A3P250-FGG144C [MICROSEMI]

Field Programmable Gate Array, 6144 CLBs, 250000 Gates, 350MHz, CMOS, PBGA144, 1 MM PITCH, GREEN, FBGA-144;
A3P250-FGG144C
型号: A3P250-FGG144C
厂家: Microsemi    Microsemi
描述:

Field Programmable Gate Array, 6144 CLBs, 250000 Gates, 350MHz, CMOS, PBGA144, 1 MM PITCH, GREEN, FBGA-144

文件: 总192页 (文件大小:2773K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v2.0  
Automotive ProASIC®3 Flash Family FPGAs  
®
with Grade 2 and Grade 1 AEC-Q100 Support  
Low Power  
Features and Benefits  
1.5 V Core Voltage  
Support for 1.5-V-Only Systems  
Low-Impedance Flash Switches  
High-Temperature AEC-Q100–Qualified Devices  
Grade 2 105°C T (115°C T )  
A J  
Grade 1 125°C T (135°C T )  
A
J
High-Performance Routing Hierarchy  
PPAP Documentation  
Segmented, Hierarchical Routing and Clock Structure  
High-Performance, Low-Skew Global Network  
Architecture Supports Ultra-High Utilization  
Firm-Error Immune  
Only Automotive FPGAs to Offer Firm-Error Immunity  
Can Be Used Without Configuration Upset Risk  
Advanced I/O  
High Capacity  
700 Mbps DDR, LVDS-Capable I/Os  
60 k to 1 Million System Gates  
Up to 144 kbits of SRAM  
Up to 300 User I/Os  
1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation  
Bank-Selectable I/O Voltages—Up to 4 Banks per Chip  
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /  
2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and  
LVCMOS 2.5 V / 5.0 V Input  
Reprogrammable Flash Technology  
130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS  
Automotive Process  
Differential I/O Standards: LVPECL, LVDS, BLVDS, and  
M-LVDS (A3P250 and A3P1000)  
Live-at-Power-Up (LAPU) Level 0 Support  
Single-Chip Solution  
Retains Programmed Design When Powered Off  
I/O Registers on Input, Output, and Enable Paths  
Hot-Swappable and Cold-Sparing I/Os  
Programmable Output Slew Rate and Drive Strength  
Weak Pull-Up/-Down  
IEEE 1149.1 (JTAG) Boundary Scan Test  
Pin-Compatible Packages Across the Automotive  
ProASIC3 Family  
On-Chip User Nonvolatile Memory  
1 kbit of FlashROM with Synchronous Interface  
High Performance  
350 MHz System Performance  
3.3 V, 66 MHz 64-Bit PCI  
Clock Conditioning Circuit (CCC) and PLL  
Six CCC Blocks, One with an Integrated PLL  
Configurable Phase Shift, Multiply/Divide, Delay  
Capabilities, and External Feedback  
In-System Programming (ISP) and Security  
Secure ISP Using On-Chip 128-Bit Advanced Encryption  
Standard (AES) Decryption via JTAG (IEEE 1532–  
compliant)  
Wide Input Frequency Range (1.5 MHz up to 350 MHz)  
SRAMs  
®
FlashLock to Secure FPGA Contents (anti-tampering)  
Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2,  
×4, ×9, and ×18 Organizations Available)  
Table 1 •  
Automotive ProASIC3 Product Family  
ProASIC3 Devices  
System Gates  
A3P060  
A3P125  
125 k  
3,072  
36  
A3P250  
250 k  
6,144  
36  
A3P1000  
60 k  
1,536  
18  
1 M  
24,576  
144  
32  
VersaTiles (D-flip-flops)  
RAM kbits (1,024 bits)  
4,608-Bit Blocks  
4
8
8
FlashROM Bits  
1 k  
Yes  
1
1 k  
1 k  
1 k  
Yes  
Yes  
Yes  
1
Secure (AES) ISP  
Integrated PLL in CCCs  
VersaNet Globals*  
I/O Banks  
1
1
18  
18  
18  
18  
2
2
4
4
Maximum User I/Os  
96  
133  
157  
300  
Package Pins  
VQFP  
VQ100  
FG144  
VQ100  
FG144  
VQ100  
FG144, FG256  
FBGA  
FG144, FG256, FG484  
Note: *Six chip-wide (main) globals and three additional global networks in each quadrant are available.  
August 2007  
i
© 2007 Actel Corporation  
See the Actel website for the latest version of the datasheet.  
Automotive ProASIC3 Flash Family FPGAs  
I/Os Per Package  
ProASIC3 Devices  
A3P060  
A3P125  
A3P250  
I/O Type  
A3P1000  
Package  
VQ100  
71  
96  
71  
97  
68  
97  
13  
24  
38  
FG144  
97  
25  
44  
74  
FG256 3  
FG484 3  
Notes:  
157  
177  
300  
1. When considering migrating your design to a lower- or higher-density device, refer to "Package Pin Assignments" starting on page  
4-1 to ensure complying with design and board migration requirements.  
2. Each used differential I/O pair reduces the number of available single-ended I/Os by two.  
3. FG256 and FG484 are footprint-compatible packages.  
Automotive ProASIC3 Ordering Information  
_
A3P1000  
1
FG  
144  
T
G
Application (Temperature Range)  
T = Grade 2 and Grade 1 AECQ100  
Grade 2 = 105°C TA and 115°C TJ  
Grade 1 = 125°C TA and 135°C TJ  
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G= RoHS-Compliant (Green) Packaging  
Package Type  
=
=
VQ  
FG  
Very Thin Quad Flat Pack (0.5 mm pitch)  
Fine Pitch Ball Grid Array (1.0 mm pitch)  
Speed Grade  
Blank = Standard  
1 = 15% Faster than Standard  
Part Number  
Automotive ProASIC3 Devices  
A3P060 = 60,000 System Gates  
A3P125 = 125,000 System Gates  
A3P250 = 250,000 System Gates  
A3P1000 = 1,000,000 System Gates  
Note: Minimum order quantities apply. Contact your local Actel sales office for details.  
ii  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Temperature Grade Offerings  
Package  
VQ100  
FG144  
A3P060  
A3P125  
A3P250  
C, I, T  
C, I, T  
C, I, T  
A3P1000  
C, I, T  
C, I, T  
C, I, T  
C, I, T  
C, I, T  
C, I, T  
C, I, T  
FG256  
FG484  
Notes:  
1. C = Commercial temperature range: 0°C to 70°C  
2. I = Industrial temperature range: –40°C to 85°C  
3. T = Automotive temperature range: Grade 2 and Grade 1 AEC-Q100  
Grade 2 = 105°C TA and 115°C TJ  
Grade 1 = 125°C TA and 135°C TJ  
4. Specifications for Commercial and Industrial grade devices can be found in the ProASIC3 Flash Family FPGAs datasheet.  
Speed Grade and Temperature Grade Matrix  
Temperature Grade  
Std.  
–1  
T (Grade 1 and Grade 2), Commercial, Industrial  
Notes:  
1. T = Automotive temperature range: Grade 2 and Grade 1 AEC-Q100  
Grade 2 = 105°C TA and 115°C TJ  
Grade 1 = 125°C TA and 135°C TJ  
2. Specifications for Commercial and Industrial grade devices can be found in the ProASIC3 Flash Family FPGAs datasheet.  
Contact your local Actel representative for device availability (http://www.actel.com/contact/default.aspx).  
v2.0  
iii  
Automotive ProASIC3 Flash Family FPGAs  
Table of Contents  
Introduction and Overview  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6  
Device Architecture  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Device Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48  
Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50  
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51  
ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51  
DC and Switching Characteristics  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13  
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-70  
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-76  
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-81  
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-96  
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-97  
Package Pin Assignments  
100-Pin VQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
144-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5  
256-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14  
484-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21  
Datasheet Information  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
v2.1  
v
Automotive ProASIC3 Flash Family FPGAs  
Introduction and Overview  
Security  
General Description  
The nonvolatile, flash-based Automotive ProASIC3  
devices do not require a boot PROM, so there is no  
vulnerable external bitstream that can be easily copied.  
Automotive ProASIC3 devices incorporate FlashLock,  
Automotive ProASIC3 nonvolatile flash technology gives  
automotive system designers the advantage of a secure,  
low-power, single-chip solution that is live at power-up  
(LAPU). Automotive ProASIC3 is reprogrammable and  
offers time-to-market benefits at an ASIC-level unit cost.  
These features enable designers to create high-density  
systems using existing ASIC or FPGA design flows and  
tools.  
which  
provides  
a
unique  
combination  
of  
reprogrammability and design security without external  
overhead, advantages that only an FPGA with  
nonvolatile flash programming can offer.  
Automotive ProASIC3 devices utilize a 128-bit flash-  
Automotive ProASIC3 devices offer 1 kbit of on-chip,  
reprogrammable, nonvolatile FlashROM storage as well  
as clock conditioning circuitry based on an integrated  
phase-locked loop (PLL). Automotive ProASIC3 devices  
have up to 1 million system gates, supported with up to  
144 kbits of SRAM and up to 300 user I/Os.  
based lock and  
a
separate AES key to secure  
programmed intellectual property and configuration  
data. In addition, all FlashROM data in Automotive  
ProASIC3 devices can be encrypted prior to loading,  
using the industry-leading AES-128 (FIPS192) bit block  
cipher encryption standard. The AES was adopted by the  
National Institute of Standards and Technology (NIST) in  
2000 and replaces the 1977 DES standard. Automotive  
ProASIC3 devices have a built-in AES decryption engine  
and a flash-based AES key that make them the most  
comprehensive programmable logic device security  
solution available today. Automotive ProASIC3 devices  
with AES-based security allow for secure, remote field  
updates over public networks such as the Internet, and  
ensure that valuable IP remains out of the hands of  
system overbuilders, system cloners, and IP thieves. The  
contents of a programmed Automotive ProASIC3 device  
cannot be read back, although secure design verification  
is possible. Additionally, security features of Automotive  
ProASIC3 devices provide anti-tampering protection.  
Automotive ProASIC3 devices are the only firm-error-  
immune automotive grade FPGAs. Firm-error immunity  
makes them ideally suited for demanding applications in  
powertrain, safety, and telematics-based subsystems,  
where firm-error failure is not an option.  
Firm errors in SRAM-based FPGAs can result in high  
defect levels in field-deployed systems. These  
unavoidable defects must be considered separately from  
standard defects and failure mechanisms when looking  
at overall system quality and reliability.  
Flash Advantages  
Reduced Cost of Ownership  
Security, built into the FPGA fabric, is an inherent  
component of the Automotive ProASIC3 family. The flash  
cells are located beneath seven metal layers, and many  
device design and layout techniques have been used to  
make invasive attacks extremely difficult. The  
Automotive ProASIC3 family, with FlashLock and AES  
security, is unique in being highly resistant to both  
invasive and noninvasive attacks. Your valuable IP is  
protected and secure. An Automotive ProASIC3 device  
Advantages to the designer extend beyond low unit cost,  
performance, and ease of use. Unlike SRAM-based  
FPGAs, flash-based Automotive ProASIC3 devices allow  
all functionality to be live at power-up; no external boot  
PROM is required. On-board security mechanisms  
prevent access to all the programming information and  
enable secure remote updates of the FPGA logic. Flash-  
based FPGAs are LAPU Class 0 devices, offering the  
lowest available power in a single-chip device and  
providing firm-error immunity. The Automotive ProASIC3  
family device architecture mitigates the need for ASIC  
migration at high user volumes. This makes the  
provides  
the  
most  
impenetrable  
security  
for  
programmable logic designs.  
Single Chip  
Automotive ProASIC3 family  
a
cost-effective ASIC  
Flash-based FPGAs store their configuration information  
in on-chip flash cells. Once programmed, the  
configuration data is an inherent part of the FPGA  
structure, and no external configuration data needs to  
be loaded at system power-up (unlike SRAM-based  
FPGAs). Therefore, flash-based Automotive ProASIC3  
replacement solution, especially for automotive  
applications.  
v2.0  
1-1  
Automotive ProASIC3 Flash Family FPGAs  
FPGAs do not require system configuration components  
such as EEPROMs or microcontrollers to load device  
configuration data. This reduces bill-of-materials costs  
and PCB area, and increases security and system  
reliability.  
applications. Automotive ProASIC3 devices have only a  
very limited power-on current surge and no high-current  
transition period, both of which occur on many FPGAs.  
Automotive ProASIC3 devices also have low dynamic  
power consumption to further maximize power savings.  
Live at Power-Up  
Advanced Flash Technology  
The Actel flash-based Automotive ProASIC3 devices  
support Level 0 of the LAPU classification standard. This  
feature helps in system component initialization,  
execution of critical tasks before the processor wakes up,  
setup and configuration of memory blocks, clock  
generation, and bus activity management. The LAPU  
feature of flash-based Automotive ProASIC3 devices  
greatly simplifies total system design and reduces total  
system cost, often eliminating the need for CPLDs and  
external clock generation PLLs. In addition, glitches and  
brownouts in system power will not corrupt the  
Automotive ProASIC3 device's flash configuration, and  
unlike SRAM-based FPGAs, the device will not have to be  
reloaded when system power is restored. This enables  
the reduction or complete removal of the configuration  
PROM, expensive voltage monitor, brownout detection,  
and clock generator devices from the PCB design. Flash-  
based Automotive ProASIC3 devices simplify total system  
design and reduce cost and design risk while increasing  
system reliability and improving system initialization  
time.  
The Automotive ProASIC3 family offers many benefits,  
including nonvolatility and reprogrammability, through  
an advanced flash-based, 130-nm LVCMOS process with  
seven layers of metal. Standard CMOS design techniques  
are used to implement logic and control functions. The  
combination of fine granularity, enhanced flexible  
routing resources, and abundant flash switches allows  
for very high logic utilization without compromising  
device routability or performance. Logic functions within  
the device are interconnected through a four-level  
routing hierarchy.  
Advanced Architecture  
The proprietary Automotive ProASIC3 architecture  
provides granularity comparable to standard-cell ASICs.  
The Automotive ProASIC3 device consists of five distinct  
and programmable architectural features (Figure 1-1 and  
Figure 1-2 on page 1-3):  
FPGA VersaTiles  
Refer to the "I/O Power-Up and Supply Voltage  
Thresholds for Power-On Reset (Commercial and  
Industrial)" section on page 3-4 for more information.  
Dedicated FlashROM  
Dedicated SRAM memory  
Extensive CCCs and PLLs  
Advanced I/O structure  
Firm-Error Immune  
Firm errors occur most commonly when high-energy  
neutrons, generated in the upper atmosphere, strike a  
configuration cell of an SRAM FPGA. The energy of the  
collision can change the state of the configuration cell  
and thus change the logic, routing, or I/O behavior in an  
unpredictable way. These errors are impossible to  
prevent in SRAM FPGAs. The consequence of this type of  
error can be a complete system failure. Firm errors do  
not exist in the configuration memory of Automotive  
ProASIC3 flash-based FPGAs. Once it is programmed, the  
flash cell configuration element of Automotive ProASIC3  
FPGAs cannot be altered by high-energy neutrons and is  
therefore immune to them. Recoverable (or soft) errors  
occur in the user data SRAM of all FPGA devices. These  
can easily be mitigated by using error detection and  
correction (EDAC) circuitry built into the FPGA fabric.  
The FPGA core consists of a sea of VersaTiles. Each  
VersaTile can be configured as a three-input logic  
function, a D-flip-flop (with or without enable), or a  
latch by programming the appropriate flash switch  
interconnections. The versatility of the Automotive  
ProASIC3 core tile as either a three-input lookup table  
(LUT) equivalent or a D-flip-flop/latch with enable allows  
for efficient use of the FPGA fabric. The VersaTile  
capability is unique to the Actel ProASIC family of third-  
generation-architecture flash FPGAs. VersaTiles are  
connected with any of the four levels of routing  
hierarchy. Flash switches are distributed throughout the  
device  
to  
provide  
nonvolatile,  
reconfigurable  
interconnect programming. Maximum core utilization is  
possible for virtually any design.  
In addition, extensive on-chip programming circuitry  
allows for rapid, single-voltage (3.3 V) programming of  
Automotive ProASIC3 devices via an IEEE 1532 JTAG  
interface.  
Low Power  
Flash-based Automotive ProASIC3 devices exhibit very  
low power characteristics, similar to those of an ASIC,  
making them an ideal choice for power-sensitive  
1-2  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Bank 0  
CCC  
RAM Block  
4,608-Bit SRAM  
or FIFO Block  
I/Os  
VersaTile  
ISP AES  
Decryption  
User Nonvolatile  
FlashROM  
Charge Pumps  
Bank 1  
Figure 1-1 Automotive ProASIC3 Device Architecture Overview with Two I/O Banks (A3P060 and A3P125)  
Bank 0  
CCC  
RAM Block  
4,608-Bit SRAM  
or FIFO Block  
I/Os  
VersaTile  
RAM Block  
4,608-Bit SRAM  
or FIFO Block  
ISP AES  
Decryption  
User Nonvolatile  
FlashROM  
Charge Pumps  
(A3P600 and A3P1000)  
Bank 2  
Figure 1-2 Automotive ProASIC3 Device Architecture Overview with Four I/O Banks (A3P600 and A3P1000)  
v2.0  
1-3  
Automotive ProASIC3 Flash Family FPGAs  
VersaTiles  
The Automotive ProASIC3 core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core tiles.  
The Automotive ProASIC3 VersaTile supports the following:  
All 3-input logic functions—LUT-3 equivalent  
Latch with clear or set  
D-flip-flop with clear or set  
Enable D-flip-flop with clear or set  
Refer to Figure 1-3 for VersaTile configurations.  
For more information about VersaTiles, refer to the "VersaTile" section on page 2-2.  
Enable D-Flip-Flop with Clear or Set  
D-Flip-Flop with Clear or Set  
LUT-3 Equivalent  
X1  
Data  
Y
Data  
CLK  
CLR  
Y
X2  
X3  
LUT-3  
Y
D-FF  
CLK  
D-FF  
Enable  
CLR  
Figure 1-3 VersaTile Configurations  
determine the bank, and the four least significant bits  
(LSBs) of the FlashROM address define the byte.  
User Nonvolatile FlashROM  
Actel Automotive ProASIC3 devices have 1 kbit of on-  
chip, user-accessible, nonvolatile FlashROM. The  
FlashROM can be used in diverse system applications:  
The Actel Automotive ProASIC3 development software  
solutions, Libero® Integrated Design Environment (IDE)  
and Designer, have extensive support for the FlashROM.  
One such feature is auto-generation of sequential  
programming files for applications requiring a unique  
serial number in each part. Another feature allows the  
inclusion of static data for system version control. Data  
for the FlashROM can be generated quickly and easily  
using Actel Libero IDE and Designer software tools.  
Comprehensive programming file support is also  
included to allow for easy programming of large  
numbers of parts with differing FlashROM contents.  
Unique protocol addressing (wireless or fixed)  
System calibration settings  
Device serialization and/or inventory control  
Subscription-based business models (for example,  
infotainment systems)  
Secure key storage for secure communications  
algorithms  
Asset management/tracking  
Date stamping  
SRAM  
Version management  
The FlashROM is written using the standard Automotive  
ProASIC3 IEEE 1532 JTAG programming interface.  
Automotive ProASIC3 devices have embedded SRAM  
blocks along their north and south sides. Each variable-  
aspect-ratio SRAM block is 4,608 bits in size. Available  
memory configurations are 256×18, 512×9, 1k×4, 2k×2,  
and 4k×1 bits. The individual blocks have independent  
read and write ports that can be configured with  
different bit widths on each port. For example, data can  
be sent through a 4-bit port and read as a single  
bitstream. The embedded SRAM blocks can be initialized  
via the device JTAG port (ROM emulation mode) using  
the UJTAG macro. For more information, refer to the  
application note, UJTAG Applications in ProASIC3/E  
Devices.  
The FlashROM can be programmed via the JTAG  
programming interface, and its contents can be read  
back either through the JTAG programming interface or  
via direct FPGA core addressing. Note that the FlashROM  
can only be programmed from the JTAG interface and  
cannot be programmed from the internal logic array.  
The FlashROM is programmed as 8 banks of 128 bits;  
however, reading is performed on a byte-by-byte basis  
using a synchronous interface. A 7-bit address from the  
FPGA core defines which of the 8 banks and which of the  
16 bytes within that bank are being read. The three most  
significant bits (MSBs) of the FlashROM address  
1-4  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Exceptional tolerance to input period jitter—  
allowable input jitter is up to 1.5 ns (for PLL only)  
PLL and CCC  
Automotive ProASIC3 devices provide designers with  
very flexible clock conditioning circuit (CCC) capabilities.  
Each member of the Automotive ProASIC3 family  
contains six CCCs. One CCC (center west side) has a PLL.  
Four precise phases; maximum misalignment  
between adjacent phases of 40 ps × 350 MHz /  
fOUT_CCC (for PLL only)  
The six CCC blocks are located at the four corners and the  
centers of the east and west sides. One CCC (center west  
side) has a PLL.  
Global Clocking  
Automotive ProASIC3 devices have extensive support for  
multiple clocking domains. In addition to the CCC and  
PLL support described above, there is a comprehensive  
global clock distribution network.  
All six CCC blocks are usable; the four corner CCCs and  
the east CCC allow simple clock delay operations as well  
as clock spine access (refer to the "Clock Conditioning  
Circuits" section on page 2-13 for more information).  
Each VersaTile input and output port has access to nine  
VersaNets: six chip (main) and three quadrant global  
networks. The VersaNets can be driven by the CCC or  
directly accessed from the core via multiplexers (MUXes).  
The VersaNets can be used to distribute low-skew clock  
signals or for rapid distribution of high-fanout nets.  
The inputs of the six CCC blocks are accessible from the  
FPGA core or from one of several inputs located near the  
CCC that have dedicated connections to the CCC block.  
The CCC block has these key features:  
Wide input frequency range (fIN_CCC) = 1.5 MHz to  
350 MHz  
I/Os with Advanced I/O Standards  
The Automotive ProASIC3 family of FPGAs features a  
flexible I/O structure, supporting a range of voltages  
(1.5 V, 1.8 V, 2.5 V, and 3.3 V). Automotive ProASIC3  
FPGAs support many different I/O standards—single-  
ended and differential.  
Output frequency range (fOUT_CCC) = 0.75 MHz to  
350 MHz  
Clock delay adjustment via programmable and  
fixed delays from –7.56 ns to +11.12 ns  
2
programmable delay types for clock skew  
The I/Os are organized into banks, with two or four  
banks per device. Refer to Table 2-18 on page 2-44 for  
details on I/O bank configuration. The configuration of  
these banks determines the I/O standards supported (see  
Table 2-18 on page 2-44 for more information).  
minimization  
Clock frequency synthesis (for PLL only)  
Additional CCC specifications:  
Internal phase shift = 0°, 90°, 180°, and 270°.  
Output phase shift depends on the output divider  
configuration (for PLL only).  
Each I/O module contains several input, output, and  
enable  
registers.  
These  
registers  
allow  
the  
implementation of the following:  
Output duty cycle = 50% 1.5% or better (for PLL  
only)  
Single-Data-Rate applications  
Low output jitter: worst case < 2.5% × clock period  
peak-to-peak period jitter when single global  
network used (for PLL only)  
Double-Data-Rate applications—DDR LVDS, BLVDS,  
and M-LVDS I/Os for point-to-point communications  
See the "DDR Module Specifications" section on page 3-  
64 for more information.  
Maximum acquisition time is 300 µs (for PLL only)  
Low power consumption of 5 mW  
Automotive ProASIC3 banks for the A3P250 and A3P1000  
devices support LVPECL, LVDS, BLVDS, and M-LVDS.  
BLVDS and M-LVDS can support up to 20 loads.  
v2.0  
1-5  
Automotive ProASIC3 Flash Family FPGAs  
Related Documents  
Application Notes  
ProASIC3/E I/O Usage Guide  
http://www.actel.com/documents/PA3_E_IO_AN.pdf  
In-System Programming (ISP) in ProASIC3/E Using FlashPro3  
http://www.actel.com/documents/PA3_E_ISP_AN.pdf  
ProASIC3/E FlashROM  
http://www.actel.com/documents/PA3_E_FROM_AN.pdf  
ProASIC3/E Security  
http://www.actel.com/documents/PA3_E_Security_AN.pdf  
ProASIC3/E SRAM/FIFO Blocks  
http://www.actel.com/documents/PA3_E_SRAMFIFO_AN.pdf  
Programming ProASIC3/E Using a Microprocessor  
http://www.actel.com/documents/PA3_E_Microprocessor_AN.pdf  
UJTAG Applications in ProASIC3/E Devices  
http://www.actel.com/documents/PA3_E_UJTAG_AN.pdf  
Using DDR for ProASIC3/E Devices  
http://www.actel.com/documents/PA3_E_DDR_AN.pdf  
Using Global Resources in Actel ProASIC3/E Devices  
http://www.actel.com/documents/PA3_E_Global_AN.pdf  
Power-Up/Down Behavior of ProASIC3/E Devices  
http://www.actel.com/documents/ProASIC3_E_PowerUp_AN.pdf  
For additional Automotive ProASIC3 application notes, go to http://www.actel.com/techdocs/an.aspx.  
User’s Guides  
SmartGen Cores Reference Guide  
http://www.actel.com/documents/gen_refguide_ug.pdf  
Designer User’s Guide  
http://www.actel.com/documents/designer_ug.pdf  
Fusion, IGLOO/e and ProASIC3/E Macro Library Guide  
http://www.actel.com/documents/pa3_libguide_ug.pdf  
1-6  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Device Architecture  
stores the programming information (Figure 2-1). One is  
the sensing transistor, which is only used for writing and  
verification of the floating gate voltage. The other is the  
switching transistor. The latter is used to connect or  
separate routing nets, or to configure VersaTile logic. It is  
also used to erase the floating gate. Dedicated high-  
performance lines are connected as required using the  
flash switch for fast, low-skew, global signal distribution  
throughout the device core. Maximum core utilization is  
possible for virtually any design. The use of the flash  
switch technology also removes the possibility of firm  
errors.  
Introduction  
Flash Technology  
Advanced Flash Switch  
Unlike SRAM FPGAs, the Automotive ProASIC3 family  
uses  
a
live-at-power-up ISP flash switch as its  
programming element. Flash cells are distributed  
throughout the device to provide nonvolatile,  
reconfigurable programming to connect signal lines to  
the appropriate VersaTile inputs and outputs. In the flash  
switch, two transistors share the floating gate, which  
Switch In  
Floating Gate  
Sensing  
Switching  
Word  
Switch Out  
Figure 2-1 Automotive ProASIC3 Flash-Based Switch  
v2.0  
2-1  
Automotive ProASIC3 Flash Family FPGAs  
D-flip-flop with clear or set  
Device Overview  
The Automotive ProASIC3 device family consists of  
distinct programmable architectural features (Figure 2-2  
and Figure 2-3 on page 2-3):  
Enable D-flip-flop with clear or set (on a fourth  
input)  
VersaTiles can flexibly map the logic and sequential gates  
of a design. The inputs of the VersaTile can be inverted  
(allowing bubble pushing), and the output of the tile can  
connect to high-speed, very-long-line routing resources.  
VersaTiles and larger functions can be connected with  
any of the four levels of routing hierarchy.  
FPGA fabric/core (VersaTiles)  
Routing and clock resources (VersaNets)  
FlashROM  
Dedicated SRAM memory  
When the VersaTile is used as an enable D-flip-flop,  
SET/CLR is supported by a fourth input. The SET/CLR  
signal can only be routed to this fourth input over the  
VersaNet (global) network. However, if, in the user’s  
design, the SET/CLR signal is not routed over the  
VersaNet network, a compile warning message will be  
given, and the intended logic function will be  
implemented by two VersaTiles instead of one.  
Core Architecture  
VersaTile  
The proprietary Automotive ProASIC3 family architecture  
provides granularity comparable to gate arrays. The  
Automotive ProASIC3 device core consists of a sea-of-  
VersaTiles architecture.  
The output of the VersaTile is F2 (Figure 2-4 on page 2-4)  
when the connection is to the ultra-fast local lines, or YL  
when the connection is to the efficient long-line or very-  
long-line resources.  
As illustrated in Figure 2-4 on page 2-4, there are four  
inputs in a logic VersaTile cell, and each VersaTile can be  
configured using the appropriate flash switch  
connections:  
Any 3-input logic function  
Latch with clear or set  
Bank 0  
CCC  
RAM Block  
4,608-Bit SRAM  
or FIFO Block  
I/Os  
VersaTile  
ISP AES  
Decryption  
User Nonvolatile  
FlashROM  
Charge Pumps  
Bank 1  
Figure 2-2 Automotive ProASIC3 Device Architecture Overview with Two I/O Banks (A3P060 and A3P125)  
2-2  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Bank 0  
CCC  
RAM Block  
4,608-Bit SRAM  
or FIFO Block  
I/Os  
VersaTile  
RAM Block  
4,608-Bit SRAM  
or FIFO Block  
ISP AES  
Decryption  
User Nonvolatile  
FlashROM  
Charge Pumps  
(A3P600 and A3P1000)  
Bank 2  
Figure 2-3 Automotive ProASIC3 Device Architecture Overview with Four I/O Banks (A3P250, A3P600, and A3P1000)  
v2.0  
2-3  
Automotive ProASIC3 Flash Family FPGAs  
0
1
Y
Pin 1  
Data  
X3  
0
1
0
1
F2  
YL  
0
1
CLK  
X2  
CLR/  
Enable  
X1  
CLR  
XC*  
Ground  
Legend:  
Via (hard connection)  
Switch (flash connection)  
Note: *This input can only be connected to the global clock distribution network.  
Figure 2-4 Automotive ProASIC3 Core VersaTile  
2-4  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Array Coordinates  
During many place-and-route operations in the Actel  
Designer software tool, it is possible to set constraints  
that require array coordinates. Table 2-1 provides array  
coordinates of core cells and memory blocks. The array  
coordinates are measured from the lower left (0, 0). They  
can be used in region constraints for specific logic  
groups/blocks, designated by a wildcard, and can contain  
core cells, memories, and I/Os.  
not listed in Table 2-1. The Designer ChipPlanner tool  
provides the array coordinates of all I/O locations. I/O  
and cell coordinates are used for placement constraints.  
However, I/O placement is easier by package pin  
assignment.  
Figure 2-5 illustrates the array coordinates of an A3P1000  
device. For more information on how to use array  
coordinates for region/placement constraints, see the  
Designer User's Guide or online help (available in the  
software) for Automotive ProASIC3 software tools.  
I/O and cell coordinates are used for placement  
constraints. Two coordinate systems are needed because  
there is not a one-to-one correspondence between I/O  
cells and core cells. In addition, the I/O coordinate system  
changes depending on the die/package combination. It is  
Table 2-1 Automotive ProASIC3 Array Coordinates  
VersaTiles  
Memory Rows  
Entire Die  
Min.  
Max.  
Bottom  
Top  
(x, y)  
(3, 26)  
(3, 26)  
(3, 50)  
(3, 100)  
Min.  
Max.  
(x, y)  
Device  
A3P060  
A3P125  
A3P250  
A3P1000  
x
3
3
3
3
y
2
2
2
4
x
y
(x, y)  
None  
None  
None  
(3, 2)  
(x, y)  
(0, 0)  
(0, 0)  
(0, 0)  
(0, 0)  
66  
25  
25  
49  
99  
(69, 29)  
(133, 29)  
(133, 53)  
(261, 103)  
130  
130  
258  
Top Row (7, 103) to (253, 103)  
Bottom Row (5, 102) to (256, 102)  
I/O Tile  
(0, 103)  
(261, 103)  
(3, 101)  
(3, 100)  
Memory  
Blocks  
(258, 101)  
(258, 100)  
Memory  
Blocks  
VersaTile (Core)  
(3, 99)  
(258, 99)  
VersaTile (Core)  
(258, 4)  
VersaTile (Core)  
VersaTile (Core)  
(3, 4)  
(258, 3)  
(258, 2)  
Memory  
Blocks  
(3, 3)  
(3, 2)  
Memory  
Blocks  
(261, 1)  
(261, 0)  
(0, 0)  
I/O Tile  
UJTAG FlashROM  
Top Row (5, 1) to (242, 1)  
Top Row (233, 1) to (256, 1)  
Bottom Row (7, 0) to (239, 0)  
Note: The vertical I/O tile coordinates are not shown. West side coordinates are {(0, 2) to (2, 2)} to {(0, 101) to (2, 101)}; east side  
coordinates are {(259, 2) to (261, 2)} to {(259, 101) to (261, 101)}.  
Figure 2-5 Array Coordinates for A3P1000  
v2.0  
2-5  
Automotive ProASIC3 Flash Family FPGAs  
Routing Architecture  
Routing Resources  
The routing structure of Automotive ProASIC3 devices is  
designed to provide high performance through a flexible  
four-level hierarchy of routing resources: ultra-fast local  
resources; efficient long-line resources; high-speed, very-  
long-line resources; and the high-performance VersaNet  
networks.  
The high-speed, very-long-line resources, which span the  
entire device with minimal delay, are used to route very  
long or high-fanout nets: length +/–12 VersaTiles in the  
vertical direction and length +/–16 in the horizontal  
direction from a given core VersaTile (Figure 2-8 on page  
2-8). Very long lines in Automotive ProASIC3 devices  
have been enhanced over those in previous ProASIC  
families. This provides a significant performance boost  
for long-reach signals.  
The ultra-fast local resources are dedicated lines that allow  
the output of each VersaTile to connect directly to every  
input of the eight surrounding VersaTiles (Figure 2-6). The  
exception to this is that the SET/CLR input of a VersaTile  
configured as a D-flip-flop is driven only by the VersaTile  
global network.  
The high-performance VersaNet global networks are  
low-skew, high-fanout nets that are accessible from  
external pins or internal logic (Figure 2-9 on page 2-9).  
These nets are typically used to distribute clocks, resets,  
and other high-fanout nets requiring minimum skew.  
The VersaNet networks are implemented as clock trees,  
and signals can be introduced at any junction. These can  
be employed hierarchically, with signals accessing every  
input on all VersaTiles.  
The efficient long-line resources provide routing for longer  
distances and higher-fanout connections. These resources  
vary in length (spanning one, two, or four VersaTiles), run  
both vertically and horizontally, and cover the entire  
Automotive ProASIC3 device (Figure 2-7 on page 2-7).  
Each VersaTile can drive signals onto the efficient long-line  
resources, which can access every input of every VersaTile.  
Routing software automatically inserts active buffers to  
limit loading effects.  
Long Lines  
L
L
L
L
L
L
Inputs  
Ultra-Fast Local Lines  
(connects a VersaTile to the  
adjacent VersaTile, I/O buffer,  
or memory block)  
L
L
L
Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global network connection.  
Figure 2-6 Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors  
2-6  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Spans 4 VersaTiles  
L
Spans 1 VersaTile  
Spans 2 VersaTiles  
L
VersaTile  
L
L
L
L
L
L
L
L
L
L
L
L
Spans 1 VersaTile  
L
L
L
L
Spans 2 VersaTiles  
Spans 4 VersaTiles  
L
L
L
L
L
L
L
L
L
L
L
L
Figure 2-7 Efficient Long-Line Resources  
v2.0  
2-7  
Automotive ProASIC3 Flash Family FPGAs  
High-Speed, Very-Long-Line Resources  
Pad Ring  
SRAM  
16×12 Block of VersaTiles  
Pad Ring  
Figure 2-8 Very-Long-Line Resources  
2-8  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
quadrants. Each core VersaTile has access to nine global  
network resources: three quadrant and six chip-wide (main)  
global networks, and a total of 18 globals on the device.  
Each of these networks contains spines and ribs that reach  
all the VersaTiles in the quadrants (Figure 2-10 on page 2-  
10). This flexible VersaNet global network architecture  
allows users to map up to 144 different internal/external  
clocks in an Automotive ProASIC3 device. Details on the  
VersaNet networks are given in Table 2-2 on page 2-10.  
The flexible use of the Automotive ProASIC3 VersaNet  
global network allows the designer to address several  
design requirements. User applications that are clock-  
resource-intensive can easily route external or gated  
internal clocks using VersaNet global routing networks.  
Designers can also drastically reduce delay penalties and  
minimize resource usage by mapping critical, high-fanout  
nets to the VersaNet global network.  
Clock Resources (VersaNets)  
Automotive ProASIC3 devices offer powerful and flexible  
control of circuit timing through the use of analog  
circuitry. Each chip has up to six CCCs. The west CCC also  
contains a phase-locked loop (PLL) core, delay lines, a  
phase shifter (0°, 90°, 180°, 270°), and clock  
multipliers/dividers. Each CCC has all the circuitry needed  
for the selection and interconnection of inputs to the  
VersaNet global network. The east and west CCCs each  
have access to three VersaNet global lines on each side of  
the chip (six total lines).  
Advantages of the VersaNet Approach  
One of the architectural benefits of Automotive ProASIC3  
is the set of powerful and low-delay VersaNet global  
networks. Automotive ProASIC3 offers six chip (main)  
global networks that are distributed from the center of the  
FPGA array (Figure 2-9). In addition, Automotive ProASIC3  
devices have three regional globals in each of the four chip  
High-Performance  
VersaNet Global Network  
Quadrant Global Pads  
Pad Ring  
Top Spine  
Chip (main)  
Global Network  
Global  
Pads  
Chip (main)  
Global Pads  
Global Spine  
Global Ribs  
Bottom Spine  
Spine-Selection  
Tree MUX  
Pad Ring  
Note:  
Figure 2-9 Overview of Automotive ProASIC3 VersaNet Global Network  
v2.0  
2-9  
Automotive ProASIC3 Flash Family FPGAs  
Northwest Quadrant Global Network  
CCC  
CCC  
3
3
3
3
3
Chip (main)  
Global  
Network  
6
6
6
6
6
6
6
CCC  
3
CCC  
6
3
3
3
3
CCC  
CCC  
Southeast Quadrant Global Network  
Figure 2-10 Global Network Architecture  
Table 2-2 Automotive ProASIC3 Globals/Spines/Rows by Device  
A3P060  
A3P125  
A3P250  
A3P1000  
9
Global VersaNets (Trees)  
VersaNet Spines/Tree  
9
9
4
9
8
4
36  
16  
Total Spines  
36  
72  
144  
VersaTiles in Each Top or Bottom Spine  
Total VersaTiles  
384  
1,536  
12  
384  
3,072  
12  
768  
6,144  
24  
1,536  
24,576  
48  
Rows in Each Top or Bottom Spine  
other high-fanout nets in ProASIC3 devices. Optimal  
usage of these low-skew networks can result in  
significant improvement in design performance on  
Automotive ProASIC3 devices.  
VersaNet Global Networks and Spine Access  
The ProASIC3 architecture contains  
a total of 18  
segmented global networks that can access the  
VersaTiles, SRAM, and I/O tiles of the Automotive  
ProASIC3 device. There are nine global network  
resources in each device quadrant: three quadrant  
globals and six chip (main) global networks. Each device  
has a total of 18 globals. These VersaNet global networks  
offer fast, low-skew routing resources for high-fanout  
nets, including clock signals. In addition, these highly  
segmented global networks offer users the flexibility to  
create low-skew local networks using spines for up to  
144 internal/external clocks (in an A3P1000 device) or  
The nine spines available in a vertical column reside in  
global networks with two separate regions of scope: the  
quadrant global network, which has three spines, and  
the chip (main) global network, which has six spines.  
Note that there are three quadrant spines in each  
quadrant of the device. There are four quadrant global  
network regions per device (Figure 2-10).  
The spines are the vertical branches of the global  
network tree, shown in Figure 2-11 on page 2-11. Each  
2-10  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
spine in a vertical column of a chip (main) global  
network is further divided into two equal-length spine  
segments: one in the top and one in the bottom half of  
the die.  
can have a significant effect on system performance for  
high-fanout inputs to a design.  
Details of the chip (main) global network spine-selection  
MUX are presented in Figure 2-12 on page 2-12. The  
spine drivers for each spine are located in the middle of  
the die.  
Each spine and its associated ribs cover a certain area of  
the Automotive ProASIC3 device (the "scope" of the  
spine; see Figure 2-9 on page 2-9). Each spine is accessed  
by the dedicated global network MUX tree architecture,  
which defines how a particular spine is driven—either by  
the signal on the global network from a CCC, for  
example, or by another net defined by the user (Figure 2-  
12 on page 2-12). Quadrant spines can be driven from  
user I/Os on the north and south sides of the die. The  
ability to drive spines in the quadrant global networks  
Quadrant spines are driven from a north or south rib.  
Access to the top and bottom ribs is from the corner CCC  
or from the I/Os on the north and south sides of the  
device.  
For details on using spines in ProASIC3 devices, see the  
Actel application note Using Global Resources in Actel  
ProASIC3/E Devices.  
Quadrant Global Pads  
High-Performance  
Global Network  
T1  
T2  
T3  
Pad Ring  
Top Spine  
Global  
Pads  
Chip (main)  
Global Pads  
Global Spine  
Global Ribs  
Bottom Spine  
Scope of Spine  
(shaded area  
plus local RAMs  
and I/Os)  
Spine-Selection  
MUX  
Embedded  
RAM Blocks  
Pad Ring  
Logic Tiles  
B1  
B2  
B3  
Figure 2-11 Automotive ProASIC3 Spines in a Global Clock Tree Network  
v2.0  
2-11  
Automotive ProASIC3 Flash Family FPGAs  
Clock Aggregation  
Clock aggregation allows for multi-spine clock domains.  
A MUX tree provides the necessary flexibility to allow  
long lines or I/Os to access domains of one, two, or four  
global spines. Signal access to the clock aggregation  
system is achieved through long-line resources in the  
central rib, and also through local resources in the north  
and south ribs, allowing I/Os to feed directly into the  
clock system. As Figure 2-13 indicates, this access system  
is contiguous.  
There is no break in the middle of the chip for the north  
and south I/O VersaNet access. This is different from the  
quadrant clocks located in these ribs, which only reach  
the middle of the rib. Refer to the Using Global  
Resources in Actel ProASIC3/E Devices application note.  
Internal/External  
Signals  
Internal/External  
Signals  
Tree Node MUX  
Tree Node MUX  
Internal/External  
Signal  
Tree Node MUX  
Global Rib  
Internal/External  
Signal  
Global Driver MUX  
Spine  
Figure 2-12 Spine Selection MUX of Global Tree  
Global Spine  
I/O Tiles  
I/O Access  
Global Rib  
Global Driver and MUX  
Tree Node MUX  
Internal Signal Access  
Global Signal Access  
Figure 2-13 Clock Aggregation Tree Architecture  
2-12  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Electrical Specifications" section on page 2-18 for more  
information.  
Clock Conditioning Circuits  
Overview of Clock Conditioning Circuitry  
In Automotive ProASIC3 devices, the CCCs are used to  
implement frequency division, frequency multiplication,  
phase shifting, and delay operations.  
Global Buffers with No Programmable Delays  
The CLKBUF and CLKBUF_LVPECL/LVDS/BLVDS/M-LVDS  
macros are composite macros that include an I/O macro  
driving  
a global buffer, which uses a hardwired  
connection.  
The CCCs are available in six chip locations—each of the  
four chip corners and the middle of the east and west  
chip sides.  
The CLKBUF, CLKBUF_LVPECL/LVDS/BLVDS/M-LVDS, and  
CLKINT macros are pass-through clock sources and do  
not use the PLL or provide any programmable delay  
functionality.  
Each CCC can implement up to three independent global  
buffers (with or without programmable delay) or a PLL  
function (programmable frequency division/multiplication,  
phase shift, and delays) with up to three global outputs.  
Unused global outputs of a PLL can be used to  
The CLKINT macro provides a global buffer function  
driven by the FPGA core.  
Many specific CLKBUF macros support the wide variety of  
single-ended and differential I/O standards supported by  
Automotive ProASIC3 devices. The available CLKBUF  
macros are described in the Fusion, IGLOO/e and  
ProASIC3/E Macro Library Guide.  
implement independent global buffers, up to  
maximum of three global outputs for a given CCC.  
a
A global buffer can be placed in any of the three global  
locations (CLKA-GLA, CLKB-GLB, or CLKC-GLC) of a given  
CCC.  
Global Buffer with Programmable Delay  
A PLL macro uses the CLKA CCC input to drive its reference  
clock. It uses the GLA and, optionally, the GLB and GLC  
global outputs to drive the global networks. A PLL macro  
can also drive the YB and YC regular core outputs. The GLB  
(or GLC) global output cannot be reused if the YB (or YC)  
output is used (Figure 2-14 on page 2-14). Refer to the  
"PLL Macro" section on page 2-15 for more information.  
The CLKDLY macro is a pass-through clock source that  
does not use the PLL, but provides the ability to delay the  
clock input using a programmable delay. The CLKDLY  
macro takes the selected clock input and adds a user-  
defined delay element. This macro generates an output  
clock phase shift from the input clock.  
The CLKDLY macro can be driven by an INBUF* macro to  
create a composite macro, where the I/O macro drives  
the global buffer (with programmable delay) using a  
hardwired connection. In this case, the I/O must be  
placed in one of the dedicated global I/O locations.  
Each global buffer, as well as the PLL reference clock, can  
be driven from one of the following:  
3 dedicated single-ended I/Os using a hardwired  
connection  
Many specific INBUF macros support the wide variety of  
single-ended and differential I/O standards supported by  
the Automotive ProASIC3 family. The available INBUF  
macros are described in the Fusion, IGLOO/e and  
ProASIC3/E Macro Library Guide.  
2 dedicated differential I/Os using a hardwired  
connection  
The FPGA core  
The CCC block is fully configurable, either via flash  
configuration bits set in the programming bitstream or  
through an asynchronous interface. This asynchronous  
interface is dynamically accessible from inside the  
Automotive ProASIC3 device to permit parameter  
changes (such as divide ratios) during device operation.  
To increase the versatility and flexibility of the clock  
conditioning system, the CCC configuration is  
determined either by the user during the design process,  
with configuration data being stored in flash memory as  
part of the device programming procedure, or by writing  
data into a dedicated shift register during normal device  
operation. This latter mode allows the user to  
dynamically reconfigure the CCC without the need for  
core programming. The shift register is accessed through  
a simple serial interface. Refer to the UJTAG Applications  
in ProASIC3/E Devices application note and the "CCC  
The CLKDLY macro can be driven directly from the FPGA  
core.  
The CLKDLY macro can also be driven from an I/O that is  
routed through the FPGA regular routing fabric. In this  
case, users must instantiate a special macro, PLLINT, to  
differentiate from the hardwired I/O connection  
described earlier.  
The visual CLKDLY configuration in the SmartGen part of  
the Libero IDE and Designer tools allows the user to  
select the desired amount of delay and configures the  
delay elements appropriately. SmartGen also allows the  
user to select the input clock source. SmartGen will  
automatically instantiate the special macro, PLLINT,  
when needed.  
v2.0  
2-13  
Automotive ProASIC3 Flash Family FPGAs  
Clock Source  
Clock Conditioning  
Output  
Input LVDS/LVPECL Macro  
PLL Macro  
GLA  
or  
CLKA  
GLA  
LOCK  
GLB  
YB  
GLC  
YC  
PADN  
POWERDOWN  
Y
PADP  
GLA and (GLB or YB)  
or  
OADIV[4:0]*  
OAMUX[2:0]*  
DLYGLA[4:0]*  
OBDIV[4:0]*  
OBMUX[2:0]*  
DLYYB[4:0]*  
DLYGLB[4:0]*  
OCDIV[4:0]*  
OCMUX[2:0]*  
DLYYC[4:0]*  
DLYGLC[4:0]*  
FINDIV[6:0]*  
FBDIV[6:0]*  
FBDLY[4:0]*  
FBSEL[1:0]*  
INBUF* Macro  
GLA and (GLC or YC)  
or  
PAD  
Y
GLA and (GLB or YB) and  
(GLC or YC)  
For INBUF* driving a PLL macro  
or CLKDLY macro, the I/O will  
be hard-routed to the CCC; i.e., will  
be placed by software to a dedicated  
Global I/O.  
XDLYSEL*  
VCOSEL[2:0]*  
CLKDLY Macro  
CLK GL  
GLA  
or  
GLB  
or  
DLYGL[4:0]  
GLC  
CLKBUF_LVDS/LVPECL Macro  
PADN  
CLKBUF Macro  
CLKINT Macro  
PAD  
Y
PADP  
Y
A
Y
Notes:  
1. Visit the Actel website for future application notes concerning dynamic PLL reconfiguration. The PLL is only supported on the west  
center CCC. Refer to the "PLL Macro" section on page 2-15 for signal descriptions.  
2. Refer to the Fusion, IGLOO/e and ProASIC3/E Macro Library Guide for more information.  
3. Many standard-specific INBUF macros (for example, INBUF_LVDS) support the wide variety of single-ended and differential I/O  
standards supported by the Automotive ProASIC3 family. The available INBUF macros are described in the Fusion, IGLOO/e and  
ProASIC3/E Macro Library Guide.  
Figure 2-14 Automotive ProASIC3 CCC Options  
2-14  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
There are five delay elements to support phase control  
on all five outputs (GLA, GLB, GLC, YB, and YC).  
PLL Macro  
The PLL functionality of the clock conditioning block is  
supported by the PLL macro. Note that the PLL macro  
reference clock uses the CLKA input of the CCC block,  
which is only accessible from the global A[0:2] package  
pins. Refer to Figure 2-15 on page 2-17 for more  
information.  
There is also a delay element in the feedback loop that  
can be used to advance the clock relative to the  
reference clock.  
The PLL macro reference clock can be driven by an INBUF*  
macro to create a composite macro, where the I/O macro  
drives the global buffer (with programmable delay) using a  
hardwired connection. In this case, the I/O must be placed  
in one of the dedicated global I/O locations.  
The PLL macro provides five derived clocks (three  
independent) from a single reference clock. The PLL  
macro also provides power-down input and lock output  
signals. See Figure 2-17 on page 2-16 for more  
information.  
The PLL macro reference clock can be driven directly  
from the FPGA core.  
Inputs:  
The PLL macro reference clock can also be driven from an  
I/O that is routed through the FPGA regular routing  
fabric. In this case, users must instantiate a special macro,  
PLLINT, to differentiate from the hardwired I/O  
connection described earlier.  
CLKA: selected clock input  
POWERDOWN (active low): disables PLLs. The  
default state is Powerdown On (active low).  
Outputs:  
During power-up, the PLL outputs will toggle around the  
maximum frequency of the voltage-controlled oscillator  
(VCO) gear selected. Toggle frequencies can range from  
40 MHz to 250 MHz. This will continue as long as the  
clock input (CLKA) is constant (HIGH or LOW). This can be  
prevented by LOW assertion of the POWERDOWN signal.  
LOCK: indicates that PLL output has locked on the  
input reference signal  
GLA, GLB, GLC: outputs to respective global  
networks  
YB, YC: allows output from the CCC to be routed  
back to the FPGA core  
The visual PLL configuration in SmartGen, part of the  
Libero IDE and Designer tools, will derive the necessary  
internal divider ratios based on the input frequency and  
desired output frequencies selected by the user.  
SmartGen also allows the user to select the various delays  
and phase shift values necessary to adjust the phases  
between the reference clock (CLKA) and the derived  
clocks (GLA, GLB, GLC, YB, and YC). SmartGen also allows  
the user to select the input clock source. SmartGen  
automatically instantiates the special macro, PLLINT,  
when needed.  
As previously described, the PLL allows up to five flexible  
and independently configurable clock outputs. Figure 2-20  
on page 2-19 illustrates the various clock output options  
and delay elements.  
As illustrated, the PLL supports three distinct output  
frequencies from a given input clock. Two of these (GLB  
and GLC) can be routed to the B and C global network  
access, respectively, and/or routed to the device core (YB  
and YC).  
CLKBUF  
PAD  
CLKINT  
A
Y
Y
CLKBUF_LVDS/LVPECL  
Y
PADN  
PADP  
Figure 2-16 CLKBUF and CLKINT  
v2.0  
2-15  
Automotive ProASIC3 Flash Family FPGAs  
CLKDLY  
CLKA  
GLA  
GLB  
YB  
POWERDOWN  
CLK  
GL  
GLC  
YC  
LOCK  
DLYGL[4:0]  
OADIV[4:0]*  
OAMUX[2:0]*  
DLYGLA[4:0]*  
OBDIV[4:0]*  
OBMUX[2:0]*  
DLYYB[4:0]*  
DLYGLB[4:0]*  
OCDIV[4:0]*  
OCMUX[2:0]*  
DLYYC[4:0]*  
DLYGLC[4:0]*  
FINDIV[6:0]*  
FBDIV[6:0]*  
FBDLY[4:0]*  
FBSEL[1:0]*  
Note: The CLKDLY macro uses programmable delay element type 2.  
Figure 2-18 CLKDLY  
XDLYSEL*  
VCOSEL[2:0]*  
Note: *Visit the Actel website for future application notes  
concerning the dynamic PLL.  
Figure 2-17 TCCC/PLL Macro  
2-16  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Each shaded box represents an  
INBUF or INBUF_LVDS/LVPECL  
macro, as appropriate.  
To Core  
Sample Pin Names  
GAA0/IO0NDB0V01  
GAA1/IO00PDB0V01  
+
Source for CCC  
(CLKA or CLKB or CLKC)  
Routed Clock  
(from FPGA core)2  
GAA2/IO13PDB7V11  
+
GAA[0:2]: GA represents global in the northwest corner  
of the device. A[0:2]: designates specific A clock source.  
Notes:  
1. Represents the global input pins. Globals have direct access to the clock conditioning block and are not routed via the FPGA fabric.  
Refer to the "User I/O Naming Convention" section on page 2-46 for more information.  
2. Instantiate the routed clock source input as follows:  
a) Connect the output of a logic element to the clock input of a PLL, CLKDLY, or CLKINT macro.  
b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS/BLVDS/M-LVDS/DDR) in a relevant global pin location.  
3. LVDS-, BLVDS-, and M-LVDS–based clock sources are only available on A3P250 and A3P1000 devices.A3P060 and A3P125 devices  
support single-ended clock sources only.  
Figure 2-15 Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT  
v2.0  
2-17  
Automotive ProASIC3 Flash Family FPGAs  
CCC Electrical Specifications  
Timing Characteristics  
Table 2-3 Automotive ProASIC3 CCC/PLL Specification  
Parameter  
Minimum  
1.5  
Typical  
Maximum  
350  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks1, 2  
0.75  
350  
160  
Number of Programmable Values in Each Programmable  
Delay Block  
32  
Input Period Jitter  
1.5  
ns  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
Max Peak-to-Peak Period Jitter  
1 Global  
3 Global  
Network Used  
Networks Used  
0.75 MHz to 24 MHz  
24 MHz to 100 MHz  
100 MHz to 250 MHz  
250 MHz to 350 MHz  
Acquisition Time  
0.50%  
1.00%  
1.75%  
2.50%  
0.70%  
1.20%  
2.00%  
5.60%  
(A3P250 and A3P1000 only)  
LockControl = 0  
LockControl = 1  
LockControl = 0  
LockControl = 1  
300  
300  
300  
6.0  
µs  
µs  
(all other dies)  
µs  
ms  
Tracking Jitter4  
(A3P250 and A3P1000 only)  
LockControl = 0  
LockControl = 1  
LockControl = 0  
LockControl = 1  
1.6  
ns  
ns  
ns  
ns  
%
ns  
ns  
ns  
1.6  
(all other dies)  
1.6  
0.8  
Output Duty Cycle  
48.5  
0.6  
51.5  
Delay Range in Block: Programmable Delay 11, 2  
Delay Range in Block: Programmable Delay 21, 2  
Delay Range in Block: Fixed Delay1, 2  
Notes:  
5.56  
0.025  
5.56  
2.2  
1. This delay is a function of voltage and temperature. See Table 3-5 on page 3-5 for deratings.  
2. TJ = 25°C, VCC = 1.5 V  
3. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking  
jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.  
Output Signal  
Tperiod_max  
Tperiod_min  
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min  
Figure 2-19 Peak-to-Peak Jitter Definition  
.
2-18  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
CCC Physical Implementation  
CCC Programming  
The CCC is composed of the following (Figure 2-20):  
The CCC block is fully configurable, either via static flash  
configuration bits in the array, set by the user in the  
programming bitstream, or through an asynchronous  
dedicated shift register dynamically accessible from  
inside the Automotive ProASIC3 device. The dedicated  
shift register permits changes in parameters, such as PLL  
divide ratios and delays, during device operation. This  
latter mode allows the user to dynamically reconfigure  
the PLL without the need for core programming. The  
register file is accessed through a simple serial interface.  
Refer to the UJTAG Applications in ProASIC3/E Devices  
application note for more information.  
PLL core  
3 phase selectors  
6 programmable delays and 1 fixed delay that  
advances/delays phase  
5 programmable frequency dividers that provide  
frequency multiplication/division (not shown in  
Figure 2-20 because they are automatically  
configured based on the user's required  
frequencies)  
1 dynamic shift register that provides CCC dynamic  
reconfiguration capability  
CLKA  
GLA  
Four-Phase Output  
PLL Core  
Programmable  
Delay Type 2  
Phase  
Select  
Programmable  
Delay Type 1  
Fixed Delay  
GLB  
Programmable  
Delay Type 2  
Phase  
Select  
YB  
Programmable  
Delay Type 1  
GLC  
Programmable  
Delay Type 2  
Phase  
Select  
YC  
Programmable  
Delay Type 1  
Notes:  
1. Refer to the "Clock Conditioning Circuits" section on page 2-13 and Table 2-3 on page 2-18 for signal descriptions.  
2. Clock divider and clock multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured based on the  
user's required frequencies.  
Figure 2-20 Automotive ProASIC3 PLL Block  
v2.0  
2-19  
Automotive ProASIC3 Flash Family FPGAs  
Nonvolatile Memory (NVM)  
Overview of User Nonvolatile FlashROM  
Automotive ProASIC3 devices have 1 kbit of on-chip  
nonvolatile flash memory that can be read from the  
FPGA core fabric. The FlashROM is arranged in 8 banks of  
128 bits during programming. The 128 bits in each bank  
are addressable as 16 bytes during the read-back of the  
FlashROM from the FPGA core (Figure 2-21).  
bank erase prior to reprogramming the bank. The  
FlashROM supports synchronous read. The address is  
latched on the rising edge of the clock, and the new  
output data is stable after the falling edge of the same  
clock cycle. Refer to Table 3-44 on page 3-96 for the  
timing diagram. The FlashROM can be read on byte  
boundaries. The upper three bits of the FlashROM  
address from the FPGA core define the bank being  
accessed. The lower four bits of the FlashROM address  
from the FPGA core define which of the 16 bytes in the  
bank is being accessed.  
The FlashROM can only be programmed via the IEEE  
1532 JTAG port. It cannot be programmed directly from  
the FPGA core. When programming, each of the eight  
128-bit banks can be selectively reprogrammed. The  
FlashROM can only be reprogrammed on a bank  
boundary. Programming involves an automatic, on-chip  
Byte Number in Bank  
4 LSB of ADDR (READ)  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Figure 2-21 FlashROM Architecture  
2-20  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
SRAM and FIFO  
Automotive ProASIC3 devices (A3P250 and A3P1000)  
have embedded SRAM blocks along their north and  
south sides; A3P060 and A3P125 devices have embedded  
SRAM blocks on the north side only. To meet the needs  
of high-performance designs, the memory blocks  
operate strictly in synchronous mode for both read and  
write operations. The read and write clocks are  
completely independent, and each may operate at any  
desired frequency up to 250 MHz.  
diagrams of the memory modules are illustrated in  
Figure 2-22 on page 2-22.  
Simultaneous dual-port read/write and write/write  
operations at the same address are allowed when certain  
timing requirements are met.  
During RAM operation, addresses are sourced by the  
user logic and the FIFO controller is ignored. In FIFO  
mode, the internal addresses are generated by the FIFO  
controller and routed to the RAM array by internal  
MUXes. Refer to Figure 2-23 on page 2-23 for more  
information about the implementation of the embedded  
FIFO controller.  
4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—2 read,  
2 write or 1 read, 1 write)  
512×9, 256×18 (2-port RAM—1 read and 1 write)  
Sync write, sync pipelined / nonpipelined read  
The Automotive ProASIC3 architecture enables the read  
and write sizes of RAMs to be organized independently,  
allowing for bus conversion. For example, the write side  
size can be set to 256×18 and the read size to 512×9.  
ProASIC3 Automotive devices support single-port SRAM  
capabilities or dual-port SRAM only under specific  
conditions. Dual-port mode is supported if the clocks to  
the two SRAM ports are the same and 180° out of phase  
(i.e., the port A clock is the inverse of the port B clock).  
Both the write width and read width for the RAM blocks  
can be specified independently with the WW (write  
width) and RW (read width) pins. The different D×W  
configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1.  
The Actel Libero IDE software macro libraries support a  
dual-port macro only.  
Refer to the allowable RW and WW values supported for  
each of the RAM macro types in Table 2-7 on page 2-25.  
For use of this macro as a single-port SRAM, the inputs  
and clock of one port should be tied off (grounded) to  
prevent errors during design compile.  
When widths of one, two, or four are selected, the ninth  
bit is unused. For example, when writing nine-bit values  
and reading four-bit values, only the first four bits and  
the second four bits of each nine-bit value are  
addressable for read operations. The ninth bit is not  
accessible.  
For use in dual-port mode, the same clock with an  
inversion between the two clock pins of the macro  
should be used in design to prevent errors during  
compile.  
The ProASIC3 memory block includes dedicated FIFO  
control logic to generate internal addresses and external  
flag logic (FULL, EMPTY, AFULL, AEMPTY). Block  
Conversely, when writing four-bit values and reading  
nine-bit values, the ninth bit of a read operation will be  
undefined. The RAM blocks employ little-endian byte  
order for read and write operations.  
v2.0  
2-21  
Automotive ProASIC3 Flash Family FPGAs  
RAM4K9  
RAM512x18  
FIFO4K18  
RADDR8  
RD17  
RD16  
ADDRA11 DOUTA8  
RW2  
RW1  
RW0  
WW2  
WW1  
WW0  
ESTOP  
FSTOP  
RD17  
RD16  
RADDR7  
DOUTA7  
DOUTA0  
ADDRA10  
ADDRA0  
DINA8  
DINA7  
RADDR0  
RD0  
RD0  
FULL  
AFULL  
EMPTY  
RW1  
RW0  
DINA0  
AEVAL11  
AEVAL10  
AEMPTY  
WIDTHA1  
WIDTHA0  
PIPEA  
PIPE  
AEVAL0  
WMODEA  
BLKA  
WENA  
AFVAL11  
AFVAL10  
REN  
RCLK  
CLKA  
AFVAL0  
ADDRB11 DOUTB8  
ADDRB10 DOUTB7  
WADDR8  
WADDR7  
REN  
RBLK  
RCLK  
ADDRB0  
DOUTB0  
WADDR0  
WD17  
WD16  
WD17  
WD16  
DINB8  
DINB7  
WD0  
DINB0  
WD0  
WW1  
WW0  
WIDTHB1  
WIDTHB0  
PIPEB  
WMODEB  
BLKB  
WENB  
CLKB  
WEN  
WBLK  
WCLK  
RPIPE  
WEN  
WCLK  
RESET  
RESET  
RESET  
Note: ProASIC3 Automotive devices restrict RAM4K9 to a single port or to dual ports with the same clock 180° out of phase (inverted)  
between clock pins. In single-port mode, inputs to port B should be tied to ground to prevent errors during compile. For FIFO4K18,  
the same clock 180° out of phase (inverted) between clock pins should be used.  
Figure 2-22 Supported Basic RAM Macros  
2-22  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
RD  
RD[17:0]  
WD[17:0]  
RCLK  
WD  
RCLK  
WCLK  
RADD[J:0]  
WADD[J:0]  
WCLK  
RAM  
REN  
WEN  
FREN  
FWEN  
CNT 12  
RBLK  
REN  
E
=
FULL  
ESTOP  
AFVAL  
AFULL  
AEMPTY  
EMPTY  
AEVAL  
=
CNT 12  
WBLK  
WEN  
SUB 12  
E
FSTOP  
Reset  
Note: For FIFO4K18, the same clock 180° out of phase (inverted) between clock pins should be used.  
Figure 2-23 Automotive ProASIC3 RAM Block with Embedded FIFO Controller  
v2.0  
2-23  
Automotive ProASIC3 Flash Family FPGAs  
When using the SRAM in single-port mode for ProASIC3  
automotive devices, WENB should be tied to ground.  
Signal Descriptions for RAM4K9  
ProASIC3 Automotive devices support single-port SRAM  
capabilities, or dual-port SRAM only under specific  
conditions. Dual-port mode is supported if the clocks to  
the two SRAM ports are the same and 180° out of phase  
(i.e., the port A clock is the inverse of the port B clock).  
CLKA and CLKB  
These are the clock signals for the synchronous read and  
write operations. These can be driven independently or  
with the same driver.  
The Actel Libero IDE macro libraries support a dual-port  
macro only.  
For ProASIC3 Automotive devices, dual-port mode is  
supported if the clocks to the two SRAM ports are the  
same and 180° out of phase (i.e., the port A clock is the  
inverse of the port B clock).  
For use of this macro as a single-port SRAM, the inputs  
and clock of one port should be tied off (grounded) to  
prevent errors during design compile.  
For use of this macro as a single-port SRAM, the inputs  
and clock of one port should be tied off (grounded) to  
prevent errors during design compile.  
For use in dual-port mode, the same clock with an  
inversion between the two clock pins of the macro  
should be used in design to prevent errors during  
compile.  
PIPEA and PIPEB  
These signals are used to specify pipelined read on the  
The following signals are used to configure the RAM4K9  
memory element:  
output.  
A LOW on PIPEA or PIPEB indicates a  
nonpipelined read, and the data appears on the  
corresponding output in the same clock cycle. A HIGH  
indicates a pipelined read, and data appears on the  
corresponding output in the next clock cycle.  
WIDTHA and WIDTHB  
These signals enable the RAM to be configured in one of  
four allowable aspect ratios (Table 2-4).  
When using the SRAM in single-port mode for ProASIC3  
Automotive devices, PIPEB should be tied to ground.  
When using the SRAM in single-port mode for ProASIC3  
automotive devices, WIDTHB should be tied to ground.  
WMODEA and WMODEB  
Table 2-4 Allowable Aspect Ratio Settings for  
These signals are used to configure the behavior of the  
output when the RAM is in write mode. A LOW on these  
signals makes the output retain data from the previous  
read. A HIGH indicates pass-through behavior, wherein  
the data being written will appear immediately on the  
output. This signal is overridden when the RAM is being  
read.  
WIDTHA[1:0]  
WIDTHA[1:0]  
WIDTHB[1:0]  
D×W  
4k×1  
2k×2  
1k×4  
512×9  
00  
01  
10  
11  
00  
01  
10  
11  
When using the SRAM in single-port mode for ProASIC3  
Automotive devices, WMODEB should be tied to ground.  
Note: The aspect ratio settings are constant and cannot be  
RESET  
changed on the fly.  
This active low signal resets the control logic, forces the  
output hold state registers to zero, disables reads and  
writes from the SRAM block, and clears the data hold  
registers when asserted. It does not reset the contents of  
the memory array.  
BLKA and BLKB  
These signals are active low and will enable the  
respective ports when asserted. When a BLKx signal is  
deasserted, that port’s outputs hold the previous value.  
While the RESET signal is active, read and write  
operations are disabled. As with any asynchronous reset  
signal, care must be taken not to assert it too close to the  
edges of active read and write clocks. Refer to the tables  
beginning with Table 3-117 on page 3-88 for the  
specifications.  
When using the SRAM in single-port mode for ProASIC3  
automotive devices, BLKB should be tied to ground.  
WENA and WENB  
These signals switch the RAM between read and write  
modes for the respective ports. A LOW on these signals  
indicates a write operation, and a HIGH indicates a read.  
2-24  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
ADDRA and ADDRB  
WW and RW  
These are used as read or write addresses, and they are 12  
bits wide. When a depth of less than 4 k is specified, the  
unused high-order bits must be grounded (Table 2-5).  
These signals enable the RAM to be configured in one of  
the two allowable aspect ratios (Table 2-7).  
Table 2-7 Aspect Ratio Settings for WW[1:0]  
When using the SRAM in single-port mode for ProASIC3  
Automotive devices, ADDRB should be tied to ground.  
WW[1:0]  
01  
RW[1:0]  
01  
D×W  
512×9  
Table 2-5 Address Pins Unused/Used for Various  
Supported Bus Widths  
10  
10  
256×18  
Reserved  
ADDRx  
00, 11  
00, 11  
D×W  
4k×1  
2k×2  
1k×4  
512×9  
Unused  
None  
Used  
[11:0]  
[10:0]  
[9:0]  
WD and RD  
These are the input and output data signals, and they  
are 18 bits wide. When a 512×9 aspect ratio is used for  
write, WD[17:9] are unused and must be grounded. If  
this aspect ratio is used for read, RD[17:9] are undefined.  
[11]  
[11:10]  
[11:9]  
[8:0]  
WADDR and RADDR  
Note: The "x" in ADDRx implies A or B.  
These are read and write addresses, and they are nine  
bits wide. When the 256×18 aspect ratio is used for write  
or read, WADDR[8] or RADDR[8] are unused and must be  
grounded.  
DINA and DINB  
These are the input data signals, and they are nine bits  
wide. Not all nine bits are valid in all configurations.  
When a data width less than nine is specified, unused  
high-order signals must be grounded (Table 2-6).  
WCLK and RCLK  
These signals are the write and read clocks, respectively.  
They can be clocked on the rising or falling edge of  
WCLK and RCLK.  
When using the SRAM in single-port mode for ProASIC3  
Automotive devices, DINB should be tied to ground.  
WEN and REN  
DOUTA and DOUTB  
These signals are the write and read enables,  
respectively. They are both active low by default. These  
signals can be configured as active high.  
These are the nine-bit output data signals. Not all nine  
bits are valid in all configurations. As with DINA and  
DINB, high-order bits may not be used (Table 2-6). The  
output data on unused pins is undefined.  
RESET  
This active low signal resets the control logic, forces the  
output hold state registers to zero, disables reads and  
writes from the SRAM block, and clears the data hold  
registers when asserted. It does not reset the contents of  
the memory array.  
Table 2-6 Unused/Used Input and Output Data Pins for  
Various Supported Bus Widths  
DINx/DOUTx  
D×W  
4k×1  
2k×2  
1k×4  
512×9  
Unused  
[8:1]  
Used  
[0]  
While the RESET signal is active, read and write  
operations are disabled. As with any asynchronous reset  
signal, care must be taken not to assert it too close to the  
edges of active read and write clocks. Refer to the tables  
beginning with Table 3-117 on page 3-88 for the  
specifications.  
[8:2]  
[1:0]  
[3:0]  
[8:0]  
[8:4]  
None  
Note: The "x" in DINx or DOUTx implies A or B.  
PIPE  
This signal is used to specify pipelined read on the  
output. A LOW on PIPE indicates a nonpipelined read,  
and the data appears on the output in the same clock  
cycle. A HIGH indicates a pipelined read, and data  
appears on the output in the next clock cycle.  
Signal Descriptions for RAM512X18  
RAM512X18 has slightly different behavior from  
RAM4K9, as it has dedicated read and write ports.  
v2.0  
2-25  
Automotive ProASIC3 Flash Family FPGAs  
register for a target block can be selected and loaded  
with the proper bit configuration to enable serial  
loading. The 4,608 bits of data can be loaded in a single  
operation.  
Clocking  
The dual-port SRAM blocks are only clocked on the rising  
edge. SmartGen allows falling-edge-triggered clocks by  
adding inverters to the netlist, hence achieving dual-port  
SRAM blocks that are clocked on either edge (rising or  
falling). For dual-port SRAM, the same clock, with an  
inversion between the two clock pins of the macro,  
should be used in design to prevent errors during  
compile.  
Signal Descriptions for FIFO4K18  
The following signals are used to configure the FIFO4K18  
memory element:  
WW and RW  
Automotive ProASIC3 devices support inversion (bubble  
pushing) throughout the FPGA architecture, including  
the clock input to the SRAM modules. Inversions added  
to the SRAM clock pin on the design schematic or in the  
HDL code will be automatically accounted for during  
design compile without incurring additional delay in the  
clock path.  
These signals enable the FIFO to be configured in one of  
the five allowable aspect ratios (Table 2-8).  
Table 2-8 Aspect Ratio Settings for WW[2:0]  
WW[2:0]  
000  
RW[2:0]  
000  
D×W  
4k×1  
001  
001  
2k×2  
The two-port SRAM can be clocked on the rising or  
falling edge of WCLK and RCLK.  
010  
010  
1k×4  
If negative-edge RAM and FIFO clocking is selected for  
memory macros, clock edge inversion management  
(bubble pushing) is automatically used within the  
Automotive ProASIC3 development tools, without  
performance penalty.  
011  
011  
512×9  
256×18  
Reserved  
100  
100  
101, 110, 111  
101, 110, 111  
Modes of Operation  
There are two read modes and one write mode:  
WBLK and RBLK  
These signals are active low and will enable the  
respective ports when LOW. When the RBLK signal is  
HIGH, that port’s outputs hold the previous value.  
Read Nonpipelined (synchronous—1 clock edge):  
In the standard read mode, new data is driven  
onto the RD bus in the same clock cycle following  
RA and REN valid. The read address is registered  
on the read port clock active edge, and data  
appears at RD after the RAM access time. Setting  
PIPE to OFF enables this mode.  
WEN and REN  
Read and write enables. WEN is active low and REN is  
active high by default. These signals can be configured as  
active high or low.  
WCLK and RCLK  
Read Pipelined (synchronous—2 clock edges): The  
pipelined mode incurs an additional clock delay  
from address to data but enables operation at a  
much higher frequency. The read address is  
registered on the read port active clock edge, and  
the read data is registered and appears at RD after  
the second read clock edge. Setting PIPE to ON  
enables this mode.  
These are the clock signals for the synchronous read and  
write operations. For FIFO4K18, the same clock 180° out  
of phase (inverted) between clock pins should be used.  
RPIPE  
This signal is used to specify pipelined read on the  
output. A LOW on RPIPE indicates a nonpipelined read,  
and the data appears on the output in the same clock  
cycle. A HIGH indicates a pipelined read, and data  
appears on the output in the next clock cycle.  
Write (synchronous—1 clock edge): On the write  
clock active edge, the write data is written into  
the SRAM at the write address when WEN is HIGH.  
The setup times of the write address, write  
enables, and write data are minimal with respect  
to the write clock. Write and read transfers are  
described with timing requirements in the "DDR  
Module Specifications" section on page 3-64.  
RESET  
This active low signal resets the control logic and forces  
the output hold state registers to zero when asserted. It  
does not reset the contents of the memory array  
(Table 2-9 on page 2-27).  
While the RESET signal is active, read and write  
operations are disabled. As with any asynchronous RESET  
signal, care must be taken not to assert it too close to the  
edges of active read and write clocks. Refer to the tables  
beginning with Table 3-120 on page 3-94 for the  
specifications.  
RAM Initialization  
Each SRAM block can be individually initialized on power-  
up by means of the JTAG port using the UJTAG mechanism  
(refer to the "JTAG 1532" section on page 2-51 and the  
ProASIC3/E SRAM/FIFO Blocks application note). The shift  
2-26  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
WD  
AFULL, AEMPTY  
This is the input data bus and is 18 bits wide. Not all 18  
bits are valid in all configurations. When a data width  
less than 18 is specified, unused higher-order signals  
must be grounded (Table 2-9).  
These are programmable flags and will be asserted on  
the threshold specified by AFVAL and AEVAL,  
respectively.  
When the number of words stored in the FIFO reaches  
the amount specified by AEVAL while reading, the  
AEMPTY output will go HIGH. Likewise, when the  
number of words stored in the FIFO reaches the amount  
specified by AFVAL while writing, the AFULL output will  
go HIGH.  
RD  
This is the output data bus and is 18 bits wide. Not all 18  
bits are valid in all configurations. Like the WD bus, high-  
order bits become unusable if the data width is less than  
18. The output data on unused pins is undefined  
(Table 2-9).  
AFVAL, AEVAL  
The AEVAL and AFVAL pins are used to specify the  
almost-empty and almost-full threshold values. They are  
12-bit signals. For more information on these signals,  
refer to the "FIFO Flag Usage Considerations" section.  
Table 2-9 Input Data Signal Usage for Different Aspect  
Ratios  
D×W  
4k×1  
WD/RD Unused  
WD[17:1], RD[17:1]  
WD[17:2], RD[17:2]  
WD[17:4], RD[17:4]  
WD[17:9], RD[17:9]  
ESTOP and FSTOP Usage  
The ESTOP pin is used to stop the read counter from  
counting any further once the FIFO is empty (i.e., the  
EMPTY flag goes HIGH). Likewise, the FSTOP pin is used  
to stop the write counter from counting any further once  
the FIFO is full (i.e., the FULL flag goes HIGH).  
2k×2  
1k×4  
512×9  
256×18  
The FIFO counters in the ProASIC3 device start the count  
at zero, reach the maximum depth for the configuration  
(e.g., 511 for a 512×9 configuration), and then restart at  
zero. An example application for ESTOP, where the read  
counter keeps counting, would be writing to the FIFO  
once and reading the same content over and over  
without doing another write.  
ESTOP, FSTOP  
ESTOP is used to stop the FIFO read counter from further  
counting once the FIFO is empty (i.e., the EMPTY flag  
goes HIGH). A HIGH on this signal inhibits the counting.  
FSTOP is used to stop the FIFO write counter from further  
counting once the FIFO is full (i.e., the FULL flag goes  
HIGH). A HIGH on this signal inhibits the counting.  
FIFO Flag Usage Considerations  
The AEVAL and AFVAL pins are used to specify the 12-bit  
AEMPTY and AFULL threshold values. The FIFO contains  
separate 12-bit write address (WADDR) and read address  
(RADDR) counters. WADDR is incremented every time a  
write operation is performed, and RADDR is incremented  
every time a read operation is performed. Whenever the  
difference between WADDR and RADDR is greater than  
or equal to AFVAL, the AFULL output is asserted.  
Likewise, whenever the difference between WADDR and  
RADDR is less than or equal to AEVAL, the AEMPTY  
output is asserted. To handle different read and write  
aspect ratios, AFVAL and AEVAL are expressed in terms  
of total data bits instead of total data words. When users  
specify AFVAL and AEVAL in terms of read or write  
words, the SmartGen tool translates them into bit  
addresses and configures these signals automatically.  
SmartGen configures the AFULL flag to assert when the  
write address exceeds the read address by at least a  
predefined value. In a 2k×8 FIFO, for example, a value of  
1,500 for AFVAL means that the AFULL flag will be  
asserted after a write when the difference between the  
write address and the read address reaches 1,500 (there  
have been at least 1,500 more writes than reads). It will  
stay asserted until the difference between the write and  
read addresses drops below 1,500.  
For more information on these signals, refer to "ESTOP  
and FSTOP Usage" section.  
FULL, EMPTY  
When the FIFO is full and no more data can be written,  
the FULL flag asserts HIGH. The FULL flag is synchronous  
to WCLK to inhibit writing immediately upon detection  
of a full condition and to prevent overflows. Since the  
write address is compared to a resynchronized (and thus  
time-delayed) version of the read address, the FULL flag  
will remain asserted until two WCLK active edges after a  
read operation eliminates the full condition.  
When the FIFO is empty and no more data can be read,  
the EMPTY flag asserts HIGH. The EMPTY flag is  
synchronous to RCLK to inhibit reading immediately  
upon detection of an empty condition and to prevent  
underflows. Since the read address is compared to a  
resynchronized (and thus time-delayed) version of the  
write address, the EMPTY flag will remain asserted until  
two RCLK active edges after a write operation removes  
the empty condition.  
For more information on these signals, refer to the "FIFO  
Flag Usage Considerations" section.  
v2.0  
2-27  
Automotive ProASIC3 Flash Family FPGAs  
The AEMPTY flag is asserted when the difference  
between the write address and the read address is less  
than a predefined value. In the example above, a value  
of 200 for AEVAL means that the AEMPTY flag will be  
asserted when a read causes the difference between the  
write address and the read address to drop to 200. It will  
stay asserted until that difference rises above 200. Note  
that the FIFO can be configured with different read and  
write widths; in this case, the AFVAL setting is based on  
the number of write data entries, and the AEVAL setting  
is based on the number of read data entries. For aspect  
ratios of 512×9 and 256×18, only 4,096 bits can be  
addressed by the 12 bits of AFVAL and AEVAL. The  
number of words must be multiplied by 8 and 16 instead  
of 9 and 18. The SmartGen tool automatically uses the  
proper values. To avoid halfwords being written or read,  
which could happen if different read and write aspect  
ratios were specified, the FIFO will assert FULL or EMPTY  
as soon as at least one word cannot be written or read.  
For example, if a two-bit word is written and a four-bit  
word is being read, the FIFO will remain in the empty  
state when the first word is written. This occurs even if  
the FIFO is not completely empty, because in this case, a  
complete word cannot be read. The same is applicable in  
the full state. If a four-bit word is written and a two-bit  
word is read, the FIFO is full and one word is read. The  
FULL flag will remain asserted because a complete word  
cannot be written at this point.  
Advanced I/Os  
Introduction  
Automotive ProASIC3 devices feature a flexible I/O  
structure, supporting a range of mixed voltages (1.5 V,  
1.8 V, 2.5 V, and 3.3 V) through  
a bank-selectable  
voltage. Table 2-10 on page 2-29 shows the voltages and  
compatible I/O standards. I/Os provide programmable  
slew rates, drive strengths, and weak pull-up and pull-  
down circuits. 3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant.  
See the "5 V Input Tolerance" section on page 2-36 for  
possible implementations of 5 V tolerance.  
All I/Os are in a known state during power-up, and any  
power-up sequence is allowed without current impact.  
Refer to the "I/O Power-Up and Supply Voltage  
Thresholds for Power-On Reset (Commercial and  
Industrial)" section on page 3-4 for more information.  
During power-up, before reaching activation levels, the  
I/O input and output buffers are disabled while the weak  
pull-up is enabled. Activation levels are described in  
Table 3-2 on page 3-2.  
I/O Tile  
The Automotive ProASIC3 I/O tile provides a flexible,  
programmable structure for implementing  
a large  
number of I/O standards. In addition, the registers  
available in the I/O tile in selected I/O banks can be used  
to support high-performance register inputs and  
outputs, with register enable if desired (Figure 2-24 on  
page 2-31). The registers can also be used to support the  
JESD-79C Double Data Rate (DDR) standard within the  
I/O structure (see the "Double Data Rate (DDR) Support"  
section on page 2-32 for more information).  
As depicted in Figure 2-24 on page 2-31, all I/O registers  
share one CLR port. The output register and output  
enable register share one CLK port. Refer to the "I/O  
Registers" section on page 2-31 for more information.  
2-28  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 2-11 shows the required voltage compatibility  
values for each of these voltages.  
I/O Banks and I/O Standards Compatibility  
I/Os are grouped into I/O voltage banks. There are four I/O  
banks on the A3P250 and A3P1000. The A3P060 and  
A3P125 have two I/O banks. Each I/O voltage bank has  
dedicated I/O supply and ground voltages (VMV/GNDQ for  
input buffers and VCCI/GND for output buffers). Because  
of these dedicated supplies, only I/Os with compatible  
standards can be assigned to the same I/O voltage bank.  
For more information about I/O and global assignments  
to I/O banks in a device, refer to the specific pin table for  
the device in the "Package Pin Assignments" section on  
page 4-1 and the "User I/O Naming Convention" section  
on page 2-46.  
Table 2-10 Automotive ProASIC3 Supported I/O Standards  
A3P060  
A3P125  
A3P250  
A3P1000  
Single-Ended  
LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V  
3.3 V PCI/PCI-X  
Differential  
LVPECL, LVDS, BLVDS, M-LVDS  
Table 2-11 VCCI Voltages and Compatible Standards  
VCCI and VMV (typical)  
Compatible Standards  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
LVTTL/LVCMOS 3.3, PCI 3.3, PCI-X 3.3 LVPECL  
LVCMOS 2.5, LVCMOS 2.5/5.0, LVDS, BLVDS, M-LVDS  
LVCMOS 1.8  
LVCMOS 1.5  
Advanced I/O banks offer single-ended and differential  
capabilities. These banks are available on the east and  
west sides of A3P250 and A3P1000 devices.  
I/O Banks  
Automotive ProASIC3 I/Os are divided into multiple  
technology banks. The ProASIC3 family has two to four  
banks, and the number of banks is device-dependent.  
Standard Plus I/O banks offer LVTTL/LVCMOS and PCI  
single-ended I/O standards. These banks are available on  
the north and south sides of A3P250 and A3P1000.  
A3P060 and A3P125 support two I/O banks, whereas  
A3P250 and A3P1000 support four I/O banks. The bank  
types have different characteristics, such as drive strength,  
the I/O standards supported, and timing and power  
differences.  
Table 2-12 shows the I/O bank types, devices and bank  
locations supported, drive strength, slew rate control,  
and supported standards.  
There are two types of banks in the Automotive ProASIC3  
family: Advanced I/O banks and Standard Plus I/O banks.  
Table 2-12 Automotive ProASIC3 Bank Type Definitions and Differences  
I/O Standards Supported  
LVPECL, LVDS,  
Device and Bank  
Location  
Slew Rate  
Control  
LVTTL/  
LVCMOS  
I/O Bank Type  
Drive Strength  
PCI/PCI-X  
BLVDS, M-LVDS  
Standard Plus  
A3P060 and A3P125 (all  
banks)  
Refer to Table 2-20  
on page 2-45  
Yes  
Not Supported  
North and south banks of Refer to Table 2-20  
A3P250 and A3P1000  
devices  
Yes  
Not Supported  
on page 2-45  
Advanced  
East and west banks of  
A3P250 and A3P1000  
devices  
Refer to Table 2-21  
on page 2-45  
Yes  
v2.0  
2-29  
Automotive ProASIC3 Flash Family FPGAs  
Features Supported on Every I/O  
Table 2-13 lists all features supported by transmitter/receiver for single-ended and differential I/Os.  
Table 2-13 ProASIC3 I/O Features  
Feature  
Description  
Weak pull-up and pull-down  
Single-Ended Transmitter Features  
2 slew rates  
Skew between output buffer enable/disable time: 2 ns delay  
on rising edge and 0 ns delay on falling edge (see "Selectable  
Skew between Output Buffer Enable and Disable Times" on  
page 2-41 for more information)  
3 drive strengths  
5 V–tolerant receiver ("5 V Output Tolerance" section on  
page 2-40)  
LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs  
("5 V Output Tolerance" section on page 2-40)  
High performance (Table 2-14)  
Single-Ended Receiver Features  
High performance (Table 2-14)  
Electrostatic discharge (ESD) protection  
Separate ground plane for GNDQ pin and power plane for VMV  
pin are used for input buffer to reduce output-induced noise.  
Differential Receiver Features (A3P250 and A3P1000)  
CMOS-Style LVDS, BLVDS, M-LVDS, or LVPECL Transmitter  
High performance (Table 2-14)  
ESD protection  
Separate ground plane for GNDQ pin and power plane for VMV  
pin are used for input buffer to reduce output-induced noise.  
Two I/Os and external resistors are used to provide a CMOS-  
style LVDS, DDR LVDS, BLVDS, and M-LVDS/LVPECL transmitter  
solution.  
Weak pull-up and pull-down  
High slew rate  
Table 2-14 Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in Automotive ProASIC3 Devices  
(maximum drive strength and high slew selected)  
Specification  
LVTTL/LVCMOS 3.3 V  
LVCMOS 2.5 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
PCI  
Performance Up To  
200 MHz  
250 MHz  
200 MHz  
130 MHz  
200 MHz  
PCI-X  
200 MHz  
LVDS  
350 MHz  
LVPECL  
350 MHz  
2-30  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
I/O Registers  
Each I/O module contains several input, output, and enable registers. Refer to Figure 2-24 for a simplified  
representation of the I/O block.  
The number of input registers is selected by a set of switches (not shown in Figure 2-24) between registers to  
implement single-ended or differential data transmission to and from the FPGA core. The Designer software sets these  
switches for the user.  
A common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input Register 2 does  
not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O register combining must satisfy certain  
rules. For more information, refer to the ProASIC3/E I/O Usage Guide.  
I/O / Q0  
1
2
Input  
Input  
Register  
Register  
To FPGA Core  
Y
Pull-Up/-Down  
Resistor Control  
CLR/PRE  
I/O / Q1  
3
Input  
Register  
PAD  
ICE  
CLR/PRE  
I/O / ICLK  
Signal Drive Strength  
and Slew Rate Control  
E = Enable Pin  
A
I/O / D0  
4
Output  
Register  
OCE  
ICE  
From FPGA Core  
CLR/PRE  
I/O / D1 / ICE  
5
Output  
Register  
I/O / OCLK  
I/O / OE  
CLR/PRE  
6
Output  
Enable  
Register  
OCE  
I/O / CLR or I/O / PRE / OCE  
CLR/PRE  
Note: Automotive ProASIC3 I/Os have registers to support DDR functionality (see the "Double Data Rate (DDR) Support" section on  
page 2-32 for more information).  
Figure 2-24 I/O Block Logical Representation  
v2.0  
2-31  
Automotive ProASIC3 Flash Family FPGAs  
Each I/O tile on Automotive ProASIC3 devices supports  
DDR inputs.  
Double Data Rate (DDR) Support  
Automotive ProASIC3 devices support 350 MHz DDR  
inputs and outputs. In DDR mode, new data is present on  
every transition of the clock signal. Clock and data lines  
have identical bandwidths and signal integrity  
requirements, making them very efficient for  
implementing very high-speed systems.  
Output Support for DDR  
The basic DDR output structure is shown in Figure 2-26 on  
page 2-33. New data is presented to the output every half  
clock cycle. Note: DDR macros and I/O registers do not  
require additional routing. The combiner automatically  
recognizes the DDR macro and pushes its registers to the  
I/O register area at the edge of the chip. The routing  
delay from the I/O registers to the I/O buffers is already  
taken into account in the DDR macro.  
High-speed DDR interfaces can be implemented using  
LVDS. The DDR feature is primarily implemented in the  
FPGA core periphery and is not limited to any I/O  
standard.  
Refer to the Actel application note Using DDR for  
ProASIC3/E Devices for more information.  
Input Support for DDR  
The basic structure to support a DDR input is shown in  
Figure 2-25. Three input registers are used to capture  
incoming data, which is presented to the core on each  
rising edge of the I/O register clock.  
Input DDR  
INBUF  
A
D
Out_QF  
(to core)  
Data  
XX  
X
X
FF1  
E
B
Out_QR  
(to core)  
CLK  
CLR  
X
CLKBUF  
INBUF  
FF2  
C
X
DDR_IN  
Figure 2-25 DDR Input Register Support in Automotive ProASIC3 Devices  
2-32  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Output DDR  
A
Data_F  
XX  
(from core)  
FF1  
Out  
B
C
0
1
CLK  
X
X
X
E
CLKBUF  
X
OUTBUF  
D
Data_R  
(from core)  
FF2  
B
C
X
X
CLR  
INBUF  
DDR_OUT  
Figure 2-26 DDR Output Support in Automotive ProASIC3 Devices  
v2.0  
2-33  
Automotive ProASIC3 Flash Family FPGAs  
Hot-Swap Support  
Hot-swapping (also called hot-plugging) is the operation of hot insertion or hot removal of a card in a powered-up  
system. The levels of hot-swap support and examples of related applications are described in Table 2-15.  
Table 2-15 Levels of Hot-Swap Support  
Device  
Example of  
Hot-  
Swapping  
Level  
Power  
Applied  
Card  
Circuitry  
Application with  
Cards Containing  
Ground Connected  
Compliance of  
ProASIC3 Devices  
Description to Device Bus State Connection to Bus Pins ProASIC3 Devices  
1
2
Cold-swap  
No  
System and card with  
Actel FPGA chip are  
powered down and the from the rest of the  
card is plugged into the system.  
system. Then the power  
supplies are turned on for  
the system but not for the  
FPGA on the card.  
Yes, if the bus switch is  
used to isolate FPGA I/Os  
Hot-swapwhile  
reset  
Yes  
Held in reset Must be made  
In the PCI hot-plug  
specification, reset control  
circuitry isolates the card  
busses until the card  
supplies are at their  
nominal operating levels  
and stable.  
Yes  
state  
and  
maintained  
for 1 ms  
before,  
during, and  
after  
insertion/  
removal  
3
Hot-swapwhile  
bus idle  
Yes  
Held idle (no Same as Level Must remain Board bus shared with  
Option 1 – 2 levels of  
ongoing I/O  
processes  
during  
2
glitch-free  
during  
power-up or activity on the bus. It is  
card bus is "frozen," and staging (first: GND,  
there is no toggling  
second: all other pins)  
together with bus switch  
insertion/  
removal)  
power-down critical that the logic states on the I/Os  
set on the bus signal are  
Option 2 – 3 levels of  
not disturbed during card  
insertion/removal.  
staging (first: GND,  
second: supplies, third:  
all other pins)  
4
Hot-swap on  
an active bus  
Yes  
Bus may have Same as Level Same as  
There is activity on the  
system bus, and it is  
Option 1 – 2 levels of  
staging (first: GND,  
active I/O  
2
Level 3  
processes  
critical that the logic states second: all other pins)  
set on the bus signal not together with bus switch  
be disturbed during card on the I/Os  
ongoing, but  
device being  
inserted or  
removed  
insertion/removal.  
Option 2 – 3 levels of  
staging (first: GND,  
second: supplies, third:  
all other pins)  
must be idle.  
For boards and cards with three levels of staging, card  
power supplies must have time to reach their final values  
before the I/Os are connected. Pay attention to the sizing  
of power supply decoupling capacitors on the card to  
ensure that the power supplies are not overloaded with  
capacitance.  
Cards with three levels of staging should have the  
following sequence:  
Grounds  
Powers  
I/Os and other pins  
2-34  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Cold-Sparing Support  
Electrostatic Discharge (ESD) Protection  
Automotive ProASIC3 devices are tested per JEDEC  
Standard JESD22-A114-B.  
Cold-sparing means that a subsystem with no power  
applied (usually a circuit board) is electrically connected  
to the system that is in operation. This means that all  
input buffers of the subsystem must present very high  
input impedance with no power applied so as not to  
disturb the operating portion of the system.  
Automotive ProASIC3 devices contain clamp diodes at  
every I/O, global, and power pad. Clamp diodes protect  
all device pads against damage from ESD as well as from  
excessive voltage transients.  
For Automotive ProASIC3 devices, since the I/O clamp  
diode is always active, cold-sparing can be accomplished  
either by employing a bus switch to isolate the device I/Os  
from the rest of the system or by driving each Automotive  
ProASIC3 I/O pin to 0 V.  
Automotive ProASIC3 devices are tested to the following  
models: the Human Body Model (HBM) with a tolerance  
of 2,000 V, the Machine Model (MM) with a tolerance of  
250 V, and the Charged Device Model (CDM) with a  
tolerance of 200 V.  
If the resistor is chosen, the resistor value must be  
calculated based on decoupling capacitance on a given  
power supply on the board (this decoupling capacitance  
is in parallel with the resistor). The RC time constant  
should ensure full discharge of supplies before cold-  
sparing functionality is required. The resistor is necessary  
to ensure that the power pins are discharged to ground  
every time there is an interruption of power to the  
device.  
Each I/O has two clamp diodes. One diode has its  
positive (P) side connected to the pad and its negative  
(N) side connected to VCCI. The second diode has its P  
side connected to GND and its N side connected to the  
pad. During operation, these diodes are normally  
biased in the off state, except when transient voltage is  
significantly above VCCI or below GND levels.  
In Automotive ProASIC3 devices, the clamp diode is  
always on and cannot be switched off.  
Refer to Table 2-16 for more information about the I/O  
standards and the clamp diode.  
Table 2-16 I/O Hot-Swap and 5 V Input Tolerance Capabilities in Automotive ProASIC3 Devices  
Output  
Buffer  
I/O Assignment  
3.3 V LVTTL/LVCMOS  
3.3 V PCI, 3.3 V PCI-X  
LVCMOS 2.5 V / 5.0 V 5  
LVCMOS 1.8 V  
Clamp Diode1  
Hot Insertion  
5 V Input Tolerance2 Input Buffer  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes2  
Yes2  
Yes4  
No  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
LVCMOS 1.5 V  
No  
Differential, LVDS/  
No  
BLVDS/M-LVDS/ LVPECL  
Notes:  
1. The clamp diode is always active for ProASIC3 devices.  
2. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.  
3. Refer to Table 2-15 on page 2-34 for device-compliant information.  
4. Can be implemented with an external resistor and an internal clamp diode.  
5. The LVCMOS 2.5 V / 5.0 V I/O standard is supported by all Automotive ProASIC3 devices. In the SmartGen Core Reference Guide,  
select the LVCMOS5 macro for LVCMOS 2.5 V / 5.0 V I/O standard support for all Automotive ProASIC3 devices.  
v2.0  
2-35  
Automotive ProASIC3 Flash Family FPGAs  
Example 1 (high speed, high current):  
Rtx_out_high = Rtx_out_low = 10 Ω  
5 V Input Tolerance  
I/Os can support 5 V input tolerance when LVTTL 3.3 V,  
LVCMOS 3.3 V, LVCMOS 2.5 V, and LVCMOS 2.5 V / 5.0 V  
configurations are used (see Table 2-16 on page 2-35 for  
more details). There are four recommended solutions for  
achieving 5 V receiver tolerance (see Figure 2-27 to  
Figure 2-30 on page 2-39 for details of board and macro  
setups). All the solutions meet a common requirement of  
limiting the voltage at the input to 3.6 V or less. In fact,  
the I/O absolute maximum voltage rating is 3.6 V, and  
any voltage above 3.6 V may cause long-term gate oxide  
failures.  
R1 = 36 Ω ( 5%), P(r1)min = 0.069 Ω  
R2 = 82 Ω ( 5%), P(r2)min = 0.158 Ω  
Imax_tx = 5.5 V / (82 × 0.95 + 36 × 0.95 + 10) = 45.04 mA  
t
RISE = tFALL = 0.85 ns at C_pad_load = 10 pF (includes up  
to 25% safety margin)  
tRISE = tFALL = 4 ns at C_pad_load = 50 pF (includes up to  
25% safety margin)  
Example 2 (low–medium speed, medium current):  
Rtx_out_high = Rtx_out_low = 10 Ω  
Solution 1  
The board-level design must ensure that the reflected  
waveform at the pad does not exceed the limits provided  
in Table 3-2 on page 3-2. This is a requirement to ensure  
long-term reliability.  
R1 = 220 Ω ( 5%), P(r1)min = 0.018 Ω  
R2 = 390 Ω ( 5%), P(r2)min = 0.032 Ω  
Imax_tx = 5.5 V / (220 × 0.95 + 390 × 0.95 + 10) = 9.17 mA  
This scheme will also work for  
a 3.3 V PCI/PCI-X  
configuration, but the internal diode should not be used for  
clamping, and the voltage must be limited by the two  
external resistors as explained below. Relying on the  
diode clamping would create an excessive pad DC  
voltage of 3.3 V + 0.7 V = 4 V.  
t
RISE = tFALL = 4 ns at C_pad_load = 10 pF (includes up to  
25% safety margin)  
tRISE = tFALL = 20 ns at C_pad_load = 50 pF (includes up to  
25% safety margin)  
Other values of resistors are also allowed as long as the  
resistors are sized appropriately to limit the voltage at  
the receiving end to 2.5 V < Vin (rx) < 3.6 V when the  
transmitter sends a logic 1. This range of Vin_dc (rx) must  
be assured for any combination of transmitter supply  
(5 V 0.5 V), transmitter output resistance, and board  
resistor tolerances.  
Here are some examples of possible resistor values  
(based on a simplified simulation model with no line  
effects and 10 Ω transmitter output resistance, where  
Rtx_out_high = (VCCI – VOH) / IOH, Rtx_out_low = VOL / IOL).  
Temporary overshoots are allowed according to Table 3-3  
on page 3-3.  
Solution 1  
ProASIC3 I/O Input  
3.3 V  
5.5 V  
Rext1  
Rext2  
Requires two board resistors,  
LVCMOS 3.3 V I/Os  
Figure 2-27 Automotive ProASIC3 Solution 1  
2-36  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Solution 2  
The board-level design must ensure that the reflected waveform at the pad does not exceed voltage  
overshoot/undershoot limits provided in Table 3-3 on page 3-3. This is a requirement to ensure long-term reliability.  
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used for clamping,  
and the voltage must be limited by the external resistors and Zener, as shown in Figure 2-28. Relying on the diode  
clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.  
Solution 2  
ProASIC3 I/O Input  
3.3 V  
5.5 V  
Rext1  
Zener  
3.3 V  
Requires one board resistor, one  
Zener 3.3 V diode, LVCMOS 3.3 V I/Os  
Figure 2-28 Automotive ProASIC3 Solution 2  
v2.0  
2-37  
Automotive ProASIC3 Flash Family FPGAs  
Solution 3  
The board-level design must ensure that the reflected waveform at the pad does not exceed voltage  
overshoot/undershoot limits provided in Table 3-3 on page 3-3. This is a requirement to ensure long-term reliability.  
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used for clamping,  
and the voltage must be limited by the bus switch, as shown in Figure 2-29. Relying on the diode clamping would  
create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.  
Solution 3  
ProASIC3 I/O Input  
3.3 V  
Bus  
Switch  
IDTQS32X23  
5.5 V  
5.5 V  
Requires a bus switch on the board,  
LVTTL/LVCMOS 3.3 V I/Os.  
Figure 2-29 Automotive ProASIC3 Solution 3  
2-38  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Solution 4  
Solution 4  
ProASIC3 I/O Input  
2.5 V  
2.5 V On-Chip  
5.5 V  
Clamp  
Diode  
Rext  
Requires one board resistor.  
Available for all I/O standards  
excluding 3.3 V I/O standards.  
Figure 2-30 Automotive ProASIC3 Solution 4  
Table 2-17 Comparison Table for 5 V–Compliant Receiver Scheme  
Scheme  
Board Components  
Two resistors  
Speed  
Current Limitations  
1
2
3
4
Low to High1 Limited by transmitter's drive strength  
Resistor and Zener 3.3 V  
Bus switch  
Medium  
High  
Limited by transmitter's drive strength  
N/A  
Minimum resistor value2, 3, 4, 5  
Medium  
Maximum diode current at 100% duty cycle, signal constantly at '1'  
R = 47 Ω at TJ = 70°C  
R = 150 Ω at TJ = 85°C  
R = 420 Ω at TJ = 100°C  
52.7 mA at TJ = 70°C / 10-year lifetime  
16.5 mA at TJ = 85°C / 10-year lifetime  
5.9 mA at TJ = 100°C / 10-year lifetime  
For duty cycles other than 100%, the currents can be increased by  
a factor of 1 / (duty cycle).  
Example: 20% duty cycle at 70°C  
Maximum current = (1 / 0.2) × 52.7 mA = 5 × 52.7 mA = 263.5 mA  
Notes:  
1. Speed and current consumption increase as the board resistance values decrease.  
2. Resistor values ensure I/O diode long-term reliability.  
3. At 70°C, customers could still use 420 Ω on every I/O.  
4. At 85°C, a 5 V solution on every other I/O is permitted, since the resistance is lower (150 Ω) and the current is higher. Also, the  
designer can still use 420 Ω and use the solution on every I/O.  
5. At 100°C, the 5 V solution on every I/O is permitted, since 420 Ω are used to limit the current to 5.9 mA.  
v2.0  
2-39  
Automotive ProASIC3 Flash Family FPGAs  
5 V Output Tolerance  
Automotive ProASIC3 I/Os must be set to 3.3 V LVTTL or  
3.3 V LVCMOS mode to reliably drive 5 V TTL receivers. It  
is also critical that there be NO external I/O pull-up  
resistor to 5 V, since this resistor would pull the I/O pad  
voltage beyond the 3.6 V absolute maximum value and  
consequently cause damage to the I/O.  
When set to 3.3 V LVTTL or 3.3 V LVCMOS mode,  
Automotive ProASIC3 I/Os can directly drive signals into  
5 V TTL receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in  
both 3.3 V LVTTL and 3.3 V LVCMOS modes exceeds the  
VIL = 0.8 V and VIH = 2 V level requirements of 5 V TTL  
receivers. Therefore, level  
1 and level 0 will be  
recognized correctly by 5 V TTL receivers.  
Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout  
SSOs can cause signal integrity problems on adjacent  
signals that are not part of the SSO bus. Both inductive  
and capacitive coupling parasitics of bond wires inside  
packages and of traces on PCBs will transfer noise from  
SSO busses onto signals adjacent to those busses.  
Additionally, SSOs can produce ground bounce noise and  
VCCI dip noise. These two noise types are caused by  
rapidly changing currents through GND and VCCI  
package pin inductances during switching activities  
(EQ 2-1 and EQ 2-2).  
should be done both on the board and inside the  
package unless otherwise described.  
In-package shielding can be achieved in several ways; the  
required shielding will vary depending on whether pins  
next to the SSO bus are LVTTL/LVCMOS inputs,  
LVTTL/LVCMOS outputs, or GTL/SSTL/HSTL/LVDS/LVPECL  
inputs and outputs. Board traces in the vicinity of the  
SSO bus have to be adequately shielded from mutual  
coupling and inductive noise that can be generated by  
the SSO bus. Also, noise generated by the SSO bus needs  
to be reduced inside the package.  
Ground bounce noise voltage = L(GND) × di/dt  
PCBs perform an important function in feeding stable  
supply voltages to the IC and, at the same time,  
maintaining signal integrity between devices.  
EQ 2-1  
VCCI dip noise voltage = L(VCCI) × di/dt  
EQ 2-2  
Key issues that need to considered are as follows:  
Any group of four or more input pins switching on the  
same clock edge is considered an SSO bus. The shielding  
Power and ground plane design and decoupling  
network design  
Transmission line reflections and terminations  
2-40  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Selectable Skew between Output Buffer Enable and Disable Times  
The configurable skew block is used to delay the output buffer assertion (enable) without affecting deassertion  
(disable) time.  
ENABLE (IN)  
Output Enable  
(from FPGA core)  
ENABLE (OUT)  
MUX  
Skew Circuit  
I/O Output  
Buffers  
Skew Select  
Figure 2-31 Block Diagram of Output Enable Path  
ENABLE (IN)  
ENABLE (OUT)  
Less than  
0.1 ns  
Less than  
0.1 ns  
Figure 2-32 Timing Diagram (option 1: bypasses skew circuit)  
ENABLE (IN)  
ENABLE (OUT)  
1.2 ns  
(typical)  
Less than  
0.1 ns  
Figure 2-33 Timing Diagram (option 2: enables skew circuit)  
v2.0  
2-41  
Automotive ProASIC3 Flash Family FPGAs  
At the system level, the skew circuit can be used in applications where transmission activities on bidirectional data  
lines need to be coordinated. This circuit, when selected, provides a timing margin that can prevent bus contention  
and subsequent data loss and/or transmitter over-stress due to transmitter-to-transmitter current shorts. Figure 2-34  
presents an example of the skew circuit implementation in a bidirectional communication system. Figure 2-35 shows  
how bus contention is created, and Figure 2-36 on page 2-43 shows how it can be avoided with the skew circuit.  
Transmitter  
ENABLE/  
DISABLE  
Transmitter 1: ProASIC3 I/O  
Transmitter 2: Generic I/O  
Routing  
Skew or  
Routing  
EN (r1)  
EN (b2)  
ENABLE(t2)  
Bypass  
Skew  
EN (b1)  
Delay (t1)  
Delay (t2)  
ENABLE (t1)  
Bidirectional Data Bus  
Figure 2-34 Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using Automotive  
ProASIC3 Devices  
EN (b1)  
EN (b2)  
ENABLE (r1)  
ENABLE (t1)  
Transmitter 1: OFF  
ENABLE (t2)  
Transmitter 1: OFF  
Transmitter 1: ON  
Transmitter 2: ON  
Transmitter 2: OFF  
Bus  
Contention  
Figure 2-35 Timing Diagram (bypasses skew circuit)  
2-42  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
EN (b1)  
EN (b2)  
ENABLE (t1)  
Transmitter 1: OFF  
ENABLE (t2)  
Transmitter 1: OFF  
Transmitter 1: ON  
Transmitter 2: ON  
Transmitter 2: OFF  
Result: No Bus Contention  
Figure 2-36 Timing Diagram (with skew circuit selected)  
v2.0  
2-43  
Automotive ProASIC3 Flash Family FPGAs  
I/O attributes are applicable for all I/O standards. Table 2-  
18 lists the valid I/O attributes that can be manipulated  
by the user for each I/O standard.  
I/O Software Support  
In the Automotive ProASIC3 development software,  
default settings have been defined for the various I/O  
standards supported. Changes can be made to the  
default settings via the use of attributes; however, not all  
Single-ended I/O standards in Automotive ProASIC3  
devices support up to five different drive strengths.  
Table 2-18 Automotive ProASIC3 I/O Attributes vs. I/O Standard Applications  
SLEW  
(output  
only)  
OUT_DRIVE  
(output  
only)  
SKEW  
(all macros  
with OE)  
OUT_LOAD  
(output  
only)  
I/O Standard  
LVTTL/LVCMOS 3.3 V  
LVCMOS 2.5 V  
LVCMOS 2.5/5.0 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
PCI (3.3 V)  
RES_PULL  
COMBINE_REGISTER  
PCI-X (3.3 V)  
LVDS, BLVDS, M-LVDS  
LVPECL  
Table 2-19 lists the default values for the above selectable I/O attributes as well as those that are preset for that I/O  
standard. See Table 2-20 and Table 2-21 on page 2-45 for SLEW and OUT_DRIVE settings.  
Table 2-19 Automotive ProASIC3 I/O Default Attributes  
SKEW  
(tribuf and  
(output only) bibuf only) RES_PULL  
OUT_LOAD  
(output  
only)  
SLEW  
OUT_DRIVE  
I/O Standards  
LVTTL/LVCMOS 3.3 V  
LVCMOS 2.5 V  
LVCMOS 2.5/5.0 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
PCI (3.3 V)  
(output only)  
COMBINE_REGISTER  
See Table 2-20  
on page 2-45.  
See Table 2-20  
on page 2-45.  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
None  
None  
None  
None  
None  
None  
None  
None  
None  
35 pF  
35 pF  
35 pF  
35 pF  
35 pF  
10 pF  
10 pF  
0 pF  
PCI-X (3.3 V)  
LVDS, BLVDS, M-LVDS  
LVPECL  
0 pF  
Weak Pull-Up and Weak Pull-Down Resistors  
Automotive ProASIC3 devices support optional weak pull-up and pull-down resistors on each I/O pin. When the I/O is  
pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is connected to GND.  
Refer to Table 3-20 on page 3-20 through Table 3-23 on page 3-21 for more information.  
2-44  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
The output slew rate and multiple drive strength  
controls are available in LVTTL/LVCMOS 3.3 V, LVCMOS  
2.5 V, LVCMOS 2.5 V / 5.0 V input, LVCMOS 1.8 V, and  
LVCMOS 1.5 V. All other I/O standards have a high output  
slew rate by default.  
Slew Rate Control and Drive Strength  
Automotive ProASIC3 devices support output slew rate  
control: high and low. Actel recommends the high slew  
rate option to minimize the propagation delay. This  
high-speed option may introduce noise into the system if  
appropriate signal integrity measures are not adopted.  
Selecting a low slew rate reduces this kind of noise but  
adds some delays in the system. Low slew rate is  
recommended when bus transients are expected. Drive  
strength should also be selected according to the design  
requirements and noise immunity of the system.  
For Automotive ProASIC3 devices, refer to Table 2-20 and  
Table 2-21 for more information about the slew rate and  
drive strength specification.  
Table 2-20 Automotive ProASIC3 Output Drive for Standard Plus I/O Bank Type  
I/O Standards  
LVTTL  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Slew  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
LVCMOS 3.3 V  
LVCMOS 2.5 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
Notes:  
1. There will be differences in timing between the Standard Plus I/O banks and the Advanced I/O banks (Table 2-21). Refer to the I/O  
timing tables beginning on page 3-27 and Table 2-10 on page 2-29 for the standards supported by each device.  
2. Refer to Table 2-12 on page 2-29 for I/O bank type definition.  
Table 2-21 Automotive ProASIC3 Output Drive for Advanced I/O Bank Type  
I/O Standards  
LVTTL  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
Slew  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
LVCMOS 3.3 V  
LVCMOS 2.5 V  
LVCMOS 2.5/5.0 V  
LVCMOS 1.8 V  
LVCMOS 1.5 V  
Notes:  
1. There will be differences in timing between the Advanced I/O banks and the Standard Plus I/O banks (Table 2-20). Refer to the I/O  
timing tables beginning on page 3-29 and Table 2-10 on page 2-29 for the standards supported by each device.  
2. Refer to Table 2-12 on page 2-29 for I/O bank type definition.  
v2.0  
2-45  
Automotive ProASIC3 Flash Family FPGAs  
User I/O Naming Convention  
Due to the comprehensive and flexible nature of ProASIC3 device user I/Os, a naming scheme is used to show the  
details of each I/O (Figure 2-37 and Figure 2-38 on page 2-47). The name identifies to which I/O bank it belongs, as well  
as pairing and pin polarity for differential I/Os.  
I/O Nomenclature = Gmn/IOuxwBy  
Gmn is only used for I/Os that also have CCC access—i.e., global pins.  
G
= Global  
m
= Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east  
middle), D (southeast corner), E (southwest corner), and F (west middle)  
n
= Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1, or  
C2. Figure 2-15 on page 2-17 shows the three input pins per clock source MUX at CCC location m.  
u
x
= I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise direction  
= P (Positive) or N (Negative) for differential pairs, or R (Regular—single-ended) for the I/Os that support single-  
ended and voltage-referenced I/O standards only. U (Positive-LVDS, DDR LVDS, BLVDS, and M-LVDS only) or V  
(Negative-LVDS, DDR LVDS, BLVDS, and M-LVDS only) restrict the I/O differential pair from being selected as an  
LVPECL pair.  
w
= D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded  
out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are  
bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out.  
For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal  
adjacency does not meet the requirements for a true differential pair.  
B
y
= Bank  
= Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise  
direction.  
GND  
CCC  
"A"  
CCC  
"B"  
Bank 0  
GND  
GNDQ  
VMV0  
VCC  
VCC  
GND  
VCCIB1  
Bank 1  
Bank 0  
GND  
VCCIB0  
A3P060  
A3P125  
VCOMPLF  
VCCPLF  
CCC/PLL  
"F"  
CCC  
"C"  
GND  
VCC  
GND  
VCC  
VCCIB0  
GND  
VCCIB1  
Bank 1  
Bank 0  
GND  
VMV1  
VJTAG  
GNDQ  
GND  
TRST  
TDO  
CCC  
"E"  
CCC  
"D"  
VPUMP  
Bank 1  
GND  
Figure 2-37 Naming Conventions of Automotive ProASIC3 Devices with Two I/O Banks – Top View  
2-46  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
GND  
CCC  
"A"  
CCC  
"B"  
Bank 0  
GND  
GNDQ  
VMV1  
Vcc  
GND  
VCCIB3  
Bank 3  
Bank 1  
VCC  
GND  
VCCIB1  
A3P250  
A3P1000  
VCOMPLF  
VCCPLF  
CCC/PLL  
"F"  
CCC  
"C"  
GND  
VCC  
GND  
VCC  
VCCIB1  
VCCIB3  
GND  
VMV3  
Bank 3  
Bank 1  
GND  
VJTAG  
GNDQ  
GND  
TRST  
TDO  
CCC  
"E"  
CCC  
"D"  
VPUMP  
Bank 2  
GND  
Figure 2-38 Naming Conventions of Automotive ProASIC3 Devices with Four I/O Banks – Top View  
v2.0  
2-47  
Automotive ProASIC3 Flash Family FPGAs  
Pin Descriptions  
Supply Pins  
GND. VMV and VCCI should be at the same voltage within  
a given I/O bank. Used VMV pins must be connected to  
the corresponding VCCI pins of the same bank (i.e., VMV0  
to VCCIB0, VMV1 to VCCIB1, etc.).  
GND  
Ground  
Ground supply voltage to the core, I/O outputs, and I/O  
logic.  
V
PLL Supply Voltage  
CCPLF  
GNDQ  
Ground (quiet)  
Supply voltage to analog PLL, nominally 1.5 V. If unused,  
VCCPLF should be tied to either the power supply or GND.  
Quiet ground supply voltage to input buffers of I/O  
banks. Within the package, the GNDQ plane is  
decoupled from the simultaneous switching noise  
originated from the output buffer ground domain. This  
minimizes the noise transfer within the package and  
improves input signal integrity. GNDQ must always be  
connected to GND on the board.  
V
PLL Ground  
COMPLF  
Ground to analog PLL power supplies. Unused VCOMPLF  
pins should be connected to GND.  
V
JTAG Supply Voltage  
JTAG  
Automotive ProASIC3 devices have a separate bank for  
the dedicated JTAG pins. The JTAG pins can be run at any  
voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG  
power supply in a separate I/O bank gives greater  
flexibility in supply selection and simplifies power supply  
and PCB design. If the JTAG interface is neither used nor  
planned for use, the VJTAG pin together with the TRST  
pin could be tied to GND. It should be noted that VCC is  
required to be powered for JTAG operation; VJTAG alone  
is insufficient. If a device is in a JTAG chain of  
interconnected boards, the board containing the  
Automotive ProASIC3 device can be powered down,  
provided both VJTAG and VCC to the Automotive  
ProASIC3 part remain powered; otherwise, JTAG signals  
will not be able to transition the Automotive ProASIC3  
device, even in bypass mode.  
V
Core Supply Voltage  
CC  
Supply voltage to the FPGA core, nominally 1.5 V. VCC is  
required for powering the JTAG state machine in  
addition to VJTAG. Even when an Automotive ProASIC3  
device is in bypass mode in  
a
JTAG chain of  
interconnected devices, both VCC and VJTAG must remain  
powered to allow JTAG signals to pass through the  
Automotive ProASIC3 device.  
V
Bx  
I/O Supply Voltage  
CCI  
Supply voltage to the bank's I/O output buffers and I/O  
logic. Bx is the I/O bank number. There are eight I/O  
banks on Automotive ProASIC3 devices plus a dedicated  
VJTAG bank. Each bank can have a separate VCCI  
connection. All I/Os in a bank will run off the same VCCIBx  
supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal  
voltage. Unused I/O banks should have their  
corresponding VCCI pins tied to GND.  
V
Programming Supply Voltage  
PUMP  
Automotive ProASIC3 devices support single-voltage ISP  
of the configuration flash and FlashROM. For  
programming, VPUMP should be 3.3 V nominal. During  
normal device operation, VPUMP can be left floating or  
can be tied (pulled up) to any voltage between 0 V and  
3.6 V. Programming power supply voltage (VPUMP) range  
is 3.3 V +/- 5%.  
VMVx  
I/O Supply Voltage (quiet)  
Quiet supply voltage to the input buffers of each I/O  
bank. x is the bank number. Within the package, the  
VMV plane is decoupled from the simultaneous  
switching noise originated from the output buffer VCCI  
domain. This minimizes the noise transfer within the  
package and improves input signal integrity. Each bank  
must have at least one VMV connection, and no VMV  
should be left unconnected. All I/Os in a bank run off the  
same VMVx supply. VMV is used to provide a quiet supply  
voltage to the input buffers of each I/O bank. VMVx can  
be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O  
banks should have their corresponding VMV pins tied to  
When the VPUMP pin is tied to ground, it will shut off the  
charge pump circuitry, resulting in no sources of  
oscillation from the charge pump circuitry.  
For proper programming, 0.01 µF and 0.33 µF capacitors  
(both rated at 16 V) are to be connected in parallel  
across VPUMP and GND, and positioned as close to the  
FPGA pins as possible.  
2-48  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Automotive ProASIC3 device. Isolating the JTAG power  
supply in a separate I/O bank gives greater flexibility in  
supply selection and simplifies power supply and PCB  
design. If the JTAG interface is neither used nor planned  
for use, the VJTAG pin together with the TRST pin could  
be tied to GND.  
User Pins  
I/O  
User Input/Output  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Input and output signal levels are  
compatible with the I/O standard selected.  
TCK  
Test Clock  
During programming, I/Os become tristated and weakly  
pulled up to VCCI. With VCCI, VMV, and VCC supplies  
continuously powered up, when the device transitions  
from programming to operating mode, the I/Os are  
instantly configured to the desired user configuration.  
Test clock input for JTAG boundary scan, ISP, and UJTAG.  
The TCK pin does not have an internal pull-up/-down  
resistor. If JTAG is not used, Actel recommends tying off  
TCK to GND through a resistor placed close to the FPGA  
pin. This prevents JTAG operation in case TMS enters an  
undesired state.  
Unused I/Os are configured as follows:  
Output buffer is disabled (with tristate value of high  
impedance)  
Note that to operate at all VJTAG voltages, 500 Ω to 1 kΩ  
will satisfy the requirements. Refer to Table 2-22 for  
more information.  
Input buffer is disabled (with tristate value of high  
impedance)  
Weak pull-up is programmed  
Table 2-22 Recommended Tie-Off Values for the TCK and  
TRST Pins  
GL  
Globals  
VJTAG  
JTAG at 3.3 V  
Tie-Off Resistance  
200 Ω to 1 kΩ  
200 Ω to 1 kΩ  
500 Ω to 1 kΩ  
500 Ω to 1 kΩ  
GL I/Os have access to certain clock conditioning circuitry  
(and the PLL) and/or have direct access to the global  
network (spines). Additionally, the global I/Os can be  
used as I/Os, since they have identical capabilities.  
Unused GL pins are configured as inputs with pull-up  
resistors. See more detailed descriptions of global I/O  
connectivity in the "Clock Conditioning Circuits" section  
on page 2-13. All inputs labeled GC/GF are direct inputs  
into the quadrant clocks. For example, if GAA0 is used  
for an input, GAA1 and GAA2 are no longer available for  
input to the quadrant globals. All inputs labeled GC/GF  
are direct inputs into the chip-level globals, and the rest  
are connected to the quadrant globals. The inputs to the  
global network are multiplexed, and only one input can  
be used as a global input.  
V
VJTAG at 2.5 V  
VJTAG at 1.8 V  
V
JTAG at 1.5 V  
Notes:  
1. Equivalent parallel resistance if more than one device is on  
the JTAG chain.  
2. The TCK pin can be pulled up/down.  
3. The TRST pin is pulled down.  
TDI  
Test Data Input  
Serial input for JTAG boundary scan, ISP, and UJTAG  
usage. There is an internal weak pull-up resistor on the  
TDI pin.  
Refer to the "User I/O Naming Convention" section on  
page 2-46 for an explanation of the naming of global  
pins.  
TDO  
Test Data Output  
Serial output for JTAG boundary scan, ISP, and UJTAG  
usage.  
JTAG Pins  
Automotive ProASIC3 devices have a separate bank for  
the dedicated JTAG pins. The JTAG pins can be run at any  
voltage from 1.5 V to 3.3 V (nominal). VCC must also be  
powered for the JTAG state machine to operate, even if  
the device is in bypass mode; VJTAG alone is insufficient.  
Both VJTAG and VCC to the Automotive ProASIC3 part  
must be supplied to allow JTAG signals to transition the  
TMS  
Test Mode Select  
The TMS pin controls the use of the IEEE 1532 boundary  
scan pins (TCK, TDI, TDO, TRST). There is an internal weak  
pull-up resistor on the TMS pin.  
v2.0  
2-49  
Automotive ProASIC3 Flash Family FPGAs  
TRST  
Boundary Scan Reset Pin  
Timer—a world-class integrated static timing  
analyzer and constraints editor that supports  
timing-driven place-and-route  
NetlistViewer—a design netlist schematic viewer  
ChipPlanner—a graphical floorplanner viewer and  
editor  
SmartPower—a tool that enables the designer to  
quickly estimate the power consumption of a  
design  
PinEditor—a graphical application for editing pin  
assignments and I/O attributes  
I/O Attribute Editor—a tool that displays all  
assigned and unassigned I/O macros and their  
attributes in a spreadsheet format  
The TRST pin functions as an active low input to  
asynchronously initialize (or reset) the boundary scan  
circuitry. There is an internal weak pull-up resistor on the  
TRST pin. If JTAG is not used, an external pull-down  
resistor could be included to ensure the test access port  
(TAP) is held in reset mode. The resistor values must be  
chosen from Table 2-22 on page 2-49 and must satisfy  
the parallel resistance value requirement. The values in  
Table 2-22 on page 2-49 correspond to the resistor  
recommended when a single device is used and the  
equivalent parallel resistor when multiple devices are  
connected via a JTAG chain.  
In critical applications, an upset in the JTAG circuit could  
allow entrance to an undesired JTAG state. In such cases,  
Actel recommends tying off TRST to GND through a  
resistor placed close to the FPGA pin.  
With the Designer software, a user can lock the design  
pins before layout while minimally impacting the results  
of place-and-route. Additionally, Actel back-annotation  
flow is compatible with all the major simulators. Another  
tool included in the Designer software is the SmartGen  
core generator, which easily creates popular and  
commonly used logic functions for implementation into  
your schematic or HDL design.  
Note that to operate at all VJTAG voltages, 500 Ω to 1 kΩ  
will satisfy the requirements.  
Special Function Pins  
NC  
No Connect  
Actel Designer software is compatible with the most  
popular FPGA design entry and verification tools from  
EDA vendors such as Mentor Graphics, Synplicity,  
Synopsys, and Cadence.® The Designer software is  
available for both the Windows® and UNIX operating  
systems.  
This pin is not connected to circuitry within the device.  
These pins can be driven to any voltage or can be left  
floating with no effect on the operation of the device.  
DC  
Do Not Connect  
This pin should not be connected to any signals on the  
PCB. These pins should be left unconnected.  
Programming  
Programming can be performed using tools such as  
Silicon Sculptor II (BP Micro Systems) or FlashPro3 (Actel).  
Software Tools  
Overview of Tools Flow  
The user can generate STP programming files from the  
Designer software and use these files to program a  
device. ProASIC3 devices can be programmed in-system.  
For more information on ISP of ProASIC3 devices, refer to  
the In-System Programming (ISP) in ProASIC3/E Using  
FlashPro3 and Programming a ProASIC3/E Using a  
Microprocessor application notes.  
The Automotive ProASIC3 family of FPGAs is fully  
supported by both Actel Libero IDE and Designer FPGA  
development software. Actel Libero IDE is an integrated  
design manager that seamlessly integrates design tools  
while guiding the user through the design flow,  
managing all design and log files and passing necessary  
design data among tools. Additionally, Libero IDE allows  
users to integrate both schematic and HDL synthesis into  
a single flow and verify the entire design in a single  
environment (see the Libero IDE flow diagram located  
on the Actel website). Libero IDE includes Synplify® AE  
from Synplicity,® ViewDraw® AE from Mentor Graphics,®  
ModelSim® HDL Simulator from Mentor Graphics,  
WaveFormer LiteTM AE from SynaptiCAD,® PALACE™ AE  
Physical Synthesis from Magma Design Automation,TM  
and Designer software from Actel.  
The Automotive ProASIC3 device can be serialized with a  
unique identifier stored in the FlashROM of each device.  
Serialization is an automatic assignment of serial  
numbers that are stored within the STAPL file used for  
programming. The area of the FlashROM used for  
holding such identifiers is defined using SmartGen, and  
the range of serial numbers to be used is defined at the  
time of STAPL file generation with FlashPoint. Serial  
number values for STAPL file generation can even be  
read from  
a file of predefined values. Serialized  
programming using a serialized STAPL file can be done  
through Actel In-House Programming (IHP), an external  
vendor using Silicon Sculptor software, or the ISP  
capabilities of the FlashPro software.  
Actel Designer software is a place-and-route tool and  
provides a comprehensive suite of backend support tools  
for FPGA development. The Designer software includes  
the following:  
2-50  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Security  
ISP  
Automotive ProASIC3 devices have a built-in 128-bit AES  
decryption core. The decryption core facilitates secure in-  
system programming of the FPGA core array fabric and  
the FlashROM. The FlashROM and the FPGA core fabric  
can be programmed independently of each other,  
allowing the FlashROM to be updated without the need  
for change to the FPGA core fabric. The AES master key is  
stored in on-chip nonvolatile memory (flash). The AES  
master key can be preloaded into parts in a secure  
programming environment (such as the Actel In-House  
Programming center), and then "blank" parts can be  
shipped to an untrusted programming or manufacturing  
center for final personalization with an AES-encrypted  
bitstream. Late-stage product changes or personalization  
can be implemented easily and securely by simply  
sending a STAPL file with AES-encrypted data. Secure  
remote field updates over public networks (such as the  
Internet) are possible by sending and programming a  
STAPL file with AES-encrypted data.  
Automotive ProASIC3 devices support IEEE 1532 ISP via  
JTAG and require a single VPUMP voltage of 3.3 V during  
programming. In addition, programming via  
a
microcontroller in a target system can be achieved. See  
the application note In-System Programming (ISP) in  
ProASIC3/E Using FlashPro3 for more details.  
JTAG 1532  
Automotive ProASIC3 devices support the JTAG-based  
IEEE 1532 standard for ISP. As part of this support, when  
an Automotive ProASIC3 device is in an unprogrammed  
state, all user I/O pins are disabled. This is achieved by  
keeping the global IO_EN signal deactivated, which also  
has the effect of disabling the input buffers. The  
SAMPLE/PRELOAD instruction captures the status of pads  
in parallel and shifts them out as new data is shifted in  
for loading into the Boundary Scan Register. When the  
Automotive ProASIC3 device is in an unprogrammed  
state, the SAMPLE/PRELOAD instruction has no effect on  
I/O status; however, it will continue to shift in new data  
to be loaded into the BSR. Therefore, when  
SAMPLE/PRELOAD is used on an unprogrammed device,  
the BSR will be loaded with undefined data. Refer to the  
In-System Programming (ISP) in ProASIC3/E Using  
FlashPro3 application note for more details.  
128-Bit AES Decryption  
The 128-bit AES standard (FIPS-192) block cipher is the  
NIST (National Institute of Standards and Technology)  
replacement for DES (Data Encryption Standard  
FIPS46-2). AES has been designed to protect sensitive  
government information well into the 21st century. It  
replaces the aging DES, which NIST adopted in 1977 as a  
Federal Information Processing Standard used by federal  
agencies to protect sensitive, unclassified information.  
The 128-bit AES standard has 3.4 × 1038 possible 128-bit  
key variants, and it has been estimated that it would  
take 1,000 trillion years to crack 128-bit AES cipher text  
using exhaustive techniques. Keys are stored (securely) in  
Automotive ProASIC3 devices in nonvolatile flash  
memory. All programming files sent to the device can be  
authenticated by the part prior to programming to  
ensure that bad programming data is not loaded into  
the part that may possibly damage it. All programming  
verification is performed on-chip, ensuring that the  
contents of Automotive ProASIC3 devices remain secure.  
For JTAG timing information on setup, hold, and fall  
times, refer to the FlashPro User’s Guide.  
Boundary Scan  
Automotive ProASIC3 devices are compatible with IEEE  
Standard 1149.1, which defines a hardware architecture  
and the set of mechanisms for boundary scan testing.  
The basic Automotive ProASIC3 boundary scan logic  
circuit is composed of the TAP controller, test data  
registers, and instruction register (Figure 2-41 on page 2-  
53). This circuit supports all mandatory IEEE 1149.1  
instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS)  
and the optional IDCODE instruction (Table 2-23).  
Table 2-23 Boundary Scan Opcodes  
AES decryption can also be used on the 1,024-bit  
FlashROM to allow for secure remote updates of the  
FlashROM contents. This allows for easy, secure support  
for subscription model products. See the application  
note ProASIC3/E Security for more details.  
Hex Opcode  
EXTEST  
00  
07  
0E  
01  
0F  
05  
FF  
HIGHZ  
USERCODE  
SAMPLE/PRELOAD  
IDCODE  
CLAMP  
BYPASS  
v2.0  
2-51  
Automotive ProASIC3 Flash Family FPGAs  
Each test section is accessed through the TAP, which has  
five associated pins: TCK (test clock input), TDI, TDO (test  
data input and output), TMS (test mode selector), and  
TRST (test reset input). TMS, TDI, and TRST are equipped  
with pull-up resistors to ensure proper operation when  
no input data is supplied to them. These pins are  
dedicated for boundary scan test usage. Refer to the  
"JTAG Pins" section on page 2-49 for pull-up/-down  
recommendations for TDO and TCK pins. Table 2-24 gives  
pull-down recommendations for the TRST and TCK  
pins.  
The TAP controller is a 4-bit state machine (16 states)  
that operates as shown in Figure 2-40. The 1s and 0s  
represent the values that must be present on TMS at a  
rising edge of TCK for the given state transition to occur.  
IR and DR indicate that the instruction register or the  
data register is operating in that state.  
The TAP controller receives two control inputs (TMS and  
TCK) and generates control and clock signals for the rest  
of the test logic architecture. On power-up, the TAP  
controller enters the Test-Logic-Reset state. To guarantee  
a reset of the controller from any of the possible states,  
TMS must remain HIGH for five TCK cycles. The TRST pin  
can also be used to asynchronously place the TAP  
controller in the Test-Logic-Reset state.  
Table 2-24 TRST and TCK Pull-Down Recommendations  
VJTAG  
JTAG at 3.3 V  
Tie-Off Resistance*  
200 Ω to 1 kΩ  
V
Automotive ProASIC3 devices support three types of test  
data registers: bypass, device identification, and  
boundary scan. The bypass register is selected when no  
other register needs to be accessed in a device. This  
speeds up test data transfer to other devices in a test  
data path. The 32-bit device identification register is a  
shift register with four fields (LSB, ID number, part  
number, and version). The boundary scan register  
observes and controls the state of each I/O pin. Each I/O  
cell has three boundary scan register cells, each with  
serial-in, serial-out, parallel-in, and parallel-out pins.  
VJTAG at 2.5 V  
VJTAG at 1.8 V  
200 Ω to 1 kΩ  
500 Ω to 1 kΩ  
VJTAG at 1.5 V  
500 Ω to 1 kΩ  
Note: *Equivalent parallel resistance if more than one device  
is on JTAG chain (Figure 2-39 on page 2-52)  
1.5 V  
VJTAG  
JTAG  
Header  
TRST  
1
TCK  
GND  
TEST_LOGIC_RESET  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
0
RUN_TEST_IDLE  
0
Actel  
TDO  
1
1
1
1.5 kΩ  
FPGA 1  
TDI  
TDI  
SELECT_DR  
0
SELECT_IR  
0
Actel  
FPGA 2  
1
1
TDO  
TDO  
TDO  
1.5 kΩ  
1.5 kΩ  
1.5 kΩ  
CAPTURE_DR  
0
CAPTURE_IR  
0
0
0
Actel  
FPGA 3  
SHIFT_DR  
1
SHIFT_IR  
1
TDI  
TDI  
1
1
Actel  
FPGA 4  
EXIT1_DR  
0
EXIT1_IR  
0
0
0
PAUSE_DR  
1
PAUSE_IR  
1
Note: TCK is correctly wired with an equivalent tie-off resistance  
of 500 Ω, which satisfies the table for VJTAG of 1.5 V. The  
resistor values for TRST are not appropriate in this case, as  
the tie-off resistance of 375 Ω is below the recommended  
minimum for VJTAG = 1.5 V, but would be appropriate for a  
VJTAG setting of 2.5 V or 3.3 V.  
EXIT2_DR  
1
EXIT2_IR  
1
0
0
UPDATE_DR  
UPDATE_IR  
Figure 2-39 Parallel Resistance on JTAG Chain of Devices  
0
1
1
0
Figure 2-40 TAP Controller State Machine  
2-52  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
The serial pins are used to serially connect all the boundary scan register cells in a device into a boundary scan register  
chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic  
I/O tile and the input, output, and control ports of an I/O buffer to capture and load data into the register to control or  
observe the logic state of each I/O.  
I/O  
I/O  
I/O  
I/O  
I/O  
Test Data  
Registers  
Bypass Register  
Instruction  
Register  
TAP  
Controller  
Device  
Logic  
I/O  
I/O  
I/O  
I/O  
I/O  
Figure 2-41 Boundary Scan Chain in Automotive ProASIC3  
v2.0  
2-53  
Automotive ProASIC3 Flash Family FPGAs  
DC and Switching Characteristics  
General Specifications  
Operating Conditions  
Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute  
Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond  
those listed under the Recommended Operating Conditions specified in Table 3-2 on page 3-2 is not implied.  
Table 3-1 Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
DC core supply voltage  
JTAG DC voltage  
Limits  
Units  
–0.3 to 1.65  
V
V
V
V
V
V
V
VJTAG  
VPUMP  
VCCPLL  
VCCI  
–0.3 to 3.75  
Programming voltage  
–0.3 to 3.75  
Analog power supply (PLL)  
DC I/O output buffer supply voltage  
DC I/O input buffer supply voltage  
I/O input voltage  
–0.3 to 1.65  
–0.3 to 3.75  
VMV  
VI  
–0.3 to 3.75  
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)  
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when  
I/O hot-insertion mode is disabled)  
2
TSTG  
Storage temperature  
Junction temperature  
–65 to +150  
+150  
°C  
°C  
2
TJ  
Notes:  
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or  
overshoot according to the limits shown in Table 3-3 on page 3-3.  
2. For Flash programming and retention maximum limits, refer to Figure 3-1 on page 3-2. For recommended operating limits, refer to  
Table 3-2 on page 3-2.  
v2.0  
3-1  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-2 Recommended Operating Conditions  
Symbol  
TJ  
Parameter  
Junction temperature  
Automotive Grade 1 Automotive Grade 2 Units  
–40 to +135  
1.425 to 1.575  
1.4 to 3.6  
–40 to +115  
1.425 to 1.575  
1.4 to 3.6  
°C  
V
V
V
V
V
V
V
V
V
V
V
VCC  
1.5 V DC core supply voltage  
JTAG DC voltage  
VJTAG  
VPUMP  
Programming voltage  
Programming Mode  
Operation3  
3.0 to 3.6  
3.0 to 3.6  
0 to 3.6  
0 to 3.6  
VCCPLL  
Analog power supply (PLL)  
1.4 to 1.6  
1.4 to 1.6  
VCCI and VMV 1.5 V DC supply voltage  
1.425 to 1.575  
1.7 to 1.9  
1.425 to 1.575  
1.7 to 1.9  
1.8 V DC supply voltage  
2.5 V DC supply voltage  
3.3 V DC supply voltage  
2.3 to 2.7  
2.3 to 2.7  
3.0 to 3.6  
3.0 to 3.6  
LVDS/BLVDS/M-LVDS differential I/O  
LVPECL differential I/O  
2.375 to 2.625  
3.0 to 3.6  
2.375 to 2.625  
3.0 to 3.6  
Notes:  
1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given  
in Table 3-14 on page 3-17. VMV and VCCI should be at the same voltage within a given I/O bank.  
2. All parameters representing voltages are measured with respect to GND unless otherwise specified.  
3. VPUMP can be left floating during operation (not programming mode).  
110  
100  
HTR  
Lifetime  
Tj (°C)  
(yrs)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
85  
102.7  
43.8  
20.0  
15.6  
100  
105  
110  
115  
120  
125  
130  
12.3  
9.7  
7.7  
6.2  
5.0  
135  
140  
4.0  
3.3  
145  
150  
2.7  
2.2  
70 85 100 105 110 115 120 125 130 135 140 145 150  
Temperature (ºC)  
Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage.  
Figure 3-1 High Temperature Data Retention (HTR)  
3-2  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-3 Overshoot and Undershoot Limits (as measured on quiet I/Os)  
Average VCCI–GND Overshoot or Undershoot Maximum Overshoot/ Maximum Overshoot/  
VCCI and VMV  
Duration as a Percentage of Clock Cycle  
Undershoot (115°C)  
Undershoot (135°C)  
2.7 V or less  
10%  
5%  
0.81 V  
0.90 V  
0.80 V  
0.90 V  
0.79 V  
0.88 V  
N/A  
0.72 V  
0.82 V  
0.72 V  
0.81 V  
0.69 V  
0.79 V  
N/A  
3 V  
10%  
5%  
3.3 V  
3.6 V  
Notes:  
10%  
5%  
10%  
5%  
N/A  
N/A  
1. The duration is allowed at one out of six clock cycles (estimated SSO density over cycles). If the overshoot/undershoot occurs at one  
out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.  
2. This table refers only to overshoot/undershoot limits for simultaneously switching I/Os and does not provide PCI  
overshoot/undershoot limits.  
v2.0  
3-3  
Automotive ProASIC3 Flash Family FPGAs  
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and  
Industrial)  
Sophisticated power-up management circuitry is  
designed into every ProASIC3 device. These circuits  
ensure easy transition from the powered-off state to the  
powered-up state of the device. The many different  
supplies can power up in any sequence with minimized  
current spikes or surges. In addition, the I/O will be in a  
known state through the power-up sequence. The basic  
principle is shown in Figure 3-2.  
VCC Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.1 V  
Ramping down: 0.5 V < trip_point_down < 1 V  
VCC and VCCI ramp-up trip points are about 100 mV  
higher than ramp-down trip points. This specifically  
built-in hysteresis prevents undesirable power-up  
oscillations and current surges. Note the following:  
During programming, I/Os become tristated and  
weakly pulled up to VCCI  
JTAG supply, PLL power supplies, and charge pump  
PUMP supply have no influence on I/O behavior.  
There are five regions to consider during power-up.  
.
ProASIC3 I/Os are activated only if ALL of the following  
three conditions are met:  
V
1. VCC and VCCI are above the minimum specified trip  
points (Figure 3-2).  
Internal Power-Up Activation Sequence  
2. VCCI > VCC – 0.75 V (typical)  
1. Core  
3. Chip is in the operating mode.  
2. Input buffers  
V
CCI Trip Point:  
3. Output buffers, after 200 ns delay from input  
buffer activation  
Ramping up: 0.6 V < trip_point_up < 1.2 V  
Ramping down: 0.5 V < trip_point_down < 1.1 V  
V
= V + VT  
CCI  
CC  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
V
CC  
V
= 1.575 V  
CC  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
(except differential inputs)  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
and timer specifications for  
speed, VIH/VIL , VOH/VOL , etc.  
but slower because VCCI is  
below specification. For the  
same reason, input buffers do not  
meet VIH/VIL levels, and output  
buffers do not meet VOH/VOL levels.  
V
= 1.425 V  
CC  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI/VCC are below  
specification. For the same reason, input  
buffers do not meet VIH/VIL levels, and  
output buffers do not meet VOH/VOL levels.  
Activation trip point:  
V = 0.85 V 0.25 V  
a
Deactivation trip point:  
Region 1: I/O buffers are OFF  
V = 0.75 V 0.25 V  
d
V
Activation trip point:  
CCI  
Min V datasheet specification  
CCI  
V = 0.9 V 0.3 V  
voltage at a selected I/O  
a
Deactivation trip point:  
standard; i.e., 1.425 V or 1.7 V  
or 2.3 V or 3.0 V  
V = 0.8 V 0.3 V  
d
Figure 3-2 I/O State as a Function of VCCI and VCC Voltage Levels  
3-4  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Thermal Characteristics  
Introduction  
The temperature variable in the Actel Designer software refers to the junction temperature, not the ambient  
temperature. This is an important distinction because dynamic and static power consumption cause the chip junction  
to be higher than the ambient temperature.  
EQ 3-1 can be used to calculate junction temperature.  
TJ = Junction Temperature = ΔT + TA  
EQ 3-1  
where:  
TA = Ambient Temperature  
ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θja * P  
θja = Junction-to-ambient of the package. θja numbers are located in Table 3-4.  
P = Power dissipation  
rates. The absolute maximum junction temperature is  
110°C. EQ 3-2 shows a sample calculation of the absolute  
maximum power dissipation allowed for a 484-pin FBGA  
package at commercial temperature and in still air.  
Package Thermal Characteristics  
The device junction-to-case thermal resistivity is θjc and  
the junction-to-ambient air thermal resistivity is θja. The  
thermal characteristics for θja are shown for two air flow  
Max. junction temp. (°C) Max. ambient temp. (°C)  
110°C 70°C  
20.5°C/W  
Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------------- = ------------------------------------ = 1.951 W  
θja(°C/W)  
EQ 3-2  
Table 3-4 Package Thermal Resistivities  
θja  
200  
500  
Package Type  
Device  
Pin Count  
θjc  
10.0  
3.8  
3.8  
3.2  
6.3  
6.6  
8.0  
Still Air  
35.3  
ft./min.  
ft./min.  
Units  
Very Thin Quad Flat Pack (VQFP)  
Fine Pitch Ball Grid Array (FBGA)  
All devices  
See note*  
See note*  
See note*  
A3P1000  
A3P1000  
A3P1000  
100  
144  
256  
484  
144  
256  
484  
29.4  
22.9  
22.8  
17.0  
26.2  
24.4  
19.0  
27.1  
21.5  
21.5  
15.9  
24.2  
22.7  
16.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
26.9  
26.6  
20.5  
31.6  
28.1  
23.3  
Note: *This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package thermal information will be  
available in future revisions of the datasheet.  
Temperature and Voltage Derating Factors  
Table 3-5 Temperature and Voltage Derating Factors for Timing Delays  
(normalized to TJ = 115°C, VCC = 1.425 V)  
Array Voltage VCC (V)  
–40°C  
0.83  
0°C  
0.88  
0.83  
0.80  
25°C  
0.90  
0.85  
0.82  
70°C  
0.95  
0.90  
0.87  
85°C  
0.97  
0.92  
0.88  
115°C  
1.00  
125°C  
1.01  
135°C  
1.02  
1.425  
1.5  
0.79  
0.95  
0.96  
0.97  
1.575  
0.76  
0.91  
0.93  
0.94  
v2.0  
3-5  
Automotive ProASIC3 Flash Family FPGAs  
Calculating Power Dissipation  
Quiescent Supply Current  
Table 3-6 Quiescent Supply Current Characteristics  
A3P060  
A3P125  
2 mA  
A3P250  
3 mA  
A3P1000  
8 mA  
Typical (25°C)  
2 mA  
53 mA  
26 mA  
Maximum (Automotive Grade 1) – 135°C  
Maximum (Automotive Grade 2) – 115°C  
Notes:  
53 mA  
26 mA  
106 mA  
53 mA  
265 mA  
131 mA  
1. IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 3-7 and  
Table 3-10 on page 3-8.  
Power Per I/O Pin  
Table 3-7 Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Advanced I/O Banks  
Static Power  
PDC2 (mW)1  
Dynamic Power  
PAC9 (µW/MHz)2  
VMV (V)  
Single-Ended  
3.3 V LVTTL /  
3.3  
16.69  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
2.5  
1.8  
1.5  
3.3  
3.3  
5.12  
2.13  
1.45  
18.11  
18.11  
3.3 V PCI-X  
Differential  
LVDS  
2.5  
3.3  
2.26  
5.72  
1.20  
1.87  
LVPECL  
Notes:  
1. PDC2 is the static power (where applicable) measured on VMV.  
2. PAC9 is the total dynamic power measured on VCC and VMV.  
Table 3-8 Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Standard Plus I/O Banks  
Static Power  
Dynamic Power  
PAC9 (µW/MHz)2  
VMV (V)  
PDC2 (mW)1  
Single-Ended  
3.3 V LVTTL /  
3.3  
16.72  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
2.5  
1.8  
5.14  
2.13  
3-6  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-8 Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Standard Plus I/O Banks  
Static Power  
P
Dynamic Power  
AC9 (µW/MHz)2  
VMV (V)  
DC2 (mW)1  
P
1.5 V LVCMOS (JESD8-11)  
1.5  
3.3  
3.3  
1.48  
18.13  
18.13  
3.3 V PCI  
3.3 V PCI-X  
Notes:  
1. PDC2 is the static power (where applicable) measured on VMV.  
2. PAC9 is the total dynamic power measured on VCC and VMV.  
Table 3-9 Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Advanced I/O Banks  
Static Power  
Dynamic Power  
PAC10 (µW/MHz)3  
CLOAD (pF)  
VCCI (V)  
PDC3 (mW)2  
Single-Ended  
3.3 V LVTTL /  
35  
3.3  
468.67  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
35  
35  
35  
10  
10  
2.5  
1.8  
1.5  
3.3  
3.3  
267.48  
149.46  
103.12  
201.02  
201.02  
3.3 V PCI-X  
Differential  
LVDS  
2.5  
3.3  
7.74  
88.92  
LVPECL  
19.54  
166.52  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.  
2. PDC3 is the static power (where applicable) measured on VMV.  
3. PAC10 is the total dynamic power measured on VCCI and VMV.  
v2.0  
3-7  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-10 Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Standard Plus I/O Banks  
Static Power  
Dynamic Power  
P
CLOAD (pF)  
VCCI (V)  
PDC3 (mW)2  
AC10 (µW/MHz)3  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
35  
35  
35  
35  
10  
10  
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
452.67  
258.32  
133.59  
92.84  
184.92  
184.92  
3.3 V PCI-X  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.  
2. PDC3 is the static power (where applicable) measured on VMV.  
3. PAC10 is the total dynamic power measured on VCCI and VMV.  
3-8  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Power Consumption of Various Internal Resources  
Table 3-11 Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices  
Device Specific Dynamic Power  
(µW/MHz)  
Parameter  
PAC1  
Definition  
Clock contribution of a Global Rib  
Clock contribution of a Global Spine  
Clock contribution of a VersaTile row  
A3P1000  
14.50  
A3P250  
A3P125  
11.00  
A3P060  
9.30  
11.00  
1.58  
PAC2  
2.48  
0.81  
0.81  
PAC3  
0.81  
0.12  
PAC4  
Clock contribution of  
sequential module  
a VersaTile used as a  
PAC5  
PAC6  
PAC7  
First contribution of a VersaTile used as a sequential  
module  
0.07  
0.29  
0.29  
0.70  
Second contribution of a VersaTile used as a  
sequential module  
Contribution of a VersaTile used as a combinatorial  
module  
PAC8  
PAC9  
Average contribution of a routing net  
Contribution of an I/O input pin (standard-  
dependent)  
See Table 3-7 on page 3-6.  
PAC10  
PAC11  
PAC12  
Contribution of an I/O output pin (standard-  
dependent)  
See Table 3-7 and Table 3-10 on page 3-8.  
Average contribution of a RAM block during a read  
operation  
25.00  
30.00  
Average contribution of a RAM block during a write  
operation  
PAC13  
PAC14  
Static PLL contribution  
2.55 mW  
2.60  
Dynamic contribution for PLL  
Note: *For a different output load, drive strength, or slew rate, Actel recommends using the Actel power spreadsheet calculator or  
SmartPower tool in Libero IDE.  
v2.0  
3-9  
Automotive ProASIC3 Flash Family FPGAs  
Power Calculation Methodology  
This section describes a simplified method to estimate power consumption of an application. For more accurate and  
detailed power estimations, use the SmartPower tool in Actel Libero IDE software.  
The power calculation methodology described below uses the following variables:  
The number of PLLs as well as the number and the frequency of each output clock generated  
The number of combinatorial and sequential cells used in the design  
The internal clock frequencies  
The number and the standard of I/O pins used in the design  
The number of RAM blocks used in the design  
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-12 on page 3-12.  
Enable rates of output buffers—guidelines are provided for typical applications in Table 3-13 on page 3-12.  
Read rate and write rate to the memory—guidelines are provided for typical applications in Table 3-13 on  
page 3-12. The calculation should be repeated for each clock domain defined in the design.  
Methodology  
Total Power Consumption—P  
TOTAL  
PTOTAL = PSTAT + PDYN  
P
STAT is the total static power consumption.  
PDYN is the total dynamic power consumption.  
Total Static Power Consumption—P  
STAT  
PSTAT = PDC1 + NINPUTS * PDC2 + NOUTPUTS * PDC3  
NINPUTS is the number of I/O input buffers used in the design.  
NOUTPUTS is the number of I/O output buffers used in the design.  
Total Dynamic Power Consumption—P  
DYN  
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL  
Global Clock Contribution—P  
CLOCK  
PCLOCK = (PAC1 + NSPINE*PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK  
NSPINE is the number of global spines used in the user design—guidelines are provided in Table 3-12 on page 3-12.  
N
ROW is the number of VersaTile rows used in the design—guidelines are provided in Table 3-12 on page 3-12.  
CLK is the global clock signal frequency.  
S-CELL is the number of VersaTiles used as sequential modules in the design.  
AC1, PAC2, PAC3, and PAC4 are device-dependent.  
Sequential Cells Contribution—P  
F
N
P
S-CELL  
PS-CELL = NS-CELL * (PAC5 + α1 / 2 * PAC6) * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell  
is used, it should be accounted for as 1.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-12 on page 3-12.  
FCLK is the global clock signal frequency.  
3-10  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Combinatorial Cells Contribution—P  
C-CELL  
PC-CELL = NC-CELL* α1 / 2 * PAC7 * FCLK  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-12 on page 3-12.  
FCLK is the global clock signal frequency.  
Routing Net Contribution—P  
NET  
PNET = (NS-CELL + NC-CELL) * α1 / 2 * PAC8 * FCLK  
NS-CELL is the number VersaTiles used as sequential modules in the design.  
N
C-CELL is the number of VersaTiles used as combinatorial modules in the design.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-12 on page 3-12.  
CLK is the global clock signal frequency.  
I/O Input Buffer Contribution—P  
F
INPUTS  
PINPUTS = NINPUTS * α2 / 2 * PAC9 * FCLK  
NINPUTS is the number of I/O input buffers used in the design.  
α2 is the I/O buffer toggle rate—guidelines are provided in Table 3-12 on page 3-12.  
FCLK is the global clock signal frequency.  
I/O Output Buffer Contribution—P  
OUTPUTS  
POUTPUTS = NOUTPUTS * α2 / 2 * β1 * PAC10 * FCLK  
NOUTPUTS is the number of I/O output buffers used in the design.  
α2 is the I/O buffer toggle rate—guidelines are provided in Table 3-12 on page 3-12.  
β1 is the I/O buffer enable rate—guidelines are provided in Table 3-13 on page 3-12.  
FCLK is the global clock signal frequency.  
RAM Contribution—P  
MEMORY  
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * β2 + PAC12 * NBLOCK * FWRITE-CLOCK * β3  
NBLOCKS is the number of RAM blocks used in the design.  
F
READ-CLOCK is the memory read clock frequency.  
β2 is the RAM enable rate for read operations.  
WRITE-CLOCK is the memory write clock frequency.  
β3 is the RAM enable rate for write operations—guidelines are provided in Table 3-13 on page 3-12.  
F
PLL Contribution—P  
PLL  
PPLL = PAC13 + PAC14 * FCLKOUT  
FCLKIN is the input clock frequency.  
F
CLKOUT is the output clock frequency.1  
1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the  
PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output  
clock in the formula by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL contribution.  
v2.0  
3-11  
Automotive ProASIC3 Flash Family FPGAs  
Bit 1  
Bit 2  
= 50%  
= 25%  
Guidelines  
Toggle Rate Definition  
A toggle rate defines the frequency of a net or logic  
element relative to a clock. It is a percentage. If the  
toggle rate of a net is 100%, this means that this net  
switches at half the clock frequency. Below are some  
examples:  
Bit 7 (MSB) = 0.78125%  
Average toggle rate = (100% + 50% + 25% +  
12.5% + . . . + 0.78125%) / 8.  
Enable Rate Definition  
The average toggle rate of a shift register is 100%  
because all flip-flop outputs toggle at half of the  
clock frequency.  
Output enable rate is the average percentage of time  
during which tristate outputs are enabled. When  
nontristate output buffers are used, the enable rate  
should be 100%.  
The average toggle rate of an 8-bit counter is  
25%:  
Bit 0 (LSB) = 100%  
Table 3-12 Toggle Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
Toggle rate of VersaTile outputs  
I/O buffer toggle rate  
Guideline  
10%  
α1  
α2  
10%  
Table 3-13 Enable Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
Guideline  
100%  
β1  
β2  
β3  
I/O output buffer enable rate  
RAM enable rate for read operations  
RAM enable rate for write operations  
12.5%  
12.5%  
3-12  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
User I/O Characteristics  
Timing Model  
I/O Module  
(non-registered)  
Combinational Cell  
Y
Combinational Cell  
Y
LVPECL (applicable to  
Advanced I/O banks only)  
t
PD = 0.67 ns  
tPD = 0.58 ns  
tDP = 1.66 ns  
I/O Module  
(non-registered)  
Combinational Cell  
Y
Output Drive Strength = 12 mA  
High Slew Rate  
LVTTL  
tDP = 3.25 ns (Advanced I/O banks)  
tPD = 1.04 ns  
I/O Module  
(non-registered)  
Combinational Cell  
I/O Module  
(registered)  
Y
Output drive Strength = 8 mA  
LVTTL  
t
PY = 1.29 ns  
High Slew Rate  
tDP = 4.52 ns (Advanced I/O banks)  
LVPECL  
(applicable  
to Advanced  
I/O banks only)  
tPD = 0.60 ns  
I/O Module  
(non-registered)  
D
Q
Combinational Cell  
Y
Output Drive Strength = 4 mA  
High Slew Rate  
LVCMOS 1.5 V  
t
ICLKQ = 0.29 ns  
tDP = 4.89 ns (Advanced I/O banks)  
t
PD = 0.56 ns  
tISUD = 0.31 ns  
Input LVTTL  
Clock  
I/O Module  
(registered)  
Register Cell  
Register Cell  
Combinational Cell  
Y
tPY = 0.94 ns (Advanced I/O banks)  
LVTTL 3.3 V Output Drive  
Strength = 12 mA  
High Slew Rate  
DP = 3.25 ns  
D
Q
D
Q
D
Q
I/O Module  
t
PD = 0.56 ns  
t
(non-registered)  
(Advanced I/O banks)  
tOCLKQ = 0.70 ns  
OSUD = 0.37 ns  
tCLKQ = 0.66 ns  
tSUD = 0.51 ns  
t
CLKQ = 0.66 ns  
LVDS,  
BLVDS,  
M-LVDS  
t
tSUD = 0.51 ns  
Input LVTTL  
Clock  
Input LVTTL  
Clock  
(Applicable for  
Advanced I/O  
Banks only)  
tPY = 1.47 ns  
tPY = 0.94 ns  
t
PY = 0.94 ns  
(Advanced I/O banks)  
(Advanced I/O banks)  
Figure 3-3 Timing Model  
Operating Conditions: –1 Speed, Automotive Grade 2 Temp. Range (TJ = 115°C), Worst Case VCC = 1.425 V  
v2.0  
3-13  
Automotive ProASIC3 Flash Family FPGAs  
tPY  
tDIN  
D
Q
PAD  
DIN  
Y
CLK  
To Array  
I/O Interface  
tPY = MAX(tPY(R), tPY(F))  
tDIN = MAX(tDIN(R), tDIN(F))  
VIH  
Vtrip  
Vtrip  
VCC  
VIL  
PAD  
Y
50%  
50%  
GND  
tPY  
(R)  
tPY  
(F)  
VCC  
50%  
50%  
DIN  
GND  
tDOUT  
(R)  
tDOUT  
(F)  
Figure 3-4 Input Buffer Timing Model and Delays (example)  
3-14  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
tDOUT  
D Q  
tDP  
PAD  
DOUT  
CLK  
Std  
Load  
D
From Array  
tDP = MAX(tDP(R), tDP(F))  
tDOUT = MAX(tDOUT(R), tDOUT(F))  
I/O Interface  
tDOUT  
tDOUT  
(F)  
VCC  
(R)  
50%  
50%  
VCC  
D
0 V  
50%  
50%  
0 V  
DOUT  
PAD  
VOH  
Vtrip  
Vtrip  
VOL  
tDP  
(R)  
tDP  
(F)  
Figure 3-5 Output Buffer Model and Delays (example)  
v2.0  
3-15  
Automotive ProASIC3 Flash Family FPGAs  
t
EOUT  
D
Q
CLK  
t , t , t , t , t , t  
E
ZL ZH HZ LZ ZLS ZHS  
EOUT  
D
Q
PAD  
DOUT  
t
CLK  
D
= MAX(t  
(r), t  
(f))  
V
I/O interface  
EOUT  
EOUT  
EOUT  
V
CC  
D
E
CC  
50%  
t
50%  
t
EOUT (F)  
EOUT (R)  
V
CC  
50%  
50%  
50%  
ZH  
50%  
t
LZ  
EOUT  
PAD  
t
t
t
ZL  
V
HZ  
CCI  
90% V  
CCI  
V
V
trip  
trip  
V
10% V  
OL  
CCI  
V
CC  
D
E
V
CC  
50%  
50%  
t
t
EOUT (F)  
EOUT (R)  
V
CC  
50%  
50%  
EOUT  
PAD  
50%  
t
ZHS  
t
V
ZLS  
OH  
V
V
trip  
trip  
V
OL  
Figure 3-6 Tristate Output Buffer Timing Model and Delays (example)  
3-16  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Overview of I/O Performance  
Summary of I/O DC Input and Output Levels – Default I/O Software Settings  
Table 3-14 Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial  
Conditions—Software Default Settings  
Applicable to Advanced I/O Banks  
VIL  
Max, V  
VIH  
Min, V  
VOL  
Max, V  
0.4  
VOH  
Min, V  
2.4  
IOL  
mA  
12  
IOH  
mA  
12  
Drive  
Slew  
Rate Min, V  
I/O Standard Strength  
Max, V  
3.3 V LVTTL /  
12 mA  
High  
–0.3  
0.8  
2
3.6  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA  
12mA  
12mA  
High  
High  
High  
–0.3  
–0.3  
–0.3  
0.7  
1.7  
3.6  
3.6  
3.6  
0.7  
1.7  
12  
12  
12  
12  
12  
12  
0.35 * VCCI 0.65 * VCCI  
0.30 * VCCI 0.7 * VCCI  
0.45  
VCCI – 0.45  
0.25 * VCCI 0.75 * VCCI  
Per PCI specifications  
3.3 V PCI-X  
Per PCI-X specifications  
Note: Currents are measured at 125°C junction temperature.  
Table 3-15 Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial  
Conditions—Software Default Settings  
Applicable to Standard Plus I/O Banks  
VIL  
Max, V  
VIH  
Min, V  
VOL  
Max, V  
0.4  
VOH  
Min, V  
2.4  
IOL  
mA  
12  
IOH  
mA  
12  
Drive  
Slew  
I/O Standard Strength Rate Min, V  
Max, V  
3.3 V LVTTL /  
12 mA  
High  
–0.3  
0.8  
2
3.6  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA  
8 mA  
4 mA  
High  
High  
High  
–0.3  
–0.3  
–0.3  
0.7  
1.7  
3.6  
3.6  
3.6  
0.7  
0.45  
1.7  
12  
8
12  
8
0.35 * VCCI 0.65 * VCCI  
0.30 * VCCI 0.7 * VCCI  
VCCI – 0.45  
0.75 * VCCI  
0.25 * VCCI  
4
4
Per PCI specifications  
3.3 V PCI-X  
Per PCI-X specifications  
Note: Currents are measured at 125°C junction temperature.  
Table 3-16 Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial  
Conditions—Software Default Settings  
Applicable to Standard I/O Banks  
VIL  
Max, V  
VIH  
Min, V  
VOL  
VOH  
Min, V  
2.4  
IOL  
mA  
8
IOH  
mA  
8
Drive  
Slew  
I/O Standard Strength Rate Min, V  
Max, V Max, V  
3.3 V LVTTL /  
3.3 V LVCMOS  
8 mA  
High  
–0.3  
0.8  
2
3.6  
0.4  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
8 mA  
4 mA  
2 mA  
High  
High  
High  
–0.3  
–0.3  
–0.3  
0.7  
1.7  
3.6  
3.6  
3.6  
0.7  
1.7  
8
4
2
8
4
2
0.35 * VCCI 0.65 * VCCI  
0.45  
VCCI – 0.45  
0.75 * VCCI  
0.30 * VCCI  
0.7 * VCCI  
0.25 *  
VCCI  
Note: Currents are measured at 125°C junction temperature.  
v2.0  
3-17  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-17 Summary of Maximum and Minimum DC Input Levels Applicable to Automotive Grade 1 and Grade 2  
Automotive Grade 11  
Automotive Grade 22  
IIL  
IIH  
µA  
10  
10  
10  
10  
10  
10  
IIL  
IIH  
µA  
15  
15  
15  
15  
15  
15  
DC I/O Standards  
3.3 V LVTTL /3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
µA  
10  
10  
10  
10  
10  
10  
µA  
15  
15  
15  
15  
15  
15  
3.3 V PCI-X  
Notes:  
1. Automotive range Grade 1 (–40°C < TJ < 135°C)  
2. Automotive range Grade 2 (–40°C < TJ < 115°C)  
3-18  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Summary of I/O Timing Characteristics – Default I/O Software Settings  
Table 3-18 Summary of AC Measuring Points  
Standard  
Measuring Trip Point (Vtrip  
)
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
1.4 V  
1.2 V  
0.90 V  
0.75 V  
0.285 * VCCI (RR)  
0.615 * VCCI (FF)  
0.285 * VCCI (RR)  
0.615 * VCCI (FF)  
3.3 V PCI-X  
Table 3-19 I/O AC Parameter Definitions  
Parameter  
Parameter Definition  
tDP  
Data-to-Pad delay through the Output Buffer  
Pad-to-Data delay through the Input Buffer  
tPY  
tDOUT  
tEOUT  
tDIN  
tHZ  
Data–to–Output Buffer delay through the I/O interface  
Enable–to–Output Buffer Tristate Control delay through the I/O interface  
Input Buffer–to–Data delay through the I/O interface  
Enable-to-Pad delay through the Output Buffer—HIGH to Z  
Enable-to-Pad delay through the Output Buffer—Z to HIGH  
Enable-to-Pad delay through the Output Buffer—LOW to Z  
tZH  
tLZ  
tZL  
Enable-to-Pad delay through the Output Buffer—Z to LOW  
tZHS  
tZLS  
Enable-to-Pad delay through the Output Buffer with delayed enable—Z to HIGH  
Enable-to-Pad delay through the Output Buffer with delayed enable—Z to LOW  
v2.0  
3-19  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-20 Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case VCCI = 3.0 V  
Advanced I/O Banks  
I/O Standard  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA  
High  
35 pF  
0.53 3.25 0.04 0.94 0.38 3.31 1.51 2.96 1.88 5.37 2.71 ns  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA  
12 mA  
High  
High  
High  
High  
High  
High  
High  
35 pF  
35 pF  
35 pF  
0.53 3.28 0.04 1.19 0.38 3.34 3.16 1.77 1.80 5.39 5.22 ns  
0.53 3.25 0.04 1.12 0.38 1.89 1.63 3.41 3.75 3.06 2.82 ns  
0.53 3.75 0.04 1.32 0.38 2.18 1.91 3.63 3.87 3.35 3.11 ns  
12 mA  
Per PCI spec  
PerPCI-Xspec  
24 mA  
10 pF 252 0.53 2.12 0.04 0.78 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns  
10 pF 252 0.53 2.47 0.04 0.77 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns  
3.3 V PCI-X  
LVDS  
0.53 1.68 0.04 1.47  
0.53 1.66 0.04 1.29  
ns  
ns  
LVPECL  
24 mA  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 3-11 on page 3-49 for connectivity.  
This resistor is not required during normal operation.  
Table 3-21 Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case VCCI = 3.0 V  
Standard Plus I/O Banks  
I/O Standard  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA  
High  
35 pF  
0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.43 ns  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA  
8 mA  
High  
High  
High  
High  
High  
35 pF  
35 pF  
35 pF  
0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.11 ns  
0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.99 ns  
0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.18 ns  
4 mA  
Per PCI spec  
Per PCI-X spec  
10 pF 25 2 0.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 1.27 0.94 ns  
10 pF 25 2 0.55 2.19 0.04 0.79 0.39 1.27 0.94 2.65 3.06 1.27 0.94 ns  
3.3 V PCI-X  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 3-11 on page 3-49 for connectivity.  
This resistor is not required during normal operation.  
3-20  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-22 Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Automotive-Case Conditions: TJ = 135°C, Worst Case VCC = 1.425 V, Worst Case VCCI = 3.0 V  
Advanced I/O Banks  
I/O Standard  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA  
High  
35 pF  
0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.80 ns  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA  
12 mA  
High  
High  
High  
High  
High  
High  
High  
35pF  
35pF  
35pF  
0.55 3.39 0.04 1.23 0.39 3.45 3.27 1.83 1.86 5.58 5.39 ns  
0.55 3.36 0.04 1.16 0.39 1.95 1.68 3.52 3.88 3.16 2.92 ns  
0.55 3.88 0.04 1.37 0.39 2.25 1.98 3.75 4.00 3.46 3.21 ns  
12 mA  
Per PCI spec  
Per PCI-X spec  
24 mA  
10pF 252 0.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns  
10pF 252 0.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns  
3.3 V PCI-X  
LVDS  
0.55 1.74 0.04 1.52  
0.55 1.71 0.04 1.34  
ns  
ns  
LVPECL  
24 mA  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 3-11 on page 3-49 for connectivity.  
This resistor is not required during normal operation.  
Table 3-23 Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case VCCI = 3.0 V  
Standard Plus I/O Banks  
I/O Standard  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA  
High  
35 pF  
0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.80 ns  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA  
8 mA  
High  
High  
High  
High  
High  
35pF  
35pF  
35pF  
0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.11 ns  
0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.99 ns  
0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.18 ns  
4 mA  
Per PCI spec  
Per PCI-X spec  
10pF 25 2 0.55 2.55 0.04 0.82 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns  
10pF 25 2 0.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns  
3.3 V PCI-X  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 3-11 on page 3-49 for connectivity.  
This resistor is not required during normal operation.  
v2.0  
3-21  
Automotive ProASIC3 Flash Family FPGAs  
Detailed I/O DC Characteristics  
Table 3-24 Input Capacitance  
Symbol  
CIN  
Definition  
Input capacitance  
Input capacitance on the clock pin  
Conditions  
Min.  
Max.  
Units  
pF  
VIN = 0, f = 1.0 MHz  
VIN = 0, f = 1.0 MHz  
8
8
CINCLK  
pF  
Table 3-25 I/O Output Buffer Maximum Resistances1  
Applicable to Advanced I/O Banks  
RPULL-DOWN  
(Ω)2  
100  
100  
50  
RPULL-UP  
Standard  
Drive Strength  
(Ω)3  
300  
300  
150  
150  
75  
3.3 V LVTTL / 3.3V LVCMOS  
2 mA  
4 mA  
6 mA  
8 mA  
50  
12 mA  
16 mA  
24 mA  
2 mA  
25  
17  
50  
11  
33  
2.5 V LVCMOS  
1.8 V LVCMOS  
100  
50  
200  
100  
50  
6 mA  
12 mA  
16 mA  
24 mA  
2 mA  
25  
20  
40  
11  
22  
200  
100  
50  
225  
112  
56  
4 mA  
6 mA  
8 mA  
50  
56  
12 mA  
16 mA  
2 mA  
20  
22  
20  
22  
1.5 V LVCMOS  
200  
100  
67  
224  
112  
75  
4 mA  
6 mA  
8 mA  
33  
37  
12 mA  
Per PCI/PCI-X specification  
33  
37  
3.3 V PCI / PCI-X  
25  
75  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive  
strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the  
corresponding IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx.  
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec  
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec  
3-22  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-26 I/O Output Buffer Maximum Resistances1  
Applicable to Standard Plus I/O Banks  
RPULL-DOWN  
RPULL-UP  
(Ω)3  
300  
300  
150  
150  
75  
Standard  
Drive Strength  
(Ω)2  
100  
100  
50  
3.3 V LVTTL/ 3.3 V LVCMOS  
2 mA  
4 mA  
6 mA  
8 mA  
50  
12 mA  
25  
16 mA  
25  
75  
2.5 V LVCMOS  
1.8 V LVCMOS  
2 mA  
100  
50  
200  
100  
50  
6 mA  
12 mA  
25  
2 mA  
200  
100  
50  
225  
112  
56  
4 mA  
6 mA  
8 mA  
2 mA  
50  
56  
1.5 V LVCMOS  
200  
100  
0
224  
112  
0
4 mA  
3.3 V PCI/PCI-X  
Per PCI/PCI-X specification  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive  
strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the  
corresponding IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx.  
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec  
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec  
Table 3-27 I/O Weak Pull-Up/Pull-Down Resistances  
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values  
1
2
R(WEAK PULL-UP)  
R(WEAK PULL-DOWN)  
(Ω)  
(Ω)  
VCCI  
Min.  
10 k  
11 k  
18 k  
19 k  
Max.  
45 k  
55 k  
70 k  
90 k  
Min.  
10 k  
12 k  
17 k  
19 k  
Max.  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
Notes:  
45 k  
74 k  
110 k  
140 k  
1. R(WEAK PULL-UP-MAX) = (VOLspec) / I(WEAK PULL-UP-MIN)  
2. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)  
v2.0  
3-23  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-28 I/O Short Currents IOSH/IOSL  
Applicable to Advanced I/O Banks  
Drive Strength  
2 mA  
I
OSL (mA)*  
27  
IOSH (mA)*  
25  
3.3 V LVTTL / 3.3 V LVCMOS  
4 mA  
6 mA  
27  
25  
54  
51  
8 mA  
54  
51  
12 mA  
16 mA  
24 mA  
2 mA  
109  
127  
181  
27  
103  
132  
268  
25  
3.3 V LVCMOS  
4 mA  
27  
25  
6 mA  
54  
51  
8 mA  
54  
51  
12 mA  
16 mA  
24 mA  
2 mA  
109  
127  
181  
18  
103  
132  
268  
16  
2.5 V LVCMOS  
1.8 V LVCMOS  
6 mA  
37  
32  
12 mA  
16 mA  
24 mA  
2 mA  
74  
65  
87  
83  
124  
11  
169  
9
4 mA  
22  
17  
6 mA  
44  
35  
8 mA  
51  
45  
12 mA  
16 mA  
2 mA  
74  
91  
74  
91  
1.5 V LVCMOS  
16  
13  
4 mA  
33  
25  
6 mA  
39  
32  
8 mA  
55  
66  
12 mA  
Per PCI/PCI-X specification  
55  
66  
3.3 V PCI/PCI-X  
109  
103  
Note: *TJ = 100°C  
3-24  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-29 I/O Short Currents IOSH/IOSL  
Applicable to Standard Plus I/O Banks  
Drive Strength  
I
OSL (mA)*  
IOSH (mA)*  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
27  
27  
25  
25  
51  
51  
103  
103  
16  
32  
65  
9
4 mA  
6 mA  
54  
8 mA  
54  
12 mA  
109  
109  
18  
16 mA  
2.5 V LVCMOS  
1.8 V LVCMOS  
2 mA  
6 mA  
37  
12 mA  
74  
2 mA  
11  
4 mA  
22  
17  
35  
35  
13  
25  
103  
6 mA  
44  
8 mA  
2 mA  
44  
1.5 V LVCMOS  
16  
4 mA  
33  
3.3 V PCI/PCI-X  
Per PCI/PCI-X specification  
109  
Note: *TJ = 100°C  
The length of time an I/O can withstand IOSH/IOSL events  
depends on the junction temperature. The reliability  
data below is based on a 3.3 V, 12 mA I/O setting, which  
is the worst case for this type of analysis.  
v2.0  
3-25  
Automotive ProASIC3 Flash Family FPGAs  
For example, at 110°C, the short current condition would have to be sustained for more than three months to cause a  
reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be  
needed in extremely prolonged stress conditions.  
Table 3-30 Short Current Event Duration before Failure  
Temperature  
–40°C  
0°C  
Time before Failure  
> 20 years  
> 20 years  
> 20 years  
5 years  
25°C  
70°C  
85°C  
2 years  
100°C  
110°C  
125°C  
135°  
6 months  
3 months  
25 days  
12 days  
Table 3-31 I/O Input Rise Time, Fall Time, and Related I/O Reliability  
Input Buffer  
Input Rise/Fall Time (min.)  
No requirement  
Input Rise/Fall Time (max.)  
Reliability  
20 years (110°C)  
10 years (100°C)  
LVTTL/LVCMOS  
10 ns *  
10 ns *  
LVDS/BLVDS.M-LVDS/LVPECL  
No requirement  
Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, the rise time and  
fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the  
input signal is to the board noise. Actel recommends signal integrity evaluation/characterization of the system to ensure there is no  
excessive noise coupling into input signals.  
3-26  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Single-Ended I/O Characteristics  
3.3 V LVTTL / 3.3 V LVCMOS  
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses  
an LVTTL input buffer and push-pull output buffer.  
Table 3-32 Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
3.3 V  
LVTTL /  
3.3 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH  
IOSL  
IOSH  
IIL  
IIH  
Drive  
Strength  
Max.,  
mA1  
Max.,  
mA1  
Min., V Max., V Min., V Max., V Max., V  
Min., V mA mA  
µA2 µA2  
2 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2
2
27  
27  
25  
25  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
4 mA  
4
4
6 mA  
6
6
54  
51  
8 mA  
8
8
54  
51  
12 mA  
16 mA  
24 mA  
Notes:  
12  
16  
24  
12  
16  
24  
109  
127  
181  
103  
132  
268  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 3-33 Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
3.3 V  
LVTTL /  
3.3 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH  
IOSL  
IOSH  
IIL  
IIH  
Drive  
Strength  
Max.,  
mA1  
Max.,  
mA1  
Min., V Max., V Min., V Max., V Max., V  
Min., V mA mA  
µA2 µA2  
2 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2
4
2
4
27  
27  
25  
25  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
4 mA  
6 mA  
6
6
54  
51  
8 mA  
8
8
54  
51  
12 mA  
16 mA  
Notes:  
12  
16  
12  
16  
109  
109  
103  
103  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
v2.0  
3-27  
Automotive ProASIC3 Flash Family FPGAs  
R to VCCI for tLZ/tZL/tZLS  
R to GND for tHZ/tZH/tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
35 pF  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 3-7 AC Loading  
Table 3-34 AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
CLOAD (pF)  
0
3.3  
1.4  
35  
Note: *Measuring point = Vtrip. See Table 3-18 on page 3-19 for a complete table of trip points.  
3-28  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-35 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT  
tDP  
tDIN  
tPY tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
4 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
8.56 0.05 1.14 0.46 8.72 7.37 1.46 1.42 11.22 9.866  
7.28 0.04 0.97 0.39 7.42 6.27 1.46 1.42 9.54  
5.49 0.05 1.14 0.46 5.59 4.55 1.65 1.74 8.09  
4.67 0.04 0.97 0.39 4.75 3.87 1.65 1.74 6.88  
5.49 0.05 1.14 0.46 5.59 4.55 1.65 1.74 8.09  
4.67 0.04 0.97 0.39 4.75 3.87 1.65 1.74 6.88  
3.95 0.05 1.14 0.46 4.02 1.56 3.59 1.94 6.52  
3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55  
3.73 0.05 1.14 0.46 1.84 1.42 3.65 4.11 3.05  
3.17 0.04 0.97 0.39 1.84 1.42 3.10 3.50 3.05  
3.44 0.05 1.14 0.46 1.70 1.17 3.72 4.54 2.91  
2.92 0.04 0.97 0.39 1.70 1.17 3.16 3.86 2.91  
8.393  
7.05  
ns  
6 mA  
STD  
-1  
ns  
5.997  
7.05  
ns  
8 mA  
STD  
-1  
ns  
5.997  
2.795  
2.797  
2.651  
2.653  
2.405  
2.407  
ns  
12 mA  
16 mA  
24 mA  
Notes:  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-36 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT  
tDP  
tDIN  
tPY tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
4 mA  
STD  
-1  
0.64 11.47 0.05 1.14 0.46 11.68 9.95 1.46 1.33 14.18 12.449  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
9.75 0.04 0.97 0.39 9.94 8.46 1.46 1.33 12.06 10.59  
8.13 0.05 1.14 0.46 8.28 7.03 1.65 1.65 10.79 9.526  
ns  
6 mA  
STD  
-1  
ns  
6.92 0.04 0.97 0.39 7.05 5.98 1.65 1.65 9.17  
8.103  
ns  
8 mA  
STD  
-1  
8.13 0.05 1.14 0.46 8.28 7.03 1.65 1.65 10.79 9.526  
ns  
6.92 0.04 0.97 0.39 7.05 5.98 1.65 1.65 9.17  
6.24 0.05 1.14 0.46 6.36 5.45 1.77 1.85 8.86  
5.31 0.04 0.97 0.39 5.41 4.63 1.77 1.85 7.53  
5.82 0.05 1.14 0.46 5.93 5.10 1.80 1.90 8.43  
4.95 0.04 0.97 0.39 5.04 4.34 1.80 1.90 7.17  
5.42 0.05 1.14 0.46 5.52 5.08 1.83 2.10 8.02  
4.61 0.04 0.97 0.39 4.70 4.32 1.83 2.11 6.82  
8.103  
7.946  
6.76  
ns  
12 mA  
16 mA  
24 mA  
STD  
-1  
ns  
ns  
STD  
-1  
7.604  
6.468  
7.581  
6.449  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-29  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-37 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Drive Strength Speed Grade tDOUT  
tDP  
tDIN  
tPY tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
7.027  
5.978  
4.267  
3.63  
Units  
ns  
4 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
8.06 0.05 1.12 0.46 8.20 7.03 1.26 1.27 8.20  
6.85 0.04 .095 0.39 6.98 5.98 1.26 1.27 6.98  
5.03 0.05 1.12 0.46 5.13 4.27 1.42 1.56 5.13  
4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36  
5.03 0.05 1.12 0.46 5.13 4.27 1.42 1.56 5.13  
4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36  
3.53 0.05 1.12 0.46 1.74 1.43 3.12 3.60 1.74  
3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74  
3.53 0.05 1.12 0.46 1.74 1.43 3.12 3.60 1.74  
3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74  
ns  
6 mA  
STD  
-1  
ns  
ns  
8 mA  
STD  
-1  
4.267  
3.63  
ns  
ns  
12 mA  
16 mA  
Notes:  
STD  
-1  
1.427  
1.428  
1.427  
1.428  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-38 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Drive Strength Speed Grade tDOUT  
tDP  
tDIN  
tPY tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
STD  
-1  
0.64 10.82 0.05 1.12 0.46 11.02 9.42 1.26 1.20 11.02 9.419  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
9.21 0.04 0.95 0.39 9.38 8.01 1.26 1.20 9.38  
7.49 0.05 1.12 0.46 7.63 6.58 1.43 1.48 7.63  
6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49  
7.49 0.05 1.12 0.46 7.63 6.58 1.43 1.48 7.63  
6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49  
5.64 0.05 1.12 0.46 5.75 5.04 1.54 1.67 5.75  
4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89  
5.64 0.05 1.12 0.46 5.75 5.04 1.54 1.67 5.75  
4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89  
8.012  
6.58  
ns  
STD  
-1  
ns  
5.598  
6.58  
ns  
STD  
-1  
ns  
5.598  
5.042  
4.289  
5.042  
4.289  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-30  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-39 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT  
tDP  
tDIN  
tPY tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
9.55  
8.12  
6.82  
5.80  
6.82  
5.80  
2.70  
2.71  
2.57  
2.57  
2.33  
2.33  
Units  
ns  
4 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
8.28 0.05 1.10 0.45 8.44 7.13 1.42 1.37 10.85  
7.05 0.04 0.94 0.38 7.18 6.06 1.42 1.37 9.23  
5.31 0.05 1.10 0.45 5.41 4.40 1.60 1.68 7.83  
4.52 0.04 0.94 0.38 4.60 3.74 1.60 1.68 6.66  
5.31 0.05 1.10 0.45 5.41 4.40 1.60 1.68 7.83  
4.52 0.04 0.94 0.38 4.60 3.74 1.60 1.68 6.66  
3.82 0.05 1.10 0.45 3.89 1.51 3.47 1.88 6.31  
3.25 0.04 0.94 0.38 3.31 1.51 2.96 1.88 5.37  
3.60 0.05 1.10 0.45 1.78 1.37 3.53 3.98 2.95  
3.07 0.04 0.94 0.38 1.78 1.37 3.00 3.38 2.95  
3.33 0.05 1.10 0.45 1.64 1.13 3.60 4.39 2.81  
2.83 0.04 0.94 0.38 1.64 1.13 3.06 3.74 2.82  
ns  
6 mA  
STD  
-1  
ns  
ns  
8 mA  
STD  
-1  
ns  
ns  
12 mA  
16 mA  
24 mA  
Notes:  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-40 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive Strength Speed Grade tDOUT  
tDP  
tDIN  
tPY tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
4 mA  
STD  
-1  
0.63 11.09 0.05 1.10 0.45 11.30 9.63 1.41 1.29 13.72 12.04  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
9.44 0.04 0.94 0.38 9.61 8.19 1.41 1.29 11.67 10.25  
ns  
6 mA  
STD  
-1  
7.87 0.05 1.10 0.45 8.02 6.80 1.59 1.59 10.43  
6.69 0.04 0.94 0.38 6.82 5.78 1.59 1.60 8.88  
7.87 0.05 1.10 0.45 8.02 6.80 1.59 1.59 10.43  
6.69 0.04 0.94 0.38 6.82 5.78 1.59 1.60 8.88  
6.04 0.05 1.10 0.45 6.15 5.27 1.71 1.79 8.57  
5.14 0.04 0.94 0.38 5.23 4.48 1.71 1.79 7.29  
5.63 0.05 1.10 0.45 5.74 4.94 1.74 1.84 8.16  
4.79 0.04 0.94 0.38 4.88 4.20 1.74 1.84 6.94  
5.25 0.05 1.10 0.45 5.34 4.92 1.77 2.04 7.76  
4.46 0.04 0.94 0.38 4.55 4.18 1.77 2.04 6.60  
9.22  
7.84  
9.22  
7.84  
7.69  
6.54  
7.36  
6.26  
7.34  
6.24  
ns  
ns  
8 mA  
STD  
-1  
ns  
ns  
12 mA  
16 mA  
24 mA  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-31  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-41 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Drive Strength Speed Grade tDOUT  
tDP  
tDIN  
tPY tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
6.80  
5.98  
4.13  
3.63  
4.13  
3.63  
1.38  
1.43  
1.38  
1.43  
Units  
ns  
4 mA  
STD  
-1  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
7.79 0.05 1.08 0.45 7.94 6.80 1.22 1.23 7.94  
6.85 0.04 0.95 0.39 6.98 5.98 1.26 1.27 6.98  
4.87 0.05 1.08 0.45 4.96 4.13 1.38 1.51 4.96  
4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36  
4.87 0.05 1.08 0.45 4.96 4.13 1.38 1.51 4.96  
4.28 0.04 0.95 0.39 4.36 3.63 1.42 1.56 4.36  
3.42 0.05 1.08 0.45 1.69 1.38 3.02 3.48 1.69  
3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74  
3.42 0.05 1.08 0.45 1.69 1.38 3.02 3.48 1.69  
3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74  
ns  
6 mA  
STD  
-1  
ns  
ns  
8 mA  
STD  
-1  
ns  
ns  
12 mA  
16 mA  
Notes:  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-42 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Drive Strength Speed Grade tDOUT  
tDP  
tDIN  
tPY tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
9.11  
8.01  
6.37  
5.60  
6.37  
5.60  
4.88  
4.29  
4.88  
4.29  
Units  
ns  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
STD  
-1  
0.63 10.47 0.05 1.08 0.45 10.66 9.11 1.22 1.16 10.66  
0.55  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
9.21 0.04 0.95 0.39 9.38 8.01 1.26 1.20 9.38  
7.25 0.05 1.08 0.45 7.38 6.37 1.38 1.44 7.38  
6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49  
7.25 0.05 1.08 0.45 7.38 6.37 1.38 1.44 7.38  
6.37 0.04 0.95 0.39 6.49 5.60 1.43 1.49 6.49  
5.46 0.05 1.08 0.45 5.56 4.88 1.49 1.61 5.56  
4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89  
5.46 0.05 1.08 0.45 5.56 4.88 1.49 1.61 5.56  
4.80 0.04 0.95 0.39 4.89 4.29 1.54 1.67 4.89  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-32  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
2.5 V LVCMOS  
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 2.5 V  
applications. It uses a 5 V–tolerant input buffer and push-pull output buffer.  
Table 3-43 Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH  
IOSL  
IOSH  
IIL  
IIH  
Drive  
Strength  
Max.,  
mA1  
Max.,  
mA1  
Min., V Max., V Min., V Max., V Max., V  
Min., V mA mA  
µA2 µA2  
2 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
3.6  
3.6  
3.6  
3.6  
3.6  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2
2
18  
37  
16  
32  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
6 mA  
6
6
12 mA  
16 mA  
24 mA  
Notes:  
12  
16  
24  
12  
16  
24  
74  
65  
87  
83  
124  
169  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 3-44 Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH  
IOSL  
IOSH  
IIL  
IIH  
Drive  
Strength  
Max.,  
mA1  
Max.,  
mA1  
Min., V Max., V Min., V Max., V Max., V  
Min., V mA mA  
µA2 µA2  
2 mA  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
3.6  
3.6  
3.6  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
2
2
18  
37  
74  
16  
32  
65  
10  
10  
10  
10  
10  
10  
6 mA  
6
6
12 mA  
Notes:  
12  
12  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
35 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 3-8 AC Loading  
Table 3-45 AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
CLOAD (pF)  
0
2.5  
1.2  
35  
Note: *Measuring point = Vtrip. See Table 3-18 on page 3-19 for a complete table of trip points.  
v2.0  
3-33  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-46 2.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Streng Speed  
th  
Grade tDOUT  
tDP  
9.69  
8.24  
5.78  
4.91  
3.98  
3.39  
3.75  
3.19  
3.45  
2.94  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
8.76  
7.45  
5.63  
4.79  
4.05  
3.45  
1.85  
1.85  
1.70  
1.71  
9.69  
8.24  
5.78  
4.91  
3.84  
3.27  
1.69  
1.69  
1.35  
1.35  
1.48  
1.48  
1.68  
1.69  
1.82  
1.83  
3.76  
3.20  
3.84  
3.27  
1.25  
1.25  
1.62  
1.63  
1.86  
1.86  
3.97  
3.38  
4.47  
3.80  
11.26 12.187  
9.58  
8.13  
6.92  
6.55  
5.58  
3.06  
3.06  
2.92  
2.92  
10.367  
8.277  
7.04  
ns  
6 mA  
STD  
-1  
ns  
ns  
12 mA  
16 mA  
24 mA  
Notes:  
STD  
-1  
6.338  
5.392  
2.926  
2.929  
2.585  
2.586  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-47 2.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Streng Speed  
th  
Grade tDOUT  
tDP  
12.12  
10.31  
8.24  
7.01  
6.91  
5.88  
6.44  
5.48  
6.16  
5.24  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
12.54  
10.67  
9.07  
7.71  
7.04  
5.99  
6.56  
5.58  
6.15  
5.23  
tZH  
12.74  
10.84  
8.74  
7.43  
6.62  
5.63  
6.18  
5.26  
6.16  
5.24  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.48  
1.48  
1.68  
1.69  
1.82  
1.83  
1.86  
1.86  
1.90  
1.90  
1.19  
1.20  
1.57  
1.57  
1.80  
1.80  
1.86  
1.86  
2.10  
2.10  
15.04 15.243  
12.80 12.966  
11.57 11.237  
ns  
6 mA  
STD  
-1  
ns  
9.84  
9.54  
8.11  
9.06  
7.71  
8.65  
7.36  
9.559  
9.117  
7.756  
8.678  
7.382  
8.657  
7.364  
ns  
12 mA  
16 mA  
24 mA  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-34  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-48 2.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Streng Speed  
th  
Grade tDOUT  
tDP  
9.26  
7.87  
5.43  
4.62  
3.59  
3.05  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
8.28  
7.05  
5.19  
4.42  
3.65  
3.11  
9.26  
7.87  
5.43  
4.62  
3.51  
2.99  
1.24  
1.24  
1.43  
1.43  
1.56  
1.56  
1.12  
1.13  
1.47  
1.47  
1.69  
1.69  
10.78 11.756  
9.17  
7.69  
6.55  
6.15  
5.23  
10  
ns  
6 mA  
STD  
-1  
7.926  
6.743  
6.012  
5.114  
ns  
ns  
12 mA  
Notes:  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-49 2.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Streng Speed  
th  
Grade tDOUT  
tDP  
12.12  
10.31  
8.24  
7.01  
6.30  
5.35  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
11.89  
10.12  
8.39  
7.14  
6.41  
5.45  
tZH  
12.12  
10.31  
8.23  
7.00  
6.16  
5.24  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.25  
1.25  
1.43  
1.43  
1.56  
1.56  
1.08  
1.08  
1.42  
1.42  
1.63  
1.63  
14.39 14.622  
12.24 12.438  
ns  
6 mA  
STD  
-1  
10.89  
9.26  
8.91  
7.58  
10.73  
9.128  
8.656  
7.364  
ns  
ns  
12 mA  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-35  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-50 2.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Streng Speed  
th  
Grade tDOUT  
tDP  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
10.89  
9.27  
7.87  
6.69  
6.34  
5.39  
2.96  
2.96  
2.82  
2.82  
tZHS  
11.79  
10.03  
8.01  
6.81  
6.13  
5.22  
2.83  
2.83  
2.50  
2.50  
Units  
ns  
2 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
9.37  
7.97  
5.59  
4.75  
3.85  
3.28  
3.63  
3.08  
3.34  
2.84  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
8.47  
7.21  
5.45  
4.63  
3.92  
3.34  
1.79  
1.79  
1.65  
1.65  
9.37  
7.97  
5.59  
4.75  
3.71  
3.16  
1.64  
1.64  
1.31  
1.31  
1.43  
1.43  
1.63  
1.63  
1.77  
1.77  
3.64  
3.09  
3.72  
3.16  
1.21  
1.21  
1.57  
1.57  
1.80  
1.80  
3.84  
3.27  
4.32  
3.68  
ns  
6 mA  
STD  
-1  
ns  
ns  
12 mA  
16 mA  
24 mA  
Notes:  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-51 2.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Streng Speed  
th  
Grade tDOUT  
tDP  
11.73  
9.98  
7.97  
6.78  
6.68  
5.69  
6.24  
5.30  
5.96  
5.07  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
12.14  
10.32  
8.77  
7.46  
6.81  
5.79  
6.35  
5.40  
5.95  
5.06  
tZH  
12.33  
10.49  
8.45  
7.19  
6.40  
5.45  
5.98  
5.08  
5.96  
5.07  
tLZ  
tHZ  
tZLS  
14.55  
12.38  
11.19  
9.52  
9.23  
7.85  
8.77  
7.46  
8.37  
7.12  
tZHS  
14.75  
12.55  
10.87  
9.25  
8.82  
7.50  
8.40  
7.14  
8.38  
7.12  
Units  
ns  
2 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.43  
1.43  
1.63  
1.63  
1.77  
1.77  
1.80  
1.80  
1.84  
1.84  
1.16  
1.16  
1.51  
1.52  
1.74  
1.74  
1.80  
1.80  
2.03  
2.03  
ns  
6 mA  
STD  
-1  
ns  
ns  
12 mA  
16 mA  
24 mA  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-36  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-52 2.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Streng Speed  
th  
Grade tDOUT  
tDP  
8.95  
7.62  
5.25  
4.47  
3.47  
2.95  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
10.43  
8.87  
7.44  
6.33  
5.95  
5.06  
tZHS  
11.37  
9.68  
7.67  
6.52  
5.82  
4.95  
Units  
ns  
2 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
8.01  
6.82  
5.03  
4.27  
3.53  
3.01  
8.95  
7.62  
5.25  
4.47  
3.40  
2.89  
1.20  
1.20  
1.38  
1.38  
1.51  
1.51  
1.09  
1.09  
1.42  
1.42  
1.63  
1.63  
ns  
6 mA  
STD  
-1  
ns  
ns  
12 mA  
Notes:  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-53 2.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Streng Speed  
th  
Grade tDOUT  
tDP  
11.73  
9.98  
7.97  
6.78  
6.09  
5.18  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
11.51  
9.79  
8.12  
6.91  
6.20  
5.28  
tZH  
11.73  
9.98  
7.96  
6.77  
5.96  
5.07  
tLZ  
tHZ  
tZLS  
13.93  
11.85  
10.54  
8.96  
tZHS  
14.15  
12.03  
10.38  
8.83  
Units  
ns  
2 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.21  
1.21  
1.38  
1.39  
1.51  
1.51  
1.04  
1.04  
1.37  
1.37  
1.58  
1.58  
ns  
6 mA  
STD  
-1  
ns  
ns  
12 mA  
STD  
-1  
8.62  
8.38  
ns  
7.33  
7.12  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-37  
Automotive ProASIC3 Flash Family FPGAs  
1.8 V LVCMOS  
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V  
applications. It uses a 1.8 V input buffer and a push-pull output buffer.  
Table 3-54 Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
1.8 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH  
IOSL  
IOSH  
IIL  
IIH  
Drive  
Strength  
Max., Max.,  
Min., V  
Max., V  
Min., V  
Max., V  
Max., V  
Min., V  
mA mA mA1 mA1 µA2 µA2  
2 mA  
–0.3  
0.35 *  
VCCI  
0.65 * VCCI  
0.65 * VCCI  
0.65 * VCCI  
0.65 * VCCI  
0.65 * VCCI  
0.65 * VCCI  
3.6  
0.45  
VCCI – 0.45  
2
2
11  
22  
44  
51  
74  
74  
9
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
4 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.35 *  
VCCI  
3.6  
3.6  
3.6  
3.6  
3.6  
0.45  
0.45  
0.45  
0.45  
0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
4
4
17  
35  
45  
91  
91  
6 mA  
0.35 *  
VCCI  
6
6
8 mA  
0.35 *  
VCCI  
8
8
12  
16  
12 mA  
16 mA  
Notes:  
0.35 *  
VCCI  
VCCI 0.45 12  
VCCI – 0.45 16  
0.35 *  
VCCI  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 3-55 Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O I/O Banks  
1.8 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH  
IOSL  
IOSH  
IIL  
IIH  
Drive  
Strength  
Max., Max.,  
Min., V Max., V  
Min., V  
Max., V  
Max., V  
Min., V mA mA  
mA1  
mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
0.35 * 0.65 * VCCI  
VCCI  
3.6  
0.45  
VCCI 0.45  
VCCI 0.45  
VCCI 0.45  
VCCI 0.45  
2
4
2
4
11  
9
10  
10  
10  
10  
10  
10  
10  
10  
0.35 * 0.65 * VCCI  
VCCI  
3.6  
3.6  
3.6  
0.45  
0.45  
0.45  
22  
44  
44  
17  
35  
35  
0.35 * 0.65 * VCCI  
VCCI  
6
6
0.35 * 0.65 * VCCI  
VCCI  
8
8
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
3-38  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
R to VCCI for tLZ/tZL/tZLS  
R to GND for tHZ/tZH/tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
35 pF  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 3-9 AC Loading  
Table 3-56 AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
CLOAD (pF)  
0
1.8  
0.9  
35  
Note: *Measuring point = Vtrip. See Table 3-18 on page 3-19 for a complete table of trip points.  
v2.0  
3-39  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-57 1.8 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
13.26  
11.28  
7.73  
6.58  
4.97  
4.23  
4.39  
3.73  
3.95  
3.36  
3.95  
3.36  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
10.22  
8.69  
6.55  
5.58  
4.67  
3.98  
4.39  
3.74  
1.95  
1.95  
1.95  
1.95  
tZH  
13.26  
11.28  
7.73  
6.58  
4.97  
4.23  
4.39  
3.73  
1.68  
1.68  
1.68  
1.68  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
1.36  
1.16  
1.36  
1.16  
1.36  
1.16  
1.36  
1.16  
1.36  
1.16  
1.36  
1.16  
1.53  
1.53  
1.78  
1.78  
1.95  
1.95  
1.99  
1.99  
4.14  
3.52  
4.14  
3.52  
0.90  
0.90  
1.54  
1.54  
1.83  
1.83  
1.91  
1.91  
4.56  
3.88  
4.56  
3.88  
12.72 15.764  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10.82  
9.05  
7.70  
7.17  
6.10  
6.89  
5.86  
3.16  
3.16  
3.16  
3.16  
13.41  
10.232  
8.704  
7.472  
6.356  
6.888  
5.859  
2.915  
2.918  
2.915  
2.918  
4 mA  
STD  
-1  
6 mA  
STD  
-1  
8 mA  
STD  
-1  
12 mA  
16 mA  
Notes:  
STD  
-1  
STD  
-1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-58 1.8 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
17.36  
14.77  
11.71  
9.96  
9.00  
7.66  
8.39  
7.14  
8.15  
6.94  
8.15  
6.94  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
15.78  
13.42  
11.64  
9.90  
9.17  
7.80  
8.54  
7.27  
8.09  
6.88  
8.09  
6.88  
tZH  
17.36  
14.77  
11.71  
9.96  
8.77  
7.46  
8.16  
6.94  
8.15  
6.94  
8.15  
6.94  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.53  
1.54  
1.78  
1.78  
1.95  
1.95  
1.99  
1.99  
2.05  
2.05  
2.05  
2.05  
0.87  
0.87  
1.48  
1.48  
1.77  
1.77  
1.85  
1.85  
2.14  
2.14  
2.14  
2.14  
18.28 19.864  
15.55 16.897  
14.14 14.214  
12.03 12.091  
11.67 11.267  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STD  
-1  
STD  
-1  
9.92  
11.04  
9.40  
9.585  
10.66  
9.068  
STD  
-1  
STD  
-1  
10.59 10.654  
9.01 9.063  
10.59 10.654  
9.01 9.063  
STD  
-1  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-40  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-59 1.8 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
13.26  
11.28  
7.73  
6.58  
4.97  
4.23  
4.39  
3.73  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
12.67  
10.78  
7.25  
6.17  
4.54  
3.86  
4.54  
3.86  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
1.36  
1.16  
1.36  
1.16  
1.36  
1.16  
1.36  
1.16  
9.75  
8.30  
6.13  
5.21  
4.29  
3.65  
4.29  
3.65  
1.24  
1.24  
1.46  
1.46  
1.62  
1.62  
1.62  
1.62  
0.82  
0.83  
1.41  
1.41  
1.68  
1.68  
1.68  
1.68  
12.26  
15.17  
10.43 12.905  
ns  
STD  
-1  
8.63  
7.34  
6.79  
5.78  
6.79  
5.78  
9.749  
8.293  
7.039  
5.987  
7.039  
5.987  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-60 1.8 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
17.36  
14.77  
11.71  
9.96  
9.00  
7.66  
8.39  
7.14  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
15.09  
12.84  
10.88  
9.26  
8.47  
7.21  
8.47  
7.21  
tZH  
16.55  
14.08  
11.07  
9.41  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.24  
1.24  
1.47  
1.47  
1.62  
1.62  
1.62  
1.62  
0.79  
0.79  
1.35  
1.35  
1.62  
1.62  
1.62  
1.62  
17.59 19.052  
14.96 16.207  
13.38 13.567  
11.38 11.541  
10.97 10.685  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STD  
-1  
STD  
-1  
8.18  
6.96  
9.33  
10.97 10.685  
9.33 9.089  
9.089  
STD  
-1  
8.18  
6.96  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-41  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-61 1.8 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
12.83  
10.92  
7.48  
6.36  
4.81  
4.09  
4.25  
3.61  
3.82  
3.25  
3.82  
3.25  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
12.83  
10.92  
7.48  
6.36  
4.81  
4.09  
4.25  
3.61  
1.63  
1.63  
1.63  
1.63  
tLZ  
tHZ  
tZLS  
12.30  
10.46  
8.76  
7.45  
6.94  
5.90  
6.67  
5.67  
3.06  
3.06  
3.06  
3.06  
tZHS Units  
2 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
1.32  
1.12  
1.32  
1.12  
1.32  
1.12  
1.32  
1.12  
1.32  
1.12  
1.32  
1.12  
9.88  
8.41  
6.34  
5.39  
4.52  
3.85  
4.25  
3.61  
1.89  
1.89  
1.89  
1.89  
1.48  
1.48  
1.72  
1.72  
1.89  
1.89  
1.92  
1.93  
4.00  
3.41  
4.00  
3.41  
0.87  
0.87  
1.49  
1.49  
1.77  
1.77  
1.85  
1.85  
4.41  
3.75  
4.41  
3.75  
15.25  
12.97  
9.90  
8.42  
7.23  
6.15  
6.66  
5.67  
2.82  
2.82  
2.82  
2.82  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4 mA  
STD  
-1  
6 mA  
STD  
-1  
8 mA  
STD  
-1  
12 mA  
16 mA  
Notes:  
STD  
-1  
STD  
-1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-62 1.8 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
16.80  
14.29  
11.33  
9.64  
8.71  
7.41  
8.12  
6.90  
7.89  
6.71  
7.89  
6.71  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
15.27  
12.99  
11.26  
9.58  
8.87  
7.54  
8.27  
7.03  
7.83  
6.66  
7.83  
6.66  
tZH  
16.80  
14.29  
11.33  
9.64  
8.48  
7.22  
7.89  
6.72  
7.89  
6.71  
7.89  
6.71  
tLZ  
tHZ  
tZLS  
17.69  
15.05  
13.68  
11.64  
11.29  
9.60  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.48  
1.49  
1.73  
1.73  
1.89  
1.89  
1.93  
1.93  
1.98  
1.98  
1.98  
1.98  
0.84  
0.84  
1.43  
1.43  
1.72  
1.72  
1.79  
1.79  
2.07  
2.07  
2.07  
2.07  
19.22  
16.35  
13.75  
11.70  
10.90  
9.27  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STD  
-1  
STD  
-1  
STD  
-1  
10.69  
9.09  
10.31  
8.77  
STD  
-1  
10.25  
8.72  
10.31  
8.77  
STD  
-1  
10.25  
8.72  
10.31  
8.77  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-42  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-63 1.8 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
12.83  
10.92  
7.48  
6.36  
4.81  
4.09  
4.25  
3.61  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
12.26  
10.43  
7.01  
5.97  
4.39  
3.74  
4.39  
3.74  
tLZ  
tHZ  
0.80  
0.80  
1.36  
1.37  
1.63  
1.63  
1.63  
1.63  
tZLS  
11.86  
10.09  
8.35  
7.10  
6.57  
5.59  
6.57  
5.59  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
1.32  
1.12  
1.32  
1.12  
1.32  
1.12  
1.32  
1.12  
9.44  
8.03  
5.93  
5.04  
4.15  
3.53  
4.15  
3.53  
1.20  
1.20  
1.41  
1.42  
1.57  
1.57  
1.57  
1.57  
14.68  
12.49  
9.43  
8.02  
6.81  
5.79  
6.81  
5.79  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STD  
-1  
STD  
-1  
STD  
-1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-64 1.8 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
16.80  
14.29  
11.33  
9.64  
8.71  
7.41  
8.12  
6.90  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
14.60  
12.42  
10.53  
8.96  
8.19  
tZH  
16.01  
13.62  
10.71  
9.11  
7.92  
6.74  
7.92  
6.74  
tLZ  
tHZ  
tZLS  
17.02  
14.48  
12.95  
11.01  
10.61  
9.03  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.20  
1.20  
1.42  
1.42  
1.57  
1.57  
1.57  
1.57  
0.77  
0.77  
1.31  
1.31  
1.57  
1.57  
1.57  
1.57  
18.43  
15.68  
13.13  
11.17  
10.34  
8.79  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STD  
-1  
STD  
-1  
6.97  
8.19  
STD  
-1  
10.61  
9.03  
10.34  
8.79  
6.97  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-43  
Automotive ProASIC3 Flash Family FPGAs  
1.5 V LVCMOS (JESD8-11)  
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V  
applications. It uses a 1.5 V input buffer and a push-pull output buffer.  
Table 3-65 Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
1.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH  
IOSL  
IOSH  
IIL  
IIH  
Drive  
Max.,  
mA1  
Max.,  
mA1  
Strength Min., V Max., V Min., V Max., V Max., V  
Min., V  
mA mA  
µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
–0.3 0.30 * VCCI 0.7 * VCCI  
–0.3 0.30 * VCCI 0.7 * VCCI  
–0.3 0.30 * VCCI 0.7 * VCCI  
–0.3 0.30 * VCCI 0.7 * VCCI  
–0.3 0.30 * VCCI 0.7 * VCCI  
3.6  
3.6  
3.6  
3.6  
3.6  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
2
4
2
4
16  
33  
39  
55  
55  
13  
25  
32  
66  
66  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
6
6
8
8
0.25 * VCCI 0.75 * VCCI 12  
12  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 3-66 Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
1.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL  
IOH  
IOSL  
IOSH  
IIL  
IIH  
Drive  
Strength  
Max.,  
mA1  
Max.,  
mA1  
Min., V Max., V Min., V Max., V Max., V  
Min., V mA mA  
µA2 µA2  
2 mA  
4 mA  
Notes:  
–0.3  
–0.3  
0.30 * VCCI 0.7 * VCCI  
0.30 * VCCI 0.7 * VCCI  
3.6  
3.6  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
2
4
2
4
0
0
0
0
10  
10  
10  
10  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R to GND for tHZ/tZH/tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
35 pF  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 3-10 AC Loading  
Table 3-67 AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
CLOAD (pF)  
0
1.5  
0.75  
35  
Note: *Measuring point = Vtrip. See Table 3-18 on page 3-19 for a complete table of trip points.  
3-44  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-68 1.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
9.35  
7.95  
5.94  
5.05  
5.22  
4.44  
4.56  
3.88  
4.56  
3.88  
1.61  
1.37  
1.61  
1.37  
1.61  
1.37  
1.61  
1.37  
1.61  
1.37  
7.63  
6.49  
5.42  
4.61  
5.09  
4.33  
2.25  
2.25  
2.25  
2.25  
9.35  
7.95  
5.94  
5.05  
5.22  
4.44  
1.98  
1.98  
1.98  
1.98  
1.87  
1.87  
2.07  
2.07  
2.11  
2.11  
4.41  
3.75  
4.41  
3.75  
1.50  
1.50  
1.84  
1.85  
1.93  
1.93  
4.70  
4.00  
4.70  
4.00  
10.13 11.851  
8.62 10.081  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STD  
-1  
7.92  
6.74  
7.59  
6.45  
3.46  
3.46  
3.46  
3.46  
8.442  
7.181  
7.718  
6.566  
3.211  
3.213  
3.211  
3.213  
STD  
-1  
STD  
-1  
STD  
-1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-69 1.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
14.29  
12.16  
11.19  
9.52  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
14.29  
12.16  
10.67  
9.08  
9.94  
8.46  
9.94  
8.46  
9.94  
8.46  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
1.45  
1.23  
14.32  
12.18  
11.40  
9.70  
1.88  
1.88  
2.07  
2.07  
2.12  
2.12  
2.18  
2.19  
2.18  
2.19  
1.43  
1.43  
1.77  
1.77  
1.86  
1.86  
2.19  
2.20  
2.19  
2.20  
16.82 16.794  
14.31 14.286  
13.90 13.175  
11.82 11.207  
13.13 12.442  
11.17 10.584  
12.65 12.445  
10.76 10.586  
12.65 12.445  
10.76 10.586  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STD  
-1  
STD  
-1  
10.44  
8.88  
10.63  
9.04  
STD  
-1  
9.96  
10.15  
8.63  
8.47  
STD  
-1  
9.96  
10.15  
8.63  
8.47  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-45  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-70 1.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
8.76  
7.45  
5.41  
4.60  
tDIN  
0.05  
0.04  
0.05  
0.04  
tPY  
1.59  
1.35  
1.59  
1.35  
tEOUT  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
1.50  
1.50  
1.84  
1.85  
tZLS  
tZHS Units  
2 mA  
4 mA  
Notes:  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
7.63  
6.49  
5.42  
4.61  
9.35  
7.95  
5.94  
5.05  
1.87  
1.87  
2.07  
2.07  
10.13 11.851  
ns  
ns  
ns  
ns  
8.62  
7.92  
6.74  
10.081  
8.442  
7.181  
STD  
-1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-71 1.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN  
0.05  
0.04  
0.05  
0.04  
tPY  
1.45  
1.23  
1.45  
1.23  
tEOUT  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
1.43  
1.43  
1.77  
1.77  
tZLS  
tZHS Units  
2 mA  
4 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
13.51  
11.49  
10.38  
8.83  
14.32  
12.18  
11.40  
9.70  
14.29  
12.16  
10.67  
9.08  
1.88  
1.88  
2.07  
2.07  
16.82 16.794  
14.31 14.286  
13.90 13.175  
11.82 11.207  
ns  
ns  
ns  
ns  
STD  
-1  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-46  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-72 1.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
9.05  
7.70  
5.75  
4.89  
5.05  
4.29  
4.41  
3.75  
4.41  
3.75  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
9.80  
8.34  
7.67  
6.52  
7.34  
6.24  
3.35  
3.35  
3.35  
3.35  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
1.56  
1.32  
1.56  
1.32  
1.56  
1.32  
1.56  
1.32  
1.56  
1.32  
7.38  
6.28  
5.25  
4.46  
4.92  
4.19  
2.18  
2.18  
2.18  
2.18  
9.05  
7.70  
5.75  
4.89  
5.05  
4.29  
1.91  
1.91  
1.91  
1.91  
1.81  
1.81  
2.00  
2.00  
2.04  
2.04  
4.27  
3.63  
4.27  
3.63  
1.45  
1.45  
1.78  
1.78  
1.87  
1.87  
4.55  
3.87  
4.55  
3.87  
11.47  
9.75  
8.17  
6.95  
7.47  
6.35  
3.11  
3.11  
3.11  
3.11  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STD  
-1  
STD  
-1  
STD  
-1  
STD  
-1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-73 1.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
13.83  
11.76  
10.83  
9.21  
tDIN  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
0.05  
0.04  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
13.83  
11.76  
10.33  
8.79  
9.62  
8.18  
9.62  
8.18  
9.62  
8.18  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
1.40  
1.19  
13.86  
11.79  
11.03  
9.38  
1.82  
1.82  
2.00  
2.01  
2.05  
2.05  
2.11  
2.11  
2.11  
2.11  
1.39  
1.39  
1.71  
1.72  
1.80  
1.80  
2.12  
2.12  
2.12  
2.12  
16.28  
13.85  
13.45  
11.44  
12.70  
10.81  
12.23  
10.41  
12.23  
10.41  
16.25  
13.82  
12.75  
10.84  
12.04  
10.24  
12.04  
10.24  
12.04  
10.24  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STD  
-1  
STD  
-1  
10.10  
8.59  
10.28  
8.75  
STD  
-1  
9.64  
9.82  
8.20  
8.35  
STD  
-1  
9.64  
9.82  
8.20  
8.35  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-47  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-74 1.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
8.47  
7.21  
5.24  
4.45  
tDIN  
0.05  
0.04  
0.05  
0.04  
tPY  
1.54  
1.31  
1.54  
1.31  
tEOUT  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
1.45  
1.45  
1.78  
1.78  
tZLS  
9.80  
8.34  
7.67  
6.52  
tZHS Units  
2 mA  
4 mA  
Notes:  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
7.38  
6.28  
5.25  
4.46  
9.05  
7.70  
5.75  
4.89  
1.81  
1.81  
2.00  
2.00  
11.47  
9.75  
8.17  
6.95  
ns  
ns  
ns  
ns  
STD  
-1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-75 1.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength Grade tDOUT  
tDP  
tDIN  
0.05  
0.04  
0.05  
0.04  
tPY  
1.40  
1.19  
1.40  
1.19  
tEOUT  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
1.39  
1.39  
1.71  
1.72  
tZLS  
tZHS Units  
2 mA  
4 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
13.07  
11.12  
10.04  
8.54  
13.86  
11.79  
11.03  
9.38  
13.83  
11.76  
10.33  
8.79  
1.82  
1.82  
2.00  
2.01  
16.28  
13.85  
13.45  
11.44  
16.25  
13.82  
12.75  
10.84  
ns  
ns  
ns  
ns  
STD  
-1  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-48  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
3.3 V PCI, 3.3 V PCI-X  
The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.  
Table 3-76 Minimum and Maximum DC Input and Output Levels  
3.3 V PCI/PCI-X  
Drive Strength  
Per PCI specification  
Notes:  
VIL  
Min, V Max, V Min, V Max, V Max, V Min, V mA mA Max, mA1 Max, mA1 µA2 µA2  
Per PCI curves 10 10  
VIH  
VOL  
VOH  
IOL  
IOH  
IOSL  
IOSH  
IIL  
IIH  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
AC loadings are defined per the PCI/PCI-X specifications for the datapath; Actel loadings for enable path  
characterization are described in Figure 3-11.  
R to VCCI for tDP (F)  
R to GND for tDP (R)  
R to VCCI for tLZ/tZL/tZLS  
R to GND for tHZ/tZH/tZHS  
R = 25  
Test Point  
Datapath  
R = 1 k  
Test Point  
Enable Path  
10 pF for tZH /tZHS/tZL/tZLS  
5 pF for tHZ /tLZ  
Figure 3-11 AC Loading  
AC loadings are defined per PCI/PCI-X specifications for the datapath; Actel loading for tristate is described in Table 3-77.  
Table 3-77 AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
0.285 * VCCI for tDP(R)  
0.615 * VCCI for tDP(F)  
C
LOAD (pF)  
0
3.3  
10  
Note: *Measuring point = Vtrip. See Table 3-18 on page 3-19 for a complete table of trip points.  
v2.0  
3-49  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-78 3.3 V PCI/PCI-X  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Speed Grade  
tDOUT  
0.64  
tDP  
2.58  
2.19  
tDIN  
0.05  
0.04  
tPY  
0.95  
0.81  
tEOUT  
0.46  
tZL  
tZH  
0.94  
0.94  
tLZ  
tHZ  
3.60  
3.06  
tZLS  
2.49  
2.49  
tZHS  
2.18  
2.18  
Units  
ns  
Std.  
–1  
1.27  
1.27  
3.12  
2.65  
0.55  
0.39  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-79 3.3 V PCI/PCI-X  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Speed Grade  
tDOUT  
0.64  
tDP  
3.00  
2.55  
tDIN  
0.05  
0.04  
tPY  
0.93  
0.79  
tEOUT  
0.46  
tZL  
tZH  
0.94  
0.94  
tLZ  
tHZ  
3.60  
3.06  
tZLS  
2.49  
2.49  
tZHS  
2.18  
2.18  
Units  
ns  
Std.  
–1  
1.27  
1.27  
3.12  
2.65  
0.55  
0.39  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-80 3.3 V PCI/PCI-X  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Speed Grade  
tDOUT  
0.628  
0.53  
tDP  
2.50  
2.12  
tDIN  
0.05  
0.04  
tPY  
0.92  
0.78  
tEOUT  
0.45  
tZL  
tZH  
0.91  
0.91  
tLZ  
tHZ  
3.48  
2.96  
tZLS  
2.40  
2.41  
tZHS  
2.11  
2.11  
Units  
ns  
Std.  
–1  
1.23  
1.23  
3.02  
2.57  
0.38  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-81 3.3 V PCI/PCI-X  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Speed Grade  
tDOUT  
0.628  
0.53  
tDP  
2.90  
2.47  
tDIN  
0.05  
0.04  
tPY  
0.90  
0.77  
tEOUT  
0.45  
tZL  
tZH  
0.91  
0.91  
tLZ  
tHZ  
3.48  
2.96  
tZLS  
2.40  
2.41  
tZHS  
2.11  
2.11  
Units  
ns  
Std.  
–1  
1.23  
1.23  
3.02  
2.57  
0.38  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-50  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Differential I/O Characteristics  
Physical Implementation  
Configuration of the I/O modules as a differential pair is  
handled by Actel Designer software when the user  
instantiates a differential I/O macro in the design.  
pins are needed. It also requires external resistor  
termination.  
The full implementation of the LVDS transmitter and  
receiver is shown in an example in Figure 3-12. The  
building blocks of the LVDS transmitter-receiver are one  
transmitter macro, one receiver macro, three board  
resistors at the transmitter end, and one resistor at the  
receiver end. The values for the three driver resistors are  
different from those used in the LVPECL implementation  
because the output standard specifications are different.  
Differential I/Os can also be used in conjunction with the  
embedded Input Register (InReg), Output Register  
(OutReg), Enable Register (EnReg), and Double Data  
Rate (DDR). However, there is no support for  
bidirectional I/Os or tristates with the LVPECL standards.  
LVDS  
Along with LVDS I/O, ProASIC3 also supports Bus LVDS  
structure and Multipoint LVDS (M-LVDS) configuration  
(up to 40 nodes).  
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is  
a high-speed, differential I/O standard. It requires that  
one data bit be carried through two signal lines, so two  
Bourns Part Number: CAT16-LV4F12  
FPGA  
FPGA  
OUTBUF_LVDS  
P
P
165 Ω  
165 Ω  
Z0 = 50 Ω  
140 Ω  
Z0 = 50 Ω  
INBUF_LVDS  
+
100 Ω  
N
N
Figure 3-12 LVDS Circuit Diagram and Board-Level Implementation  
Table 3-82 Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min.  
2.375  
0.9  
Typ.  
Max.  
Units  
2.5  
1.075  
1.425  
2.625  
1.25  
1.6  
V
V
VOL  
Output LOW Voltage  
VOH  
Output HIGH Voltage  
1.25  
0
V
VI  
Input Voltage  
2.925  
450  
V
VODIFF  
VOCM  
VICM  
Differential Output Voltage  
Output Common-Mode Voltage  
Input Common-Mode Voltage  
Input Differential Voltage  
250  
350  
1.25  
1.25  
350  
mV  
V
1.125  
0.05  
100  
1.375  
2.35  
V
VIDIFF  
mV  
Notes:  
1.  
5%  
2. Differential input voltage = 350 mV  
Table 3-83 AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
1.075  
1.325  
Cross point  
Note: *Measuring point = Vtrip. See Table 3-5 on page 3-5 for a complete table of trip points.  
v2.0  
3-51  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-84 LVDS  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Speed Grade  
tDOUT  
0.64  
tDP  
2.05  
1.74  
tDIN  
0.05  
0.04  
tPY  
1.79  
1.52  
Units  
ns  
Std.  
–1  
0.55  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-85 LVDS  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Speed Grade  
tDOUT  
0.63  
tDP  
1.98  
1.68  
tDIN  
0.05  
0.04  
tPY  
1.73  
1.47  
Units  
ns  
Std.  
–1  
0.53  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
BLVDS/M-LVDS  
Bus LVDS (BLVDS) and Multipoint LVDS (M-LVDS)  
specifications extend the existing LVDS standard to high-  
performance multipoint bus applications. Multidrop and  
multipoint bus configurations may contain any  
combination of drivers, receivers, and transceivers. Actel  
LVDS drivers provide the higher drive current required by  
BLVDS and M-LVDS to accommodate the loading. The  
drivers require series terminations for better signal quality  
and to control voltage swing. Termination is also required  
at both ends of the bus since the driver can be located  
anywhere on the bus. These configurations can be  
implemented using the TRIBUF_LVDS and BIBUF_LVDS  
macros along with appropriate terminations. Multipoint  
designs using Actel LVDS macros can achieve up to  
200 MHz with a maximum of 20 loads. A sample  
application is given in Figure 3-13. The input and output  
buffer delays are available in the LVDS section in Table 3-  
84.  
Example: For a bus consisting of 20 equidistant loads, the  
following terminations provide the required differential  
voltage, in worst-case Industrial operating conditions, at  
the farthest receiver: RS = 60 Ω and RT = 70 Ω, given  
Z0 = 50 Ω (2") and Zstub = 50 Ω (~1.5").  
Receiver  
Transceiver  
Driver  
D
Receiver  
Transceiver  
EN  
EN  
EN  
EN  
EN  
BIBUF_LVDS  
R
T
R
T
+
-
+
-
+
-
+
-
+
-
RS RS  
RS RS  
RS RS  
Zstub  
RS RS  
RS RS  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Z0  
Zstub  
...  
Z0  
Z0  
Z0  
Z0  
RT  
RT  
Z0  
Z0  
Z0  
Z0  
Figure 3-13 BLVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers  
3-52  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
The full implementation of the LVDS transmitter and  
receiver is shown in an example in Figure 3-14. The  
building blocks of the LVPECL transmitter-receiver are  
one transmitter macro, one receiver macro, three board  
resistors at the transmitter end, and one resistor at the  
receiver end. The values for the three driver resistors are  
different from those used in the LVDS implementation  
because the output standard specifications are different.  
LVPECL  
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is  
another differential I/O standard. It requires that one  
data bit be carried through two signal lines. Like LVDS,  
two pins are needed. It also requires external resistor  
termination.  
Bourns Part Number: CAT16-PC4F12  
FPGA  
FPGA  
P
P
OUTBUF_LVPECL  
100 Ω  
100 Ω  
Z0 = 50 Ω  
187 W  
Z0 = 50 Ω  
INBUF_LVPECL  
+
100 Ω  
N
N
Figure 3-14 LVPECL Circuit Diagram and Board-Level Implementation  
Table 3-86 Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
3.0  
3.3  
3.6  
V
V
VOL  
Output LOW Voltage  
0.96  
1.8  
1.27  
2.11  
3.3  
1.06  
1.92  
0
1.43  
2.28  
3.6  
1.30  
2.13  
0
1.57  
2.41  
3.9  
VOH  
Output HIGH Voltage  
V
VIL, VIH  
VODIFF  
VOCM  
Input LOW, Input HIGH Voltages  
Differential Output Voltage  
Output Common-Mode Voltage  
Input Common-Mode Voltage  
Input Differential Voltage  
0
V
0.625  
1.762  
1.01  
300  
0.97  
1.98  
2.57  
0.625  
1.762  
1.01  
300  
0.97  
1.98  
2.57  
0.625  
1.762  
1.01  
300  
0.97  
1.98  
2.57  
V
V
VICM  
V
VIDIFF  
mV  
Table 3-87 AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
1.64  
1.94  
Cross point  
Note: *Measuring point = Vtrip. See Table 3-18 on page 3-19 for a complete table of trip points.  
Timing Characteristics  
Table 3-88 LVPECL  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Speed Grade  
tDOUT  
0.64  
tDP  
2.01  
1.71  
tDIN  
0.05  
0.04  
tPY  
1.57  
1.34  
Units  
Std.  
–1  
ns  
ns  
0.55  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-89 LVPECL  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Speed Grade  
tDOUT  
0.63  
tDP  
1.95  
1.66  
tDIN  
0.05  
0.04  
tPY  
1.52  
1.29  
Units  
ns  
Std.  
–1  
0.53  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-53  
Automotive ProASIC3 Flash Family FPGAs  
I/O Register Specifications  
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset  
Preset  
L
D
DOUT  
EOUT  
Data_out  
PRE  
DFN1E1P1  
F
PRE  
DFN1E1P1  
Y
E
Core  
Array  
Data  
Enable  
CLK  
D
Q
D
Q
C
G
E
E
B
H
I
A
PRE  
DFN1E1P1  
J
D
Q
K
Data Input I/O Register with:  
Active High Enable  
E
Active High Preset  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with:  
Active High Enable  
Active High Preset  
Postive-Edge Triggered  
CLKBUF  
INBUF  
INBUF  
Figure 3-15 Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset  
3-54  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-90 Parameter Definition and Measuring Nodes  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Measuring Nodes (from, to)*  
Clock-to-Q of the Output Data Register  
H, DOUT  
F, H  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
F, H  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
G, H  
G, H  
L, DOUT  
L, H  
tOHE  
tOPRE2Q  
tOREMPRE  
tORECPRE  
tOECLKQ  
tOESUD  
tOEHD  
L, H  
H, EOUT  
J, H  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
J, H  
tOESUE  
K, H  
tOEHE  
K, H  
tOEPRE2Q  
tOEREMPRE  
tOERECPRE  
tICLKQ  
I, EOUT  
I, H  
I, H  
A, E  
tISUD  
Data Setup Time for the Input Data Register  
C, A  
C, A  
B, A  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
B, A  
tIPRE2Q  
tIREMPRE  
tIRECPRE  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
D, E  
D, A  
D, A  
Note: *See Figure 3-15 on page 3-54 for more information.  
v2.0  
3-55  
Automotive ProASIC3 Flash Family FPGAs  
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear  
DOUT  
FF  
Data_out  
Y
Core  
D
Q
D
Q
Data  
Array  
CC  
EE  
DFN1E1C1  
DFN1E1C1  
GG  
EOUT  
E
E
Enable  
CLK  
CLR  
BB  
CLR  
LL  
HH  
AA  
DD  
JJ  
D
Q
CLR  
DFN1E1C1  
KK  
E
CLR  
Data Input I/O Register with  
Active High Enable  
Active High Clear  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with  
Active High Enable  
INBUF  
INBUF  
CLKBUF  
Active High Clear  
Positive-Edge Triggered  
Figure 3-16 Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear  
3-56  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-91 Parameter Definitions and Measuring Nodes  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Measuring Nodes (from, to)*  
Clock-to-Q of the Output Data Register  
HH, DOUT  
FF, HH  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
FF, HH  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
GG, HH  
GG, HH  
LL, DOUT  
LL, HH  
tOHE  
tOCLR2Q  
tOREMCLR  
tORECCLR  
tOECLKQ  
tOESUD  
tOEHD  
LL, HH  
HH, EOUT  
JJ, HH  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
JJ, HH  
tOESUE  
KK, HH  
KK, HH  
II, EOUT  
II, HH  
tOEHE  
tOECLR2Q  
tOEREMCLR  
tOERECCLR  
tICLKQ  
II, HH  
AA, EE  
CC, AA  
CC, AA  
BB, AA  
BB, AA  
DD, EE  
DD, AA  
DD, AA  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIREMCLR  
tIRECCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Note: *See Figure 3-16 on page 3-56 for more information.  
v2.0  
3-57  
Automotive ProASIC3 Flash Family FPGAs  
Input Register  
tICKMPWH tICKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tIHD  
tISUD  
50%  
50%  
1
0
Data  
tIREMPRE  
tIRECPRE  
tIWPRE  
Enable  
Preset  
50%  
tIHE  
tISUE  
50%  
50%  
50%  
tIWCLR  
tIRECCLR  
50%  
tIREMCLR  
50%  
50%  
Clear  
tIPRE2Q  
50%  
50%  
tICLKQ  
50%  
Out_1  
tICLR2Q  
Figure 3-17 Input Register Timing Diagram  
3-58  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-92 Input Data Register Propagation Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Description  
Clock-to-Q of the Input Data Register  
Parameter  
tICLKQ  
–1  
Std.  
0.34  
0.38  
0.00  
0.53  
0.00  
0.65  
0.65  
0.00  
0.32  
0.00  
0.32  
0.30  
0.30  
0.48  
0.43  
Units  
ns  
0.29  
0.32  
0.00  
0.45  
0.00  
0.55  
0.55  
0.00  
0.27  
0.00  
0.27  
0.25  
0.25  
0.41  
0.37  
tISUD  
Data Setup Time for the Input Data Register  
ns  
tIHD  
Data Hold Time for the Input Data Register  
ns  
tISUE  
Enable Setup Time for the Input Data Register  
ns  
tIHE  
Enable Hold Time for the Input Data Register  
ns  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIWPRE  
ns  
tICKMPWH  
tICKMPWL  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-93 Input Data Register Propagation Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tICLKQ  
Description  
Clock-to-Q of the Input Data Register  
–1  
Std.  
0.34  
0.37  
0.00  
0.52  
0.00  
0.64  
0.64  
0.00  
0.31  
0.00  
0.31  
0.30  
0.30  
0.48  
0.43  
Units  
ns  
0.29  
0.31  
0.00  
0.44  
0.00  
0.54  
0.54  
0.00  
0.27  
0.00  
0.27  
0.25  
0.25  
0.41  
0.37  
tISUD  
Data Setup Time for the Input Data Register  
ns  
tIHD  
Data Hold Time for the Input Data Register  
ns  
tISUE  
Enable Setup Time for the Input Data Register  
ns  
tIHE  
Enable Hold Time for the Input Data Register  
ns  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIWPRE  
ns  
tICKMPWH  
tICKMPWL  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-59  
Automotive ProASIC3 Flash Family FPGAs  
Output Register  
t
t
OCKMPWH OCKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
t
t
OSUD OHD  
50%  
50%  
1
0
Data_out  
t
OREMPRE  
Enable  
Preset  
50%  
t
t
ORECPRE  
OWPRE  
t
OHE  
50%  
50%  
50%  
t
OSUE  
t
t
OREMCLR  
t
ORECCLR  
OWCLR  
50%  
50%  
50%  
Clear  
t
OPRE2Q  
50%  
50%  
50%  
DOUT  
t
OCLR2Q  
t
OCLKQ  
Figure 3-18 Output Register Timing Diagram  
3-60  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-94 Output Data Register Propagation Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tOCLKQ  
Description  
Clock-to-Q of the Output Data Register  
–1  
Std.  
0.84  
0.45  
0.00  
0.63  
0.00  
1.15  
1.15  
0.00  
0.32  
0.00  
0.32  
0.30  
0.30  
0.48  
0.43  
Units  
ns  
0.72  
0.38  
0.00  
0.53  
0.00  
0.98  
0.98  
0.00  
0.27  
0.00  
0.27  
0.25  
0.25  
0.41  
0.37  
tOSUD  
Data Setup Time for the Output Data Register  
ns  
tOHD  
Data Hold Time for the Output Data Register  
ns  
tOSUE  
Enable Setup Time for the Output Data Register  
ns  
tOHE  
Enable Hold Time for the Output Data Register  
ns  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
Clock Minimum Pulse Width HIGH for the Output Data Register  
Clock Minimum Pulse Width LOW for the Output Data Register  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOCKMPWH  
tOCKMPWL  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-95 Output Data Register Propagation Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tOCLKQ  
Description  
Clock-to-Q of the Output Data Register  
–1  
Std.  
0.82  
0.44  
0.00  
0.61  
0.00  
1.12  
1.12  
0.00  
0.31  
0.00  
0.31  
0.30  
0.30  
0.48  
0.43  
Units  
ns  
0.70  
0.37  
0.00  
0.52  
0.00  
0.96  
0.96  
0.00  
0.27  
0.00  
0.27  
0.25  
0.25  
0.41  
0.37  
tOSUD  
Data Setup Time for the Output Data Register  
ns  
tOHD  
Data Hold Time for the Output Data Register  
ns  
tOSUE  
Enable Setup Time for the Output Data Register  
ns  
tOHE  
Enable Hold Time for the Output Data Register  
ns  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
Clock Minimum Pulse Width HIGH for the Output Data Register  
Clock Minimum Pulse Width LOW for the Output Data Register  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOCKMPWH  
tOCKMPWL  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-61  
Automotive ProASIC3 Flash Family FPGAs  
Output Enable Register  
t
t
OECKMPWH OECKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
t
t
OESUD OEHD  
50%  
50%  
0
1
D_Enable  
50%  
t
Enable  
Preset  
t
t
OEWPRE  
OEREMPRE  
t
OERECPRE  
50%  
50%  
50%  
t
OESUE OEHE  
t
t
t
OERECCLR  
OEREMCLR  
OEWCLR  
50%  
50%  
50%  
Clear  
EOUT  
t
t
OECLR2Q  
OEPRE2Q  
50%  
50%  
50%  
t
OECLKQ  
Figure 3-19 Output Enable Register Timing Diagram  
3-62  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-96 Output Enable Register Propagation Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tOECLKQ  
Description  
Clock-to-Q of the Output Enable Register  
–1  
Std.  
0.64  
0.45  
0.00  
0.62  
0.00  
0.95  
0.95  
0.00  
0.32  
0.00  
0.32  
0.30  
0.30  
0.48  
0.43  
Units  
ns  
0.54  
0.38  
0.00  
0.53  
0.00  
0.81  
0.81  
0.00  
0.27  
0.00  
0.27  
0.25  
0.25  
0.41  
0.37  
tOESUD  
Data Setup Time for the Output Enable Register  
ns  
tOEHD  
Data Hold Time for the Output Enable Register  
ns  
tOESUE  
Enable Setup Time for the Output Enable Register  
ns  
tOEHE  
Enable Hold Time for the Output Enable Register  
ns  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE  
tOERECPRE  
tOEWCLR  
tOEWPRE  
tOECKMPWH  
tOECKMPWL  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
Clock Minimum Pulse Width HIGH for the Output Enable Register  
Clock Minimum Pulse Width LOW for the Output Enable Register  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-97 Output Enable Register Propagation Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tOECLKQ  
Description  
Clock-to-Q of the Output Enable Register  
–1  
Std.  
0.62  
0.44  
0.00  
0.61  
0.00  
0.93  
0.93  
0.00  
0.31  
0.00  
0.31  
0.30  
0.30  
0.48  
0.43  
Units  
ns  
0.53  
0.37  
0.00  
0.52  
0.00  
0.79  
0.79  
0.00  
0.27  
0.00  
0.27  
0.25  
0.25  
0.41  
0.37  
tOESUD  
Data Setup Time for the Output Enable Register  
ns  
tOEHD  
Data Hold Time for the Output Enable Register  
ns  
tOESUE  
Enable Setup Time for the Output Enable Register  
ns  
tOEHE  
Enable Hold Time for the Output Enable Register  
ns  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE  
tOERECPRE  
tOEWCLR  
tOEWPRE  
tOECKMPWH  
tOECKMPWL  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
Clock Minimum Pulse Width HIGH for the Output Enable Register  
Clock Minimum Pulse Width LOW for the Output Enable Register  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-63  
Automotive ProASIC3 Flash Family FPGAs  
DDR Module Specifications  
Input DDR Module  
Input DDR  
INBUF  
A
D
Out_QF  
(to core)  
Data  
FF1  
B
E
Out_QR  
(to core)  
CLK  
CLKBUF  
FF2  
C
CLR  
INBUF  
DDR_IN  
Figure 3-20 Input DDR Timing Model  
Table 3-98 Parameter Definitions  
Parameter Name  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
Parameter Definition  
Measuring Nodes (from, to)  
Clock-to-Out Out_QR  
Clock-to-Out Out_QF  
Data Setup Time of DDR Input  
Data Hold Time of DDR Input  
Clear-to-Out Out_QR  
Clear-to-Out Out_QF  
Clear Removal  
B, D  
B, E  
A, B  
A, B  
C, D  
C, E  
C, B  
C, B  
tDDRIHD  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
Clear Recovery  
3-64  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
CLK  
tDDRISUD  
tDDRIHD  
8
Data  
CLR  
1
2
3
4
5
6
7
9
tDDRIRECCLR  
tDDRIREMCLR  
tDDRICLKQ1  
tDDRICLR2Q1  
Out_QF  
Out_QR  
6
2
4
tDDRICLKQ2  
tDDRICLR2Q2  
7
3
5
Figure 3-21 Input DDR Timing Diagram  
v2.0  
3-65  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-99 Input DDR Propagation Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Description  
Clock-to-Out Out_QR for Input DDR  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
–1  
Std.  
0.39  
0.56  
0.40  
0.00  
0.66  
0.82  
0.00  
0.32  
0.30  
0.48  
0.43  
TBD  
Units  
ns  
0.33  
0.47  
0.34  
0.00  
0.56  
0.69  
0.00  
0.27  
0.25  
0.41  
0.37  
TBD  
Clock-to-Out Out_QF for Input DDR  
ns  
Data Setup for Input DDR  
ns  
tDDRIHD  
Data Hold for Input DDR  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-100 Input DDR Propagation Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
Description  
Clock-to-Out Out_QR for Input DDR  
–1  
Std.  
0.38  
0.54  
0.40  
0.00  
0.65  
0.80  
0.00  
0.31  
0.30  
0.48  
0.43  
TBD  
Units  
ns  
0.33  
0.46  
0.34  
0.00  
0.55  
0.68  
0.00  
0.27  
0.25  
0.41  
0.37  
TBD  
Clock-to-Out Out_QF for Input DDR  
ns  
Data Setup for Input DDR  
ns  
tDDRIHD  
Data Hold for Input DDR  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-66  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Output DDR Module  
Output DDR  
A
Data_F  
XX  
(from core)  
FF1  
Out  
B
C
0
1
CLK  
X
X
X
E
CLKBUF  
X
OUTBUF  
D
Data_R  
(from core)  
FF2  
B
C
X
X
CLR  
INBUF  
DDR_OUT  
Figure 3-22 Output DDR Timing Model  
Table 3-101 Parameter Definitions  
Parameter Name  
Parameter Definition  
Measuring Nodes (from, to)  
tDDROCLKQ  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
Clock-to-Out  
B, E  
C, E  
C, B  
C, B  
A, B  
D, B  
A, B  
D, B  
Asynchronous Clear-to-Out  
Clear Removal  
Clear Recovery  
Data Setup Data_F  
Data Setup Data_R  
Data Hold Data_F  
Data Hold Data_R  
tDDROHD2  
v2.0  
3-67  
Automotive ProASIC3 Flash Family FPGAs  
CLK  
tDDROHD2  
tDDROSUD2  
3
4
9
5
Data_F  
1
2
tDDROHD1  
tDDROREMCLR  
Data_R 6  
CLR  
7
8
10  
tDDRORECCLR  
11  
tDDROREMCLR  
tDDROCLR2Q  
tDDROCLKQ  
Out  
7
2
8
3
9
4
10  
Figure 3-23 Output DDR Timing Diagram  
3-68  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-102 Output DDR Propagation Delays  
Commercial-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Description  
Clock-to-Out of DDR for Output DDR  
Parameter  
tDDROCLKQ  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
–1  
Std.  
1.00  
0.54  
0.54  
0.00  
0.00  
1.15  
0.00  
0.32  
0.30  
0.48  
0.43  
TBD  
Units  
ns  
0.85  
0.46  
0.46  
0.00  
0.00  
0.97  
0.00  
0.27  
0.25  
0.41  
0.37  
TBD  
Data_F Data Setup for Output DDR  
ns  
Data_R Data Setup for Output DDR  
ns  
Data_F Data Hold for Output DDR  
ns  
tDDROHD2  
Data_R Data Hold for Output DDR  
ns  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-103 Output DDR Propagation Delays  
Commercial-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tDDROCLKQ  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
Description  
Clock-to-Out of DDR for Output DDR  
–1  
Std.  
0.98  
0.53  
0.53  
0.00  
0.00  
1.12  
0.00  
0.31  
0.30  
0.48  
0.43  
TBD  
Units  
ns  
0.84  
0.45  
0.45  
0.00  
0.00  
0.96  
0.00  
0.27  
0.25  
0.41  
0.37  
TBD  
Data_F Data Setup for Output DDR  
ns  
Data_R Data Setup for Output DDR  
ns  
Data_F Data Hold for Output DDR  
ns  
tDDROHD2  
Data_R Data Hold for Output DDR  
ns  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-69  
Automotive ProASIC3 Flash Family FPGAs  
VersaTile Characteristics  
VersaTile Specifications as a Combinatorial Module  
The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are  
presented for a sample of the library. For more details, refer to the Fusion, IGLOO/e and ProASIC3/E Macro Library  
Guide.  
A
Y
Y
INV  
A
A
B
NOR2  
OR2  
Y
B
A
B
A
B
Y
AND2  
Y
NAND2  
A
B
C
A
B
Y
XOR3  
XOR2  
Y
A
B
C
A
MAJ3  
0
Y
A
B
C
MUX2  
Y
B
S
NAND3  
1
Figure 3-24 Sample of Combinatorial Cells  
3-70  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
tPD  
A
B
NAND2 or  
Any Combinatorial  
Logic  
Y
tPD = MAX(tPD(RR), tPD(RF)  
,
tPD(FF), tPD(FR)) where edges are  
applicable for the particular  
combinatorial cell  
VCC  
50%  
50%  
VCC  
A, B, C  
GND  
50%  
50%  
OUT  
OUT  
GND  
VCC  
tPD  
tPD  
(RR)  
(FF)  
tPD  
(FR)  
50%  
50%  
tPD  
GND  
(RF)  
Figure 3-25 Timing Model and Waveforms  
v2.0  
3-71  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-104 Combinatorial Cell Propagation Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Combinatorial Cell  
Equation  
Y = !A  
Parameter  
–1  
Std.  
0.57  
0.67  
0.67  
0.69  
0.69  
1.05  
1.00  
1.25  
0.72  
0.80  
Units  
ns  
INV  
tPD  
tPD  
tPD  
tPD  
tPD  
tPD  
tPD  
tPD  
tPD  
tPD  
0.49  
0.57  
0.57  
0.59  
0.59  
0.90  
0.85  
1.06  
0.62  
0.68  
AND2  
NAND2  
OR2  
Y = A · B  
ns  
Y = !(A · B)  
Y = A + B  
ns  
ns  
NOR2  
XOR2  
MAJ3  
XOR3  
MUX2  
AND3  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
ns  
ns  
ns  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-105 Combinatorial Cell Propagation Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Combinatorial Cell  
Equation  
Y = !A  
Parameter  
–1  
Std.  
0.56  
0.66  
0.66  
0.68  
0.68  
1.03  
0.98  
1.23  
0.71  
0.79  
Units  
ns  
INV  
tPD  
tPD  
tPD  
tPD  
tPD  
tPD  
tPD  
tPD  
tPD  
tPD  
0.48  
0.56  
0.56  
0.58  
0.58  
0.88  
0.83  
1.04  
0.60  
0.67  
AND2  
NAND2  
OR2  
Y = A · B  
ns  
Y = !(A · B)  
Y = A + B  
ns  
ns  
NOR2  
XOR2  
MAJ3  
XOR3  
MUX2  
AND3  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
ns  
ns  
ns  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-72  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
VersaTile Specifications as a Sequential Module  
The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and  
optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from  
the library. For more details, refer to the Fusion, IGLOO/e and ProASIC3/E Macro Library Guide.  
Data  
CLK  
Out  
Data  
Out  
D
Q
D
Q
En  
DFN1  
DFN1E1  
CLK  
PRE  
Data  
CLK  
Out  
Data  
Out  
Q
D
D
Q
En  
DFN1C1  
DFI1E1P1  
CLK  
CLR  
Figure 3-26 Sample of Sequential Cells  
v2.0  
3-73  
Automotive ProASIC3 Flash Family FPGAs  
tCKMPWH CKMPWL  
t
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tHD  
tSUD  
50%  
50%  
Data  
EN  
0
50%  
tRECPRE  
50%  
tWPRE  
50%  
tREMPRE  
50%  
tHE  
tSUE  
PRE  
CLR  
Out  
tREMCLR  
50%  
tRECCLR  
50%  
tWCLR  
50%  
tPRE2Q  
50%  
tCLR2Q  
50%  
50%  
tCLKQ  
Figure 3-27 Timing Model and Waveforms  
3-74  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-106 Register Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tCLKQ  
Description  
–1  
Std.  
0.79  
0.61  
0.00  
0.65  
0.00  
0.57  
0.57  
0.00  
0.32  
0.00  
0.32  
0.30  
0.30  
0.48  
0.43  
Units  
ns  
Clock-to-Q of the Core Register  
0.67  
0.52  
0.00  
0.55  
0.00  
0.49  
0.49  
0.00  
0.27  
0.00  
0.27  
0.25  
0.25  
0.41  
0.37  
tSUD  
Data Setup Time for the Core Register  
ns  
tHD  
Data Hold Time for the Core Register  
ns  
tSUE  
Enable Setup Time for the Core Register  
ns  
tHE  
Enable Hold Time for the Core Register  
ns  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
ns  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
ns  
ns  
ns  
ns  
ns  
ns  
tWPRE  
ns  
tCKMPWH  
tCKMPWL  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-107 Register Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tCLKQ  
Description  
–1  
Std.  
0.77  
0.60  
0.00  
0.64  
0.00  
0.56  
0.56  
0.00  
0.31  
0.00  
0.31  
0.30  
0.30  
0.48  
0.43  
Units  
ns  
Clock-to-Q of the Core Register  
0.66  
0.51  
0.00  
0.54  
0.00  
0.48  
0.48  
0.00  
0.27  
0.00  
0.27  
0.25  
0.25  
0.41  
0.37  
tSUD  
Data Setup Time for the Core Register  
ns  
tHD  
Data Hold Time for the Core Register  
ns  
tSUE  
Enable Setup Time for the Core Register  
ns  
tHE  
Enable Hold Time for the Core Register  
ns  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
ns  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
ns  
ns  
ns  
ns  
ns  
ns  
tWPRE  
ns  
tCKMPWH  
tCKMPWL  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-75  
Automotive ProASIC3 Flash Family FPGAs  
Global Resource Characteristics  
A3P250 Clock Tree Topology  
Clock delays are device-specific. Figure 3-28 is an example of a global tree used for clock routing. The global tree  
presented in Figure 3-28 is driven by a CCC located on the west side of the A3P250 device. It is used to drive all D-flip-  
flops in the device.  
Central  
Global Rib  
CCC  
VersaTile  
Rows  
Global Spine  
Figure 3-28 Example of Global Tree Use in an A3P250 Device for Clock Routing  
3-76  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Global Tree Timing Characteristics  
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input  
buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by  
the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section  
on page 2-13. Table 3-114 on page 3-80 to Table 3-124 on page 3-97 present minimum and maximum global clock  
delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.  
Timing Characteristics  
Table 3-108 A3P060 Global Resource  
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
0.87  
Max.2  
1.16  
Min.1  
1.02  
Max.2  
1.37  
Units  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
0.86  
1.20  
1.01  
1.42  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.35  
0.41  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly  
loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row  
(all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-109 A3P060 Global Resource  
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
0.85  
Max.2  
1.13  
Min.1  
1.00  
Max.2  
1.33  
Units  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
0.84  
1.18  
0.99  
1.38  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.34  
0.40  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly  
loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row  
(all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-77  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-110 A3P125 Global Resource  
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
0.93  
Max.2  
1.22  
Min.1  
1.09  
Max.2  
1.43  
Units  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
0.92  
1.26  
1.08  
1.49  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.35  
0.41  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a  
lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded  
row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-111 A3P125 Global Resource  
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
0.90  
Max.2  
1.19  
Min.1  
1.06  
Max.2  
1.40  
Units  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
0.90  
1.23  
1.05  
1.45  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.34  
0.40  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a  
lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded  
row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-78  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-112 A3P250 Global Resource  
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
0.96  
Max.2  
1.25  
Min.1  
1.13  
Max.2  
1.47  
Units  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
0.94  
1.28  
1.10  
1.51  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.35  
0.41  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly  
loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row  
(all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-113 A3P250 Global Resource  
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
0.94  
Max.2  
1.22  
Min.1  
1.10  
Max.2  
1.44  
Units  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
0.92  
1.25  
1.08  
1.47  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.34  
0.40  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly  
loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row  
(all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-79  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-114 A3P1000 Global Resource  
Automotive-Case Conditions: TJ = 135°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.17  
Max.2  
1.46  
Min.1  
1.37  
Max.2  
1.72  
Units  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
1.15  
1.50  
1.36  
1.76  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.35  
0.41  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a  
lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded  
row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
Table 3-115 A3P1000 Global Resource  
Automotive-Case Conditions: TJ = 115°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1  
1.14  
Max.2  
1.43  
Min.1  
1.34  
Max.2  
1.68  
Units  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
1.13  
1.46  
1.32  
1.72  
ns  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.34  
0.40  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a  
lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded  
row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-80  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Embedded SRAM and FIFO Characteristics  
SRAM  
RAM4K9  
RAM512x18  
FIFO4K18  
RADDR8  
RD17  
RD16  
ADDRA11 DOUTA8  
RW2  
RW1  
RW0  
WW2  
WW1  
WW0  
ESTOP  
FSTOP  
RD17  
RD16  
RADDR7  
DOUTA7  
DOUTA0  
ADDRA10  
ADDRA0  
DINA8  
DINA7  
RADDR0  
RD0  
RD0  
FULL  
AFULL  
EMPTY  
RW1  
RW0  
DINA0  
AEVAL11  
AEVAL10  
AEMPTY  
WIDTHA1  
WIDTHA0  
PIPEA  
PIPE  
AEVAL0  
WMODEA  
BLKA  
WENA  
AFVAL11  
AFVAL10  
REN  
RCLK  
CLKA  
AFVAL0  
ADDRB11 DOUTB8  
ADDRB10 DOUTB7  
WADDR8  
WADDR7  
REN  
RBLK  
RCLK  
ADDRB0  
DOUTB0  
WADDR0  
WD17  
WD16  
WD17  
WD16  
DINB8  
DINB7  
WD0  
DINB0  
WD0  
WW1  
WW0  
WIDTHB1  
WIDTHB0  
PIPEB  
WMODEB  
BLKB  
WENB  
CLKB  
WEN  
WBLK  
WCLK  
RPIPE  
WEN  
WCLK  
RESET  
RESET  
RESET  
Figure 3-29 RAM Models  
v2.0  
3-81  
Automotive ProASIC3 Flash Family FPGAs  
Timing Waveforms  
tCYC  
tCKH  
tCKL  
CLK  
tAS tAH  
A0  
tBKS  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DO  
tBKH  
tENS  
tENH  
tCKQ1  
Dn  
D0  
D1  
D2  
tDOH1  
Figure 3-30 RAM Read for Pass-Through Output  
tCYC  
tCKH  
tCKL  
CLK  
tAS tAH  
A0  
A1  
A2  
ADD  
tBKS  
tBKH  
BLK_B  
WEN_B  
DO  
tENH  
tENS  
tCKQ2  
Dn  
D0  
D1  
tDOH2  
Figure 3-31 RAM Read for Pipelined Output  
3-82  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
tCYC  
tCKH  
tAH  
tCKL  
CLK  
tAS  
A0  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DI  
tBKS  
tBKH  
tENS  
tENH  
tDS  
tDH  
DI1  
DI0  
Dn  
D2  
DO  
Figure 3-32 RAM Write, Output Retained (WMODE = 0)  
t
CYC  
t
t
CKH  
CKL  
CLK  
ADD  
t
t
AH  
AS  
A
A
A
2
0
1
t
BKS  
t
BKH  
BLK_B  
WEN_B  
DI  
t
ENS  
t
t
DH  
DS  
DI  
DI  
DI  
2
0
1
DO  
D
DI  
DI  
1
n
0
(pass-through)  
DO  
DI  
D
DI  
1
0
n
(pipelined)  
Figure 3-33 RAM Write, Output as Write Data (WMODE = 1)  
v2.0  
3-83  
Automotive ProASIC3 Flash Family FPGAs  
CLK1  
tAS tAH  
ADD1  
DI1  
A0  
tDS tDH  
A1  
D2  
A3  
D3  
D1  
tCCKH  
CLK2  
WEN_B1  
WEN_B2  
tAS tAH  
A0  
A0  
D0  
A4  
D4  
ADD2  
DI2  
tCKQ1  
DO2  
(pass-through)  
Dn  
Dn  
D0  
tCKQ2  
DO2  
(pipelined)  
D0  
Figure 3-34 Write Access after Write to Same Address  
3-84  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
CLK1  
tAS tAH  
A0  
tDS tDH  
A2  
D2  
A3  
D3  
ADD1  
D0  
DI1  
tWRO  
CLK2  
WEN_B1  
WEN_B2  
ADD2  
tAS tAH  
A1  
A0  
tCKQ1  
A4  
DO2  
(pass-through)  
Dn  
D0  
D1  
tCKQ2  
DO2  
Dn  
D0  
(pipelined)  
Figure 3-35 Read Access after Write to Same Address  
v2.0  
3-85  
Automotive ProASIC3 Flash Family FPGAs  
CLK1  
tAS  
tAH  
A0  
A1  
A0  
ADD1  
WEN_B1  
tCKQ1  
tCKQ1  
DO1  
(pass-through)  
Dn  
D0  
tCKQ2  
D1  
DO1  
(pipelined)  
Dn  
tCCKH  
D0  
CLK2  
tAS  
tAH  
A1  
ADD2  
A0  
D1  
A3  
D3  
D2  
DI2  
WEN_B2  
Figure 3-36 Write Access after Read to Same Address  
tCYC  
tCKH  
tCKL  
CLK  
RESET_B  
DO  
tRSTBQ  
Dm  
Dn  
Figure 3-37 RAM Reset  
3-86  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-116 RAM4K9  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
–1  
Std.  
0.36  
0.00  
0.20  
0.14  
0.33  
0.03  
0.26  
0.00  
2.55  
3.37  
1.28  
TBD  
Units  
ns  
Address Setup Time  
0.30  
0.00  
0.17  
0.12  
0.28  
0.02  
0.22  
0.00  
2.17  
2.86  
1.09  
TBD  
tAH  
Address Hold Time  
ns  
tENS  
REN_B, WEN_B Setup Time  
ns  
tENH  
REN_B, WEN_B Hold Time  
ns  
tBKS  
BLK_B Setup Time  
ns  
tBKH  
BLK_B Hold Time  
ns  
tDS  
Input Data (DI) Setup Time  
ns  
tDH  
Input Data (DI) Hold time  
ns  
tCKQ1  
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)  
Clock HIGH to New Data Valid on DO (flow-through, WMODE = 1)  
Clock HIGH to New Data Valid on DO (pipelined)  
ns  
ns  
tCKQ2  
tWRO  
ns  
Address Collision clk-to-clk Delay for reliable read access after write on same  
address  
ns  
tCCKH  
tRSTBQ  
Address Collision clk-to-clk Delay for reliable write access after write/read on  
same address  
TBD  
TBD  
ns  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
1.12  
1.12  
0.35  
1.82  
0.26  
3.93  
255  
1.32  
1.32  
0.41  
2.14  
0.30  
4.62  
217  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET_B Recovery  
ns  
RESET_B Minimum Pulse Width  
Clock Cycle Time  
ns  
ns  
FMAX  
Maximum Frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-87  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-117 RAM512X18  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
–1  
Std.  
0.35  
0.00  
0.13  
0.08  
0.26  
0.00  
3.03  
1.26  
TBD  
Units  
ns  
Address Setup Time  
0.30  
0.00  
0.11  
0.07  
0.22  
0.00  
2.58  
1.07  
TBD  
tAH  
Address Hold Time  
ns  
tENS  
REN_B, WEN_B Setup Time  
REN_B, WEN_B Hold Time  
Input data (DI) Setup Time  
Input data (DI) Hold Time  
ns  
tENH  
ns  
tDS  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tWRO  
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)  
Clock HIGH to New Data Valid on DO (pipelined)  
ns  
ns  
Address Collision clk-to-clk Delay for reliable read access after write on same  
address  
ns  
tCCKH  
tRSTBQ  
Address Collision clk-to-clk Delay for reliable write access after write/read on  
same address  
TBD  
TBD  
ns  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
1.10  
1.10  
0.34  
1.79  
0.25  
3.85  
260  
1.29  
1.29  
0.40  
2.10  
0.30  
4.53  
221  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET_B Recovery  
ns  
RESET_B Minimum Pulse Width  
Clock Cycle Time  
ns  
ns  
FMAX  
Maximum Frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-88  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-118 RAM4K9  
Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V  
Parameter Description  
–1  
Std.  
0.35  
0.00  
0.20  
0.14  
0.33  
0.03  
0.26  
0.00  
2.50  
3.30  
1.25  
TBD  
Units  
ns  
tAS  
Address Setup Time  
0.30  
0.00  
0.17  
0.12  
0.28  
0.02  
0.22  
0.00  
2.13  
2.81  
1.07  
TBD  
TBD  
tAH  
Address Hold Time  
ns  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN_B, WEN_B Setup Time  
ns  
REN_B, WEN_B Hold Time  
ns  
BLK_B Setup Time  
ns  
BLK_B Hold Time  
ns  
Input data (DI) Setup Time  
ns  
tDH  
Input data (DI) Hold Time  
ns  
tCKQ1  
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)  
Clock HIGH to New Data Valid on DO (flow-through, WMODE = 1)  
Clock HIGH to New Data Valid on DO (pipelined)  
Address Collision clk-to-clk Delay for reliable read access after write on same address  
ns  
ns  
tCKQ2  
tWRO  
tCCKH  
ns  
ns  
Address Collision clk-to-clk Delay for reliable write access after write/read on same  
address  
TBD  
ns  
tRSTBQ  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
1.10  
1.10  
0.34  
1.79  
0.25  
3.85  
260  
1.29  
1.29  
0.40  
2.10  
0.30  
4.53  
221  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET_B Recovery  
ns  
RESET_B Minimum Pulse Width  
Clock Cycle Time  
ns  
ns  
FMAX  
Maximum Frequency  
MHz  
Note: For specific junction temperature and voltage-supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-89  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-119 RAM512X18  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
–1  
Std.  
0.35  
0.00  
0.13  
0.08  
0.26  
0.00  
3.03  
1.26  
TBD  
Units  
ns  
Address Setup Time  
0.30  
0.00  
0.11  
0.07  
0.22  
0.00  
2.58  
1.07  
TBD  
tAH  
Address Hold Time  
ns  
tENS  
REN_B, WEN_B Setup Time  
REN_B, WEN_B Hold Time  
Input data (DI) Setup Time  
Input data (DI) Hold Time  
ns  
tENH  
ns  
tDS  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tWRO  
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)  
Clock HIGH to New Data Valid on DO (pipelined)  
ns  
ns  
Address Collision clk-to-clk Delay for reliable read access after write on same  
address  
ns  
tCCKH  
tRSTBQ  
Address Collision clk-to-clk Delay for reliable write access after write/read on  
same address  
TBD  
TBD  
ns  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
1.10  
1.10  
0.34  
1.79  
0.25  
3.85  
260  
1.29  
1.29  
0.40  
2.10  
0.30  
4.53  
221  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET_B Recovery  
ns  
RESET_B Minimum Pulse Width  
Clock Cycle Time  
ns  
ns  
FMAX  
Maximum Frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-90  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
FIFO  
FIFO4K18  
RW2  
RW1  
RW0  
RD17  
RD16  
WW2  
WW1  
WW0  
RD0  
ESTOP  
FSTOP  
FULL  
AFULL  
EMPTY  
AEVAL11  
AEVAL10  
AEMPTY  
AEVAL0  
AFVAL11  
AFVAL10  
AFVAL0  
REN  
RBLK  
RCLK  
WD17  
WD16  
WD0  
WEN  
WBLK  
WCLK  
RPIPE  
RESET  
Figure 3-38 FIFO Model  
v2.0  
3-91  
Automotive ProASIC3 Flash Family FPGAs  
Timing Waveforms  
RCLK/  
WCLK  
tMPWRSTB  
tRSTCK  
RESET_B  
tRSTFG  
EMPTY  
tRSTAF  
AEMPTY  
FULL  
tRSTFG  
tRSTAF  
AFULL  
WA/RA  
(Address Counter)  
MATCH (A0)  
Figure 3-39 FIFO Reset  
tCYC  
RCLK  
tRCKEF  
EMPTY  
tCKAF  
AEMPTY  
WA/RA  
(Address Counter)  
NO MATCH  
NO MATCH  
Dist = AEF_TH  
MATCH (EMPTY)  
Figure 3-40 FIFO EMPTY Flag and AEMPTY Flag Assertion  
3-92  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
tCYC  
WCLK  
FULL  
tWCKFF  
tCKAF  
AFULL  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AFF_TH  
MATCH (FULL)  
(Address Counter)  
Figure 3-41 FIFO FULL Flag and AFULL Flag Assertion  
WCLK  
MATCH  
(EMPTY)  
WA/RA  
NO MATCH  
NO MATCH  
NO MATCH  
NO MATCH  
Dist = AEF_TH + 1  
(Address Counter)  
1st Rising  
2nd Rising  
Edge  
After 1st  
Write  
Edge  
After 1st  
Write  
RCLK  
EMPTY  
t
RCKEF  
t
CKAF  
AEMPTY  
Figure 3-42 FIFO EMPTY Flag and AEMPTY Flag Deassertion  
RCLK  
WA/RA  
(Address Counter)  
Dist = AFF_TH – 1  
MATCH (FULL)  
NO MATCH  
NO MATCH  
1st Rising  
NO MATCH  
NO MATCH  
1st Rising  
Edge  
After 1st  
Read  
Edge  
After 2nd  
Read  
WCLK  
FULL  
tWCKF  
tCKAF  
AFULL  
Figure 3-43 FIFO FULL Flag and AFULL Flag Deassertion  
v2.0  
3-93  
Automotive ProASIC3 Flash Family FPGAs  
Timing Characteristics  
Table 3-120 FIFO  
Worst-Case Automotive Conditions: TJ = 135°C, VCC = 1.425 V  
Parameter  
tENS  
Description  
–1  
Std.  
1.67  
0.02  
0.32  
0.00  
0.22  
0.00  
2.86  
1.09  
2.09  
1.98  
7.53  
2.06  
7.45  
1.12  
1.12  
0.35  
1.82  
0.26  
3.93  
255  
Units  
ns  
REN_B, WEN_B Setup Time  
REN_B, WEN_B Hold Time  
BLK_B Setup Time  
1.97  
0.03  
0.28  
0.00  
0.26  
0.00  
3.37  
1.28  
2.45  
2.33  
8.85  
2.42  
8.76  
1.32  
1.32  
0.41  
2.14  
0.30  
4.62  
217  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK_B Hold Time  
ns  
tDS  
Input Data (DI) Setup Time  
Input Data (DI) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on DO (flow-through)  
Clock HIGH to New Data Valid on DO (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET_B LOW to Empty/Full Flag Valid  
RESET_B LOW to Almost Empty/Full Flag Valid  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET_B Recovery  
ns  
RESET_B Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
3-94  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
Table 3-121 FIFO  
Worst-Case Automotive Conditions: TJ = 115°C, VCC = 1.425 V  
Parameter  
tENS  
Description  
–1  
Std.  
1.64  
0.02  
0.32  
0.00  
0.22  
0.00  
2.81  
1.07  
2.05  
1.95  
7.38  
2.02  
7.30  
1.10  
1.10  
0.34  
1.79  
0.25  
3.85  
260  
Units  
ns  
REN_B, WEN_B Setup Time  
REN_B, WEN_B Hold Time  
BLK_B Setup Time  
1.93  
0.03  
0.27  
0.00  
0.26  
0.00  
3.30  
1.25  
2.41  
2.29  
8.68  
2.37  
8.59  
1.29  
1.29  
0.40  
2.10  
0.30  
4.53  
221  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK_B Hold Time  
ns  
tDS  
Input Data (DI) Setup Time  
Input Data (DI) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on DO (flow-through)  
Clock HIGH to New Data Valid on DO (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET_B LOW to Empty/Full Flag Valid  
RESET_B LOW to Almost Empty/Full Flag Valid  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET_B Recovery  
ns  
RESET_B Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-95  
Automotive ProASIC3 Flash Family FPGAs  
Embedded FlashROM Characteristics  
tSU  
tSU  
tSU  
CLK  
tHOLD  
tHOLD  
tHOLD  
Address  
A0  
A1  
tCKQ2  
D0  
tCKQ2  
tCKQ2  
D1  
D0  
Data  
Figure 3-44 Timing Diagram  
Timing Characteristics  
Table 3-122 Embedded FlashROM Access Time  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tSU  
Description  
Address Setup Time  
–1  
Std.  
0.76  
0.00  
23.20  
15  
Units  
0.65  
0.00  
19.73  
15  
ns  
ns  
tHOLD  
Address Hold Time  
tCK2Q  
Clock to Out  
ns  
FMAX  
Maximum Clock Frequency  
MHz  
Table 3-123 Embedded FlashROM Access Time  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tSU  
Description  
–1  
0.64  
0.00  
19.35  
15  
Std.  
0.75  
0.00  
22.74  
15  
Units  
ns  
Address Setup Time  
Address Hold Time  
Clock to Out  
tHOLD  
ns  
tCK2Q  
ns  
FMAX  
Maximum Clock Frequency  
MHz  
3-96  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
JTAG 1532 Characteristics  
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the  
corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on  
page 3-13 for more details.  
Timing Characteristics  
Table 3-124 JTAG 1532  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDISU  
Description  
Test Data Input Setup Time  
–2  
–1  
Std.  
Units  
ns  
tDIHD  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
ns  
tTMSSU  
ns  
tTMDHD  
tTCK2Q  
ns  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
20  
20  
20  
MHz  
ns  
ResetB Recovery Time  
ns  
ResetB Minimum Pulse  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 3-5 on page 3-5 for derating values.  
v2.0  
3-97  
Automotive ProASIC3 Flash Family FPGAs  
Package Pin Assignments  
100-Pin VQFP  
100  
1
100-Pin  
VQFP  
Note: This is the top view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v2.0  
4-1  
Automotive ProASIC3 Flash Family FPGAs  
100-Pin VQFP*  
100-Pin VQFP*  
100-Pin VQFP*  
Pin Number  
A3P060 Function  
GND  
Pin Number  
A3P060 Function  
IO62RSB1  
IO61RSB1  
VCC  
Pin Number  
A3P060 Function  
IO31RSB0  
1
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
2
GAA2/IO51RSB1  
IO52RSB1  
GBC2/IO29RSB0  
GBB2/IO27RSB0  
IO26RSB0  
3
4
GAB2/IO53RSB1  
IO95RSB1  
GND  
5
VCCIB1  
GBA2/IO25RSB0  
VMV0  
6
GAC2/IO94RSB1  
IO93RSB1  
IO60RSB1  
IO59RSB1  
IO58RSB1  
IO57RSB1  
GDC2/IO56RSB1  
GDB2/IO55RSB1  
GDA2/IO54RSB1  
TCK  
7
GNDQ  
8
IO92RSB1  
GBA1/IO24RSB0  
GBA0/IO23RSB0  
GBB1/IO22RSB0  
GBB0/IO21RSB0  
GBC1/IO20RSB0  
GBC0/IO19RSB0  
IO18RSB0  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
GFB1/IO87RSB1  
GFB0/IO86RSB1  
VCOMPLF  
GFA0/IO85RSB1  
VCCPLF  
TDI  
GFA1/IO84RSB1  
GFA2/IO83RSB1  
VCC  
TMS  
IO17RSB0  
VMV1  
IO15RSB0  
GND  
IO13RSB0  
VCCIB1  
VPUMP  
IO11RSB0  
GEC1/IO77RSB1  
GEB1/IO75RSB1  
GEB0/IO74RSB1  
GEA1/IO73RSB1  
GEA0/IO72RSB1  
VMV1  
NC  
VCCIB0  
TDO  
GND  
TRST  
VCC  
VJTAG  
IO10RSB0  
GDA1/IO49RSB0  
GDC0/IO46RSB0  
GDC1/IO45RSB0  
GCC2/IO43RSB0  
GCB2/IO42RSB0  
GCA0/IO40RSB0  
GCA1/IO39RSB0  
GCC0/IO36RSB0  
GCC1/IO35RSB0  
VCCIB0  
IO09RSB0  
IO08RSB0  
GNDQ  
GAC1/IO07RSB0  
GAC0/IO06RSB0  
GAB1/IO05RSB0  
GAB0/IO04RSB0  
GAA1/IO03RSB0  
GAA0/IO02RSB0  
IO01RSB0  
GEA2/IO71RSB1  
GEB2/IO70RSB1  
GEC2/IO69RSB1  
IO68RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO00RSB0  
IO64RSB1  
GND  
IO63RSB1  
VCC  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
4-2  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
100-Pin VQFP*  
100-Pin VQFP*  
100-Pin VQFP*  
Pin Number  
A3P125 Function  
GND  
Pin Number  
A3P125 Function  
IO94RSB1  
IO93RSB1  
VCC  
Pin Number  
A3P125 Function  
IO47RSB0  
1
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
2
GAA2/IO67RSB1  
IO68RSB1  
GBC2/IO45RSB0  
GBB2/IO43RSB0  
IO42RSB0  
3
4
GAB2/IO69RSB1  
IO132RSB1  
GND  
5
VCCIB1  
GBA2/IO41RSB0  
VMV0  
6
GAC2/IO131RSB1  
IO130RSB1  
IO87RSB1  
IO84RSB1  
IO81RSB1  
IO75RSB1  
GDC2/IO72RSB1  
GDB2/IO71RSB1  
GDA2/IO70RSB1  
TCK  
7
GNDQ  
8
IO129RSB1  
GBA1/IO40RSB0  
GBA0/IO39RSB0  
GBB1/IO38RSB0  
GBB0/IO37RSB0  
GBC1/IO36RSB0  
GBC0/IO35RSB0  
IO32RSB0  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
GFB1/IO124RSB1  
GFB0/IO123RSB1  
VCOMPLF  
GFA0/IO122RSB1  
VCCPLF  
TDI  
GFA1/IO121RSB1  
GFA2/IO120RSB1  
VCC  
TMS  
IO28RSB0  
VMV1  
IO25RSB0  
GND  
IO22RSB0  
VCCIB1  
VPUMP  
IO19RSB0  
GEC0/IO111RSB1  
GEB1/IO110RSB1  
GEB0/IO109RSB1  
GEA1/IO108RSB1  
GEA0/IO107RSB1  
VMV1  
NC  
VCCIB0  
TDO  
GND  
TRST  
VCC  
VJTAG  
IO15RSB0  
GDA1/IO65RSB0  
GDC0/IO62RSB0  
GDC1/IO61RSB0  
GCC2/IO59RSB0  
GCB2/IO58RSB0  
GCA0/IO56RSB0  
GCA1/IO55RSB0  
GCC0/IO52RSB0  
GCC1/IO51RSB0  
VCCIB0  
IO13RSB0  
IO11RSB0  
GNDQ  
IO09RSB0  
GEA2/IO106RSB1  
GEB2/IO105RSB1  
GEC2/IO104RSB1  
IO102RSB1  
IO07RSB0  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
IO100RSB1  
IO99RSB1  
IO97RSB1  
IO96RSB1  
GND  
IO95RSB1  
VCC  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
v2.0  
4-3  
Automotive ProASIC3 Flash Family FPGAs  
100-Pin VQFP*  
100-Pin VQFP*  
100-Pin VQFP*  
Pin Number  
A3P250 Function  
GND  
Pin Number  
A3P250 Function  
IO85RSB2  
IO84RSB2  
VCC  
Pin Number  
A3P250 Function  
IO43NDB1  
1
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
2
GAA2/IO118UDB3  
IO118VDB3  
GBC2/IO43PDB1  
GBB2/IO42PSB1  
IO41NDB1  
3
4
GAB2/IO117UDB3  
IO117VDB3  
GND  
5
VCCIB2  
GBA2/IO41PDB1  
VMV1  
6
GAC2/IO116UDB3  
IO116VDB3  
IO77RSB2  
IO74RSB2  
IO71RSB2  
GDC2/IO63RSB2  
GDB2/IO62RSB2  
GDA2/IO61RSB2  
GNDQ  
7
GNDQ  
8
IO112PSB3  
GBA1/IO40RSB0  
GBA0/IO39RSB0  
GBB1/IO38RSB0  
GBB0/IO37RSB0  
GBC1/IO36RSB0  
GBC0/IO35RSB0  
IO29RSB0  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
GFB1/IO109PDB3  
GFB0/IO109NDB3  
VCOMPLF  
GFA0/IO108NPB3  
VCCPLF  
TCK  
TDI  
GFA1/IO108PPB3  
GFA2/IO107PSB3  
VCC  
TMS  
IO27RSB0  
VMV2  
IO25RSB0  
GND  
IO23RSB0  
VCCIB3  
VPUMP  
IO21RSB0  
GFC2/IO105PSB3  
GEC1/IO100PDB3  
GEC0/IO100NDB3  
GEA1/IO98PDB3  
GEA0/IO98NDB3  
VMV3  
NC  
VCCIB0  
TDO  
GND  
TRST  
VCC  
VJTAG  
IO15RSB0  
GDA1/IO60USB1  
GDC0/IO58VDB1  
GDC1/IO58UDB1  
IO52NDB1  
GCB2/IO52PDB1  
GCA1/IO50PDB1  
GCA0/IO50NDB1  
GCC0/IO48NDB1  
GCC1/IO48PDB1  
VCCIB1  
IO13RSB0  
IO11RSB0  
GNDQ  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GNDQ  
GEA2/IO97RSB2  
GEB2/IO96RSB2  
GEC2/IO95RSB2  
IO93RSB2  
IO92RSB2  
IO91RSB2  
IO90RSB2  
VMV0  
IO88RSB2  
GND  
IO86RSB2  
VCC  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
4-4  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
144-Pin FBGA  
A1 Ball Pad Corner  
2
12 11 10  
9
8
7
6
5
4
3
1
A
B
C
D
E
F
G
H
J
K
L
M
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v2.0  
4-5  
Automotive ProASIC3 Flash Family FPGAs  
144-Pin FBGA*  
144-Pin FBGA*  
144-Pin FBGA*  
Pin Number  
A1  
A3P060 Function  
GNDQ  
Pin Number  
A3P060 Function  
IO91RSB1  
Pin Number  
A3P060 Function  
GFA1/IO84RSB1  
GND  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
A2  
VMV0  
IO92RSB1  
A3  
GAB0/IO04RSB0  
GAB1/IO05RSB0  
IO08RSB0  
IO93RSB1  
VCCPLF  
A4  
GAA2/IO51RSB1  
GAC0/IO06RSB0  
GAC1/IO07RSB0  
GBC0/IO19RSB0  
GBC1/IO20RSB0  
GBB2/IO27RSB0  
IO18RSB0  
GFA0/IO85RSB1  
GND  
A5  
A6  
GND  
GND  
A7  
IO11RSB0  
GND  
A8  
VCC  
GDC1/IO45RSB0  
IO32RSB0  
A9  
IO16RSB0  
A10  
A11  
A12  
B1  
GBA0/IO23RSB0  
GBA1/IO24RSB0  
GNDQ  
GCC2/IO43RSB0  
IO31RSB0  
IO28RSB0  
GCB1/IO37RSB0  
VCC  
GCB2/IO42RSB0  
VCC  
GAB2/IO53RSB1  
GND  
B2  
E2  
GFC0/IO88RSB1  
GFC1/IO89RSB1  
VCCIB1  
GFB2/IO82RSB1  
GFC2/IO81RSB1  
GEC1/IO77RSB1  
VCC  
B3  
GAA0/IO02RSB0  
GAA1/IO03RSB0  
IO00RSB0  
E3  
B4  
E4  
B5  
E5  
IO52RSB1  
B6  
IO10RSB0  
E6  
VCCIB0  
IO34RSB0  
B7  
IO12RSB0  
E7  
VCCIB0  
IO44RSB0  
B8  
IO14RSB0  
E8  
GCC1/IO35RSB0  
VCCIB0  
GDB2/IO55RSB1  
GDC0/IO46RSB0  
VCCIB0  
B9  
GBB0/IO21RSB0  
GBB1/IO22RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO40RSB0  
IO30RSB0  
IO33RSB0  
VMV0  
VCC  
IO95RSB1  
GFB0/IO86RSB1  
VCOMPLF  
GEB1/IO75RSB1  
IO78RSB1  
C2  
GFA2/IO83RSB1  
GAC2/IO94RSB1  
VCC  
F2  
J2  
C3  
F3  
GFB1/IO87RSB1  
IO90RSB1  
J3  
VCCIB1  
C4  
F4  
J4  
GEC0/IO76RSB1  
IO79RSB1  
C5  
IO01RSB0  
F5  
GND  
J5  
C6  
IO09RSB0  
F6  
GND  
J6  
IO80RSB1  
C7  
IO13RSB0  
F7  
GND  
J7  
VCC  
C8  
IO15RSB0  
F8  
GCC0/IO36RSB0  
GCB0/IO38RSB0  
GND  
J8  
TCK  
C9  
IO17RSB0  
F9  
J9  
GDA2/IO54RSB1  
TDO  
C10  
C11  
C12  
GBA2/IO25RSB0  
IO26RSB0  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO39RSB0  
GCA2/IO41RSB0  
GDA1/IO49RSB0  
GDB1/IO47RSB0  
GBC2/IO29RSB0  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
4-6  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
144-Pin FBGA*  
144-Pin FBGA*  
Pin Number  
144-Pin FBGA*  
A3P060 Function  
GEB0/IO74RSB1  
GEA1/IO73RSB1  
GEA0/IO72RSB1  
GEA2/IO71RSB1  
IO65RSB1  
Pin Number  
A3P060 Function  
GND  
Pin Number  
M1  
A3P060 Function  
GNDQ  
K1  
K2  
L1  
L2  
VMV1  
M2  
GEC2/IO69RSB1  
IO68RSB1  
IO66RSB1  
IO63RSB1  
IO61RSB1  
IO60RSB1  
NC  
K3  
L3  
GEB2/IO70RSB1  
IO67RSB1  
M3  
K4  
L4  
M4  
K5  
L5  
VCCIB1  
M5  
K6  
IO64RSB1  
L6  
IO62RSB1  
IO59RSB1  
IO58RSB1  
TMS  
M6  
K7  
GND  
L7  
M7  
K8  
IO57RSB1  
L8  
M8  
K9  
GDC2/IO56RSB1  
GND  
L9  
M9  
TDI  
K10  
K11  
K12  
L10  
L11  
L12  
VJTAG  
M10  
M11  
M12  
VCCIB1  
GDA0/IO50RSB0  
GDB0/IO48RSB0  
VMV1  
VPUMP  
TRST  
GNDQ  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
v2.0  
4-7  
Automotive ProASIC3 Flash Family FPGAs  
144-Pin FBGA*  
144-Pin FBGA*  
144-Pin FBGA*  
Pin Number  
A1  
A3P125 Function  
GNDQ  
Pin Number  
A3P125 Function  
IO128RSB1  
Pin Number  
A3P125 Function  
GFA1/IO121RSB1  
GND  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
A2  
VMV0  
IO129RSB1  
A3  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO11RSB0  
IO130RSB1  
VCCPLF  
A4  
GAA2/IO67RSB1  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO35RSB0  
GBC1/IO36RSB0  
GBB2/IO43RSB0  
IO28RSB0  
GFA0/IO122RSB1  
GND  
A5  
A6  
GND  
GND  
A7  
IO18RSB0  
GND  
A8  
VCC  
GDC1/IO61RSB0  
IO48RSB0  
A9  
IO25RSB0  
A10  
A11  
A12  
B1  
GBA0/IO39RSB0  
GBA1/IO40RSB0  
GNDQ  
GCC2/IO59RSB0  
IO47RSB0  
IO44RSB0  
GCB1/IO53RSB0  
VCC  
GCB2/IO58RSB0  
VCC  
GAB2/IO69RSB1  
GND  
B2  
E2  
GFC0/IO125RSB1  
GFC1/IO126RSB1  
VCCIB1  
GFB2/IO119RSB1  
GFC2/IO118RSB1  
GEC1/IO112RSB1  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO08RSB0  
E3  
B4  
E4  
B5  
E5  
IO68RSB1  
B6  
IO14RSB0  
E6  
VCCIB0  
IO50RSB0  
B7  
IO19RSB0  
E7  
VCCIB0  
IO60RSB0  
B8  
IO22RSB0  
E8  
GCC1/IO51RSB0  
VCCIB0  
GDB2/IO71RSB1  
GDC0/IO62RSB0  
VCCIB0  
B9  
GBB0/IO37RSB0  
GBB1/IO38RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO56RSB0  
IO46RSB0  
IO49RSB0  
VMV0  
VCC  
IO132RSB1  
GFA2/IO120RSB1  
GAC2/IO131RSB1  
VCC  
GFB0/IO123RSB1  
VCOMPLF  
GEB1/IO110RSB1  
IO115RSB1  
VCCIB1  
C2  
F2  
J2  
C3  
F3  
GFB1/IO124RSB1  
IO127RSB1  
GND  
J3  
C4  
F4  
J4  
GEC0/IO111RSB1  
IO116RSB1  
IO117RSB1  
VCC  
C5  
IO10RSB0  
F5  
J5  
C6  
IO12RSB0  
F6  
GND  
J6  
C7  
IO21RSB0  
F7  
GND  
J7  
C8  
IO24RSB0  
F8  
GCC0/IO52RSB0  
GCB0/IO54RSB0  
GND  
J8  
TCK  
C9  
IO27RSB0  
F9  
J9  
GDA2/IO70RSB1  
TDO  
C10  
C11  
C12  
GBA2/IO41RSB0  
IO42RSB0  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO55RSB0  
GCA2/IO57RSB0  
GDA1/IO65RSB0  
GDB1/IO63RSB0  
GBC2/IO45RSB0  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
4-8  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
144-Pin FBGA*  
144-Pin FBGA*  
144-Pin FBGA*  
Pin Number  
A3P125 Function  
GEB0/IO109RSB1  
GEA1/IO108RSB1  
GEA0/IO107RSB1  
GEA2/IO106RSB1  
IO100RSB1  
Pin Number  
A3P125 Function  
GND  
Pin Number  
M1  
A3P125 Function  
GNDQ  
K1  
K2  
L1  
L2  
VMV1  
M2  
GEC2/IO104RSB1  
IO103RSB1  
IO101RSB1  
IO97RSB1  
IO94RSB1  
IO86RSB1  
IO75RSB1  
TDI  
K3  
L3  
GEB2/IO105RSB1  
IO102RSB1  
M3  
K4  
L4  
M4  
K5  
L5  
VCCIB1  
M5  
K6  
IO98RSB1  
L6  
IO95RSB1  
IO85RSB1  
IO74RSB1  
TMS  
M6  
K7  
GND  
L7  
M7  
K8  
IO73RSB1  
L8  
M8  
K9  
GDC2/IO72RSB1  
GND  
L9  
M9  
K10  
K11  
K12  
L10  
L11  
L12  
VJTAG  
M10  
M11  
M12  
VCCIB1  
GDA0/IO66RSB0  
GDB0/IO64RSB0  
VMV1  
VPUMP  
TRST  
GNDQ  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
v2.0  
4-9  
Automotive ProASIC3 Flash Family FPGAs  
144-Pin FBGA*  
144-Pin FBGA*  
144-Pin FBGA*  
Pin Number  
A1  
A3P250 Function  
GNDQ  
Pin Number  
A3P250 Function  
IO112NDB3  
Pin Number  
A3P250 Function  
GFA1/IO108PPB3  
GND  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
A2  
VMV0  
IO112PDB3  
A3  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO16RSB0  
IO116VDB3  
VCCPLF  
A4  
GAA2/IO118UPB3  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO35RSB0  
GBC1/IO36RSB0  
GBB2/IO42PDB1  
IO42NDB1  
GFA0/IO108NPB3  
GND  
A5  
A6  
GND  
GND  
A7  
IO29RSB0  
GND  
A8  
VCC  
GDC1/IO58UPB1  
IO53NDB1  
GCC2/IO53PDB1  
IO52NDB1  
GCB2/IO52PDB1  
VCC  
A9  
IO33RSB0  
A10  
A11  
A12  
B1  
GBA0/IO39RSB0  
GBA1/IO40RSB0  
GNDQ  
IO43NPB1  
GCB1/IO49PPB1  
VCC  
GAB2/IO117UDB3  
GND  
B2  
E2  
GFC0/IO110NDB3  
GFC1/IO110PDB3  
VCCIB3  
GFB2/IO106PDB3  
GFC2/IO105PSB3  
GEC1/IO100PDB3  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO14RSB0  
E3  
B4  
E4  
B5  
E5  
IO118VPB3  
B6  
IO19RSB0  
E6  
VCCIB0  
IO79RSB2  
B7  
IO22RSB0  
E7  
V
CCIB0  
IO65RSB2  
B8  
IO30RSB0  
E8  
GCC1/IO48PDB1  
VCCIB1  
GDB2/IO62RSB2  
GDC0/IO58VPB1  
VCCIB1  
B9  
GBB0/IO37RSB0  
GBB1/IO38RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO50NDB1  
IO51NDB1  
IO54PSB1  
VMV1  
VCC  
IO117VDB3  
GFA2/IO107PPB3  
GAC2/IO116UDB3  
VCC  
GFB0/IO109NPB3  
VCOMPLF  
GEB1/IO99PDB3  
IO106NDB3  
VCCIB3  
C2  
F2  
J2  
C3  
F3  
GFB1/IO109PPB3  
IO107NPB3  
GND  
J3  
C4  
F4  
J4  
GEC0/IO100NDB3  
IO88RSB2  
C5  
IO12RSB0  
F5  
J5  
C6  
IO17RSB0  
F6  
GND  
J6  
IO81RSB2  
C7  
IO24RSB0  
F7  
GND  
J7  
VCC  
C8  
IO31RSB0  
F8  
GCC0/IO48NDB1  
GCB0/IO49NPB1  
GND  
J8  
TCK  
C9  
IO34RSB0  
F9  
J9  
GDA2/IO61RSB2  
TDO  
C10  
C11  
C12  
GBA2/IO41PDB1  
IO41NDB1  
GBC2/IO43PPB1  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO50PDB1  
GCA2/IO51PDB1  
GDA1/IO60UDB1  
GDB1/IO59UDB1  
4-10  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
144-Pin FBGA*  
144-Pin FBGA*  
144-Pin FBGA*  
Pin Number  
A3P250 Function  
GEB0/IO99NDB3  
GEA1/IO98PDB3  
GEA0/IO98NDB3  
GEA2/IO97RSB2  
IO90RSB2  
Pin Number  
A3P250 Function  
GND  
Pin Number  
M1  
A3P250 Function  
GNDQ  
K1  
K2  
L1  
L2  
VMV3  
M2  
GEC2/IO95RSB2  
IO92RSB2  
IO89RSB2  
IO87RSB2  
IO85RSB2  
IO78RSB2  
IO76RSB2  
TDI  
K3  
L3  
GEB2/IO96RSB2  
IO91RSB2  
M3  
K4  
L4  
M4  
K5  
L5  
V
CCIB2  
M5  
K6  
IO84RSB2  
L6  
IO82RSB2  
IO80RSB2  
IO72RSB2  
TMS  
M6  
K7  
GND  
L7  
M7  
K8  
IO66RSB2  
L8  
M8  
K9  
GDC2/IO63RSB2  
GND  
L9  
M9  
K10  
K11  
K12  
L10  
L11  
L12  
VJTAG  
M10  
M11  
M12  
VCCIB2  
GDA0/IO60VDB1  
GDB0/IO59VDB1  
VMV2  
VPUMP  
TRST  
GNDQ  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
v2.0  
4-11  
Automotive ProASIC3 Flash Family FPGAs  
144-Pin FBGA*  
144-Pin FBGA*  
Pin Number A3P1000 Function  
144-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
GNDQ  
VMV0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
IO213PDB3  
IO213NDB3  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
GFA1/IO207PPB3  
GND  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO10RSB0  
IO223NDB3  
VCCPLF  
GAA2/IO225PPB3  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO72RSB0  
GBC1/IO73RSB0  
GBB2/IO79PDB1  
IO79NDB1  
GFA0/IO207NPB3  
GND  
GND  
GND  
IO44RSB0  
GND  
VCC  
GDC1/IO111PPB1  
IO96NDB1  
IO69RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GNDQ  
GCC2/IO96PDB1  
IO95NDB1  
IO80NPB1  
GCB1/IO92PPB1  
VCC  
GCB2/IO95PDB1  
VCC  
GAB2/IO224PDB3  
GND  
B2  
E2  
GFC0/IO209NDB3  
GFC1/IO209PDB3  
VCCIB3  
GFB2/IO205PDB3  
GFC2/IO204PSB3  
GEC1/IO190PDB3  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO13RSB0  
E3  
B4  
E4  
B5  
E5  
IO225NPB3  
B6  
IO26RSB0  
E6  
VCCIB0  
IO105PDB1  
IO105NDB1  
GDB2/IO115RSB2  
GDC0/IO111NPB1  
VCCIB1  
B7  
IO35RSB0  
E7  
VCCIB0  
B8  
IO60RSB0  
E8  
GCC1/IO91PDB1  
VCCIB1  
B9  
GBB0/IO74RSB0  
GBB1/IO75RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO93NDB1  
IO94NDB1  
GFB0/IO208NPB3  
VCOMPLF  
IO101PSB1  
VCC  
VMV1  
IO224NDB3  
GFA2/IO206PPB3  
GAC2/IO223PDB3  
VCC  
GEB1/IO189PDB3  
IO205NDB3  
VCCIB3  
F2  
J2  
F3  
GFB1/IO208PPB3  
IO206NPB3  
GND  
J3  
F4  
J4  
GEC0/IO190NDB3  
IO160RSB2  
IO157RSB2  
VCC  
IO16RSB0  
F5  
J5  
IO29RSB0  
F6  
GND  
J6  
IO32RSB0  
F7  
GND  
J7  
IO63RSB0  
F8  
GCC0/IO91NDB1  
GCB0/IO92NPB1  
GND  
J8  
TCK  
IO66RSB0  
F9  
J9  
GDA2/IO114RSB2  
TDO  
GBA2/IO78PDB1  
IO78NDB1  
GBC2/IO80PPB1  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO93PDB1  
GCA2/IO94PDB1  
GDA1/IO113PDB1  
GDB1/IO112PDB1  
Note: *Refer to the User I/O Naming Convention.  
4-12  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
144-Pin FBGA*  
144-Pin FBGA*  
144-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
K1  
K2  
GEB0/IO189NDB3  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
GEA2/IO187RSB2  
IO169RSB2  
L1  
L2  
GND  
VMV3  
M1  
M2  
GNDQ  
GEC2/IO185RSB2  
IO173RSB2  
IO168RSB2  
IO161RSB2  
IO156RSB2  
IO145RSB2  
IO141RSB2  
TDI  
K3  
L3  
GEB2/IO186RSB2  
IO172RSB2  
M3  
K4  
L4  
M4  
K5  
L5  
V
CCIB2  
M5  
K6  
IO152RSB2  
L6  
IO153RSB2  
IO144RSB2  
IO140RSB2  
TMS  
M6  
K7  
GND  
L7  
M7  
K8  
IO117RSB2  
L8  
M8  
K9  
GDC2/IO116RSB2  
GND  
L9  
M9  
K10  
K11  
K12  
L10  
L11  
L12  
VJTAG  
M10  
M11  
M12  
VCCIB2  
GDA0/IO113NDB1  
GDB0/IO112NDB1  
VMV2  
VPUMP  
TRST  
GNDQ  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
v2.0  
4-13  
Automotive ProASIC3 Flash Family FPGAs  
256-Pin FBGA  
A1 Ball Pad Corner  
1
7
6
4
5
3
2
16 15 14 13 12 11 10 9  
8
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
4-14  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
256-Pin FBGA*  
256-Pin FBGA*  
256-Pin FBGA*  
Pin Number  
Pin Number  
A3P250 Function  
GND  
A3P250 Function  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO13RSB0  
IO17RSB0  
IO22RSB0  
IO27RSB0  
IO31RSB0  
GBC0/IO35RSB0  
IO34RSB0  
NC  
Pin Number  
E9  
A3P250 Function  
A1  
A2  
C5  
C6  
IO24RSB0  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO07RSB0  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
VCCIB0  
A3  
C7  
VCCIB0  
VMV1  
A4  
C8  
A5  
C9  
GBC2/IO43PDB1  
IO46RSB1  
NC  
A6  
IO10RSB0  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
A7  
IO11RSB0  
A8  
IO15RSB0  
IO45PDB1  
IO113NDB3  
IO112PPB3  
NC  
A9  
IO20RSB0  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
IO25RSB0  
F2  
IO29RSB0  
IO42NPB1  
IO44PDB1  
IO114VDB3  
IO114UDB3  
GAC2/IO116UDB3  
NC  
F3  
IO33RSB0  
F4  
IO115VDB3  
VCCIB3  
GBB1/IO38RSB0  
GBA0/IO39RSB0  
GBA1/IO40RSB0  
GND  
F5  
D2  
F6  
GND  
D3  
F7  
VCC  
D4  
F8  
VCC  
GAB2/IO117UDB3  
GAA2/IO118UDB3  
NC  
D5  
GNDQ  
F9  
VCC  
B2  
D6  
IO08RSB0  
IO14RSB0  
IO18RSB0  
IO23RSB0  
IO28RSB0  
IO32RSB0  
GNDQ  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
VCC  
B3  
D7  
GND  
B4  
GAB1/IO03RSB0  
IO06RSB0  
D8  
VCCIB1  
B5  
D9  
IO43NDB1  
NC  
B6  
IO09RSB0  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
B7  
IO12RSB0  
IO47PPB1  
IO45NDB1  
IO111NDB3  
IO111PDB3  
IO112NPB3  
GFC1/IO110PPB3  
VCCIB3  
B8  
IO16RSB0  
B9  
IO21RSB0  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
IO26RSB0  
GBB2/IO42PPB1  
NC  
G2  
IO30RSB0  
G3  
GBC1/IO36RSB0  
GBB0/IO37RSB0  
NC  
IO44NDB1  
IO113PDB3  
NC  
G4  
G5  
E2  
G6  
VCC  
GBA2/IO41PDB1  
IO41NDB1  
IO117VDB3  
IO118VDB3  
NC  
E3  
IO116VDB3  
IO115UDB3  
VMV0  
G7  
GND  
E4  
G8  
GND  
E5  
G9  
GND  
C2  
E6  
VCCIB0  
G10  
G11  
G12  
GND  
C3  
E7  
VCCIB0  
VCC  
C4  
NC  
E8  
IO19RSB0  
VCCIB1  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
v2.0  
4-15  
Automotive ProASIC3 Flash Family FPGAs  
256-Pin FBGA*  
256-Pin FBGA*  
256-Pin FBGA*  
Pin Number  
G13  
G14  
G15  
G16  
H1  
A3P250 Function  
GCC1/IO48PPB1  
IO47NPB1  
IO54PDB1  
IO54NDB1  
GFB0/IO109NPB3  
GFA0/IO108NDB3  
GFB1/IO109PPB3  
VCOMPLF  
Pin Number  
A3P250 Function  
GFC2/IO105PDB3  
IO107NPB3  
Pin Number  
A3P250 Function  
K1  
K2  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
VMV3  
VCCIB2  
K3  
IO104PPB3  
VCCIB2  
NC  
K4  
NC  
K5  
VCCIB3  
IO74RSB2  
VCCIB2  
H2  
K6  
VCC  
H3  
K7  
GND  
GND  
VCCIB2  
H4  
K8  
VMV2  
NC  
H5  
GFC0/IO110NPB3  
VCC  
K9  
GND  
H6  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
GND  
GDB1/IO59UPB1  
GDC1/IO58UDB1  
IO56NDB1  
IO103NDB3  
IO101PPB3  
GEC1/IO100PPB3  
NC  
H7  
GND  
VCC  
H8  
GND  
VCCIB1  
IO52NPB1  
IO55RSB1  
IO53NPB1  
IO51NDB1  
IO105NDB3  
IO104NPB3  
NC  
H9  
GND  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
GND  
N2  
VCC  
N3  
GCC0/IO48NPB1  
GCB1/IO49PPB1  
GCA0/IO50NPB1  
NC  
N4  
N5  
GNDQ  
L2  
N6  
GEA2/IO97RSB2  
IO86RSB2  
IO82RSB2  
IO75RSB2  
IO69RSB2  
IO64RSB2  
GNDQ  
L3  
N7  
GCB0/IO49NPB1  
GFA2/IO107PPB3  
GFA1/IO108PDB3  
VCCPLF  
L4  
IO102RSB3  
VCCIB3  
GND  
N8  
L5  
N9  
J2  
L6  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
J3  
L7  
VCC  
J4  
IO106NDB3  
GFB2/IO106PDB3  
VCC  
L8  
VCC  
J5  
L9  
VCC  
NC  
J6  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
VCC  
VJTAG  
J7  
GND  
GND  
GDC0/IO58VDB1  
GDA1/IO60UDB1  
GEB1/IO99PDB3  
GEB0/IO99NDB3  
NC  
J8  
GND  
VCCIB1  
J9  
GND  
GDB0/IO59VPB1  
IO57VDB1  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
GND  
P2  
VCC  
IO57UDB1  
IO56PDB1  
P3  
GCB2/IO52PPB1  
GCA1/IO50PPB1  
GCC2/IO53PPB1  
NC  
P4  
NC  
IO103PDB3  
NC  
P5  
IO92RSB2  
IO89RSB2  
IO85RSB2  
IO81RSB2  
P6  
IO101NPB3  
GEC0/IO100NPB3  
P7  
GCA2/IO51PDB1  
P8  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
4-16  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
256-Pin FBGA*  
256-Pin FBGA*  
256-Pin FBGA*  
Pin Number  
Pin Number  
A3P250 Function  
IO76RSB2  
IO71RSB2  
IO66RSB2  
NC  
A3P250 Function  
IO84RSB2  
IO80RSB2  
IO77RSB2  
IO72RSB2  
IO68RSB2  
IO65RSB2  
GDB2/IO62RSB2  
TDI  
Pin Number  
A3P250 Function  
IO90RSB2  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
R7  
R8  
T5  
T6  
IO87RSB2  
R9  
T7  
IO83RSB2  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
T8  
IO79RSB2  
TCK  
T9  
IO78RSB2  
VPUMP  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
IO73RSB2  
TRST  
IO70RSB2  
GDA0/IO60VDB1  
GEA1/IO98PDB3  
GEA0/IO98NDB3  
NC  
GDC2/IO63RSB2  
IO67RSB2  
NC  
R2  
TDO  
GDA2/IO61RSB2  
TMS  
R3  
GND  
R4  
GEC2/IO95RSB2  
IO91RSB2  
IO88RSB2  
T2  
IO94RSB2  
GEB2/IO96RSB2  
IO93RSB2  
GND  
R5  
T3  
R6  
T4  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
v2.0  
4-17  
Automotive ProASIC3 Flash Family FPGAs  
256-Pin FBGA*  
256-Pin FBGA*  
256-Pin FBGA*  
Pin Number  
A1  
A3P1000 Function  
GND  
Pin Number  
A3P1000 Function  
IO25RSB0  
Pin Number  
A3P1000 Function  
GBC2/IO80PDB1  
IO83PPB1  
C7  
C8  
E13  
E14  
E15  
E16  
F1  
A2  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO16RSB0  
IO36RSB0  
A3  
C9  
IO42RSB0  
IO86PPB1  
A4  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
IO49RSB0  
IO87PDB1  
A5  
IO56RSB0  
IO217NDB3  
IO218NDB3  
IO216PDB3  
A6  
IO22RSB0  
GBC0/IO72RSB0  
IO62RSB0  
F2  
A7  
IO28RSB0  
F3  
A8  
IO35RSB0  
VMV0  
F4  
IO216NDB3  
A9  
IO45RSB0  
IO78NDB1  
IO81NDB1  
IO222NDB3  
IO222PDB3  
GAC2/IO223PDB3  
IO223NDB3  
GNDQ  
F5  
VCCIB3  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
IO50RSB0  
F6  
GND  
VCC  
IO55RSB0  
F7  
IO61RSB0  
D2  
F8  
VCC  
GBB1/IO75RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GND  
D3  
F9  
VCC  
D4  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
VCC  
D5  
GND  
D6  
IO23RSB0  
VCCIB1  
GAB2/IO224PDB3  
GAA2/IO225PDB3  
GNDQ  
D7  
IO29RSB0  
IO83NPB1  
IO86NPB1  
IO90PPB1  
IO87NDB1  
IO210PSB3  
IO213NDB3  
IO213PDB3  
GFC1/IO209PPB3  
B2  
D8  
IO33RSB0  
B3  
D9  
IO46RSB0  
B4  
GAB1/IO03RSB0  
IO17RSB0  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
IO52RSB0  
B5  
IO60RSB0  
B6  
IO21RSB0  
GNDQ  
B7  
IO27RSB0  
IO80NDB1  
GBB2/IO79PDB1  
IO79NDB1  
IO82NSB1  
IO217PDB3  
IO218PDB3  
IO221NDB3  
IO221PDB3  
VMV0  
B8  
IO34RSB0  
B9  
IO44RSB0  
VCCIB3  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
IO51RSB0  
VCC  
IO57RSB0  
GND  
GND  
GBC1/IO73RSB0  
GBB0/IO74RSB0  
IO71RSB0  
E2  
E3  
GND  
E4  
GND  
GBA2/IO78PDB1  
IO81PDB1  
E5  
VCC  
E6  
V
CCIB0  
CCIB0  
VCCIB1  
IO224NDB3  
IO225NDB3  
VMV3  
E7  
V
GCC1/IO91PPB1  
IO90NPB1  
IO88PDB1  
IO88NDB1  
GFB0/IO208NPB3  
GFA0/IO207NDB3  
C2  
E8  
IO38RSB0  
IO47RSB0  
VCCIB0  
C3  
E9  
C4  
IO11RSB0  
E10  
E11  
E12  
C5  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
VCCIB0  
C6  
VMV1  
H2  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
4-18  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
256-Pin FBGA*  
256-Pin FBGA*  
256-Pin FBGA*  
Pin Number  
A3P1000 Function  
GFB1/IO208PPB3  
VCOMPLF  
Pin Number  
A3P1000 Function  
GND  
Pin Number  
M15  
M16  
N1  
A3P1000 Function  
GDC1/IO111PDB1  
IO107NDB1  
IO194PSB3  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
GND  
GFC0/IO209NPB3  
VCC  
VCC  
VCCIB1  
N2  
IO192PPB3  
GND  
IO95NPB1  
IO100NPB1  
IO102NDB1  
IO102PDB1  
IO202NDB3  
IO202PDB3  
IO196PPB3  
IO193PPB3  
N3  
GEC1/IO190PPB3  
IO192NPB3  
GNDQ  
GND  
N4  
GND  
N5  
GND  
N6  
GEA2/IO187RSB2  
IO161RSB2  
IO155RSB2  
IO141RSB2  
IO129RSB2  
IO124RSB2  
GNDQ  
VCC  
N7  
GCC0/IO91NPB1  
GCB1/IO92PPB1  
GCA0/IO93NPB1  
IO96NPB1  
L2  
N8  
L3  
N9  
L4  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
L5  
VCCIB3  
GCB0/IO92NPB1  
GFA2/IO206PSB3  
GFA1/IO207PDB3  
VCCPLF  
L6  
GND  
VCC  
L7  
IO110PDB1  
VJTAG  
J2  
L8  
VCC  
J3  
L9  
VCC  
GDC0/IO111NDB1  
GDA1/IO113PDB1  
GEB1/IO189PDB3  
GEB0/IO189NDB3  
VMV2  
J4  
IO205NDB3  
GFB2/IO205PDB3  
VCC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
VCC  
J5  
GND  
J6  
VCCIB1  
P2  
J7  
GND  
GDB0/IO112NPB1  
IO106NDB1  
IO106PDB1  
IO107PDB1  
IO197NSB3  
IO196NPB3  
IO193NPB3  
GEC0/IO190NPB3  
VMV3  
P3  
J8  
GND  
P4  
IO179RSB2  
IO171RSB2  
IO165RSB2  
IO159RSB2  
IO151RSB2  
IO137RSB2  
IO134RSB2  
IO128RSB2  
VMV1  
J9  
GND  
P5  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
GND  
P6  
VCC  
P7  
GCB2/IO95PPB1  
GCA1/IO93PPB1  
GCC2/IO96PPB1  
IO100PPB1  
GCA2/IO94PSB1  
GFC2/IO204PDB3  
IO204NDB3  
IO203NDB3  
IO203PDB3  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
V
CCIB2  
CCIB2  
V
TCK  
K2  
IO147RSB2  
IO136RSB2  
VPUMP  
K3  
TRST  
K4  
VCCIB2  
GDA0/IO113NDB1  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
IO184RSB2  
GEC2/IO185RSB2  
K5  
K6  
K7  
K8  
VCCIB3  
VCCIB2  
VMV2  
VCC  
R2  
GND  
GND  
IO110NDB1  
GDB1/IO112PPB1  
R3  
R4  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
v2.0  
4-19  
Automotive ProASIC3 Flash Family FPGAs  
256-Pin FBGA*  
256-Pin FBGA*  
256-Pin FBGA*  
Pin Number  
A3P1000 Function  
IO168RSB2  
IO163RSB2  
IO157RSB2  
IO149RSB2  
IO143RSB2  
IO138RSB2  
IO131RSB2  
IO125RSB2  
GDB2/IO115RSB2  
TDI  
Pin Number  
A3P1000 Function  
GNDQ  
Pin Number  
A3P1000 Function  
IO142RSB2  
R5  
R6  
R15  
R16  
T1  
T9  
TDO  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
IO135RSB2  
R7  
GND  
IO130RSB2  
R8  
T2  
IO183RSB2  
GEB2/IO186RSB2  
IO172RSB2  
IO170RSB2  
IO164RSB2  
IO158RSB2  
IO153RSB2  
GDC2/IO116RSB2  
IO120RSB2  
R9  
T3  
R10  
R11  
R12  
R13  
R14  
T4  
GDA2/IO114RSB2  
TMS  
T5  
T6  
GND  
T7  
T8  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
4-20  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
484-Pin FBGA  
A1 Ball Pad Corner  
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v2.0  
4-21  
Automotive ProASIC3 Flash Family FPGAs  
484-Pin FBGA*  
484-Pin FBGA*  
484-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
A1  
A2  
GND  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
IO63RSB0  
IO66RSB0  
IO68RSB0  
IO70RSB0  
NC  
D7  
D8  
GAB0/IO02RSB0  
IO16RSB0  
IO22RSB0  
IO28RSB0  
IO35RSB0  
IO45RSB0  
IO50RSB0  
IO55RSB0  
IO61RSB0  
GBB1/IO75RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GND  
GND  
A3  
VCCIB0  
D9  
A4  
IO07RSB0  
IO09RSB0  
IO13RSB0  
IO18RSB0  
IO20RSB0  
IO26RSB0  
IO32RSB0  
IO40RSB0  
IO41RSB0  
IO53RSB0  
IO59RSB0  
IO64RSB0  
IO65RSB0  
IO67RSB0  
IO69RSB0  
NC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
A5  
A6  
NC  
A7  
VCCIB1  
A8  
GND  
VCCIB3  
IO220PDB3  
NC  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
B1  
C2  
C3  
C4  
NC  
C5  
GND  
C6  
IO10RSB0  
IO14RSB0  
VCC  
NC  
C7  
NC  
C8  
NC  
C9  
VCC  
IO219NDB3  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
D1  
IO30RSB0  
IO37RSB0  
IO43RSB0  
NC  
E2  
E3  
GND  
VCCIB0  
E4  
GAB2/IO224PDB3  
GAA2/IO225PDB3  
GNDQ  
GND  
E5  
GND  
VCC  
E6  
GND  
VCC  
E7  
GAB1/IO03RSB0  
IO17RSB0  
IO21RSB0  
IO27RSB0  
IO34RSB0  
IO44RSB0  
IO51RSB0  
IO57RSB0  
GBC1/IO73RSB0  
GBB0/IO74RSB0  
IO71RSB0  
GBA2/IO78PDB1  
IO81PDB1  
GND  
B2  
VCCIB3  
NC  
E8  
B3  
NC  
NC  
E9  
B4  
IO06RSB0  
IO08RSB0  
IO12RSB0  
IO15RSB0  
IO19RSB0  
IO24RSB0  
IO31RSB0  
IO39RSB0  
IO48RSB0  
IO54RSB0  
IO58RSB0  
GND  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
B5  
NC  
B6  
NC  
B7  
NC  
B8  
VCCIB1  
IO219PDB3  
IO220NDB3  
NC  
B9  
B10  
B11  
B12  
B13  
B14  
D2  
D3  
D4  
GND  
D5  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
D6  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
4-22  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
484-Pin FBGA*  
484-Pin FBGA*  
484-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
E21  
E22  
F1  
NC  
IO84PDB1  
NC  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
IO52RSB0  
IO60RSB0  
GNDQ  
J5  
J6  
IO218NDB3  
IO216PDB3  
IO216NDB3  
J7  
F2  
IO215PDB3  
IO215NDB3  
IO224NDB3  
IO225NDB3  
VMV3  
IO80NDB1  
GBB2/IO79PDB1  
IO79NDB1  
IO82NPB1  
IO85PDB1  
IO85NDB1  
NC  
J8  
VCCIB3  
F3  
J9  
GND  
VCC  
F4  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
F5  
VCC  
F6  
VCC  
F7  
IO11RSB0  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO25RSB0  
IO36RSB0  
IO42RSB0  
IO49RSB0  
IO56RSB0  
GBC0/IO72RSB0  
IO62RSB0  
VMV0  
VCC  
F8  
GND  
F9  
NC  
VCCIB1  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H2  
NC  
IO83NPB1  
IO86NPB1  
IO90PPB1  
IO87NDB1  
NC  
H3  
VCC  
H4  
IO217PDB3  
IO218PDB3  
IO221NDB3  
IO221PDB3  
VMV0  
H5  
H6  
H7  
IO89PDB1  
IO89NDB1  
IO211PDB3  
IO211NDB3  
NC  
H8  
H9  
VCCIB0  
IO78NDB1  
IO81NDB1  
IO82PPB1  
NC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
J1  
VCCIB0  
K2  
IO38RSB0  
IO47RSB0  
VCCIB0  
K3  
K4  
IO210PPB3  
IO213NDB3  
IO213PDB3  
GFC1/IO209PPB3  
VCCIB3  
K5  
IO84NDB1  
IO214NDB3  
IO214PDB3  
NC  
VCCIB0  
K6  
VMV1  
K7  
GBC2/IO80PDB1  
IO83PPB1  
IO86PPB1  
IO87PDB1  
VCC  
K8  
K9  
VCC  
IO222NDB3  
IO222PDB3  
GAC2/IO223PDB3  
IO223NDB3  
GNDQ  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
GND  
GND  
GND  
NC  
GND  
NC  
VCC  
IO23RSB0  
IO29RSB0  
IO33RSB0  
IO46RSB0  
IO212NDB3  
IO212PDB3  
NC  
VCCIB1  
J2  
GCC1/IO91PPB1  
IO90NPB1  
IO88PDB1  
J3  
J4  
IO217NDB3  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
v2.0  
4-23  
Automotive ProASIC3 Flash Family FPGAs  
484-Pin FBGA*  
484-Pin FBGA*  
484-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
K19  
K20  
K21  
K22  
L1  
IO88NDB1  
IO94NPB1  
IO98NDB1  
IO98PDB1  
NC  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
GND  
P3  
P4  
IO199NDB3  
IO202NDB3  
IO202PDB3  
IO196PPB3  
IO193PPB3  
VCCIB3  
GND  
GND  
P5  
VCC  
P6  
GCB2/IO95PPB1  
GCA1/IO93PPB1  
GCC2/IO96PPB1  
IO100PPB1  
GCA2/IO94PPB1  
IO101PPB1  
IO99PPB1  
NC  
P7  
L2  
IO200PDB3  
IO210NPB3  
GFB0/IO208NPB3  
GFA0/IO207NDB3  
GFB1/IO208PPB3  
VCOMPLF  
P8  
L3  
P9  
L4  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
L5  
VCC  
L6  
VCC  
L7  
VCC  
L8  
GFC0/IO209NPB3  
VCC  
GND  
L9  
IO201NDB3  
IO201PDB3  
NC  
VCCIB1  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
GND  
N2  
GDB0/IO112NPB1  
IO106NDB1  
IO106PDB1  
IO107PDB1  
NC  
GND  
N3  
GND  
N4  
GFC2/IO204PDB3  
IO204NDB3  
IO203NDB3  
IO203PDB3  
VCCIB3  
GND  
N5  
VCC  
N6  
GCC0/IO91NPB1  
GCB1/IO92PPB1  
GCA0/IO93NPB1  
IO96NPB1  
GCB0/IO92NPB1  
IO97PDB1  
IO97NDB1  
IO99NPB1  
NC  
N7  
IO104PDB1  
IO103NDB1  
NC  
N8  
N9  
VCC  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
GND  
R2  
IO197PPB3  
VCC  
GND  
R3  
GND  
R4  
IO197NPB3  
IO196NPB3  
IO193NPB3  
GEC0/IO190NPB3  
VMV3  
GND  
R5  
VCC  
R6  
VCCIB1  
R7  
IO200NDB3  
IO206NDB3  
GFA2/IO206PDB3  
GFA1/IO207PDB3  
VCCPLF  
IO95NPB1  
IO100NPB1  
IO102NDB1  
IO102PDB1  
NC  
R8  
R9  
VCCIB2  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
VCCIB2  
IO147RSB2  
IO136RSB2  
IO205NDB3  
GFB2/IO205PDB3  
VCC  
IO101NPB1  
IO103PDB1  
NC  
VCCIB2  
VCCIB2  
VMV2  
GND  
P2  
IO199PDB3  
IO110NDB1  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
4-24  
v2.0  
Automotive ProASIC3 Flash Family FPGAs  
484-Pin FBGA*  
484-Pin FBGA*  
484-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
GDB1/IO112PPB1  
GDC1/IO111PDB1  
IO107NDB1  
VCC  
U9  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
IO165RSB2  
IO159RSB2  
IO151RSB2  
IO137RSB2  
IO134RSB2  
IO128RSB2  
VMV1  
W1  
W2  
NC  
IO191PDB3  
NC  
W3  
W4  
GND  
IO104NDB1  
IO105PDB1  
IO198PDB3  
IO198NDB3  
NC  
W5  
IO183RSB2  
GEB2/IO186RSB2  
IO172RSB2  
IO170RSB2  
IO164RSB2  
IO158RSB2  
IO153RSB2  
IO142RSB2  
IO135RSB2  
IO130RSB2  
GDC2/IO116RSB2  
IO120RSB2  
GDA2/IO114RSB2  
TMS  
W6  
W7  
T2  
TCK  
W8  
T3  
VPUMP  
W9  
T4  
IO194PPB3  
IO192PPB3  
GEC1/IO190PPB3  
IO192NPB3  
GNDQ  
TRST  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
T5  
GDA0/IO113NDB1  
NC  
T6  
T7  
IO108NDB1  
IO109PDB1  
NC  
T8  
T9  
GEA2/IO187RSB2  
IO161RSB2  
IO155RSB2  
IO141RSB2  
IO129RSB2  
IO124RSB2  
GNDQ  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
U1  
V2  
NC  
V3  
GND  
V4  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
IO184RSB2  
GEC2/IO185RSB2  
IO168RSB2  
IO163RSB2  
IO157RSB2  
IO149RSB2  
IO143RSB2  
IO138RSB2  
IO131RSB2  
IO125RSB2  
GDB2/IO115RSB2  
TDI  
V5  
GND  
V6  
NC  
V7  
NC  
IO110PDB1  
VJTAG  
V8  
NC  
V9  
VCCIB3  
GDC0/IO111NDB1  
GDA1/IO113PDB1  
NC  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
Y2  
IO191NDB3  
NC  
Y3  
Y4  
IO182RSB2  
GND  
IO108PDB1  
IO105NDB1  
IO195PDB3  
IO195NDB3  
IO194NPB3  
GEB1/IO189PDB3  
GEB0/IO189NDB3  
VMV2  
Y5  
Y6  
IO177RSB2  
IO174RSB2  
VCC  
Y7  
U2  
Y8  
U3  
Y9  
VCC  
U4  
GNDQ  
Y10  
Y11  
Y12  
Y13  
Y14  
IO154RSB2  
IO148RSB2  
IO140RSB2  
NC  
U5  
TDO  
U6  
GND  
U7  
IO179RSB2  
IO171RSB2  
NC  
U8  
IO109NDB1  
VCC  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
v2.0  
4-25  
Automotive ProASIC3 Flash Family FPGAs  
484-Pin FBGA*  
484-Pin FBGA*  
484-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
VCC  
NC  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
IO146RSB2  
IO139RSB2  
IO133RSB2  
NC  
AB7  
AB8  
IO167RSB2  
IO162RSB2  
IO156RSB2  
IO150RSB2  
IO145RSB2  
IO144RSB2  
IO132RSB2  
IO127RSB2  
IO126RSB2  
IO123RSB2  
IO121RSB2  
IO118RSB2  
NC  
NC  
AB9  
GND  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
NC  
NC  
IO122RSB2  
IO119RSB2  
IO117RSB2  
NC  
NC  
VCCIB1  
GND  
V
CCIB3  
NC  
NC  
VCCIB1  
IO181RSB2  
IO178RSB2  
IO175RSB2  
IO169RSB2  
IO166RSB2  
IO160RSB2  
IO152RSB2  
GND  
GND  
AB2  
GND  
VCCIB2  
AB3  
VCCIB2  
GND  
AB4  
IO180RSB2  
IO176RSB2  
IO173RSB2  
GND  
AB5  
AB6  
Note: *Refer to the "User I/O Naming Convention" section on page 2-46.  
4-26  
v2.0  
ProASIC3 Automotive Flash Family FPGAs  
Datasheet Information  
Datasheet Categories  
In order to provide the latest information to designers, some datasheets are published before data has been fully  
characterized. Datasheets are designated as “Product Brief,” “Advanced,” “Production,” and “Web-only.” The  
definition of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a advanced datasheet (advanced or production) containing general  
product information. This brief gives an overview of specific device and family information.  
Advanced  
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production.  
Datasheet Supplement  
The datasheet supplement gives specific device information for a derivative family that differs from the general family  
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and  
for specifications that do not differ between the two families.  
Unmarked (production)  
This datasheet version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this datasheet are subject to the Export Administration Regulations (EAR). They could  
require an approved export license prior to export from the United States. An export includes release of product or  
disclosure of technology to a foreign national inside or outside the United States.  
v2.0  
5-1  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
Actel Hong Kong  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
River Court, Meadows Business Park EXOS Ebisu Bldg. 4F  
Suite 2114, Two Pacific Place  
88 Queensway, Admiralty  
Hong Kong  
Station Approach, Blackwater  
Camberley Surrey GU17 9AB  
United Kingdom  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852 2185 6460  
Fax +852 2185 6488  
Phone +44 (0) 1276 609 300  
Fax +44 (0) 1276 607 540  
www.jp.actel.com  
www.actel.com.cn  
51700090-0/8.07  

相关型号:

A3P250-FGG144ES

ProASIC3 Flash Family FPGAs
ACTEL

A3P250-FGG144ES

ProASIC3 Flash Family FPGAs with Optional Soft ARM Support
MICROSEMI

A3P250-FGG144I

ProASIC3 Flash Family FPGAs
ACTEL

A3P250-FGG144I

ProASIC3 Flash Family FPGAs with Optional Soft ARM Support
MICROSEMI

A3P250-FGG144IY

Field Programmable Gate Array,
MICROSEMI

A3P250-FGG144PP

ProASIC3 Flash Family FPGAs
ACTEL

A3P250-FGG144PP

ProASIC3 Flash Family FPGAs with Optional Soft ARM Support
MICROSEMI

A3P250-FGG144T

Automotive ProASIC3 Flash Family FPGAs
ACTEL

A3P250-FGG144Y

ProASIC3 Flash Family FPGAs with Optional Soft ARM Support
MICROSEMI

A3P250-FGG144YC

暂无描述
MICROSEMI

A3P250-FGG144YES

ProASIC3 Flash Family FPGAs with Optional Soft ARM Support
MICROSEMI

A3P250-FGG144YI

ProASIC3 Flash Family FPGAs with Optional Soft ARM Support
MICROSEMI