (x4), A3-  
A9 (x8) or A3-A8 (x16) select the block-of-eight  
burst; A0-A2 select the starting column within the  
block.  
CAS Latency  
M6 M5 M4  
Reserved  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3
Reserved  
Reserved  
Reserved  
Reserved  
5. For a full-page burst, the full row is selected and  
A0-A9, A11 (x4), A0-A9 (x8) or A0-A8 (x16) select  
the starting column.  
6. Whenever a boundary of the block is reached  
within a given sequence above, the following  
access wraps within the block.  
7. For a burst length of one, A0-A9, A11 (x4), A0-A9  
(x8) or A0-A8 (x16) select the unique column to be  
accessed, and mode register bit M3 is ignored.  
M8  
0
M7  
0
M6-M0  
Defined  
-
Operating Mode  
Standard Operation  
All other states reserved  
-
-
Write Burst Mode  
M9  
0
Programmed Burst Length  
Single Location Access  
1
Figure 1  
Mode Register Definition  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
10  
128Mb: x4, x8, x16  
SDRAM  
CAS Latency  
Operating Mode  
The CAS latency is the delay, in clock cycles, between  
the registration of a READ command and the availability  
of the first piece of output data. The latency can be set to  
two or three clocks.  
The normal operating mode is selected by setting M7  
and M8 to zero; the other combinations of values for M7  
and M8 are reserved for future use and/or test modes.  
The programmed burst length applies to both READ and  
WRITE bursts.  
Test modes and reserved states should not be used  
because unknown operation or incompatibility with fu-  
ture versions may result.  
If a READ command is registered at clock edge n, and  
the latency is m clocks, the data will be available by clock  
edge n + m. The DQs will start driving as a result of the  
clock edge one cycle earlier (n + m - 1), and provided that  
the relevant access times are met, the data will be valid by  
clock edge n + m. For example, assuming that the clock  
cycle time is such that all relevant access times are met,  
if a READ command is registered at T0 and the latency is  
programmed to two clocks, the DQs will start driving  
after T1 and the data will be valid by T2, as shown in  
Figure 2. Table 2 below indicates the operating frequen-  
cies at which each CAS latency setting can be used.  
Reserved states should not be used as unknown op-  
eration or incompatibility with future versions  
may result.  
Write Burst Mode  
When M9 = 0, the burst length programmed via  
M0-M2 applies to both READ and WRITE bursts; when  
M9 = 1, the programmed burst length applies to  
READ bursts, but write accesses are single-location  
(nonburst) accesses.  
Table 2  
CAS Latency  
ALLOWABLE OPERATING  
FREQUENCY (MHz)  
T0  
T1  
T2  
T3  
CLK  
CAS  
LATENCY = 2  
CAS  
LATENCY = 3  
SPEED  
COMMAND  
READ  
NOP  
t
NOP  
t
-7E  
-75  
-8E  
133  
100  
100  
143  
133  
125  
LZ  
OH  
D
OUT  
DQ  
t
AC  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
CLK  
COMMAND  
READ  
NOP  
NOP  
NOP  
t
t
LZ  
OH  
D
OUT  
DQ  
t
AC  
CAS Latency = 3  
DONT CARE  
UNDEFINED  
Figure 2  
CAS Latency  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
11  
128Mb: x4, x8, x16  
SDRAM  
Commands  
Truth Table 1 provides a quick reference of available  
commands. This is followed by a written description of  
each command. Three additional Truth Tables appear  
following the Operation section; these tables provide  
current state/next state information.  
TRUTH TABLE 1 – COMMANDS AND DQM OPERATION  
(Note: 1)  
NAME (FUNCTION)  
CS# RAS# CAS# WE# DQM  
ADDR  
X
DQs NOTES  
COMMAND INHIBIT (NOP)  
H
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
X
X
X
X
NO OPERATION (NOP)  
X
ACTIVE (Select bank and activate row)  
READ (Select bank and column, and start READ burst)  
WRITE (Select bank and column, and start WRITE burst)  
BURST TERMINATE  
X
Bank/Row  
Bank/Col  
X
X
3
4
4
8
8
H
H
H
L
L/H  
L/H  
X
L
Bank/Col Valid  
H
H
L
L
X
Code  
X
Active  
PRECHARGE (Deactivate row in bank or banks)  
L
X
X
X
5
AUTO REFRESH or SELF REFRESH  
(Enter self refresh mode)  
L
H
X
6, 7  
LOAD MODE REGISTER  
L
L
L
L
X
L
Op-Code  
X
2
8
8
Write Enable/Output Enable  
Write Inhibit/Output High-Z  
Active  
High-Z  
H
NOTE: 1. CKE is HIGH for all commands shown except SELF REFRESH.  
2. A0-A11 define the op-code written to the mode register.  
3. A0-A11 provide row address, and BA0, BA1 determine which bank is made active.  
4. A0-A9; A11 (x4); A0-A9 (x8); or A0-A8 (x16) provide column address; A10 HIGH enables the auto precharge feature  
(nonpersistent), while A10 LOW disables the auto precharge feature; BA0, BA1 determine which bank is being read  
from or written to.  
5. A10 LOW: BA0, BA1 determine the bank being precharged. A10 HIGH: All banks precharged and BA0, BA1 are Dont  
Care.”  
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.  
7. Internal refresh counter controls row addressing; all inputs and I/Os are Dont Careexcept for CKE.  
8. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock delay).  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
12  
128Mb: x4, x8, x16  
SDRAM  
COMMAND INHIBIT  
whether or not auto precharge is used. If auto precharge  
is selected, the row being accessed will be precharged at  
the end of the WRITE burst; if auto precharge is not  
selected, the row will remain open for subsequent ac-  
cesses. Input data appearing on the DQs is written to the  
memory array subject to the DQM input logic level ap-  
pearing coincident with the data. If a given DQM signal is  
registeredLOW, thecorrespondingdatawillbewrittento  
memory; if the DQM signal is registered HIGH, the corre-  
sponding data inputs will be ignored, and a WRITE will  
not be executed to that byte/column location.  
TheCOMMANDINHIBITfunctionpreventsnewcom-  
mands from being executed by the SDRAM, regardless of  
whether the CLK signal is enabled. The SDRAM is effec-  
tively deselected. Operations already in progress are not  
affected.  
NO OPERATION (NOP)  
The NO OPERATION (NOP) command is used to per-  
form a NOP to an SDRAM which is selected (CS# is LOW).  
This prevents unwanted commands from being regis-  
tered during idle or wait states. Operations already in  
progress are not affected.  
PRECHARGE  
The PRECHARGE command is used to deactivate the  
openrowinaparticularbankortheopenrowinallbanks.  
The bank(s) will be available for a subsequent row access  
a specified time (tRP) after the PRECHARGE command is  
issued. Input A10 determines whether one or all banks  
aretobeprecharged, andinthecasewhereonlyonebank  
is to be precharged, inputs BA0, BA1 select the bank.  
Otherwise BA0, BA1 are treated as “Don’t Care.” Once a  
bank has been precharged, it is in the idle state and must  
be activated prior to any READ or WRITE commands  
being issued to that bank.  
LOAD MODE REGISTER  
The mode register is loaded via inputs A0-A11. See  
mode register heading in the Register Definition section.  
The LOAD MODE REGISTER command can only be is-  
sued when all banks are idle, and a subsequent execut-  
able command cannot be issued until tMRD is met.  
ACTIVE  
The ACTIVE command is used to open (or activate) a  
row in a particular bank for a subsequent access. The  
value on the BA0, BA1 inputs selects the bank, and the  
address provided on inputs A0-A11 selects the row. This  
row remains active (or open) for accesses until a  
PRECHARGE command is issued to that bank. A  
PRECHARGE command must be issued before opening a  
different row in the same bank.  
AUTO PRECHARGE  
Auto precharge is a feature which performs the same  
individual-bank PRECHARGE function described above,  
without requiring an explicit command. This is accom-  
plished by using A10 to enable auto precharge in con-  
junction with a specific READ or WRITE command. A  
PRECHARGE of the bank/row that is addressed with the  
READ or WRITE command is automatically performed  
upon completion of the READ or WRITE burst, except in  
the full-page burst mode, where auto precharge does not  
apply. Auto precharge is nonpersistent in that it is either  
enabled or disabled for each individual READ or WRITE  
command.  
Auto precharge ensures that the precharge is initiated  
at the earliest valid stage within a burst. The user must  
not issue another command to the same bank until the  
precharge time (tRP) is completed. This is determined as  
if an explicit PRECHARGE command was issued at the  
earliest possible time, as described for each burst type in  
the Operation section of this data sheet.  
READ  
The READ command is used to initiate a burst read  
access to an active row. The value on the BA0, BA1 inputs  
selects the bank, and the address provided on inputs A0-  
A9, A11 (x4), A0-A9 (x8) or A0-A8 (x16) selects the starting  
column location. The value on input A10 determines  
whether or not auto precharge is used. If auto precharge  
is selected, the row being accessed will be precharged at  
the end of the READ burst; if auto precharge is not se-  
lected, therowwillremainopenforsubsequentaccesses.  
Read data appears on the DQs subject to the logic level on  
the DQM inputs two clocks earlier. If a given DQM signal  
was registered HIGH, the corresponding DQs will be  
High-Z two clocks later; if the DQM signal was registered  
LOW, the DQs will provide valid data.  
BURST TERMINATE  
WRITE  
The BURST TERMINATE command is used to trun-  
cate either fixed-length or full-page bursts. The most  
recently registered READ or WRITE command prior to  
the BURST TERMINATE command will be truncated, as  
shown in the Operation section of this data sheet.  
The WRITE command is used to initiate a burst write  
access to an active row. The value on the BA0, BA1 inputs  
selects the bank, and the address provided on inputs A0-  
A9, A11 (x4), A0-A9 (x8) or A0-A8 (x16) selects the starting  
column location. The value on input A10 determines  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
13  
128Mb: x4, x8, x16  
SDRAM  
retains data without external clocking. The SELF RE-  
FRESH command is initiated like an AUTO REFRESH  
command except CKE is disabled (LOW). Once the SELF  
REFRESH command is registered, all the inputs to the  
SDRAM become “Don’t Care” with the exception of CKE,  
which must remain LOW.  
AUTO REFRESH  
AUTO REFRESH is used during normal operation of  
the SDRAM and is analogous to CAS#-BEFORE-RAS#  
(CBR) REFRESH in conventional DRAMs. This  
command is nonpersistent, so it must be issued each  
time a refresh is required. All active banks must be  
PRECHARGED prior to issuing an AUTO REFRESH  
command. The AUTO REFRESH command should not  
be issued until the minimum tRP has been met after the  
PRECHARGE command as shown in the operation sec-  
tion.  
The addressing is generated by the internal refresh  
controller. This makes the address bits “Don’t Care”  
duringanAUTOREFRESHcommand.The128MbSDRAM  
requires 4,096 AUTO REFRESH cycles every 64ms (tREF),  
regardless of width option. Providing a distributed AUTO  
REFRESH command every 15.625µs will meet the refresh  
requirementandensurethateachrowisrefreshed. Alter-  
natively, 4,096AUTOREFRESHcommandscanbeissued  
in a burst at the minimum cycle rate (tRFC), once every  
64ms.  
Once self refresh mode is engaged, the SDRAM pro-  
vides its own internal clocking, causing it to perform its  
own AUTO REFRESH cycles. The SDRAM must remain in  
t
self refresh mode for a minimum period equal to RAS  
and may remain in self refresh mode for an indefinite  
period beyond that.  
The procedure for exiting self refresh requires a se-  
quence of commands. First, CLK must be stable (stable  
clock is defined as a signal cycling within timing con-  
straints specified for the clock pin) prior to CKE going  
back HIGH. Once CKE is HIGH, the SDRAM must have  
NOP commands issued (a minimum of two clocks) for  
tXSR because time is required for the completion of any  
internal refresh in progress.  
Upon exiting the self refresh mode, AUTO REFRESH  
commands must be issued every 15.625µs or less as both  
SELF REFRESH and AUTO REFRESH utilize the row re-  
fresh counter.  
SELF REFRESH  
The SELF REFRESH command can be used to retain  
data in the SDRAM, even if the rest of the system is  
powereddown.Whenintheselfrefreshmode,theSDRAM  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
14  
128Mb: x4, x8, x16  
SDRAM  
CLK  
CKE  
Operation  
BANK/ROW ACTIVATION  
Before any READ or WRITE commands can be issued  
to a bank within the SDRAM, a row in that bank must be  
“opened.” This is accomplished via the ACTIVE com-  
mand, which selects both the bank and the row to be  
activated (see Figure 3).  
HIGH  
CS#  
After opening a row (issuing an ACTIVE command), a  
READ or WRITE command may be issued to that row,  
subject to the tRCD specification. tRCD (MIN) should be  
divided by the clock period and rounded up to the next  
whole number to determine the earliest clock edge after  
the ACTIVE command on which a READ or WRITE com-  
mand can be entered. For example, a tRCD specification  
of 20ns with a 125 MHz clock (8ns period) results in 2.5  
clocks, rounded to 3. This is reflected in Figure 4, which  
covers any case where 2 < tRCD (MIN)/tCK 3. (The same  
procedure is used to convert other specification limits  
from time units to clock cycles.)  
RAS#  
CAS#  
WE#  
ROW  
ADDRESS  
A0A10, A11  
A subsequent ACTIVE command to a different row in  
the same bank can only be issued after the previous  
active row has been “closed” (precharged). The mini-  
mum time interval between successive ACTIVE com-  
mands to the same bank is defined by tRC.  
BANK  
ADDRESS  
BA0, BA1  
A subsequent ACTIVE command to another bank can  
be issued while the first bank is being accessed, which  
results in a reduction of total row-access overhead. The  
minimumtimeintervalbetweensuccessiveACTIVEcom-  
mands to different banks is defined by tRRD.  
Figure 3  
Activating a Specific Row in a  
Specific Bank  
T0  
T1  
T2  
T3  
T4  
CLK  
READ or  
WRITE  
COMMAND  
ACTIVE  
NOP  
NOP  
t
RCD  
DONT CARE  
Figure 4  
t
t
t
<
Example: Meeting RCD (MIN) When 2 < RCD (MIN)/ CK 3  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
15  
128Mb: x4, x8, x16  
SDRAM  
READs  
READ bursts are initiated with a READ command, as  
shown in Figure 5.  
Upon completion of a burst, assuming no other com-  
mands have been initiated, the DQs will go High-Z. A full-  
page burst will continue until terminated. (At the end of  
the page, it will wrap to column 0 and continue.)  
Data from any READ burst may be truncated with a  
subsequentREADcommand,anddatafromafixed-length  
READ burst may be immediately followed by data from a  
READcommand. Ineithercase, acontinuousflowofdata  
can be maintained. The first data element from the new  
burst follows either the last element of a completed burst  
or the last desired data element of a longer burst that is  
being truncated. The new READ command should be  
issued x cycles before the clock edge at which the last  
desired data element is valid, where x equals the CAS  
latency minus one.  
The starting column and bank addresses are provided  
with the READ command, and auto precharge is either  
enabledordisabledforthatburstaccess.Ifautoprecharge  
is enabled, the row being accessed is precharged at the  
completion of the burst. For the generic READ com-  
mandsusedinthefollowingillustrations, autoprecharge  
is disabled.  
During READ bursts, the valid data-out element from  
the starting column address will be available following  
the CAS latency after the READ command. Each subse-  
quent data-out element will be valid by the next positive  
clock edge. Figure 6 shows general timing for each pos-  
sible CAS latency setting.  
T0  
T1  
T2  
T3  
CLK  
CLK  
CKE  
CS#  
HIGH  
COMMAND  
READ  
NOP  
t
NOP  
t
LZ  
OH  
DOUT  
DQ  
t
AC  
CAS Latency = 2  
RAS#  
CAS#  
WE#  
T0  
T1  
T2  
T3  
T4  
CLK  
COMMAND  
READ  
NOP  
NOP  
NOP  
t
t
LZ  
OH  
A0-A9, A11: x4  
A0-A9: x8  
COLUMN  
ADDRESS  
DOUT  
DQ  
A0-A8: x16  
t
AC  
A11: x8  
CAS Latency = 3  
A9, A11: x16  
DON’T CARE  
UNDEFINED  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
A10  
Figure 6  
CAS Latency  
BANK  
ADDRESS  
BA0,1  
Figure 5  
READ Command  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
16  
128Mb: x4, x8, x16  
SDRAM  
This is shown in Figure 7 for CAS latencies of two and  
three; data element n + 3 is either the last of a burst of four  
or the last desired of a longer burst. The 128Mb SDRAM  
uses a pipelined architecture and therefore does not  
require the 2n rule associated with a prefetch architec-  
ture. A READ command can be initiated on any clock  
cycle following a previous READ command. Full-speed  
random read accesses can be performed to the same  
bank, as shown in Figure 8, or each subsequent READ  
may be performed to a different bank.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
COMMAND  
X = 1 cycle  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
DOUT  
n
DOUT  
n + 1  
DOUT  
n + 2  
DOUT  
n + 3  
DOUT  
b
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
X = 2 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
DOUT  
n
DOUT  
n + 1  
DOUT  
n + 2  
DOUT  
n + 3  
DOUT  
b
CAS Latency = 3  
DONT CARE  
NOTE:  
Each READ command may be to any bank. DQM is LOW.  
Figure 7  
Consecutive READ Bursts  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
17  
128Mb: x4, x8, x16  
SDRAM  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
COMMAND  
ADDRESS  
DQ  
READ  
READ  
READ  
READ  
NOP  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
DOUT  
D
OUT  
D
OUT  
DOUT  
n
a
x
m
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
READ  
READ  
READ  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
n
a
x
m
CAS Latency = 3  
NOTE:  
Each READ command may be to any bank. DQM is LOW.  
DONT CARE  
Figure 8  
Random READ Accesses  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
18  
128Mb: x4, x8, x16  
SDRAM  
Data from any READ burst may be truncated with a  
subsequent WRITE command, and data from a fixed-  
length READ burst may be immediately followed by data  
from a WRITE command (subject to bus turnaround  
limitations). The WRITE burst may be initiated on the  
clock edge immediately following the last (or last de-  
sired)dataelementfromtheREADburst, providedthatI/  
O contention can be avoided. In a given system design,  
there may be a possibility that the device driving the  
input data will go Low-Z before the SDRAM DQs go High-  
Z. In this case, at least a single-cycle delay should occur  
between the last read data and the WRITE command.  
The DQM input is used to avoid I/O contention, as  
shown in Figures 9 and 10. The DQM signal must be  
asserted (HIGH) at least two clocks prior to the WRITE  
command (DQM latency is two clocks for output buffers)  
to suppress data-out from the READ. Once the WRITE  
command is registered, the DQs will go High-Z (or re-  
main High-Z), regardless of the state of the DQM signal,  
provided the DQM was active on the clock just prior to  
the WRITE command that truncated the READ com-  
mand. If not, the second WRITE will be an invalid WRITE.  
For example, if DQM was LOW during T4 in Figure 10,  
then the WRITEs at T5 and T7 would be valid, while the  
WRITE at T6 would be invalid.  
The DQM signal must be de-asserted prior to the  
WRITE command (DQM latency is zero clocks for input  
buffers) to ensure that the written data is not masked.  
Figure 9 shows the case where the clock frequency allows  
for bus contention to be avoided without adding a NOP  
cycle, and Figure 10 shows the case where the additional  
NOP is needed.  
T0  
T1  
T2  
T3  
T4  
T5  
T0  
T1  
T2  
T3  
T4  
CLK  
CLK  
DQM  
DQM  
READ  
NOP  
NOP  
NOP  
NOP  
WRITE  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
NOP  
WRITE  
COMMAND  
ADDRESS  
BANK,  
COL b  
BANK,  
COL n  
BANK,  
COL n  
BANK,  
COL b  
t
HZ  
t
CK  
D
OUT  
n
DIN  
b
DQ  
t
HZ  
t
DS  
D
OUT  
n
DIN b  
DQ  
t
DS  
NOTE:  
A CAS latency of three is used for illustration. The READ command  
may be to any bank, and the WRITE command may be to any bank.  
NOTE:  
A CAS latency of three is used for illustration. The READ  
command may be to any bank, and the WRITE command  
may be to any bank. If a burst of one is used, then DQM is  
not required.  
DONT CARE  
Figure 10  
READ to WRITE With  
Extra Clock Cycle  
Figure 9  
READ to WRITE  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
19  
128Mb: x4, x8, x16  
SDRAM  
A fixed-length READ burst may be followed by, or  
truncated with, a PRECHARGE command to the same  
bank (provided that auto precharge was not activated),  
and a full-page burst may be truncated with a  
PRECHARGE command to the same bank. The  
PRECHARGE command should be issued x cycles before  
the clock edge at which the last desired data element is  
valid, where x equals the CAS latency minus one. This is  
shown in Figure 11 for each possible CAS latency; data  
element n + 3 is either the last of a burst of four or the last  
desired of a longer burst. Following the PRECHARGE  
command, a subsequent command to the same bank  
cannotbeissueduntil tRPismet. Notethatpartoftherow  
precharge time is hidden during the access of the last  
data element(s).  
In the case of a fixed-length burst being executed to  
completion, a PRECHARGE command issued at the opti-  
mum time (as described above) provides the same op-  
eration that would result from the same fixed-length  
burst with auto precharge. The disadvantage of the  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 1 cycle  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
D
OUT  
D
n + 1  
OUT  
DOUT  
DOUT  
n + 3  
n
n + 2  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 2 cycles  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
D
OUT  
D
OUT  
D
n + 2  
OUT  
DOUT  
n + 3  
n
n + 1  
CAS Latency = 3  
DONT CARE  
NOTE: DQM is LOW.  
Figure 11  
READ to PRECHARGE  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
20  
128Mb: x4, x8, x16  
SDRAM  
PRECHARGE command is that it requires that the com-  
mand and address buses be available at the appropriate  
time to issue the command; the advantage of the  
PRECHARGE command is that it can be used to truncate  
fixed-length or full-page bursts.  
Full-page READ bursts can be truncated with the  
BURST TERMINATE command, and fixed-length READ  
burstsmaybetruncatedwithaBURSTTERMINATEcom-  
mand, provided that auto precharge was not activated.  
The BURST TERMINATE command should be issued x  
cycles before the clock edge at which the last desired data  
element is valid, where x equals the CAS latency minus  
one. This is shown in Figure 12 for each possible CAS  
latency; data element n + 3 is the last desired data ele-  
ment of a longer burst.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
X = 1 cycle  
BANK,  
COL n  
D
OUT  
D
n + 1  
OUT  
DOUT  
DOUT  
n + 3  
n
n + 2  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
COMMAND  
ADDRESS  
DQ  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
X = 2 cycles  
BANK,  
COL n  
D
OUT  
DOUT  
D
n + 2  
OUT  
DOUT  
n + 3  
n
n + 1  
CAS Latency = 3  
NOTE:  
DQM is LOW.  
DONT CARE  
Figure 12  
Terminating a READ Burst  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
21  
128Mb: x4, x8, x16  
SDRAM  
WRITEs  
WRITE bursts are initiated with a WRITE command,  
as shown in Figure 13.  
command applies to the new command. An example is  
shown in Figure 15. Data n + 1 is either the last of a burst  
of two or the last desired of a longer burst. The 128Mb  
SDRAM uses a pipelined architecture and therefore does  
not require the 2n rule associated with a prefetch archi-  
tecture. A WRITE command can be initiated on any clock  
cycle following a previous WRITE command. Full-speed  
random write accesses within a page can be performed to  
thesamebank, asshowninFigure16, oreachsubsequent  
WRITE may be performed to a different bank.  
The starting column and bank addresses are pro-  
vided with the WRITE command, and auto precharge is  
either enabled or disabled for that access. If auto  
precharge is enabled, the row being accessed is  
precharged at the completion of the burst. For the ge-  
neric WRITE commands used in the following illustra-  
tions, auto precharge is disabled.  
During WRITE bursts, the first valid data-in element  
will be registered coincident with the WRITE command.  
Subsequent data elements will be registered on each  
successive positive clock edge. Upon completion of a  
fixed-length burst, assuming no other commands have  
been initiated, the DQs will remain High-Z and any addi-  
tional input data will be ignored (see Figure 14). A full-  
page burst will continue until terminated. (At the end of  
the page, it will wrap to column 0 and continue.)  
Data for any WRITE burst may be truncated with a  
subsequentWRITEcommand, anddataforafixed-length  
WRITE burst may be immediately followed by data for a  
WRITE command. The new WRITE command can be  
issued on any clock following the previous WRITE com-  
mand, and the data provided coincident with the new  
T0  
T1  
T2  
T3  
CLK  
WRITE  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
D
IN  
DIN  
n + 1  
n
NOTE:  
Burst length = 2. DQM is LOW.  
Figure 14  
WRITE Burst  
CLK  
CKE  
CS#  
HIGH  
T0  
T1  
T2  
CLK  
RAS#  
WRITE  
NOP  
WRITE  
COMMAND  
ADDRESS  
DQ  
CAS#  
WE#  
BANK,  
COL n  
BANK,  
COL b  
A0-A9, A11: x4  
A0-A9: x8  
COLUMN  
ADDRESS  
A0-A8: x16  
DIN  
DIN  
DIN  
b
n
n + 1  
A11: x8  
A9, A11: x16  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
A10  
NOTE:  
DQM is LOW. Each WRITE  
command may be to any bank.  
DONT CARE  
BANK  
ADDRESS  
BA0,1  
Figure 15  
WRITE to WRITE  
Figure 13  
WRITE Command  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
22  
128Mb: x4, x8, x16  
SDRAM  
Data for any WRITE burst may be truncated with a  
subsequent READ command, and data for a fixed-length  
WRITE burst may be immediately followed by a READ  
command. Once the READ command is registered, the  
data inputs will be ignored, and WRITEs will not be  
executed. An example is shown in Figure 17. Data n + 1 is  
either the last of a burst of two or the last desired of a  
longer burst.  
least one clock plus time, regardless of frequency.  
In addition, when truncating a WRITE burst, the DQM  
signal must be used to mask input data for the clock edge  
prior to, and the clock edge coincident with, the  
PRECHARGE command. An example is shown in Figure  
18. Data n + 1 is either the last of a burst of two or the last  
desired of a longer burst. Following the PRECHARGE  
command, a subsequent command to the same bank  
cannot be issued until tRP is met.  
In the case of a fixed-length burst being executed to  
completion, a PRECHARGE command issued at the opti-  
mum time (as described above) provides the same op-  
eration that would result from the same fixed-length  
burst with auto precharge. The disadvantage of the  
PRECHARGE command is that it requires that the com-  
mand and address buses be available at the appropriate  
time to issue the command; the advantage of the  
PRECHARGE command is that it can be used to truncate  
fixed-length or full-page bursts.  
Data for a fixed-length WRITE burst may be followed  
by, or truncated with, a PRECHARGE command to the  
same bank (provided that auto precharge was not acti-  
vated), and a full-page WRITE burst may be truncated  
with a PRECHARGE command to the same bank. The  
t
PRECHARGE command should be issued WR after the  
clock edge at which the last desired input data element is  
registered. The auto precharge mode requires a tWR of at  
T0  
T1  
T2  
T3  
CLK  
COMMAND  
ADDRESS  
WRITE  
WRITE  
WRITE  
WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
t
t
WR@ CK 15ns  
DQM  
D
IN  
D
IN  
D
IN  
DIN  
x
t
RP  
DQ  
m
n
a
NOP  
NOP  
NOP  
WRITE  
NOP  
PRECHARGE  
ACTIVE  
COMMAND  
ADDRESS  
NOTE:  
Each WRITE command may be to any bank.  
DQM is LOW.  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
t
WR  
D
n
IN  
DIN  
n + 1  
DQ  
Figure 16  
Random WRITE Cycles  
t
t
WR@ CK < 15ns  
DQM  
T0  
T1  
T2  
T3  
T4  
T5  
t
RP  
CLK  
NOP  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
ACTIVE  
COMMAND  
ADDRESS  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
WRITE  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
t
WR  
D
n
IN  
DIN  
n + 1  
DQ  
BANK,  
COL n  
BANK,  
COL b  
NOTE:  
DQM could remain LOW in this example if the WRITE burst is a fixed length  
of two.  
DIN  
n
DIN  
n + 1  
DOUT  
b
DOUT  
b + 1  
DQ  
DONT CARE  
NOTE:  
The WRITE command may be to any bank, and the READ command may  
be to any bank. DQM is LOW. CAS latency = 2 for illustration.  
Figure 18  
WRITE to PRECHARGE  
Figure 17  
WRITE to READ  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
23  
128Mb: x4, x8, x16  
SDRAM  
Fixed-length or full-page WRITE bursts can be trun-  
cated with the BURST TERMINATE command. When  
truncating a WRITE burst, the input data applied coinci-  
dent with the BURST TERMINATE command will be  
ignored. The last data written (provided that DQM is  
LOW at that time) will be the input data applied one clock  
previous to the BURST TERMINATE command. This is  
shown in Figure 19, where data n is the last desired data  
element of a longer burst.  
PRECHARGE  
The PRECHARGE command (see Figure 20) is used to  
deactivate the open row in a particular bank or the open  
row in all banks. The bank(s) will be available for a subse-  
quent row access some specified time (tRP) after the  
PRECHARGE command is issued. Input A10 determines  
whether one or all banks are to be precharged, and in the  
case where only one bank is to be precharged, inputs  
BA0, BA1 select the bank. When all banks are to be  
precharged, inputs BA0, BA1 are treated as “Don’t Care.”  
Once a bank has been precharged, it is in the idle state  
and must be activated prior to any READ or WRITE com-  
mands being issued to that bank.  
T0  
T1  
T2  
CLK  
POWER-DOWN  
Power-down occurs if CKE is registered LOW coinci-  
dent with a NOP or COMMAND INHIBIT when no ac-  
cesses are in progress. If power-down occurs when all  
banks are idle, this mode is referred to as precharge  
power-down; if power-down occurs when there is a row  
active in any bank, this mode is referred to as active  
power-down. Entering power-down deactivates the in-  
put and output buffers, excluding CKE, for maximum  
power savings while in standby. The device may not  
remain in the power-down state longer than the refresh  
period (64ms) since no refresh operations are performed  
in this mode.  
BURST  
TERMINATE  
NEXT  
COMMAND  
WRITE  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
(ADDRESS)  
(DATA)  
DIN  
n
The power-down state is exited by registering a NOP  
or COMMAND INHIBIT and CKE HIGH at the desired  
clock edge (meeting tCKS). See Figure 21.  
Figure 19  
Terminating a WRITE Burst  
CLK  
( (  
) )  
CLK  
( (  
) )  
CKE  
CS#  
HIGH  
> t  
CKS  
t
CKS  
CKE  
( (  
) )  
( (  
) )  
( (  
) )  
COMMAND  
NOP  
NOP  
ACTIVE  
RAS#  
t
All banks idle  
RCD  
Input buffers gated off  
t
RAS  
t
RC  
CAS#  
WE#  
Enter power-down mode.  
Exit power-down mode.  
DONT CARE  
Figure 21  
Power-Down  
A0-A9  
A10  
All Banks  
Bank Selected  
BANK  
ADDRESS  
BA0,1  
Figure 20  
PRECHARGE Command  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
24  
128Mb: x4, x8, x16  
SDRAM  
CLOCK SUSPEND  
The clock suspend mode occurs when a column ac-  
cess/burst is in progress and CKE is registered LOW. In  
the clock suspend mode, the internal clock is deacti-  
vated, “freezing” the synchronous logic.  
Clock suspend mode is exited by registering CKE  
HIGH; the internal clock and related operation will re-  
sume on the subsequent positive clock edge.  
For each positive clock edge on which CKE is sampled  
LOW, the next internal positive clock edge is suspended.  
Any command or data present on the input pins at the  
time of a suspended internal clock edge is ignored; any  
data present on the DQ pins remains driven; and burst  
counters are not incremented, as long as the clock is  
suspended. (See examples in Figures 22 and 23.)  
BURST READ/SINGLE WRITE  
The burst read/single write mode is entered by pro-  
gramming the write burst mode bit (M9) in the mode  
register to a logic 1. In this mode, all WRITE commands  
result in the access of a single column location (burst of  
one), regardless of the programmed burst length. READ  
commandsaccesscolumnsaccordingtotheprogrammed  
burst length and sequence, just as in the normal mode of  
operation (M9 = 0).  
T0  
T1  
T2  
T3  
T4  
T5  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
CKE  
CLK  
CKE  
INTERNAL  
CLOCK  
INTERNAL  
CLOCK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
NOP  
WRITE  
NOP  
NOP  
COMMAND  
ADDRESS  
BANK,  
COL n  
BANK,  
COL n  
D
OUT  
D
OUT  
D
n + 2  
OUT  
DOUT  
n + 3  
n
n + 1  
D
n
IN  
D
n + 1  
IN  
DIN  
n + 2  
DIN  
NOTE: For this example, CAS latency = 2, burst length = 4 or greater, and  
DQM is LOW.  
NOTE: For this example, burst length = 4 or greater, and DM  
DONT CARE  
is LOW.  
Figure 22  
Clock Suspend During WRITE Burst  
Figure 23  
Clock Suspend During READ Burst  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
25  
128Mb: x4, x8, x16  
SDRAM  
CONCURRENT AUTO PRECHARGE  
An access command (READ or WRITE) to another  
bank while an access command with auto precharge  
enabled is executing is not allowed by SDRAMs, unless  
theSDRAMsupportsCONCURRENTAUTOPRECHARGE.  
Micron SDRAMs support CONCURRENT AUTO  
PRECHARGE. Four cases where CONCURRENT AUTO  
PRECHARGE occurs are defined below.  
bank n will begin when the READ to bank m is regis-  
tered (Figure 24).  
2. Interrupted by a WRITE (with or without auto  
precharge): A WRITE to bank m will interrupt a READ  
on bank n when registered. DQM should be used two  
clocks prior to the WRITE command to prevent bus  
contention. The PRECHARGE to bank n will begin  
when the WRITE to bank m is registered (Figure 25).  
READ with Auto Precharge  
1. Interrupted by a READ (with or without auto  
precharge): A READ to bank m will interrupt a READ  
on bank n, CAS latency later. The PRECHARGE to  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
READ with Burst of 4  
Interrupt Burst, Precharge  
t
Idle  
BANK n  
t
RP - BANK n  
RP - BANK m  
Internal  
States  
Precharge  
Page Active  
READ with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
D
a
OUT  
D
a + 1  
OUT  
D
OUT  
DOUT  
d + 1  
d
CAS Latency = 3 (BANK n)  
CAS Latency = 3 (BANK m)  
NOTE: DQM is LOW.  
Figure 24  
READ With Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
WRITE - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page  
Active  
READ with Burst of 4  
Page Active  
Interrupt Burst, Precharge  
t
Idle  
WR - BANK m  
BANK n  
t
RP - BANK  
n
Internal  
States  
Write-Back  
WRITE with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
1
DQM  
D
OUT  
DIN  
d
D
d + 1  
IN  
D
d + 2  
IN  
DIN  
d + 3  
DQ  
a
CAS Latency = 3 (BANK n)  
NOTE: 1. DQM is HIGH at T2 to prevent DOUT-a+1 from contending with DIN-d at T4.  
DONT CARE  
Figure 25  
READ With Auto Precharge Interrupted by a WRITE  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
26  
128Mb: x4, x8, x16  
SDRAM  
WRITE with Auto Precharge  
3. Interrupted by a READ (with or without auto  
precharge): A READ to bank m will interrupt a WRITE  
on bank n when registered, with the data-out appear-  
ing CAS latency later. The PRECHARGE to bank n will  
4. Interrupted by a WRITE (with or without auto  
precharge):AWRITEto bankm willinterruptaWRITE  
on bank n when registered. The PRECHARGE to bank  
n will begin after tWR is met, where tWR begins when  
t
t
begin after WR is met, where WR begins when the  
READ to bank m is registered. The last valid WRITE to  
bank n will be data-in registered one clock prior to the  
READ to bank m (Figure 26).  
the WRITE to bank  
m
is registered.  
The last valid data WRITE to bank n will be data  
registered one clock prior to a WRITE to bank m  
(Figure 27).  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
WRITE with Burst of 4  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
t
RP - BANK n  
t
WR - BANK n  
Internal  
States  
t
RP - BANK m  
Page Active  
READ with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
D
IN  
D
a + 1  
IN  
D
OUT  
DOUT  
d + 1  
a
d
CAS Latency = 3 (BANK m)  
NOTE: 1. DQM is LOW.  
Figure 26  
WRITE With Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
BANK n  
WRITE - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
WRITE with Burst of 4  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
t
RP - BANK n  
t
WR - BANK n  
Internal  
States  
t
WR - BANK m  
Write-Back  
Page Active  
WRITE with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
DIN  
D
a + 1  
IN  
D
a + 2  
IN  
DIN  
D
d + 1  
IN  
D
d + 2  
IN  
DIN  
d + 3  
a
d
NOTE: 1. DQM is LOW.  
DONT CARE  
Figure 27  
WRITE With Auto Precharge Interrupted by a WRITE  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
27  
128Mb: x4, x8, x16  
SDRAM  
TRUTH TABLE 2 – CKE  
(Notes: 1-4)  
CKEn-1 CKEn  
CURRENT STATE  
COMMANDn  
ACTIONn  
NOTES  
L
L
L
H
L
Power-Down  
Self Refresh  
X
Maintain Power-Down  
Maintain Self Refresh  
Maintain Clock Suspend  
Exit Power-Down  
X
Clock Suspend  
Power-Down  
Self Refresh  
X
COMMAND INHIBIT or NOP  
COMMAND INHIBIT or NOP  
X
5
6
7
Exit Self Refresh  
Clock Suspend  
All Banks Idle  
All Banks Idle  
Reading or Writing  
Exit Clock Suspend  
Power-Down Entry  
Self Refresh Entry  
H
COMMAND INHIBIT or NOP  
AUTO REFRESH  
VALID  
Clock Suspend Entry  
H
H
See Truth Table 3  
NOTE: 1. CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previous clock edge.  
2. Current state is the state of the SDRAM immediately prior to clock edge n.  
3. COMMANDn is the command registered at clock edge n, and ACTIONn is a result of COMMANDn.  
4. All states and sequences not shown are illegal or reserved.  
5. Exiting power-down at clock edge n will put the device in the all banks idle state in time for clock edge n + 1  
(provided that tCKS is met).  
6. Exiting self refresh at clock edge n will put the device in the all banks idle state once tXSR is met. COMMAND INHIBIT  
or NOP commands should be issued on any clock edges occurring during the tXSR period. A minimum of two NOP  
commands must be provided during tXSR period.  
7. After exiting clock suspend at clock edge n, the device will resume operation and recognize the next command at  
clock edge n + 1.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
28  
128Mb: x4, x8, x16  
SDRAM  
TRUTH TABLE 3 – CURRENT STATE BANK n, COMMAND TO BANK n  
(Notes: 1-6; notes appear below and on next page)  
CURRENT STATE CS# RAS# CAS# WE# COMMAND (ACTION)  
NOTES  
Any  
Idle  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
COMMAND INHIBIT (NOP/Continue previous operation)  
NO OPERATION (NOP/Continue previous operation)  
ACTIVE (Select and activate row)  
L
AUTO REFRESH  
7
7
L
L
LOAD MODE REGISTER  
L
H
L
L
PRECHARGE  
11  
10  
10  
8
H
H
L
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE (Deactivate row in bank or banks)  
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE (Truncate READ burst, start PRECHARGE)  
BURST TERMINATE  
Row Active  
L
H
L
L
Read  
(Auto  
H
H
L
H
L
10  
10  
8
L
Precharge  
Disabled)  
Write  
H
H
L
L
H
H
H
L
L
9
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE (Truncate WRITE burst, start PRECHARGE)  
BURST TERMINATE  
10  
10  
8
(Auto  
L
Precharge  
Disabled)  
H
H
L
H
L
9
NOTE: 1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Truth Table 2) and after tXSR has been  
met (if the previous state was self refresh).  
2. This table is bank-specific, except where noted; i.e., the current state is for a specific bank and the commands shown  
are those allowed to be issued to that bank when in that state. Exceptions are covered in the notes below.  
3. Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and  
no register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet  
terminated or been terminated.  
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated  
or been terminated.  
4. The following states must not be interrupted by a command issued to the same bank. COMMAND INHIBIT or NOP  
commands, or allowable commands to the other bank should be issued on any clock edge occurring during these  
states. Allowable commands to the other bank are determined by its current state and Truth Table 3, and according to  
Truth Table 4.  
Precharging: Starts with registration of a PRECHARGE command and ends when tRP is met. Once tRP is  
met, the bank will be in the idle state.  
Row Activating: Starts with registration of an ACTIVE command and ends when tRCD is met. Once tRCD is  
met, the bank will be in the row active state.  
Read w/Auto  
Precharge Enabled: Starts with registration of a READ command with auto precharge enabled and ends when tRP  
has been met. Once tRP is met, the bank will be in the idle state.  
Write w/Auto  
Precharge Enabled: Starts with registration of a WRITE command with auto precharge enabled and ends when  
tRP has been met. Once tRP is met, the bank will be in the idle state.  
(Continued on next page)  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
29  
128Mb: x4, x8, x16  
SDRAM  
NOTE (continued):  
5. The following states must not be interrupted by any executable command; COMMAND INHIBIT or NOP commands  
must be applied on each positive clock edge during these states.  
Refreshing: Starts with registration of an AUTO REFRESH command and ends when tRC is met. Once tRC is  
met, the SDRAM will be in the all banks idle state.  
Accessing Mode  
Register: Starts with registration of a LOAD MODE REGISTER command and ends when tMRD has been  
met. Once tMRD is met, the SDRAM will be in the all banks idle state.  
Precharging All: Starts with registration of a PRECHARGE ALL command and ends when tRP is met. Once tRP is  
met, all banks will be in the idle state.  
6. All states and sequences not shown are illegal or reserved.  
7. Not bank-specific; requires that all banks are idle.  
8. May or may not be bank-specific; if all banks are to be precharged, all must be in a valid state for precharging.  
9. Not bank-specific; BURST TERMINATE affects the most recent READ or WRITE burst, regardless of bank.  
10. READs or WRITEs listed in the Command (Action) column include READs or WRITEs with auto precharge enabled and  
READs or WRITEs with auto precharge disabled.  
11. Does not affect the state of the bank and acts as a NOP to that bank.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
30  
128Mb: x4, x8, x16  
SDRAM  
TRUTH TABLE 4 – CURRENT STATE BANK n, COMMAND TO BANK m  
(Notes: 1-6; notes appear below and on next page)  
CURRENT STATE CS# RAS# CAS# WE# COMMAND (ACTION)  
NOTES  
Any  
H
L
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
X
L
X
H
X
H
L
X
H
X
H
H
L
COMMAND INHIBIT (NOP/Continue previous operation)  
NO OPERATION (NOP/Continue previous operation)  
Any Command Otherwise Allowed to Bank m  
ACTIVE (Select and activate row)  
Idle  
Row  
Activating,  
Active, or  
Precharging  
Read  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7
7
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(Auto  
H
H
L
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7, 10  
7, 11  
9
Precharge  
Disabled)  
Write  
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(Auto  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE  
7, 12  
7, 13  
9
Precharge  
Disabled)  
Read  
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(With Auto  
Precharge)  
H
H
L
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7, 8, 14  
7, 8, 15  
9
L
H
H
L
L
Write  
L
H
H
L
ACTIVE (Select and activate row)  
(With Auto  
Precharge)  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE  
7, 8, 16  
7, 8, 17  
9
L
H
L
NOTE: 1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Truth Table 2) and after tXSR has been met (if the  
previous state was self refresh).  
2. This table describes alternate bank operation, except where noted; i.e., the current state is for bank n and the  
commands shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given  
command is allowable). Exceptions are covered in the notes below.  
3. Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and  
no register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated  
or been terminated.  
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated  
or been terminated.  
Read w/Auto  
Precharge Enabled: Starts with registration of a READ command with auto precharge enabled, and ends when  
tRP has been met. Once tRP is met, the bank will be in the idle state.  
Write w/Auto  
Precharge Enabled: Starts with registration of a WRITE command with auto precharge enabled, and ends when  
tRP has been met. Once tRP is met, the bank will be in the idle state.  
(Continued on next page)  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
31  
128Mb: x4, x8, x16  
SDRAM  
NOTE (continued):  
4. AUTO REFRESH, SELF REFRESH and LOAD MODE REGISTER commands may only be issued when all banks are idle.  
5. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current  
state only.  
6. All states and sequences not shown are illegal or reserved.  
7. READs or WRITEs to bank m listed in the Command (Action) column include READs or WRITEs with auto precharge  
enabled and READs or WRITEs with auto precharge disabled.  
8. CONCURRENT AUTO PRECHARGE: Bank n will initiate the auto precharge command when its burst has been  
interrupted by bank ms burst.  
9. Burst in bank n continues as initiated.  
10. For a READ without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m  
will interrupt the READ on bank n, CAS latency later (Figure 7).  
11. For a READ without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m  
will interrupt the READ on bank n when registered (Figures 9 and 10). DQM should be used one clock prior to the  
WRITE command to prevent bus contention.  
12. For a WRITE without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m  
will interrupt the WRITE on bank n when registered (Figure 17), with the data-out appearing CAS latency later. The  
last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m.  
13. For a WRITE without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m  
will interrupt the WRITE on bank n when registered (Figure 15). The last valid WRITE to bank n will be data-in  
registered one clock prior to the READ to bank m.  
14. For a READ with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will  
interrupt the READ on bank n, CAS latency later. The PRECHARGE to bank n will begin when the READ to bank m is  
registered (Figure 24).  
15. For a READ with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will  
interrupt the READ on bank n when registered. DQM should be used two clocks prior to the WRITE command to  
prevent bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered (Figure 25).  
16. For a WRITE with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will  
interrupt the WRITE on bank n when registered, with the data-out appearing CAS latency later. The PRECHARGE to  
bank n will begin after tWR is met, where tWR begins when the READ to bank m is registered. The last valid WRITE to  
bank n will be data-in registered one clock prior to the READ to bank m (Figure 26).  
17. For a WRITE with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will  
interrupt the WRITE on bank n when registered. The PRECHARGE to bank n will begin after tWR is met, where tWR  
begins when the WRITE to bank m is registered. The last valid WRITE to bank n will be data registered one clock prior  
to the WRITE to bank m (Figure 27).  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
32  
128Mb: x4, x8, x16  
SDRAM  
*Stresses greater than those listed under “Absolute Maxi-  
mum Ratings” may cause permanent damage to the de-  
vice. This is a stress rating only, and functional operation  
of the device at these or any other conditions above those  
indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
ABSOLUTE MAXIMUM RATINGS*  
Voltage on VDD/VDDQ Supply  
Relative to VSS ........................................ -1V to +4.6V  
Voltage on Inputs, NC or I/O Pins  
Relative to VSS ........................................ -1V to +4.6V  
Operating Temperature,  
TA (commercial) ........................................ 0°C to +70°C  
Operating Temperature,  
TA (extended; IT parts) ......................... -40°C to +85°C  
Storage Temperature (plastic) ................ -55°C to +150°C  
Power Dissipation .......................................................... 1W  
DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS  
(Notes: 1, 5, 6; notes appear on page 36; VDD/VDDQ = +3.3V 0.3V)  
PARAMETER/CONDITION  
SYMBOL  
VDD/VDDQ  
VIH  
MIN  
3
MAX UNITS NOTES  
Supply Voltage  
3.6  
VDD + 0.3  
0.8  
V
V
V
Input High Voltage: Logic 1; All inputs  
Input Low Voltage: Logic 0; All inputs  
2
22  
22  
VIL  
-0.3  
Input Leakage Current:  
Any input 0V VIN VDD  
(All other pins not under test = 0V)  
II  
-5  
5
µA  
Output Leakage Current: DQs are disabled; 0V VOUT VDDQ  
IOZ  
-5  
5
µA  
V
Output Levels:  
VOH  
2.4  
Output High Voltage (IOUT = -4mA)  
Output Low Voltage (IOUT = 4mA)  
VOL  
0.4  
V
IDD SPECIFICATIONS AND CONDITIONS  
(Notes: 1, 5, 6, 11, 13; notes appear on page 36; VDD/VDDQ = +3.3V 0.3V)  
MAX  
-75 -8E UNITS NOTES  
PARAMETER/CONDITION  
SYMBOL -7E  
Operating Current: Active Mode;  
IDD1  
IDD2  
IDD3  
160 150 140  
mA  
mA  
mA  
3, 18,  
19, 32  
Burst = 2; READ or WRITE; tRC = tRC (MIN)  
Standby Current: Power-Down Mode;  
All banks idle; CKE = LOW  
2
2
2
32  
Standby Current: Active Mode;  
50  
50  
40  
3, 12,  
19, 32  
CKE = HIGH; CS# = HIGH; All banks active after tRCD met;  
No accesses in progress  
Operating Current: Burst Mode; Continuous burst;  
READ or WRITE; All banks active  
IDD4  
165 150 140  
330 310 270  
mA  
3, 18,  
19, 32  
Auto Refresh Current  
tRFC = tRFC (MIN)  
tRFC = 15.625µs  
IDD5  
IDD6  
mA  
mA  
3, 12,  
18, 19,  
32, 33  
CKE = HIGH; CS# = HIGH  
3
3
3
Self Refresh Current:  
Standard  
IDD7  
IDD7  
2
1
2
1
2
1
mA  
mA  
4
CKE 0.2V  
Low power (L)  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
33  
128Mb: x4, x8, x16  
SDRAM  
CAPACITANCE  
(Note: 2; notes appear on page 36)  
PARAMETER - TSOP “TG” Package  
Input Capacitance: CLK  
SYMBOL  
CI1  
MIN  
2.5  
MAX UNITS NOTES  
3.5  
3.8  
6.0  
pF  
pF  
pF  
29  
30  
31  
Input Capacitance: All other input-only pins  
Input/Output Capacitance: DQs  
CI2  
2.5  
CIO  
4.0  
PARAMETER - FBGA “FB” Package  
Input Capacitance: CLK  
SYMBOL  
CI1  
MIN  
1.5  
MAX UNITS NOTES  
3.5  
3.8  
6.0  
pF  
pF  
pF  
34  
35  
36  
Input Capacitance: All other input-only pins  
Input/Output Capacitance: DQs  
CI2  
1.5  
CIO  
3.0  
ELECTRICAL CHARACTERISTICS AND RECOMMENDED  
AC OPERATING CONDITIONS  
(Notes: 5, 6, 8, 9, 11; notes appear on page 36)  
AC CHARACTERISTICS  
PARAMETER  
Access time from CLK (pos. edge)  
-7E  
-75  
MAX  
-8E  
MIN  
SYMBOL MIN  
MAX  
5.4  
MIN  
MAX  
6
6
UNITS NOTES  
t
CL = 3  
CL = 2  
AC(3)  
5.4  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
27  
t
AC(2)  
5.4  
t
Address hold time  
Address setup time  
CLK high-level width  
CLK low-level width  
Clock cycle time  
AH  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
1
2
t
AS  
CH  
t
3
t
CL  
3
t
t
CL = 3  
CL = 2  
CK(3)  
CK(2)  
8
23  
23  
7.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
10  
1
t
CKE hold time  
CKH  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
t
CKE setup time  
CKS  
2
t
CS#, RAS#, CAS#, WE#, DQM hold time  
CS#, RAS#, CAS#, WE#, DQM setup time  
Data-in hold time  
CMH  
1
t
CMS  
2
t
DH  
1
t
Data-in setup time  
DS  
2
t
t
Data-out high-impedance time  
CL = 3  
CL = 2  
HZ(3)  
HZ(2)  
5.4  
5.4  
5.4  
6
6
6
10  
10  
t
Data-out low-impedance time  
Data-out hold time (load)  
LZ  
1
3
1
3
1
3
t
OH  
t
Data-out hold time (no load)  
ACTIVE to PRECHARGE command  
ACTIVE to ACTIVE command period  
ACTIVE to READ or WRITE delay  
Refresh period (4,096 rows)  
AUTO REFRESH period  
OH  
1.8  
37  
60  
15  
1.8  
44  
66  
20  
1.8  
50  
70  
20  
28  
N
t
RAS  
120,000  
64  
120,000  
64  
120,000  
64  
t
RC  
t
RCD  
t
REF  
t
RFC  
66  
15  
14  
0.3  
66  
20  
15  
0.3  
70  
20  
20  
0.3  
t
PRECHARGE command period  
ACTIVE bank a to ACTIVE bank b command  
Transition time  
RP  
t
RRD  
t
T
1.2  
1.2  
1.2  
7
t
WRITE recovery time  
WR 1 CLK +  
7ns  
1 CLK +  
7.5ns  
1 CLK +  
7ns  
24  
14  
15  
75  
15  
80  
ns  
ns  
25  
20  
t
Exit SELF REFRESH to ACTIVE command  
XSR  
67  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
34  
128Mb: x4, x8, x16  
SDRAM  
AC FUNCTIONAL CHARACTERISTICS  
(Notes: 5, 6, 7, 8, 9, 11; notes appear on page 36)  
PARAMETER  
SYMBOL  
-7E -75 -8E UNITS NOTES  
t
t
READ/WRITE command to READ/WRITE command  
CKE to clock disable or power-down entry mode  
CKE to clock enable or power-down exit setup mode  
DQM to input data delay  
DQM to data mask during WRITEs  
DQM to data high-impedance during READs  
WRITE command to input data delay  
Data-in to ACTIVE command  
Data-in to PRECHARGE command  
Last data-in to burst STOP command  
CCD  
1
1
1
0
0
2
0
4
2
1
1
2
2
3
2
1
1
1
0
0
2
0
5
2
1
1
2
2
3
2
1
1
1
0
0
2
0
4
2
1
1
2
2
3
2
CK  
CK  
CK  
CK  
CK  
CK  
CK  
17  
14  
14  
17  
17  
17  
17  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
CKED  
t
PED  
t
DQD  
DQM  
DQZ  
t
t
t
DWD  
t
DAL  
CK 15, 21  
CK 16, 21  
CK  
CK  
t
t
DPL  
BDL  
CDL  
RDL  
17  
17  
t
t
Last data-in to new READ/WRITE command  
Last data-in to PRECHARGE command  
LOAD MODE REGISTER command to ACTIVE or REFRESH command  
Data-out to high-impedance from PRECHARGE command  
CK 16, 21  
t
MRD  
CK  
CK  
CK  
26  
17  
17  
t
t
CL = 3  
CL = 2  
ROH(3)  
ROH(2)  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
35  
128Mb: x4, x8, x16  
SDRAM  
NOTES  
t
t
1. All voltages referenced to VSS.  
15. Timing actually specified by WR plus RP; clock(s)  
specified as a reference only at minimum cycle rate.  
16. Timing actually specified by tWR.  
2. This parameter is sampled. VDD, VDDQ = +3.3V;  
f = 1 MHz, TA = 25°C; pin under test biased at 1.4V.  
3. IDD is dependent on output loading and cycle rates.  
Specified values are obtained with minimum cycle  
time and the outputs open.  
4. Enables on-chip refresh and address counters.  
5. The minimum specifications are used only to  
indicate cycle time at which proper operation over  
the full temperature range (0°C TA +70°C and -  
40°C TA +85°C for IT parts) is ensured.  
17. Required clocks are specified by JEDEC functionality  
and are not dependent on any timing parameter.  
18. The IDD current will increase or decrease propor-  
tionally according to the amount of frequency alter-  
ation for the test condition.  
19. Address transitions average one transition every two  
clocks.  
20. CLK must be toggled a minimum of two times during  
this period.  
6. An initial pause of 100µs is required after power-up,  
followed by two AUTO REFRESH commands, before  
proper device operation is ensured. (VDD and VDDQ  
must be powered up simultaneously. VSS and VSSQ  
mustbeatsamepotential.)ThetwoAUTOREFRESH  
command wake-ups should be repeated any time  
the tREF refresh requirement is exceeded.  
21. Based on tCK = 10ns for -8E and tCK = 7.5ns for -75 and  
-7E .  
22. VIH overshoot: VIH (MAX) = VDDQ + 2V for a pulse width  
3ns, and the pulse width cannot be greater than one  
third of the cycle rate. VIL undershoot: VIL (MIN) = -2V  
for a pulse width 3ns.  
23. The clock frequency must remain constant (stable  
clock is defined as a signal cycling within timing  
constraints specified for the clock pin) during access  
7. AC characteristics assume tT = 1ns.  
8. In addition to meeting the transition rate specifica-  
tion, theclockandCKEmusttransitbetweenVIH and  
VIL (or between VIL and VIH) in a monotonic manner.  
9. Outputs measured at 1.5V with equivalent load:  
t
or precharge states (READ, WRITE, including WR,  
and PRECHARGE commands). CKE may be used to  
reduce the data rate.  
Q
24. Auto precharge mode only. The precharge timing  
budget (tRP) begins 7ns for -7E, 7.5ns for -75, and 7ns  
for -8E after the first clock delay, after the last WRITE  
is executed. May not exceed limit set for precharge  
mode.  
50pF  
t
10. HZ defines the time at which the output achieves the  
25. Precharge mode only.  
open circuit condition; it is not a reference to VOH or  
VOL. The last valid data element will meet tOH before  
going High-Z.  
26. JEDEC and PC100 specify three clocks.  
27. AC for -75/-7E at CL = 3 with no load is 4.6ns and is  
t
guaranteed by design.  
11. AC timing and IDD tests have VIL = 0V and VIH = 3V, with  
timing referenced to 1.5V crossover point. If the in-  
put transition time is longer than 1 ns, then the  
timing is referenced at VIL (MAX) and VIH (MIN) and  
no longer at the 1.5V crossover point. Refer to Micron  
Technical Note TN-48-09 for more details.  
12. Other input signals are allowed to transition no more  
than once every two clocks and are otherwise at valid  
VIH or VIL levels.  
28. Parameter guaranteed by design.  
29. PC100 specifies a maximum of 4pF.  
30. PC100 specifies a maximum of 5pF.  
31. PC100 specifies a maximum of 6.5pF.  
t
32. For -8E, CL = 2 and CK = 10ns; for -75, CL = 3 and  
tCK = 7.5ns; for -7E, CL = 2 and tCK = 7.5ns.  
33. CKE is HIGH during refresh command period  
tRFC (MIN) else CKE is LOW. The IDD6 limit is actu-  
ally a nominal value and does not result in a fail  
value.  
13. IDD specifications are tested after the device is prop-  
erly initialized.  
34. PC133 specifies a minimum of 2.5pF.  
35. PC133 specifies a minimum of 2.5pF.  
36. PC133 specifies a minimum of 3.0pF.  
14. Timing actually specified by tCKS; clock(s) specified  
as a reference only at minimum cycle rate.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 – Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
36  
128Mb: x4, x8, x16  
SDRAM  
1
INITIALIZE AND LOAD MODE REGISTER  
T0  
T1  
Tn + 1  
To + 1  
CL  
Tp + 1  
Tp + 2  
Tp + 3  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CK  
CLK  
CKE  
((  
))  
t
( (  
) )  
( (  
) )  
( (  
) )  
CH  
t
t
CKH  
CKS  
((  
))  
((  
))  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
t
t
t
t
CMS CMH  
CMS CMH  
CMS CMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
LOAD MODE  
REGISTER  
COMMAND  
NOP  
PRECHARGE  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
DQM /  
DQML, DQMH  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0-A9, A11  
A10  
CODE  
ROW  
ROW  
BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CODE  
SINGLE BANK  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ALL  
BANKS  
BA0, BA1  
DQ  
High-Z  
((  
))  
((  
))  
T = 100µs  
MIN  
t
t
t
t
MRD  
RP  
RFC  
RFC  
Power-up:  
Program Mode Register 2, 3, 4  
AUTO REFRESH  
VDD and  
AUTO REFRESH  
Precharge  
all banks  
CLK stable  
DONT CARE  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
-7E  
-75  
MAX  
-8E  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
2.5  
2.5  
7.5  
10  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
MIN  
2
MAX UNITS  
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
1
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
CMH  
CMS  
MRD  
RFC  
RP  
1.5  
0.8  
1.5  
2
1.5  
0.8  
1.5  
2
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
AS  
1
CH  
3
2
3
t
CL  
3
2
CK  
CK (3)  
CK (2)  
CKH  
8
66  
15  
66  
20  
70  
20  
ns  
ns  
7.5  
0.8  
10  
1
0.8  
*CAS latency indicated in parentheses.  
NOTE: 1. If CS# is HIGH at clock HIGH time, all commands applied are NOP, with CKE a Dont Care.”  
2. The mode register may be loaded prior to the AUTO REFRESH cycles if desired.  
3. JEDEC and PC100 specify three clocks.  
4. Outputs are guaranteed High-Z after command is issued.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
37  
128Mb: x4, x8, x16  
SDRAM  
1
POWER-DOWN MODE  
T0  
T1  
T2  
Tn + 1  
Tn + 2  
( (  
) )  
t
t
CK  
CL  
CLK  
CKE  
( (  
t
CH  
) )  
t
t
CKS  
CKS  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS CMH  
( (  
) )  
COMMAND  
PRECHARGE  
NOP  
NOP  
NOP  
ACTIVE  
( (  
) )  
( (  
) )  
( (  
) )  
DQM /  
DQML, DQMH  
( (  
) )  
( (  
) )  
A0-A9, A11  
A10  
ROW  
ROW  
ALL BANKS  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
BANK  
BANK(S)  
High-Z  
( (  
) )  
Two clock cycles  
Input buffers gated off while in  
power-down mode  
Precharge all  
active banks  
All banks idle  
All banks idle, enter  
power-down mode  
Exit power-down mode  
DONT CARE  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
MAX UNITS  
-7E  
-75  
-8E  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
2.5  
2.5  
7.5  
MIN  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
10  
1
MAX UNITS  
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
1
2
3
3
8
ns  
ns  
ns  
ns  
ns  
CK (2)  
CKH  
CKS  
7.5  
0.8  
1.5  
0.8  
1.5  
10  
0.8  
1.5  
0.8  
1.5  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
AS  
CH  
2
CL  
CMH  
CMS  
1
CK (3)  
2
*CAS latency indicated in parentheses.  
NOTE: 1. Violating refresh requirements during power-down may result in a loss of data.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
38  
128Mb: x4, x8, x16  
SDRAM  
1
CLOCK SUSPEND MODE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CK  
CL  
CLK  
CKE  
t
CH  
t
t
CKS CKH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
t
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
AH  
AS  
2
2
A0-A9, A11  
COLUMN m  
COLUMN e  
t
t
AH  
AS  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK  
t
AC  
t
t
t
t
t
DH  
AC  
OH  
HZ  
DS  
D
OUT  
m
D
OUT m + 1  
D
OUT  
e
DOUT e + 1  
DQ  
t
LZ  
DONT CARE  
UNDEFINED  
TIMING PARAMETERS  
-7E  
-75  
-8E  
MAX UNITS  
-7E  
-75  
-8E  
SYMBOL* MIN  
MAX  
5.4  
MIN  
MAX  
5.4  
6
MIN  
SYMBOL* MIN  
MAX  
MIN  
1.5  
0.8  
1.5  
0.8  
1.5  
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
CMH  
CMS  
DH  
1.5  
0.8  
1.5  
0.8  
1.5  
2
1
2
1
2
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
AC (2)  
5.4  
t
AH  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
1
2
t
t
t
t
t
t
AS  
CH  
3
DS  
CL  
3
HZ(3)  
HZ(2)  
LZ  
5.4  
5.4  
5.4  
6
6
6
ns  
ns  
ns  
ns  
CK (3)  
CK (2)  
CKH  
8
7.5  
0.8  
10  
1
1
3
1
3
1
3
0.8  
OH  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 2, the CAS latency = 3, and auto precharge is disabled.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
39  
128Mb: x4, x8, x16  
SDRAM  
AUTO REFRESH MODE  
T0  
T1  
T2  
Tn + 1  
CL  
To + 1  
( (  
) )  
( (  
) )  
t
CLK  
CKE  
t
t
( (  
) )  
( (  
) )  
CK  
CH  
( (  
) )  
( (  
) )  
t
t
t
CKS  
CMS  
CKH  
t
CMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
COMMAND  
PRECHARGE  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
DQM /  
DQML, DQMH  
( (  
) )  
( (  
) )  
A0-A9, A11  
A10  
ROW  
ROW  
( (  
) )  
( (  
) )  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
BANK(S)  
BA0, BA1  
DQ  
BANK  
High-Z  
( (  
) )  
( (  
) )  
t
t
t
RFC  
1
1
RP  
RFC  
Precharge all  
active banks  
DONT CARE  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
-7E  
-75  
MAX  
-8E  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
2.5  
2.5  
7.5  
10  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
0.8  
1.5  
66  
MIN  
1
MAX UNITS  
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
CKS  
CMH  
CMS  
RFC  
RP  
0.8  
1.5  
0.8  
1.5  
66  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
AS  
2
2
CH  
3
1
CL  
3
2
CK (3)  
CK (2)  
8
70  
20  
7.5  
10  
15  
20  
*CAS latency indicated in parentheses.  
NOTE: 1. Each AUTO REFRESH command performs a refresh cycle. Back-to-back commands are not required.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
40  
128Mb: x4, x8, x16  
SDRAM  
SELF REFRESH MODE  
T0  
T1  
T2  
Tn + 1  
To + 1  
To + 2  
( (  
) )  
( (  
) )  
t
CL  
CLK  
CKE  
( (  
t
( (  
) )  
t
CH  
CK  
) )  
t
CKS  
RAS min1  
t
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
or COMMAND  
INHIBIT  
COMMAND  
PRECHARGE  
NOP  
NOP  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
DQM/  
DQML, DQMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0-A9, A11  
A10  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ALL BANKS  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
BANK(S)  
High-Z  
( (  
) )  
( (  
) )  
t
t
RP  
XSR  
Precharge all  
active banks  
Enter self refresh mode  
Exit self refresh mode  
(Restart refresh time base)  
DONT CARE  
CLK stable prior to exiting  
self refresh mode  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
MAX UNITS  
-7E  
MAX  
-75  
-8E  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
2.5  
2.5  
7.5  
10  
MIN  
1
SYMBOL* MIN  
MIN  
1.5  
0.8  
1.5  
44  
MAX  
MIN  
2
MAX UNITS  
t
t
t
t
t
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
CMH  
CMS  
RAS  
RP  
1.5  
0.8  
1.5  
37  
ns  
ns  
ns  
t
t
t
t
t
t
AS  
2
1
CH  
3
2
CL  
3
120,000  
120,000  
50  
20  
80  
120,000  
ns  
ns  
ns  
CK (3)  
CK (2)  
CKH  
8
15  
20  
7.5  
0.8  
10  
1
XSR  
75  
75  
0.8  
*CAS latency indicated in parentheses.  
NOTES:1. No maximum time limit for Self Refresh. tRAS max applies to non-Self Refresh mode.  
t
2. XSR requires minimum of two clocks regardless of frequency or timing.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
41  
128Mb: x4, x8, x16  
SDRAM  
1
READ – WITHOUT AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS CMH  
COMMAND  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
ROW  
t
t
CMS CMH  
DQM /  
DQML, DQMH  
t
t
AS  
AH  
COLUMN m2  
A0-A9, A11  
ROW  
t
t
AS  
AH  
ALL BANKS  
ROW  
ROW  
A10  
SINGLE BANKS  
BANK(S)  
DISABLE AUTO PRECHARGE  
BANK  
t
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
t
AC  
AC  
AC  
t
t
t
t
t
OH  
AC  
OH  
OH  
OH  
DOUT  
m
D
OUT m+1  
D
OUT m+2  
DOUT m+3  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CAS Latency  
RP  
t
RAS  
t
RC  
DONT CARE  
UNDEFINED  
TIMING PARAMETERS  
-7E  
-75  
-8E  
MAX UNITS  
-7E  
-75  
-8E  
SYMBOL* MIN  
MAX  
5.4  
MIN  
MAX  
5.4  
6
MIN  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS  
t
t
AC(3)  
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
HZ(3)  
HZ(2)  
LZ  
0.8  
1.5  
0.8  
1.5  
1
2
ns  
ns  
t
t
t
t
t
t
t
t
t
t
AC(2)  
5.4  
t
AH  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
1
2
5.4  
5.4  
5.4  
6
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
AS  
CH  
3
1
1
1
CL  
3
OH  
3
3
3
CK(3)  
CK(2)  
CKH  
CKS  
8
RAS  
RC  
37  
60  
15  
15  
120,000  
44  
66  
20  
20  
120,000  
50  
70  
20  
20  
120,000  
7.5  
0.8  
1.5  
10  
1
0.8  
1.5  
RCD  
RP  
2
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, the CAS latency = 2, and the READ burst is followed by a manual”  
PRECHARGE.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
42  
128Mb: x4, x8, x16  
SDRAM  
1
READ – WITH AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS CMH  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
AH  
AS  
2
A0-A9, A11  
ROW  
ROW  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK  
BANK  
t
t
t
AC  
AC  
AC  
t
t
t
t
t
AC  
OH  
OH  
OH  
OH  
DOUT  
m
D
OUT  
m
+ 1  
D
OUT  
m
+ 2  
DOUT m + 3  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CAS Latency  
RP  
t
RAS  
t
RC  
DONT CARE  
UNDEFINED  
TIMING PARAMETERS  
-7E  
-75  
-8E  
MAX UNITS  
-7E  
-75  
-8E  
SYMBOL* MIN  
MAX  
5.4  
MIN  
MAX  
5.4  
6
MIN  
SYMBOL* MIN  
MAX  
MIN  
0.8  
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
HZ(3)  
HZ(2)  
LZ  
0.8  
1.5  
1
2
ns  
ns  
t
t
t
t
t
t
t
t
t
t
AC (2)  
5.4  
1.5  
t
AH  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
1
2
5.4  
5.4  
5.4  
6
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
AS  
CH  
3
1
1
1
CL  
3
OH  
3
3
3
CK (3)  
CK (2)  
CKH  
CKS  
8
RAS  
RC  
37  
60  
15  
15  
120,000  
44  
66  
20  
20  
120,000  
50  
70  
20  
20  
120,000  
7.5  
0.8  
1.5  
10  
1
0.8  
1.5  
RCD  
RP  
2
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the CAS latency = 2.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
43  
128Mb: x4, x8, x16  
SDRAM  
1
SINGLE READ – WITHOUT AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
CK  
t
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS CMH  
3
3
COMMAND  
PRECHARGE  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
ACTIVE  
ROW  
NOP  
t
t
CMS CMH  
DQM /  
DQML, DQMH  
t
t
AH  
AS  
2
A0-A9, A11  
ROW  
COLUMN m  
t
AS  
t
AH  
ALL BANKS  
ROW  
ROW  
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANKS  
BANK(S)  
t
AS  
t
AH  
BA0, BA1  
BANK  
BANK  
t
AC  
t
OH  
DOUT m  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CAS Latency  
RP  
t
RAS  
t
RC  
DONT CARE  
UNDEFINED  
TIMING PARAMETERS  
-7E  
-75  
-8E  
MAX UNITS  
-7E  
MAX  
-75  
-8E  
SYMBOL* MIN  
MAX  
5.4  
MIN  
MAX  
5.4  
6
MIN  
SYMBOL* MIN  
MIN  
0.8  
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
HZ(3)  
HZ(2)  
LZ  
0.8  
1.5  
1
2
ns  
ns  
t
t
t
t
t
t
t
t
t
t
AC (2)  
5.4  
1.5  
t
AH  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
1
2
5.4  
5.4  
5.4  
6
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
AS  
CH  
3
1
1
1
CL  
3
OH  
3
3
3
CK (3)  
CK (2)  
CKH  
CKS  
8
RAS  
RC  
37  
60  
15  
15  
120,000  
44  
66  
20  
20  
120,000  
50  
70  
20  
20  
120,000  
7.5  
0.8  
1.5  
10  
1
0.8  
1.5  
RCD  
RP  
2
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 1, the CAS latency = 2, and the READ burst is followed by a manual”  
PRECHARGE.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
3. PRECHARGE command not allowed or tRAS would be violated.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
44  
128Mb: x4, x8, x16  
SDRAM  
1
SINGLE READ – WITH AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS CMH  
3
3
COMMAND  
ACTIVE  
NOP  
NOP  
NOP  
READ  
t
NOP  
ACTIVE  
NOP  
NOP  
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
AH  
AS  
2
A0-A9, A11  
ROW  
ROW  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK  
BANK  
BANK  
t
AC  
t
OH  
D
OUT  
m
DQ  
t
CAS Latency  
t
RCD  
HZ  
t
t
RP  
RAS  
t
RC  
DONT CARE  
UNDEFINED  
TIMING PARAMETERS  
-7E  
-75  
-8E  
MAX UNITS  
-7E  
-75  
-8E  
SYMBOL* MIN  
MAX  
5.4  
MIN  
MAX  
5.4  
6
MIN  
SYMBOL* MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
HZ(3)  
HZ(2)  
LZ  
0.8  
1.5  
0.8  
1.5  
1
2
ns  
ns  
t
t
t
t
t
t
t
t
t
t
AC (2)  
5.4  
t
AH  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
1
2
5.4  
5.4  
5.4  
6
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
AS  
CH  
3
1
1
1
CL  
3
OH  
3
3
3
CK (3)  
CK (2)  
CKH  
CKS  
8
RAS  
RC  
37  
60  
15  
15  
120,000  
44  
66  
20  
20  
120,000  
50  
70  
20  
20  
120,000  
7.5  
0.8  
1.5  
10  
1
0.8  
1.5  
RCD  
RP  
2
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 1, and the CAS latency = 2.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
3. READ command not allowed else tRAS would be violated.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
45  
128Mb: x4, x8, x16  
SDRAM  
1
ALTERNATING BANK READ ACCESSES  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
ACTIVE  
NOP  
READ  
NOP  
ACTIVE  
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
AH  
AS  
2
2
A0-A9, A11  
ROW  
ROW  
ROW  
ROW  
COLUMN m  
COLUMN b  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK 0  
BANK 0  
BANK 3  
t
BANK 3  
BANK 0  
t
t
t
t
AC  
AC  
AC  
AC  
AC  
t
t
t
t
t
t
AC  
OH  
OH  
OH  
OH  
OH  
DOUT  
m
D
OUT m + 1  
D
OUT m + 2  
D
OUT m + 3  
DOUT b  
DQ  
t
LZ  
t
t
RCD - BANK 0  
t
RCD - BANK 0  
CAS Latency - BANK 0  
RP - BANK 0  
t
RAS - BANK 0  
t
RC - BANK 0  
t
t
RCD - BANK 3  
CAS Latency - BANK 3  
RRD  
DONT CARE  
UNDEFINED  
TIMING PARAMETERS  
-7E  
-75  
-8E  
-7E  
-75  
-8E  
SYMBOL* MIN  
MAX  
5.4  
MIN  
MAX  
5.4  
6
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AC (3)  
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
LZ  
0.8  
1.5  
1
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
AC (2)  
5.4  
2
t
AH  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
1
2
1
t
t
t
t
t
t
t
AS  
OH  
3
3
3
CH  
3
RAS  
RC  
44  
60  
15  
15  
14  
120,000  
44  
66  
20  
20  
15  
120,000  
50  
70  
20  
20  
20  
120,000  
ns  
ns  
ns  
ns  
ns  
CL  
3
CK (3)  
CK (2)  
CKH  
CKS  
8
RCD  
RP  
7.5  
0.8  
1.5  
10  
1
0.8  
1.5  
RRD  
2
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the CAS latency = 2.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
46  
128Mb: x4, x8, x16  
SDRAM  
1
READ – FULL-PAGE BURST  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Tn + 1  
Tn + 2  
Tn + 3  
Tn + 4  
( (  
) )  
( (  
) )  
t
t
CK  
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
( (  
) )  
CKE  
( (  
) )  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
BURST TERM  
NOP  
NOP  
t
CMS  
CMH  
( (  
) )  
DQM /  
DQML, DQMH  
( (  
) )  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
2
A0-A9, A11  
ROW  
COLUMN m  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
ROW  
A10  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
AC  
AC  
AC  
AC  
AC  
( (  
) )  
t
t
t
t
t
t
t
OH  
AC  
OH  
OH  
OH  
OH  
OH  
( (  
) )  
( (  
) )  
D
OUT  
m
D
OUT m+1  
D
OUT m+2  
D
OUT m-1  
D
OUT  
m
DOUT m+1  
DQ  
t
LZ  
t
HZ  
512 (x16) locations within same row  
1,024 (x8) locations within same row  
2,048 (x4) locations within same row  
t
RCD  
CAS Latency  
Full page completed  
DONT CARE  
Full-page burst does not self-terminate.  
Can use BURST TERMINATE command.  
3
UNDEFINED  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
-7E  
-75  
-8E  
SYMBOL* MNI  
MAX  
5.4  
MIN  
MIN  
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1.5  
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
5.4  
6
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
1.5  
0.8  
1.5  
2
1
2
ns  
ns  
ns  
t
t
t
t
t
t
t
t
AC (2)  
5.4  
CMH  
CMS  
HZ(3)  
HZ(2)  
LZ  
0.8  
t
AH  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
1
2
1.5  
t
t
t
t
t
t
AS  
5.4  
5.4  
5.4  
6
6
6
ns  
ns  
ns  
ns  
ns  
CH  
3
CL  
3
1
3
1
3
1
3
CK (3)  
CK (2)  
CKH  
8
OH  
7.5  
0.8  
10  
1
RCD  
15  
20  
20  
0.8  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the CAS latency = 2.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
3. Page left open; no tRP.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
47  
128Mb: x4, x8, x16  
SDRAM  
1
READ – DQM OPERATION  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
CMS CMH  
DQM /  
DQML, DQMH  
t
AS  
t
AH  
2
A0-A9, A11  
A10  
ROW  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
DISABLE AUTO PRECHARGE  
BANK  
t
AS  
t
AH  
BA0, BA1  
BANK  
t
AC  
t
t
t
t
t
OH  
AC  
OH  
AC  
OH  
D
OUT  
m
DOUT m + 2  
DOUT m + 3  
DQ  
t
LZ  
t
t
t
HZ  
LZ  
HZ  
t
RCD  
CAS Latency  
DONT CARE  
UNDEFINED  
TIMING PARAMETERS  
-7E  
-75  
-8E  
MAX UNITS  
-7E  
-75  
MAX  
-8E  
SYMBOL* MIN  
MAX  
5.4  
MIN  
MAX  
5.4  
6
MIN  
SYMBOL* MIN  
MAX  
MIN  
1.5  
MIN  
MAX UNITS  
t
t
AC (3)  
6
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
1.5  
0.8  
1.5  
2
1
2
ns  
ns  
ns  
t
t
t
t
t
t
t
t
AC (2)  
5.4  
CMH  
CMS  
HZ(3)  
HZ(2)  
LZ  
0.8  
t
AH  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
1
2
1.5  
t
t
t
t
t
t
AS  
5.4  
5.4  
5.4  
6
6
6
ns  
ns  
ns  
ns  
ns  
CH  
3
CL  
3
1
3
1
3
1
3
CK (3)  
CK (2)  
CKH  
8
OH  
7.5  
0.8  
10  
1
RCD  
15  
20  
20  
0.8  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the CAS latency = 2.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
48  
128Mb: x4, x8, x16  
SDRAM  
1
WRITE – WITHOUT AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
NOP  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
t
t
AH  
AS  
3
A0-A9, A11  
ROW  
t
ROW  
ROW  
BANK  
COLUMN m  
AS  
AH  
ALL BANKS  
ROW  
t
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANK  
BANK  
AS  
AH  
BA0, BA1  
BANK  
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DIN  
m
DIN m + 1  
DIN m + 2  
DIN m + 3  
DQ  
2
t
t
t
RCD  
RP  
WR  
t
RAS  
t
RC  
DONT CARE  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
-7E  
MAX  
-75  
MAX  
-8E  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
2.5  
2.5  
7.5  
10  
MIN  
MAX UNITS  
SYMBOL* MIN  
MIN  
1.5  
0.8  
1.5  
44  
MIN  
2
MAX UNITS  
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
1
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
DH  
DS  
1.5  
0.8  
1.5  
37  
60  
15  
15  
14  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
AS  
1
CH  
3
2
CL  
3
RAS  
RC  
120,000  
120,000  
50  
70  
20  
20  
15  
120,000  
ns  
ns  
ns  
ns  
ns  
CK (3)  
CK (2)  
CKH  
CKS  
CMH  
8
66  
7.5  
0.8  
1.5  
0.8  
10  
1
RCD  
RP  
20  
0.8  
1.5  
0.8  
20  
2
WR  
15  
1
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the WRITE burst is followed by a manualPRECHARGE.  
2. 15ns is required between <DIN m + 3> and the PRECHARGE command, regardless of frequency.  
3. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
49  
128Mb: x4, x8, x16  
SDRAM  
1
WRITE – WITH AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
AS  
AH  
2
A0-A9, A11  
ROW  
ROW  
ROW  
BANK  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DIN  
m
DIN m + 1  
DIN m + 2  
DIN m + 3  
DQ  
t
t
RP  
t
RCD  
WR  
t
RAS  
t
RC  
DONT CARE  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
-7E  
-75  
MAX  
-8E  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
2.5  
2.5  
7.5  
10  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1.5  
MIN  
MAX UNITS  
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
DH  
DS  
1.5  
0.8  
2
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
AS  
2
0.8  
CH  
3
1.5  
1.5  
2
CL  
3
RAS  
RC  
37  
120,000  
44  
120,000  
50  
120,000  
CK (3)  
CK (2)  
CKH  
CKS  
CMH  
8
60  
66  
70  
7.5  
0.8  
1.5  
0.8  
10  
1
RCD  
RP  
15  
20  
20  
0.8  
1.5  
0.8  
15  
20  
20  
2
WR  
1 CLK +  
7ns  
1 CLK +  
7.5ns  
1 CLK +  
7ns  
1
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
50  
128Mb: x4, x8, x16  
SDRAM  
1
SINGLE WRITE – WITHOUT AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
4
4
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
NOP  
t
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
t
t
AH  
AS  
3
A0-A9, A11  
ROW  
t
COLUMN m  
AS  
AH  
ALL BANKS  
ROW  
t
ROW  
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANK  
BANK  
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
DH  
DS  
D
IN  
m
DQ  
t
t
RP  
2
t
RCD  
WR  
t
RAS  
t
RC  
DONT CARE  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
-7E  
MAX  
-75  
-8E  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
2.5  
2.5  
7.5  
10  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MIN  
1.5  
0.8  
1.5  
44  
MAX  
MIN  
2
MAX UNITS  
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
DH  
DS  
1.5  
0.8  
1.5  
37  
60  
15  
15  
14  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
AS  
2
1
CH  
3
2
CL  
3
RAS  
RC  
120,000  
120,000  
50  
70  
20  
20  
15  
120,000  
ns  
ns  
ns  
ns  
ns  
CK (3)  
CK (2)  
CKH  
CKS  
CMH  
8
66  
7.5  
0.8  
1.5  
0.8  
10  
1
RCD  
RP  
20  
0.8  
1.5  
0.8  
20  
2
WR  
15  
1
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 1, and the WRITE burst is followed by a manualPRECHARGE.  
2. 15ns is required between <DIN m> and the PRECHARGE command, regardless of frequency.  
3. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
4. PRECHARGE command not allowed else tRAS would be violated.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
51  
128Mb: x4, x8, x16  
SDRAM  
1
SINGLE WRITE – WITH AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
3
3
3
NOP  
COMMAND  
ACTIVE  
NOP  
ACTIVE  
NOP  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
AS  
AH  
2
A0-A9, A11  
ROW  
ROW  
ROW  
BANK  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
DH  
DS  
DIN m  
DQ  
t
t
RP  
t
RCD  
WR  
t
RAS  
t
RC  
DONT CARE  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
-7E  
MAX  
-75  
MAX  
-8E  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
2.5  
2.5  
7.5  
10  
MIN  
MAX UNITS  
SYMBOL* MIN  
MIN  
1.5  
MIN  
MAX UNITS  
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
1
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
DH  
DS  
1.5  
0.8  
2
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
AS  
0.8  
CH  
3
1.5  
1.5  
2
CL  
3
RAS  
RC  
37  
120,000  
44  
120,000  
50  
120,000  
CK (3)  
CK (2)  
CKH  
CKS  
CMH  
8
60  
66  
70  
7.5  
0.8  
1.5  
0.8  
10  
1
RCD  
RP  
15  
20  
20  
0.8  
1.5  
0.8  
15  
20  
20  
2
WR  
1 CLK +  
7ns  
1 CLK +  
7.5ns  
1 CLK +  
7ns  
1
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 1.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
3. WRITE command not allowed else tRAS would be violated.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
52  
128Mb: x4, x8, x16  
SDRAM  
1
ALTERNATING BANK WRITE ACCESSES  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQM /  
DQML, DQMH  
t
t
AH  
AS  
2
2
A0-A9, A11  
ROW  
ROW  
ROW  
ROW  
ROW  
COLUMN m  
COLUMN b  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
A10  
t
t
AH  
AS  
BA0, BA1  
BANK 0  
BANK 0  
BANK 1  
t
BANK 1  
BANK 0  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
DS  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DH  
DIN  
m
DIN m + 1  
DIN m + 2  
DIN m + 3  
DIN  
b
DIN b + 1  
DIN b + 2  
DIN b + 3  
DQ  
t
t
t
t
RCD - BANK 0  
WR - BANK 0  
RP - BANK 0  
RCD - BANK 0  
t
RAS - BANK 0  
t
RC - BANK 0  
t
t
WR - BANK 1  
t
RCD - BANK 1  
RRD  
DONT CARE  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
-7E  
MAX  
-75  
-8E  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
2.5  
2.5  
7.5  
10  
MIN  
MAX UNITS  
SYMBOL* MIN  
MIN  
0.8  
MAX  
MIN  
1
MAX UNITS  
t
t
t
t
t
t
t
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
1
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DH  
DS  
0.8  
1.5  
ns  
ns  
t
t
t
t
t
t
t
t
t
AS  
1.5  
2
CH  
3
RAS  
RC  
37  
120,000  
44  
120,000  
50  
70  
20  
20  
20  
120,000  
ns  
ns  
ns  
ns  
ns  
CL  
3
60  
66  
CK (3)  
CK (2)  
CKH  
CKS  
CMH  
CMS  
8
RCD  
RP  
15  
20  
7.5  
0.8  
1.5  
0.8  
1.5  
10  
1
15  
20  
0.8  
1.5  
0.8  
1.5  
RRD  
WR  
14  
15  
2
1 CLK +  
7ns  
1 CLK +  
7.5ns  
1 CLK +  
7ns  
1
2
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
53  
128Mb: x4, x8, x16  
SDRAM  
WRITE – FULL-PAGE BURST  
T0  
T1  
T2  
T3  
T4  
T5  
Tn + 1  
Tn + 2  
Tn + 3  
( (  
) )  
( (  
) )  
t
t
CK  
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
( (  
) )  
CKE  
( (  
) )  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
COMMAND  
ACTIVE  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
BURST TERM  
NOP  
t
CMH  
CMS  
( (  
) )  
DQM /  
DQML, DQMH  
( (  
) )  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
1
A0-A9, A11  
ROW  
COLUMN m  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
ROW  
A10  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
( (  
) )  
D
IN  
m
D
IN m + 1  
D
IN m + 2  
D
IN m + 3  
DIN m - 1  
DQ  
( (  
) )  
t
RCD  
Full-page burst does not  
self-terminate. Can use  
BURST TERMINATE  
512 (x16) locations within same row  
1,024 (x8) locations within same row  
2,048 (x4) locations within same row  
command to stop.2, 3  
Full page completed  
DONT CARE  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
-7E  
-75  
MAX  
-8E  
SYMBOL* MIN  
MAX  
MIN  
0.8  
1.5  
2.5  
2.5  
7.5  
10  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MAX  
MIN  
1.5  
0.8  
1.5  
0.8  
1.5  
20  
MIN  
2
MAX UNITS  
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
CMH  
CMS  
DH  
1.5  
0.8  
1.5  
0.8  
1.5  
15  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
AS  
2
1
CH  
3
2
CL  
3
1
CK (3)  
CK (2)  
CKH  
8
DS  
2
7.5  
0.8  
10  
1
RCD  
20  
0.8  
*CAS latency indicated in parentheses.  
NOTE: 1. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
t
2. WR must be satisfied prior to PRECHARGE command.  
3. Page left open; no tRP.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
54  
128Mb: x4, x8, x16  
SDRAM  
1
WRITE – DQM OPERATION  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
NOP  
t
CMS CMH  
DQM /  
DQML, DQMH  
t
t
t
t
AH  
AS  
2
A0-A9, A11  
ROW  
t
COLUMN m  
AS  
AH  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
DISABLE AUTO PRECHARGE  
BANK  
AS  
AH  
BA0, BA1  
BANK  
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
D
IN  
m
D
IN m + 2  
DIN m + 3  
DQ  
t
RCD  
DONT CARE  
TIMING PARAMETERS  
-7E  
-75  
MAX  
-8E  
-7E  
MAX  
-75  
-8E  
SYMBOL* MIN  
MAX  
MIN  
MIN  
1
MAX UNITS  
SYMBOL* MIN  
MIN  
1.5  
0.8  
1.5  
0.8  
1.5  
20  
MAX  
MIN  
2
MAX UNITS  
t
t
AH  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
CMH  
CMS  
DH  
1.5  
0.8  
1.5  
0.8  
1.5  
15  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
AS  
2
1
CH  
3
2
CL  
3
1
CK (3)  
CK (2)  
CKH  
8
DS  
2
7.5  
0.8  
10  
1
RCD  
20  
0.8  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4.  
2. x16: A9 and A11 = Dont Care”  
x8: A11 = Dont Care”  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
55  
128Mb: x4, x8, x16  
SDRAM  
54-PIN PLASTIC TSOP (400 mil)  
22.30  
22.14  
SEE DETAIL A  
.71  
.80 TYP  
.10 (2X)  
.45  
.30  
2.80  
11.86  
11.66  
PIN #1 ID  
10.24  
10.08  
.75 (2X)  
.18  
.13  
1.00 (2X)  
.25  
.20  
.05  
.60  
.40  
.10  
1.2 MAX  
.80  
TYP  
DETAIL A  
MAX  
MIN  
NOTE: 1. All dimensions in millimeters  
or typical where noted.  
2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
56  
128Mb: x4, x8, x16  
SDRAM  
FBGA “FB” PACKAGE  
60-BALL, 8mm x 16mm  
0.850 0.075  
0.205 MAX.  
0.325 0.025  
SEATING PLANE  
0.10  
5.60  
2.40 0.05  
CTR  
0.45 0.05 (TYP)  
0.80 (TYP)  
PIN #1 ID  
8.00 0.05  
16.00 0.10  
11.20  
0.80  
(TYP)  
5.60 0.05  
1.20 MAX.  
2.80 0.05  
4.00 0.05  
8.00 0.10  
(Bottom View)  
NOTE: 1. All dimensions in millimeters.  
2. Recommended Pad size for PCB is 0.33mm 0.025mm.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
57  
128Mb: x4, x8, x16  
SDRAM  
FBGA “FC” PACKAGE  
60-BALL, 11mm x 13mm  
0.850 0.075  
0.325 0.025  
0.205 MAX.  
SEATING PLANE  
0.10  
5.60  
2.40 0.05  
CTR  
0.45 0.05 (TYP)  
0.80 (TYP)  
PIN #1 ID  
6.50 0.05  
13.00 0.10  
11.20  
5.60 0.05  
0.80  
(TYP)  
2.80 0.05  
1.20 MAX  
5.50 0.05  
11.00 0.10  
(Bottom View)  
NOTE: 1. All dimensions in millimeters.  
2. Recommended Pad size for PCB is 0.33mm 0.025mm.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
58  
128Mb: x4, x8, x16  
SDRAM  
FBGA DEVICE MARKING  
DBFCF  
Due to the size of the package, Micron’s standard part  
number is not printed on the top of each device. Instead,  
an abbreviated device mark comprised of a five-digit  
alphanumericcodeisused. Theabbreviateddevicemarks  
are cross referenced to Micron part numbers in Table 1.  
Speed Grade  
D = -8E  
= -75  
F
N = -7E  
Width ( I/Os)  
B = x4  
C = x8  
D = x16  
Device Density  
F = 128Mb  
Product Type  
B = 3.3V SDR SDRAM (60-ball, "FB", 8mm x 16mm)  
C = 3.3V SDR SDRAM (60-ball, "FC", 11mm x 13mm)  
Product Group  
D = DRAM  
Z = DRAM ENGINEERING SAMPLE  
CROSS REFERENCE FOR FBGA DEVICE MARKING  
ENGINEERING  
PRODUCTION  
MARKING  
DCFBF  
PART NUMBER  
ARCHITECTURE  
32 Meg x 4  
32 Meg x 4  
32 Meg x 4  
32 Meg x 4  
16 Meg x 8  
16 Meg x 8  
16 Meg x 8  
16 Meg x 8  
FBGA  
SAMPLE  
ZCFBF  
ZCFBN  
ZBFBF  
ZBFBN  
ZCFCF  
ZCFCN  
ZBFCF  
ZBFCN  
MT48LC32M4A2FC-75  
MT48LC32M4A2FC-7E  
MT48LC32M4A2FB-75  
MT48LC32M4A2FB-7E  
MT48LC16M8A2FC-75  
MT48LC16M8A2FC-7E  
MT48LC16M8A2FB-75  
MT48LC16M8A2FB-7E  
60-ball, 11x13  
60-ball, 11x13  
60-ball, 8x16  
60-ball, 8x16  
60-ball, 11x13  
60-ball, 11x13  
60-ball, 8x16  
60-ball, 8x16  
DCFBN  
DBFBF  
DBFBN  
DCFCF  
DCFCN  
DBFCF  
DBFCN  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992  
Micron is a registered trademark and the Micron logo and M logo are trademarks of Micron Technology, Inc.  
128Mb: x4, x8, x16 SDRAM  
128MSDRAM_E.p65 Rev. E; Pub. 1/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2001, Micron Technology, Inc.  
59  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY