N25Q256A [MICRON]

Micron Serial NOR Flash Memory; 美光的串行NOR闪存
N25Q256A
型号: N25Q256A
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

Micron Serial NOR Flash Memory
美光的串行NOR闪存

闪存
文件: 总90页 (文件大小:987K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3V, 256Mb: Multiple I/O Serial Flash Memory  
Features  
Micron Serial NOR Flash Memory  
3V, Multiple I/O, 4KB Sector Erase  
N25Q256A  
• Write protection  
– Software write protection applicable to every  
64KB sector via volatile lock bit  
– Hardware write protection: protected area size  
defined by five nonvolatile bits (BP0, BP1, BP2,  
BP3, and TB)  
– Additional smart protections, available upon re-  
quest  
Features  
• SPI-compatible serial bus interface  
• Double transfer rate (DTR) mode  
• 2.7–3.6V single supply voltage  
• 108 MHz (MAX) clock frequency supported for all  
protocols in single transfer rate (STR) mode  
• 54 MHz (MAX) clock frequency supported for all  
protocols in DTR mode  
• Dual/quad I/O instruction provides increased  
throughput up to 54 MB/s  
• Supported protocols  
– Extended SPI, dual I/O, and quad I/O  
– DTR mode supported on all  
• Execute-in-place (XIP) mode for all three protocols  
– Configurable via volatile or nonvolatile registers  
– Enables memory to work in XIP mode directly af-  
ter power-on  
• Electronic signature  
– JEDEC-standard 2-byte signature (BA19h)  
– Unique ID of 17 read-only bytes including: addi-  
tional extended device ID (EDID) to identify de-  
vice factory options; customized factory data  
• Minimum 100,000 ERASE cycles per sector  
• More than 20 years data retention  
• Packages JEDEC standard, all RoHS compliant  
– V-PDFN-8/8mm x 6mm (also known as SON,  
DFPN, MLP, MLF)  
• PROGRAM/ERASE SUSPEND operations  
• Continuous read of entire memory via a single com-  
mand  
– Fast read  
– Quad or dual output fast read  
– Quad or dual I/O fast read  
– SOP2-16/300mils (also known as SO16W, SO16-  
Wide, SOIC-16)  
T-PBGA-24b05/6mm x 8mm (also known as  
TBGA24)  
• Flexible to fit application  
– Configurable number of dummy cycles  
– Output buffer configurable  
• Software reset  
• 3-byte and 4-byte addressability mode supported  
• 64-byte, user-lockable, one-time programmable  
(OTP) dedicated area  
• An additional reset pin is available on the following  
devices  
– N25Q256A83ESF40x, N25Q256A83E1240x  
• Erase capability  
– Subsector erase 4KB uniform granularity blocks  
– Sector erase 64KB uniform granularity blocks  
– Full-chip erase  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
1
© 2011 Micron Technology, Inc. All rights reserved.  
Products and specifications discussed herein are subject to change by Micron without notice.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Features  
Contents  
Device Description ........................................................................................................................................... 6  
Features ....................................................................................................................................................... 6  
3-Byte Address and 4-Byte Address Modes ..................................................................................................... 6  
Operating Protocols ...................................................................................................................................... 6  
XIP Mode ..................................................................................................................................................... 6  
Device Configurability .................................................................................................................................. 7  
Signal Assignments ........................................................................................................................................... 8  
Signal Descriptions ......................................................................................................................................... 10  
Memory Organization .................................................................................................................................... 12  
Memory Configuration and Block Diagram .................................................................................................. 12  
Memory Map – 256Mb Density ....................................................................................................................... 13  
Device Protection ........................................................................................................................................... 14  
Serial Peripheral Interface Modes .................................................................................................................... 17  
SPI Protocols .................................................................................................................................................. 19  
Nonvolatile and Volatile Registers ................................................................................................................... 20  
Status Register ............................................................................................................................................ 21  
Nonvolatile and Volatile Configuration Registers .......................................................................................... 22  
Extended Address Register .......................................................................................................................... 25  
Enhanced Volatile Configuration Register .................................................................................................... 26  
Flag Status Register ..................................................................................................................................... 26  
Command Definitions .................................................................................................................................... 28  
READ REGISTER and WRITE REGISTER Operations ........................................................................................ 32  
READ STATUS REGISTER or FLAG STATUS REGISTER Command ................................................................ 32  
READ NONVOLATILE CONFIGURATION REGISTER Command ................................................................... 32  
READ VOLATILE or ENHANCED VOLATILE CONFIGURATION REGISTER Command .................................. 33  
READ EXTENDED ADDRESS REGISTER Command ..................................................................................... 33  
WRITE STATUS REGISTER Command ......................................................................................................... 33  
WRITE NONVOLATILE CONFIGURATION REGISTER Command ................................................................. 34  
WRITE VOLATILE or ENHANCED VOLATILE CONFIGURATION REGISTER Command ................................. 34  
WRITE EXTENDED ADDRESS REGISTER Command ................................................................................... 35  
READ LOCK REGISTER Command .............................................................................................................. 35  
WRITE LOCK REGISTER Command ............................................................................................................ 36  
CLEAR FLAG STATUS REGISTER Command ................................................................................................ 37  
READ IDENTIFICATION Operations ............................................................................................................... 38  
READ ID and MULTIPLE I/O READ ID Commands ...................................................................................... 38  
READ SERIAL FLASH DISCOVERY PARAMETER Command ......................................................................... 39  
READ MEMORY Operations ............................................................................................................................ 43  
3-Byte Address ........................................................................................................................................... 43  
4-Byte Address ........................................................................................................................................... 45  
READ MEMORY Operations Timing – Single Transfer Rate ........................................................................... 46  
READ MEMORY Operations Timing – Double Transfer Rate ......................................................................... 49  
PROGRAM Operations .................................................................................................................................... 52  
WRITE Operations .......................................................................................................................................... 57  
WRITE ENABLE Command ......................................................................................................................... 57  
WRITE DISABLE Command ........................................................................................................................ 57  
ERASE Operations .......................................................................................................................................... 59  
SUBSECTOR ERASE Command ................................................................................................................... 59  
SECTOR ERASE Command ......................................................................................................................... 59  
BULK ERASE Command ............................................................................................................................. 60  
PROGRAM/ERASE SUSPEND Command ..................................................................................................... 61  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
2
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Features  
PROGRAM/ERASE RESUME Command ...................................................................................................... 63  
RESET Operations .......................................................................................................................................... 64  
RESET ENABLE and RESET MEMORY Command ........................................................................................ 64  
ONE TIME PROGRAMMABLE Operations ....................................................................................................... 65  
READ OTP ARRAY Command ...................................................................................................................... 65  
PROGRAM OTP ARRAY Command .............................................................................................................. 65  
ADDRESS MODE Operations – Enter and Exit 4-Byte Address Mode ................................................................. 68  
ENTER or EXIT 4-BYTE ADDRESS MODE Command ................................................................................... 68  
ENTER or EXIT QUAD Command ................................................................................................................ 68  
XIP Mode ....................................................................................................................................................... 69  
Activate or Terminate XIP Using Volatile Configuration Register ................................................................... 69  
Activate or Terminate XIP Using Nonvolatile Configuration Register ............................................................. 69  
Confirmation Bit Settings Required to Activate or Terminate XIP .................................................................. 70  
Terminating XIP After a Controller and Memory Reset ................................................................................. 71  
Power Up and Power Down ............................................................................................................................. 72  
Power Up and Power Down Requirements ................................................................................................... 72  
Power Loss Recovery Sequence ................................................................................................................... 73  
AC Reset Specifications ................................................................................................................................... 74  
Absolute Ratings and Operating Conditions ..................................................................................................... 79  
DC Characteristics and Operating Conditions .................................................................................................. 81  
AC Characteristics and Operating Conditions .................................................................................................. 82  
Package Dimensions ....................................................................................................................................... 84  
Part Number Ordering Information ................................................................................................................. 87  
Revision History ............................................................................................................................................. 89  
Rev. P – 01/2013 .......................................................................................................................................... 89  
Rev. O – 12/2012 ......................................................................................................................................... 89  
Rev. N – 11/2012 ......................................................................................................................................... 89  
Rev. M – 09/12 ............................................................................................................................................ 89  
Rev. L – 08/12 ............................................................................................................................................. 89  
Rev. K – 07/12 ............................................................................................................................................. 89  
Rev. J – 06/12 .............................................................................................................................................. 89  
Rev. I – 01/12 .............................................................................................................................................. 89  
Rev. H, Preliminary – 11/11 ......................................................................................................................... 89  
Rev. G, Preliminary – 07/11 ......................................................................................................................... 90  
Rev. F, Preliminary – 07/11 ........................................................................................................................... 90  
Rev. E, Preliminary – 05/11 .......................................................................................................................... 90  
Rev. D, Preliminary – 05/11 ......................................................................................................................... 90  
Rev. C – 11/10 ............................................................................................................................................. 90  
Rev. B – 08/10 ............................................................................................................................................. 90  
Rev. A – 06/10 ............................................................................................................................................. 90  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
3
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Features  
List of Figures  
Figure 1: Logic Diagram ................................................................................................................................... 7  
Figure 2: 8-Lead, VDFPN8 – MLP8 (Top View) .................................................................................................. 8  
Figure 3: 16-Lead, Plastic Small Outline – SO16 (Top View) ............................................................................... 8  
Figure 4: 24-Ball TBGA (Balls Down) ................................................................................................................ 9  
Figure 5: Block Diagram ................................................................................................................................ 12  
Figure 6: Bus Master and Memory Devices on the SPI Bus ............................................................................... 18  
Figure 7: SPI Modes ....................................................................................................................................... 18  
Figure 8: Internal Configuration Register ........................................................................................................ 20  
Figure 9: Upper and Lower 128Mb Memory Array Segments ........................................................................... 25  
Figure 10: READ REGISTER Command .......................................................................................................... 32  
Figure 11: WRITE REGISTER Command ......................................................................................................... 34  
Figure 12: READ LOCK REGISTER Command ................................................................................................. 36  
Figure 13: WRITE LOCK REGISTER Command ............................................................................................... 37  
Figure 14: READ ID and MULTIPLE I/O Read ID Commands .......................................................................... 39  
Figure 15: READ Command ........................................................................................................................... 46  
Figure 16: FAST READ Command ................................................................................................................... 46  
Figure 17: DUAL OUTPUT FAST READ Command – STR ................................................................................. 47  
Figure 18: DUAL INPUT/OUTPUT FAST READ Command – STR ..................................................................... 47  
Figure 19: QUAD OUTPUT FAST READ Command – STR ................................................................................ 48  
Figure 20: QUAD INPUT/OUTPUT FAST READ Command – STR .................................................................... 48  
Figure 21: FAST READ Command – DTR ......................................................................................................... 49  
Figure 22: DUAL OUTPUT FAST READ Command – DTR ................................................................................ 50  
Figure 23: DUAL INPUT/OUTPUT FAST READ Command – DTR .................................................................... 50  
Figure 24: QUAD OUTPUT FAST READ Command – DTR ............................................................................... 51  
Figure 25: QUAD INPUT/OUTPUT FAST READ Command – DTR ................................................................... 51  
Figure 26: PAGE PROGRAM Command .......................................................................................................... 53  
Figure 27: DUAL INPUT FAST PROGRAM Command ...................................................................................... 54  
Figure 28: EXTENDED DUAL INPUT FAST PROGRAM Command ................................................................... 54  
Figure 29: QUAD INPUT FAST PROGRAM Command ..................................................................................... 55  
Figure 30: EXTENDED QUAD INPUT FAST PROGRAM Command ................................................................... 56  
Figure 31: WRITE ENABLE and WRITE DISABLE Command Sequence ............................................................ 58  
Figure 32: SUBSECTOR and SECTOR ERASE Command .................................................................................. 60  
Figure 33: BULK ERASE Command ................................................................................................................ 61  
Figure 34: RESET ENABLE and RESET MEMORY Command ........................................................................... 64  
Figure 35: READ OTP Command .................................................................................................................... 65  
Figure 36: PROGRAM OTP Command ............................................................................................................ 67  
Figure 37: XIP Mode Directly After Power-On .................................................................................................. 70  
Figure 38: Power-Up Timing .......................................................................................................................... 72  
Figure 39: Reset AC Timing During PROGRAM or ERASE Cycle ........................................................................ 75  
Figure 40: Reset Enable ................................................................................................................................. 75  
Figure 41: Serial Input Timing ........................................................................................................................ 75  
Figure 42: Write Protect Setup and Hold During WRITE STATUS REGISTER Operation (SRWD = 1) ................... 76  
Figure 43: Hold Timing .................................................................................................................................. 77  
Figure 44: Output Timing .............................................................................................................................. 78  
Figure 45: VPPH Timing .................................................................................................................................. 78  
Figure 46: AC Timing Input/Output Reference Levels ...................................................................................... 80  
Figure 47: V-PDFN-8/8mm x 6mm ................................................................................................................. 84  
Figure 48: SOP2-16/300 mils .......................................................................................................................... 85  
Figure 49: T-PBGA-24b05/6mm x 8mm .......................................................................................................... 86  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
4
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Features  
List of Tables  
Table 1: Signal Descriptions ........................................................................................................................... 10  
Table 2: Sectors[511:0] ................................................................................................................................... 13  
Table 3: Data Protection using Device Protocols ............................................................................................. 14  
Table 4: Memory Sector Protection Truth Table .............................................................................................. 14  
Table 5: Protected Area Sizes – Upper Area ..................................................................................................... 14  
Table 6: Protected Area Sizes – Lower Area ...................................................................................................... 15  
Table 7: SPI Modes ........................................................................................................................................ 17  
Table 8: Extended, Dual, and Quad SPI Protocols ............................................................................................ 19  
Table 9: Status Register Bit Definitions ........................................................................................................... 21  
Table 10: Nonvolatile Configuration Register Bit Definitions ........................................................................... 22  
Table 11: Volatile Configuration Register Bit Definitions .................................................................................. 23  
Table 12: Sequence of Bytes During Wrap ....................................................................................................... 24  
Table 13: Supported Clock Frequencies – STR ................................................................................................. 24  
Table 14: Supported Clock Frequencies – DTR ................................................................................................ 24  
Table 15: Extended Address Register Bit Definitions ........................................................................................ 25  
Table 16: Enhanced Volatile Configuration Register Bit Definitions .................................................................. 26  
Table 17: Flag Status Register Bit Definitions .................................................................................................. 26  
Table 18: Command Set ................................................................................................................................. 28  
Table 19: Lock Register .................................................................................................................................. 35  
Table 20: Data/Address Lines for READ ID and MULTIPLE I/O READ ID Commands ....................................... 38  
Table 21: Read ID Data Out ............................................................................................................................ 38  
Table 22: Extended Device ID, First Byte ......................................................................................................... 38  
Table 23: Serial Flash Discovery Parameter Data Structure .............................................................................. 40  
Table 24: Parameter ID .................................................................................................................................. 41  
Table 25: Command/Address/Data Lines for READ MEMORY Commands ....................................................... 43  
Table 26: Command/Address/Data Lines for READ MEMORY Commands – 4-Byte Address ............................. 45  
Table 27: Data/Address Lines for PROGRAM Commands ................................................................................ 52  
Table 28: Suspend Parameters ....................................................................................................................... 62  
Table 29: Operations Allowed/Disallowed During Device States ...................................................................... 63  
Table 30: OTP Control Byte (Byte 64) .............................................................................................................. 66  
Table 31: XIP Confirmation Bit ....................................................................................................................... 70  
Table 32: Effects of Running XIP in Different Protocols .................................................................................... 70  
Table 33: Power-Up Timing and VWI Threshold ............................................................................................... 73  
Table 34: AC RESET Conditions ...................................................................................................................... 74  
Table 35: Absolute Ratings ............................................................................................................................. 79  
Table 36: Operating Conditions ...................................................................................................................... 79  
Table 37: Input/Output Capacitance .............................................................................................................. 79  
Table 38: AC Timing Input/Output Conditions ............................................................................................... 80  
Table 39: DC Current Characteristics and Operating Conditions ...................................................................... 81  
Table 40: DC Voltage Characteristics and Operating Conditions ...................................................................... 81  
Table 41: AC Characteristics and Operating Conditions ................................................................................... 82  
Table 42: Part Number Information ................................................................................................................ 87  
Table 43: Package Details ............................................................................................................................... 88  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
5
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Device Description  
Device Description  
The N25Q is the first high-performance multiple input/output serial Flash memory de-  
vice manufactured on 65nm NOR technology. It features execute-in-place (XIP) func-  
tionality, advanced write protection mechanisms, and a high-speed SPI-compatible bus  
interface. The innovative, high-performance, dual and quad input/output instructions  
enable double or quadruple the transfer bandwidth for READ and PROGRAM opera-  
tions.  
Features  
The memory is organized as 512 (64KB) main sectors that are further divided into 16  
subsectors each (8192 subsectors in total). The memory can be erased one 4KB subsec-  
tor at a time, 64KB sectors at a time, or as a whole.  
The memory can be write protected by software through volatile and nonvolatile pro-  
tection features, depending on the application needs. The protection granularity is of  
64KB (sector granularity) for volatile protections  
The device has 64 one-time programmable (OTP) bytes that can be read and program-  
med with the READ OTP and PROGRAM OTP commands. These 64 bytes can also be  
permanently locked with a PROGRAM OTP command.  
The device also has the ability to pause and resume PROGRAM and ERASE cycles by us-  
ing dedicated PROGRAM/ERASE SUSPEND and RESUME instructions.  
3-Byte Address and 4-Byte Address Modes  
The device features 3-byte or 4-byte address modes to access memory beyond 128Mb.  
When 4-byte address mode is enabled, all commands requiring an address must be en-  
tered and exited with a 4-byte address mode command: ENTER 4-BYTE ADDRESS  
MODE command and EXIT 4-BYTE ADDRESS MODE command. The 4-byte address  
mode can also be enabled through the nonvolatile configuration register. See Registers  
for more information.  
Operating Protocols  
The memory can be operated with three different protocols:  
• Extended SPI (standard SPI protocol upgraded with dual and quad operations)  
• Dual I/O SPI  
• Quad I/O SPI  
The standard SPI protocol is extended and enhanced by dual and quad operations. In  
addition, the dual SPI and quad SPI protocols improve the data access time and  
throughput of a single I/O device by transmitting commands, addresses, and data  
across two or four data lines.  
Each protocol contains unique commands to perform READ operations in DTR mode.  
This enables high data throughput while running at lower clock frequencies.  
XIP Mode  
XIP mode requires only an address (no instruction) to output data, improving random  
access time and eliminating the need to shadow code onto RAM for fast execution.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
6
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Device Description  
All protocols support XIP operation. For flexibility, multiple XIP entry and exit methods  
are available. For applications that must enter XIP mode immediately after powering  
up, XIP mode can be set as the default mode through the nonvolatile configuration reg-  
ister bits.  
Device Configurability  
The N25Q family offers additional features that are configured through the nonvolatile  
configuration register for default and/or nonvolatile settings. Volatile settings can be  
configured through the volatile and volatile-enhanced configuration registers. These  
configurable features include the following:  
• Number of dummy cycles for the fast READ commands  
• Output buffer impedance  
• SPI protocol types (extended SPI, DIO-SPI, or QIO-SPI)  
• Required XIP mode  
• Enabling/disabling HOLD (RESET function)  
• Enabling/disabling wrap mode  
Figure 1: Logic Diagram  
VCC  
DQ0  
DQ1  
C
S#  
RESET2  
V
PP/W#/DQ2  
HOLD#/DQ3  
VSS  
1. Reset functionality is available in devices with a dedicated part number. See Part Num-  
ber Ordering Information for more details.  
Notes:  
2. RESET is valid only for the N25Q256A83ESF40x and N25Q256A83E1240x devices. On  
these devices, the additional RESET pin must be connected to an external pull-up.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
7
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Signal Assignments  
Signal Assignments  
Figure 2: 8-Lead, VDFPN8 – MLP8 (Top View)  
S#  
DQ1  
1
2
3
4
8
7
6
5
VCC  
HOLD#/DQ3  
W#/VPP/DQ2  
VSS  
C
DQ0  
1. On the underside of the MLP8 package, there is an exposed central pad that is pulled  
Notes:  
internally to VSS and must not be connected to any other voltage or signal line on the  
PCB.  
2. Reset functionality is available in devices with a dedicated part number. See Part Num-  
ber Ordering Information for complete package names and details.  
Figure 3: 16-Lead, Plastic Small Outline – SO16 (Top View)  
HOLD#/DQ3  
VCC  
RESET/DNU2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
C
DQ0  
DNU  
DNU  
DNU  
DNU  
VSS  
DNU  
DNU  
DNU  
S#  
DQ1  
W#/VPP/DQ2  
1. Reset functionality is available in devices with a dedicated part number. See Part Num-  
ber Ordering Information for complete package names and details.  
Notes:  
2. Pin 3 is DNU, except for the N25Q256A83ESF40x device, where it is used as RESET.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
8
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Signal Assignments  
Figure 4: 24-Ball TBGA (Balls Down)  
1
2
3
4
5
A
B
NC  
C
NC RESET/NC NC  
NC  
NC  
NC  
NC  
VSS  
VCC  
NC  
C
S#  
NC W#/VPP/DQ2 NC  
DQ0 HOLD#/DQ3 NC  
D
E
DQ1  
NC  
NC  
NC  
NC  
1. See Part Number Ordering Information for complete package names and details.  
2. Ball A4 is NC, except for the N25Q256A83E1240x device, where it is used as RESET.  
Notes:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
9
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Signal Descriptions  
Signal Descriptions  
The signal description table below is a comprehensive list of signals for the N25 family  
devices. All signals listed may not be supported on this device. See Signal Assignments  
for information specific to this device.  
Table 1: Signal Descriptions  
Symbol  
Type  
Description  
C
Input  
Clock: Provides the timing of the serial interface. Commands, addresses, or data present at se-  
rial data inputs are latched on the rising edge of the clock. Data is shifted out on the falling  
edge of the clock.  
S#  
Input  
Chip select: When S# is HIGH, the device is deselected and DQ1 is at High-Z. When in exten-  
ded SPI mode, with the device deselected, DQ1 is tri-stated. Unless an internal PROGRAM,  
ERASE, or WRITE STATUS REGISTER cycle is in progress, the device enters standby power mode  
(not deep power-down mode). Driving S# LOW enables the device, placing it in the active pow-  
er mode. After power-up, a falling edge on S# is required prior to the start of any command.  
DQ0  
Input  
and I/O  
Serial data: Transfers data serially into the device. It receives command codes, addresses, and  
the data to be programmed. Values are latched on the rising edge of the clock. DQ0 is used for  
input/output during the following operations: DUAL OUTPUT FAST READ, QUAD OUTPUT FAST  
READ, DUAL INPUT/OUTPUT FAST READ, and QUAD INPUT/OUTPUT FAST READ. When used for  
output, data is shifted out on the falling edge of the clock.  
In DIO-SPI, DQ0 always acts as an input/output.  
In QIO-SPI, DQ0 always acts as an input/output, with the exception of the PROGRAM or ERASE  
cycle performed with VPP. The device temporarily enters the extended SPI protocol and then re-  
turns to QIO-SPI as soon as VPP goes LOW.  
DQ1  
Output  
and I/O  
Serial data:Transfers data serially out of the device. Data is shifted out on the falling edge of  
the clock. DQ1 is used for input/output during the following operations: DUAL INPUT FAST  
PROGRAM, QUAD INPUT FAST PROGRAM, DUAL INPUT EXTENDED FAST PROGRAM, and QUAD  
INPUT EXTENDED FAST PROGRAM. When used for input, data is latched on the rising edge of  
the clock.  
In DIO-SPI, DQ1 always acts as an input/output.  
In QIO-SPI, DQ1 always acts as an input/output, with the exception of the PROGRAM or ERASE  
cycle performed with the enhanced program supply voltage (VPP). In this case the device tem-  
porarily enters the extended SPI protocol and then returns to QIO-SPI as soon as VPP goes LOW.  
DQ2  
Input  
and I/O  
DQ2: When in QIO-SPI mode or in extended SPI mode using QUAD FAST READ commands, the  
signal functions as DQ2, providing input/output.  
All data input drivers are always enabled except when used as an output. Micron recommends  
customers drive the data signals normally (to avoid unnecessary switching current) and float  
the signals before the memory device drives data on them.  
DQ3  
Input  
and I/O  
DQ3: When in quad SPI mode or in extended SPI mode using quad FAST READ commands, the  
signal functions as DQ3, providing input/output. HOLD# is disabled and RESET# is disabled if  
the device is selected.  
RESET#  
Control  
Input  
RESET: This is a hardware RESET# signal. When RESET# is driven HIGH, the memory is in the  
normal operating mode. When RESET# is driven LOW, the memory enters reset mode and out-  
put is High-Z. If RESET# is driven LOW while an internal WRITE, PROGRAM, or ERASE operation  
is in progress, data may be lost.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
10  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Signal Descriptions  
Table 1: Signal Descriptions (Continued)  
Symbol  
Type  
Description  
HOLD#  
Control  
Input  
HOLD: Pauses any serial communications with the device without deselecting the device. DQ1  
(output) is High-Z. DQ0 (input) and the clock are "Don't Care." To enable HOLD, the device  
must be selected with S# driven LOW.  
HOLD# is used for input/output during the following operations: QUAD OUTPUT FAST READ,  
QUAD INPUT/OUTPUT FAST READ, QUAD INPUT FAST PROGRAM, and QUAD INPUT EXTENDED  
FAST PROGRAM.  
In QIO-SPI, HOLD# acts as an I/O (DQ3 functionality), and the HOLD# functionality is disabled  
when the device is selected. When the device is deselected (S# is HIGH) in parts with RESET#  
functionality, it is possible to reset the device unless this functionality is not disabled by means  
of dedicated registers bits.  
The HOLD# functionality can be disabled using bit 4 of the NVCR or bit 4 of the VECR.  
On devices that include DTR mode capability, the HOLD# functionality is disabled as soon as a  
DTR operation is recognized.  
W#  
Control  
Input  
Write protect: W# can be used as a protection control input or in QIO-SPI operations. When in  
extended SPI with single or dual commands, the WRITE PROTECT function is selectable by the  
voltage range applied to the signal. If voltage range is low (0V to VCC), the signal acts as a  
write protection control input. The memory size protected against PROGRAM or ERASE opera-  
tions is locked as specified in the status register block protect bits 3:0.  
W# is used as an input/output (DQ2 functionality) during QUAD INPUT FAST READ and QUAD  
INPUT/OUTPUT FAST READ operations and in QIO-SPI.  
VPP  
Power  
Supply voltage: If VPP is in the voltage range of VPPH, the signal acts as an additional power  
supply, as defined in the AC Measurement Conditions table.  
During QIFP, QIEFP, and QIO-SPI PROGRAM/ERASE operations, it is possible to use the addition-  
al VPP power supply to speed up internal operations. However, to enable this functionality, it is  
necessary to set bit 3 of the VECR to 0.  
In this case, VPP is used as an I/O until the end of the operation. After the last input data is shif-  
ted in, the application should apply VPP voltage to VPP within 200ms to speed up the internal  
operations. If the VPP voltage is not applied within 200ms, the PROGRAM/ERASE operations  
start at standard speed.  
The default value of VECR bit 3 is 1, and the VPP functionality for quad I/O modify operations is  
disabled.  
VCC  
VSS  
Power  
Device core power supply: Source voltage.  
Ground: Reference for the VCC supply voltage.  
Do not use.  
Ground  
DNU  
NC  
No connect.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
11  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Memory Organization  
Memory Organization  
Memory Configuration and Block Diagram  
Each page of memory can be individually programmed. Bits are programmed from one  
through zero. The device is subsector, sector, or bulk-erasable, but not page-erasable.  
Bits are erased from zero through one. The memory is configured as 33,554,432 bytes (8  
bits each); 512 sectors (64KB each); 8192 subsectors (4KB each); and 131,072 pages (256  
bytes each); and 64 OTP bytes are located outside the main memory array.  
Figure 5: Block Diagram  
HOLD#  
High voltage  
Control logic  
generator  
W#/V  
PP  
64 OTP bytes  
S#  
C
DQ0  
DQ1  
DQ2  
DQ3  
I/O shift register  
Address register  
and counter  
256 byte  
data buffer  
Status  
register  
01FFFFFFh  
0000000h  
00000FFh  
256 bytes (page size)  
X decoder  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
12  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Memory Map – 256Mb Density  
Memory Map – 256Mb Density  
Table 2: Sectors[511:0]  
Address Range  
Sector  
Subsector  
Start  
End  
511  
8191  
01FF F000h  
01FF FFFFh  
8176  
01FF 0000h  
01FF 0FFFh  
255  
4095  
00FF F000h  
00FF FFFFh  
4080  
00FF 0000h  
00FF 0FFFh  
127  
2047  
007F F000h  
007F FFFFh  
2032  
007F 0000h  
007F 0FFFh  
63  
1023  
003F F000h  
003F FFFFh  
1008  
003F 0000h  
003F 0FFFh  
15  
0
0000 F000h  
0000 FFFFh  
0
0000 0000h  
0000 0FFFh  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
13  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Device Protection  
Device Protection  
Table 3: Data Protection using Device Protocols  
Note 1 applies to the entire table  
Protection by:  
Description  
Power-on reset and internal timer Protects the device against inadvertent data changes while the power supply is out-  
side the operating specification.  
Command execution check  
Ensures that the number of clock pulses is a multiple of one byte before executing a  
PROGRAM or ERASE command, or any command that writes to the device registers.  
WRITE ENABLE operation  
Ensures that commands modifying device data must be preceded by a WRITE ENABLE  
command, which sets the write enable latch bit in the status register.  
1. Extended, dual, and quad SPI protocol functionality ensures that device data is protec-  
ted from excessive noise.  
Note:  
Table 4: Memory Sector Protection Truth Table  
Note 1 applies to the entire table  
Sector Lock Register  
Sector Lock  
Down Bit  
Sector Write Lock  
Bit  
Memory Sector Protection Status  
0
0
1
1
0
1
0
1
Sector unprotected from PROGRAM and ERASE operations. Protection status re-  
versible.  
Sector protected from PROGRAM and ERASE operations. Protection status rever-  
sible.  
Sector unprotected from PROGRAM and ERASE operations. Protection status not  
reversible except by power cycle or reset.  
Sector protected from PROGRAM and ERASE operations. Protection status not  
reversible except by power cycle or reset.  
1. Sector lock register bits are written to when the WRITE LOCK REGISTER command is exe-  
cuted. The command will not execute unless the sector lock down bit is cleared (see the  
WRITE LOCK REGISTER command). The sector lock register is programmed to have all  
protection registers activated at power-up.  
Note:  
Table 5: Protected Area Sizes – Upper Area  
Note 1 applies to the entire table  
Status Register Content  
Memory Content  
Top/  
Bottom  
Bit  
BP3  
0
BP2  
0
BP1  
0
BP0  
0
Protected Area  
Unprotected Area  
All sectors  
0
None  
0
0
0
0
1
Sector 512  
Sectors (0 to 511)  
Sectors (0 to 510)  
Sectors (0 to 508)  
Sectors (0 to 504)  
0
0
0
1
0
Sectors (511 to 512)  
Sectors (509 to 512)  
Sectors (505 to 512)  
0
0
0
1
1
0
0
1
0
0
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
14  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Device Protection  
Table 5: Protected Area Sizes – Upper Area (Continued)  
Note 1 applies to the entire table  
Status Register Content  
Memory Content  
Top/  
Bottom  
Bit  
BP3  
0
BP2  
1
BP1  
0
BP0  
1
Protected Area  
Unprotected Area  
Sectors (0 to 496)  
Sectors (0 to 480)  
Sectors (0 to 448)  
Sectors (0 to 384)  
Sectors (0 to 256)  
None  
0
0
0
0
0
0
0
0
0
0
0
Sectors (497 to 512)  
Sectors (481 to 512)  
Sectors (449 to 512)  
Sectors (385 to 512)  
Sectors (257 to 512)  
All sectors  
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
All sectors  
None  
1
1
0
0
All sectors  
None  
1
1
0
1
All sectors  
None  
1
1
1
0
All sectors  
None  
1
1
1
1
All sectors  
None  
1. See the Status Register for details on the top/bottom bit and the BP 3:0 bits.  
Note:  
Table 6: Protected Area Sizes – Lower Area  
Note 1 applies to the entire table  
Status Register Content  
Memory Content  
Top/  
Bottom  
Bit  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BP3  
0
BP2  
0
BP1  
0
BP0  
0
Protected Area  
Unprotected Area  
All sectors  
None  
0
0
0
1
Sector 0  
Sectors (1 to 511)  
Sectors (2 to 511)  
Sectors (4 to 511)  
Sectors (8 to 511)  
Sectors (16 to 511)  
Sectors (32 to 511)  
Sectors (64 to 511)  
Sectors (128 to 511)  
Sectors (256 to 511)  
None  
0
0
1
0
Sectors (0 to 1)  
Sectors (0 to 3)  
Sectors (0 to 7)  
Sectors (0 to 15)  
Sectors (0 to 31)  
Sectors (0 to 63)  
Sectors (0 to 127)  
Sectors (0 to 255)  
All sectors  
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
All sectors  
None  
1
1
0
0
All sectors  
None  
1
1
0
1
All sectors  
None  
1
1
1
0
All sectors  
None  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
15  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Device Protection  
Table 6: Protected Area Sizes – Lower Area (Continued)  
Note 1 applies to the entire table  
Status Register Content  
Memory Content  
Top/  
Bottom  
Bit  
BP3  
BP2  
BP1  
BP0  
Protected Area  
All sectors  
Unprotected Area  
1
1
1
1
1
None  
1. See the Status Register for details on the top/bottom bit and the BP 3:0 bits.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
16  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Serial Peripheral Interface Modes  
Serial Peripheral Interface Modes  
The device can be driven by a microcontroller while its serial peripheral interface is in  
either of the two modes shown here. The difference between the two modes is the clock  
polarity when the bus master is in standby mode and not transferring data. Input data is  
latched in on the rising edge of the clock, and output data is available from the falling  
edge of the clock.  
Table 7: SPI Modes  
Note 1 applies to the entire table  
SPI Modes  
Clock Polarity  
CPOL = 0, CPHA = 0  
CPOL = 1, CPHA = 1  
C remains at 0 for (CPOL = 0, CPHA = 0)  
C remains at 1 for (CPOL = 1, CPHA = 1)  
1. The listed SPI modes are supported in extended, dual, and quad SPI protocols.  
Note:  
Shown below is an example of three memory devices in extended SPI protocol in a sim-  
ple connection to an MCU on an SPI bus. Because only one device is selected at a time,  
that one device drives DQ1, while the other devices are High-Z.  
Resistors ensure the device is not selected if the bus master leaves S# High-Z. The bus  
master might enter a state in which all input/output is High-Z simultaneously, such as  
when the bus master is reset. Therefore, the serial clock must be connected to an exter-  
nal pull-down resistor so that S# is pulled HIGH while the serial clock is pulled LOW.  
This ensures that S# and the serial clock are not HIGH simultaneously and that tSHCH  
is met. The typical resistor value of 100kΩ, assuming that the time constant R × Cp (Cp =  
parasitic capacitance of the bus line), is shorter than the time the bus master leaves the  
SPI bus in High-Z.  
Example: Cp = 50pF, that is R × Cp = 5μs. The application must ensure that the bus mas-  
ter never leaves the SPI bus High-Z for a time period shorter than 5μs. W# and HOLD#  
should be driven either HIGH or LOW, as appropriate.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
17  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Serial Peripheral Interface Modes  
Figure 6: Bus Master and Memory Devices on the SPI Bus  
VSS  
VCC  
R
SDO  
SDI  
SPI interface:  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SCK  
C
VCC  
VCC  
VCC  
C
C
VSS  
VSS  
VSS  
SPI bus master  
DQ1 DQ0  
DQ1 DQ0  
DQ1 DQ0  
SPI memory  
device  
SPI memory  
device  
SPI memory  
device  
R
R
R
CS3  
CS2 CS1  
S#  
S#  
S#  
W# HOLD#  
W# HOLD#  
W# HOLD#  
Figure 7: SPI Modes  
CPOL CPHA  
0
1
0
1
C
C
MSB  
DQ0  
MSB  
DQ1  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
18  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
SPI Protocols  
SPI Protocols  
Table 8: Extended, Dual, and Quad SPI Protocols  
Com-  
Protocol  
Name  
mand  
Input  
Address  
Input  
Data  
Input/Output Description  
Multiple DQn Device default protocol from the factory. Additional com-  
Extended  
Dual  
DQ0  
Multiple DQn  
lines, depending lines, depending mands extend the standard SPI protocol and enable address  
on the command on the command or data transmission on multiple DQn lines.  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
Volatile selectable: When the enhanced volatile configu-  
ration register bit 6 is set to 0 and bit 7 is set to 1, the de-  
vice enters the dual SPI protocol immediately after the  
WRITE ENHANCED VOLATILE CONFIGURATION REGISTER  
command. The device returns to the default protocol after  
the next power-on. In addition, the device can return to de-  
fault protocol using the rescue sequence or through new  
WRITE ENHANCED VOLATILE CONFIGURATION REGISTER  
command, without power-off or power-on.  
Nonvolatile selectable: When nonvolatile configuration  
register bit 2 is set, the device enters the dual SPI protocol  
after the next power-on. Once this register bit is set, the de-  
vice defaults to the dual SPI protocol after all subsequent  
power-on sequences until the nonvolatile configuration  
register bit is reset to 1.  
Quad1  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
Volatile selectable: When the enhanced volatile configu-  
ration register bit 7 is set to 0, the device enters the quad  
SPI protocol immediately after the WRITE ENHANCED VOL-  
ATILE CONFIGURATION REGISTER command. The device re-  
turns to the default protocol after the next power-on. In ad-  
dition, the device can return to default protocol using the  
rescue sequence or through new WRITE ENHANCED VOLA-  
TILE CONFIGURATION REGISTER command, without power-  
off or power-on.  
Nonvolatile selectable: When nonvolatile configuration  
register bit 3 is set to 0, the device enters the quad SPI pro-  
tocol after the next power-on. Once this register bit is set,  
the device defaults to the quad SPI protocol after all subse-  
quent power-on sequences until the nonvolatile configura-  
tion register bit is reset to 1.  
1. In quad SPI protocol, all command/address input and data I/O are transmitted on four  
lines except during a PROGRAM and ERASE cycle performed with VPP. In this case, the  
device enters the extended SPI protocol to temporarily allow the application to perform  
a PROGRAM/ERASE SUSPEND operation or to check the write-in-progress bit in the sta-  
tus register or the program/erase controller bit in the flag status register. Then, when  
VPP goes LOW, the device returns to the quad SPI protocol.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
19  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Nonvolatile and Volatile Registers  
Nonvolatile and Volatile Registers  
The device features the following volatile and nonvolatile registers that users can access  
to store device parameters and operating configurations:  
• Status register  
• Nonvolatile and volatile configuration registers  
• Extended address register  
• Enhanced volatile configuration register  
• Flag status register  
• Lock register  
Note: The lock register is defined in READ LOCK REGISTER Command.  
The working condition of memory is set by an internal configuration register that is not  
directly accessible to users. As shown below, parameters in the internal configuration  
register are loaded from the nonvolatile configuration register during each device boot  
phase or power-on reset. In this sense, then, the nonvolatile configuration register con-  
tains the default settings of memory.  
Also, during the life of an application, each time a WRITE VOLATILE or ENHANCED  
VOLATILE CONFIGURATION REGISTER command executes to set configuration pa-  
rameters in these respective registers, these new settings are copied to the internal con-  
figuration register. Therefore, memory settings can be changed in real time. However, at  
the next power-on reset, the memory boots according to the memory settings defined  
in the nonvolatile configuration register parameters.  
Figure 8: Internal Configuration Register  
Volatile configuration register  
and volatile enhanced  
configuration register  
Nonvolatile configuration register  
Register download is executed after a  
WRITE VOLATILE or ENHANCED  
VOLATILE CONFIGURATION REGISTER  
command, overwriting configuration  
register settings on the internal  
configuration register.  
Register download is executed only  
during the power-on phase or after  
a reset, overwriting configuration  
register settings on the internal  
configuration register.  
Internal configuration  
register  
Device behavior  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
20  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Nonvolatile and Volatile Registers  
Status Register  
Table 9: Status Register Bit Definitions  
Note 1 applies to entire table  
Bit  
Name  
Settings  
Description  
Notes  
7
Status register  
0 = Enabled  
Nonvolatile bit: Used with the W/VPP signal to enable or  
3
write enable/disable 1 = Disabled  
disable writing to the status register.  
5
Top/bottom  
0 = Top  
1 = Bottom  
Nonvolatile bit: Determines whether the protected mem-  
ory area defined by the block protect bits starts from the  
top or bottom of the memory array.  
4
4
6, 4:2 Block protect 3–0  
See Protected Area Nonvolatile bit: Defines memory to be software protec-  
Sizes – Upper Area ted against PROGRAM or ERASE operations. When one or  
and Lower Area ta- more block protect bits is set to 1, a designated memory  
bles in Device Pro-  
tection  
area is protected from PROGRAM and ERASE operations.  
1
0
Write enable latch  
Write in progress  
0 = Cleared (Default) Volatile bit: The device always powers up with this bit  
2
2
1 = Set  
cleared to prevent inadvertent WRITE STATUS REGISTER,  
PROGRAM, or ERASE operations. To enable these opera-  
tions, the WRITE ENABLE operation must be executed first  
to set this bit.  
0 = Ready  
1 = Busy  
Volatile bit: Indicates if one of the following command cy-  
cles is in progress:  
WRITE STATUS REGISTER  
WRITE NONVOLATILE CONFIGURATION REGISTER  
PROGRAM  
ERASE  
1. Bits can be read from or written to using READ STATUS REGISTER or WRITE STATUS REG-  
ISTER commands, respectively.  
Notes:  
2. Volatile bits are cleared to 0 by a power cycle or reset.  
3. The status register write enable/disable bit, combined with the W#/VPP signal as descri-  
bed in the Signal Descriptions, provides hardware data protection for the device as fol-  
lows: When the enable/disable bit is set to 1, and the W#/VPP signal is driven LOW, the  
status register nonvolatile bits become read-only and the WRITE STATUS REGISTER oper-  
ation will not execute. The only way to exit this hardware-protected mode is to drive  
W#/VPP HIGH.  
4. See Protected Area Sizes tables. The BULK ERASE command is executed only if all bits  
are 0.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
21  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Nonvolatile and Volatile Registers  
Nonvolatile and Volatile Configuration Registers  
Table 10: Nonvolatile Configuration Register Bit Definitions  
Note 1 applies to entire table  
Bit Name  
Settings  
Description  
Notes  
15:12 Number of  
0000 (identical to 1111)  
Sets the number of dummy clock cycles subse-  
quent to all FAST READ commands.  
The default setting targets the maximum al-  
lowed frequency and guarantees backward com-  
patibility.  
2, 3  
dummy clock 0001  
cycles  
0010  
.
.
1101  
1110  
1111  
11:9 XIP mode at 000 = XIP: Fast Read  
Enables the device to operate in the selected XIP  
mode immediately after power-on reset.  
power-on re- 001 = XIP: Dual Output Fast Read  
set  
010 = XIP: Dual I/O Fast Read  
011 = XIP: Quad Output Fast Read  
100 = XIP: Quad I/O Fast Read  
101 = Reserved  
110 = Reserved  
111 = Disabled (Default)  
8:6 Output driver 000 = Reserved  
Optimizes impedance at VCC/2 output voltage.  
strength  
001 = 90 Ohms  
010 = 60 Ohms  
011 = 45 Ohms  
100 = Reserved  
101 = 20 Ohms  
110 = 15 Ohms  
111 = 30 (Default)  
5
4
Reserved  
X
"Don't Care."  
Reset/hold  
0 = Disabled  
Enables or disables hold or reset.  
1 = Enabled (Default)  
(Available on dedicated part numbers.)  
3
2
1
0
Quad I/O pro- 0 = Enabled  
tocol 1 = Disabled (Default, Extended SPI prot-  
cocol)  
Dual I/O pro- 0 = Enabled  
Enables or disables quad I/O protocol.  
4
4
Enables or disables dual I/O protocol.  
tocol  
1 = Disabled (Default, Extended SPI pro-  
tocol)  
128Mb seg-  
ment select  
0 = Upper 128Mb segment  
1 = Lower 128Mb segment (Default)  
Selects a 128Mb segment as default for 3B ad-  
dress operations. See also the extended address  
register.  
Address bytes 0 = Enable 4B address  
1 = Enable 3B address (Default)  
Defines the number of address bytes for a com-  
mand.  
1. Settings determine device memory configuration after power-on. The device ships from  
the factory with all bits erased to 1 (FFFFh). The register is read from or written to by  
READ NONVOLATILE CONFIGURATION REGISTER or WRITE NONVOLATILE CONFIGURA-  
TION REGISTER commands, respectively.  
Notes:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
22  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Nonvolatile and Volatile Registers  
2. The 0000 and 1111 settings are identical in that they both define the default state,  
which is the maximum frequency of fc = 108 MHz. This ensures backward compatibility.  
3. If the number of dummy clock cycles is insufficient for the operating frequency, the  
memory reads wrong data. The number of cycles must be set according to and sufficient  
for the clock frequency, which varies by the type of FAST READ command, as shown in  
the Supported Clock Frequencies table.  
4. If bits 2 and 3 are both set to 0, the device operates in quad I/O. When bits 2 or 3 are  
reset to 0, the device operates in quad I/O or dual I/O respectively, after the next power-  
on.  
Table 11: Volatile Configuration Register Bit Definitions  
Note 1 applies to entire table  
Bit  
Name  
Settings  
Description  
Notes  
7:4  
Number of dum- 0000 (identical to 1111)  
Sets the number of dummy clock cycles subsequent to  
all FAST READ commands.  
The default setting targets maximum allowed frequen-  
cy and guarantees backward compatibility.  
2, 3  
my clock cycles  
0001  
0010  
.
.
1101  
1110  
1111  
3
XIP  
0
1
Enables or disables XIP. For device part numbers with  
feature digit equal to 2 or 4, this bit is always "Don’t  
Care," so the device operates in XIP mode without set-  
ting this bit.  
2
Reserved  
Wrap  
x = Default  
0b = Fixed value.  
1:0  
00 = 16-byte boundary  
aligned  
16-byte wrap: Output data wraps within an aligned 16-  
byte boundary starting from the 3-byte address issued  
after the command code.  
4
01 = 32-byte boundary  
aligned  
32-byte wrap: Output data wraps within an aligned 32-  
byte boundary starting from the 3-byte address issued  
after the command code.  
10 = 64-byte boundary  
aligned  
64-byte wrap: Output data wraps within an aligned 64-  
byte boundary starting from the 3-byte address issued  
after the command code.  
11 = sequential (default)  
Continuous reading (default): All bytes are read se-  
quentially.  
1. Settings determine the device memory configuration upon a change of those settings by  
the WRITE VOLATILE CONFIGURATION REGISTER command. The register is read from or  
written to by READ VOLATILE CONFIGURATION REGISTER or WRITE VOLATILE CONFIGU-  
RATION REGISTER commands respectively.  
Notes:  
2. The 0000 and 1111 settings are identical in that they both define the default state,  
which is the maximum frequency of fc = 108 MHz. This ensures backward compatibility.  
3. If the number of dummy clock cycles is insufficient for the operating frequency, the  
memory reads wrong data. The number of cycles must be set according to and be suffi-  
cient for the clock frequency, which varies by the type of FAST READ command, as  
shown in the Supported Clock Frequencies table.  
4. See the Sequence of Bytes During Wrap table.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
23  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Nonvolatile and Volatile Registers  
Table 12: Sequence of Bytes During Wrap  
Starting Address  
16-Byte Wrap  
32-Byte Wrap  
64-Byte Wrap  
0
0-1-2- . . . -15-0-1- . .  
0-1-2- . . . -31-0-1- . .  
0-1-2- . . . -63-0-1- . .  
1-2- . . . -63-0-1-2- . .  
15-16-17- . . . -63-0-1- . .  
31-32-33- . . . -63-0-1- . .  
63-0-1- . . . -63-0-1- . .  
1
1-2- . . . -15-0-1-2- . .  
1-2- . . . -31-0-1-2- . .  
15  
31  
63  
15-0-1-2-3- . . . -15-0-1- . .  
31-16-17- . . . -31-16-17- . .  
63-48-49- . . . -63-48-49- . .  
15-16-17- . . . -31-0-1- . .  
31-0-1-2-3- . . . -31-0-1- . .  
63-32-33- . . . -63-32-33- . .  
Table 13: Supported Clock Frequencies – STR  
Note 1 applies to entire table  
Number of Dummy  
Clock Cycles  
DUAL OUTPUT  
FAST READ  
DUAL I/O FAST  
READ  
QUAD OUTPUT QUAD I/O FAST  
FAST READ  
90  
FAST READ  
READ  
1
2
80  
50  
70  
43  
60  
30  
100  
90  
40  
3
108  
100  
80  
75  
50  
4
108  
105  
90  
90  
60  
5
108  
108  
100  
105  
108  
108  
108  
108  
100  
105  
108  
108  
108  
108  
70  
6
108  
108  
80  
7
108  
108  
86  
8
108  
108  
95  
9
108  
108  
105  
108  
10  
108  
108  
1. Values are guaranteed by characterization and not 100% tested in production.  
Note:  
Table 14: Supported Clock Frequencies – DTR  
Number of Dummy  
Clock Cycles  
DUAL OUTPUT  
FAST READ  
DUAL I/O FAST  
READ  
QUAD OUTPUT QUAD I/O FAST  
FAST READ  
FAST READ  
READ  
1
2
45  
50  
54  
54  
54  
54  
54  
54  
54  
54  
40  
45  
50  
53  
54  
54  
54  
54  
54  
54  
25  
35  
40  
45  
50  
53  
54  
54  
54  
54  
30  
38  
45  
47  
50  
53  
54  
54  
54  
54  
15  
20  
3
25  
4
30  
5
35  
6
40  
7
43  
8
48  
9
53  
10  
54  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
24  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Nonvolatile and Volatile Registers  
Extended Address Register  
For devices whose A[MAX:MIN] equals A[23:0], the N25 family includes an extended ad-  
dress register that provides a fourth address byte A[31:24], enabling access to memory  
beyond 128Mb. Extended address register bit 0 is used to select the upper 128Mb seg-  
ment or the lower 128Mb segment of the memory array.  
Figure 9: Upper and Lower 128Mb Memory Array Segments  
Upper 128Mb  
Bottom 128Mb  
EAR<0> = A<24> = 1  
01FFFFFFh  
00FFFFFFh  
01000000h  
00000000h  
EAR<0> = A<24> = 0  
The PROGRAM and ERASE operations act upon the 128Mb segment selected in the ex-  
tended address register.  
The BULK ERASE operation erases the entire device.  
The READ operation begins reading in the selected 128Mb segment, but is not bound  
by it. In a continuous READ, when the last byte of the segment is read, the next byte out-  
put is the first byte of the other segment as the operation wraps to 0000000h; Therefore,  
a download of the whole array is possible with one READ operation. The value of the  
extended address register does not change when a READ operation crosses the selected  
128Mb boundary.  
Table 15: Extended Address Register Bit Definitions  
Note 1 applies to entire table  
Bit Name  
Settings  
Description  
7
6
5
4
3
2
1
0
A[31:25]  
0 = Reserved  
A[24]  
0 = Lower 128Mb segment Enables 128Mb segmentation selection.  
(default)  
The default setting for this bit is determined by the non-  
1 = Upper 128Mb segment volatile configuration register bit 1. However, this set-  
ting can be changed with the WRITE EXTENDED AD-  
DRESS REGISTER command.  
1. The extended address register is for an application that supports only 3-byte addressing.  
It extends the device's first three address bytes A[23:0] to a fourth address byte A[31:24]  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
25  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Nonvolatile and Volatile Registers  
to enable memory access beyond 128Mb. The extended address register bit 0 enables  
128Mb segmentation selection. If 4-byte addressing is enabled, extended address regis-  
ter settings are ignored.  
Enhanced Volatile Configuration Register  
Table 16: Enhanced Volatile Configuration Register Bit Definitions  
Note 1 applies to entire table  
Bit  
Name  
Settings  
Description  
Notes  
7
Quad I/O protocol  
0 = Enabled  
Enables or disables quad I/O protocol.  
2
1 = Disabled (Default,  
extended SPI protocol)  
6
Dual I/O protocol  
0 = Enabled  
1 = Disabled (Default,  
extended SPI protocol)  
Enables or disables dual I/O protocol.  
0b = Fixed value.  
2
5
4
Reserved  
x = Default  
Reset/hold  
0 = Disabled  
Enables or disables hold or reset.  
1 = Enabled (Default)  
(Available on dedicated part numbers.)  
3
VPP accelerator  
0 = Enabled  
Enables or disables VPP acceleration for QUAD  
1 = Disabled (Default) INPUT FAST PROGRAM and QUAD INPUT EX-  
TENDED FAST PROGRAM OPERATIONS.  
2:0  
Output driver strength 000 = Reserved  
001 = 90 Ohms  
Optimizes impedance at VCC/2 output voltage.  
010 = 60 Ohms  
011 = 45 Ohms  
100 = Reserved  
101 = 20 Ohms  
110 = 15 Ohms  
111 = 30 (Default)  
1. Settings determine the device memory configuration upon a change of those settings by  
the WRITE ENHANCED VOLATILE CONFIGURATION REGISTER command. The register is  
read from or written to in all protocols by READ ENHANCED VOLATILE CONFIGURATION  
REGISTER or WRITE ENHANCED VOLATILE CONFIGURATION REGISTER commands, respec-  
tively.  
Notes:  
2. If bits 6 and 7 are both set to 0, the device operates in quad I/O. When either bit 6 or 7 is  
reset to 0, the device operates in quad I/O or dual I/O respectively following the next  
WRITE ENHANCED VOLATILE CONFIGURATION command.  
Flag Status Register  
Table 17: Flag Status Register Bit Definitions  
Note 1 applies to entire table  
Bit Name  
Settings  
Description  
Notes  
7
Program or  
erase  
controller  
0 = Busy  
1 = Ready  
Status bit: Indicates whether a PROGRAM, ERASE,  
WRITE STATUS REGISTER, or WRITE NONVOLATILE CON-  
FIGURATION command cycle is in progress.  
2, 3  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
26  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Nonvolatile and Volatile Registers  
Table 17: Flag Status Register Bit Definitions (Continued)  
Note 1 applies to entire table  
Bit Name Settings  
Erase suspend 0 = Not in effect  
Description  
Notes  
6
5
4
3
2
1
Status bit: Indicates whether an ERASE operation has  
been or is going to be suspended.  
3
1 = In effect  
Erase  
Program  
VPP  
0 = Clear  
Error bit: Indicates whether an ERASE operation has  
4, 5  
4, 5  
4, 5  
3
1 = Failure or protection error succeeded or failed.  
0 = Clear  
Error bit: An attempt to program a 0 to a 1 when VPP =  
1 = Failure or protection error VPPH and the data pattern is a multiple of 64 bits.  
0 = Enabled  
Error bit: Indicates an invalid voltage on VPP during a  
PROGRAM or ERASE operation.  
1 = Disabled (Default)  
Program sus-  
pend  
0 = Not in effect  
1 = In effect  
Status bit: Indicates whether a PROGRAM operation  
has been or is going to be suspended.  
Protection  
0 = Clear  
Error bit: Indicates whether a PROGRAM operation has  
4, 5  
1 = Failure or protection error attempted to modify the protected array sector or ac-  
cess the locked OTP space.  
0
Addressing  
0 = 3 bytes addressing  
1 = 4 bytes addressing  
Status bit: Indicates whether 3-byte or 4-byte address  
mode is enabled.  
3
1. Register bits are read by READ STATUS REGISTER command. All bits are volatile.  
Notes:  
2. These program/erase controller settings apply only to PROGRAM or ERASE command cy-  
cles in progress; they do not apply to a WRITE command cycle in progress.  
3. Status bits are reset automatically.  
4. Error bits must be reset by CLEAR FLAG STATUS REGISTER command.  
5. Typical errors include operation failures and protection errors caused by issuing a com-  
mand before the error bit has been reset to 0.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
27  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Command Definitions  
Command Definitions  
Table 18: Command Set  
Note 1 applies to entire table  
Dual  
I/O  
Quad  
I/O  
Data  
Bytes  
Command  
Code  
Extended  
Notes  
RESET Operations  
RESET ENABLE  
66h  
99h  
Yes  
Yes  
Yes  
0
2
RESET MEMORY  
IDENTIFICATION Operations  
READ ID  
9E/9Fh  
AFh  
Yes  
No  
No  
Yes  
Yes  
No  
Yes  
Yes  
1 to 20  
1 to 3  
1 to  
2
2
3
MULTIPLE I/O READ ID  
READ SERIAL FLASH  
5Ah  
Yes  
DISCOVERY PARAMETER  
READ Operations  
READ  
03h  
0Bh  
3Bh  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
Yes  
No  
No  
1 to ∞  
1 to ∞  
4
5
FAST READ  
DUAL OUTPUT FAST READ  
DUAL INPUT/OUTPUT FAST READ  
5
0Bh  
3Bh  
BBh  
5, 11  
QUAD OUTPUT FAST READ  
6Bh  
Yes  
Yes  
No  
No  
Yes  
Yes  
1 to ∞  
5
QUAD INPUT/OUTPUT FAST READ  
0Bh  
6Bh  
EBh  
5, 12  
FAST READ – DTR  
0Dh  
3Dh  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
1 to ∞  
1 to ∞  
1 to ∞  
6
6
6
DUAL OUTPUT FAST READ – DTR  
DUAL INPUT/OUTPUT FAST READ – DTR  
0Dh  
3Dh  
BDh  
QUAD OUTPUT FAST READ – DTR  
6Dh  
Yes  
Yes  
No  
No  
Yes  
Yes  
1 to ∞  
1 to ∞  
6
7
QUAD INPUT/OUTPUT FAST READ – DTR  
0Dh  
3Dh  
EDh  
4-BYTE READ  
13h  
0Ch  
3Ch  
BCh  
Yes  
Yes  
Yes  
1 to ∞  
1 to ∞  
8
9
4-BYTE FAST READ  
4-BYTE DUAL OUTPUT FAST READ  
Yes  
Yes  
Yes  
Yes  
No  
No  
9
4-BYTE DUAL INPUT/OUTPUT FAST  
READ  
9, 11  
4-BYTE QUAD OUTPUT FAST READ  
6Ch  
ECh  
Yes  
Yes  
No  
No  
Yes  
Yes  
1 to ∞  
9
4-BYTE QUAD INPUT/OUTPUT FAST  
READ  
10, 12  
WRITE Operations  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
28  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Command Definitions  
Table 18: Command Set (Continued)  
Note 1 applies to entire table  
Dual  
I/O  
Quad  
I/O  
Data  
Bytes  
Command  
Code  
06h  
Extended  
Notes  
WRITE ENABLE  
Yes  
Yes  
Yes  
0
2
WRITE DISABLE  
04h  
REGISTER Operations  
READ STATUS REGISTER  
WRITE STATUS REGISTER  
READ LOCK REGISTER  
WRITE LOCK REGISTER  
READ FLAG STATUS REGISTER  
CLEAR FLAG STATUS REGISTER  
05h  
01h  
E8h  
E5h  
70h  
50h  
B5h  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1 to ∞  
2
2, 13  
4
1
1 to ∞  
1
1 to ∞  
0
4, 13  
2
READ NONVOLATILE  
2
2
CONFIGURATION REGISTER  
WRITE NONVOLATILE  
CONFIGURATION REGISTER  
B1h  
85h  
81h  
65h  
61h  
2, 13  
2
READ VOLATILE  
CONFIGURATION REGISTER  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1 to ∞  
WRITE VOLATILE  
CONFIGURATION REGISTER  
1
1 to ∞  
1
2, 13  
2
READ ENHANCED VOLATILE  
CONFIGURATION REGISTER  
WRITE ENHANCED VOLATILE  
CONFIGURATION REGISTER  
2, 13  
READ EXTENDED ADDRESS REGISTER  
WRITE EXTENDED ADDRESS REGISTER  
PROGRAM Operations  
C8h  
C5h  
0
2
2, 16  
PAGE PROGRAM  
02h  
12h  
A2h  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
1 to 256  
1 to 256  
1 to 256  
4, 13  
4, 13, 14  
4, 13  
4-BYTE PAGE PROGRAM  
DUAL INPUT FAST PROGRAM  
EXTENDED DUAL INPUT  
FAST PROGRAM  
02h  
A2h  
D2h  
4, 11, 13  
QUAD INPUT FAST PROGRAM  
32h  
34h  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
1 to 256  
4, 13  
4-BYTE QUAD INPUT FAST PROGRAM  
4, 13, 14  
EXTENDED QUAD INPUT  
FAST PROGRAM  
02h  
32h  
4, 12, 13, 15  
12h/38h  
ERASE Operations  
SUBSECTOR ERASE  
20h  
21h  
Yes  
29  
Yes  
Yes  
0
4, 13  
4-BYTE SUBSECTOR ERASE  
4, 13, 14  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Command Definitions  
Table 18: Command Set (Continued)  
Note 1 applies to entire table  
Dual  
I/O  
Quad  
I/O  
Data  
Bytes  
Command  
Code  
D8h  
DCh  
C7h  
Extended  
Notes  
4, 13  
SECTOR ERASE  
Yes  
Yes  
Yes  
0
4-BYTE SECTOR ERASE  
BULK ERASE  
4, 13, 14  
4, 13  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0
0
PROGRAM/ERASE RESUME  
PROGRAM/ERASE SUSPEND  
7Ah  
75h  
2, 13  
ONE-TIME PROGRAMMABLE (OTP) Operations  
READ OTP ARRAY  
4Bh  
42h  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1 to 64  
5
PROGRAM OTP ARRAY  
4-BYTE ADDRESS MODE Operations  
ENTER 4-BYTE ADDRESS MODE  
EXIT 4-BYTE ADDRESS MODE  
QUAD Operations  
4, 13  
B7h  
E9h  
0
0
2, 16  
ENTER QUAD  
35h  
F5h  
2, 14  
2, 14  
EXIT QUAD  
1. Yes in the protocol columns indicates that the command is supported and has the same  
functionality and command sequence as other commands marked Yes.  
Notes:  
2. Address bytes = 0. Dummy clock cycles = 0.  
3. Address bytes = 3. Dummy clock cycles default = 8.  
4. Address bytes default = 3; address bytes = 4 (extended address). Dummy clock cycles = 0.  
5. Address bytes default = 3; address bytes = 4 (extended address). Dummy clock cycles de-  
fault = 8. Dummy clock cycles default = 10 (when quad SPI protocol is enabled). Dummy  
clock cycles are configurable by the user.  
6. Address bytes default = 3; address bytes = 4 (extended address). Dummy clock cycles de-  
fault = 6. Dummy clock cycles default = 8 when quad SPI protocol is enabled. Dummy  
clock cycles are configurable by the user.  
7. Address bytes default = 3; address bytes = 4 (extended address). Dummy clock cycles de-  
fault = 8. Dummy clock cycles are configurable by the user.  
8. Address bytes = 4. Dummy clock cycles = 0.  
9. Address bytes = 4. Dummy clock cycles default = 8. Dummy clock cycles default = 10  
(when quad SPI protocol is enabled). Dummy clock cycles are configurable by the user.  
10. Address bytes = 4. Dummy clock cycles default = 10. Dummy clock cycles is configurable  
by the user.  
11. When the device is in dual SPI protocol, the command can be entered with any of these  
three codes. The different codes enable compatibility between dual SPI and extended  
SPI protocols.  
12. When the device is in quad SPI protocol, the command can be entered with any of these  
three codes. The different codes enable compatibility between quad SPI and extended  
SPI protocols.  
13. The WRITE ENABLE command must be issued first before this command can be execu-  
ted.  
14. This command is only for part numbers N25Q256A83ESF40x and N25Q256A83E1240x.  
15. The code 38h is valid only for part numbers N25Q256A83ESF40x and  
N25Q256A83E1240x; the code 12h is valid for the other part numbers.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
30  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Command Definitions  
16. The WRITE ENABLE command must be issued first before this command can be execu-  
ted. Not necessary for part numbers N25Q256A83ESF40x and N25Q256A83E1240x.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
31  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ REGISTER and WRITE REGISTER Operations  
READ REGISTER and WRITE REGISTER Operations  
READ STATUS REGISTER or FLAG STATUS REGISTER Command  
To initiate a READ STATUS REGISTER command, S# is driven LOW. For extended SPI  
protocol, the command code is input on DQ0, and output on DQ1. For dual SPI proto-  
col, the command code is input on DQ[1:0], and output on DQ[1:0]. For quad SPI proto-  
col, the command code is input on DQ[3:0], and is output on DQ[3:0]. The operation is  
terminated by driving S# HIGH at any time during data output.  
The status register can be read continuously and at any time, including during a PRO-  
GRAM, ERASE, or WRITE operation.  
The flag status register can be read continuously and at any time, including during an  
ERASE or WRITE operation.  
If one of these operations is in progress, checking the write in progress bit or P/E con-  
troller bit is recommended before executing the command.  
Figure 10: READ REGISTER Command  
Extended  
0
7
8
9
10  
11  
12  
13  
14  
15  
C
LSB  
DQ0  
DQ1  
Command  
High-Z  
MSB  
LSB  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
Dual  
0
3
4
5
6
7
C
LSB  
LSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
MSB  
DQ[1:0]  
Command  
MSB  
Quad  
0
1
2
3
C
LSB  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
DQ[3:0]  
Command  
Don’t Care  
MSB  
1. Supports all READ REGISTER commands except READ LOCK REGISTER.  
Notes:  
2. A READ NONVOLATILE CONFIGURATION REGISTER operation will output data starting  
from the least significant byte.  
READ NONVOLATILE CONFIGURATION REGISTER Command  
To execute a READ NONVOLATILE CONFIGURATION REGISTER command, S# is driv-  
en LOW. For extended SPI protocol, the command code is input on DQ0, and output on  
DQ1. For dual SPI protocol, the command code is input on DQ[1:0], and output on  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
32  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ REGISTER and WRITE REGISTER Operations  
DQ[1:0]. For quad SPI protocol, the command code is input on DQ[3:0], and is output  
on DQ[3:0]. The operation is terminated by driving S# HIGH at any time during data  
output.  
The nonvolatile configuration register can be read continuously. After all 16 bits of the  
register have been read, a 0 is output. All reserved fields output a value of 1.  
READ VOLATILE or ENHANCED VOLATILE CONFIGURATION REGISTER Command  
To execute a READ VOLATILE CONFIGURATION REGISTER command or a READ EN-  
HANCED VOLATILE CONFIGURATION REGISTER command, S# is driven LOW. For ex-  
tended SPI protocol, the command code is input on DQ0, and output on DQ1. For dual  
SPI protocol, the command code is input on DQ[1:0], and output on DQ[1:0]. For quad  
SPI protocol, the command code is input on DQ[3:0], and is output on DQ[3:0]. The op-  
eration is terminated by driving S# HIGH at any time during data output.  
When the register is read continuously, the same byte is output repeatedly.  
READ EXTENDED ADDRESS REGISTER Command  
To initiate a READ EXTENDED ADDRESS REGISTER command, S# is driven LOW. For  
extended SPI protocol, the command code is input on DQ0, and output on DQ1. For  
dual SPI protocol, the command code is input on DQ[1:0], and output on DQ[1:0]. For  
quad SPI protocol, the command code is input on DQ[3:0], and is output on DQ[3:0].  
The operation is terminated by driving S# HIGH at any time during data output.  
When the register is read continuously, the same byte is output repeatedly.  
WRITE STATUS REGISTER Command  
To issue a WRITE STATUS REGISTER command, the WRITE ENABLE command must be  
executed to set the write enable latch bit to 1. S# is driven LOW and held LOW until the  
eighth bit of the last data byte has been latched in, after which it must be driven HIGH.  
For extended SPI protocol, the command code is input on DQ0, followed by the data  
bytes. For dual SPI protocol, the command code is input on DQ[1:0], followed by the da-  
ta bytes. For quad SPI protocol, the command code is input on DQ[3:0], followed by the  
data bytes. When S# is driven HIGH, the operation, which is self-timed, is initiated; its  
duration is tW.  
This command is used to write new values to status register bits 7:2, enabling software  
data protection. The status register can also be combined with the W#/VPP signal to  
provide hardware data protection. The WRITE STATUS REGISTER command has no ef-  
fect on status register bits 1:0.  
When the operation is in progress, the write in progress bit is set to 1. The write enable  
latch bit is cleared to 0, whether the operation is successful or not. The status register  
and flag status register can be polled for the operation status. When the operation com-  
pletes, the write in progress bit is cleared to 0, whether the operation is successful or  
not. If S# is not driven HIGH, the command is not executed, flag status register error  
bits are not set, and the write enable latch remains set to 1.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
33  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ REGISTER and WRITE REGISTER Operations  
Figure 11: WRITE REGISTER Command  
Extended  
0
7
8
9
10  
11  
12  
13  
14  
15  
C
LSB  
LSB  
DIN  
MSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ0  
Command  
MSB  
MSB  
MSB  
Dual  
0
3
4
5
6
7
C
LSB  
LSB  
DIN  
MSB  
DIN  
DIN  
DIN  
DQ[1:0]  
Command  
0
Quad  
1
2
3
C
LSB  
LSB  
DIN  
MSB  
DIN  
DQ[3:0]  
Command  
1. Supports all WRITE REGISTER commands except WRITE LOCK REGISTER.  
Notes:  
2. Waveform must be extended for each protocol, to 23 for extended, 11 for dual, and 5  
for quad.  
3. A WRITE NONVOLATILE CONFIGURATION REGISTER operation requires data being sent  
starting from least significant byte.  
WRITE NONVOLATILE CONFIGURATION REGISTER Command  
To execute the WRITE NONVOLATILE CONFIGURATION REGISTER command, the  
WRITE ENABLE command must be executed to set the write enable latch bit to 1. S# is  
driven LOW and held LOW until the 16th bit of the last data byte has been latched in,  
after which it must be driven HIGH. For extended SPI protocol, the command code is  
input on DQ0, followed by two data bytes. For dual SPI protocol, the command code is  
input on DQ[1:0], followed by the data bytes. For quad SPI protocol, the command code  
is input on DQ[3:0], followed by the data bytes. When S# is driven HIGH, the operation,  
which is self-timed, is initiated; its duration is tNVCR.  
When the operation is in progress, the write in progress bit is set to 1. The write enable  
latch bit is cleared to 0, whether the operation is successful or not. The status register  
and flag status register can be polled for the operation status. When the operation com-  
pletes, the write in progress bit is cleared to 0, whether the operation is successful or  
not. If S# is not driven HIGH, the command is not executed, flag status register error  
bits are not set, and the write enable latch remains set to 1.  
WRITE VOLATILE or ENHANCED VOLATILE CONFIGURATION REGISTER Command  
To execute a WRITE VOLATILE CONFIGURATION REGISTER command or a WRITE  
ENHANCED VOLATILE CONFIGURATION REGISTER command, the WRITE ENABLE  
command must be executed to set the write enable latch bit to 1. S# is driven LOW and  
held LOW until the eighth bit of the last data byte has been latched in, after which it  
must be driven HIGH. For extended SPI protocol, the command code is input on DQ0,  
followed by the data bytes. For dual SPI protocol, the command code is input on  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
34  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ REGISTER and WRITE REGISTER Operations  
DQ[1:0], followed by the data bytes. For quad SPI protocol, the command code is input  
on DQ[3:0], followed by the data bytes.  
Because register bits are volatile, change to the bits is immediate. If S# is not driven  
HIGH, the command is not executed, flag status register error bits are not set, and the  
write enable latch remains set to 1. Reserved bits are not affected by this command.  
WRITE EXTENDED ADDRESS REGISTER Command  
To initiate a WRITE EXTENDED ADDRESS REGISTER command, the WRITE ENABLE  
command must be executed to set the write enable latch bit to 1. (Note: The WRITE EN-  
ABLE command must NOT be executed on the N25Q256A83ESF40x and  
N25Q256A83E1240x devices.) S# is driven LOW and held LOW until the eighth bit of the  
last data byte has been latched in, after which it must be driven HIGH. The command  
code is input on DQ0, followed by the data bytes. For dual SPI protocol, the command  
code is input on DQ[1:0], followed by the data bytes. For quad SPI protocol, the com-  
mand code is input on DQ[3:0], followed by the data bytes.  
Because register bits are volatile, change to the bits is immediate. If S# is not driven  
HIGH, the command is not executed, the flag status register error bits are not set, and  
the write enable latch remains set to 1. Reserved bits are not affected by this command.  
READ LOCK REGISTER Command  
To execute the READ LOCK REGISTER command, S# is driven LOW. For extended SPI  
protocol, the command code is input on DQ0, followed by address bytes that point to a  
location in the sector. For dual SPI protocol, the command code is input on DQ[1:0]. For  
quad SPI protocol, the command code is input on DQ[3:0]. Each address bit is latched  
in during the rising edge of the clock. For extended SPI protocol, data is shifted out on  
DQ1 at a maximum frequency fC during the falling edge of the clock. For dual SPI proto-  
col, data is shifted out on DQ[1:0], and for quad SPI protocol, data is shifted out on  
DQ[3:0]. The operation is terminated by driving S# HIGH at any time during data out-  
put.  
When the register is read continuously, the same byte is output repeatedly. Any READ  
LOCK REGISTER command that is executed while an ERASE, PROGRAM, or WRITE cy-  
cle is in progress is rejected with no affect on the cycle in progress.  
Table 19: Lock Register  
Note 1 applies to entire table  
Bit  
7:2  
1
Name  
Settings  
Description  
Reserved  
0
Bit values are 0.  
Sector lock down  
0 = Cleared (Default) Volatile bit: the device always powers-up with this bit cleared,  
1 = Set  
which means sector lock down and sector write lock bits can be  
set.  
When this bit set, neither of the lock register bits can be written  
to until the next power cycle.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
35  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ REGISTER and WRITE REGISTER Operations  
Table 19: Lock Register (Continued)  
Note 1 applies to entire table  
Bit  
Name  
Settings  
Description  
0
Sector write lock  
0 = Cleared (Default) Volatile bit: the device always powers-up with this bit cleared,  
1 = Set  
which means that PROGRAM and ERASE operations in this sector  
can be executed and sector content modified.  
When this bit is set, PROGRAM and ERASE operations in this sec-  
tor will not be executed.  
1. Sector lock register bits 1:0 are written by the WRITE LOCK REGISTER command. The  
command will not execute unless the sector lock down bit is cleared.  
Note:  
Figure 12: READ LOCK REGISTER Command  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
DQ[0]  
DQ1  
Command  
High-Z  
MSB  
A[MAX]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
Dual  
0
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DQ[1:0]  
Command  
MSB  
A[MAX]  
Quad  
0
1
2
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
DQ[3:0]  
Command  
Don’t Care  
MSB  
A[MAX]  
1. For extended SPI protocol, Cx = 7 + (A[MAX] + 1).  
For dual SPI protocol, Cx = 3 + ((A[MAX] + 1)/2).  
For quad SPI protocol, Cx = 1 + ((A[MAX] + 1)/4).  
Note:  
WRITE LOCK REGISTER Command  
To initiate the WRITE LOCK REGISTER command, the WRITE ENABLE command must  
be executed to set the write enable latch bit to 1. S# is driven LOW and held LOW until  
the eighth bit of the last data byte has been latched in, after which it must be driven  
HIGH. The command code is input on DQn, followed by address bytes that point to a  
location in the sector, and then one data byte that contains the desired settings for lock  
register bits 0 and 1. Each address bit is latched in during the rising edge of the clock.  
When execution is complete, the write enable latch bit is cleared within tSHSL2 and no  
error bits are set. Because lock register bits are volatile, change to the bits is immediate.  
WRITE LOCK REGISTER can be executed when an ERASE SUSPEND operation is in ef-  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
36  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ REGISTER and WRITE REGISTER Operations  
fect. If S# is not driven HIGH, the command is not executed, flag status register error  
bits are not set, and the write enable latch remains set to 1.  
Figure 13: WRITE LOCK REGISTER Command  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
IN  
DQ[0]  
Command  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
MSB  
A[MAX]  
MSB  
Dual  
0
3
4
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
IN  
DQ[1:0]  
Command  
IN  
IN  
IN  
IN  
MSB  
A[MAX]  
MSB  
Quad  
0
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
IN  
DQ[3:0]  
Command  
IN  
IN  
MSB  
A[MAX]  
MSB  
1. For extended SPI protocol, Cx = 7 + (A[MAX] + 1).  
For dual SPI protocol, Cx = 3 + ((A[MAX] + 1)/2).  
For quad SPI protocol, Cx = 1 + ((A[MAX] + 1)/4).  
Note:  
CLEAR FLAG STATUS REGISTER Command  
To execute the CLEAR FLAG STATUS REGISTER command and reset the error bits  
(erase, program, and protection), S# is driven LOW. For extended SPI protocol, the com-  
mand code is input on DQ0. For dual SPI protocol, the command code is input on  
DQ[1:0]. For quad SPI protocol, the command code is input on DQ[3:0]. The operation  
is terminated by driving S# HIGH at any time.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
37  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ IDENTIFICATION Operations  
READ IDENTIFICATION Operations  
READ ID and MULTIPLE I/O READ ID Commands  
To execute the READ ID or MULTIPLE I/O READ ID commands, S# is driven LOW and  
the command code is input on DQn. The device outputs the information shown in the  
tables below. If an ERASE or PROGRAM cycle is in progress when the command is exe-  
cuted, the command is not decoded and the command cycle in progress is not affected.  
When S# is driven HIGH, the device goes to standby. The operation is terminated by  
driving S# HIGH at any time during data output.  
Table 20: Data/Address Lines for READ ID and MULTIPLE I/O READ ID Commands  
Unique ID  
is Output  
Command Name  
READ ID  
Data In  
DQ0  
Data Out  
DQ0  
Extended  
Yes  
Dual  
No  
Quad  
No  
Yes  
No  
MULTIPLE I/O READ ID  
DQ[3:0]  
DQ[1:0]  
No  
Yes  
Yes  
1. Yes in the protocol columns indicates that the command is supported and has the same  
functionality and command sequence as other commands marked Yes.  
Note:  
Table 21: Read ID Data Out  
Size  
(Bytes) Name  
Content Value  
Assigned by  
1
2
Manufacturer ID  
20h (selected by READ  
MANUFACTURER ID)  
JEDEC  
Device ID  
Memory Type  
BAh  
Manufacturer  
Factory  
Memory Capacity  
Unique ID  
19h (256Mb)  
17  
1 Byte: Length of data to follow  
10h  
2 Bytes: Extended device ID and device  
configuration information  
ID and information such as uniform  
architecture, and HOLD  
or RESET functionality  
14 Bytes: Customized factory data  
Optional  
1. The 17 bytes of information in the unique ID is read by the READ ID command, but can-  
not be read by the MULTIPLE I/O READ ID command.  
Note:  
Table 22: Extended Device ID, First Byte  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reserved  
Reserved 1 = Alternate BP Volatile configuration  
HOLD#/RESET#:  
0 = HOLD  
Addressing:  
0 = by byte  
Architecture:  
00 = Uniform  
scheme  
0 = Standard BP  
scheme  
register bit setting:  
0 = Required  
1 = Not required  
1 = RESET  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
38  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ IDENTIFICATION Operations  
Figure 14: READ ID and MULTIPLE I/O Read ID Commands  
Extended  
0
7
8
15  
16  
31  
32  
C
LSB  
DQ0  
DQ1  
Command  
MSB  
LSB  
LSB  
LSB  
D
D
D
D
D
D
High-Z  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
MSB  
MSB  
Manufacturer  
identification  
Device  
identification  
UID  
Dual  
0
3
4
7
8
15  
C
LSB  
LSB  
LSB  
D
D
D
D
DQ[1:0]  
Command  
OUT  
OUT  
OUT  
OUT  
MSB  
MSB  
MSB  
Manufacturer  
identification  
Device  
identification  
Quad  
0
1
2
3
4
7
C
LSB  
LSB  
LSB  
D
D
D
D
DQ[3:0]  
Command  
OUT  
OUT  
OUT  
OUT  
MSB  
MSB  
MSB  
Manufacturer  
identification  
Device  
identification  
Don’t Care  
1. The READ ID command is represented by the extended SPI protocol timing shown first.  
The MULTIPLE I/O READ ID command is represented by the dual and quad SPI protocols  
are shown below extended SPI protocol.  
Note:  
READ SERIAL FLASH DISCOVERY PARAMETER Command  
To execute READ SERIAL FLASH DISCOVERY PARAMETER command, S# is driven  
LOW. The command code is input on DQ0, followed by three address bytes and eight  
dummy clock cycles (address is always 3 bytes, even for 4-byte address mode). The de-  
vice outputs the information starting from the specified address. When the 2048-byte  
boundary is reached, the data output wraps to address 0 of the serial Flash discovery  
parameter table. The operation is terminated by driving S# HIGH at any time during da-  
ta output.  
The operation always executes in continuous mode so the read burst wrap setting in the  
volatile configuration register does not apply.  
Note: Data to be stored in the serial Flash discovery parameter area is still in the defini-  
tion phase.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
39  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ IDENTIFICATION Operations  
Table 23: Serial Flash Discovery Parameter Data Structure  
Compliant with JEDEC standard JC-42.4 1775.03  
Address  
Description  
(Byte Mode)  
Address (Bit)  
7:00  
Data  
53h  
46h  
44h  
50h  
00h  
01h  
00h  
FFh  
00h  
00h  
01h  
09h  
30h  
00h  
00h  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
Serial Flash discoverable parameters signature  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
15:8  
23:16  
31:24  
7:0  
Serial Flash discoverable parameters  
Minor revision  
Major revision  
15:8  
Number of parameter headers  
Reserved  
7:0  
15:8  
Parameter ID (0) JEDEC-defined parameter table  
7:0  
Parameter  
Minor revision  
15:8  
Major revision  
23:16  
31:24  
7:0  
Parameter length (DW)  
Parameter table pointer  
15:8  
23:16  
31:24  
7:0  
Reserved  
Parameter ID (1)  
Parameter  
Minor revision  
Major revision  
15:8  
23:16  
31:24  
7:0  
Parameter length (DW)  
Parameter table pointer  
15:8  
23:16  
31:24  
7:0  
Reserved  
Parameter ID (2)  
Parameter  
Minor revision  
Major revision  
15:8  
23:16  
31:24  
7:0  
Parameter length (DW)  
Parameter table pointer  
15:8  
23:16  
31:24  
Reserved  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
40  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ IDENTIFICATION Operations  
Table 24: Parameter ID  
Compliant with JEDEC standard JC-42.4 1775.03  
Address  
Description  
(Byte Mode)  
Address (Bit)  
Data  
Minimum block/sector erase sizes  
30h  
0
1
10  
Write granularity  
2
1
0
WRITE ENABLE command required for writing to volatile status reg-  
isters  
3
4
Reserved  
5
1
1
6
7
1
4KB erase command code  
31h  
32h  
15:8  
16  
20h  
1
Supports DUAL OUTPUT FAST READ operation (single input address,  
dual output)  
Number of address bytes used (3-byte or 4-byte) for array READ,  
WRITE, and ERASE commands  
17  
18  
19  
20  
1
Supports double transfer rate clocking  
1
1
Supports DUAL INPUT/OUTPUT FAST READ operation (dual input ad-  
dress, dual output)  
Supports QUAD INPUT/OUTPUT FAST READ operation (quad input  
address, quad output)  
21  
22  
1
1
Supports QUAD OUTPUT FAST READ operation (single input address,  
quad output)  
Reserved  
23  
1
Reserved  
33h  
34h–37h  
38h  
31:24  
31:0  
4:00  
FFh  
Flash size (bits)  
0FFFFFFFh  
01001b  
Number of dummy clock cycles required before valid output from  
QUAD INPUT/OUTPUT FAST READ operation  
Number of XIP confirmation bits for QUAD INPUT/OUTPUT FAST  
READ operation  
7:5  
001b  
Command code for QUAD INPUT/OUTPUT FAST READ operation  
39h  
3Ah  
15:8  
EBh  
Number of dummy clock cycles required before valid output from  
QUAD OUTPUT FAST READ operation  
20:16  
00111b  
Number of XIP confirmation bits for QUAD OUTPUT FAST READ op-  
eration  
23:21  
001b  
Command code for QUAD OUTPUT FAST READ operation  
3Bh  
3Ch  
31:24  
4:0  
6Bh  
Number of dummy clock cycles required before valid output from  
DUAL OUTPUT FAST READ operation  
01000b  
Number of XIP confirmation bits for DUAL OUTPUT FAST READ oper-  
ation  
7:5  
000b  
3Bh  
Command code for DUAL OUTPUT FAST READ operation  
3Dh  
15:8  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
41  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ IDENTIFICATION Operations  
Table 24: Parameter ID (Continued)  
Compliant with JEDEC standard JC-42.4 1775.03  
Address  
Description  
(Byte Mode)  
Address (Bit)  
Data  
Number of dummy clock cycles required before valid output from  
DUAL INPUT/OUTPUT FAST READ operation  
3Eh  
20:16  
00111b  
Number of XIP confirmation bits for DUAL INPUT/OUTPUT FAST  
READ  
23:21  
001b  
Command code for DUAL INPUT/OUTPUT FAST READ operation  
3Fh  
40h  
31:24  
0
BBh  
1
Supports FAST READ operation in dual SPI protocol  
Reserved  
3:1  
4
111b  
1
Supports FAST READ operation in quad SPI protocol  
Reserved  
Reserved  
Reserved  
7:5  
111b  
FFFFFFh  
FFFFh  
00111b  
41h–43h  
44h–45h  
46h  
Number of dummy clock cycles required before valid output from  
FAST READ operation in dual SPI protocol  
4:0  
Number of XIP confirmation bits for FAST READ operation in dual SPI  
protocol  
46h  
7:5  
001b  
Command code for FAST READ operation in dual SPI protocol  
Reserved  
47h  
48h–49h  
4Ah  
7:0  
BBh  
FFFFh  
01001b  
Number of dummy clock cycles required before valid output from  
FAST READ operation in quad SPI protocol  
4:0  
Number of XIP confirmation bits for FAST READ operation in quad  
SPI protocol  
7:5  
001b  
Command code for FAST READ operation in quad SPI protocol  
Sector type 1 size (4k)  
4Bh  
4Ch  
4Ch  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
EBh  
0Ch  
0Ch  
10h  
D8h  
00h  
00h  
00h  
00h  
Sector type 1 command code (4k)  
Sector type 2 size (64KB)  
Sector type 2 command code 64KB)  
Sector type 3 size (not present)  
Sector type 3 size (not present)  
Sector type 4 size (not present)  
Sector type 4 size (not present)  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
42  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ MEMORY Operations  
READ MEMORY Operations  
The device supports default reading and writing to an A[MAX:MIN] of A[23:0] (3-byte  
address).  
Reading and writing to an A[MAX:MIN] of A[31:0] (4-byte address) is also supported. Se-  
lection of the 3-byte or 4-byte address range can be enabled in two ways: setting the  
nonvolatile configuration register or entering the ENABLE 4-BYTE ADDRESS MODE or  
EXIT 4-BYTE ADDRESS MODE commands. Further details for these settings and com-  
mands are in the respective register and command sections of the data sheet.  
Note: When the device is set to the default address range of A[23:0], another method for  
enabling 4-byte addressing is through the extended address register. Details can be  
found in Nonvolatile and Volatile Registers.  
3-Byte Address  
To execute READ MEMORY commands, S# is driven LOW. The command code is input  
on DQn, followed by input on DQn of three address bytes. Each address bit is latched in  
during the rising edge of the clock. The addressed byte can be at any location, and the  
address automatically increments to the next address after each byte of data is shifted  
out; therefore, the entire memory can be read with a single command. The operation is  
terminated by driving S# HIGH at any time during data output.  
Table 25: Command/Address/Data Lines for READ MEMORY Commands  
Note 1 applies to entire table  
Command Name  
DUAL  
QUAD  
FAST  
DUAL OUTPUT INPUT/OUTPUT QUAD OUTPUT INPUT/OUTPUT  
READ  
03h  
READ  
FAST READ  
FAST READ  
FAST READ  
FAST READ  
STR Mode  
0Bh  
0Dh  
3Bh  
BBh  
6Bh  
EBh  
DTR Mode  
3Dh  
BDh  
6Dh  
EDh  
Extended SPI Protocol  
Supported  
Yes  
Yes  
Yes  
DQ0  
Yes  
Yes  
DQ0  
Yes  
Command Input  
Address Input  
Data Output  
DQ0  
DQ0  
DQ1  
DQ0  
DQ0  
DQ1  
DQ0  
DQ0  
DQ0  
DQ[1:0]  
DQ[1:0]  
DQ0  
DQ[3:0]  
DQ[3:0]  
DQ[1:0]  
DQ[3:0]  
Dual SPI Protocol  
Supported  
No  
Yes  
Yes  
Yes  
No  
No  
Command Input  
Address Input  
Data Output  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
Quad SPI Protocol  
Supported  
No  
Yes  
No  
No  
Yes  
Yes  
Command Input  
Address Input  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
43  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ MEMORY Operations  
Table 25: Command/Address/Data Lines for READ MEMORY Commands (Continued)  
Note 1 applies to entire table  
Command Name  
DUAL  
QUAD  
FAST  
DUAL OUTPUT INPUT/OUTPUT QUAD OUTPUT INPUT/OUTPUT  
READ  
READ  
FAST READ  
FAST READ  
FAST READ  
FAST READ  
STR Mode  
DTR Mode  
Data Output  
03h  
0Bh  
0Dh  
3Bh  
3Dh  
BBh  
BDh  
6Bh  
EBh  
6Dh  
EDh  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
1. Yes in the "Supported" row for each protocol indicates that the command in that col-  
umn is supported; when supported, a command's functionality is identical for the entire  
column regardless of the protocol. For example, a FAST READ functions the same for all  
three protocols even though its data is input/output differently depending on the pro-  
tocol.  
Notes:  
2. FAST READ is similar to READ, but requires dummy clock cycles following the address  
bytes and can operate at a higher frequency (fC).  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
44  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ MEMORY Operations  
4-Byte Address  
To execute 4-byte READ MEMORY commands, S# is driven LOW. The command code is  
input on DQn, followed by input on DQn of four address bytes. Each address bit is  
latched in during the rising edge of the clock. The addressed byte can be at any location,  
and the address automatically increments to the next address after each byte of data is  
shifted out; therefore, the entire memory can be read with a single command. The oper-  
ation is terminated by driving S# HIGH at any time during data output.  
Table 26: Command/Address/Data Lines for READ MEMORY Commands – 4-Byte Address  
Notes 1 and 2 apply to entire table  
Command Name (4-Byte Address)  
DUAL  
QUAD  
FAST  
DUAL OUTPUT INPUT/OUTPUT QUAD OUTPUT INPUT/OUTPUT  
READ  
03h/13h  
READ  
FAST READ  
3Bh/3Ch  
3Dh  
FAST READ  
BBh/BCh  
BDh  
FAST READ  
6Bh/6Ch  
6Dh  
FAST READ  
EBh/ECh  
EDh  
STR Mode  
0Bh/0Ch  
0Dh  
DTR Mode  
Extended SPI Protocol  
Supported  
Yes  
Yes  
Yes  
DQ0  
Yes  
Yes  
DQ0  
Yes  
Command Input  
Address Input  
Data Output  
DQ0  
DQ0  
DQ1  
DQ0  
DQ0  
DQ1  
DQ0  
DQ0  
DQ0  
DQ[1:0]  
DQ[1:0]  
DQ0  
DQ[3:0]  
DQ[3:0]  
DQ[1:0]  
DQ[3:0]  
Dual SPI Protocol  
Supported  
No  
Yes  
Yes  
Yes  
No  
No  
Command Input  
Address Input  
Data Output  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
DQ[1:0]  
Quad SPI Protocol  
Supported  
No  
Yes  
No  
No  
Yes  
Yes  
Command Input  
Address Input  
Data Output  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
DQ[3:0]  
1. Yes in the "Supported" row for each protocol indicates that the command in that col-  
umn is supported; when supported, a command's functionality is identical for the entire  
column regardless of the protocol. For example, a FAST READ functions the same for all  
three protocols even though its data is input/output differently depending on the pro-  
tocol.  
Notes:  
2. Command codes 13h, 0Ch, 3Ch, BCh, 6Ch, and ECh do not need to be set up in the ad-  
dressing mode; they will work directly in 4-byte addressing mode.  
3. A 4-BYTE FAST READ command is similar to 4-BYTE READ operation, but requires dum-  
my clock cycles following the address bytes and can operate at a higher frequency (fC).  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
45  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ MEMORY Operations  
Figure 15: READ Command  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
DQ[0]  
DQ1  
Command  
High-Z  
MSB  
A[MAX]  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
Don’t Care  
1. Cx = 7 + (A[MAX] + 1).  
Note:  
READ MEMORY Operations Timing – Single Transfer Rate  
Figure 16: FAST READ Command  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
DQ0  
Command  
MSB  
A[MAX]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DQ1  
High-Z  
Dummy cycles  
Dual  
0
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DQ[1:0]  
Command  
MSB  
A[MAX]  
Dummy cycles  
Quad  
0
1
2
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
DQ[3:0]  
Command  
MSB  
A[MAX]  
Don’t Care  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1).  
For dual protocol, Cx = 3 + (A[MAX] + 1)/2.  
For quad protocol, Cx = 1 + (A[MAX] + 1)/4.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
46  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ MEMORY Operations  
Figure 17: DUAL OUTPUT FAST READ Command – STR  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT  
DOUT  
DOUT  
DOUT  
DQ0  
Command  
High-Z  
MSB  
A[MAX]  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DQ1  
Dummy cycles  
1. Cx = 7 + (A[MAX] + 1).  
Notes:  
2. Shown here is the DUAL OUTPUT FAST READ timing for the extended SPI protocol. The  
dual timing shown for the FAST READ command is the equivalent of the DUAL OUTPUT  
FAST READ timing for the dual SPI protocol.  
Figure 18: DUAL INPUT/OUTPUT FAST READ Command – STR  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT  
DOUT  
DOUT  
DOUT  
DQ0  
Command  
High-Z  
MSB  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DQ1  
A[MAX]  
Dummy cycles  
1. Cx = 7 + (A[MAX] + 1)/2.  
Notes:  
2. Shown here is the DUAL INPUT/OUTPUT FAST READ timing for the extended SPI proto-  
col. The dual timing shown for the FAST READ command is the equivalent of the DUAL  
INPUT/OUTPUT FAST READ timing for the dual SPI protocol.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
47  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ MEMORY Operations  
Figure 19: QUAD OUTPUT FAST READ Command – STR  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DQ0  
Command  
High-Z  
‘1’  
MSB  
A[MAX]  
DOUT  
DQ[2:1]  
DQ3  
DOUT  
MSB  
Dummy cycles  
1. Cx = 7 + (A[MAX] + 1).  
Notes:  
2. Shown here is the QUAD OUTPUT FAST READ timing for the extended SPI protocol. The  
quad timing shown for the FAST READ command is the equivalent of the QUAD OUT-  
PUT FAST READ timing for the quad SPI protocol.  
Figure 20: QUAD INPUT/OUTPUT FAST READ Command – STR  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DQ0  
Command  
High-Z  
‘1’  
MSB  
DOUT  
DQ[2:1]  
DQ3  
DOUT  
A[MAX]  
MSB  
Dummy cycles  
1. Cx = 7 + (A[MAX] + 1)/4.  
Notes:  
2. Shown here is the QUAD INPUT/OUTPUT FAST READ timing for the extended SPI proto-  
col. The quad timing shown for the FAST READ command is the equivalent of the QUAD  
INPUT/OUTPUT FAST READ timing for the quad SPI protocol.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
48  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ MEMORY Operations  
READ MEMORY Operations Timing – Double Transfer Rate  
Figure 21: FAST READ Command – DTR  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
DQ0  
Command  
MSB  
A[MAX]  
LSB  
OUT  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
OUT  
DQ1  
High-Z  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
Dummy cycles  
Dual  
0
3
4
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
DQ[1:0]  
Command  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
A[MAX]  
MSB  
Dummy cycles  
Quad  
0
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
DQ[3:0]  
Command  
OUT  
OUT  
OUT OUT  
MSB  
A[MAX]  
MSB  
Don’t Care  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1)/2.  
For dual protocol, Cx = 3 + (A[MAX] + 1)/4.  
For quad protocol, Cx = 1 + (A[MAX] + 1)/8.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
49  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ MEMORY Operations  
Figure 22: DUAL OUTPUT FAST READ Command – DTR  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT  
DQ0  
Command  
High-Z  
MSB  
A[MAX]  
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT  
DQ1  
MSB  
Dummy cycles  
1. Cx = 7 + (A[MAX] + 1)/2.  
Notes:  
2. Shown here is the DUAL OUTPUT FAST READ timing for the extended SPI protocol. The  
dual timing shown for the FAST READ command is the equivalent of the DUAL OUTPUT  
FAST READ timing for the dual SPI protocol.  
Figure 23: DUAL INPUT/OUTPUT FAST READ Command – DTR  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT  
DQ0  
Command  
High-Z  
MSB  
DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT  
DQ1  
A[MAX]  
MSB  
Dummy cycles  
1. Cx = 7 + (A[MAX] + 1)/4.  
Notes:  
2. Shown here is the DUAL INPUT/OUTPUT FAST READ timing for the extended SPI proto-  
col. The dual timing shown for the FAST READ command is the equivalent of the DUAL  
INPUT/OUTPUT FAST READ timing for the dual SPI protocol.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
50  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
READ MEMORY Operations  
Figure 24: QUAD OUTPUT FAST READ Command – DTR  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT DOUT DOUT  
DQ0  
Command  
High-Z  
‘1’  
MSB  
A[MAX]  
DOUT DOUT DOUT DOUT  
DQ[2:1]  
DQ3  
DOUT DOUT DOUT DOUT  
MSB  
Dummy cycles  
1. Cx = 7 + (A[MAX] + 1)/2.  
Notes:  
2. Shown here is the QUAD OUTPUT FAST READ timing for the extended SPI protocol. The  
quad timing shown for the FAST READ command is the equivalent of the QUAD OUT-  
PUT FAST READ timing for the quad SPI protocol.  
Figure 25: QUAD INPUT/OUTPUT FAST READ Command – DTR  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT DOUT DOUT  
DQ0  
Command  
High-Z  
‘1’  
MSB  
DOUT DOUT DOUT DOUT  
DQ[2:1]  
DQ3  
DOUT DOUT DOUT DOUT  
MSB  
A[MAX]  
Dummy cycles  
1. Cx = 7 + (A[MAX] + 1)/8.  
Notes:  
2. Shown here is the QUAD INPUT/OUTPUT FAST READ timing for the extended SPI proto-  
col. The quad timing shown for the FAST READ command is the equivalent of the QUAD  
INPUT/OUTPUT FAST READ timing for the quad SPI protocol.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
51  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
PROGRAM Operations  
PROGRAM Operations  
PROGRAM commands are initiated by first executing the WRITE ENABLE command to  
set the write enable latch bit to 1. S# is then driven LOW and held LOW until the eighth  
bit of the last data byte has been latched in, after which it must be driven HIGH. The  
command code is input on DQ0, followed by input on DQ[n] of address bytes and at  
least one data byte. Each address bit is latched in during the rising edge of the clock.  
When S# is driven HIGH, the operation, which is self-timed, is initiated; its duration is  
tPP.  
If the bits of the least significant address, which is the starting address, are not all zero,  
all data transmitted beyond the end of the current page is programmed from the start-  
ing address of the same page. If the number of bytes sent to the device exceed the maxi-  
mum page size, previously latched data is discarded and only the last maximum page-  
size number of data bytes are guaranteed to be programmed correctly within the same  
page. If the number of bytes sent to the device is less than the maximum page size, they  
are correctly programmed at the specified addresses without any effect on the other  
bytes of the same page.  
When the operation is in progress, the write in progress bit is set to 1. The write enable  
latch bit is cleared to 0, whether the operation is successful or not. The status register  
and flag status register can be polled for the operation status. An operation can be  
paused or resumed by the PROGRAM/ERASE SUSPEND or PROGRAM/ERASE RESUME  
command, respectively. When the operation completes, the write in progress bit is  
cleared to 0.  
If the operation times out, the write enable latch bit is reset and the program fail bit is  
set to 1. If S# is not driven HIGH, the command is not executed, flag status register error  
bits are not set, and the write enable latch remains set to 1. When a command is applied  
to a protected sector, the command is not executed, the write enable latch bit remains  
set to 1, and flag status register bits 1 and 4 are set.  
Table 27: Data/Address Lines for PROGRAM Commands  
Note 1 applies to entire table  
Command Name  
Data In  
DQ0  
Address In  
DQ0  
Extended  
Yes  
Dual  
Yes  
Quad  
Yes  
PAGE PROGRAM  
DUAL INPUT FAST PROGRAM  
DQ[1:0]  
DQ[1:0]  
DQ0  
Yes  
Yes  
No  
EXTENDED DUAL INPUT  
FAST PROGRAM  
DQ[1:0]  
Yes  
Yes  
No  
QUAD INPUT FAST PROGRAM  
DQ[3:0]  
DQ[3:0]  
DQ0  
Yes  
Yes  
No  
No  
Yes  
Yes  
EXTENDED QUAD INPUT  
FAST PROGRAM  
DQ[3:0]  
1. Yes in the protocol columns indicates that the command is supported and has the same  
functionality and command sequence as other commands marked Yes.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
52  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
PROGRAM Operations  
Figure 26: PAGE PROGRAM Command  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ[0]  
Command  
MSB  
A[MAX]  
MSB  
Dual  
0
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ[1:0]  
Command  
MSB  
A[MAX]  
MSB  
Quad  
0
1
2
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DQ[3:0]  
Command  
MSB  
A[MAX]  
MSB  
1. For extended SPI protocol, Cx = 7 + (A[MAX] + 1).  
For dual SPI protocol, Cx = 3 + (A[MAX] + 1)/2.  
For quad SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
53  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
PROGRAM Operations  
Figure 27: DUAL INPUT FAST PROGRAM Command  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
D
DQ0  
DQ1  
Command  
IN  
IN  
IN  
IN  
IN  
MSB  
A[MAX]  
High-Z  
IN  
IN  
IN  
IN  
IN  
MSB  
Dual  
0
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ[1:0]  
Command  
MSB  
A[MAX]  
MSB  
1. For extended SPI protocol, Cx = 7 + (A[MAX] + 1).  
For dual SPI protocol, Cx = 3 + (A[MAX] + 1)/2.  
Note:  
Figure 28: EXTENDED DUAL INPUT FAST PROGRAM Command  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ0  
Command  
MSB  
DIN  
DIN  
DIN  
DIN  
DIN  
High-Z  
0
DQ1  
A[MAX]  
MSB  
Dual  
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ[1:0]  
Command  
MSB  
A[MAX]  
MSB  
1. For extended SPI protocol, Cx = 7 + (A[MAX] + 1)/2.  
For dual SPI protocol, Cx = 3 + (A[MAX] + 1)/2.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
54  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
PROGRAM Operations  
Figure 29: QUAD INPUT FAST PROGRAM Command  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
DQ0  
Command  
IN  
IN  
IN  
IN  
IN  
MSB  
A[MAX]  
High-Z  
0
DQ[3:1]  
IN  
MSB  
Quad  
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
DQ[3:0]  
Command  
IN  
IN  
IN  
MSB  
A[MAX]  
MSB  
1. For extended SPI protocol, Cx = 7 + (A[MAX] + 1)/4.  
For quad SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
55  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
PROGRAM Operations  
Figure 30: EXTENDED QUAD INPUT FAST PROGRAM Command  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
Command  
DQ0  
DQ[2:1]  
DQ3  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
MSB  
High-Z  
‘1’  
0
A[MAX]  
MSB  
Quad  
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
Command  
DQ[3:0]  
IN  
IN  
IN  
MSB  
A[MAX]  
MSB  
1. For extended SPI protocol, Cx = 7 + (A[MAX] + 1)/4.  
For quad SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
56  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
WRITE Operations  
WRITE Operations  
WRITE ENABLE Command  
The WRITE ENABLE operation sets the write enable latch bit. To execute a WRITE ENA-  
BLE command, S# is driven LOW and held LOW until the eighth bit of the command  
code has been latched in, after which it must be driven HIGH. The command code is  
input on DQ0 for extended SPI protocol, on DQ[1:0] for dual SPI protocol, and on  
DQ[3:0] for quad SPI protocol.  
The write enable latch bit must be set before every PROGRAM, ERASE, WRITE, ENTER  
4-BYTE ADDRESS MODE, and EXIT 4-BYTE ADDRESS MODE command. If S# is not  
driven HIGH after the command code has been latched in, the command is not execu-  
ted, flag status register error bits are not set, and the write enable latch remains cleared  
to its default setting of 0.  
WRITE DISABLE Command  
The WRITE DISABLE operation clears the write enable latch bit. To execute a WRITE  
DISABLE command, S# is driven LOW and held LOW until the eighth bit of the com-  
mand code has been latched in, after which it must be driven HIGH. The command  
code is input on DQ0 for extended SPI protocol, on DQ[1:0] for dual SPI protocol, and  
on DQ[3:0] for quad SPI protocol.  
If S# is not driven HIGH after the command code has been latched in, the command is  
not executed, flag status register error bits are not set, and the write enable latch re-  
mains set to 1.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
57  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
WRITE Operations  
Figure 31: WRITE ENABLE and WRITE DISABLE Command Sequence  
Extended  
0
1
2
3
4
5
6
7
C
S#  
Command Bits  
LSB  
DQ[0]  
0
0
0
0
0
1
1
0
MSB  
DQ1  
High-Z  
Dual  
0
1
2
3
C
S#  
Command Bits  
LSB  
DQ[0]  
DQ[1]  
0
0
0
1
0
0
0
1
MSB  
Quad  
0
1
C
S#  
Command Bits  
LSB  
DQ[0]  
DQ[1]  
DQ[2]  
DQ[3]  
0
0
0
0
0
1
1
0
Don’t Care  
MSB  
1. Shown here is the WRITE ENABLE command code, which is 06h or 0000 0110 binary. The  
WRITE DISABLE command sequence is identical, except the WRITE DISABLE command  
code is 04h or 0000 0100 binary.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
58  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
ERASE Operations  
ERASE Operations  
SUBSECTOR ERASE Command  
To execute the SUBSECTOR ERASE command and set the selected subsector bits set to  
FFh, the WRITE ENABLE command must be issued to set the write enable latch bit to 1.  
S# is driven LOW and held LOW until the eighth bit of the last data byte has been latch-  
ed in, after which it must be driven HIGH. The command code is input on DQ0, fol-  
lowed by address bytes; any address within the subsector is valid. Each address bit is  
latched in during the rising edge of the clock. When S# is driven HIGH, the operation,  
which is self-timed, is initiated; its duration is tSSE. The operation can be suspended  
and resumed by the PROGRAM/ERASE SUSPEND and PROGRAM/ERASE RESUME  
commands, respectively.  
If the write enable latch bit is not set, the device ignores the SUBSECTOR ERASE com-  
mand and no error bits are set to indicate operation failure.  
When the operation is in progress, the write in progress bit is set to 1. The write enable  
latch bit is cleared to 0, whether the operation is successful or not. The status register  
and flag status register can be polled for the operation status. When the operation com-  
pletes, the write in progress bit is cleared to 0.  
If the operation times out, the write enable latch bit is reset and the erase error bit is set  
to 1. If S# is not driven HIGH, the command is not executed, flag status register error  
bits are not set, and the write enable latch remains set to 1. When a command is applied  
to a protected subsector, the command is not executed. Instead, the write enable latch  
bit remains set to 1, and flag status register bits 1 and 5 are set.  
SECTOR ERASE Command  
To execute the SECTOR ERASE command (and set selected sector bits to FFh), the  
WRITE ENABLE command must be issued to set the write enable latch bit to 1. S# is  
driven LOW and held LOW until the eighth bit of the last data byte has been latched in,  
after which it must be driven HIGH. The command code is input on DQ0, followed by  
address bytes; any address within the sector is valid. Each address bit is latched in dur-  
ing the rising edge of the clock. When S# is driven HIGH, the operation, which is self-  
timed, is initiated; its duration is tSE. The operation can be suspended and resumed by  
the PROGRAM/ERASE SUSPEND and PROGRAM/ERASE RESUME commands, respec-  
tively.  
If the write enable latch bit is not set, the device ignores the SECTOR ERASE command  
and no error bits are set to indicate operation failure.  
When the operation is in progress, the write in progress bit is set to 1 and the write ena-  
ble latch bit is cleared to 0, whether the operation is successful or not. The status regis-  
ter and flag status register can be polled for the operation status. When the operation  
completes, the write in progress bit is cleared to 0.  
If the operation times out, the write enable latch bit is reset and erase error bit is set to  
1. If S# is not driven HIGH, the command is not executed, flag status register error bits  
are not set, and the write enable latch remains set to 1. When a command is applied to a  
protected sector, the command is not executed. Instead, the write enable latch bit re-  
mains set to 1, and flag status register bits 1 and 5 are set.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
59  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
ERASE Operations  
Figure 32: SUBSECTOR and SECTOR ERASE Command  
Extended  
0
7
8
4
C
x
C
LSB  
A[MIN]  
DQ0  
Command  
MSB  
A[MAX]  
A[MAX]  
Dual  
0
3
C
x
C
LSB  
A[MIN]  
DQ0[1:0]  
Command  
MSB  
Quad  
0
1
2
C
x
C
LSB  
A[MIN]  
DQ0[3:0]  
Command  
MSB  
A[MAX]  
1. For extended SPI protocol, Cx = 7 + (A[MAX] + 1).  
For dual SPI protocol, Cx = 3 + (A[MAX] + 1)/2.  
For quad SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Note:  
BULK ERASE Command  
To initiate the BULK ERASE command, the WRITE ENABLE command must be issued  
to set the write enable latch bit to 1. S# is driven LOW and held LOW until the eighth bit  
of the last data byte has been latched in, after which it must be driven HIGH. The com-  
mand code is input on DQ0. When S# is driven HIGH, the operation, which is self-  
timed, is initiated; its duration is tBE.  
If the write enable latch bit is not set, the device ignores the SECTOR ERASE command  
and no error bits are set to indicate operation failure.  
When the operation is in progress, the write in progress bit is set to 1 and the write ena-  
ble latch bit is cleared to 0, whether the operation is successful or not. The status regis-  
ter and flag status register can be polled for the operation status. When the operation  
completes, the write in progress bit is cleared to 0.  
If the operation times out, the write enable latch bit is reset and erase error bit is set to  
1. If S# is not driven HIGH, the command is not executed, the flag status register error  
bits are not set, and the write enable latch remains set to 1.  
The command is not executed if any sector is locked. Instead, the write enable latch bit  
remains set to 1, and flag status register bits 1 and 5 are set.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
60  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
ERASE Operations  
Figure 33: BULK ERASE Command  
Extended  
0
7
C
LSB  
DQ0  
Command  
0
MSB  
MSB  
Dual  
3
C
LSB  
DQ0[1:0]  
Command  
0
Quad  
1
C
LSB  
DQ0[3:0]  
Command  
MSB  
PROGRAM/ERASE SUSPEND Command  
To initiate the PROGRAM/ERASE SUSPEND command, S# is driven LOW. The com-  
mand code is input on DQ0. The operation is terminated by the PROGRAM/ERASE RE-  
SUME command.  
PROGRAM/ERASE SUSPEND command enables the memory controller to interrupt  
and suspend an array PROGRAM or ERASE operation within the program/erase latency.  
If a SUSPEND command is issued during a PROGRAM operation, then the flag status  
register bit 2 is set to 1. After erase/program latency time, the flag status register bit 7 is  
also set to 1, showing the device to be in a suspended state, waiting for any operation  
(see the Operations Allowed/Disallowed During Device States table).  
If a SUSPEND command is issued during an ERASE operation, then the flag status regis-  
ter bit 6 is set to 1. After erase/program latency time, the flag status register bit 7 is also  
set to 1, showing that device to be in a suspended state, waiting for any operation (see  
the Operations Allowed/Disallowed During Device States table).  
If the time remaining to complete the operation is less than the suspend latency, the de-  
vice completes the operation and clears the flag status register bits 2 or 6, as applicable.  
Because the suspend state is volatile, if there is a power cycle, the suspend state infor-  
mation is lost and the flag status register powers up as 80h.  
During an ERASE SUSPEND operation, a PROGRAM or READ operation is possible in  
any sector except the one in a suspended state. Reading from a sector that is in a sus-  
pended state will output indeterminate data. The device ignores a PROGRAM com-  
mand to a sector that is in an ERASE SUSPEND state; it also sets to 1 the flag status reg-  
ister bit 4: program failure/protection error, and leaves the write enable latch bit un-  
changed. The WRITE LOCK REGISTER, WRITE VOLATILE CONFIGURATION REGIS-  
TER, and WRITE ENHANCED VOLATILE CONFIGURATION REGISTER commands are  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
61  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
ERASE Operations  
allowed during an ERASE SUSPEND state. When the ERASE operation resumes, it does  
not check the new lock status of the WRITE LOCK REGISTER command.  
During a PROGRAM SUSPEND operation, a READ operation is possible in any page ex-  
cept the one in a suspended state. Reading from a page that is in a suspended state will  
output indeterminate data. The commands allowed during a program suspend state in-  
clude the WRITE VOLATILE CONFIGURATION REGISTER command and the WRITE  
ENHANCED VOLATILE CONFIGURATION REGISTER command.  
It is possible to nest a PROGRAM/ERASE SUSPEND operation inside a PROGRAM/  
ERASE SUSPEND operation just once. Issue an ERASE command and suspend it. Then  
issue a PROGRAM command and suspend it also. With the two operations suspended,  
the next PROGRAM/ERASE RESUME command resumes the latter operation, and a sec-  
ond PROGRAM/ERASE RESUME command resumes the former (or first) operation.  
Table 28: Suspend Parameters  
Parameter  
Condition  
Typ  
700  
5
Max  
Units Notes  
Erase to suspend  
Program to suspend  
Sector erase or erase resume to erase suspend  
Program resume to program suspend  
µs  
µs  
µs  
1
1
1
Subsector erase to sus-  
pend  
Subsector erase or subsector erase resume to erase sus-  
pend  
50  
Suspend latency  
Suspend latency  
Suspend latency  
Program  
7
µs  
µs  
µs  
2
2
3
Subsector erase  
Erase  
15  
15  
1. Timing is not internally controlled.  
2. Any READ command accepted.  
Notes:  
3. Any command except the following are accepted: SECTOR, SUBSECTOR, or BULK ERASE;  
WRITE STATUS REGISTER; WRITE NONVOLATILE CONFIGURATION REGISTER; and PRO-  
GRAM OTP.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
62  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
ERASE Operations  
Table 29: Operations Allowed/Disallowed During Device States  
Note 1 applies to entire table  
Standby  
Program or  
Erase State  
Subsector Erase Suspend or  
Program Suspend State  
Erase Suspend  
State  
Operation  
State  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Notes  
READ  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
No  
Yes  
Yes/No  
No  
2
3
4
5
6
7
8
PROGRAM  
ERASE  
WRITE  
No  
WRITE  
Yes  
READ  
Yes  
SUSPEND  
No  
1. The device can be in only one state at a time. Depending on the state of the device,  
some operations are allowed (Yes) and others are not (No). For example, when the de-  
vice is in the standby state, all operations except SUSPEND are allowed in any sector. For  
all device states except the erase suspend state, if an operation is allowed or disallowed  
in one sector, it is allowed or disallowed in all other sectors. In the erase suspend state, a  
PROGRAM operation is allowed in any sector except the one in which an ERASE opera-  
tion has been suspended.  
Notes:  
2. All READ operations except READ STATUS REGISTER and READ FLAG REGISTER. When is-  
sued to a sector or subsector that is simultaneously in an erase suspend state, the READ  
operation is accepted, but the data output is not guaranteed until the erase has comple-  
ted.  
3. All PROGRAM operations except PROGRAM OTP. In the erase suspend state, a PROGRAM  
operation is allowed in any sector (Yes) except the sector (No) in which an ERASE opera-  
tion has been suspended.  
4. Applies to the SECTOR ERASE or SUBSECTOR ERASE operation.  
5. Applies to the following operations: WRITE STATUS REGISTER, WRITE NONVOLATILE  
CONFIGURATION REGISTER, PROGRAM OTP, and BULK ERASE.  
6. Applies to the WRITE ENABLE/DISABLE, CLEAR FLAG STATUS REGISTER, WRITE EXTEN-  
DED ADDRESS REGISTER, WRITE LOCK REGISTER, ENTER or EXIT 4-BYTE ADDRESS MODE,  
WRITE VOLATILE or ENHANCED VOLATILE CONFIGURATION REGISTER operation.  
7. Applies to the READ STATUS REGISTER or READ FLAG STATUS REGISTER operation.  
8. Applies to the PROGRAM SUSPEND or ERASE SUSPEND operation.  
PROGRAM/ERASE RESUME Command  
To initiate the PROGRAM/ERASE RESUME command, S# is driven LOW. The command  
code is input on DQ0. The operation is terminated by driving S# HIGH.  
When this command is executed, the status register write in progress bit is set to 1, and  
the flag status register program erase controller bit is set to 0. This command is ignored  
if the device is not in a suspended state.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
63  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
RESET Operations  
RESET Operations  
RESET ENABLE and RESET MEMORY Command  
To reset the device, the RESET ENABLE command must be followed by the RESET  
MEMORY command. To execute each command, S# is driven LOW. The command code  
is input on DQ0. A minimum de-selection time of tSHSL2 must come between the RE-  
SET ENABLE and RESET MEMORY commands or a reset is not guaranteed. When these  
two commands are executed and S# is driven HIGH, the device enters a power-on reset  
condition. A time of tSHSL3 is required before the device can be re-selected by driving  
S# LOW. It is recommended that the device exit XIP mode before executing these two  
commands to initiate a reset.  
All volatile lock bits, the volatile configuration register, the enhanced volatile configura-  
tion register, and the extended address register are reset to the power-on reset default  
condition. The power-on reset condition depends on settings in the nonvolatile config-  
uration register.  
If a reset is initiated while a WRITE, PROGRAM, or ERASE operation is in progress or  
suspended, the operation is aborted and data may be corrupted.  
Figure 34: RESET ENABLE and RESET MEMORY Command  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
C
S#  
Reset enable  
Reset memory  
DQ0  
1. The number of lines and rate for transmission varies with extended, dual, or quad SPI.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
64  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
ONE TIME PROGRAMMABLE Operations  
ONE TIME PROGRAMMABLE Operations  
READ OTP ARRAY Command  
To initiate a READ OTP ARRAY command, S# is driven LOW. The command code is in-  
put on DQ0, followed by address bytes and dummy clock cycles. Each address bit is  
latched in during the rising edge of C. Data is shifted out on DQ1, beginning from the  
specified address and at a maximum frequency of fC (MAX) on the falling edge of the  
clock. The address increments automatically to the next address after each byte of data  
is shifted out. There is no rollover mechanism; therefore, if read continuously, after lo-  
cation 0x64, the device continues to output data at location 0x64. The operation is ter-  
minated by driving S# HIGH at any time during data output.  
Figure 35: READ OTP Command  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
DQ0  
DQ1  
Command  
MSB  
A[MAX]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
High-Z  
Dummy cycles  
Dual  
0
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DQ[1:0]  
Command  
MSB  
A[MAX]  
Dummy cycles  
Quad  
0
1
2
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
DQ[3:0]  
Command  
MSB  
A[MAX]  
Don’t Care  
Dummy cycles  
1. For extended SPI protocol, Cx = 7 + (A[MAX] + 1).  
For dual SPI protocol, Cx = 3 + (A[MAX] + 1)/2.  
For quad SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Note:  
PROGRAM OTP ARRAY Command  
To initiate the PROGRAM OTP ARRAY command, the WRITE ENABLE command must  
be issued to set the write enable latch bit to 1; otherwise, the PROGRAM OTP ARRAY  
command is ignored and flag status register bits are not set. S# is driven LOW and held  
LOW until the eighth bit of the last data byte has been latched in, after which it must be  
driven HIGH. The command code is input on DQ0, followed by address bytes and at  
least one data byte. Each address bit is latched in during the rising edge of the clock.  
When S# is driven HIGH, the operation, which is self-timed, is initiated; its duration is  
tPOTP. There is no rollover mechanism; therefore, after a maximum of 65 bytes are  
latched in and subsequent bytes are discarded.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
65  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
ONE TIME PROGRAMMABLE Operations  
PROGRAM OTP ARRAY programs, at most, 64 bytes to the OTP memory area and one  
OTP control byte. When the operation is in progress, the write in progress bit is set to 1.  
The write enable latch bit is cleared to 0, whether the operation is successful or not, and  
the status register and flag status register can be polled for the operation status. When  
the operation completes, the write in progress bit is cleared to 0.  
If the operation times out, the write enable latch bit is reset and the program fail bit is  
set to 1. If S# is not driven HIGH, the command is not executed, flag status register error  
bits are not set, and the write enable latch remains set to 1.  
The OTP control byte (byte 64) is used to permanently lock the OTP memory array.  
Table 30: OTP Control Byte (Byte 64)  
Bit Name  
Settings  
Description  
0
OTP control byte  
0 = Locked  
1 = Unlocked  
(Default)  
Used to permanently lock the 64B OTP array. When bit 0 = 1, the 64B OTP  
array can be programmed. When bit 0 = 0, the 64B OTP array is read only.  
Once bit 0 has been programmed to 0, it can no longer be changed to 1.  
PROGRAM OTP ARRAY is ignored, write enable latch bit remains set, and  
flag status register bits 1 and 4 are set.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
66  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
ONE TIME PROGRAMMABLE Operations  
Figure 36: PROGRAM OTP Command  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ[0]  
Command  
MSB  
A[MAX]  
MSB  
Dual  
0
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ[1:0]  
Command  
MSB  
A[MAX]  
MSB  
Quad  
0
1
2
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DQ[3:0]  
Command  
MSB  
A[MAX]  
MSB  
1. For extended SPI protocol, Cx = 7 + (A[MAX] + 1).  
For dual SPI protocol, Cx = 3 + (A[MAX] + 1)/2.  
For quad SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
67  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
ADDRESS MODE Operations – Enter and Exit 4-Byte Address  
Mode  
ADDRESS MODE Operations – Enter and Exit 4-Byte Address Mode  
ENTER or EXIT 4-BYTE ADDRESS MODE Command  
Both ENTER 4-BYTE ADDRESS MODE and EXIT 4-BYTE ADDRESS MODE commands  
share the same requirements.  
To enter or exit the 4-byte address mode, the WRITE ENABLE command must be execu-  
ted to set the write enable latch bit to 1. (Note: The WRITE ENABLE command must  
NOT be executed on the N25Q256A83ESF40x and N25Q256A83E1240x devices.) S# must  
be driven LOW. The command must be input on DQn. The effect of the command is im-  
mediate; after the command has been executed, the write enable latch bit is cleared to  
0.  
The default address mode is three bytes, and the device returns to the default upon exit-  
ing the 4-byte address mode.  
ENTER or EXIT QUAD Command  
The ENTER or EXIT QUAD (QPI) command is only available on the N25Q256A83ESF40x  
and N25Q256A83E1240x devices. To initiate this command, the WRITE ENABLE com-  
mand must not be executed. S# must be driven LOW, and the command must be input  
on DQn. The effect of the command is immediate.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
68  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
XIP Mode  
XIP Mode  
Execute-in-place (XIP) mode allows the memory to be read by sending an address to the  
device and then receiving the data on one, two, or four pins in parallel, depending on  
the customer requirements. XIP mode offers maximum flexibility to the application,  
saves instruction overhead, and reduces random access time.  
Activate or Terminate XIP Using Volatile Configuration Register  
Applications that boot in SPI and must switch to XIP use the volatile configuration reg-  
ister. XIP provides faster memory READ operations by requiring only an address to exe-  
cute, rather than a command code and an address.  
To activate XIP requires two steps. First, enable XIP by setting volatile configuration reg-  
ister bit 3 to 0. Next, drive the XIP confirmation bit to 0 during the next FAST READ op-  
eration. XIP is then active. Once in XIP, any command that occurs after S# is toggled re-  
quires only address bits to execute; a command code is not necessary, and device oper-  
ations use the SPI protocol that is enabled. XIP is terminated by driving the XIP confir-  
mation bit to 1. The device automatically resets volatile configuration register bit 3 to 1.  
Note: For devices with basic XIP, indicated by a part number feature set digit of 2 or 4, it  
is not necessary to set the volatile configuration register bit 3 to 0 to enable XIP. Instead,  
it is enabled by setting the XIP confirmation bit to 0 during the first dummy clock cycle  
after any FAST READ command.  
Activate or Terminate XIP Using Nonvolatile Configuration Register  
Applications that must boot directly in XIP use the nonvolatile configuration register. To  
enable a device to power-up in XIP using the nonvolatile configuration register, set non-  
volatile configuration register bits [11:9]. Settings vary according to protocol, as ex-  
plained in the Nonvolatile Configuration Register section. Because the device boots di-  
rectly in XIP, the confirmation bit is already set to 0, and after the next power cycle, XIP  
is active. Once in XIP, a command code is unnecessary, and device operations use the  
SPI protocol currently enabled. XIP is terminated by driving the XIP confirmation bit to  
1.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
69  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
XIP Mode  
Figure 37: XIP Mode Directly After Power-On  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
C
t
VSI (<100µ)  
VCC  
NVCR check:  
XIP enabled  
S#  
A[MIN]  
LSB  
DOUT DOUT DOUT DOUT DOUT  
Xb  
DQ0  
DOUT DOUT DOUT DOUT DOUT  
MSB  
DQ[3:1]  
A[MAX]  
Dummy cycles  
1. Xb is the XIP confirmation bit and should be set as follows: 0 to keep XIP state; 1 to exit  
XIP mode and return to standard read mode.  
Note:  
Confirmation Bit Settings Required to Activate or Terminate XIP  
The XIP confirmation bit setting activates or terminates XIP after it has been enabled or  
disabled. This bit is the value on DQ0 during the first dummy clock cycle in the FAST  
READ operation. XIP requires at least one additional clock cycle to send the XIP confir-  
mation bit to the memory on DQ0 during the first dummy clock cycle.  
Table 31: XIP Confirmation Bit  
Bit Value  
Description  
0
1
Activates XIP: While this bit is 0, XIP remains activated.  
Terminates XIP: When this bit is set to 1, XIP is terminated and the device returns  
to SPI.  
Table 32: Effects of Running XIP in Different Protocols  
Protocol  
Effect  
Notes  
Extended I/O,  
Dual I/O  
In a device with a dedicated part number where RST# is enabled, a LOW pulse on RST#  
resets XIP and the device to the state it was in previous to the last power-up, as defined  
by the nonvolatile configuration register.  
Dual I/O  
Values of DQ1 during the first dummy clock cycle are "Don't Care."  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
70  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
XIP Mode  
Table 32: Effects of Running XIP in Different Protocols (Continued)  
Protocol  
Effect  
Notes  
Quad I/O  
Values of DQ[3:1] during the first dummy clock cycle are "Don't Care."  
In a device with a dedicated part number where RST# is enabled, a LOW pulse on RST#  
resets XIP and the device to the state it was in previous to the last power-up, as defined  
by the nonvolatile configuration register.  
1
1. In a device with a dedicated part number, memory can be reset only when the device is  
deselected.  
Note:  
Terminating XIP After a Controller and Memory Reset  
The system controller and the device can become out of synchronization if, during the  
life of the application, the system controller is reset without the device being reset. In  
such a case, the controller can reset the memory to power-on reset if the memory has  
reset functionality. (Reset is available in devices with a dedicated part number.)  
If reset functionality is not available, has been disabled, or is not supported by the con-  
troller, the controller must execute the following sequence to terminate XIP in the  
memory device. In quad I/O protocol, drive DQ0 = 1 with S# held LOW for seven clock  
cycles; S# must driven HIGH before the eighth clock cycle. In dual I/O protocol, drive  
DQ0 = 1 with S# held LOW for 13 clock cycles; S# must driven HIGH before the four-  
teenth clock cycle. If the device is in extended protocol, drive DQ0 = 1 with S# held LOW  
for 25 clock cycles; S# must driven HIGH before the twenty-sixth clock cycle.  
These sequences cause the controller to set the XIP confirmation bit to 1, thereby termi-  
nating XIP. However, it does not reset the device or interrupt PROGRAM/ERASE opera-  
tions that may be in progress. After terminating XIP, the controller must execute RESET  
ENABLE and RESET MEMORY to implement a software reset and reset the device.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
71  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Power Up and Power Down  
Power Up and Power Down  
Power Up and Power Down Requirements  
At power-up and power-down, the device must not be selected; that is, S# must follow  
the voltage applied on VCC until VCC reaches the correct values: VCC,min at power-up and  
VSS at power-down.  
To avoid data corruption and inadvertent WRITE operations during power-up, a power-  
on reset circuit is included. The logic inside the device is held to RESET while VCC is less  
than the power-on reset threshold voltage shown here; all operations are disabled, and  
the device does not respond to any instruction. During a standard power-up phase, the  
device ignores all commands except READ STATUS REGISTER and READ FLAG STATUS  
REGISTER. These operations can be used to check the memory internal state. After  
power-up, the device is in standby power mode; the write enable latch bit is reset; the  
write in progress bit is reset; and the lock registers are configured as: (write lock bit, lock  
down bit) = (0,0).  
Normal precautions must be taken for supply line decoupling to stabilize the VCC sup-  
ply. Each device in a system should have the VCC line decoupled by a suitable capacitor  
(typically 100nF) close to the package pins. At power-down, when VCC drops from the  
operating voltage to below the power-on-reset threshold voltage shown here, all opera-  
tions are disabled and the device does not respond to any command.  
Note: If power-down occurs while a WRITE, PROGRAM, or ERASE cycle is in progress,  
data corruption may result.  
VPPH must be applied only when VCC is stable and in the VCC,min to VCC,max voltage  
range.  
Figure 38: Power-Up Timing  
VCC  
VCC,max  
Chip selection not allowed  
VCC,min  
tVTW = tVTR  
Polling allowed  
SPI protocol  
Chip  
reset  
Device fully accessible  
VWI  
Starting protocol  
defined by NVCR  
WIP = 1  
WEL = 0  
WIP = 0  
WEL = 0  
Time  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
72  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Power Up and Power Down  
Table 33: Power-Up Timing and VWI Threshold  
Note 1 applies to entire table  
Symbol  
tVTR  
tVTW  
Parameter  
Min  
Max  
150  
150  
2.5  
Unit  
µs  
VCC,min to read  
VCC,min to device fully accessible  
Write inhibit voltage  
µs  
VWI  
1.5  
V
1. Parameters listed are characterized only.  
Note:  
Power Loss Recovery Sequence  
If a power loss occurs during a WRITE NONVOLATILE CONFIGURATION REGISTER  
command, after the next power-on, the device might begin in an undetermined state  
(XIP mode or an unnecessary protocol). If this occurs, until the next power-up, a recov-  
ery sequence must reset the device to a fixed state (extended SPI protocol without XIP).  
After the recovery sequence, the issue should be resolved definitively by running the  
WRITE NONVOLATILE CONFIGURATION REGISTER command again. The recovery se-  
quence is composed of two parts that must be run in the correct order. During the en-  
tire sequence, tSHSL2 must be at least 50ns. The first part of the sequence is DQ0 (PAD  
DATA) and DQ3 (PAD HOLD) equal to 1 for the situations listed below:  
• 7 clock cycles within S# LOW (S# becomes HIGH before 8th clock cycle)  
• + 9 clock cycles within S# LOW (S# becomes HIGH before 10th clock cycle)  
• + 13 clock cycles within S# LOW (S# becomes HIGH before 14th clock cycle)  
• + 17 clock cycles within S# LOW (S# becomes HIGH before 18th clock cycle)  
• + 25 clock cycles within S# LOW (S# becomes HIGH before 26th clock cycle)  
• + 33 clock cycles within S# LOW (S# becomes HIGH before 34th clock cycle)  
The second part of the sequence is exiting from dual or quad SPI protocol by using the  
following FFh sequence: DQ0 and DQ3 equal to 1 for 8 clock cycles within S# LOW; S#  
becomes HIGH before 9th clock cycle.  
After this two-part sequence the extended SPI protocol is active.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
73  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
AC Reset Specifications  
AC Reset Specifications  
Table 34: AC RESET Conditions  
Note 1 applies to entire table  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Reset pulse  
width  
tRLRH2  
50  
ns  
Reset recovery  
time  
tRHSL Device deselected (S# HIGH) and is in XIP mode  
Device deselected (S# HIGH) and is in standby mode  
40  
40  
40  
ns  
ns  
ns  
Commands are being decoded, any READ operations are  
in progress or any WRITE operation to volatile registers  
are in progress  
Any device array PROGRAM/ERASE/SUSPEND/RESUME,  
PROGRAM OTP, NONVOLATILE SECTOR LOCK, and ERASE  
NONVOLATILE SECTOR LOCK ARRAY operations are in  
progress  
30  
µs  
While a WRITE STATUS REGISTER operation is in progress  
tW  
tWNVCR  
ms  
ms  
While a WRITE NONVOLATILE CONFIGURATION REGIS-  
TER operation is in progress  
On completion or suspension of a SUBSECTOR ERASE op-  
eration  
tSSE  
s
Software reset tSHSL3 Device deselected (S# HIGH) and is in standby mode  
90  
30  
ns  
µs  
recovery time  
On completion of any device array PROGRAM/ERASE/  
SUSPEND/RESUME, SECTOR ERASE, PROGRAM OTP, PAGE  
PROGRAM, DUAL INPUT FAST PROGRAM, EXTENDED  
DUAL INPUT FAST PROGRAM, QUAD INPUT FAST PRO-  
GRAM, or EXTENDED QUAD INPUT FAST PROGRAM op-  
eration  
On completion or suspension of a WRITE STATUS REGIS-  
TER operation  
2
tW  
tWNVCR  
tSSE  
ms  
ms  
s
On completion or suspension of a WRITE NONVOLATILE  
CONFIGURATION REGISTER operation  
On completion or suspension of a SUBSECTOR ERASE op-  
eration  
tSHRV Deselect to reset valid in quad output or in QIO-SPI  
S# deselect to  
reset valid  
ns  
1. Values are guaranteed by characterization; not 100% tested.  
2. The device reset is possible but not guaranteed if tRLRH < 50ns.  
Notes:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
74  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
AC Reset Specifications  
Figure 39: Reset AC Timing During PROGRAM or ERASE Cycle  
S#  
t
t
SHRH  
RHSL  
t
RLRH  
RESET#  
Don’t Care  
Figure 40: Reset Enable  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
C
S#  
tSHSL2  
tSHSL3  
Reset enable  
Reset memory  
DQ0  
Figure 41: Serial Input Timing  
tSHSL  
S#  
tCHSL  
tSLCH  
tCHSH  
tSHCH  
C
tCHCL  
tDVCH t  
CHDX  
tCLCH  
LSB in  
DQ0  
DQ1  
MSB in  
High-Z  
High-Z  
Don’t Care  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
75  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
AC Reset Specifications  
Figure 42: Write Protect Setup and Hold During WRITE STATUS REGISTER Operation (SRWD = 1)  
W#/VPP  
tWHSL  
tSHWL  
S#  
C
DQ0  
DQ1  
High-Z  
High-Z  
Don’t Care  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
76  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
AC Reset Specifications  
Figure 43: Hold Timing  
S#  
C
tCHHL tHLCH  
tHHCH  
tCHHH  
tHLQZ  
tHHQX  
DQ0  
DQ1  
HOLD#  
Don’t Care  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
77  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
AC Reset Specifications  
Figure 44: Output Timing  
S#  
tCLQV  
tCLQV  
tCLQX  
tCL  
tCH  
C
tCLQX  
tSHQZ  
DQ0  
LSB out  
Address  
DQ1  
LSB in  
Don’t Care  
Figure 45: VPPH Timing  
End of command  
(identified by WIP polling)  
S#  
C
DQ0  
tVPPHSL  
VPPH  
VPP  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
78  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Absolute Ratings and Operating Conditions  
Absolute Ratings and Operating Conditions  
Stresses greater than those listed may cause permanent damage to the device. This is a  
stress rating only. Exposure to absolute maximum rating for extended periods may ad-  
versely affect reliability. Stressing the device beyond the absolute maximum ratings may  
cause permanent damage.  
Table 35: Absolute Ratings  
Symbol  
TSTG  
Parameter  
Min  
–65  
Max  
150  
Units  
°C  
°C  
V
Notes  
Storage temperature  
TLEAD  
VCC  
Lead temperature during soldering  
Supply voltage  
See note 1  
4.0  
–0.6  
–0.2  
–0.6  
–2000  
VPP  
Fast program/erase voltage  
Input/output voltage with respect to ground  
10  
V
VIO  
VCC + 0.6  
2000  
V
3, 4  
2
VESD  
Electrostatic discharge voltage  
(human body model)  
V
1. Compliant with JEDEC Standard J-STD-020C (for small-body, Sn-Pb or Pb assembly),  
RoHS, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU.  
Notes:  
2. JEDEC Standard JESD22-A114A (C1 = 100pF, R1 = 1500Ω, R2 = 500Ω).  
3. During signal transitions, minimum voltage may undershoot to –1V for periods less than  
10ns.  
4. During signal transitions, maximum voltage may overshoot to VCC + 1V for periods less  
than 10ns.  
Table 36: Operating Conditions  
Symbol  
VCC  
Parameter  
Min  
2.7  
Max  
3.6  
9.5  
85  
Units  
Supply voltage  
V
V
VPPH  
TA  
Supply voltage on VPP  
Ambient operating temperature  
8.5  
–40  
°C  
Table 37: Input/Output Capacitance  
Note 1 applies to entire table  
Symbol  
Description  
Test Condition  
Min  
Max  
Units  
CIN/OUT  
Input/output capacitance  
(DQ0/DQ1/DQ2/DQ3)  
VOUT = 0V  
8
pF  
CIN  
Input capacitance (other pins)  
VIN = 0V  
6
pF  
1. These parameters are sampled only, not 100% tested. TA = 25°C at 54 MHz.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
79  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Absolute Ratings and Operating Conditions  
Table 38: AC Timing Input/Output Conditions  
Symbol  
Description  
Min  
30  
Max  
30  
Units  
pF  
ns  
Notes  
CL  
Load capacitance  
1
Input rise and fall times  
Input pulse voltages  
5
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
V
2
Input timing reference voltages  
Output timing reference voltages  
V
VCC/2  
VCC/2  
V
1. Output buffers are configurable by user.  
2. For quad/dual operations: 0V to VCC  
Notes:  
.
Figure 46: AC Timing Input/Output Reference Levels  
Input levels1  
I/O timing  
reference levels  
0.8VCC  
0.7VCC  
0.5VCC  
0.3VCC  
0.2VCC  
1. 0.8VCC = VCC for dual/quad operations; 0.2VCC = 0V for dual/quad operations.  
Note:  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
80  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
DC Characteristics and Operating Conditions  
DC Characteristics and Operating Conditions  
Table 39: DC Current Characteristics and Operating Conditions  
Parameter  
Symbol  
ILI  
Test Conditions  
Min  
Max  
±2  
Unit  
µA  
Input leakage current  
Output leakage current  
Standby current  
ILO  
±2  
µA  
ICC1  
S = VCC, VIN = VSS or VCC  
S = VCC, VIN = VSS or VCC  
100  
150  
µA  
Standby current  
ICC1  
µA  
(grade 3)  
Operating current  
(fast-read extended I/O)  
ICC3  
C = 0.1VCC/0.9VCC at 108 MHz, DQ1  
= open  
15  
6
mA  
mA  
C = 0.1VCC/0.9VCC at 54 MHz, DQ1  
= open  
Operating current (fast-read dual I/O)  
Operating current (fast-read quad I/O)  
Operating current (program)  
C = 0.1VCC/0.9VCC at 108 MHz  
C = 0.1VCC/0.9VCC at 108 MHz  
S# = VCC  
18  
20  
20  
20  
mA  
mA  
mA  
mA  
ICC4  
ICC5  
Operating current (write status regis-  
ter)  
S# = VCC  
Operating current (erase)  
ICC6  
S# = VCC  
20  
mA  
Table 40: DC Voltage Characteristics and Operating Conditions  
Parameter  
Symbol  
VIL  
Conditions  
Min  
Max  
Unit  
V
Input low voltage  
Input high voltage  
Output low voltage  
Output high voltage  
–0.5  
0.3VCC  
VCC + 0.4  
0.4  
VIH  
0.7VCC  
V
VOL  
IOL = 1.6mA  
V
VOH  
IOH = –100µA  
VCC - 0.2  
V
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
81  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
AC Characteristics and Operating Conditions  
AC Characteristics and Operating Conditions  
Table 41: AC Characteristics and Operating Conditions  
Parameter  
Symbol  
Min  
Typ1  
Max  
Unit  
Notes  
Clock frequency for all commands other than  
READ (SPI-ER, QIO-SPI protocol)  
fC  
DC  
108  
MHz  
Clock frequency for READ commands  
Clock HIGH time  
fR  
tCH  
tCL  
DC  
4
54  
8
7
8
5
6
8
8
MHz  
ns  
2
Clock LOW time  
4
ns  
1
Clock rise time (peak-to-peak)  
Clock fall time (peak-to-peak)  
S# active setup time (relative to clock)  
S# not active hold time (relative to clock)  
Data in setup time  
tCLCH  
tCHCL  
tSLCH  
tCHSL  
tDVCH  
tCHDX  
tCHSH  
tSHCH  
tSHSL1  
tSHSL2  
tSHQZ  
tCLQV  
0.1  
0.1  
4
V/ns  
V/ns  
ns  
3, 4  
3, 4  
4
ns  
2
ns  
Data in hold time  
3
ns  
S# active hold time (relative to clock)  
S# not active setup time (relative to clock)  
S# deselect time after a READ command  
S# deselect time after a nonREAD command  
Output disable time  
4
ns  
4
ns  
20  
50  
ns  
ns  
ns  
3
Clock LOW to output valid under 30pF  
STR  
ns  
DTR  
STR  
DTR  
ns  
Clock LOW to output valid under 10pF  
ns  
ns  
Output hold time (clock LOW)  
Output hold time (clock HIGH)  
tCLQX  
tCHQX  
tHLCH  
tCHHH  
tHHCH  
tCHHL  
tHHQX  
tHLQZ  
tWHSL  
tSHWL  
tVPPHSL  
1
ns  
1
ns  
HOLD command setup time (relative to clock)  
HOLD command hold time (relative to clock)  
HOLD command setup time (relative to clock)  
HOLD command hold time (relative to clock)  
HOLD command to output Low-Z  
4
ns  
4
ns  
4
ns  
4
ns  
ns  
3
3
5
5
6
HOLD command to output High-Z  
Write protect setup time  
ns  
20  
100  
200  
ns  
Write protect hold time  
ns  
Enhanced VPPH HIGH to S# LOW for extended and  
dual I/O page program  
ns  
WRITE STATUS REGISTER cycle time  
tW  
tWNVCR  
1.3  
0.2  
8
3
ms  
s
Write NONVOLATILE CONFIGURATION REGISTER  
cycle time  
CLEAR FLAG STATUS REGISTER cycle time  
tCFSR  
40  
ns  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
82  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
AC Characteristics and Operating Conditions  
Table 41: AC Characteristics and Operating Conditions (Continued)  
Parameter  
Symbol  
Min  
Typ1  
Max  
Unit  
Notes  
WRITE VOLATILE CONFIGURATION REGISTER cycle  
time  
tWVCR  
40  
ns  
WRITE VOLATILE ENHANCED CONFIGURATION  
REGISTER cycle time  
tWRVECR  
tWNVCR  
40  
ns  
s
WRITE NONVOLATILE CONFIGURATION REGISTER  
cycle time  
0.2  
3
WRITE EXTENDED ADDRESS REGISTER cycle time  
PAGE PROGRAM cycle time (256 bytes)  
PAGE PROGRAM cycle time (n bytes)  
tWREAR  
tPP  
40  
5
5
ns  
ms  
ms  
0.5  
7
7
int(n/8) ×  
0.158  
PAGE PROGRAM cycle time, VPP = VPPH ( 256 bytes)  
PROGRAM OTP cycle time (64 bytes)  
Subsector ERASE cycle time  
0.4  
0.2  
5
ms  
ms  
s
7
7
tSSE  
tSE  
0.25  
0.7  
0.8  
3
Sector ERASE cycle time  
s
Sector ERASE cycle time (with VPP = VPPH  
Bulk ERASE cycle time  
)
0.6  
3
s
tBE  
240  
200  
480  
480  
s
Bulk ERASE cycle time (with VPP = VPPH  
)
s
1. Typical values given for TA = 25°C.  
2. tCH + tCL must add up to 1/fC.  
Notes:  
3. Value guaranteed by characterization; not 100% tested.  
4. Expressed as a slew-rate.  
5. Only applicable as a constraint for a WRITE STATUS REGISTER command when STATUS  
REGISTER WRITE is set to 1.  
6. VPPH should be kept at a valid level until the PROGRAM or ERASE operation has comple-  
ted and its result (success or failure) is known.  
7. When using the PAGE PROGRAM command to program consecutive bytes, optimized  
timings are obtained with one sequence including all the bytes versus several sequences  
of only a few bytes (1 < n < 256).  
8. int(A) corresponds to the upper integer part of A. For example int(12/8) = 2, int(32/8) = 4  
int(15.3) = 16.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
83  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Package Dimensions  
Package Dimensions  
Figure 47: V-PDFN-8/8mm x 6mm  
A
8.00 TYP  
Pin 1 ID  
0.15  
C
B
Ø0.3  
Pin 1 ID R 0.20  
8
7
6
5
1
2
3
4
1.27  
TYP  
6.00 TYP  
4.80 TYP  
+0.08  
-0.05  
0.40  
0.40 ±0.05  
5.16 TYP  
0.2  
MIN  
0.10  
0.05  
C
C
0.85 TYP/  
1 MAX  
0.05 MAX  
1. All dimensions are in millimeters.  
Notes:  
2. See Part Number Ordering Information for complete package names and details.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
84  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Package Dimensions  
Figure 48: SOP2-16/300 mils  
10.30 ±0.20  
16  
h x 45°  
9
0.23 MIN/  
0.32 MAX  
10.00 MIN/  
10.65 MAX  
7.50 ±0.10  
1
8
0° MIN/8° MAX  
2.5 ±0.15  
0.20 ±0.1  
0.1  
Z
0.33 MIN/  
0.51 MAX  
0.40 MIN/  
1.27 MAX  
1.27 TYP  
Z
1. All dimensions are in millimeters.  
Notes:  
2. See Part Number Ordering Information for complete package names and details.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
85  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Package Dimensions  
Figure 49: T-PBGA-24b05/6mm x 8mm  
0.79 TYP  
Seating  
plane  
A
0.1 A  
Ball A1 ID  
24X Ø0.40 ±0.05  
Ball A1 ID  
5
4
3
2
1
A
B
C
D
E
4.00  
8 ±0.10  
1.00 TYP  
1.00 TYP  
4.00  
6 ±0.10  
1. All dimensions are in millimeters.  
1.20 MAX  
0.20 MIN  
Notes:  
2. See Part Number Ordering Information for complete package names and details.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
86  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Part Number Ordering Information  
Part Number Ordering Information  
Micron Serial NOR Flash devices are available in different configurations and densities.  
Verify valid part numbers by using Micron’s part catalog search at micron.com. To com-  
pare features and specifications by device type, visit micron.com/products. Contact the  
factory for devices not found.  
For more information on how to identify products and top-side marking by the process  
identification letter, refer to technical note TN-12-24, "Serial Flash Memory Device  
Marking for the M25P, M25PE, M25PX, and N25Q Product Families."  
Table 42: Part Number Information  
Part Number  
Category  
Category Details  
Notes  
Device type  
N25Q = Serial NOR Flash memory, Multiple Input/Output (Single, Dual, Quad I/O), XIP  
256 = 256Mb  
Density  
Technology  
Feature set  
A = 65nm  
1 = Byte addressability; HOLD pin; Micron XIP  
2 = Byte addressability; HOLD pin; Basic XIP  
3 = Byte addressability; RST# pin; Micron XIP  
4 = Byte addressability; RST# pin; Basic XIP  
7 = Byte addressability; HOLD pin; Micron XIP  
8 = Byte addressability; HOLD pin; Micron XIP; RESET pin  
3 = VCC = 2.7 to 3.6V  
1
1
1
1
2
1
Operating voltage  
Block structure  
E = Uniform (64KB and 4KB)  
Package  
(RoHS-compliant)  
F8 = V-PDFN-8/8mm x 6mm RP  
SF = SOP2-16/300mils  
3
12 = T-PBGA-24b05/6mm x 8mm  
Temperature and  
test flow  
4 = IT: 40°C to 85°C; Device tested with standard test flow  
A = Automotive temperature range, –40 to 125°C; Device tested with high reliability  
certified test flow  
H = IT: 40°C to 85°C; Device tested with high reliability certified test flow  
Security features  
Shipping material  
0 = Default  
4
E = Tray  
F = Tape and reel  
G = Tube  
1. Enter and exit 4-byte address mode are supported.  
Notes:  
2. 4-byte address mode is the default at power-up. Enter and exit 4-byte address mode are  
not supported.  
3. See the table below for additional information.  
4. Additional secure options are available upon customer request.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
87  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Part Number Ordering Information  
Table 43: Package Details  
Micron SPI and Shortened  
M25P  
M25P  
JEDEC Package  
Name  
Package  
Name  
Package  
Description  
M45PE N25Q  
Symbol Symbol Names  
M45PE Package Alternate  
Package Name  
V-PDFN-8/8mm x DFN-8/8mm Very thin, plastic small-out-  
ME  
MF  
ZM  
F8  
SF  
12  
MLP8, VDFPN8  
V-PSON1-8/8mm x  
6mm, VSON  
6mm RP  
line, 8 terminal pads (no  
leads), 8mm x 6mm  
SOP2-16/300 mil  
SO16W  
Small-outline integrated cir-  
cuit, 16-pin, wide (300 mil)  
SO16W, SO16  
wide 300 mil body SOP 16L 300 mil  
width  
SOIC-16/300 mil,  
T-PBGA-24b05/  
6mm x 8mm  
TBGA 24  
Thin, plastic-ball grid array,  
24-ball, 6mm x 8mm  
TBGA24 6mm x  
8mm  
T-PBGA-24b05/6x8  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
88  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Revision History  
Revision History  
Rev. P – 01/2013  
• Updated the READ ID Operation figure in READ ID Operations  
• Updated ERASE Operations  
• Added link to part number chart in Part Number Ordering Information  
• Updated part numbers in Features  
Rev. O – 12/2012  
Rev. N – 11/2012  
• Revised part numbers to selected notes in the Command Definitions table.  
• Typo fix in Command Set table in Command Definitions – Dual I/O FAST READ - DTR  
from DBh to BDh  
Rev. M – 09/12  
Rev. L – 08/12  
• Added clarification notes to Signal Assignments  
• Additional note to Command Set table in Command Definitions  
• Corrections to Commands in Command Definitions  
Rev. K – 07/12  
Rev. J – 06/12  
• Added ICC1 (grade 3) to DC Characteristics and Operating Conditions  
• Removed READ FLAG STATUS related notes from Command Definitions  
• Added N25Q256A13EF8A0x, N25Q256A13ESFA0x, N25Q256A13ESFH0x,  
N25Q256A13E12A0x to Features  
• Typo fix in Supported Clock Frequencies – DTR table in Nonvolatile and Volatile Reg-  
isters  
• Updated tSSE specification in AC Reset Conditions table  
• Added N25Q256A83ESF40x and N25Q256A83E1240x to Features  
• Added RESET pin and functionality throughout  
Rev. I – 01/12  
• Updated DUAL INPUT/OUTPUT FAST READ - DTR third code and added note 11;  
added note 12 to QUAD INPUT/OUTPUT FAST READ - DTR in the Command Set ta-  
ble  
• Updated VWI min and max specs in the Power-Up Timing and VWI Threshold table  
Rev. H, Preliminary – 11/11  
• Updated Supported Clock Frequencies – STR in Nonvolatile and Volatile Registers  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
89  
© 2011 Micron Technology, Inc. All rights reserved.  
3V, 256Mb: Multiple I/O Serial Flash Memory  
Revision History  
Rev. G, Preliminary – 07/11  
• Added double transfer rate (DTR) mode information  
Rev. F, Preliminary – 07/11  
• Miscellaneous edits, including correction of V-PDFN 8 x 6 package and clarification of  
feature set option 7.  
Rev. E, Preliminary – 05/11  
• Added W# to logic diagram in Device Description  
• Cross-reference update to Status Register Bit Definitions table  
• Added dummy clock and quad SPI protocol information to Command Definitions  
notes  
• Corrected Manufacturer ID values  
• Removed extraneous frequency requirement note from READ IDENTIFICATIONS Op-  
erations  
• Corrected timing diagram notes in READ MEMORY Operations  
• Corrected timing diagram notes in PROGRAM Operations  
• Changed WIP = 1 to WIP = 0 in Power-Up Timing diagram in Power Up and Power  
Down  
Rev. D, Preliminary – 05/11  
• Micron rebrand  
Rev. C – 11/10  
• Added Reset Enable; Read Extended Address Register, Dual I/O; Reset Enable and Re-  
set Memory, Dual I/O; Read Extended Address Register, Quad I/O; Reset Enable and  
Reset Memory, Quad I/O  
Rev. B – 08/10  
Rev. A – 06/10  
• Added information to clarify 4-Byte Address Mode; added reset information, includ-  
ing the Reset Enable figure and new rows the Reset Conditions table  
• Initial release  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
www.micron.com/productsupport Customer Comment Line: 800-932-4992  
Micron and the Micron logo are trademarks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.  
Although considered final, these specifications are subject to change, as further product development and data characterization some-  
times occur.  
PDF: 09005aef84566603  
n25q_256mb_65nm.pdf - Rev. P 01/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
90  
© 2011 Micron Technology, Inc. All rights reserved.  

相关型号:

N25Q256A11E1240

Micron Serial NOR Flash Memory
MICRON

N25Q256A11EF840

Micron Serial NOR Flash Memory
MICRON

N25Q256A11ESF40

Micron Serial NOR Flash Memory
MICRON

N25Q256A11ESF40F

Micron Serial NOR Flash Memory
MICRON

N25Q256A13E1240

Micron Serial NOR Flash Memory
MICRON

N25Q256A13E1240E

Micron Serial NOR Flash Memory 3V, Multiple I/O, 4KB Sector Erase N25Q256A
MICRON

N25Q256A13E12A0

Micron Serial NOR Flash Memory
MICRON

N25Q256A13EF840

Micron Serial NOR Flash Memory
MICRON

N25Q256A13EF840E

Micron Serial NOR Flash Memory 3V, Multiple I/O, 4KB Sector Erase N25Q256A
MICRON

N25Q256A13EF840F

Micron Serial NOR Flash Memory
MICRON

N25Q256A13EF8A0

Micron Serial NOR Flash Memory
MICRON

N25Q256A13ESF40

Micron Serial NOR Flash Memory
MICRON