5962-01-195-7786 [MICROSEMI]

Switching Regulator/Controller, Voltage-mode, 0.05A, 300kHz Switching Freq-Max, BIPolar, CDIP16;
5962-01-195-7786
型号: 5962-01-195-7786
厂家: Microsemi    Microsemi
描述:

Switching Regulator/Controller, Voltage-mode, 0.05A, 300kHz Switching Freq-Max, BIPolar, CDIP16

CD
文件: 总6页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REGULATING PULSE WIDTH MODULATOR  
DESCRIPTION  
FEATURES  
8V to 40V operation  
5V reference  
This monolithic integrated circuit contains all the control circuitry for a  
regulating power supply inverter or switching regulator. Included in a 16-  
pin dual-in-line package is the voltage reference, error amplifier, oscillator,  
pulse width modulator, pulse steering flip-flop, dual alternating output  
switches and current limiting and shut-down circuitry. This device can be  
used for switching regulators of either polarity, transformer coupled DC to  
DC converters, transformerless voltage doublers and polarity converters,  
as well as other power applications. The SG1524 is specified for operation  
over the full military ambient temperature range of -55°C to +125°C, the  
SG2524 for -25°C to +85°C, and the SG3524 is designed for commercial  
applications of 0°C to +70°C.  
Reference line and load regulation of 0.4%  
Reference temperature coefficient < ± 1%  
100Hz to 300KHz oscillator range  
Excellent external sync capability  
Dual 50mA output transistors  
Current limit circuitry  
Complete PWM power control circuitry  
Single ended or push-pull outputs  
Total supply current less than 10mA  
HIGH RELIABILITY FEATURES - SG1524  
Available to MIL-STD-883B and DESC SMD  
MIL-M-38510/12601BEA - JAN1524J  
Radiation data available  
LMI level "S" processing available  
BLOCK DIAGRAM  
Rev 1.1a 03/18/2005  
Microsemi. Inc.  
Copyright 1994  
11861 Western Avenue Garden Grove, CA 92841  
(714) 898-8121 FAX: (714) 893-2570  
1
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Input Voltage (+VIN) ............................................................. 42V  
Collector Voltage ................................................................ 40V  
Logic Inputs........................................................... -0.3V to 5.5V  
Current Limit Sense Inputs ................................... -0.3V to 0.3V  
Output Current (each transistor) .................................... 100mA  
Reference Load Current .................................................. 50mA  
Oscillator Charging Current ................................................5mA  
Operating Junction Temperature  
Hermetic (J, L Packages) ............................................. 150°C  
Plastic (N, D Packages) ............................................... 150°C  
Storage Temperature Range .............................-65°C to 150°C  
Pb-free / RoHS Peak Package Solder Reflow Temp (40 sec. max. exposure)... 260°C (+0, -5)  
Lead Temperature (Soldering, 10 seconds).................................300°C  
Note 1. Values beyond which damage may occur.  
THERMAL DATA  
J Package:  
Note A. Junction Temperature Calculation: TJ = T + (PD x θJA).  
Note B. The above numbers for θJC are maximuAms for the limiting  
thermal resistance of the package in a standard mount-  
ing configuration. The θJA numbers are meant to be  
guidelines for the thermal performance of the device/pc-  
board system. All of the above assume no ambient  
airflow.  
Thermal Resistance-Junction to Case, θJC .................. 30°C/W  
Thermal Resistance-Junction to Ambient, θJA .............. 80°C/W  
N Package:  
Thermal Resistance-Junction to Case, θJC .................. 40°C/W  
Thermal Resistance-Junction to Ambient, θJA ............. 65°C/W  
D Package:  
Thermal Resistance-Junction to Case, θJC ................... 50°C/W  
Thermal Resistance-Junction to Ambient, θJA ............ 120°C/W  
L Package:  
Thermal Resistance-Junction to Case, θJC .................. 35°C/W  
Thermal Resistance-Junction to Ambient, θJA ........... 120°C/W  
RECOMMENDED OPERATING CONDITIONS (Note 2)  
Input Voltage (+VIN) ................................................... 8V to 40V  
Collector Voltage ....................................................... 0V to 40V  
Error Amp Common Mode Range ..........................1.8V to 3.4V  
Current Limit Sense Common Mode Range ........ -0.3V to 0.3V  
Output Current (each transistor) ............................... 0 to 50mA  
Reference Load Current ........................................... 0 to 20mA  
Oscillator Charging Current .................................. 30µA to 2mA  
Oscillator Frequency Range ......................... 100Hz to 300KHz  
Oscillator Timing Resistor (RT) ........................ 1.8Kto 100KΩ  
Oscillator Timing Capacitor (CT) ............................ 1nF to 1.0µF  
Operating Ambient Temperature Range  
SG1524 ......................................................... -55°C to 125°C  
SG2524 ........................................................... -25°C to 85°C  
SG3524 ............................................................... 0°C to 70°C  
Note 2: Range over which the device is functional and parameter limits are guaranteed.  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG1524 with -55°C TA 125°C, SG2524 with  
-25°C TA 85°C, SG3524 with 0°C TA 70°C, and +VIN = 20V. Low duty cycle pulse testing techniques are used which maintains junction and  
case temperatures equal to the ambient temperature.)  
SG1524/2524  
Min. Typ. Max.  
SG3524  
Min. Typ. Max.  
Parameter  
Test Conditions  
Units  
Reference Section (Note 3)  
Output Voltage  
TJ = 25°C  
4.80 5.00 5.20 4.60 5.00 5.40  
V
Line Regulation  
Load Regulation  
VIN = 8V to 40V  
IL = 0 to 20mA  
Over Operating Temperature Range  
20  
50  
50  
30  
50  
50  
5.40  
mV  
mV  
mV  
V
Temperature Stability (Note 7)  
Total Output Voltage Range (Note 7) Over Line, Load and Temperature  
Short Circuit Current  
4.80  
25  
5.20 4.60  
50 150 25  
VREF = 0V  
50 150  
mA  
Note 3. IL = 0mA  
Rev 1.1a  
Copyright 1994  
11861 Western Avenue Garden Grove, CA 92841  
(714) 898-8121 FAX: (714) 893-2570  
2
1524/SG2524/SG3524  
ELECTRICAL CHARACTERISTICS (continued)  
SG1524/2524  
Min. Typ. Max.  
SG3524  
Min. Typ. Max.  
Parameter  
Test Conditions  
Units  
Oscillator Section (Note 4)  
Initial Accuracy  
TJ = 25°C  
36  
34  
40  
44  
46  
1
36  
34  
40  
44  
46  
1
KHz  
KHz  
%
KHz  
V
V
V
µs  
MIN TJ MAX  
VIN = 8V to 40V  
RT = 2K, CT = 1nF  
VIN = 40V  
Voltage Stability  
0.1  
0.1  
Maximum Frequency  
Sawtooth Peak Voltage  
Sawtooth Valley Voltage  
Clock Amplitude  
200 400  
3
0.6  
3.2  
0.3  
200 400  
3
3.8  
1.2 0.6  
3.2  
3.8  
1.2  
VIN = 8V  
1
1
Clock Pulse Width  
1.5 0.3  
1.5  
Error Amplifier Section (Note 5)  
Input Offset Voltage  
Input Bias Current  
Input Offset Current  
DC Open Loop Gain  
RS 2KΩ  
0.5  
1
5
10  
1
2
1
10  
10  
2
mV  
µA  
µA  
dB  
V
RL 10MΩ, TJ = 25°C  
VPIN 1 - VPIN 2 150mV  
72  
60  
Output Low Level  
0.2 0.5  
0.2 0.5  
Output High Level  
VPIN 2 - VPIN 1 150mV  
3.8 4.2  
3.8 4.2  
V
Common Mode Rejection  
Supply Voltage Rejection  
Gain-Bandwidth Product (Note 7)  
V
CM = 1.8V to 3.4V  
70  
55  
1
dB  
dB  
MHz  
VIN = 8V to 40V  
TJ = 25°C  
2
1
2
P.W.M. Comparator (Note 4)  
Minimum Duty Cycle  
Maximum Duty Cycle  
VCOMP = 0.5V  
0
0
%
%
VCOMP = 3.6V  
45  
49  
45  
49  
Current Limit Amplifier Section (Note 6)  
Sense Voltage  
TJ = 25°C  
190 200 210 180 200 220  
200 200  
mV  
µA  
Input Bias Current  
Shutdown Section  
Threshold Voltage  
TJ = 25°C  
MIN TJ MAX  
0.5 0.8 1.2 0.5 0.8 1.2  
V
V
0.2  
1.8 0.2  
1.8  
Output Section (each transistor)  
Collector Leakage Current  
Collector Saturation Voltage  
Emitter Output Voltage  
Collector Voltage Rise Time  
Collector Voltage Fall Time  
V
CE = 40V  
50  
2
17  
0.4  
0.2  
50  
2
µA  
V
V
µs  
µs  
IC = 50mA  
IE = 50mA  
RC = 2KΩ  
RC = 2KΩ  
17  
0.4  
0.2  
Power Consumption  
Standby Current  
VIN = 40V  
7
10  
7
10  
mA  
Note 4. FOSC = 40KHz (RT = 2.9K, CT = .01µF)  
Note 5. VCM = 2.5V  
Note 6. VCM = 0V  
Note 7. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production.  
Rev 1.1a  
Copyright 1994  
11861 Western Avenue Garden Grove, CA 92841  
(714) 898-8121 FAX: (714) 893-2570  
3
APPLICATION NOTES  
OSCILLATOR  
The oscillator in the SG1524 uses an external resistor RT to  
establish a constant charging current into an external capacitor  
CT. While this uses more current than a series-connected RC, it  
provides a linear ramp voltage at CT which is used as a time-  
dependent reference for the PWM comparator. The charging  
current is equal to 3.6V/RT, and should be restricted to between  
30µA and 2mA. The equivalent range for RT is 1.8K to 100K.  
Note that for buck regulator topologies, the two outputs can be  
wire-ORed for an effective 0-90% duty cycle range. With this  
connection, the output frequency is the same as the oscillator  
frequency. For push-pull applications, the outputs are used  
separately; the flip-flop limits the duty cycle range at each output  
to 0-45%, and the effective switching frequency at the trans-  
former is 1/2 the oscillator frequency.  
The range of values for CT also has limits, as the discharge time  
of CT determines the pulse width of the oscillator output pulse.  
The pulse is used (among other things) as a blanking pulse to  
both outputs to insure that there is no possibility of having both  
outputs on simultaneously during transitions. This output  
deadtime relationship is shown in Figure 1. A pulse width below  
0.35 microseconds may cause failure of the internal flip-flop to  
toggle. This restricts the minimum value of CT to 1000pF. (Note:  
Although the oscillator output is a convenient oscilloscope sync  
input, the probe capacitance will increase the pulse width and  
decrease the oscillator frequency slightly.) Obviously, the upper  
limit to the pulse width is determined by the modulation range  
required in the power supply at the chosen switching frequency.  
Practical values of CT fall between 1000pF and 0.1µF, although  
successful 120 Hz oscillators have been implemented with val-  
ues up to 5µF and a series surge limit resistor of 100 ohms.  
If it is desired to synchronize the SG1524 to an external clock, a  
positive pulse may be applied to the clock pin. The oscillator  
shouldbeprogrammedwithRT andCT valuesthatcauseittofree-  
run at 90% of the external sync frequency. A sync pulse with a  
maximum logic 0 of +0.3 volts and a minimum logic 1 of +2.4 volts  
applied to Pin 3 will lock the oscillator to the external source. The  
minimum sync pulsewidth should be 200 nanoseconds, and the  
maximum is determined by the required deadtime. The clock pin  
should never be driven more negative than -0.3 volts, nor more  
positive than +5.0 volts. The nominal resistance to ground is  
3.2K at the clock pin, ±25% over temperature.  
If two or more SG1524s must be synchronized together, program  
one master unit with RT and CT for the desired frequency. Leave  
the RT pins on the slaves open, connect the CT pins to the CT of  
the master, and connect the clock pins to the clock pin of the  
master. Since CT is a high-impedance node, this sync technique  
works best when all devices are close together.  
The oscillator frequency is approximately 1/RT•CT; where R is in  
ohms, C is in microfarads, and the frequency is in Megahertz. For  
greater accuracy, the chart in Figure 2 may be used for a wide  
range of operating frequencies.  
FIGURE 1 - OUTPUT STAGE DEADTIME VS. CT  
FIGURE 2 - OSCILLATOR FREQUENCY VS. RT AND CT  
Rev 1.1a  
Copyright 1994  
11861 Western Avenue Garden Grove, CA 92841  
4
(714) 898-8121 FAX: (714) 893-2570  
APPLICATION NOTES (continued)  
CURRENT LIMITING  
A second factor to consider is that the response time is relatively  
slow. The current limit amplifier is internally compensated by R1  
, C1 , and Q1, resulting in a roll-off pole at approximately 300 Hz.  
A third factor to consider is the bias current of the C.L. Sense  
pins. A constant current of approximately 150µA flows out of Pin  
4, and a variable current with a range of 0-150µA flows out of Pin  
5. As a result, the equivalent source impedance seen by the  
current sense pins should be less than 50 ohms to keep the  
threshold error less than 5%.  
The current limiting circuitry of the SG1524 is shown in Figure 3.  
By matching the base-emitter voltages of Q1 and Q2, and  
assuming a negligible voltage drop across R1:  
C.L. Threshold = VBE(Q1) + I1• R2 - VBE(Q2) = I1• R2  
~ 200 mV  
Although this circuit provides a relatively small threshold with a  
negligible temperature coefficient, there are some limitations to  
its use because of its simplicity.  
Since the gain of this circuit is relatively low (42 dB), there is a  
transition region as the current limit amplifier takes over pulse  
width control from the error amplifier. For testing purposes,  
threshold is defined as the input voltage required to get 25% duty  
cycle (+2 volts at the error amplifier output) with the error amplifier  
signaling maximum duty cycle.  
The most important of these is the limited common-mode voltage  
range: ±0.3 volts around ground. This requires sensing in the  
ground or return line of the power supply. Also precautions  
should be taken to not turn on the parasitic substrate diode of the  
integrated circuit, even under transient conditions. A Schottky  
clamp diode at Pin 5 may be required in some configurations to  
achieve this.  
APPLICATION NOTE: If the current limit function is not used on  
the SG1524, the common-mode voltage range restriction re-  
quires both current sense pins to be grounded.  
FIGURE 3 - CURRENT LIMITING CIRCUITRY OF THE SG1524  
Push-pull outputs are used in this transformer-coupled DC-DC  
regulating converter. Note that the oscillator must be set at twice  
the desired output frequency as the SG1524's internal flip-flop  
divides the frequency by 2 as it switches the P.W.M. signal from  
one output to the other. Current limiting is done here in the  
primary so that the pulse width will be reduced should transformer  
saturation occur.  
In this conventional single-ended regulator circuit, the two out-  
puts of the SG1524 are connected in parallel for effective 0 - 90%  
duty-cycle modulation. The use of an output inductor requires  
and R-C phase compensation network for loop stability.  
Rev 1.1a  
Copyright 1994  
11861 Western Avenue Garden Grove, CA 92841  
5
(714) 898-8121 FAX: (714) 893-2570  
CONNECTION DIAGRAMS & ORDERING INFORMATION (See Notes Below)  
Ambient  
Temperature Range  
Package  
Part No.  
Connection Diagram  
16-PIN CERAMIC DIP  
J - PACKAGE  
SG1524J/883B  
JAN1524J  
SG1524J/DESC  
SG1524J  
SG2524J  
-55°C to 125°C  
-55°C to 125°C  
-55°C to 125°C  
-55°C to 125°C  
-25°C to 85°C  
0°C to 70°C  
INV. INPUT  
N.I. INPUT  
OSC. OUTPUT  
+C.L. SENSE  
-C.L. SENSE  
RT  
1
16  
15  
14  
13  
12  
11  
10  
9
VREF  
2
3
4
5
6
7
8
+V  
IN  
EB  
CB  
CA  
EA  
SG3524J  
CT  
SHUTDOWN  
COMPENSATION  
GROUND  
16-PIN PLASTIC DIP  
N - PACKAGE  
SG2524N  
SG3524N  
-25°C to 85°C  
0°C to 70°C  
N Package: RoHS / Pb-free Transition DC: 0503*. 100% Matte Tin Lead Finish  
16-PIN NARROW BODY  
PLASTIC S.O.I.C.  
D - PACKAGE  
1
16  
15  
14  
13  
12  
11  
10  
9
INV. INPUT  
N.I. INPUT  
OSC. OUTPUT  
+C.L. SENSE  
-C.L. SENSE  
RT  
VREF  
SG2524D  
SG3524D  
-25°C to 85°C  
0°C to 70°C  
2
3
4
5
6
7
8
+VIN  
EB  
CB  
CA  
RoHS / Pb-free transition DC:0440  
Pb-free / RoHS 100% Matte Tin Lead Finish*  
EA  
CT  
SHUTDOWN  
COMPENSATION  
GROUND  
3
2
1
20 19  
20-PIN CERAMIC  
LEADLESS CHIP CARRIER  
L- PACKAGE  
SG1524L/883B  
SG1524L  
-55°C to 125°C  
-55°C to 125°C  
1. N.C.  
2. VREF  
11. COMP  
12. SHUTDOWN  
13. N.C.  
14. EA  
15. CA  
16. N.C.  
17. CB  
18. EB  
4
18  
3. INV. INPUT  
4. N.I. INPUT  
5. OSC. OUTPUT  
6. + C.L. SENSE  
7. - C.L. SENSE  
8. RT  
5
6
17  
16  
7
8
15  
14  
9. CT  
10. GROUND  
19. N.C.  
20. +VIN  
9
10 11 12 13  
*RoHS compliant  
Note 1. Contact factory for JAN and DESC product availablity.  
2. All packages are viewed from the top.  
Rev 1.1a  
Copyright 1994  
11861 Western Avenue Garden Grove, CA 92841  
(714) 898-8121 FAX: (714) 893-2570  
6

相关型号:

5962-01-196-1446

IC IC,PROM,512X8,TTL,DIP,20PIN,PLASTIC, Programmable ROM
TI

5962-01-196-2918

Page Mode DRAM, 16KX1, 150ns, MOS, CDIP16,
INTEL

5962-01-197-0523

IC,FIFO,16X4,ASYNCHRONOUS,CMOS,DIP,16PIN,PLASTIC
RENESAS

5962-01-197-0525

IC,LOGIC GATE,HEX INVERTER,CMOS,DIP,16PIN,PLASTIC
RENESAS

5962-01-197-4213

NAND Gate, CMOS, CDFP14,
FAIRCHILD

5962-01-197-5034

Standard SRAM, 1KX4, 300ns, MOS, CDIP20,
INTEL

5962-01-197-9514

IC,OP-AMP,SINGLE,BIPOLAR,CAN,8PIN,METAL
RENESAS

5962-01-198-2186

IC,FLIP-FLOP,HEX,D TYPE,CMOS,DIP,16PIN,CERAMIC
RENESAS

5962-01-198-2491

IC,A/D CONVERTER,SINGLE,8-BIT,BIPOLAR,DIP,20PIN
ADI

5962-01-198-6179

OR Gate, CMOS, CDIP16,
FAIRCHILD

5962-01-198-8905

5962-01-198-8905
ADI

5962-01-198-8919

J-K Flip-Flop, 2-Func, Master-slave Triggered, CMOS, CDIP16,
FAIRCHILD