MT9E001 [MICRON]

1/2.5-Inch CMOS Digital Image Sensor; 1 / 2.5英寸的CMOS数字图像传感器
MT9E001
型号: MT9E001
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

1/2.5-Inch CMOS Digital Image Sensor
1 / 2.5英寸的CMOS数字图像传感器

传感器 图像传感器
文件: 总97页 (文件大小:1575K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Features  
1/2.5-Inch CMOS Digital Image Sensor  
MT9E001  
Refer to the latest MT9E001 data sheet on Micron’s Web site: www.mircon.com/imaging  
Table 1:  
Key Performance Parameters  
Value  
1/2.5-inch (4:3)  
Features  
®
• DigitalClarity CMOS imaging technology  
• Superior low-light performance  
• Low dark current  
Parameter  
Optical format  
Full resolution  
Pixel size  
Chief ray angle  
Color filter array  
Shutter type  
3,264 x 2,448 pixels  
1.75µm x 1.75µm  
10.19 maximum  
RGB Bayer pattern  
Electronic rolling shutter  
(ERS) with global reset  
release (GRR)  
• Simple two-wire serial interface  
• Auto black level calibration  
• Support for external mechanical shutter  
• Support for external LED or Xenon flash  
• High frame rate preview mode with arbitrary  
downsize scaling from maximum resolution  
• Programmable controls: gain, frame size/rate,  
exposure, left-right and top-bottom image reversal,  
window size, and panning  
• Data interface: parallel  
• On-chip phase-locked loop (PLL)  
• Bayer pattern down-size scaler  
Input clock frequency  
Maximum data rate/master 96 Mbps  
clock  
648 MHz  
Full  
11 fps  
Frame rate  
resolution  
Video mode 30 fps  
• Four channel shading correction (SC)  
Analog  
Digital  
I/O  
2.43.1V (2.8V nominal)  
1.71.9V (1.8V nominal)  
1.8 or 2.8V  
Supply  
voltage  
Applications  
• Digital still cameras  
• Cellular phones  
PLL  
2.43.1V (2.8V nominal)  
12-bit  
ADC resolution  
Responsivity  
0.3 V/lux-sec (at 550nm)  
(preliminary)  
Dynamic range  
SNRMAX  
70dB (preliminary)  
38.9dB (preliminary)  
650mW (typical)  
Full  
resolution  
Power  
consumption  
Video mode 594mW (typical)  
Standby 45µW (typical, EXTCLK  
disabled)  
Operating temperature  
Package  
–30°C to +70°C (at junction)  
48-pin iLCC  
Ordering Information  
Table 2:  
Part Number  
MT9E001I12STC  
Available Part Numbers  
Description  
48-pin iLCC  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__1.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
1
‡Products and specifications discussed herein are for evaluation and reference purposes only and are subject to change by  
Micron without notice. Products are only warranted by Micron to meet Micron’s production data sheet specifications.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Table of Contents  
Table of Contents  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Signal Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Typical Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Sensor Core Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Pixel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Default Readout Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Analog Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Analog Readout Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Timing and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Analog Gain Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Using Per-color or Global Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
SMIA Gain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Micron Imaging Gain Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Gain Code Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Digital Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Pedestal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Integration Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
PLL Generated Master Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
PLL Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Readout Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Window Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Pixel Border . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Column Readout Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Readout Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Horizontal Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Vertical Flip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Column and Row Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Programming Restrictions when Subsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Binning Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Shading Correction (SC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
The Correction Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Output Data Format (Parallel Pixel Data Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Output Data Timing (Parallel Pixel Data Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
General Purpose Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Parallel Pixel Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Output Enable Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Trigger Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Streaming/Standby Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Snapshot and Flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Low Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Two-Wire Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001_TOC.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
2
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Table of Contents  
Stop Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Slave Address/Data Direction Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Message Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
No-Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Typical Serial Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Single Read from Random Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Single Read from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Sequential Read, Start from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Sequential Read, Start from Current Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Single Write to Random Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Sequential Write, Start at Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Register Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Register Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Bit Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Bit Field Aliases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Byte Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Address Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Bit Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Register Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Double-Buffered Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Using grouped_parameter_hold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Bad Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Changes to Integration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Changes to Gain Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Embedded Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Register List and Default Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
System States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Spectral Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Timing Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Hard Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Soft Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Signal State during Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Power on Reset (POR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001_TOC.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
3
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
List of Figures  
List of Figures  
Figure 1:  
Figure 2:  
Figure 3:  
Figure 4:  
Figure 5:  
Figure 6:  
Figure 7:  
Figure 8:  
48-Pin ILCC 10x10 Package Pinout Diagram (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Typical Configuration (connection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Pixel Color Pattern Detail (Top Right Corner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Imaging a Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Clocking Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
8 Pixels in Normal and Column Mirror Readout Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
6 Rows in Normal and Row Mirror Readout Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Effect of x_odd_inc=3 on Readout Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Effect of x_odd_inc=7 on Readout Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Pixel Readout (no skipping, x_odd_inc=1, y_odd_inc=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Pixel Readout (x_odd_inc=3, y_odd_inc=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Pixel Readout (x_odd_inc=1, y_odd_inc=3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Pixel Readout (x_odd_inc=3, y_odd_inc=3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Pixel Readout (x_odd_inc=3, y_odd_inc=1, x_bin=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Pixel Readout (x_odd_inc=3, y_odd_inc=3, x_ybin=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Pixel Readout (x_odd_inc=7, y_odd_inc=7, x_ybin=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Pixel Data Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Pixel Data Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Row Timing and FRAME_VALID/LINE_VALID Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Xenon Flash Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
LED Flash Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
LED Flash Enabled Following Forced Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Single Read from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Single Read from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Sequential Read, Start from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Sequential Read, Start from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Single Write to Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Sequential Write, Start at Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Changes to Integration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Changes to Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Changes to Gain and Integration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Sensor System States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
CRA vs. Image Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Hard Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
I/O TIming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Power On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
48-Pin ILCC Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Figure 9:  
Figure 10:  
Figure 11:  
Figure 12:  
Figure 13:  
Figure 14:  
Figure 15:  
Figure 16:  
Figure 17:  
Figure 18:  
Figure 19:  
Figure 20:  
Figure 21:  
Figure 22:  
Figure 23:  
Figure 24:  
Figure 25:  
Figure 26:  
Figure 27:  
Figure 28:  
Figure 29:  
Figure 30:  
Figure 31:  
Figure 32:  
Figure 33:  
Figure 34:  
Figure 35:  
Figure 36:  
Figure 37:  
Figure 38:  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001_LOF.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
4
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
List of Tables  
List of Tables  
Table 1:  
Table 2:  
Table 3:  
Table 4:  
Table 5:  
Table 6:  
Table 7:  
Table 8:  
Table 9:  
Table 10:  
Table 11:  
Table 12:  
Table 13:  
Table 14:  
Table 15:  
Table 16:  
Table 17:  
Table 18:  
Table 19:  
Table 20:  
Table 21:  
Table 22:  
Table 23:  
Table 24:  
Table 25:  
Table 26:  
Table 27:  
Key Performance Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Recommended Gain Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Frequency Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Row Address Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Register Adjustments Required for Binning Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Row Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Output Enable Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Trigger Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Streaming/STANDBY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Test Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Address Space Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
SMIA Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
1: SMIA Parameter Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
3: Manufacturer Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
0: SMIA Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
1: SMIA Parameter Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
3: Manufacturer Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
RESET_BAR and PLL in System States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Signal State During Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
I/O Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Typical Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
POR Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001_LOT.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
5
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
General Description  
General Description  
®
The Micron Imaging MT9E001 is a 1/2.5-inch format CMOS active-pixel digital image  
sensor with a pixel array of 3,264H x 2,448V. It incorporates sophisticated on-chip  
camera functions such as windowing, mirroring, binning and skip modes, and snapshot  
mode. It is programmable through a simple two-wire serial interface and has very low  
power consumption.  
®
The MT9E001 digital image sensor features DigitalClarity technology—Micron's break-  
through low-noise CMOS imaging technology that achieves near CCD image quality  
(based on signal-to-noise ratio and low-light sensitivity) while maintaining the inherent  
size, cost, power consumption, and integration advantages of CMOS.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
6
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Signal Description  
Signal Description  
Table 3 provides the signal descriptions for the MT9E001.  
Table 3: Signal Description  
Name  
Type  
Description  
SCLK  
TEST2  
Input  
Input  
Input  
Serial clock for access to control and status registers.  
Reserved for factory use. Tie to digital ground during normal operation.  
RESET_BAR  
Asynchronous active LOW reset. When asserted, data output stops and all internal  
register are restored to their factory default settings.  
EXTCLK  
TEST  
Input  
Input  
Input  
Master clock input; PLL input clock, 6–48 MHz.  
Reserved for factory use. Tie to digital ground during normal operation.  
GPI[3:0]  
General purpose inputs. After reset, these pads are powered down by default (it is not  
necessary to bond to these pads). Any of these pads can be configured for hardware  
control of SADDR, output enable, and shutter trigger functions.  
PIXCLK  
FRAME_VALID  
LINE_VALID  
SHUTTER  
FLASH  
Output  
Output  
Output  
Output  
Output  
Output  
I/O  
Pixel clock. Used to qualify the LINE_VALID, FRAME_VALID and DOUT[11:0] outputs.  
FRAME_VALID output. Qualified by PIXCLK.  
LINE_VALID output. Qualified by PIXCLK.  
Control for external mechanical shutter.  
Flash output. Synchronization pulse for external light source.  
Twelve-bit image data output.  
DOUT[11:0]  
SDATA  
Serial data.  
VDD  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Digital power (1.8V).  
VAAPIX  
VAA  
Pixel array power (2.8V).  
Analog power (2.8V).  
VDDPLL  
VDDIO  
PLL power (2.8V).  
I/O power supply (1.8V or 2.8V).  
Digital, I/O, and PLL ground.  
DGND  
AGND  
Analog ground.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
7
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Signal Description  
Figure 1:  
48-Pin ILCC 10x10 Package Pinout Diagram (Top View)  
6
5
4
3
2
1
48  
47  
46  
45  
44  
43  
42  
7
8
NC  
NC  
D
D
D
OUT  
OUT  
OUT  
7
8
9
41  
40  
39  
38  
9
VAA  
10  
11  
AGND  
D
D
OUT10  
OUT11  
VAAPIX  
VAAPIX  
37  
36  
35  
34  
33  
12  
13  
14  
VDDIO  
V
AA  
GND  
AA  
PIXCLK  
A
VDD  
15  
16  
17  
18  
V
SCLK  
NC  
NC  
NC  
S
DATA  
32  
31  
RESET_BAR  
V
DDIO  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
.
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
8
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Typical Connections  
Typical Connections  
Figure 2 shows typical MT9E001 device connections. For low-noise operation, the  
MT9E001 requires separate power supplies for analog and digital. Incoming digital and  
analog ground conductors can be tied together next to the die. Both power supply rails  
should be decoupled to ground using capacitors as close as possible to the die. The use  
of inductance filters is not recommended on the power supplies or output signals.  
The MT9E001 also supports different digital core (VDD/DGND) and I/O power (VDDIO/  
DGND) power domains that can be at different voltages. The PLL requires a clean power  
source (VDDPLL).  
Figure 2:  
Typical Configuration (connection)  
Analog  
Power  
Digital I/O  
Power Power  
1
1
1
VDD  
VDDIO  
V
DDPLL  
VAA  
VAAPIX  
3
3
R
R
MASTER CLOCK  
(6–48 MHz)  
EXTCLK  
TEST2  
D
OUT[11:0]  
To  
PIXCLK  
LINE_VALID  
FRAME_VALID  
FLASH  
Controller  
S
DATA  
SCLK  
From Controller  
or pulled  
GPI1  
GPI0  
GPI2  
GPI3  
SHUTTER  
HIGH/LOW as  
3
Module ID  
TEST  
RESET_BAR  
DGND  
AGND  
Digital  
Ground  
Analog  
Ground  
Notes: 1. Connection diagram shows only one of many possible variations for this sensor.  
2. The GPI pads can configure multiple features for the sensor.  
3. Recommended resistor value is 1.5KΩ for the two-wire serial interface RPULL-UP; however,  
greater value may be used for slower transmission speed.  
4. All inputs must be configured with VDDIO.  
5. VAA and VAAPIX must be tied together.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
9
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Architecture Overview  
Architecture Overview  
The MT9E001 is a progressive-scan sensor that generates a stream of pixel data at a  
constant frame rate. It uses an on-chip PLL to generate all internal clocks from a single  
master input clock running between 6 MHz and 48 MHz. The maximum pixel rate is  
96 Mbps, corresponding to a physical pixel clock rate of 96 MHz. Figure 3 shows a block  
diagram of the sensor.  
Figure 3:  
Block Diagram  
Control Registers  
PLL  
Timing  
and  
Control  
GreenR/GreenB  
Channel  
G1/G2  
G1/G2  
ADC  
Active-Pixel  
Sensor (APS )  
Array  
Analog  
Processing  
Digital  
Processing  
Data Out  
Red/Blue  
Channel  
R/B  
R/B  
ADC  
Sensor Core  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
10  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Sensor Core Description  
The core of the sensor is an active-pixel array. The timing and control circuitry  
sequences through the rows of the array, resetting and then reading each row in turn. In  
the time interval between resetting a row and reading that row, the pixels in the row  
integrate incident light. The exposure is controlled by varying the integration. Once a  
row has been read, the data from the columns is sequenced through an analog signal  
chain (providing offset correction and gain), and then through an ADC. The output from  
the ADC is a 12-bit value for each pixel in the array. The ADC output passes through a  
digital processing signal chain (providing further data path corrections and applying  
digital gain).  
The pixel array contains optically active and light-shielded (black) pixels. The black  
pixels are used to provide data for on-chip offset-correction algorithms (black level  
control).  
The sensor contains a set of control and status registers that can be used to control many  
aspects of the sensor behavior including the frame size, exposure, and gain setting.  
These registers can be accessed through a two-wire serial interface.  
The output from the sensor is a Bayer pattern: alternate rows are a sequence of either  
green/red pixels or blue/green pixels. The offset and gain stages of the analog signal  
chain provide per-color control of the pixel data.  
The control registers, timing and control and digital processing functions shown in  
Figure 3 on page 10 are partitioned into two logical parts:  
A sensor core which provides array control and data path corrections. The output of  
the sensor core is 12-bit parallel pixel data stream qualified by an output data clock  
(PIXCLK), together with LINE_VALID and FRAME_VALID signals.  
Additional functionality is required to support the SMIA standard. This includes a  
horizontal and vertical image scaler, a limiter, a data compressor, an output FIFO.  
A flash output strobe is provided to allow an external Xenon or LED light source to  
synchronize with the sensor exposure time. Additional I/O signals support the provision  
of an external mechanical shutter.  
Pixel Array  
The MT9E001 image sensor array consists of a 3,382-column by 2,540-row matrix of  
pixels addressed by column and row. The address (column 0, row 0) represents the  
upper-left corner of the entire array as oriented in the output image, which is the upper-  
right pixel, when looking at the chip.  
The active region in the center of the array consists of a 3,264-columns by 2,448-rows  
representing the default output image. It is surrounded by a boundary region (also  
active), and a border of shielded dark pixels. The boundary region can be used to avoid  
edge effects when doing color processing to achieve a 3,264 x 2,448 result image.  
The 4-pixel border on each edge can be enabled by reprogramming the x_addr_start,  
y_addr_start, x_addr_end and y_addr_end registers.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
11  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Figure 4:  
Pixel Color Pattern Detail (Top Right Corner)  
Column Readout Direction  
.
.
.
Black Pixels  
First Clear  
Pixel  
(94,69)  
Row  
Readout  
Direction  
B G2 B G2 B  
G1 R G1 R G1  
B G2 B G2 B  
G1 R G1 R G1  
B G2 B G2 B  
...  
Default Readout Order  
Figure 5:  
Imaging a Scene  
Lens  
Scene  
Sensor (rear view)  
Row  
Readout  
Order  
Column Readout Order  
Pixel (0,0)  
Analog Processing  
Analog Readout Channel  
The sensor core features two identical analog readout channels, as shown in Figure 3 on  
page 10. The readout channel consists of two gain stages, a sample-and-hold stage with  
black level calibration capability, and two12-bit ADCs.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
12  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Timing and Control  
Analog Gain Options  
The MT9E001 provides two mechanisms for setting the analog gain. The first uses the  
SMIA gain model; the second uses the traditional Micron Imaging gain model. The  
following sections describe both models, the mapping between the models, and the  
operation of the per-color and global gain control. Use of high gains can result in  
reduced image quality by introducing noise and by amplifying image defects or artifacts.  
Using Per-color or Global Gain Control  
The read-only analogue_gain_capability register returns a value of “1,” indicating that  
the MT9E001 provides per-color gain control. However, the MT9E001 also provides the  
option of global gain control. Per-color and global gain control can be used interchange-  
ably. A write to a global gain register is aliased as a write of the same data to the four  
associated color-dependent gain registers. A read from a global gain register is aliased to  
a read of the associated color-dependent gain registers.  
The read/write gain_mode register required by SMIA has no defined function in the  
SMIA specification. In the MT9E001 this register has no side-effects on the operation of  
the gain; per-color and global gain control can be used interchangeably regardless of the  
state of the gain_mode register.  
SMIA Gain Model  
The SMIA gain model uses the following registers to set the analog gain:  
analogue_gain_code_global  
analogue_gain_code_green1  
analogue_gain_code_red  
analogue_gain_code_blue  
analogue_gain_code_green2  
The SMIA gain model requires a uniform step size between all gain settings. The analog  
gain is given by:  
analogue_gain_m0 x analogue_gain_code analogue_gain_code_ <color>  
--------------------------------------------------------------------------------------------------------------- -----------------------------------------------------------------------------  
gain =  
=
(EQ 1)  
analogue_gain_c1  
8
Micron Imaging Gain Model  
The Micron Imaging gain model uses the following registers to set the analog gain:  
global_gain  
greenR_gain  
red_gain  
blue_gain  
greenB_gain  
This gain model maps directly to the control settings applied to the gain stages of the  
analog signal chain. This provides a 7-bit gain stage and two2X gain stages. As a result,  
the step size varies depending upon whether the 2X gain stages are enabled. The analog  
gain is given by:  
< color > _ gain[6 : 0]  
gain =  
(
< color > _ gain[8]+1  
)
×
(
< color > _ gain[7]+1 ×  
)
32  
(EQ 2)  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
13  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
As a result of the 2X gain stages, many of the possible gain settings can be achieved in  
two different ways. For example, red_gain=0x02A0 provides the same gain as  
red_gain=0x0240 and red_gain=0x0320. The first example uses the first 2X gain stage, the  
second example uses no 2X gain stage and the third example uses the second 2X gain  
stage. In all cases, the preferred setting is the setting that enables the first 2X gain stage  
and not the last 2X gain stage, since this will result in lower noise. The recommended  
sequence is shown in Table 4.  
Table 4:  
Recommended Gain Settings  
Desired Gain  
Recommended Gain Register Setting  
1–1.969  
2–7.9375  
8–15.875  
0x0220–0x023F  
0x02A0–0x02FF  
0x03C0–0x03FF  
Gain Code Mapping  
The Micron Imaging gain model maps directly to the underlying structure of the gain  
stages in the analog signal chain. When the SMIA gain model is used, gain codes are  
translated into equivalent settings in the Micron Imaging gain model.  
When the SMIA gain model is in use and values have been written to the  
analogue_gain_code_<color> registers, the associated value in the Micron Imaging gain  
model can be read from the SMIA associated <color>_gain register. In cases where there  
is more than one possible mapping, the recommended gain register setting is followed,  
in order to provide the mapping with the lowest noise.  
When the Micron Imaging gain model is in use and values have been written to the  
gain_<color> registers, data read from the associated analogue_gain_code_<color>  
register is UNDEFINED. The reason for this is that many of the gain codes available in  
the Micron Imaging gain model have no corresponding value in the SMIA gain model.  
The result of this is that the two gain models can be used interchangeably but, having  
written gains through one set of registers, those gains should be read back through the  
same set of registers.  
Digital Gain  
Pedestal  
Integer digital gains in the range 1–7 can be programmed.  
As gain is increased, image quality degrades due to the amplification of image defects.  
This block adds the value from R0x301E (data_pedestal_) to the incoming pixel value.  
The data_pedestal register is read-only by default but can be configured to be read/write  
by clearing the lock_reg bit in R0x301A-B. The only way to disable the effect of the  
pedestal is to set the register to "0."  
Integration Time  
The integration (exposure) time of the sensor is controlled by the fine_integration_time  
and coarse_integration_time registers.  
The limits for the fine integration time are defined by:  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
14  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
(EQ 3)  
fine _ integration _ time _ min fine _ integration _ time ≤  
(
line _ length _ pck fine _ integration _ time _ max _ margin  
)
The limits for the coarse integration time are defined by:  
(EQ 4)  
coarse _ integration_time_min coarse _ integration _ time ≤  
(
frame _ length _ lines coarse _ integration_time_max_margin  
)
The actual integration time is given by:  
(EQ 5)  
((coarse _ integration _ time×line _ length _ pck  
)
+ fine _ integration _ time  
)
integration _ time =  
vt _ pix _ clk _ freq _ mhz /106  
If the integration time is set larger than the frame time, the frame time will automatically  
be extended to accommodate the larger integration time.  
When the coarse_integration_time and fine_integration_time are changed simulta-  
neously, and the change to coarse integration time has been an increase, the first output  
frame will be non uniformly integrated.  
PLL  
The sensor contains a PLL for timing generation and control. The PLL contains a pres-  
caler to divide the input clock applied on EXTCLK, a VCO to multiply the prescaler  
output, and a set of dividers to generate the output clocks. The clocking structure is  
shown in Figure 6.  
Figure 6:  
Clocking Structure  
row_speed [ 2: 0]  
1 (1, 2, 4)  
vt _pix _clk _div  
4
PLL output clock  
clk_pixel  
Divider  
clk_pixel  
1
vt pix  
clk  
Divider  
PLL input clock  
pll_ip_clk_freq  
PLL internal VCO  
frequency  
vt_pix_clk  
vt_sys_clk  
op_sys_clk  
External input clock  
ext_clk_freq_mhz  
vt sys clk  
Divider  
PLL  
Pre PLL  
Multiplier  
(m)  
EXTCLK  
Divider  
op sys clk  
Divider  
op pix  
clk  
Divider  
pll_  
multiplier  
pre_pll_clk_div  
(n+1)  
op_pix_clk  
clk_op  
(m)  
1
64(32-128)  
2 (1-64)  
clk_op  
Divider  
PLL  
op_pix_clk_div  
8
row_speed [ 10: 8]  
1 (1, 2, 4)  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
15  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Figure 6 on page 15 shows the different clocks and (in courier font) the names of the  
registers that contain or are used to control their values. It also shows the default setting  
for each divider/multiplier control register, and the range of legal values for each  
divider/multiplier control register. The vt and op sys clk Divider is hardwired in the  
design.  
From the diagram, the clock frequencies can be calculated as follows:  
Internal pixel clock used to readout the pixel array:  
(EQ 6)  
ext_clk_freq_mhz x pll_multiplier  
pre_pll_clk_div x vt_pix_clk_div x row_speed [2:0]  
24 MHz x 64  
------------------------------------------------------------------------------------------------------------------------------ ----------------------------------  
clk_pixel_freq_mhz =  
=
= 192 MHz  
2x4x1  
External pixel clock used to output the data:  
(EQ 7)  
ext_clk_freq_mhz x pll_multiplier  
pre_pll_clk_div x op_pix_clk_div x row_speed [10:8]  
24 MHz x 64  
----------------------------------------------------------------------------------------------------------------------------------- ----------------------------------  
clk_op_freq_mhz =  
=
= 96 MHz  
2x8x1  
Internal master clock:  
ext_clk_freq_mhz x pll_multiplier  
24 MHz x 64  
------------------------------------------------------------------------------------- ----------------------------------  
op_pix_clk_freq_mhz =  
=
= 96 MHz  
(EQ 8)  
pre_pll_clk_div x 8  
2x8  
The parameter limit register space contains registers that declare the minimum and  
maximum allowable values for:  
The frequency allowable on each clock.  
The divisors that are used to control each clock.  
The following factors determine what are valid values, or combinations of valid values,  
for the divider/multiplier control registers:  
The minimum/maximum frequency limits for the associated clock must be met.  
pll_ip_clk_freq must be in the range 2–24 MHz. Higher frequencies are preferred.  
PLL internal VCO frequency must be in the range 384–768 MHz.  
The minimum/maximum value for the divider/multiplier must be met.  
Range for m: 32–128.  
Range for n: 0–63. Range for (n + 1): 1–64.  
The op_pix_clk must never run faster than the vt_pix_clk to ensure that the output  
data stream is contiguous.  
Given the maximum programmed line length, the minimum blanking time, the  
maximum image width, the available PLL divisor/multiplier values, and the require-  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
16  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
ment that the output line time (including the necessary blanking) must be output in a  
time equal to or less than the time defined by line_length_pck.  
Although the PLL VCO input frequency range is advertised as 6 MHz–48 MHz, superior  
performance is obtained by keeping the VCO input frequency as high as possible.  
The usage of the output clocks is shown below:  
clk_pixel is used by the sensor core to control the timing of the pixel array. The sensor  
core produces one 12-bit pixel each vt_pix_clk period. The line length  
(line_length_pck) and fine integration time (fine_integration_time) are controlled in  
increments of the clk_pixel period.  
clk_op is used to load parallel pixel data from the output FIFO. The output FIFO  
generates one pixel each op_pix_clk period.  
PLL Generated Master Clock  
PLL Setup  
The PLL divisors should be programmed while the sensor is in the software standby  
state. The PLL is enabled by entering the STREAMING state. STREAMING state will be  
entered after the VCO lock time.  
The VCO lock time is 100µs (typical), 1ms (maximum).  
The effect of programming the PLL divisors whilst the sensor is in the streaming state is  
UNDEFINED.  
Table 5:  
Frequency Parameters  
Frequency  
Equation  
Min (MHz)  
Max (MHz)  
fIN  
fPFD  
fVCO  
6
2
48  
24  
fextclk /(pll_n+1)  
fextclk * pll_m/(pll_n+1)  
384  
768  
Readout Options  
The sensor core supports different readout options to modify the output image. The  
readout can be limited to a specific window of the original pixel array.  
For preview modes, the sensor core supports both skipping and pixel binning in x and y  
directions.  
By changing the readout direction, the image can be flipped in the vertical and/or  
mirrored in the horizontal direction.  
Window Size  
The sequencing of the pixel array is controlled by the x_addr_start, y_addr_start,  
x_addr_end and y_addr_end registers. The image output from the sensor core data path  
is controlled by these registers. The output image size is controlled by the x_output_size  
and y_output_size registers.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
17  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Pixel Border  
The default settings of the sensor provide a 3264 x 2448 image. A border of up to 4 pixels  
on each edge can be enabled by reprogramming the x_addr_start, y_addr_start,  
x_addr_end and y_addr_end registers and then adjusting the x_output_size and  
y_output_size registers accordingly.  
Column Readout Limitation  
The MT9E001 has limitations on the allowed values of x_addr_start and x_addr_end.  
x_addr_start needs to be a multiple of 8 in normal mode, 16 in 2X skip or binning mode  
and 32 in 4X skip or binning mode. Similarly x_addr_end needs to be set so the width of  
the window read out after taking subsampling mode into account is a multiple of 8.  
Readout Modes  
Horizontal Mirror  
When the horizontal_mirror bit (R0x3040[0]) is set in the read mode register, the order of  
pixel readout within a row is reversed, so that readout starts from x_addr_end and ends  
at x_addr_start. Figure 7 shows a sequence of 6 pixels being read out with  
horizontal_mirror=0 and horizontal_mirror=1. Changing horizontal_mirror causes the  
Bayer order of the output image to change; the new Bayer order is reflected in the value  
of the pixel_order register.  
Figure 7:  
8 Pixels in Normal and Column Mirror Readout Modes  
LINE_VALID  
horizontal_mirror = 0  
OUT[11:0]  
G3[11:0] R3[11:0]  
G0[11:0] R0[11:0] G1[11:0] R1[11:0] G2[11:0] R2[11:0]  
D
horizontal_mirror = 1  
OUT[11:0]  
R3[11:0] G3[11:0] R2[11:0] G2[11:0] R1[11:0] G1[11:0] G0[11:0] R0[11:0]  
D
Vertical Flip  
When the vertical_flip bit is set in the image_orientation register, the order in which  
pixel rows are read out is reversed, so that row readout starts from y_addr_end and ends  
at y_addr_start. Figure 8 on page 19 shows a sequence of six rows being read out with  
vertical_flip= 0 and vertical_flip=1. Changing vertical_flip causes the Bayer order of the  
output image to change; the new order is reflected in the value of the pixel_order  
register.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
18  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Figure 8:  
6 Rows in Normal and Row Mirror Readout Modes  
FRAME_VALID  
vertical_flip=0  
Row0[11:0] Row1[11:0] Row2[11:0] Row3[11:0] Row4[11:0] Row5[11:0]  
Row5[11:0] Row4[11:0] Row3[11:0] Row2[11:0] Row1[11:0] Row0[11:0]  
DOUT[11:0]  
vertical_flip=1  
OUT[11:0]  
D
Column and Row Skip  
The sensor supports subsampling. Subsampling reduces the amount of data processed  
by the analogue signal chain in the sensor and thereby allows the frame rate to be  
increased. Subsampling is enabled by changing x_odd_inc and/or y_odd_inc. Values of  
1, 3 and 7 are supported. Setting both of these variables to 3 reduces the amount of row  
and column data processed and is equivalent to the skip2 readout mode provided by  
earlier Micron Imaging sensors. The following figure shows a sequence of 8 columns  
being read out with x_odd_inc=3 and y_odd_inc=1.  
Figure 9:  
Effect of x_odd_inc=3 on Readout Sequence  
LINE_VALID  
x_odd_inc = 1  
OUT[11:0]  
G0  
R0  
G1  
R1  
G2  
R2  
G3  
R3  
D
[11:0] [11:0] [11:0] [11:0] [11:0] [11:0] [11:0] [11:0]  
LINE_VALID  
x_odd_inc = 3  
G0  
R0  
G2  
R2  
DOUT[11:0]  
[11:0] [11:0] [11:0] [11:0]  
Figure 10: Effect of x_odd_inc=7 on Readout Sequence  
LINE_VALID  
x_odd_inc = 1  
G0  
R0  
G1  
R1  
G2  
G7  
R7  
D
OUT[11:0]  
[11:0] [11:0] [11:0] [11:0] [11:0]  
[11:0] [11:0]  
LINE_VALID  
G0  
R0  
G4  
R4  
x_odd_inc = 7  
[11:0] [11:0] [11:0] [11:0]  
D
OUT[11:0]  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
19  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
A 1/16 reduction in resolution is achieved by setting both x_odd_inc and y_odd_inc to 7.  
This is equivalent to skip4 readout mode provided by earlier Micron Imaging sensors.  
Figure 10 on page 19 shows a sequence of 16 columns being read out with x_odd_inc=7  
and y_odd_inc=1.  
The following waveform shows a sequence of data being read out with x_odd_inc=3 and  
y_odd_inc=1. The effect of the different subsampling settings on the pixel array readout  
is shown in Figures 11 through Figure 13 on page 21.  
Figure 11: Pixel Readout (no skipping, x_odd_inc=1, y_odd_inc=1)  
X incrementing  
Figure 12: Pixel Readout (x_odd_inc=3, y_odd_inc=1)  
X incrementing  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
20  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Figure 13: Pixel Readout (x_odd_inc=1, y_odd_inc=3)  
X incrementing  
Figure 14: Pixel Readout (x_odd_inc=3, y_odd_inc=3)  
X incrementing  
Programming Restrictions when Subsampling  
When subsampling is enabled as a viewfinder mode, and the sensor is switched back  
and forth between full resolution and subsampling, it is recommended that  
line_length_pck be kept constant between the two modes. This allows the same integra-  
tion times to be used in each mode to maintain the same brightness.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
21  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
When subsampling is enabled, it may be necessary to adjust the x_addr_end,  
x_addr_start and y_addr_end settings: the values for these registers are required to  
correspond with rows/columns that form part of the subsampling sequence. The adjust-  
ment should be made in accordance with the following rules:  
x_skip_factor = (x_odd_inc + 1) / 2  
y_skip_factor = (y_odd_inc + 1) / 2  
x_addr_start should be a multiple of x_skip_factor*8  
(x_addr_end - x_addr_start - 1) should be a multiple of x_skip_factor*8  
(y_addr_end - y_addr_start - 1) should be a multiple of y_skip_factor*8  
The number of columns/rows read out with subsampling can be found from the equa-  
tion below:  
columns/rows = (addr_end - addr_start + odd_inc) / skip_factor  
Example:  
The sensor is set up to give out a 640 x 480 image:  
x_addr_start = 8  
x_addr_end = 647  
y_addr_start = 8  
y_addr_end = 487  
To half the resolution in each direction the registers need to be reprogrammed as  
follows:  
x_addr_start = 0 (8 is not read out in subsampling mode)  
x_addr_end = 637 (adjust for new start address and end requirement)  
y_addr_start = 8 (no restrictions on row starting address)  
y_addr_end = 485 (adjust for end requirement)  
To quarter the resolution in each direction the registers need to be reprogrammed as  
follows:  
x_addr_start = 0  
x_addr_end = 633 (adjust for new start address and end requirement)  
y_addr_start = 8 (no restrictions on row starting address)  
y_addr_end = 481 (adjust for end requirement)  
Table 6 shows the row address sequencing for normal and subsampled readout. The  
same sequencing applies to column addresses for subsampled readout. There are two  
possible subsampling sequences for the rows (because the subsampling sequence only  
read half of the rows) depending upon the alignment of the start address. The row  
address sequencing during binning is also shown. Due to the restrictions in column  
readout, only one subsampling sequence that meets the required x_addr_start is  
supported. This corresponds to the columns for start=0 in Table 6.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
22  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Table 6:  
Row Address Sequencing  
odd_inc=1  
odd_inc=3  
odd_inc=7  
Normal  
start=0  
Normal  
Binned  
Normal  
Binned  
start=0  
start=2  
start=0  
start=2  
start=0  
start=2  
start=0  
start=2  
0
1
0
1
0,2  
1,3  
0
1
0,2  
1,3  
2
2
3
2,4  
3,5  
2
3
2,4  
3,5  
3
4
4
5
4,6  
5,7  
5
6
6
7
6,8  
7,9  
7
8
8
9
8,10  
9,11  
8
9
8,10  
9,11  
9
10  
11  
12  
13  
14  
15  
10  
11  
10,12  
11,13  
10  
11  
10,12  
11,13  
12  
13  
12,14  
13,15  
14  
15  
14,16  
15,17  
Binning  
The sensor supports 2 x 1 and 2 x 2 analog binning which includes column binning (x-  
binning), and row/column binning (xy-binning). Binning has many of the same charac-  
teristics as subsampling, however:  
It gathers image data from all pixels in the active window (rather than a subset of  
them).  
It achieves superior image quality.  
It avoids the aliasing artifacts that can be a characteristic side effect of subsampling.  
Binning is enabled by selecting the appropriate subsampling settings (x_odd_inc=3 and  
y_odd_inc=1 for x-binning, x_odd_inc=3 and y_odd_inc=3 for xy-binning) and setting  
the appropriate binning bit in read_mode (R0x3040-1). In subsampling, x_addr_end and  
y_addr_end may require adjustment when binning is enabled. It is the first of the two  
columns/rows binned together that should be the end column/row in binning, so the  
requirements for the end address is exactly the same as in nonbinning subsampling  
mode.  
Binning can also be enabled when the 4X subsampling mode is enabled (x_odd_inc=7  
and y_odd_inc=1 for x-binning, x_odd_inc=7 and y_odd_inc=7 for xy-binning). In this  
mode, however, not all pixels will be used so this is not a 4X binning implementation. An  
implementation providing a combination of skip2 and bin2 is used to achieve 4X  
subsampling with better image quality.  
The effect of the different subsampling settings is shown in Figure 15 on page 24 and  
Figure 16 on page 24.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
23  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Figure 15: Pixel Readout (x_odd_inc=3, y_odd_inc=1, x_bin=1)  
X incrementing  
Figure 16: Pixel Readout (x_odd_inc=3, y_odd_inc=3, x_ybin=1)  
X incrementing  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
24  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Figure 17: Pixel Readout (x_odd_inc=7, y_odd_inc=7, x_ybin=1)  
X incrementing  
Binning Limitations  
Binning requires different sequencing of the pixel array and imposes different timing  
limits on the operation of the sensor. In particular, xy-binning requires two read opera-  
tions from the pixel array for each line of output data, which has the effect of increasing  
the minimum line blanking time. The SMIA specification cannot accommodate this  
variation because its parameter limit registers are defined as being static.  
As a result, when xy-binning is enabled, some of the programming limits declared in the  
parameter limit registers are no longer valid. In addition, the default values for some of  
the manufacturer specific registers need to be reprogrammed. The recommended  
settings are shown in Table 7. None of these adjustments are required for x-binning.  
Table 7:  
Register Adjustments Required for Binning Mode  
Default  
Recommended  
(Normal Setting During  
Register  
Type  
Readout)  
Binning  
Notes  
min_line_blanking_pck  
Read-only  
0x06AC  
0x0C40  
Read-only register for control  
software; does not affect operation of  
sensor.  
min_line_length_pck  
Read-only  
Read-only  
0x0914  
0x056A  
0x03AA  
0x1200  
0x0B1A  
0x06E6  
Read-only register for control  
software; does not affect operation of  
sensor.  
fine_integration_time_min  
Read-only register for control  
software; does not affect operation of  
sensor.  
fine_integration_time_max_margin Read-only  
Read-only register for control  
software; does not affect operation of  
sensor.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
25  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Table 7:  
Register Adjustments Required for Binning Mode (continued)  
Default Recommended  
(Normal Setting During  
Register  
Type  
Readout)  
Binning  
Notes  
fine_correction  
Read/write  
Read/write  
0x0100  
0x056A  
0x0238  
0x0B1A  
Affects operation of sensor  
fine_integration_time  
Normal default is minimum value  
Since binning also requires subsampling to be enabled, the same restrictions apply to  
the setting of x_addr_end and y_addr_end ("Programming Restrictions when Subsam-  
pling" on page 21).  
A given row n will always be binned with row n + 2 for 2X subsampling mode and row  
n+4 for 4X subsampling mode. Therefore, there are two candidate rows that a row can be  
binned with, depending upon the alignment of y_addr_start.  
For a given column n, there is only one other column, n_bin, that is can be binned with.  
Since the x_addr_start is restricted to multiple of 8 a column n will also always we  
binned with column n + 2 for 2X subsampling mode and column n + 4 for 4X subsam-  
pling mode.  
Shading Correction (SC)  
Lenses tend to produce images whose brightness is significantly attenuated near the  
edges. There are also other factors causing fixed pattern signal gradients in images  
captured by image sensors. The cumulative result of all these factors is known as image  
shading. The MT9E001 has an embedded shading correction module that can be  
programmed to counter the shading effects on each individual Red, GreenR, GreenB,  
and Blue color signal.  
The Correction Function  
Color dependent solutions are calibrated using the sensor, lens system, and an image of  
an evenly illuminated, featureless gray calibration field. From the resulting image the  
color correction functions can be derived.  
The correction functions can then be applied to each pixel value to equalize the  
response across the image as follows:  
P
(row,col)=P  
(row,col)*f(row,col)  
(EQ 9)  
corrected  
sensor  
where P are the pixel values and f is the color dependent correction functions for each  
color channel.  
Each function includes a set of color dependent coefficients defined by registers  
R0x3600–3726. The function's origin is the center point of the function used in the calcu-  
lation of the coefficients. Using an origin near the central point of symmetry of the  
sensor response provides the best results. The center point of the function is determined  
by ORIGIN_C (R0x3782) and ORIGIN_R (R0x3784) and can be used to counter an offset  
in the system lens from the center of the sensor array.  
Output Data Format (Parallel Pixel Data Interface)  
The sensor image data is read out in a progressive scan. Valid image data is surrounded  
by horizontal blanking and vertical blanking as shown in Figure 18. The amount of hori-  
zontal blanking and vertical blanking is programmable. LINE_VALID is HIGH during the  
shaded region of the figure. FRAME_VALID timing is described in the next section.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
26  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Figure 18: Pixel Data Timing Example  
P0,0 P0,1 P0,2................................P0,n-1 P0,n  
P1,0 P1,1 P1,2................................P1,n-1 P1,n  
00 00 00 ............. 00 00 00  
00 00 00 ............. 00 00 00  
HORIZONTAL  
BLANKING  
VALID IMAGE  
Pm-1,0 Pm-1,1.........................Pm-1,n-1 Pm-1,n  
Pm,0 Pm,1.........................Pm,n-1 Pm,n  
00 00 00 ............. 00 00 00  
00 00 00 ............. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ............. 00 00 00  
00 00 00 ............. 00 00 00  
VERTICAL/HORIZONTAL  
BLANKING  
VERTICAL BLANKING  
00 00 00 ............. 00 00 00  
00 00 00 ............. 00 00 00  
00 00 00 ................................ 00 00 00  
00 00 00 ................................ 00 00 00  
Output Data Timing (Parallel Pixel Data Interface)  
The sensor core output data is synchronized with the PIXCLK output. When  
LINE_VALID is HIGH, one pixel data is output on the 12-bit DOUT output every PIXCLK  
period. By default, the sensor master input clock (vt_pix_clk_mhz) is set up as the virtual  
192 MHz clock. Hence, the output clock (op_pix_clk_mhz) is set up as half the sensor  
master input clock (vt_pix_clk_mhz). The rising edges on the PIXCLK signal occur one-  
half of a pixel clock period after transitions on LINE_VALID, FRAME_VALID, and DOUT  
(Figure 19). This allows PIXCLK to be used as a clock to sample the data. PIXCLK is  
continuously enabled, even during the blanking periods. The sensor can be  
programmed to delay the PIXCLK edge relative to the DOUT transitions. This can be  
achieved by programming the corresponding bits in the row_speed register. The param-  
eters P, A, and Q in Figure 20 are defined inTable 8.  
Figure 19: Pixel Data Timing Example  
LINE_VALID  
PIXCLK  
HB  
Valid Image Data  
HB  
DOUT[11:0]  
P
0
(11:0)  
P
1
(11:0)  
P
2
(11:0)  
P
3
(11:0)  
P
4
(11:0)  
P
n-1  
(11:0)  
P (11:0)  
n
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
27  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Sensor Core Description  
Figure 20: Row Timing and FRAME_VALID/LINE_VALID Signals  
FRAME_VALID  
LINE_VALID  
P
A
Q
A
Q
A
P
Number of master clocks  
Table 8:  
Parameter  
PIXCLK_PERIOD Pixel clock period  
Row Timing Parameters  
Name  
Equation  
Default Timing  
R0x3016-7[2:0] / vt_pix_clk_freq_mhz  
1 pixel clock  
= 5.2ns  
S
Skip (subsampling) factor x_odd_inc=y_odd_inc=3, S=2  
x_odd_inc=y_odd_inc=7, S=4  
1
otherwise, S=1  
A
Active data time  
(x_addr_end - x_addr_start + 1)  
* PIXCLK_PERIOD/S  
3264 pixel clocks  
= 17.0µs  
P
Frame start/end blanking 12 * PIXCLK_PERIOD  
12 pixel clocks  
= 62.5ns  
Q
Horizontal blanking  
Row time  
(line_length_pck - A) * PIXCLK_PERIOD  
line_length_pck * PIXCLK_PERIOD  
(y_addr_end - y_addr_start + y_odd_inc)/S  
6558 - 3264 pixel clocks  
= 17.16µs  
A + Q  
6558 pixel clocks  
= 34.16µs  
N
V
Number of rows  
Vertical blanking  
2448 rows  
((frame_length_lines - N) * (A+Q)) + Q - (2*P) 737,766 pixel clocks  
= 3.84ms  
N * (A+Q)  
F
Frame valid time  
Total frame time  
(N * (A + Q)) - Q + (2*P)  
16,050,714 pixel clocks  
= 83.60ms  
line_length_pck * frame_length_lines *  
PIXCLK_PERIOD  
16,788,480 pixel clocks  
= 87.44ms  
Note:  
This sensor has two internal data paths. The pixel clock used in the calculations (192 MHz)  
will, therefore, be twice the physical pixel clock frequency (96 MHz). The parameter P is  
measured in physical pixel clocks, and will therefore change for sensors with two data  
paths as described in Table 8.  
The sensor timing (Table 8) is shown in terms of pixel clock and master clock cycles  
(Figure 18 on page 27). The default settings for the on-chip PLL generate a 9 6MHz  
master input clock and pixel clock given a 24 MHz input clock to the sensor.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
28  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
General Purpose Inputs  
General Purpose Inputs  
The sensor provides four general purpose inputs; before reset they are in an unknown  
state. After reset, the input pads associated with these signals are powered-down by  
default, allowing the pads to be left disconnected/floating.  
The general purpose inputs are enabled by setting reset_register[8] (0x301A-B[8]). Once  
enabled, all four inputs must be driven to valid logic levels by external signals. The state  
of the general purpose inputs can be read through gpi_status (0x3026[3:0]).  
In addition, each of the following functions can be associated with none, one or more of  
the general-purpose inputs so that the function can be directly controlled by a hardware  
input:  
output enable (see "Output Enable Control" on page 29)  
SADDR (selects device address for the two-wire serial interface)  
trigger (see the sections below)  
standby functions (see the sections below)  
The gpi_status register (0x3026) is used to associate a function with a general purpose  
input.  
Parallel Pixel Data Interface  
The parallel pixel data interface uses the following output-only signals:  
FRAME_VALID  
LINE_VALID  
PIXCLK  
DOUT[11:0]  
The parallel pixel data interface is disabled by default at power-up and after reset. It can  
be enabled by programming R0x301A.  
Output Enable Control  
When the parallel pixel data interface is enabled, its signals can be switched asynchro-  
nously between the driven and High-Z—this is controlled either by pin or register con-  
trol, as shown in Table 9.  
Table 9:  
Output Enable Control  
GPI Configured  
OE_N Pin  
Drive Signals  
R0x301A–B[6]  
Description  
disabled  
0
1
0
1
X
Interface High-Z  
Interface driven  
Interface High-Z  
Interface driven  
Interface driven  
disabled  
1
X
0
Trigger Control  
When the global reset feature is in use, the trigger for the sequence can be initiated  
either under pin or register control, as shown in Table 10 on page 30.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
29  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
General Purpose Inputs  
Table 10: Trigger Control  
GPI Configured  
TRIGGER in  
Global Trigger R0x3160–1[0]  
Description  
Disabled  
0
1
0
1
X
Idle  
Disabled  
Trigger  
Idle  
0
X
1
Trigger  
Trigger  
Streaming/Standby Control  
The sensor can be switched between its soft standby and streaming states under pin or  
register control, as shown in the Table 11 above. Selection of a pin to use for the  
STANDBY function is described in "General Purpose Inputs" on page 29. The state dia-  
gram for transitions between soft standby and streaming states is shown in the Figure 33  
on page 85.  
Table 11: Streaming/STANDBY  
GPI Configured  
STANDBY Pin  
Streaming R0x301A–B[2]  
Description  
Disabled  
0
1
0
1
X
Soft Standby  
Streaming  
Disabled  
X
0
1
Soft Standby  
Streaming  
Soft Standby  
Operational Modes  
Snapshot and Flash  
The sensor supports both Xenon and LED flash through the FLASH output signal. The  
timing of the FLASH signal with the default settings is shown in Figure 21 on page 31  
through Figure 23 on page 31. The flash and flash_count registers allow the timing of the  
flash to be changed. The flash can be programmed to fire only once, to be delayed by a  
few frames when asserted, and (for Xenon flash) to program the flash duration.  
Enabling the LED flash will cause one bad frame, where several of the rows only have the  
flash on for part of their integration time. This can be avoided by forcing a restart of the  
frame (write reset_register[1] = 1) immediately after enabling the flash; the first bad  
frame will then be masked out as shown in Figure 23 on page 31. Read-only bit flash[14]  
is set during frames that are correctly integrated; the state of this bit is shown in  
Figures 21 through Figure 23 on page 31.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
30  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
General Purpose Inputs  
Figure 21: Xenon Flash Enabled  
FRAME_VALID  
Flash STROBE  
State of Triggered Bit  
(flash[14])  
Figure 22: LED Flash Enabled  
FRAME_VALID  
Flash STROBE  
State of Triggered Bit  
(flash[14])  
Bad frame  
Flash enabled  
Bad frame  
Good frame  
Good frame  
during this frame  
Flash disabled  
during this frame  
Figure 23: LED Flash Enabled Following Forced Restart  
FRAME_VALID  
Flash STROBE  
State of Triggered Bit  
(flash[14])  
Masked  
out frame  
Flash is enabled  
and a restart  
triggered  
Masked  
out frame  
Good frame  
Good frame  
Flash disabled and  
a restart triggered  
Low Power Mode  
The sensor supports a low-power mode by programming register bit read_mode[9].  
Setting this bit will result in the following:  
Double the value of pc_speed[2:0] internally. This means halving the internal pixel  
clock frequency.  
The slower pixel clock provides more time for settling in the analog domain, thus, the  
low power DAC values can be approximately half the full power DAC values.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
31  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
General Purpose Inputs  
Enabling the low power mode will not put the sensor in subsampling mode; this has to  
be programmed separately as described earlier in this document. Low power is indepen-  
dent of the readout mode, and can also be enabled in full resolution mode. However,  
since the pixel clock speed is halved, the frame rates that can be achieved with low  
power mode are lower than in full power mode.  
Only internal pixel clock speeds of 1, 2 and 4 are supported; therefore, low power mode  
combined with pc_speed[2:0]=4 is an illegal combination.  
Any limitations related to changing the internal pixel clock speed will also apply to low  
power mode since it automatically changes the pixel clock speed. SMIA limiter registers  
therefore needs to be reprogram to match the new internal pixel clock frequency.  
Test Patterns  
For test purposes, pixel data can be replaced with a fixed image generated by a special  
test module in the pipeline. The module provides a selection of test patterns sufficient  
for basic testing of the signal chain.  
Test patterns are accessible using R0x0600 and are shown in Table 12.  
Table 12: Test Patterns  
Test Pattern  
Register Value  
Normal Operation: no test pattern  
Flat Field  
0
1
Color Bar  
2
Fade-to-Gray Color Bar  
Marching 1's  
3
256  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
32  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Two-Wire Serial Interface  
Two-Wire Serial Interface  
The two-wire serial interface bus enables read/write access to control and status regis-  
ters within the sensor. This interface is designed to be compatible with the “SMIA 1.0  
Part2: CCP2 Specification Camera Control Interface (CCI),” that uses the electrical char-  
acteristics and transfer protocols of the two-wire serial interface specification.  
The interface protocol uses a master/slave model in which a master controls one or  
more slave devices. The sensor acts as a slave device. The master generates a clock  
(SCLK) that is an input to the sensor and used to synchronize transfers. Data is trans-  
ferred between the master and the slave on a bidirectional signal (SDATA). SDATA is pulled  
up to VDD off-chip by a 1.5KΩ resistor. Either the slave or master device can drive SDATA  
LOW—the interface protocol determines which device is allowed to drive SDATA at any  
given time.  
The protocols described in the two-wire serial interface specification allow the slave  
device to drive SCLK LOW; the sensor uses SCLK as an input only; therefore, never drives  
it LOW.  
Protocol  
Data transfers on the two-wire serial interface bus are performed by a sequence of low-  
level protocol elements, as follows:  
a (repeated) start condition  
a slave address/data direction byte  
a(an) (not) acknowledge bit  
a message byte  
a stop condition  
The bus is idle when both SCLK and SDATA are HIGH. Control of the bus is initiated with  
a start condition, and the bus is released with a stop condition. Only the master can  
generate the start and stop conditions.  
Start Condition  
A start condition is defined as a HIGH-to-LOW transition on SDATA while SCLK is HIGH.  
At the end of a transfer, the master can generate a start condition without previously  
generating a stop condition; this is known as a repeated start or restart condition.  
Stop Condition  
Data Transfer  
A stop condition is defined as a LOW -to-HIGH transition on SDATA while SCLK is HIGH.  
Data is transferred serially, 8 bits at a time, with the MSB transmitted first. Each byte of  
data is followed by an acknowledge bit or a no-acknowledge bit. This data transfer  
mechanism is used for the slave address/data direction byte and for message bytes.  
One data bit is transferred during each SCLK clock period. SDATA can change when SCLK  
is LOW and must be stable while SCLK is HIGH.  
Slave Address/Data Direction Byte  
Bits [7:1] of this byte represent the device slave address and bit [0] indicates the data  
transfer direction. A “0” in bit [0] indicates a write, and a “1” indicates a read. The default  
slave addresses used by the sensor are 0x20 (write address) and 0x21 (read address), in  
accordance with the SMIA specification. Alternate slave addresses of 0x30 (write  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
33  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Two-Wire Serial Interface  
address) and 0x31 (read address) can be selected. The GPI pins can be configured for  
SADDR functionality through register bit fields 0x3026[6:4], and enabled by setting  
0x301A[8].  
2
These default slave addresses are also fully programmable through the I C address regis-  
ters (0x31FC–0x31FD). Before this register can be written to, it needs to be unlocked  
through reset_register 0x301A[3].  
Message Byte  
Message bytes are used for sending register addresses and register write data to the slave  
device and for retrieving register read data. The protocol used is outside the scope of the  
two-wire serial interface specification and is defined as part of the SMIA CCI.  
Acknowledge Bit  
Each 8-bit data transfer is followed by an acknowledge bit or a no-acknowledge bit in the  
SCLK clock period following the data transfer. The transmitter (which is the master  
when writing, or the slave when reading) releases SDATA. The receiver indicates an  
acknowledge bit by driving SDATA LOW. As for data transfers, SDATA can change when  
SCLK is LOW and must be stable while SCLK is HIGH.  
No-Acknowledge Bit  
The no-acknowledge bit is generated when the receiver does not drive SDATA LOW dur-  
ing the SCLK clock period following a data transfer. A no-acknowledge bit is used to ter-  
minate a read sequence.  
Typical Serial Transfer  
A typical read or write sequence begins by the master generating a start condition on the  
bus. After the start condition, the master sends the 8-bit slave address/data direction  
byte. The last bit indicates whether the request is for a read or a write, where a “0” indi-  
cates a write and a “1” indicates a read. If the address matches the address of the slave  
device, the slave device acknowledges receipt of the address by generating an acknowl-  
edge bit on the bus.  
If the request was a write, the master then transfers the 16-bit register address to which  
the write should take place. This transfer takes place as two, 8-bit sequences and the  
slave sends an acknowledge bit after each sequence to indicate that the byte has been  
received. The master then transfers the data as an 8-bit sequence; the slave sends an  
acknowledge bit at the end of the sequence. After 8 bits have been transferred, the  
slaves internal register address is incremented automatically, so that the next 8 bits are  
written to the next register address. The master stops writing by generating a (re)start or  
stop condition.  
If the request was a read, the master sends the 8-bit write slave address/data direction  
byte and 16-bit register address, the same way as with a write request. The master then  
generates a (re)start condition and the 8-bit read slave address/data direction byte, and  
clocks out the register data, 8 bits at a time. The master generates an acknowledge bit  
after each 8-bit transfer. The slaves internal register address is auto-incremented after  
every 8 bits are transferred. The data transfer is stopped when the master sends a no-  
acknowledge bit.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
34  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Two-Wire Serial Interface  
Single Read from Random Location  
This sequence (Figure 24) starts with a dummy write to the 16-bit address that is to be  
used for the read. The master terminates the write by generating a restart condition. The  
master then sends the 8-bit read slave address/data direction byte and clocks out one  
byte of register data. The master terminates the read by generating a no-acknowledge  
bit followed by a stop condition. Figure 24 shows how the internal register address  
maintained by the sensor is loaded and incremented as the sequence proceeds.  
Figure 24: Single Read from Random Location  
Previous Reg Address, N  
Reg Address, M  
M+1  
P
S
Slave Address  
0
A Reg Address[15:8] A Reg Address[7:0] A Sr Slave Address 1 A  
Read Data  
A
S = start condition  
P = stop condition  
Sr = restart condition  
A = acknowledge  
A = not-acknowledge  
slave to master  
master to slave  
Single Read from Current Location  
This sequence (Figure 25) performs a read using the current value of the sensor internal  
register address. The master terminates the read by generating a no-acknowledge bit  
followed by a stop condition. The figure shows two independent read sequences.  
Figure 25: Single Read from Current Location  
Previous Reg Address, N  
Reg Address, N+1  
N+2  
S
Slave Address 1 A  
Read Data  
A P  
S
Slave Address 1 A  
Read Data  
A P  
Sequential Read, Start from Random Location  
This sequence (Figure 26) starts in the same way as the single read from random loca-  
tion (Figure 24). Instead of generating a no-acknowledge bit after the first byte of data  
has been transferred, the master generates an acknowledge bit, and continues to per-  
form byte reads until “L” bytes have been read.  
Figure 26: Sequential Read, Start from Random Location  
Previous Reg Address, N  
Reg Address, M  
M+1  
S
Slave Address  
0
Reg Address[15:8]  
Reg Address[7:0]  
Sr Slave Address  
Read Data  
M+L  
1 A  
A
A
A
A
A
M+1  
M+2  
M+L-2  
M+L-1  
M+3  
Read Data  
Read Data  
Read Data  
Read Data  
A
A
A
S
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
35  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Two-Wire Serial Interface  
Sequential Read, Start from Current Location  
This sequence (Figure 27) starts in the same way as the single read from current location  
(Figure 25 on page 35). Instead of generating a no-acknowledge bit after the first byte of  
data has been transferred, the master generates an acknowledge bit, and continues to  
perform byte reads until “L” bytes have been read.  
Figure 27: Sequential Read, Start from Current Location  
Previous Reg Address, N  
N+1  
N+2  
N+L-1  
N+L  
S
S
Slave Address 1 A  
Read Data  
A
Read Data  
A
Read Data  
A
Read Data  
A
Single Write to Random Location  
This sequence (Figure 28) begins with the master generating a start condition. The slave  
address/data direction byte signals a write and is followed by the high then low bytes of  
the register address that is to be written. The master follows this with the byte of write  
data. The write is terminated by the master generating a stop condition.  
Figure 28: Single Write to Random Location  
Previous Reg Address, N  
Reg Address, M  
Write Data  
M+1  
P
A
A
S
Slave Address  
0
Reg Address[15:8]  
Reg Address[7:0]  
A A  
A
Sequential Write, Start at Random Location  
This sequence (Figure 29) starts in the same way as the single write to random location  
(Figure 28). Instead of generating a no-acknowledge bit after the first byte of data has  
been transferred, the master generates an acknowledge bit, and continues to perform  
byte writes until “L” bytes have been written. The write is terminated by the master gen-  
erating a stop condition.  
Figure 29: Sequential Write, Start at Random Location  
Previous Reg Address, N  
Reg Address, M  
Write Data  
M+1  
S
Slave Address  
0
Reg Address[15:8]  
Reg Address[7:0]  
A
A
A
A
A
A
M+1  
M+2  
M+L-2  
M+L-1  
.........  
.........  
M+L  
A
A
Write Data  
Write Data  
Write Data  
Write Data  
A
P
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
36  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Registers  
Registers  
The sensor provides a 16-bit register address space accessed through a serial interface.  
Each register location is 8 bits in size.  
The address space is divided into the five major regions shown in Table 13.  
Table 13: Address Space Regions  
Address Regions  
Description  
0x00000x0FFF  
0x10000x1FFF  
0x20000x2FFF  
0x30000x3FFF  
0x40000xFFFF  
Configuration registers  
(Read-only and read-write dynamic registers)  
Parameter limit registers  
(Read-only static registers)  
Reserved  
(Undefined)  
Manufacturer specific registers  
(Read-only and read-write dynamic registers)  
Reserved  
(Undefined)  
Register Notation  
The underlying mechanism for reading and writing registers provides byte write capa-  
bility. However, it is convenient to consider some registers as multiple adjacent bytes.  
The sensor uses 8-bit, 16-bit, and 32-bit registers; all implemented as 1 or more bytes at  
naturally aligned, contiguous locations in the address space.  
Registers are described either by address or by name. When registers are described by  
address, the size of the registers is explicit. For example, R0x3024 is an 8-bit register at  
address 0x3024, and R0x3000–1 is a 16-bit register at address 0x3000–0x3001. When  
registers are described by name, the size of the register is not implicit. For example, it is  
necessary to refer to the register table to determine that model_id is a 16-bit register.  
Register Aliases  
A consequence of the internal architecture of the sensor is that some registers are  
decoded at multiple addresses: some registers in configuration space are also decoded  
in manufacturing specific space. In order to provide unique names for all registers, the  
name of the register within manufacturer specific register space has a trailing under-  
score. For example, R0x0000–1 is model_id, and R0x3000–1 is model_id_ (see the register  
tables for more examples). The effect of reading or writing a register to itself or through  
any of its aliases is identical.  
Bit Fields  
Some registers provide control of several different pieces of related functionality and  
this makes it necessary to refer to bit fields within registers. As an example of the nota-  
tion used for this, the least significant 4 bits of the model_id register are referred to as  
model_id[3:0] or R0x0000–1[3:0].  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
37  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Registers  
Bit Field Aliases  
Byte Ordering  
In addition to the register aliases described above, some register fields are aliased in  
multiple places. For example, R0x0100 (mode_select) only has one operational bit:  
R0x0100[0]. This bit is aliased to R0x3001A–B[2]. The effect of reading or writing a bit  
field through any of its aliases is identical.  
Registers that occupy more than one byte of address space are shown with the lowest  
address in the highest-order byte lane, to match the byte-ordering on the SMIA bus. For  
example, the model_id register is R0x0000–1. In the register table its default value is  
shown as 0x2B00. This means that a read from address 0x0000 would return 0x2B and a  
read from address 0x0001 would return 0x00. When reading this register as two 8-bit  
transfers on the serial interface, the 0x2B will appear on the serial interface first,  
followed by the 0x00.  
Address Alignment  
All register addresses are naturally-aligned: registers that occupy two bytes of address  
space are aligned to even 16-bit addresses, and registers that occupy four bytes of  
address space are aligned to 16-bit addresses that are an integer multiple of 4.  
Bit Representation  
Data Format  
For clarity, 32-bit hex numbers are shown with an underscore between the upper and  
lower sixteen bits. For example: 0x3000_01AB.  
Most registers represent an unsigned binary value or set of bit fields. For all other  
register formats, the format is stated explicitly at the start of the register description. The  
notation for these formats is shown in Table 14.  
Table 14: Data Formats  
Name  
Description  
FIX16  
Signed fixed-point 16-bit number: two's complement number, 8 fractional  
bits.  
Examples: 0x0100 = 1.0, 0x8000 = -128, 0xFFFF = -0.0039065  
UFIX16  
FLP32  
Unsigned fixed-point 16-bit number: 8.8 format.  
Examples: 0x0100 = 1.0, 0x280 = 2.5  
Example: 0x4280_0000 = 64.0  
Register Behavior  
Registers vary from "read-only," "read/write," and "read, write-1-to-clear."  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
38  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Registers  
Double-Buffered Registers  
Some sensor settings cannot be changed during frame readout. For example, changing  
R0x0344–5 (x_addr_start) partway through frame readout would result in inconsistent  
row lengths within a frame. To avoid this, the sensor double buffers many registers by  
implementing a "pending" and a "live" version. Reads and writes access the pending  
register. The live register controls the sensor operation.  
The value in the pending register is transferred to a live register at a fixed point in the  
frame timing, called frame start. Frame start is defined as the point at which the first  
dark row is read out internally to the sensor. By default, this occurs 82 row times before  
FRAME_VALID goes HIGH. R0x3044–5 enables the dark rows to be shown in the image,  
but this has no effect on the position of frame-start. In the register tables the "Frame  
Synced" field shows which registers or register fields are double-buffered in this way.  
Using grouped_parameter_hold  
The grouped_parameter_hold (R0x0104) can be used to inhibit transfers from the  
pending to the live registers. When the sensor is in streaming mode, this register should  
be written to “1” before making changes to any multi-byte registers or any group of  
registers where a set of changes is required to take effect simultaneously. When this  
register is written to “0,” all transfers from pending to live registers take place on the next  
frame start.  
An example of the consequences of failing to set this bit follows:  
The coarse integration time is controlled by a 16-bit register. If the integration time is  
changed from 0x00FF to 0x0100 and the writes of 0x01, 0x00 (the two bytes used to set  
the new integration time) occur during a frame start, the first byte could be seen and  
transferred to the live register one frame sooner than the second byte. Instead of seeing  
successive frames integrated at 0x00FF, 0x0100, 0x0100, 0x0100, successive frames  
would be integrated at 0x00FF, 0x01FF, 0x0100, 0x0100.  
Bad Frames  
A bad frame is defined as a frame where all rows do not have the same integration time,  
or where offsets to the pixel values have changed during the frame.  
Many changes to the sensor register settings can cause a bad frame. For example, when  
line_length_pck (R0x0342–3) is changed, the new register value does not affect sensor  
behavior until the next frame start. However, the frame that would be read out at that  
frame start will have been integrated using the old row width, so reading it out using the  
new row width would result in a frame with an incorrect integration time.  
By default, bad frames are not masked. However, when bad frames are masked  
(0x301A[9]), LINE_VALID and FRAME_VALID are inhibited for these frames so that the  
vertical blanking time between frames is extended by the frame time.  
In the register tables, the "Cause Bad Frame" field shows where changing a register or  
register field will cause a bad frame. The following notation is used:  
False:Changing the register value will not produce a bad frame.  
True:Changing the register value might produce a bad frame.  
Dropped: As true, but the bad frame will be masked out when  
mask_corrupted_frames (R0x0105) is set to "1."  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
39  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Registers  
Changes to Integration Time  
If the integration time is changed while FRAME_VALID is asserted for frame n, the first  
frame output using the new integration time is frame (n + 2). The sequence is as follows:  
1. During frame n, the new integration time is held in the pending register.  
2. At the start of frame (n + 1), the new integration time is transferred to the live register.  
Integration for each row of frame (n + 1) has been completed using the old integration  
time.  
3. The earliest time that a row can start integrating using the new integration time is  
immediately after that row has been read for frame (n + 1). The actual time that rows  
start integrating using the new integration time is dependent upon the new value of  
the integration time.  
4. When frame (n + 1) is read out, the next frame will have been integrated using the new  
integration time.  
If the integration time is changed on successive frames, each value written will be  
applied for a single frame; the latency between writing a value and it affecting the frame  
readout remains at two frames.  
Figure 30: Changes to Integration Time  
N
N+1  
N+2  
FRAME_VALID  
coarse_integration_time  
Pending Value  
old  
old  
new value  
new value  
coarse_integration_time  
Live Value  
Integration value used for  
read out frame  
old value  
new  
Changes to Gain Settings  
Usually, when the gain settings are changed, the gain is updated on the next frame start  
as is shown in Figure 31. When the integration time and the gain are changed at the  
same time, the gain update is held off by one frame so that the first frame output with  
the new integration time also has the new gain applied (Figure 32 on page 41).  
If the gain and integration time are both changed on successive frames, some gain  
values will be overwritten without ever being applied, while each integration time will be  
used for one single frame.  
Figure 31: Changes to Gain  
FRAME_VALID  
n
n+1  
n+2  
global_gain  
old  
old  
new value  
Pending Value  
global_gain  
Live Value  
new value  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
40  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Registers  
Figure 32: Changes to Gain and Integration Time  
N
N+1  
N+2  
FRAME_VALID  
coarse_integration_time  
Pending Value  
old  
old  
new value  
coarse_integration_time  
Live Value  
new value  
Integration value used for  
read out frame  
old value  
old value  
new  
global_gain  
Pending Value  
old  
new value  
global_gain  
Live Value  
new  
Embedded Data  
The current values of implemented registers in the address range 0x0000–0x0FFF can be  
generated as part of the pixel data. This embedded data is enabled by default.  
The current value of a register is the value that was used for the image data in that frame.  
In general, this is the live value of the register. The exceptions are:  
The integration time is delayed by one further frame, so that the value corresponds to  
the integration time used for the image data in the frame. See “Changes to Integra-  
tion Time” on page 40.  
The PLL timing registers are not double-buffered, since the result of changing them in  
streaming mode is UNDEFINED. Therefore, the pending and live values for these  
registers are equivalent.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__2.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
41  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Register List and Default Value  
Table 15: SMIA Configuration  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R0(R0x0000)  
R2(R0x0002)  
model_id  
dddd dddd dddd dddd  
dddd dddd  
11008 (0x2B00)  
0 (0x0000)  
6 (0x0006)  
10 (0x000A)  
255 (0x00FF)  
0 (0x0000)  
168 (0x00A8)  
1 (0x0001)  
18 (0x0012)  
23744 (0x5CC0)  
4098 (0x1002)  
22928 (0x5990)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
1 (0x0001)  
8 (0x0008)  
127 (0x007F)  
1 (0x0001)  
0 (0x0000)  
1 (0x0001)  
0 (0x0000)  
0 (0x0000)  
8 (0x0008)  
1 (0x0001)  
5 (0x0005)  
2570 (0x0A0A)  
2056 (0x0808)  
revision_number  
R3(R0x0003)  
manufacturer_id  
???? ????  
R4(R0x0004)  
smia_version  
???? ????  
R5(R0x0005)  
frame_count  
???? ????  
R6(R0x0006)  
pixel_order  
0000 00??  
R8(R0x0008)  
data_pedestal  
0000 dddd dddd dddd  
???? ????  
R64(R0x0040)  
R65(R0x0041)  
R66(R0x0042)  
R68(R0x0044)  
R70(R0x0046)  
R72(R0x0048)  
R74(R0x004A)  
R76(R0x004C)  
R78(R0x004E)  
R80(R0x0050)  
R82(R0x0052)  
R84(R0x0054)  
R86(R0x0056)  
R88(R0x0058)  
R90(R0x005A)  
R92(R0x005C)  
R94(R0x005E)  
R128(R0x0080)  
R132(R0x0084)  
R134(R0x0086)  
R136(R0x0088)  
R138(R0x008A)  
R140(R0x008C)  
R142(R0x008E)  
R144(R0x0090)  
R146(R0x0092)  
R192(R0x00C0)  
R193(R0x00C1)  
R194(R0x00C2)  
R196(R0x00C4)  
frame_format_model_type  
frame_format_model_subtype  
frame_format_descriptor_0  
frame_format_descriptor_1  
frame_format_descriptor_2  
frame_format_descriptor_3  
frame_format_descriptor_4  
frame_format_descriptor_5  
frame_format_descriptor_6  
frame_format_descriptor_7  
frame_format_descriptor_8  
frame_format_descriptor_9  
frame_format_descriptor_10  
frame_format_descriptor_11  
frame_format_descriptor_12  
frame_format_descriptor_13  
frame_format_descriptor_14  
analogue_gain_capability  
analogue_gain_code_min  
analogue_gain_code_max  
analogue_gain_code_step  
analogue_gain_type  
???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ????  
analogue_gain_m0  
analogue_gain_c0  
analogue_gain_m1  
analogue_gain_c1  
data_format_model_type  
data_format_model_subtype  
data_format_descriptor_0  
data_format_descriptor_1  
???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
42  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 15: SMIA Configuration (continued)  
Register #  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Default Value  
Dec (Hex)  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R198(R0x00C6)  
R200(R0x00C8)  
R202(R0x00CA)  
R204(R0x00CC)  
R206(R0x00CE)  
R256(R0x0100)  
R257(R0x0101)  
R259(R0x0103)  
R260(R0x0104)  
R261(R0x0105)  
R272(R0x0110)  
R273(R0x0111)  
R274(R0x0112)  
R288(R0x0120)  
R512(R0x0200)  
R514(R0x0202)  
R516(R0x0204)  
R518(R0x0206)  
R520(R0x0208)  
R522(R0x020A)  
R524(R0x020C)  
R526(R0x020E)  
R528(R0x0210)  
R530(R0x0212)  
R532(R0x0214)  
R768(R0x0300)  
R770(R0x0302)  
R772(R0x0304)  
R774(R0x0306)  
R776(R0x0308)  
R778(R0x030A)  
R832(R0x0340)  
R834(R0x0342)  
R836(R0x0344)  
R838(R0x0346)  
R840(R0x0348)  
R842(R0x034A)  
R844(R0x034C)  
R846(R0x034E)  
data_format_descriptor_2  
data_format_descriptor_3  
data_format_descriptor_4  
data_format_descriptor_5  
data_format_descriptor_6  
mode_select  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
0000 000d  
2568 (0x0A08)  
3084 (0x0C0C)  
3080 (0x0C08)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
image_orientation  
software_reset  
0000 00dd  
0 (0x0000)  
0000 000d  
0 (0x0000)  
grouped_parameter_hold  
mask_corrupted_frames  
Reserved  
0000 000d  
0 (0x0000)  
0000 000d  
0 (0x0000)  
0000 0ddd  
0 (0x0000)  
Reserved  
0000 000d  
0 (0x0000)  
ccp_data_format  
0000 ddd0 0000 ddd0  
0000 000d  
3084 (0x0C0C)  
0 (0x0000)  
gain_mode  
fine_integration_time  
coarse_integration_time  
analogue_gain_code_global  
analogue_gain_code_greenR  
analogue_gain_code_red  
analogue_gain_code_blue  
analogue_gain_code_greenB  
digital_gain_greenR  
digital_gain_red  
dddd dddd dddd ddd0  
dddd dddd dddd dddd  
0000 0000 0ddd dddd  
0000 0000 0ddd dddd  
0000 0000 0ddd dddd  
0000 0000 0ddd dddd  
0000 0000 0ddd dddd  
0000 0ddd 0000 0000  
0000 0ddd 0000 0000  
0000 0ddd 0000 0000  
0000 0ddd 0000 0000  
0000 0000 0000 dddd  
0000 0000 000d dddd  
0000 0000 00dd dddd  
0000 0000 dddd dddd  
0000 0000 000d dddd  
0000 0000 000d dddd  
dddd dddd dddd dddd  
dddd dddd dddd ddd0  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd ddd0  
0000 dddd dddd ddd0  
1386 (0x056A)  
16 (0x0010)  
13 (0x000D)  
13 (0x000D)  
13 (0x000D)  
13 (0x000D)  
13 (0x000D)  
256 (0x0100)  
256 (0x0100)  
256 (0x0100)  
256 (0x0100)  
4 (0x0004)  
digital_gain_blue  
digital_gain_greenB  
vt_pix_clk_div  
vt_sys_clk_div  
1 (0x0001)  
pre_pll_clk_div  
2 (0x0002)  
pll_multiplier  
64 (0x0040)  
8 (0x0008)  
op_pix_clk_div  
op_sys_clk_div  
1 (0x0001)  
frame_length_lines  
line_length_pck  
2560 (0x0A00)  
6558 (0x199E)  
0 (0x0000)  
x_addr_start  
y_addr_start  
8 (0x0008)  
x_addr_end  
3263 (0x0CBF)  
2455 (0x0997)  
3264 (0x0CC0)  
2448 (0x0990)  
y_addr_end  
x_output_size  
y_output_size  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
43  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 15: SMIA Configuration (continued)  
Register #  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Default Value  
Dec (Hex)  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R896(R0x0380)  
R898(R0x0382)  
R900(R0x0384)  
R902(R0x0386)  
R1024(R0x0400)  
R1026(R0x0402)  
R1028(R0x0404)  
R1030(R0x0406)  
R1280(R0x0500)  
R1536(R0x0600)  
R1538(R0x0602)  
R1540(R0x0604)  
R1542(R0x0606)  
R1544(R0x0608)  
R1546(R0x060A)  
R1548(R0x060C)  
R1550(R0x060E)  
R1552(R0x0610)  
x_even_inc  
x_odd_inc  
0000 0000 0000 000?  
0000 0000 0000 0ddd  
0000 0000 0000 000?  
0000 0000 0000 0ddd  
0000 0000 0000 00dd  
0000 0000 0000 000d  
0000 0000 dddd dddd  
0000 0000 ???? ????  
0000 0000 0000 000?  
0000 000d dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
1 (0x0001)  
1 (0x0001)  
1 (0x0001)  
1 (0x0001)  
0 (0x0000)  
0 (0x0000)  
16 (0x0010)  
16 (0x0010)  
1 (0x0001)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
y_even_inc  
y_odd_inc  
scaling_mode  
spatial_sampling  
scale_m  
scale_n  
compression_mode  
test_pattern_mode  
test_data_red  
test_data_greenR  
test_data_blue  
test_data_greenB  
horizontal_cursor_width  
horizontal_cursor_position  
vertical_cursor_width  
vertical_cursor_position  
Table 16: 1: SMIA Parameter Limits  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R4096(R0x1000)  
R4100(R0x1004)  
R4102(R0x1006)  
R4104(R0x1008)  
R4106(R0x100A)  
R4224(R0x1080)  
R4228(R0x1084)  
R4230(R0x1086)  
R4232(R0x1088)  
R4352(R0x1100)  
R4354(R0x1102)  
R4356(R0x1104)  
R4358(R0x1106)  
R4360(R0x1108)  
R4362(R0x110A)  
integration_time_capability  
coarse_integration_time_min  
coarse_integration_time_max_margin  
fine_integration_time_min  
fine_integration_time_max_margin  
digital_gain_capability  
???? ???? ???? ????  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
1 (0x0001)  
0 (0x0000)  
1 (0x0001)  
1386 (0x056A)  
938 (0x03AA)  
1 (0x0001)  
digital_gain_min  
256 (0x0100)  
1792 (0x0700)  
256 (0x0100)  
16576 (0x40C0)  
0 (0x0000)  
digital_gain_max  
digital_gain_step_size  
min_ext_clk_freq_mhz_1  
min_ext_clk_freq_mhz_2  
max_ext_clk_freq_mhz_1  
max_ext_clk_freq_mhz_2  
min_pre_pll_clk_div  
16960 (0x4240)  
0 (0x0000)  
1 (0x0001)  
max_pre_pll_clk_div  
64 (0x0040)  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
44  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 16: 1: SMIA Parameter Limits (continued)  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R4364(R0x110C)  
R4366(R0x110E)  
R4368(R0x1110)  
R4370(R0x1112)  
R4372(R0x1114)  
R4374(R0x1116)  
R4376(R0x1118)  
R4378(R0x111A)  
R4380(R0x111C)  
R4382(R0x111E)  
R4384(R0x1120)  
R4386(R0x1122)  
R4388(R0x1124)  
R4390(R0x1126)  
R4392(R0x1128)  
R4394(R0x112A)  
R4396(R0x112C)  
R4398(R0x112E)  
R4400(R0x1130)  
R4402(R0x1132)  
R4404(R0x1134)  
R4406(R0x1136)  
R4416(R0x1140)  
R4418(R0x1142)  
R4420(R0x1144)  
R4422(R0x1146)  
R4424(R0x1148)  
R4426(R0x114A)  
R4448(R0x1160)  
R4450(R0x1162)  
R4452(R0x1164)  
R4454(R0x1166)  
R4456(R0x1168)  
R4458(R0x116A)  
R4460(R0x116C)  
R4462(R0x116E)  
R4464(R0x1170)  
R4466(R0x1172)  
R4468(R0x1174)  
min_pll_ip_freq_mhz_1  
min_pll_ip_freq_mhz_2  
max_pll_ip_freq_mhz_1  
max_pll_ip_freq_mhz_2  
min_pll_multiplier  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
16384 (0x4000)  
0 (0x0000)  
16832 (0x41C0)  
0 (0x0000)  
32 (0x0020)  
256 (0x0100)  
17344 (0x43C0)  
0 (0x0000)  
max_pll_multiplier  
min_pll_op_freq_mhz_1  
min_pll_op_freq_mhz_2  
max_pll_op_freq_mhz_1  
max_pll_op_freq_mhz_2  
min_vt_sys_clk_div  
17472 (0x4440)  
0 (0x0000)  
1 (0x0001)  
max_vt_sys_clk_div  
1 (0x0001)  
min_vt_sys_clk_freq_mhz_1  
min_vt_sys_clk_freq_mhz_2  
max_vt_sys_clk_freq_mhz_1  
max_vt_sys_clk_freq_mhz_2  
min_vt_pix_clk_freq_mhz_1  
min_vt_pix_clk_freq_mhz_2  
max_vt_pix_clk_freq_mhz_1  
max_vt_pix_clk_freq_mhz_2  
min_vt_pix_clk_div  
17344 (0x43C0)  
0 (0x0000)  
17472 (0x4440)  
0 (0x0000)  
17088 (0x42C0)  
0 (0x0000)  
17216 (0x4340)  
0 (0x0000)  
4 (0x0004)  
max_vt_pix_clk_div  
4 (0x0004)  
min_frame_length_lines  
max_frame_length_lines  
min_line_length_pck  
87 (0x0057)  
65535 (0xFFFF)  
2324 (0x0914)  
65534 (0xFFFE)  
1708 (0x06AC)  
85 (0x0055)  
1 (0x0001)  
max_line_length_pck  
min_line_blanking_pck  
min_frame_blanking_lines  
min_op_sys_clk_div  
max_op_sys_clk_div  
1 (0x0001)  
min_op_sys_clk_freq_mhz_1  
min_op_sys_clk_freq_mhz_2  
max_op_sys_clk_freq_mhz_1  
max_op_sys_clk_freq_mhz_2  
min_op_pix_clk_div  
17344 (0x43C0)  
0 (0x0000)  
17472 (0x4440)  
0 (0x0000)  
8 (0x0008)  
max_op_pix_clk_div  
8 (0x0008)  
min_op_pix_clk_freq_mhz_1  
min_op_pix_clk_freq_mhz_2  
max_op_pix_clk_freq_mhz_1  
16960 (0x4240)  
0 (0x0000)  
17088 (0x42C0)  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
45  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 16: 1: SMIA Parameter Limits (continued)  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R4470(R0x1176)  
R4480(R0x1180)  
R4482(R0x1182)  
R4484(R0x1184)  
R4486(R0x1186)  
R4544(R0x11C0)  
R4546(R0x11C2)  
R4548(R0x11C4)  
R4550(R0x11C6)  
R4608(R0x1200)  
R4612(R0x1204)  
R4614(R0x1206)  
R4616(R0x1208)  
R4618(R0x120A)  
R4864(R0x1300)  
R5120(R0x1400)  
R5122(R0x1402)  
R5124(R0x1404)  
R5126(R0x1406)  
R5128(R0x1408)  
R5130(R0x140A)  
R5132(R0x140C)  
R5134(R0x140E)  
R5136(R0x1410)  
max_op_pix_clk_freq_mhz_2  
x_addr_min  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
???? ???? ???? ????  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
0 (0x0000)  
0 (0x0000)  
y_addr_min  
0 (0x0000)  
x_addr_max  
3279 (0x0CCF)  
2463 (0x099F)  
1 (0x0001)  
y_addr_max  
min_even_inc  
max_even_inc  
1 (0x0001)  
min_odd_inc  
1 (0x0001)  
max_odd_inc  
3 (0x0003)  
scaling_capability  
2 (0x0002)  
scaler_m_min  
16 (0x0010)  
128 (0x0080)  
16 (0x0010)  
16 (0x0010)  
1 (0x0001)  
scaler_m_max  
scaler_n_min  
scaler_n_max  
compression_capability  
matrix_element_RedInRed  
matrix_element_GreenInRed  
matrix_element_BlueInRed  
matrix_element_RedInGreen  
matrix_element_GreenInGreen  
matrix_element_BlueInGreen  
matrix_element_RedInBlue  
matrix_element_GreenInBlue  
matrix_element_BlueInBlue  
578 (0x0242)  
65280 (0xFF00)  
65470 (0xFFBE)  
65460 (0xFFB4)  
512 (0x0200)  
65357 (0xFF4D)  
65521 (0xFFF1)  
65332 (0xFF34)  
476 (0x01DC)  
Table 17: 3: Manufacturer Specific  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R12288(R0x3000)  
R12290(R0x3002)  
R12292(R0x3004)  
R12294(R0x3006)  
R12296(R0x3008)  
R12298(R0x300A)  
R12300(R0x300C)  
R12304(R0x3010)  
R12306(R0x3012)  
model_id_  
y_addr_start_  
dddd dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd ddd0  
0ddd dddd dddd dddd  
dddd dddd dddd dddd  
11008 (0x2B00)  
8 (0x0008)  
x_addr_start_  
0 (0x0000)  
y_addr_end_  
2455 (0x0997)  
3263 (0x0CBF)  
2560 (0x0A00)  
6558 (0x199E)  
256 (0x0100)  
16 (0x0010)  
x_addr_end_  
frame_length_lines_  
line_length_pck_  
fine_correction  
coarse_integration_time_  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
46  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 17: 3: Manufacturer Specific (continued)  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R12308(R0x3014)  
R12310(R0x3016)  
R12312(R0x3018)  
R12314(R0x301A)  
R12316(R0x301C)  
R12317(R0x301D)  
R12318(R0x301E)  
R12321(R0x3021)  
R12322(R0x3022)  
R12323(R0x3023)  
R12324(R0x3024)  
R12326(R0x3026)  
R12328(R0x3028)  
R12330(R0x302A)  
R12332(R0x302C)  
R12334(R0x302E)  
R12336(R0x3030)  
R12338(R0x3032)  
R12340(R0x3034)  
R12342(R0x3036)  
R12344(R0x3038)  
R12346(R0x303A)  
R12347(R0x303B)  
R12348(R0x303C)  
R12352(R0x3040)  
R12356(R0x3044)  
R12358(R0x3046)  
R12360(R0x3048)  
R12374(R0x3056)  
R12376(R0x3058)  
R12378(R0x305A)  
R12380(R0x305C)  
R12382(R0x305E)  
R12384(R0x3060)  
R12386(R0x3062)  
R12388(R0x3064)  
R12390(R0x3066)  
R12392(R0x3068)  
R12394(R0x306A)  
fine_integration_time_  
row_speed  
dddd dddd dddd ddd0  
0000 0ddd 0ddd 0ddd  
dddd dddd dddd ddd0  
d00d 0ddd dd0d dddd  
0000 000d  
1386 (0x056A)  
273 (0x0111)  
0 (0x0000)  
extra_delay  
reset_register  
88 (0x0058)  
0 (0x0000)  
mode_select_  
image_orientation_  
data_pedestal_  
software_reset_  
grouped_parameter_hold_  
mask_corrupted_frames_  
pixel_order_  
0000 00dd  
0 (0x0000)  
0000 dddd dddd dddd  
0000 000d  
168 (0x00A8)  
0 (0x0000)  
0000 000d  
0 (0x0000)  
0000 000d  
0 (0x0000)  
0000 00??  
0 (0x0000)  
gpi_status  
dddd dddd dddd ????  
0000 0000 0ddd dddd  
0000 0000 0ddd dddd  
0000 0000 0ddd dddd  
0000 0000 0ddd dddd  
0000 0000 0ddd dddd  
0000 0ddd 0000 0000  
0000 0ddd 0000 0000  
0000 0ddd 0000 0000  
0000 0ddd 0000 0000  
???? ????  
65535 (0xFFFF)  
13 (0x000D)  
13 (0x000D)  
13 (0x000D)  
13 (0x000D)  
13 (0x000D)  
256 (0x0100)  
256 (0x0100)  
256 (0x0100)  
256 (0x0100)  
10 (0x000A)  
255 (0x00FF)  
0 (0x0000)  
analogue_gain_code_global_  
analogue_gain_code_greenR_  
analogue_gain_code_red_  
analogue_gain_code_blue_  
analogue_gain_code_greenB_  
digital_gain_greenR_  
digital_gain_red_  
digital_gain_blue_  
digital_gain_greenB_  
smia_version_  
frame_count_  
???? ????  
frame_status  
0000 0000 0000 00??  
dd0d ddd0 dddd dddd  
read_mode  
36 (0x0024)  
34112 (0x8540)  
1536 (0x0600)  
8 (0x0008)  
Reserved  
flash  
??dd dddd 0000 0000  
0000 00dd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
flash_count  
green1_gain  
564 (0x0234)  
564 (0x0234)  
564 (0x0234)  
564 (0x0234)  
564 (0x0234)  
5376 (0x1500)  
0 (0x0000)  
blue_gain  
red_gain  
green2_gain  
global_gain  
Reserved  
Reserved  
Reserved  
261 (0x0105)  
0 (0x0000)  
Reserved  
Reserved  
2730 (0x0AAA)  
0 (0x0000)  
datapath_status  
0000 0000 000d dddd  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
47  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 17: 3: Manufacturer Specific (continued)  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R12396(R0x306C)  
R12398(R0x306E)  
R12400(R0x3070)  
R12402(R0x3072)  
R12404(R0x3074)  
R12406(R0x3076)  
R12408(R0x3078)  
R12416(R0x3080)  
R12418(R0x3082)  
R12420(R0x3084)  
R12422(R0x3086)  
R12424(R0x3088)  
R12426(R0x308A)  
R12428(R0x308C)  
R12430(R0x308E)  
R12432(R0x3090)  
R12434(R0x3092)  
R12436(R0x3094)  
R12438(R0x3096)  
R12440(R0x3098)  
R12442(R0x309A)  
R12444(R0x309C)  
R12446(R0x309E)  
R12448(R0x30A0)  
R12450(R0x30A2)  
R12452(R0x30A4)  
R12454(R0x30A6)  
R12490(R0x30CA)  
R12492(R0x30CC)  
R12494(R0x30CE)  
R12496(R0x30D0)  
R12498(R0x30D2)  
R12500(R0x30D4)  
R12502(R0x30D6)  
R12504(R0x30D8)  
R12506(R0x30DA)  
R12510(R0x30DE)  
R12512(R0x30E0)  
R12514(R0x30E2)  
Reserved  
datapath_select  
test_pattern_mode_  
test_data_red_  
test_data_greenR_  
test_data_blue_  
test_data_greenB_  
Reserved  
32768 (0x8000)  
36992 (0x9080)  
0 (0x0000)  
dddd dd00 d00d 0000  
0000 000d 0000 0ddd  
0000 dddd dddd dddd  
0 (0x0000)  
0000 dddd dddd dddd  
0 (0x0000)  
0000 dddd dddd dddd  
0 (0x0000)  
0000 dddd dddd dddd  
0 (0x0000)  
164 (0x00A4)  
4369 (0x1111)  
9252 (0x2424)  
9321 (0x2469)  
26096 (0x65F0)  
25700 (0x6464)  
14483 (0x3893)  
5654 (0x1616)  
22102 (0x5656)  
2660 (0x0A64)  
25700 (0x6464)  
25700 (0x6464)  
27684 (0x6C24)  
44288 (0xAD00)  
6400 (0x1900)  
25856 (0x6500)  
1 (0x0001)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
x_even_inc_  
x_odd_inc_  
y_even_inc_  
y_odd_inc_  
Reserved  
0000 0000 0000 000?  
0000 0000 0000 0ddd  
1 (0x0001)  
0000 0000 0000 000?  
1 (0x0001)  
0000 0000 0000 0ddd  
1 (0x0001)  
4 (0x0004)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
32896 (0x8080)  
2048 (0x0800)  
0 (0x0000)  
Reserved  
Reserved  
Reserved  
0 (0x0000)  
Reserved  
17 (0x0011)  
Reserved  
46594 (0xB602)  
37475 (0x9263)  
Reserved  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
48  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 17: 3: Manufacturer Specific (continued)  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R12516(R0x30E4)  
R12518(R0x30E6)  
R12520(R0x30E8)  
R12522(R0x30EA)  
R12524(R0x30EC)  
R12526(R0x30EE)  
R12528(R0x30F0)  
R12530(R0x30F2)  
R12532(R0x30F4)  
R12534(R0x30F6)  
R12536(R0x30F8)  
R12538(R0x30FA)  
R12540(R0x30FC)  
R12542(R0x30FE)  
R12544(R0x3100)  
R12546(R0x3102)  
R12548(R0x3104)  
R12550(R0x3106)  
R12552(R0x3108)  
R12554(R0x310A)  
R12556(R0x310C)  
R12558(R0x310E)  
R12560(R0x3110)  
R12562(R0x3112)  
R12564(R0x3114)  
R12566(R0x3116)  
R12568(R0x3118)  
R12570(R0x311A)  
R12572(R0x311C)  
R12574(R0x311E)  
R12576(R0x3120)  
R12578(R0x3122)  
R12580(R0x3124)  
R12582(R0x3126)  
R12584(R0x3128)  
R12586(R0x312A)  
R12588(R0x312C)  
R12590(R0x312E)  
R12608(R0x3140)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
46226 (0xB492)  
46083 (0xB403)  
255 (0x00FF)  
13059 (0x3303)  
25395 (0x6333)  
255 (0x00FF)  
255 (0x00FF)  
46083 (0xB403)  
255 (0x00FF)  
2048 (0x0800)  
2048 (0x0800)  
2048 (0x0800)  
2048 (0x0800)  
28761 (0x7059)  
28761 (0x7059)  
37233 (0x9171)  
45203 (0xB093)  
12809 (0x3209)  
22579 (0x5833)  
46082 (0xB402)  
46082 (0xB402)  
46089 (0xB409)  
46337 (0xB501)  
46081 (0xB401)  
1795 (0x0703)  
46338 (0xB502)  
0 (0x0000)  
28772 (0x7064)  
0 (0x0000)  
2048 (0x0800)  
0 (0x0000)  
2048 (0x0800)  
255 (0x00FF)  
46594 (0xB602)  
46088 (0xB408)  
255 (0x00FF)  
176 (0x00B0)  
13494 (0x34B6)  
13313 (0x3401)  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
49  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 17: 3: Manufacturer Specific (continued)  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R12610(R0x3142)  
R12612(R0x3144)  
R12614(R0x3146)  
R12616(R0x3148)  
R12618(R0x314A)  
R12620(R0x314C)  
R12622(R0x314E)  
R12624(R0x3150)  
R12628(R0x3154)  
R12630(R0x3156)  
R12632(R0x3158)  
R12634(R0x315A)  
R12640(R0x3160)  
R12642(R0x3162)  
R12644(R0x3164)  
R12646(R0x3166)  
R12652(R0x316C)  
R12654(R0x316E)  
R12656(R0x3170)  
R12660(R0x3174)  
R12662(R0x3176)  
R12664(R0x3178)  
R12672(R0x3180)  
R12674(R0x3182)  
R12676(R0x3184)  
R12678(R0x3186)  
R12680(R0x3188)  
R12682(R0x318A)  
R12684(R0x318C)  
R12686(R0x318E)  
R12688(R0x3190)  
R12690(R0x3192)  
R12692(R0x3194)  
R12694(R0x3196)  
R12696(R0x3198)  
R12776(R0x31E8)  
R12778(R0x31EA)  
R12780(R0x31EC)  
R12782(R0x31EE)  
Reserved  
Reserved  
13058 (0x3302)  
12803 (0x3203)  
11524 (0x2D04)  
11269 (0x2C05)  
11524 (0x2D04)  
0 (0x0000)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
13058 (0x3302)  
0 (0x0000)  
Reserved  
Reserved  
5249 (0x1481)  
7297 (0x1C81)  
0 (0x0000)  
Reserved  
Reserved  
Reserved  
0 (0x0000)  
global_seq_trigger  
global_rst_end  
global_shutter_start  
global_read_start  
Reserved  
0000 00?? 0000 0ddd  
0 (0x0000)  
dddd dddd dddd dddd  
80 (0x0050)  
120 (0x0078)  
160 (0x00A0)  
17424 (0x4410)  
1024 (0x0400)  
11686 (0x2DA6)  
4626 (0x1212)  
4626 (0x1212)  
4626 (0x1212)  
36863 (0x8FFF)  
0 (0x0000)  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
Reserved  
0 (0x0000)  
horizontal_cursor_position_  
vertical_cursor_position_  
horizontal_cursor_width_  
vertical_cursor_width_  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0000 dddd dddd dddd  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
50  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 17: 3: Manufacturer Specific (continued)  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R12788(R0x31F4)  
R12790(R0x31F6)  
R12792(R0x31F8)  
R12794(R0x31FA)  
R12796(R0x31FC)  
Reserved  
Reserved  
Reserved  
Reserved  
291 (0x0123)  
17767 (0x4567)  
35243 (0x89AB)  
52719 (0xCDEF)  
12320 (0x3020)  
12C Addresses  
Reserved  
R12798(R0x31FE)  
R13824(R0x3600)  
R13826(R0x3602)  
R13828(R0x3604)  
R13830(R0x3606)  
R13832(R0x3608)  
R13834(R0x360A)  
R13836(R0x360C)  
R13838(R0x360E)  
R13840(R0x3610)  
R13842(R0x3612)  
R13844(R0x3614)  
R13846(R0x3616)  
R13848(R0x3618)  
R13850(R0x361A)  
R13852(R0x361C)  
R13854(R0x361E)  
R13856(R0x3620)  
R13858(R0x3622)  
R13860(R0x3624)  
R13862(R0x3626)  
R13888(R0x3640)  
R13890(R0x3642)  
R13892(R0x3644)  
R13894(R0x3646)  
R13896(R0x3648)  
R13898(R0x364A)  
R13900(R0x364C)  
R13902(R0x364E)  
R13904(R0x3650)  
R13906(R0x3652)  
R13908(R0x3654)  
R13910(R0x3656)  
R13912(R0x3658)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
P_GR_P0Q0  
P_GR_P0Q1  
P_GR_P0Q2  
P_GR_P0Q3  
P_GR_P0Q4  
P_RD_P0Q0  
P_RD_P0Q1  
P_RD_P0Q2  
P_RD_P0Q3  
P_RD_P0Q4  
P_BL_P0Q0  
P_BL_P0Q1  
P_BL_P0Q2  
P_BL_P0Q3  
P_BL_P0Q4  
P_GB_P0Q0  
P_GB_P0Q1  
P_GB_P0Q2  
P_GB_P0Q3  
P_GB_P0Q4  
P_GR_P1Q0  
P_GR_P1Q1  
P_GR_P1Q2  
P_GR_P1Q3  
P_GR_P1Q4  
P_RD_P1Q0  
P_RD_P1Q1  
P_RD_P1Q2  
P_RD_P1Q3  
P_RD_P1Q4  
P_BL_P1Q0  
P_BL_P1Q1  
P_BL_P1Q2  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
51  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 17: 3: Manufacturer Specific (continued)  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R13914(R0x365A)  
R13916(R0x365C)  
R13918(R0x365E)  
R13920(R0x3660)  
R13922(R0x3662)  
R13924(R0x3664)  
R13926(R0x3666)  
R13952(R0x3680)  
R13954(R0x3682)  
R13956(R0x3684)  
R13958(R0x3686)  
R13960(R0x3688)  
R13962(R0x368A)  
R13964(R0x368C)  
R13966(R0x368E)  
R13968(R0x3690)  
R13970(R0x3692)  
R13972(R0x3694)  
R13974(R0x3696)  
R13976(R0x3698)  
R13978(R0x369A)  
R13980(R0x369C)  
R13982(R0x369E)  
R13984(R0x36A0)  
R13986(R0x36A2)  
R13988(R0x36A4)  
R13990(R0x36A6)  
R14016(R0x36C0)  
R14018(R0x36C2)  
R14020(R0x36C4)  
R14022(R0x36C6)  
R14024(R0x36C8)  
R14026(R0x36CA)  
R14028(R0x36CC)  
R14030(R0x36CE)  
R14032(R0x36D0)  
R14034(R0x36D2)  
R14036(R0x36D4)  
R14038(R0x36D6)  
P_BL_P1Q3  
P_BL_P1Q4  
P_GB_P1Q0  
P_GB_P1Q1  
P_GB_P1Q2  
P_GB_P1Q3  
P_GB_P1Q4  
P_GR_P2Q0  
P_GR_P2Q1  
P_GR_P2Q2  
P_GR_P2Q3  
P_GR_P2Q4  
P_RD_P2Q0  
P_RD_P2Q1  
P_RD_P2Q2  
P_RD_P2Q3  
P_RD_P2Q4  
P_BL_P2Q0  
P_BL_P2Q1  
P_BL_P2Q2  
P_BL_P2Q3  
P_BL_P2Q4  
P_GB_P2Q0  
P_GB_P2Q1  
P_GB_P2Q2  
P_GB_P2Q3  
P_GB_P2Q4  
P_GR_P3Q0  
P_GR_P3Q1  
P_GR_P3Q2  
P_GR_P3Q3  
P_GR_P3Q4  
P_RD_P3Q0  
P_RD_P3Q1  
P_RD_P3Q2  
P_RD_P3Q3  
P_RD_P3Q4  
P_BL_P3Q0  
P_BL_P3Q1  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
52  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 17: 3: Manufacturer Specific (continued)  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R14040(R0x36D8)  
R14042(R0x36DA)  
R14044(R0x36DC)  
R14046(R0x36DE)  
R14048(R0x36E0)  
R14050(R0x36E2)  
R14052(R0x36E4)  
R14054(R0x36E6)  
R14080(R0x3700)  
R14082(R0x3702)  
R14084(R0x3704)  
R14086(R0x3706)  
R14088(R0x3708)  
R14090(R0x370A)  
R14092(R0x370C)  
R14094(R0x370E)  
R14096(R0x3710)  
R14098(R0x3712)  
R14100(R0x3714)  
R14102(R0x3716)  
R14104(R0x3718)  
R14106(R0x371A)  
R14108(R0x371C)  
R14110(R0x371E)  
R14112(R0x3720)  
R14114(R0x3722)  
R14116(R0x3724)  
R14118(R0x3726)  
R14144(R0x3740)  
R14146(R0x3742)  
R14148(R0x3744)  
R14150(R0x3746)  
R14152(R0x3748)  
R14160(R0x3750)  
R14162(R0x3752)  
R14164(R0x3754)  
R14166(R0x3756)  
R14168(R0x3758)  
R14208(R0x3780)  
P_BL_P3Q2  
P_BL_P3Q3  
P_BL_P3Q4  
P_GB_P3Q0  
P_GB_P3Q1  
P_GB_P3Q2  
P_GB_P3Q3  
P_GB_P3Q4  
P_GR_P4Q0  
P_GR_P4Q1  
P_GR_P4Q2  
P_GR_P4Q3  
P_GR_P4Q4  
P_RD_P4Q0  
P_RD_P4Q1  
P_RD_P4Q2  
P_RD_P4Q3  
P_RD_P4Q4  
P_BL_P4Q0  
P_BL_P4Q1  
P_BL_P4Q2  
P_BL_P4Q3  
P_BL_P4Q4  
P_GB_P4Q0  
P_GB_P4Q1  
P_GB_P4Q2  
P_GB_P4Q3  
P_GB_P4Q4  
Reserved  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
dddd dddd dddd dddd  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SC_ENABLE  
d000 0000 0000 0000  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
53  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register List and Default Value  
Table 17: 3: Manufacturer Specific (continued)  
1 = read-only, always 1; 0 = read-only, always 0; d = programmable;? = read-only, dynamic  
Register #  
Dec (Hex)  
Default Value  
Dec (Hex)  
Register Description  
Data Format (Binary)  
R14210(R0x3782)  
R14212(R0x3784)  
R15872(R0x3E00)  
R16128(R0x3F00)  
ORIGIN_C  
ORIGIN_R  
Reserved  
Reserved  
0000 dddd dddd dddd  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0 (0x0000)  
0000 dddd dddd dddd  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__3reg.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
54  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Register Description  
Table 18: 0: SMIA Configuration  
Reg. #  
Bits  
15:0  
Default  
0x2B00  
Name  
Frame Sync'd Bad Frame  
N
N
model_id (RW)  
R0  
R0x0000  
This register is an alias of R0x3000-1. Read-only. Can be made read/write by clearing R0x301A-B[3].  
7:0 0x0000  
Micron Imaging assigned revision number. Read-only. Can be made read/write by clearing R0x301A-B[3].  
7:0 0x0006  
N
N
revision_number (RW)  
R2  
R0x0002  
N
N
manufacturer_id (RO)  
R3  
R0x0003  
Manufacturer ID assigned to Micron Imaging. Read-only. Can be made read/write by clearing R0x301A-  
B[3].  
7:0  
This register is an alias of R0x303A. Read-only.  
7:0 0x00FF  
This register is an alias of R0x303B. Read-only.  
7:0 0x0000  
This register is an alias of R0x3024. Read-only.  
15:0 0x00A8  
0x000A  
N
Y
N
N
N
N
N
Y
smia_version (RO)  
R4  
R0x0004  
frame_count (RO)  
R5  
R0x0005  
pixel_order (RO)  
R6  
R0x0006  
data_pedestal (RW)  
R8  
R0x0008  
This register is an alias of R0x301E-F. Read-only. Can be made read/write by clearing R0x301A-B[3].  
7:0  
Type 1. 2-byte Generic Frame Format Description. Read-only.  
7:0 0x0012  
0x0001  
N
N
N
N
N
frame_format_model_type (RO)  
R64  
R0x0040  
frame_format_model_subtype (RO)  
R65  
R0x0041  
Number of descriptors: 1 X (column) descriptor and two Y (row) descriptors. Read-only.  
15:0 0x5CC0  
Y
frame_format_descriptor_0 (RO)  
R66  
R0x0042  
X descriptor: Bits[11:0] of this register reflect the current value of x_output_size[11:0]. Upper 4 bits is the  
pixel code; 5=Visible Pixel Data. Read-only, dynamic.  
15:0  
0x1002  
Y
N
frame_format_descriptor_1 (RO)  
R68  
R0x0044  
Y descriptor: In normal operation, returns 0x1002 to indicate that 2 rows of embedded data are present  
in the output image. If embedded data is disabled (by selecting the PN9 test pattern using R0x3070-1) this  
register will return 0x1000. Read-only.  
15:0  
0x5990  
Y
N
frame_format_descriptor_2 (RO)  
R70  
R0x0046  
Y descriptor: Bits[11:0] of this register reflect the current value of y_output_size[11:0]. Upper 4 bits is the  
pixel code; 5=Visible Pixel Data. Read-only, dynamic.  
15:0  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
N
N
N
N
N
N
N
N
N
N
N
N
frame_format_descriptor_3 (RO)  
frame_format_descriptor_4 (RO)  
frame_format_descriptor_5 (RO)  
frame_format_descriptor_6 (RO)  
frame_format_descriptor_7 (RO)  
frame_format_descriptor_8 (RO)  
R72  
R0x0048  
Read-only.  
15:0  
R74  
R0x004A  
Read-only.  
15:0  
R76  
R0x004C  
Read-only.  
15:0  
R78  
R0x004E  
Read-only.  
15:0  
R80  
R0x0050  
Read-only.  
15:0  
R82  
R0x0052  
Read-only.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
55  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 18: 0: SMIA Configuration (continued)  
Reg. #  
Bits  
15:0  
Default  
0x0000  
Name  
Frame Sync'd Bad Frame  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
frame_format_descriptor_9 (RO)  
R84  
R0x0054  
Read-only.  
15:0  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0001  
frame_format_descriptor_10 (RO)  
frame_format_descriptor_11 (RO)  
frame_format_descriptor_12 (RO)  
frame_format_descriptor_13 (RO)  
frame_format_descriptor_14 (RO)  
analogue_gain_capability (RO)  
R86  
R0x0056  
Read-only.  
15:0  
R88  
R0x0058  
Read-only.  
15:0  
R90  
R0x005A  
Read-only.  
15:0  
R92  
R0x005C  
Read-only.  
15:0  
R94  
R0x005E  
Read-only.  
15:0  
R128  
R0x0080  
Indicates the provision of separate (per-color) analog gain control. The sensor supports both global and  
separate (per-color) analog gain control. Read-only.  
15:0  
Minimum gain code. Read-only.  
15:0 0x007F  
Maximum gain code. Read-only.  
15:0 0x0001  
Gain code step size. Read-only.  
15:0 0x0000  
0x0008  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
R132  
R0x0084  
analogue_gain_code_min (RO)  
analogue_gain_code_max (RO)  
analogue_gain_code_step (RO)  
analogue_gain_type (RO)  
R134  
R0x0086  
R136  
R0x0088  
R138  
R0x008A  
Indicates support for analog gain coding type 0 (baseline SMIA). Read-only.  
15:0 0x0001  
R140  
R0x008C  
analogue_gain_m0 (RO)  
Constants for the gain equation. Read-only.  
15:0 0x0000  
R142  
R0x008E  
analogue_gain_c0 (RO)  
Constants for the gain equation. Read-only.  
15:0 0x0000  
R144  
R0x0090  
analogue_gain_m1 (RO)  
Constants for the gain equation. Read-only.  
15:0 0x0008  
R146  
analogue_gain_c1 (RO)  
R0x0092  
Constants for the gain equation. Read-only.  
7:0 0x0001  
Indicates the use of 2-byte data format. Read-only.  
7:0 0x0005  
N
N
N
N
R192  
R0x00C0  
data_format_model_type (RO)  
R193  
data_format_model_subtype (RO)  
R0x00C1  
Indicates the provision of 5 data format descriptors. Read-only.  
15:0 0x0A0A  
N
N
R194  
data_format_descriptor_0 (RO)  
R0x00C2  
Indicates support for RAW10 data format in which the two LSB of each 12-bit pixel data value are  
discarded. Read-only.  
15:0  
0x0808  
N
N
R196  
data_format_descriptor_1 (RO)  
R0x00C4  
Indicates support for RAW8 data format in which the four LSB of each 12-bit pixel data value are  
discarded. Read-only.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
56  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 18: 0: SMIA Configuration (continued)  
Reg. #  
Bits  
15:0  
Default  
0x0A08  
Name  
Frame Sync'd Bad Frame  
N
N
R198  
data_format_descriptor_2 (RO)  
R0x00C6  
Indicates support for RAW8 data format in which each truncated 10-bit pixel data value is compressed to  
an 8-bit value. Read-only.  
15:0  
Indicates support for RAW12, uncompressed data format. Read-only.  
15:0 0x0C08  
0x0C0C  
N
N
R200  
R0x00C8  
data_format_descriptor_3 (RO)  
N
N
R202  
data_format_descriptor_4 (RO)  
R0x00CA  
Indicates support for RAW8 data format in which each 12-bit pixel data value is compressed to an 8-bit  
value. Read-only.  
15:0  
0x0000  
0x0000  
0x0000  
N
N
Y
N
N
N
R204  
R0x00CC  
data_format_descriptor_5 (RO)  
data_format_descriptor_6 (RO)  
mode_select (RW)  
Read-only.  
15:0  
R206  
R0x00CE  
Read-only.  
7:0  
R256  
R0x0100  
This register field is an alias of R0x301A[2].  
7:0  
7:2  
1
0x0000  
R257  
R0x0101  
image_orientation (RW)  
X
Reserved  
0x0000  
Y
Y
YM  
YM  
Vertical Flip  
This register field is an alias of  
R0x3040-1[1].  
0
0x0000  
Horizontal Mirror  
This register field is an alias of  
R0x3040-1[0].  
7:0  
0x0000  
N
N
N
Y
Y
Y
Y
N
Y
N
N
N
R259  
R0x0103  
software_reset (RW)  
This register field is an alias of R0x301A-B[0].  
7:0 0x0000  
R260  
R0x0104  
grouped_parameter_hold (RW)  
This register field is an alias of R0x301A-B[15].  
7:0 0x0000  
R261  
R0x0105  
mask_corrupted_frames (RW)  
This register field is an alias of R0x301A-B[9].  
7:0  
0x0000  
0x0000  
0x0C0C  
R272  
R0x0110  
Reserved (RW)  
Not used.  
7:0  
R273  
R0x0111  
Reserved (RW)  
Not used.  
15:0  
ccp_data_format (RW)  
R274  
R0x0112  
[7:0] = The bit-width of the compressed pixel data  
[15:8] = The bit-width of the uncompressed pixel data  
The value in this register must match one of the valid data_format_descriptor registers (R0x00C2-  
R0x00C7).  
7:0  
This read/write bit has no function.  
15:0 0x056A  
0x0000  
N
N
N
N
gain_mode (RW)  
R288  
R0x0120  
Y
fine_integration_time (RW)  
R512  
R0x0200  
Integration time programmed in units of pck. This register is an alias of R0x3014-5.  
15:0 0x0010  
Integration time programmed in units of line_length_pck. This register is an alias of R0x3012-3.  
Y
coarse_integration_time (RW)  
R514  
R0x0202  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
57  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 18: 0: SMIA Configuration (continued)  
Reg. #  
Bits  
15:0  
Default  
0x000D  
Name  
Frame Sync'd Bad Frame  
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
Y
N
Y
Y
Y
analogue_gain_code_global (RW)  
R516  
R0x0204  
This register is an alias of R0x3028-9.  
15:0 0x000D  
This register is an alias of R0x302A-B.  
15:0 0x000D  
This register is an alias of R0x302C-D.  
15:0 0x000D  
This register is an alias of R0x302E-F.  
15:0 0x000D  
This register is an alias of R0x3030-1.  
15:0 0x0100  
This register is an alias of R0x3032-3.  
15:0 0x0100  
This register is an alias of R0x3034-5.  
15:0 0x0100  
This register is an alias of R0x3036-7.  
15:0 0x0100  
This register is an alias of R0x3038-9.  
15:0 0x0004  
Not in use. Use pc_speed[2:0] to change vt_pix_clk_mhz instead.  
15:0 0x0001  
Clock divisor applied to PLL output clock to generate video timing system clock. Read-only.  
analogue_gain_code_green1 (RW)  
R518  
R0x0206  
analogue_gain_code_red (RW)  
R520  
R0x0208  
analogue_gain_code_blue (RW)  
R522  
R0x020A  
analogue_gain_code_green2 (RW)  
R524  
R0x020C  
digital_gain_green1 (RW)  
digital_gain_red (RW)  
digital_gain_blue (RW)  
digital_gain_green2 (RW)  
vt_pix_clk_div (RW)  
vt_sys_clk_div (RW)  
R526  
R0x020E  
R528  
R0x0210  
R530  
R0x0212  
R532  
R0x0214  
R768  
R0x0300  
R770  
R0x0302  
15:0  
Clock divisor applied to EXTCLK to generate PLL input clock.  
15:0 0x0040  
Clock multiplier applied to PLL input clock.  
15:0 0x0008  
0x0002  
N
N
N
pre_pll_clk_div (RW)  
R772  
R0x0304  
pll_multiplier (RW)  
R774  
R0x0306  
op_pix_clk_div (RW)  
R776  
R0x0308  
Clock divisor applied to the output system clock to generate the output pixel clock. Legal values are 1, 2  
and 4.  
15:0  
0x0001  
N
Y
op_sys_clk_div (RW)  
R778  
R0x030A  
Clock divisor applied to PLL output clock to generate output system clock. Read-only.  
15:0  
This register is an alias of R0x300A-B.  
15:0 0x199E  
This register is an alias of R0x300C-D.  
15:0 0x0000  
This register is an alias of R0x3004-5.  
15:0 0x0008  
This register is an alias of R0x3002-5.  
15:0 0x0CBF  
This register is an alias of R0x3008-9.  
15:0 0x0997  
This register is an alias of R0x3006-7.  
0x0A00  
Y
Y
Y
Y
Y
Y
YM  
YM  
N
frame_length_lines (RW)  
line_length_pck (RW)  
x_addr_start (RW)  
y_addr_start (RW)  
x_addr_end (RW)  
y_addr_end (RW)  
R832  
R0x0340  
R834  
R0x0342  
R836  
R0x0344  
YM  
N
R838  
R0x0346  
R840  
R0x0348  
YM  
R842  
R0x034A  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
58  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 18: 0: SMIA Configuration (continued)  
Reg. #  
Bits  
15:0  
Default  
0x0CC0  
Name  
Frame Sync'd Bad Frame  
Y
N
x_output_size (RW)  
R844  
R0x034C  
Set X output size of displayed image. Bit[0] is read-only 0. The default value of this register is set to be  
consistent with the default values of x_addr_end and x_addr_start.  
15:0  
0x0990  
Y
N
y_output_size (RW)  
R846  
R0x034E  
Set Y output size of the displayed image. Bit[0] is read-only 0. The default value of this registers set to be  
consistent with the default values of y_addr_end and y_addr_start. The output image will have two  
additional rows containing embedded data, in accordance with the frame format descriptors.  
15:0  
0x0001  
N
N
x_even_inc (RO)  
R896  
R0x0380  
Read-only. The fixed value of “1” constrains subsampling operation to use adjacent pixels of a pixel quad.  
15:0  
This register field is an alias of R0x3040-1[7:5].  
15:0 0x0001  
0x0001  
Y
YM  
x_odd_inc (RW)  
R898  
R0x0382  
N
N
y_even_inc (RO)  
R900  
R0x0384  
Read-only. The fixed value of “1” constrains subsampling operation to use adjacent pixels of a pixel quad.  
15:0  
0x0001  
Y
YM  
y_odd_inc (RW)  
R902  
R0x0386  
This register field is an alias of R0x3040-1[4:2].  
15:0  
0x0000  
Y
N
scaling_mode (RW)  
R1024  
R0x0400  
0 = Disable scaler  
1 = Enable horizontal scaling  
2 = Enable horizontal and vertical scaling  
3 = Reserved  
15:0  
0x0000  
Y
N
spatial_sampling (RW)  
R1026  
R0x0402  
0 = Bayer sampling  
1 = Co-sited sampling  
15:0  
0x0010  
Y
N
N
N
N
Y
scale_m (RW)  
R1028  
R0x0404  
Scale factor M.  
15:0  
0x0010  
scale_n (RO)  
R1030  
R0x0406  
Scale factor N. Read-only.  
15:0 0x0001  
compression_mode (RO)  
R1280  
R0x0500  
0x0001 = 10-bit to 8-bit and 12-bit to 8-bit compression uses the DPCM/PCM Simple Predictor algorithm.  
Read-only.  
This register controls the algorithm that is to be used for compression. The sensor only supports a single  
algorithm and therefore this register is read-only.  
This register does not control whether data compression is enabled; that is controlled by the  
ccp_data_format register (R0x0012-3).  
15:0  
This register is an alias of R0x3070-1.  
15:0 0x0000  
This register is an alias of R0x3072-3.  
15:0 0x0000  
This register is an alias of R0x3074-5.  
15:0 0x0000  
This register is an alias of R0x3076-7.  
15:0 0x0000  
This register is an alias of R0x3078-8.  
0x0000  
N
N
N
N
N
Y
Y
Y
Y
Y
test_pattern_mode (RW)  
test_data_red (RW)  
test_data_green1 (RW)  
test_data_blue (RW)  
test_data_green2 (RW)  
R1536  
R0x0600  
R1538  
R0x0602  
R1540  
R0x0604  
R1542  
R0x0606  
R1544  
R0x0608  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
59  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 18: 0: SMIA Configuration (continued)  
Reg. #  
Bits  
15:0  
Default  
0x0000  
Name  
Frame Sync'd Bad Frame  
N
N
N
N
N
N
N
N
horizontal_cursor_width (RW)  
R1546  
R0x060A  
This register is an alias of R0x31EC-D.  
15:0 0x0000  
This register is an alias of R0x31E8-9.  
15:0 0x0000  
This register is an alias of R0x31EE-F.  
15:0 0x0000  
This register is an alias of R0x31EA-B.  
horizontal_cursor_position (RW)  
vertical_cursor_width (RW)  
vertical_cursor_position (RW)  
R1548  
R0x060C  
R1550  
R0x060E  
R1552  
R0x0610  
Table 19: 1: SMIA Parameter Limits  
Reg. #  
Bits  
Default  
0x0001  
Name  
Frame Sync'd Bad Frame  
15:0  
N
N
integration_time_capability (RO)  
R4096  
R0x1000  
Indicates the provision of coarse and fine integration time control. Read-only. Can be made read/write by  
clearing R0x301A-B[3].  
15:0  
0x0000  
N
N
coarse_integration_time_min (RW)  
R4100  
R0x1004  
The minimum coarse integration time. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0  
0x0001  
N
N
coarse_integration_time_max_margin  
(RW)  
R4102  
R0x1006  
The maximum coarse integration time is (frame_length_lines - coarse_integration_time_max_margin).  
Read-only. Can be made read/write by clearing R0x301A-B[3].  
In the sensor, this limit can be broken. The result will be a graceful degradation of frame rate, like pre-  
mi3120 products.  
15:0  
0x056A  
N
N
fine_integration_time_min (RW)  
R4104  
R0x1008  
The minimum fine integration time. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0  
0x03AA  
N
N
fine_integration_time_max_margin  
(RW)  
R4106  
R0x100A  
The minimum fine integration time is (line_length_pck - fine_integration_time_max_margin). Read-only.  
Can be made read/write by clearing R0x301A-B[3].  
15:0  
Indicates the provision of separate (per-color) digital gain control. Read-only.  
15:0 0x0100  
UFIX16. Minimum value of digital gain is 1.0. Read-only.  
15:0 0x0700  
UFIX16. Maximum value of digital gain is 4.0. Read-only.  
15:0 0x0100  
UFIX16. Step size for digital gain is 1.0. Read-only.  
15:0 0x40C0  
FLP32. Minimum external clock frequency into PLL is 6 MHz. Read-only.  
15:0 0x0000  
FLP32. Minimum external clock frequency into PLL is 6 MHz. Read-only.  
0x0001  
N
N
N
N
N
N
N
N
N
N
N
N
digital_gain_capability (RO)  
R4224  
R0x1080  
digital_gain_min (RO)  
R4228  
R0x1084  
digital_gain_max (RO)  
R4230  
R0x1086  
digital_gain_step_size (RO)  
R4232  
R0x1088  
min_ext_clk_freq_mhz_1 (RO)  
R4352  
R0x1100  
min_ext_clk_freq_mhz_2 (RO)  
R4354  
R0x1102  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
60  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 19: 1: SMIA Parameter Limits (continued)  
Reg. #  
Bits  
Default  
0x4240  
Name  
Frame Sync'd Bad Frame  
15:0  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
max_ext_clk_freq_mhz_1 (RO)  
R4356  
R0x1104  
FLP32. Maximum external clock frequency into PLL is 48 MHz. Read-only.  
15:0 0x0000  
FLP32. Maximum external clock frequency into PLL is 48 MHz. Read-only.  
15:0 0x0001  
Minimum clock divisor applied to PLL input clock. Read-only.  
15:0 0x0040  
Maximum clock divisor applied to PLL input clock. Read-only.  
15:0 0x4000  
FLP32. Minimum clock frequency into the PFD of the PLL is 2 MHz. Read-only.  
15:0 0x0000  
FLP32. Minimum clock frequency into the PFD of the PLL is 2 MHz. Read-only.  
15:0 0x41C0  
FLP32. Maximum clock frequency into the PFD of the PLL is 22.5 MHz. Read-only.  
15:0 0x0000  
FLP32. Maximum clock frequency into the PFD of the PLL is 22.5 MHz. Read-only.  
15:0 0x0020  
Minimum multiplier applied by PLL. Read-only.  
15:0 0x0100  
Maximum multiplier applied by PLL. Read-only.  
15:0 0x43C0  
FLP32. Minimum output frequency supported by the PLL is 160 MHz. Read-only.  
15:0 0x0000  
FLP32. Minimum output frequency supported by the PLL is 160 MHz. Read-only.  
15:0 0x4440  
FLP32. Maximum output frequency supported by the PLL is 768 MHz. Read-only.  
15:0 0x0000  
FLP32. Maximum output frequency supported by the PLL is 768 MHz. Read-only.  
15:0 0x0001  
The video timing sys_clk has a fixed divisor. Read-only.  
15:0 0x0001  
The video timing sys_clk has a fixed divisor. Read-only.  
15:0 0x43C0  
FLP32. Minimum frequency for the video timing sys_clk is 40 MHz.  
15:0 0x0000  
FLP32. Minimum frequency for the video timing sys_clk is 40 MHz.  
15:0 0x4440  
Maximum frequency for the video timing sys_clk is 192 MHz. Read-only.  
15:0 0x0000  
Maximum frequency for the video timing sys_clk is 192 MHz. Read-only.  
15:0 0x42C0  
FLP32. Minimum frequency for video timing pix_clk is 10 MHz. Read-only.  
max_ext_clk_freq_mhz_2 (RO)  
min_pre_pll_clk_div (RO)  
max_pre_pll_clk_div (RO)  
min_pll_ip_freq_mhz_1 (RO)  
min_pll_ip_freq_mhz_2 (RO)  
max_pll_ip_freq_mhz_1 (RO)  
max_pll_ip_freq_mhz_2 (RO)  
min_pll_multiplier (RO)  
max_pll_multiplier (RO)  
min_pll_op_freq_mhz_1 (RO)  
min_pll_op_freq_mhz_2 (RO)  
max_pll_op_freq_mhz_1 (RO)  
max_pll_op_freq_mhz_2 (RO)  
min_vt_sys_clk_div (RO)  
max_vt_sys_clk_div (RO)  
min_vt_sys_clk_freq_mhz_1 (RO)  
min_vt_sys_clk_freq_mhz_2 (RO)  
max_vt_sys_clk_freq_mhz_1 (RO)  
max_vt_sys_clk_freq_mhz_2 (RO)  
min_vt_pix_clk_freq_mhz_1 (RO)  
R4358  
R0x1106  
R4360  
R0x1108  
R4362  
R0x110A  
R4364  
R0x110C  
R4366  
R0x110E  
R4368  
R0x1110  
R4370  
R0x1112  
R4372  
R0x1114  
R4374  
R0x1116  
R4376  
R0x1118  
R4378  
R0x111A  
R4380  
R0x111C  
R4382  
R0x111E  
R4384  
R0x1120  
R4386  
R0x1122  
R4388  
R0x1124  
R4390  
R0x1126  
R4392  
R0x1128  
R4394  
R0x112A  
R4396  
R0x112C  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
61  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 19: 1: SMIA Parameter Limits (continued)  
Reg. #  
Bits  
Default  
0x0000  
Name  
Frame Sync'd Bad Frame  
15:0  
N
N
N
N
N
N
N
N
N
N
N
N
N
min_vt_pix_clk_freq_mhz_2 (RO)  
R4398  
R0x112E  
FLP32. Minimum frequency for video timing pix_clk is 10 MHz. Read-only.  
15:0 0x4340  
FLP32. Maximum frequency for video timing pix_clk is 192 MHz. Read-only.  
15:0 0x0000  
FLP32. Maximum frequency for video timing pix_clk is 192 MHz. Read-only.  
15:0 0x0004  
Minimum divisor for the video timing pix_clk. Read-only.  
15:0 0x0004  
Maximum divisor for the video timing pix_clk. Read-only.  
15:0 0x0057  
max_vt_pix_clk_freq_mhz_1 (RO)  
R4400  
R0x1130  
max_vt_pix_clk_freq_mhz_2 (RO)  
R4402  
R0x1132  
min_vt_pix_clk_div (RO)  
R4404  
R0x1134  
max_vt_pix_clk_div (RO)  
R4406  
R0x1136  
min_frame_length_lines (RW)  
R4416  
R0x1140  
Minimum frame length. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0xFFFF  
N
max_frame_length_lines (RW)  
R4418  
R0x1142  
Maximum frame length. The maximum frame length is only constrained by the size of the read/write field  
in the frame_length_lines register (16-bits). Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0  
Minimum line length. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0xFFFE  
0x0914  
N
N
min_line_length_pck (RW)  
R4420  
R0x1144  
N
N
max_line_length_pck (RW)  
R4422  
R0x1146  
Maximum line length. The maximum line length is only constrained by the size of the read/write field in  
the line_length_pck register (16 bits). Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0  
Minimum line blanking time. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0x0055  
Minimum frame blanking time. Read-only. Can be made read/write by clearing R0x301A-B[3].  
0x06AC  
N
N
N
N
N
N
N
N
N
N
min_line_blanking_pck (RW)  
R4424  
R0x1148  
N
min_frame_blanking_lines (RW)  
R4426  
R0x114A  
15:0  
Minimum divisor for the output sys_clk. Read-only.  
15:0 0x0001  
Maximum divisor for the output sys_clk. Read-only.  
15:0 0x43C0  
FLP32. Minimum frequency for output sys_clk is 10 MHz. Read-only.  
15:0 0x0000  
FLP32. Minimum frequency for output sys_clk is 10 MHz. Read-only.  
15:0 0x4440  
FLP32. Maximum frequency for output sys_clk is 92 MHz. Read-only.  
15:0 0x0000  
FLP32. Maximum frequency for output sys_clk is 92 MHz. Read-only.  
15:0 0x0008  
0x0001  
N
N
N
N
N
N
N
min_op_sys_clk_div (RO)  
R4448  
R0x1160  
max_op_sys_clk_div (RO)  
R4450  
R0x1162  
min_op_sys_clk_freq_mhz_1 (RO)  
R4452  
R0x1164  
min_op_sys_clk_freq_mhz_2 (RO)  
R4454  
R0x1166  
max_op_sys_clk_freq_mhz_1 (RO)  
R4456  
R0x1168  
max_op_sys_clk_freq_mhz_2 (RO)  
R4458  
R0x116A  
min_op_pix_clk_div (RO)  
R4460  
R0x116C  
Minimum divisor for output pix_clk. Read-only. Legal values for op_pix_clk_div are 0x01, 0x02 and 0x04.  
15:0 0x0008  
Maximum divisor for output pix_clk. Read-only. Legal values for op_pix_clk_div are 0x01, 0x02 and 0x04.  
15:0 0x4240  
FLP32. Minimum frequency for output pix_clk is 5 MHz. Read-only.  
N
N
max_op_pix_clk_div (RO)  
R4462  
R0x116E  
N
N
min_op_pix_clk_freq_mhz_1 (RO)  
R4464  
R0x1170  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
62  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 19: 1: SMIA Parameter Limits (continued)  
Reg. #  
Bits  
Default  
0x0000  
Name  
Frame Sync'd Bad Frame  
15:0  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
min_op_pix_clk_freq_mhz_2 (RO)  
R4466  
R0x1172  
FLP32. Minimum frequency for output pix_clk is 5 MHz. Read-only.  
15:0 0x42C0  
FLP32. Maximum frequency for output pix_clk is 92 MHz. Read-only.  
15:0 0x0000  
FLP32. Maximum frequency for output pix_clk is 92 MHz. Read-only.  
15:0 0x0000  
Minimum value for x_addr_start, x_addr_end. Read-only.  
15:0 0x0000  
Minimum value for y_addr_start, y_addr_end. Read-only.  
15:0 0x0CCF  
Maximum value for x_addr_start, x_addr_end. Read-only.  
15:0 0x099F  
Maximum value for y_addr_start, y_addr_end. Read-only.  
15:0 0x0001  
max_op_pix_clk_freq_mhz_1 (RO)  
R4468  
R0x1174  
max_op_pix_clk_freq_mhz_2 (RO)  
R4470  
R0x1176  
x_addr_min (RO)  
R4480  
R0x1180  
y_addr_min (RO)  
R4482  
R0x1182  
x_addr_max (RO)  
R4484  
R0x1184  
y_addr_max (RO)  
R4486  
R0x1186  
min_even_inc (RO)  
R4544  
R0x11C0  
Minimum value for increment of even X/Y addresses when subsampling is enabled. Read-only.  
15:0 0x0001  
Maximum value for increment of even X/Y addresses when subsampling is enabled. Read-only.  
15:0 0x0001  
Minimum value for increment of odd X/Y addresses when subsampling is enabled. Read-only.  
15:0 0x0003  
Maximum value for increment of odd X/Y addresses when subsampling is enabled. Read-only.  
N
max_even_inc (RO)  
R4546  
R0x11C2  
N
min_odd_inc (RO)  
R4548  
R0x11C4  
N
max_odd_inc (RO)  
R4550  
R0x11C6  
This set of 4 registers declares the capability for the subsampling mode that was called "skip2" and "skip4"  
on earlier Micron Imaging sensors. Note that this value should have been 3, since only values of 1, 3 and 7  
are supported.  
15:0  
0x0002  
N
N
scaling_capability (RO)  
R4608  
R0x1200  
Indicates the provision of a full (horizontal and vertical) scaler. Read-only.  
Indicates the minimum M value for the scaler. Read-only.  
15:0  
Indicates the maximum M value for the scaler. Read-only.  
15:0 0x0010  
Indicates the minimum N value for the scaler. Read-only.  
15:0 0x0010  
Indicates the maximum N value for the scaler. Read-only.  
15:0 0x0001  
0x0080  
N
N
N
N
N
N
N
N
N
N
N
scaler_m_max (RO)  
R4614  
R0x1206  
scaler_n_min (RO)  
R4616  
R0x1208  
scaler_n_max (RO)  
R4618  
R0x120A  
compression_capability (RO)  
R4864  
R0x1300  
Indicates the capability for performing 12/10-bit to 8-bit pixel data compression. Read-only.  
15:0  
Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0xFF00  
0x0242  
N
matrix_element_RedInRed (RW)  
R5120  
R0x1400  
N
matrix_element_GreenInRed (RW)  
R5122  
R0x1402  
Color-correction matrix. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0xFFBE  
Color-correction matrix. Read-only. Can be made read/write by clearing R0x301A-B[3].  
N
matrix_element_BlueInRed (RW)  
R5124  
R0x1404  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
63  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 19: 1: SMIA Parameter Limits (continued)  
Reg. #  
Bits  
Default  
0xFFB4  
Name  
Frame Sync'd Bad Frame  
15:0  
N
N
N
N
N
N
N
matrix_element_RedInGreen (RW)  
R5126  
R0x1406  
Color-correction matrix. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0x0200  
Color-correction matrix. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0xFF4D  
Color-correction matrix. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0xFFF1  
Color-correction matrix. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0xFF34  
Color-correction matrix. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0x01DC  
Color-correction matrix. Read-only. Can be made read/write by clearing R0x301A-B[3].  
N
matrix_element_GreenInGreen (RW)  
R5128  
R0x1408  
N
matrix_element_BlueInGreen (RW)  
R5130  
R0x140A  
N
matrix_element_RedInBlue (RW)  
R5132  
R0x140C  
N
matrix_element_GreenInBlue (RW)  
R5134  
R0x140E  
N
matrix_element_BlueInBlue (RW)  
R5136  
R0x1410  
Table 20: 3: Manufacturer Specific  
Reg. #  
Bits  
Default  
0x2B00  
Name  
model_id_ (RW)  
Frame Sync'd  
Bad Frame  
15:0  
N
N
R12288  
R0x3000  
Model ID. Read-only. Can be made read/write by clearing R0x301A-B[3].  
15:0 0x0008  
Y
YM  
y_addr_start_ (RW)  
R12290  
R0x3002  
The first row of visible pixels to be read out (not counting any dark rows that may be read). To move the  
image window, set this register to the starting Y value.  
15:0  
0x0000  
Y
N
x_addr_start_ (RW)  
R12292  
R0x3004  
The first column of visible pixels to be read out (not counting any dark columns that may be read). To  
move the image window, set this register to the starting X value.  
15:0  
The last row of visible pixels to be read out.  
15:0 0x0CBF  
The last column of visible pixels to be read out.  
15:0 0x0A00  
0x0997  
Y
Y
Y
YM  
y_addr_end_ (RW)  
R12294  
R0x3006  
N
x_addr_end_ (RW)  
R12296  
R0x3008  
YM  
frame_length_lines_ (RW)  
R12298  
R0x300A  
The number of complete lines (rows) in the output frame. This includes visible lines and vertical blanking  
lines.  
15:0  
0x199E  
Y
YM  
line_length_pck_ (RW)  
R12300  
R0x300C  
The number of pixel clock periods in one line (row) time. This includes visible pixels and horizontal  
blanking time.  
15:0  
0x0100  
N
Y
fine_correction (RW)  
R12304  
R0x3010  
Fine integration time correction factor. This is an offset that is applied to the programmed value of  
fine_integration_time such that the actual integration time matches the integration time equation.  
This register should not be modified under normal operation, but must be modified when binning is  
enabled.  
15:0  
Integration time specified in multiples of line_length_pck_.  
15:0 0x056A  
Integration time specified as a number of pixel clocks.  
0x0010  
Y
N
coarse_integration_time_ (RW)  
R12306  
R0x3012  
Y
N
fine_integration_time_ (RW)  
R12308  
R0x3014  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
64  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
row_speed (RW)  
Frame Sync'd  
Bad Frame  
15:0  
0x0111  
R12310  
15:11  
X
R0x3016  
Reserved  
10:8  
0x0001  
N
N
Output Clock Speed  
Slows down the output pixel clock  
frequency relative to the system  
clock frequency. A programmed  
value of N gives a output pixel  
clock period of N system clocks.  
Only values 1, 2 and 4 are  
supported. A value of 0 is illegal: it  
causes the clock to stop.  
7
X
Reserved  
6:4  
0x0001  
N
Y
N
Output Clock Delay  
Number of half-system-clock-cycle  
increments to delay the rising edge  
of PIXCLK relative to transitions on  
FRAME_VALID, LINE_VALID, and  
DOUT.  
3
X
Reserved  
2:0  
0x0001  
YM  
Pixel Clock Speed  
Slows down the pixel clock  
frequency relative to the system  
clock frequency. A programmed  
value of N gives a pixel clock period  
of N system clocks. Only values 1, 2  
and 4 are supported. A value of 0 is  
illegal: it causes the clock to stop.  
extra_delay (RW)  
15:0  
0x0000  
Y
N
R12312  
R0x3018  
Extra blanking inserted between frames. A programmed value of N increases the vertical blanking time  
by N pixel clock periods. Can be used to get a more exact frame rate. May affect the integration times of  
parts of the image when the integration time is less than 1 frame.  
15:0  
0x0058  
reset_register (RW)  
R12314  
15  
0x0000  
N
N
R0x301A  
grouped parameter hold  
0 = Update of many of the registers  
is synchronized to frame start.  
1 = Inhibit register updates; register  
changes will remain pending until  
this bit is returned to 0. When this  
bit is returned to 0, all pending  
register updates will be made on  
the next frame start.  
14:13  
12  
X
Reserved  
0x0000  
N
N
Reserved  
Not used.  
Reserved  
11  
X
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
65  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
Restart Bad Frames  
Frame Sync'd  
Bad Frame  
10  
0x0000  
N
N
R12314  
1 = a restart is forced any time a  
bad frame is detected. This can  
shorten the delay when waiting for  
a good frame, since the delay for  
masking out a bad frame will be  
the integration time rather than  
the full-frame time.  
R0x301A  
9
0x0000  
N
N
Mask Bad Frames  
0 = The sensor will produce bad  
(corrupted) frames as a result of  
some register changes.  
1 = Bad (corrupted) frames are  
masked within the sensor by  
extending the vertical blanking  
time for the duration of the bad  
frame.  
8
0x0000  
N
N
GPI Enable  
0 = the primary input buffers  
associated with the GPI0, GPI1,  
GPI2, GPI3 inputs are powered  
down and the GPI cannot be used.  
1 = the input buffers are enabled  
and can be read through R0x3026-  
7.  
7
0x0000  
N
N
Parallel Enable  
0 = The parallel data interface  
(DOUT[11:0], LINE_VALID,  
FRAME_VALID, and PIXCLK) is  
disabled and the outputs are  
placed in a HIGH-Z.  
1 = The parallel data interface is  
enabled. The output signals can be  
switched between a driven and a  
HIGH-Z using output-enable  
control.  
6
0x0001  
N
N
Drive Pins  
0 = The parallel data interface  
(DOUT[11:0], LINE_VALID,  
FRAME_VALID, and PIXCLK) may  
enter a HIGH-Z (depending upon  
the configuration of R0x3026).  
1 = The parallel data interface is  
driven.  
This bit is "don't-care" unless  
bit[7]=1.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
66  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
Frame Sync'd  
Bad Frame  
5
4
X
Reserved  
R12314  
R0x301A  
0x0001  
N
Y
Standby EOF  
0 = Transition to standby is  
synchronized to the end of a sensor  
row readout (held-off until  
LINE_VALID has fallen).  
1 = Transition to standby is  
synchronized to the end of a frame.  
3
2
0x0001  
0x0000  
N
Y
N
N
Lock Reg  
Many SMIA registers that are  
specified as read-only are actually  
implemented as read/write  
registers. Clearing this bit allows  
such registers to be written.  
Stream  
Setting this bit places the sensor in  
streaming mode. Clearing this bit  
places the sensor in a low power  
mode. The result of clearing this bit  
depends upon the operating mode  
of the sensor. Entry and exit from  
streaming mode can also be  
controlled from the signal  
interface.  
1
0x0000  
N
Y
Restart  
This bit always reads as “0.” Setting  
this bit causes the sensor to  
truncate the current frame at the  
end of the current row and start  
resetting (integrating) the first  
row. The delay before the first valid  
frame is read out is equal to the  
integration time.  
0
0x0000  
N
Y
Y
N
Reset  
This bit always reads as “0.” Setting  
this bit initiates a reset sequence:  
the frame being generated will be  
truncated.  
7:0  
0x0000  
mode_select_ (RW)  
R12316  
R0x301C  
This bit is an alias of R0x301A-B[2].  
7:0  
0x0000  
image_orientation_ (RW)  
R12317  
7:2  
X
R0x301D  
Reserved  
1
0x0000  
Y
Y
YM  
YM  
Vertical Flip  
This bit is an alias of R0x3040[1].  
0
0x0000  
Horizontal Mirror  
This bit is an alias of R0x3040[0].  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
67  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
0x00A8  
Name  
Frame Sync'd  
Bad Frame  
15:0  
N
Y
data_pedestal_ (RW)  
R12318  
R0x301E  
Constant offset that is added to the ADC output for all visible pixels in order to set the black level to a  
value greater than 0. Read-only. Can be made read/write by clearing R0x301A-B[3].  
7:0  
This bit is an alias of R0x301A-B[0].  
7:0 0x0000  
This bit is an alias of R0x301A-B[15].  
7:0 0x0000  
This bit is an alias of R0x301A-B[9].  
7:0 0x0000  
0x0000  
N
N
N
N
Y
N
N
N
software_reset_ (RW)  
R12321  
R0x3021  
grouped_parameter_hold_ (RW)  
mask_corrupted_frames_ (RW)  
pixel_order_ (RO)  
R12322  
R0x3022  
R12323  
R0x3023  
R12324  
R0x3024  
00 = First row is GreenR/Red, first pixel is GreenR  
01 = First row is GreenR/Red, first pixel is Red  
02 = First row is Blue/GreenB, first pixel is Blue  
03 = First row is Blue/GreenB, first pixel is GreenB  
The value in this register changes as a function of R0x3040[1:0].  
15:0  
0xFFFF  
gpi_status (RW)  
R12326  
15:13  
0x0007  
N
N
R0x3026  
Standby Pin Select  
Associate the standby function with  
an active-high input pin  
0 = associate with GPI0  
1 = associate with GPI1  
2 = associate with GPI2  
3 = associate with GPI3  
4-6 = RESERVED  
7 = standby function cannot be  
controlled by any pin  
Must be set to 7 if reset[8]=0.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
68  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
OE_N Pin Select  
Frame Sync'd  
Bad Frame  
12:10  
0x0007  
N
N
R12326  
Associate the output-enable  
function with an active-low input  
pin  
R0x3026  
0 = associate with GPI0  
1 = associate with GPI1  
2 = associate with GPI2  
3 = associate with GPI3  
4-6 = RESERVED  
7 = output-enable function is not  
controlled by any pin  
Must be set to 7 if reset[8]=0. S  
9:7  
0x0007  
N
N
Trigger Pin Select  
Associate the trigger function with  
an active-high input pin  
0 = associate with GPI0  
1 = associate with GPI1  
2 = associate with GPI2  
3 = associate with GPI3  
4-6 = RESERVED  
7 = Trigger function is not  
controlled by any pin  
Must be set to 7 if R0x301A-B[8]=0.  
6:4  
0x0007  
N
N
SADDR Pin Select  
Associate the SADDR function with  
an active-high input pin  
0 = associate with GPI0  
1 = associate with GPI1  
2 = associate with GPI2  
3 = associate with GPI3  
4-6 = RESERVED  
7 = SADDR function is not controlled  
by any pin  
Must be set to 7 if R0x301A-B[8]=0.  
3
2
1
RO  
RO  
RO  
N
N
N
N
N
N
GPI3  
Read-only. Return the current state  
of the GPI3 input pin. Invalid if  
R0x301A-B[8]=0.  
GPI2  
Read-only. Return the current state  
of the GPI2 input pin. Invalid if  
R0x301A-B[8]=0.  
GPI1  
Read-only. Return the current state  
of the GPI1 input pin. Invalid if  
R0x301A-B[8]=0.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
69  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
Frame Sync'd  
Bad Frame  
0
RO  
N
N
GPI0  
R12326  
Read-only. Return the current state  
of the GPI0 input pin. Invalid if  
R0x301A-B[8]=0.  
R0x3026  
15:0  
0x000D  
Y
N
analogue_gain_code_global_  
(RW)  
R12328  
R0x3028  
Writing a gain code to this register is equivalent to writing that code to each of the 4 color-specific gain  
code registers.  
Reading from this register returns the value most recently written to the analogue_gain_code_greenR  
register.  
15:0  
0x000D  
Y
N
analogue_gain_code_greenR_  
(RW)  
R12330  
R0x302A  
The gain code written to this register sets the gain for green pixels on red/green rows of the pixel array.  
15:0  
The gain code written to this register sets the gain for red pixels.  
15:0 0x000D  
The gain code written to this register sets the gain for blue pixels.  
0x000D  
Y
Y
Y
N
N
N
analogue_gain_code_red_ (RW)  
R12332  
R0x302C  
analogue_gain_code_blue_ (RW)  
R12334  
R0x302E  
15:0  
0x000D  
analogue_gain_code_greenB_  
(RW)  
R12336  
R0x3030  
The gain code written to this register sets the gain for green pixels on blue/green rows of the pixel array.  
15:0 0x0100  
Y
N
digital_gain_greenR_ (RW)  
R12338  
R0x3032  
Digital gain applied to green pixels on red/green rows of the pixel array. The value is an unsigned 8.8  
fixed-point format. Bits [10:8] are significant and are an alias of R0x3056[11:9].  
15:0  
0x0100  
Y
N
digital_gain_red_ (RW)  
R12340  
R0x3034  
Digital gain applied to red pixels of the pixel array. The value is an unsigned 8.8 fixed-point format. Bits  
[10:8] are significant and are an alias of R0x305A[11:9].  
15:0  
0x0100  
Y
N
digital_gain_blue_ (RW)  
R12342  
R0x3036  
Digital gain applied to blue pixels of the pixel array. The value is an unsigned 8.8 fixed-point format. Bits  
[10:8] are significant and are an alias of R0x3058[11:9].  
15:0  
0x0100  
Y
N
digital_gain_greenB_ (RW)  
R12344  
R0x3038  
Digital gain applied to green pixels on blue/green rows of the pixel array. The value is an unsigned 8.8  
fixed-point format. Bits [10:8] are significant and are an alias of R0x305C[11:9].  
7:0  
Return the value 10 to indicate an implementation of revision 1.0 of the SMIA specification. Read-only.  
7:0 0x00FF  
0x000A  
N
N
smia_version_ (RO)  
R12346  
R0x303A  
Y
N
frame_count_ (RO)  
R12347  
R0x303B  
In the soft standby state this counter is set to 0xFF. In the streaming state this counter increments by 1  
(modulo 255) at the start of each frame. The counter is incremented for both good frames and bad  
(corrupted) frames - its behavior is not affected by the state of R0x301A-B[9] (mask_corrupted_frames).  
After entry to the streaming state, the first frame will show a frame count of 0x01 in its embedded data.  
Read-only.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
70  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
frame_status (RO)  
Reserved  
Frame Sync'd  
Bad Frame  
15:0  
0x0000  
R12348  
R0x303C  
15:2  
X
1
RO  
N
N
Standby status  
This bit tells you whether the  
sensor is in standby state. Can be  
polled after standby is entered to  
see when the real low-power state  
is entered; which can happen at the  
end of row or frame depending on  
bit 0x301A[4]. The bit actually  
reflects the internal signal  
standby_gated.  
0
RO  
N
N
N
N
Framesync  
Set on register write and reset on  
framesync. Acts as debug flag to  
verify that register writes  
completed before last framesync.  
read_mode (RW)  
15:0  
0x0024  
R12352  
R0x3040  
15:14  
0x0000  
Special LINE_VALID  
This feature is not working. Keep  
setting at 00.  
00 = Normal behavior of  
LINE_VALID  
01 = LINE_VALID is driven  
continuously (continue generating  
LINE_VALID during vertical  
blanking)  
10 = LINE_VALID is driven  
continuously as LINE_VALID XOR  
FRAME_VALID.  
13  
12  
X
Reserved  
0x0000  
Y
Y
N
N
Binning summing  
Enable summing mode for binning.  
11  
0x0000  
x bin enable  
Enable analogue binning in X  
(column) direction.  
When set, x_odd_inc must be set to  
3 or 7 and y_odd_inc must be set to  
1, along with other register  
changes.  
10  
0x0000  
Y
N
xy bin enable  
Enable analogue binning in X and  
Y (column and row) directions.  
When set, x_odd_inc and y_odd_inc  
must be set to 3 or 7, along with  
other register changes.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
71  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
Low power mode  
Frame Sync'd  
Bad Frame  
9
0x0000  
Y
YM  
R12352  
Enables low power mode. This will  
automatically half the pixel clock  
speed. Can not be used when  
pc_speed[2:0] = 4.  
R0x3040  
8
X
Reserved  
7:5  
0x0001  
Y
YM  
X odd increment  
Increment applied to odd addresses  
in X (column) direction.  
1= Normal readout  
3 = Read out alternate pixel pairs to  
halve the amount of horizontal  
data in a frame.  
7 = Read out 1 of 4 pixel pairs to  
reduce the amount of horizontal  
data in a frame by 4.  
Y
YM  
4:2  
0x0001  
Y odd increment  
Increment applied to odd addresses  
in Y (row) direction.  
1= Normal readout  
3 = Read out alternate pixel pairs to  
halve the amount of vertical data  
in a frame.  
7 = Read out 1 of 4 pixel pairs to  
reduce the amount of vertical data  
in a frame by 4.  
Y
YM  
1
0x0000  
Vertical Flip  
0 = Normal readout  
1 = Readout is flipped (mirrored)  
vertically so that the row specified  
by y_addr_end_ is read out of the  
sensor first. Setting this bit will  
change the bayer pixel order (see  
R0x3024).  
Y
YM  
0
0x0000  
Horizontal Mirror  
0 = Normal readout  
1 = Readout is mirrored  
horizontally so that the column  
specified by x_addr_end_ is read  
out of the sensor first. Setting this  
bit will change the bayer pixel  
order (see R0x3024).  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
72  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
Frame Sync'd  
Bad Frame  
15:0  
0x0600  
flash (RW)  
R12358  
15  
RO  
N
N
R0x3046  
Strobe  
Reflects the current state of the  
FLASH output signal. Read-only.  
14  
13  
RO  
N
Y
N
N
Triggered  
Indicates that the FLASH output  
signal was asserted for the current  
frame. Read-only.  
0x0000  
Xenon Flash  
Enable Xenon flash. When set, the  
FLASH output signal will assert for  
the programmed period (bits [7:0])  
during vertical blanking. This is  
achieved by keeping the  
integration time equal to one  
frame, and the pulse width less  
than the vertical blanking time.  
12:11  
10  
0x0000  
0x0001  
N
N
N
N
Frame Delay  
Flash pulse delay measured in  
frames.  
End of Reset  
1 = In Xenon mode, the flash is  
triggered after resetting a frame.  
0 = In Xenon mode, the flash is  
triggered after a frame readout.  
9
8
0x0001  
0x0000  
N
Y
N
Y
Every Frame  
1 = Flash should be enabled every  
frame.  
0 = Flash should be enabled for 1  
frame only.  
LED Flash  
Enable LED flash. When set, the  
FLASH output signal will assert  
prior to the start of the resetting of  
a frame and will remain asserted  
until the end of the frame readout.  
Reserved  
7:0  
X
15:0  
0x0008  
N
N
flash_count (RW)  
R12360  
R0x3048  
Length of flash pulse when Xenon flash is enabled. The value specifies the length in units of 256 x PIXCLK  
cycle increments (by default, PIXCLK = system_clock). When the Xenon count is set to its maximum value  
(0x3FF), the flash pulse will automatically be truncated prior to the readout of the first row, giving the  
longest pulse possible.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
73  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
green1_gain (RW)  
Reserved  
Frame Sync'd  
Bad Frame  
15:0  
0x0234  
R12374  
R0x3056  
15:12  
X
11:9  
0x0001  
Y
Y
N
N
Digital Gain  
Digital Gain. Legal values 1-7.  
8:7  
0x0000  
Analog Gain  
Analog gain = (bit [8] + 1) * (bit [7]  
+ 1) * initial gain.  
6:0  
0x0034  
Y
N
Initial Gain  
Initial gain = bits [6:0] * 1/32.  
blue_gain (RW)  
15:0  
0x0234  
R12376  
15:12  
X
R0x3058  
Reserved  
11:9  
0x0001  
Y
Y
N
N
Digital Gain  
Digital Gain. Legal values 1-7.  
8:7  
0x0000  
Analog Gain  
Analog gain = (bit [8] + 1) * (bit [7]  
+ 1) * initial gain.  
6:0  
0x0034  
Y
N
Initial Gain  
Initial gain = bits [6:0] * 1/32.  
red_gain (RW)  
15:0  
0x0234  
R12378  
15:12  
X
R0x305A  
Reserved  
11:9  
0x0001  
Y
Y
N
N
Digital Gain  
Digital Gain. Legal values 1-7.  
8:7  
0x0000  
Analog Gain  
Analog gain = (bit [8] + 1) * (bit [7]  
+ 1) * initial gain.  
6:0  
0x0034  
Y
N
Initial Gain  
Initial gain = bits [6:0] * 1/32.  
green2_gain (RW)  
15:0  
0x0234  
R12380  
15:12  
X
R0x305C  
Reserved  
11:9  
0x0001  
Y
Y
N
N
Digital Gain  
Digital Gain. Legal values 1-7.  
8:7  
0x0000  
Analog Gain  
Analog gain = (bit [8] + 1) * (bit [7]  
+ 1) * initial gain.  
6:0  
0x0034  
Y
Y
N
N
Initial Gain  
Initial gain = bits [6:0] * 1/32.  
global_gain (RW)  
15:0  
0x0234  
R12382  
R0x305E  
Writing a gain to this register is equivalent to writing that code to each of the 4 color-specific gain  
registers. Reading from this register returns the value most recently written to the green1_gain register.  
15:0  
0x0000  
datapath_status (RW)  
R12394  
15:5  
X
R0x306A  
Reserved  
4
0x0000  
N
N
Reserved  
Reserved  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
74  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
Frame Sync'd  
Bad Frame  
3
0x0000  
N
N
Frame time exceeded  
R12394  
If the y_output_size is so large that  
the total number of lines output on  
the odp exceeds the total number  
of lines allowed by  
R0x306A  
frame_length_lines, the "frame  
time exceeded" error will be  
flagged. The general solution to  
this error is to reduce y_output_size  
to match the size of the frame  
being generated by the  
sensor_core.  
Once this bit is set, the condition  
that caused the error must be  
cleared, then write a “1” to this bit  
position to clear it.  
2
0x0000  
N
N
Line time exceeded  
If the odp clock rate and  
x_output_size do not allow an  
output line to be generated within  
the time allowed by  
line_length_pck, the "line time  
exceeded" error will be flagged.  
The general solution to this error is  
first to reduce x_output_size to  
match the size of the frame being  
generated by the sensor_core and  
then (if necessary) increase  
line_length_pck to allow time for  
the output line.  
Once this bit is set, the condition  
that caused the error must be  
cleared, then write a “1” to this bit  
position to clear it.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
75  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
Frame Sync'd  
Bad Frame  
1
0x0000  
N
N
FIFO overflow  
R12394  
If the odp data rate is lower than  
the sensor_core data rate and  
x_output_size is large enough, the  
output buffer can overflow, and  
the "FIFO overflow" error will be  
flagged. The FIFO is sized to  
accommodate a full-sizeframe from  
the sensor core, so this error can  
only occur when x_output_size is  
unnecessarily large. The general  
solution to this error is to reduce  
x_output_size.  
R0x306A  
Once this bit is set, the condition  
that caused the error must be  
cleared, then write a “1” to this bit  
position to clear it.  
0
0x0000  
N
N
FIFO underflow  
If the output buffer underflows,  
the "FIFO underflow" error will be  
flagged. There is no known setup  
scenario that will stimulate this  
error.  
Once this bit is set, you must clear  
the condition that caused the error  
then write a “1” to this bit position  
to clear it.  
15:0  
0x9080  
datapath_select (RW)  
R12398  
15:13  
0x0004  
N
N
R0x306E  
Slew-rate control Parallel Interface  
Selects the slew (edge) rate for the  
DOUT[11:0], SHUTTER,  
FRAME_VALID, LINE_VALID and  
FLASH outputs. Only affects  
SHUTTER and FLASH outputs when  
parallel data output is disabled.  
The value 7 results in the fastest  
edge rates on these signals.  
Slowing down the edge rate can  
reduce ringing and electro-  
magnetic emissions.  
12:10  
0x0004  
N
N
Slew-rate control PIXCLK  
Selects the slew (edge) rate for the  
PIXCLK output. Has no effect when  
parallel data output is disabled.  
The value 7 results in the fastest  
edge rates on this signal. Slowing  
down the edge rate can reduce  
ringing and electromagnetic  
emissions.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
76  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
Frame Sync'd  
Bad Frame  
9:8  
7
X
Reserved  
Profile  
R12398  
R0x306E  
0x0001  
N
Y
SMIA profile mode. Should only be  
changed in standby, and with  
attention to other clock settings.  
0 = Profile 0  
1 = Profile 1/2.  
6:5  
4
X
Reserved  
0x0000  
N
N
N
Y
True Bayer mode  
Enables true Bayer scaling mode.  
Reserved  
3:0  
X
15:0  
0x0000  
test_pattern_mode_ (RW)  
R12400  
R0x3070  
0 = Normal operation: Generate output data from pixel array  
1 = Solid colour test pattern.  
2 = 100% colour bar test pattern  
3 = Fade to grey colour bar test pattern  
4 = PN9 Link integrity test pattern  
256 = Marching 1's test pattern  
other = Reserved.  
15:0  
0x0000  
N
Y
test_data_red_ (RW)  
R12402  
R0x3072  
The value for red pixels in the bayer data used for the solid colour test pattern and the test cursors.  
15:0 0x0000  
N
Y
test_data_green1_ (RW)  
R12404  
R0x3074  
The value for green pixels in red/green rows of the bayer data used for the solid colour test pattern and  
the test cursors.  
15:0  
The value for blue pixels in the bayer data used for the solid colour test pattern and the test cursors.  
15:0 0x0000  
0x0000  
N
Y
test_data_blue_ (RW)  
R12406  
R0x3076  
N
Y
test_data_green2 (RW)  
R12408  
R0x3078  
The value for green pixels in blue/green rows of the bayer data used for the solid colour test pattern and  
the test cursors.  
15:0  
0x0001  
N
Y
N
Y
N
YM  
N
x_even_inc_ (RO)  
R12448  
R0x30A0  
Read-only.  
15:0  
0x0001  
x_odd_inc_ (RW)  
R12450  
R0x30A2  
This register field is an alias of R0x3040[7:5]  
15:0  
0x0001  
y_even_inc_ (RO)  
R12452  
R0x30A4  
Read-only.  
15:0  
0x0001  
YM  
y_odd_inc_ (RW)  
R12454  
R0x30A6  
This register field is an alias of R0x3040[4:2]  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
77  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
Name  
Frame Sync'd  
Bad Frame  
15:0  
15:10  
9
0x0000  
global_seq_trigger (RW)  
R12640  
R0x3160  
X
Reserved  
RO  
N
N
N
N
Grst Rd  
Read-Only. Global reset read  
sequence indicator.  
8
RO  
Grst Sequence  
Read-only. Global reset sequence  
indicator.  
7:3  
2
X
Reserved  
0x0000  
N
N
Y
Y
Global Flash  
0 = When a global reset sequence is  
triggered, the FLASH output will  
remain negated.  
1 = When a global reset sequence is  
triggered, the FLASH output will  
pulse during the integration phase.  
1
0x0000  
Global Bulb  
0 = Shutter open is triggered from  
bit[0] and shutter close is timed  
from the trigger point.  
1 = Shutter open and close are  
triggered from bit[0].  
This corresponds to the shutter "B"  
setting on a traditional camera,  
where "B" originally stood for  
"Bulb" (the shutter setting used for  
synchronization with a magnesium  
foil flash bulb) and was later  
considered to stand for "Brief" (an  
exposure that was longer than the  
shutter could automatically  
accommodate).  
0
0x0000  
N
Y
Global Trigger  
When bit[1]=0, a 0-to-1 transition  
of this bit initiates (triggers) a  
global reset sequence. When  
bit[1]=1, a 0-to-1 transition of this  
bit initiates a global reset  
sequence, and leaves the shutter  
open; a 1-to-0 transition of this bit  
closes the shutter. These operations  
can also be controlled from the  
signal interface by enabling one of  
the GPI[3:0] signals as a trigger  
input.  
15:0  
0x0050  
N
N
global_rst_end (RW)  
R12642  
R0x3162  
Controls the duration of the global reset row reset phase. A value of N gives a duration of N * 512 /  
vt_pix_clk_freq_mhz.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
78  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
0x0078  
Name  
Frame Sync'd  
Bad Frame  
15:0  
N
N
global_shutter_start (RW)  
R12644  
R0x3164  
Controls the delay before the assertion of the SHUTTER output during a global reset sequence. A value of  
N gives an assertion time of N * 512 / vt_pix_clk_freq_mhz timed from the end of row that was in  
progress when the global reset sequence was triggered.  
15:0  
0x00A0  
N
N
global_read_start (RW)  
R12646  
R0x3166  
Controls the delay before the start of the global reset readout phase (equivalent to the end of global  
reset integration phase). A value of N gives a delay of N * 512 / vt_pix_clk_freq_mhz. The integration time  
is given by (global_read_start - global_rst_end) * 512 / vt_pix_clk_freq_mhz.  
15:0  
0x0000  
N
N
horizontal_cursor_position_  
(RW)  
R12776  
R0x31E8  
Specify the start column for the test cursor.  
15:0 0x0000  
Specify the start column for the test cursor.  
15:0 0x0000  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
vertical_cursor_position_ (RW)  
R12778  
R0x31EA  
horizontal_cursor_width_ (RW)  
R12780  
R0x31EC  
Specify the width, in rows, of the horizontal test cursor. A width of 0 disables the cursor.  
15:0 0x0000  
Specify the width, in columns, of the vertical test cursor. A width of 0 disables the cursor.  
N
vertical_cursor_width_ (RW)  
R12782  
R0x31EE  
15:0  
0x03020  
N
N
N
N
N
N
N
N
N
N
N
N
N
i2c_ids  
R12796  
R0x31FC  
I2C address registers.  
15:0  
0x0000  
P_GR_P0Q0 (RW)  
P_GR_P0Q1 (RW)  
P_GR_P0Q2 (RW)  
P_GR_P0Q3 (RW)  
P_GR_P0Q4 (RW)  
P_RD_P0Q0 (RW)  
P_RD_P0Q1 (RW)  
P_RD_P0Q2 (RW)  
P_RD_P0Q3 (RW)  
P_RD_P0Q4 (RW)  
P_BL_P0Q0 (RW)  
P_BL_P0Q1 (RW)  
R13824  
R0x3600  
P0 coefficient for Q0 for Gr.  
15:0  
0x0000  
R13826  
R0x3602  
15:0  
0x0000  
R13828  
R0x3604  
P0 coefficient for Q2 for Gr.  
15:0 0x0000  
P0 coefficient for Q3 for Gr.  
15:0 0x0000  
P0 coefficient for Q4 for Gr.  
15:0 0x0000  
P0 coefficient for Q0 for Rd.  
15:0 0x0000  
P0 coefficient for Q1 for Rd.  
15:0 0x0000  
P0 coefficient for Q2 for Rd.  
15:0 0x0000  
P0 coefficient for Q3 for Rd.  
15:0 0x0000  
P0 coefficient for Q4 for Rd.  
15:0 0x0000  
P0 coefficient for Q0 for Bl.  
15:0 0x0000  
P0 coefficient for Q1 for Bl.  
R13830  
R0x3606  
R13832  
R0x3608  
R13834  
R0x360A  
R13836  
R0x360C  
R13838  
R0x360E  
R13840  
R0x3610  
R13842  
R0x3612  
R13844  
R0x3614  
R13846  
R0x3616  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
79  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
0x0000  
Name  
P_BL_P0Q2 (RW)  
Frame Sync'd  
Bad Frame  
15:0  
N
N
R13848  
R0x3618  
P0 coefficient for Q2 for Bl.  
15:0 0x0000  
P0 coefficient for Q3 for Bl.  
15:0 0x0000  
P0 coefficient for Q4 for Bl.  
15:0 0x0000  
P0 coefficient for Q0 for Gb.  
15:0 0x0000  
P0 coefficient for Q1 for Gb.  
15:0 0x0000  
P0 coefficient for Q2 for Gb.  
15:0 0x0000  
P0 coefficient for Q3 for Gb.  
15:0 0x0000  
P0 coefficient for Q4 for Gb.  
15:0 0x0000  
P1 coefficient for Q0 for Gr.  
15:0 0x0000  
P1 coefficient for Q1 for Gr.  
15:0 0x0000  
P1 coefficient for Q2 for Gr.  
15:0 0x0000  
P1 coefficient for Q3 for Gr.  
15:0 0x0000  
P1 coefficient for Q4 for Gr.  
15:0 0x0000  
P1 coefficient for Q0 for Rd.  
15:0 0x0000  
P1 coefficient for Q1 for Rd.  
15:0 0x0000  
P1 coefficient for Q2 for Rd.  
15:0 0x0000  
P1 coefficient for Q3 for Rd.  
15:0 0x0000  
P1 coefficient for Q4 for Rd.  
15:0 0x0000  
P1 coefficient for Q0 for Bl.  
15:0 0x0000  
P1 coefficient for Q1 for Bl.  
15:0 0x0000  
P1 coefficient for Q2 for Bl.  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P_BL_P0Q3 (RW)  
P_BL_P0Q4 (RW)  
P_GB_P0Q0 (RW)  
P_GB_P0Q1 (RW)  
P_GB_P0Q2 (RW)  
P_GB_P0Q3 (RW)  
P_GB_P0Q4 (RW)  
P_GR_P1Q0 (RW)  
P_GR_P1Q1 (RW)  
P_GR_P1Q2 (RW)  
P_GR_P1Q3 (RW)  
P_GR_P1Q4 (RW)  
P_RD_P1Q0 (RW)  
P_RD_P1Q1 (RW)  
P_RD_P1Q2 (RW)  
P_RD_P1Q3 (RW)  
P_RD_P1Q4 (RW)  
P_BL_P1Q0 (RW)  
P_BL_P1Q1 (RW)  
P_BL_P1Q2 (RW)  
R13850  
R0x361A  
R13852  
R0x361C  
R13854  
R0x361E  
R13856  
R0x3620  
R13858  
R0x3622  
R13860  
R0x3624  
R13862  
R0x3626  
R13888  
R0x3640  
R13890  
R0x3642  
R13892  
R0x3644  
R13894  
R0x3646  
R13896  
R0x3648  
R13898  
R0x364A  
R13900  
R0x364C  
R13902  
R0x364E  
R13904  
R0x3650  
R13906  
R0x3652  
R13908  
R0x3654  
R13910  
R0x3656  
R13912  
R0x3658  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
80  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
0x0000  
Name  
P_BL_P1Q3 (RW)  
Frame Sync'd  
Bad Frame  
15:0  
N
N
R13914  
R0x365A  
P1 coefficient for Q3 for Bl.  
15:0 0x0000  
P1 coefficient for Q4 for Bl.  
15:0 0x0000  
P1 coefficient for Q0 for Gb.  
15:0 0x0000  
P1 coefficient for Q1 for Gb.  
15:0 0x0000  
P1 coefficient for Q2 for Gb.  
15:0 0x0000  
P1 coefficient for Q3 for Gb.  
15:0 0x0000  
P1 coefficient for Q4 for Gb.  
15:0 0x0000  
P2 coefficient for Q0 for Gr.  
15:0 0x0000  
P2 coefficient for Q1 for Gr.  
15:0 0x0000  
P2 coefficient for Q2 for Gr.  
15:0 0x0000  
P2 coefficient for Q3 for Gr.  
15:0 0x0000  
P2 coefficient for Q4 for Gr.  
15:0 0x0000  
P2 coefficient for Q0 for Rd.  
15:0 0x0000  
P2 coefficient for Q1 for Rd.  
15:0 0x0000  
P2 coefficient for Q2 for Rd.  
15:0 0x0000  
P2 coefficient for Q3 for Rd.  
15:0 0x0000  
P2 coefficient for Q4 for Rd.  
15:0 0x0000  
P2 coefficient for Q0 for Bl.  
15:0 0x0000  
P2 coefficient for Q1 for Bl.  
15:0 0x0000  
P2 coefficient for Q2 for Bl.  
15:0 0x0000  
P2 coefficient for Q3 for Bl.  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P_BL_P1Q4 (RW)  
P_GB_P1Q0 (RW)  
P_GB_P1Q1 (RW)  
P_GB_P1Q2 (RW)  
P_GB_P1Q3 (RW)  
P_GB_P1Q4 (RW)  
P_GR_P2Q0 (RW)  
P_GR_P2Q1 (RW)  
P_GR_P2Q2 (RW)  
P_GR_P2Q3 (RW)  
P_GR_P2Q4 (RW)  
P_RD_P2Q0 (RW)  
P_RD_P2Q1 (RW)  
P_RD_P2Q2 (RW)  
P_RD_P2Q3 (RW)  
P_RD_P2Q4 (RW)  
P_BL_P2Q0 (RW)  
P_BL_P2Q1 (RW)  
P_BL_P2Q2 (RW)  
P_BL_P2Q3 (RW)  
R13916  
R0x365C  
R13918  
R0x365E  
R13920  
R0x3660  
R13922  
R0x3662  
R13924  
R0x3664  
R13926  
R0x3666  
R13952  
R0x3680  
R13954  
R0x3682  
R13956  
R0x3684  
R13958  
R0x3686  
R13960  
R0x3688  
R13962  
R0x368A  
R13964  
R0x368C  
R13966  
R0x368E  
R13968  
R0x3690  
R13970  
R0x3692  
R13972  
R0x3694  
R13974  
R0x3696  
R13976  
R0x3698  
R13978  
R0x369A  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
81  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
0x0000  
Name  
P_BL_P2Q4 (RW)  
Frame Sync'd  
Bad Frame  
15:0  
N
N
R13980  
R0x369C  
P2 coefficient for Q4 for Bl.  
15:0 0x0000  
P2 coefficient for Q0 for Gb.  
15:0 0x0000  
P2 coefficient for Q1 for Gb.  
15:0 0x0000  
P2 coefficient for Q2 for Gb.  
15:0 0x0000  
P2 coefficient for Q3 for Gb.  
15:0 0x0000  
P2 coefficient for Q4 for Gb.  
15:0 0x0000  
P3 coefficient for Q0 for Gr.  
15:0 0x0000  
P3 coefficient for Q1 for Gr.  
15:0 0x0000  
P3 coefficient for Q2 for Gr.  
15:0 0x0000  
P3 coefficient for Q3 for Gr.  
15:0 0x0000  
P3 coefficient for Q4 for Gr.  
15:0 0x0000  
P3 coefficient for Q0 for Rd.  
15:0 0x0000  
P3 coefficient for Q1 for Rd.  
15:0 0x0000  
P3 coefficient for Q2 for Rd.  
15:0 0x0000  
P3 coefficient for Q3 for Rd.  
15:0 0x0000  
P3 coefficient for Q4 for Rd.  
15:0 0x0000  
P3 coefficient for Q0 for Bl.  
15:0 0x0000  
P3 coefficient for Q1 for Bl.  
15:0 0x0000  
P3 coefficient for Q2 for Bl.  
15:0 0x0000  
P3 coefficient for Q3 for Bl.  
15:0 0x0000  
P3 coefficient for Q4 for Bl.  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P_GB_P2Q0 (RW)  
P_GB_P2Q1 (RW)  
P_GB_P2Q2 (RW)  
P_GB_P2Q3 (RW)  
P_GB_P2Q4 (RW)  
P_GR_P3Q0 (RW)  
P_GR_P3Q1 (RW)  
P_GR_P3Q2 (RW)  
P_GR_P3Q3 (RW)  
P_GR_P3Q4 (RW)  
P_RD_P3Q0 (RW)  
P_RD_P3Q1 (RW)  
P_RD_P3Q2 (RW)  
P_RD_P3Q3 (RW)  
P_RD_P3Q4 (RW)  
P_BL_P3Q0 (RW)  
P_BL_P3Q1 (RW)  
P_BL_P3Q2 (RW)  
P_BL_P3Q3 (RW)  
P_BL_P3Q4 (RW)  
R13982  
R0x369E  
R13984  
R0x36A0  
R13986  
R0x36A2  
R13988  
R0x36A4  
R13990  
R0x36A6  
R14016  
R0x36C0  
R14018  
R0x36C2  
R14020  
R0x36C4  
R14022  
R0x36C6  
R14024  
R0x36C8  
R14026  
R0x36CA  
R14028  
R0x36CC  
R14030  
R0x36CE  
R14032  
R0x36D0  
R14034  
R0x36D2  
R14036  
R0x36D4  
R14038  
R0x36D6  
R14040  
R0x36D8  
R14042  
R0x36DA  
R14044  
R0x36DC  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
82  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
0x0000  
Name  
P_GB_P3Q0 (RW)  
Frame Sync'd  
Bad Frame  
15:0  
N
N
R14046  
R0x36DE  
P3 coefficient for Q0 for Gb.  
15:0 0x0000  
P3 coefficient for Q1 for Gb.  
15:0 0x0000  
P3 coefficient for Q2 for Gb.  
15:0 0x0000  
P3 coefficient for Q3 for Gb.  
15:0 0x0000  
P3 coefficient for Q4 for Gb.  
15:0 0x0000  
P4 coefficient for Q0 for Gr.  
15:0 0x0000  
P4 coefficient for Q1 for Gr.  
15:0 0x0000  
P4 coefficient for Q2 for Gr.  
15:0 0x0000  
P4 coefficient for Q3 for Gr.  
15:0 0x0000  
P4 coefficient for Q4 for Gr.  
15:0 0x0000  
P4 coefficient for Q0 for Rd.  
15:0 0x0000  
P4 coefficient for Q1 for Rd.  
15:0 0x0000  
P4 coefficient for Q2 for Rd.  
15:0 0x0000  
P4 coefficient for Q3 for Rd.  
15:0 0x0000  
P4 coefficient for Q4 for Rd.  
15:0 0x0000  
P4 coefficient for Q0 for Bl.  
15:0 0x0000  
P4 coefficient for Q1 for Bl.  
15:0 0x0000  
P4 coefficient for Q2 for Bl.  
15:0 0x0000  
P4 coefficient for Q3 for Bl.  
15:0 0x0000  
P4 coefficient for Q4 for Bl.  
15:0 0x0000  
P4 coefficient for Q0 for Gb.  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P_GB_P3Q1 (RW)  
P_GB_P3Q2 (RW)  
P_GB_P3Q3 (RW)  
P_GB_P3Q4 (RW)  
P_GR_P4Q0 (RW)  
P_GR_P4Q1 (RW)  
P_GR_P4Q2 (RW)  
P_GR_P4Q3 (RW)  
P_GR_P4Q4 (RW)  
P_RD_P4Q0 (RW)  
P_RD_P4Q1 (RW)  
P_RD_P4Q2 (RW)  
P_RD_P4Q3 (RW)  
P_RD_P4Q4 (RW)  
P_BL_P4Q0 (RW)  
P_BL_P4Q1 (RW)  
P_BL_P4Q2 (RW)  
P_BL_P4Q3 (RW)  
P_BL_P4Q4 (RW)  
P_GB_P4Q0 (RW)  
R14048  
R0x36E0  
R14050  
R0x36E2  
R14052  
R0x36E4  
R14054  
R0x36E6  
R14080  
R0x3700  
R14082  
R0x3702  
R14084  
R0x3704  
R14086  
R0x3706  
R14088  
R0x3708  
R14090  
R0x370A  
R14092  
R0x370C  
R14094  
R0x370E  
R14096  
R0x3710  
R14098  
R0x3712  
R14100  
R0x3714  
R14102  
R0x3716  
R14104  
R0x3718  
R14106  
R0x371A  
R14108  
R0x371C  
R14110  
R0x371E  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
83  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Register Description  
Table 20: 3: Manufacturer Specific (continued)  
Reg. #  
Bits  
Default  
0x0000  
Name  
P_GB_P4Q1 (RW)  
Frame Sync'd  
Bad Frame  
15:0  
N
N
R14112  
R0x3720  
P4 coefficient for Q1 for Gb.  
15:0 0x0000  
P4 coefficient for Q2 for Gb.  
15:0 0x0000  
P4 coefficient for Q3 for Gb.  
15:0 0x0000  
P4 coefficient for Q4 for Gb.  
N
N
N
N
N
N
P_GB_P4Q2 (RW)  
P_GB_P4Q3 (RW)  
P_GB_P4Q4 (RW)  
R14114  
R0x3722  
R14116  
R0x3724  
R14118  
R0x3726  
15:0  
15  
0x0000  
0x0000  
X
SC_ENABLE (WO)  
Enable LC  
R14208  
R0x3780  
N
N
14:0  
Reserved  
When SC_ENABLE bit is set, _sc will generate function and correct stream of pixels. When not set, _sc will  
bypass data.  
15:0  
Origin of function: ASpplied as offset to X (col) coordinate of pixel.  
15:0 0x0000  
Origin of function: Applied as offset to Y (row) coordinate of pixel.  
0x0000  
N
N
ORIGIN_C (RW)  
R14210  
R0x3782  
N
N
ORIGIN_R (RW)  
R14212  
R0x3784  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__4reg_desc.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
84  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
System States  
System States  
The system states of the sensor are represented as a state diagram below and described  
in subsequent sections. The effect of RESET_BAR on the system state and the configura-  
tion of the PLL in the different states are shown in Figure 33.  
Figure 33: Sensor System States  
Power supplies  
turned off (asynchronous  
from any state)  
Powered Off  
Powered On  
POR = 1  
POR active  
POR = 0  
RESET_BAR transitions 1 -> 0  
(asynchronous from any state)  
RESET_BAR = 0  
Hardware Standby  
RESET_BAR = 1  
6000 EXTCLK  
Cycles  
Internal Initialization  
Timeout  
Two-wire Serial  
Interface Write:  
software_reset=1  
Software Standby  
Two-wire Seial Interface Write:  
mode_select=1  
PLL not locked  
PLL Lock  
Frame in  
progress  
PLL locked  
Wait For Frame End  
Two-wire Serial  
Streaming  
Interface Write:  
mode_select=0  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
85  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
System States  
Table 21: RESET_BAR and PLL in System States  
State RESET_BAR  
Powered off  
PLL  
x
0
Hardware standby  
Internal Initialization  
Software standby  
PLL Lock  
VCO Powered-down  
1
VCO powering up and locking, PLL output bypassed  
VCO running, PLL clock outputs active  
Streaming  
Wait for frame end  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
86  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Spectral Characteristics  
Spectral Characteristics  
Figure 34: CRA vs. Image Height  
Image Height  
CRA  
CRA vs. Image Height Plot  
(%)  
(mm)  
(Deg)  
0
5
0
0
0.179  
0.357  
0.536  
0.714  
0.893  
1.071  
1.250  
1.428  
1.607  
1.785  
1.964  
2.142  
2.321  
2.499  
2.678  
2.856  
3.035  
3.213  
3.392  
3.570  
0.51  
1.02  
1.53  
2.04  
2.55  
3.06  
3.57  
4.08  
4.59  
5.10  
5.60  
6.11  
6.62  
7.13  
7.64  
8.15  
8.66  
9.17  
9.68  
10.19  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
12  
10  
8
6
4
2
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
Image Height (%)  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
87  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Timing Specifications  
Timing Specifications  
Power-up  
It is recommended to simultaneously apply VDD, VDDIO, and VDDPLL first, followed by  
VAA and VAAPIX. The maximum time allowed between the first and last voltage applied  
is 500ms.  
Reset  
Two types of reset are available:  
A hard reset is issued by toggling RESET_BAR.  
A soft reset is issues by writing commands through the serial interface.  
Hard Reset  
Figure 35: Hard Reset  
t1  
t4  
t2  
t3  
EXTCLK  
RESET_BAR  
S
DATA  
Standby/First Serial  
Write Allowed  
ROM Read  
RESET  
A hard reset sequence to the camera can be activated by the following steps:  
1. Wait for all supplies to be stable.  
2. Assert RESET_BAR for at least 30 EXTCLK cycles.  
3. De-assert RESET_BAR (input clock must be running for at least 10 EXTCLK cycles).  
4. Wait 6000 clock cycles before using the two-wire serial interface.  
Soft Reset  
The sensor can be reset under software control by writing “1” to software_reset  
(R0x0103). A software reset asynchronously resets the sensor, truncating any frame that  
is in progress; the sensor then starts its internal initialization sequence. At this point, the  
behavior is exactly the same as for the power-on reset sequence.  
Signal State during Reset  
Table 22 shows the state of the signal interface during hardware standby (RESET_BAR  
asserted) and the default state during software standby (after exit from hardware  
standby and before any registers within the sensor have been changed from their default  
power-up values).  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
88  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Timing Specifications  
Table 22: Signal State During Reset  
Software  
Standby  
Pad Name  
EXTCLK  
Pad Type  
Hardware Standby  
Input  
Input  
Enabled. Must be driven to a valid logic level.  
Enabled. Must be driven to a valid logic level.  
RESET_BAR  
(XSHUTDOWN)  
Output  
Output  
Output  
Output  
Input  
LINE_VALID  
FRAME_VALID  
DOUT[11:0]  
PIXCLK  
High-Z. Can be left disconnected/floating.  
Enabled. Must be pulled-up or driven to a valid logic level.  
Enabled as an input. Must be pulled-up or driven to a valid logic level.  
High Z.  
SCLK  
I/O  
SDATA  
Output  
Output  
Input  
Logic 0  
Logic 0  
FLASH  
High Z.  
SHUTTER  
GPI[3:0]  
TEST  
Powered down. Can be left disconnected/floating.  
Enabled. Must be driven to a logic 0.  
Input  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
89  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Electrical Specifications  
Electrical Specifications  
Table 23: Electrical Characteristics and Operating Conditions  
fEXTCLK = 24 MHz; VDD = 1.8V; VDDIO = 1.8V; VAA = 2.8V; VAAPIX = 2.8V; VDDPLL = 2.8V;  
Temperature (at junction) = 25°C; CLOAD = 15pF  
Symbol  
Definition  
Conditions  
Min  
Typ  
Max  
Units  
1.7  
2.4  
2.4  
2.4  
2.4  
2.5  
30  
10  
20  
120  
0.1  
4.0  
457  
20  
5
1.8  
1.8  
2.8  
2.8  
2.8  
2.8  
40  
1.9  
1.9  
3.1  
3.1  
3.1  
3.1  
50  
V
V
VDD  
Core digital voltage  
I/O digital voltage  
VDDIO  
V
V
VAA  
Analog voltage  
V
VAAPIX  
VDDPLL  
IDD1  
Pixel supply voltage  
V
PLL supply voltage  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Digital operating current  
I/O digital operating current  
I/O digital operating current  
Analog operating current  
Pixel supply current  
Snapshot, fullres 11 fps  
Snapshot VDDIO = 1.8V  
Snapshot VDDIO = 2.8V  
Snapshot  
20  
30  
IDDIO1  
IDDIO1  
IAA1  
35  
50  
165  
1.5  
5.0  
650  
30  
190  
7.0  
6.5  
880  
40  
IAAPIX1  
IDDPLL1  
Snapshot  
PLL supply current  
Snapshot  
Total Power Consumption  
Digital operating current  
I/O digital operating current  
I/O digital operating current  
Analog operating current  
Pixel supply current  
Snapshot  
IDD2  
Preview, binning 30 fps  
Preview VDDIO = 1.8  
Preview VDDIO = 2.8  
Preview  
15  
25  
IDDIO2  
IDDIO2  
IAA2  
10  
120  
0.1  
4.0  
411  
10  
5
20  
30  
165  
3.0  
5.0  
594  
20  
190  
7.0  
6.5  
726  
30  
IAAPIX2  
IDDPLL2  
Preview  
PLL supply current  
Preview  
Total Power Consumption  
Digital operating current  
I/O digital operating current  
I/O digital operating current  
Analog operating current  
Pixel supply current  
Preview  
IDD2  
Low power preview, binning 30 fps  
Low power preview VDDIO = 1.8  
Low power preview VDDIO = 2.8  
Preview  
15  
25  
IDDIO2  
IDDIO2  
IAA2  
10  
60  
0.1  
4.0  
225  
650  
5
20  
30  
80  
95  
1.5  
5.0  
334  
800  
20  
7.0  
6.5  
442  
950  
30  
IAAPIX2  
IDDPLL2  
Low power preview  
Low power preview  
Low power preview  
Hard standby/EXTCLK En  
Standby/EXTCLK En VDDIO = 1.8  
Standby/EXTCLK En VDDIO = 2.8  
Standby/EXTCLK En  
Standby/EXTCLK En  
Standby/EXTCLK En  
Hard standby/EXTCLK Dis  
Standby/EXTCLK Dis VDDIO = 1.8  
Standby/EXTCLK Dis VDDIO = 2.8  
Standby/EXTCLK Dis  
Standby/EXTCLK Dis  
Standby/EXTCLK Dis  
Soft standby  
PLL supply current  
Total Power Consumption  
Digital standby current  
IDDSTDBY1  
IDDIOSTDBY1 I/O digital standby current  
IDDIOSTDBY1 I/O digital standby current  
5
35  
50  
0.0  
0
0.15  
0.3  
16  
0.5  
0.5  
25  
IAASTDBY1  
Analog standby current  
IAAPIXSTDBY1 Pixel supply standby current  
IDDPLLSTDBY1 PLL standby current  
5
5
20  
40  
IDDSTDBY2  
Digital standby current  
1.0  
1.0  
0.0  
0
4
8
IDDIOSTDBY2 I/O digital standby current  
IDDIOSTDBY2 I/O digital standby current  
8
15  
0.15  
0.3  
0.2  
800  
20  
0.5  
0.5  
0.4  
950  
30  
IAASTDBY2  
Analog standby current  
IAAPIXSTDBY2 Pixel supply standby current  
IDDPLLSTDBY2 PLL standby current  
0
650  
5
IDDSTDBY3  
Digital standby current  
IDDIOSTDBY3 I/O digital standby current  
Soft standby VDDIO = 1.8  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
90  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Electrical Specifications  
Table 23: Electrical Characteristics and Operating Conditions (Continued)  
fEXTCLK = 24 MHz; VDD = 1.8V; VDDIO = 1.8V; VAA = 2.8V; VAAPIX = 2.8V; VDDPLL = 2.8V;  
Temperature (at junction) = 25°C; CLOAD = 15pF  
Symbol  
IDDIOSTDBY3 I/O digital standby current  
IAASTDBY3 Analog standby current  
Definition  
Conditions  
Min  
Typ  
Max  
Units  
5
0.0  
0
35  
0.15  
.3  
50  
0.5  
.5  
µA  
µA  
µA  
µA  
Soft standby VDDIO = 2.8  
Soft standby  
IAAPIXSTDBY3 Pixel supply standby current  
IDDPLLSTDBY3 PLL standby current  
Soft standby  
5
35  
60  
Soft standby  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
91  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Electrical Specifications  
Table 24: I/O Parameters  
fEXTCLK = 24 MHz; VDD = 1.8V; VDDIO = 1.8V; VAA = 2.8V; VAAPIX = 2.8V; VDDPLL = 2.8V;  
Lighting conditions = 0 lux  
Symbols Definition  
Conditions  
Min  
Max  
Units  
VDDIO = 1.8V  
VDDIO = 2.8V  
1.4  
VDDIO + 0.3  
V
V
VIH  
VIH  
VIL  
Input HIGH voltage  
Input HIGH voltage  
Input LOW voltage  
Input LOW voltage  
Input leakage current  
Output HIGH voltage  
Output LOW voltage  
Output HIGH current  
Output LOW current  
2.4  
VDDIO + 0.3  
VDDIO = 1.8V  
GND - 0.3  
0.4  
0.8  
20  
V
VDDIO = 2.8V  
GND - 0.3  
V
VIL  
No pull-up resistor; Vin = VDD or DGND  
At specified IOH  
-20  
µA  
V
IIN  
VDDIO - 0.4V  
VOH  
VOL  
IOH  
IOL  
IOZ  
At specified IOL  
0.4  
-12  
9
V
At specified VOH  
mA  
mA  
µA  
At specified VOL  
10  
Tri-state output leakage  
current  
Table 25: Typical Power  
Frame Rate  
Preview  
Snapshot  
CIF  
QVGA  
VGA  
UXGA  
QXGA  
QSXGA  
Units  
500  
525  
500  
525  
500  
525  
500  
530  
505  
535  
505  
540  
mW  
mW  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
92  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
I/O Timing  
I/O Timing  
Figure 36: I/O TIming  
t
t
R
F
90%  
10%  
t
EXTCLK  
EXTCLK  
PIXCLK  
t
t
PD  
PD  
Pxl_0  
Pxl-1  
Pxl_2  
Pxl_n  
DATA[11:0]  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
t
t
t
t
PFH  
PFL  
PLL  
PLH  
FRAME_VALID/  
LINE_VALID  
FRAME_VALID trails  
LINE_VALID by 6 PIXCLKs.  
FRAME_VALID leads LINE_VALID by 6 PIXCLKs.  
Table 26: I/O Timing  
Symbol  
Definition  
Conditions  
Min  
Typ  
Max  
Units  
fEXTCLK  
tEXTCLK  
tR  
Input clock frequency  
Input clock period  
PLL enabled  
PLL enabled  
6
166  
0.1  
0.1  
45  
24  
41  
48  
20  
1
MHz  
ns  
V/ns  
V/ns  
%
Input clock rise time  
Input clock fall time  
Clock duty cycle  
tF  
1
50  
55  
0.3  
tJITTER  
Output pin slew  
fPIXCLK  
tPD  
Input clock jitter  
ns  
CLOAD = 15pF  
Default  
0.7  
96  
V/ns  
MHz  
ns  
Fastest  
PIXCLK frequency  
Default  
3
PIXCLK to data valid  
PIXCLK to FRAME_VALID HIGH  
PIXCLK to LINE_VALID HIGH  
PIXCLK to FRAME_VALID LOW  
PIXCLK to LINE_VALID LOW  
tPFH  
Default  
3
ns  
tPLH  
Default  
3
ns  
tPFL  
Default  
3
ns  
tPLL  
Default  
3
ns  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
93  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Power on Reset (POR)  
Power on Reset (POR)  
Figure 37 shows the power on reset.  
Figure 37: Power On Reset  
>t  
t
< 5  
t
> 5  
2
Vtrig_rise  
Vtrig_fall  
<t  
t
< 2  
DVDD  
4
t
t
1
1
t
1
t
z (digital)  
3
t
3
Table 27: POR Characterization  
Symbol  
Typical  
t1  
15.5µs  
0.4µs  
t2  
t3  
t4  
0.9µs  
2.0µs  
Vtrig_rising  
Vtrig_falling  
0.83Vµs  
1.07V  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
94  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Package Dimensions  
Package Dimensions  
Figure 38: 48-Pin ILCC Package Outline Drawing  
D
1.250 0.125  
Seating  
plane  
A
0.725 0.075  
0.525 0.050  
7.70  
0.125  
(For reference only)  
First  
clear  
pixel  
0.70  
TYP  
48 1  
47X 0.80  
48X 0.40  
6.95 CTR  
1.40  
C
L
4.50  
4.20  
4.284 CTR  
Ø0.15 A B C  
6.95  
CTR  
10.000 0.075  
C
C
L
7.70  
L
0.70  
TYP  
3.85  
Optical  
area  
C
L
Lead finish:  
gold plating,  
0.50 microns  
minimum  
5.712 CTR  
C
4.50  
3.85  
Ø0.15 A B C  
9.00  
B
Maximum rotation of optical area  
relative to package edges: 1º  
Maximum tilt of optical area  
thickness  
10.000 0.075  
Substrate material: Plastic laminate  
Mold compound: Epoxy novolac  
relative to seating plane A : 25 microns  
relative to top of cover glass D : 50 microns  
Lid material: Borosilicate glass 0.40 thickness  
Image sensor die  
Note:  
All dimensions are in millimeters.  
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992  
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
Preliminary: This data sheet contains initial characterization limits that are subject to change upon full characterization of  
production devices.  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
95  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Revision History  
Revision History  
Rev C, Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10/06  
Update Table 1, “Key Performance Parameters,” on page 1  
Update Table 2, Available Part Numbers,” on page 1  
Update "General Description" on page 6  
Update Table 3, “Signal Description,” on page 7  
Update Figure 1: “48-Pin ILCC 10x10 Package Pinout Diagram (Top View),” on page 8  
Update Figure 2: “Typical Configuration (connection),” on page 9  
Update Figure 3: “Block Diagram,” on page 10  
Update "Pixel Array" on page 11  
Update "Default Readout Order" on page 12  
Update "Using Per-color or Global Gain Control" on page 13  
Update "Timing and Control" on page 13  
Update "SMIA Gain Model" on page 13  
Update "Micron Imaging Gain Model" on page 13  
Update Table 4, “Recommended Gain Settings,” on page 14  
Update "Digital Gain" on page 14  
Update "PLL" on page 15  
Update Equation 6 on page 16  
Update "PLL Setup" on page 17  
Update "Readout Options" on page 17  
Update "Pixel Border" on page 18  
Update Figure 7: “8 Pixels in Normal and Column Mirror Readout Modes,” on page 18  
Update "Programming Restrictions when Subsampling" on page 21  
Update "Shading Correction (SC)" on page 26  
Update "Output Data Timing (Parallel Pixel Data Interface)" on page 27  
Update Table 8, “Row Timing Parameters,” on page 28  
Update "General Purpose Inputs" on page 29  
Update "Output Enable Control" on page 29  
Update Table 9, “Output Enable Control,” on page 29  
Update Table 10, “Trigger Control,” on page 30  
Update "Streaming/Standby Control" on page 30  
Update "Low Power Mode" on page 31  
Update "Slave Address/Data Direction Byte" on page 33  
Update "Two-Wire Serial Interface" on page 33  
Update "Registers" on page 37  
Update "Byte Ordering" on page 38  
Update "Bad Frames" on page 39  
Update Table 15, “SMIA Configuration,” on page 42  
Update Table 16, “1: SMIA Parameter Limits,” on page 44  
Update Table 17, “3: Manufacturer Specific,” on page 46  
Update Table 18, “0: SMIA Configuration,” on page 55  
Update Table 19, “1: SMIA Parameter Limits,” on page 60  
Update Table 20, “3: Manufacturer Specific,” on page 64  
Add "Electrical Specifications" on page 90  
Add Table 23, “Electrical Characteristics and Operating Conditions,” on page 90  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
96  
©2006 Micron Technology, Inc. All rights reserved.  
Micron Confidential and Proprietary  
Preliminary  
MT9E001: 1/2.5-Inch 8-Mp Digital Image Sensor  
Revision History  
Add Table 24, “I/O Parameters,” on page 92  
Add Table 25, “Typical Power,” on page 92  
Add Table 26, “I/O Timing,” on page 93  
Add Figure 36: “I/O TIming,” on page 93  
Add Figure 37: “Power On Reset,” on page 94  
Add Table 27, “POR Characterization,” on page 94  
Rev B, Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7/06  
Update "Features" on page 1  
Update "General Description" on page 6  
Update Table 3, “Signal Description,” on page 7  
Update "Typical Connections" on page 9  
Update Figure 3: “Block Diagram,” on page 10  
Update "Sensor Core Description" on page 11  
Update "Analog Gain Options" on page 13  
Update "Gain Code Mapping" on page 14  
Update "Pedestal" on page 14  
Update "Integration Time" on page 14  
Update "PLL" on page 15  
Update Figure 7: “8 Pixels in Normal and Column Mirror Readout Modes,” on page 18  
Update Figure 11: “Pixel Readout (no skipping, x_odd_inc=1, y_odd_inc=1),” on  
page 20  
Update "Programming Restrictions when Subsampling" on page 21  
Update Figure 19: “Pixel Data Timing Example,” on page 27  
Update Table 8, “Row Timing Parameters,” on page 28  
Update "General Purpose Inputs" on page 29  
Update "Output Enable Control" on page 29  
Update "Snapshot and Flash" on page 30  
Update Table 13, Address Space Regions,” on page 37  
Update "Register Notation" on page 37  
Update "Register Aliases" on page 37  
Update Table 15, “SMIA Configuration,” on page 42  
Update Table 16, “1: SMIA Parameter Limits,” on page 44  
Update Table 17, “3: Manufacturer Specific,” on page 46  
Update Table 18, “0: SMIA Configuration,” on page 55  
Update Table 19, “1: SMIA Parameter Limits,” on page 60  
Update Table 20, “3: Manufacturer Specific,” on page 64  
Add Figure 34: “CRA vs. Image Height,” on page 87  
Add Figure 38: “48-Pin ILCC Package Outline Drawing,” on page 95  
Rev A, Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/06  
Initial release  
PDF: 09005aef8210fa55/Source: 09005aef8210f91a  
MT9E001__5.fm - Rev. C 10/06 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
97  

相关型号:

MT9E001I12STC

1/2.5-Inch CMOS Digital Image Sensor
MICRON

MT9F002

1/2.3-Inch 14 Mp CMOS Digital Image Sensor
ONSEMI

MT9F002I12-N4000-DP

CMOS Digital Image Sensor
ONSEMI

MT9F002I12-N4000-DP1

1/2.3-Inch 14 Mp CMOS Digital Image Sensor
ONSEMI

MT9F002I12-N4000D-GEVK

1/2.3-Inch 14 Mp CMOS Digital Image Sensor
ONSEMI

MT9F002I12-N4000H-GEVB

1/2.3-Inch 14 Mp CMOS Digital Image Sensor
ONSEMI

MT9F002I12STCV-DP

1/2.3-Inch 14 Mp CMOS Digital Image Sensor
ONSEMI

MT9F002I12STCV-TB-DP

CMOS 图像传感器,14 MP,1/2.3"
ONSEMI

MT9F002I12STCVD3-GEVK

1/2.3-Inch 14 Mp CMOS Digital Image Sensor
ONSEMI

MT9F002I12STCVH-GEVB

1/2.3-Inch 14 Mp CMOS Digital Image Sensor
ONSEMI

MT9F002_16

1/2.3-Inch 14 Mp CMOS Digital Image Sensor
ONSEMI

MT9F002_17

1/2.3‐inch 14 Mp CMOS Digital Image Sensor
ONSEMI