A54SX32A-1BG329A [MICROSEMI]

Field Programmable Gate Array, 2880-Cell, CMOS, PBGA329,;
A54SX32A-1BG329A
型号: A54SX32A-1BG329A
厂家: Microsemi    Microsemi
描述:

Field Programmable Gate Array, 2880-Cell, CMOS, PBGA329,

文件: 总83页 (文件大小:2107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v 4 . 0  
SX-A Family FPGAs  
u
e
L e a d i n g -E d g e P e r f o r m a n c e  
• 250 MHz System Performance  
• 350 MHz Internal Performance  
• 3.8 ns Clock-to-Out (Pad-to-Pad)  
Configurable I/O Support for 3.3V/5V PCI, 5V TTL,  
3.3V LVTTL, 2.5V LVCMOS2  
• 2.5V, 3.3V, and 5V Mixed-Voltage Operation with 5V Input  
Tolerance and 5V Drive Strength  
S p e c i f i c a t i o n s  
• 12,000 to 108,000 Available System Gates  
Up to 360 User-Programmable I/O Pins  
Devices Support Multiple Temperature Grades  
Configurable Weak-Resistor Pull-up or Pull-down for  
Outputs at Power-up  
Up to 2,012 Dedicated Flip-Flops  
• Individual Output Slew Rate Control  
• 0.22µ/0.25µ CMOS Process Technology  
Up to 100% Resource Utilization and 100% Pin Locking  
Deterministic, User-Controllable Timing  
F e a t u r e s  
Hot-Swap Compliant I/Os  
Unique In-System Diagnostic and Verification Capability  
with Silicon Explorer II  
• Power-up/down Friendly (No Sequencing Required for  
Supply Voltages)  
Boundary Scan Testing in Compliance with IEEE  
Standard 1149.1 (JTAG)  
• 66 MHz PCI Compliant  
• Single-Chip Solution  
Nonvolatile  
Actels Secure Programming Technology with FuseLock™  
Prevents Reverse Engineering and Design Theft  
S X -A P r o d u c t P r o f i l e  
Device  
A54SX08A  
A54SX16A  
A54SX32A  
A54SX72A  
Capacity  
Typical Gates  
System Gates  
8,000  
12,000  
16,000  
24,000  
32,000  
48,000  
72,000  
108,000  
Logic Modules  
Combinatorial Cells  
768  
512  
1,452  
924  
2,880  
1,800  
6,036  
4,024  
Register Cells  
Dedicated Flip-Flops  
Maximum Flip-Flops  
256  
512  
528  
990  
1,080  
1,980  
2,012  
4,024  
Maximum User I/Os  
Global Clocks  
130  
3
180  
3
249  
3
360  
3
Quadrant Clocks  
Boundary Scan Testing  
3.3V/5V PCI  
0
0
0
4
Yes  
Yes  
4.2 ns  
0 ns  
Yes  
Yes  
4.6 ns  
0 ns  
Yes  
Yes  
4.7 ns  
0 ns  
Yes  
Yes  
5.8 ns  
0 ns  
Clock-to-Out  
Input Set-Up (External)  
Speed Grades  
F, Std, –1, –2, –3 F, Std, –1, –2, –3 F, Std, –1, –2, –3 F, Std, –1, –2, –3  
Temperature Grades  
C, I, A  
C, I, M, A  
C, I, M, A  
C, I, M, A  
Package (by pin count)  
PQFP  
TQFP  
PBGA  
FBGA  
CQFP*  
208  
100, 144  
208  
100, 144  
208  
100, 144, 176  
329  
144, 256, 484  
208, 256  
208  
144  
144, 256  
256, 484  
208, 256  
Note: For more information about the CQFP package options, refer to the HiRel SX-A datasheet at: www.actel.com/documents/HRSXADS.pdf  
A p r i l 2 0 0 3  
1
© 2001 Actel Corporation  
S X -A F a m i l y F P G A s  
O r d e r i n g I n f o r m a t i o n  
A54SX16  
A
2
PQ  
208  
Application (Temperature Range)  
Blank = Commercial (0 to +70°C)  
I
M
A
= Industrial (40 to +85°C)  
= Military (55 to +125°C)  
= Automotive (40 to +125°C)  
Package Lead Count  
Package Type  
BG = 1.27mm Plastic Ball Grid Array  
FG = 1.0mm Fine Pitch Ball Grid Array  
PQ = Plastic Quad Flat Pack  
TQ = Thin (1.4mm) Quad Flat Pack  
CQ = Ceramic Quad Flat Pack*  
Speed Grade  
Blank = Standard Speed  
1 = Approximately 15% Faster than Standard  
2 = Approximately 25% Faster than Standard  
3 = Approximately 35% Faster than Standard  
F = Approximately 40% Slower than Standard  
A = 0.22µ/0.25µ CMOS Technology  
Part Number  
A54SX08A = 12,000 System Gates  
A54SX16A = 24,000 System Gates  
A54SX32A = 48,000 System Gates  
A54SX72A = 108,000 System Gates  
*For more information about the CQFP package options, refer to the HiRel SX-A datasheet at: www.actel.com/documents/HRSXADS.pdf  
P l a s t i c D e v i c e R e s o u r c e s  
User I/Os (including clock buffers)  
PQFP  
208-Pin  
TQFP  
100-Pin  
TQFP  
144-Pin  
TQFP  
176-Pin  
PBGA  
329-Pin  
FBGA  
144-Pin  
FBGA  
256-Pin  
FBGA  
484-Pin  
Device  
A54SX08A  
A54SX16A  
A54SX32A  
A54SX72A  
130  
175  
174  
171  
81  
81  
81  
113  
113  
113  
111  
111  
111  
180  
203  
203  
147  
249  
249  
360  
Contact your Actel sales representative for product availability.  
Package Definitions  
PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, PBGA = 1.27mm Plastic Ball Grid Array, FBGA = 1.0mm Fine Pitch Ball  
Grid Array  
2
v4 .0  
S X -A F a m i l y F P G A s  
P r o d u c t P l a n  
Speed Grade**  
Application  
–F  
Std  
–1  
–2  
–3  
C
I†  
M•  
A
A54SX08A Device  
100-Pin Thin Quad Flat Pack (TQFP)  
144-Pin Thin Quad Flat Pack (TQFP)  
208-Pin Plastic Quad Flat Pack (PQFP)  
144-Pin Fine Pitch Ball Grid Array (FBGA)  
A54SX16A Device  
100-Pin Thin Quad Flat Pack (TQFP)  
144-Pin Thin Quad Flat Pack (TQFP)  
208-Pin Plastic Quad Flat Pack (PQFP)  
144-Pin Fine Pitch Ball Grid Array (FBGA)  
256-Pin Fine Pitch Ball Grid Array (FBGA)  
A54SX32A Device  
100-Pin Thin Quad Flat Pack (TQFP)  
144-Pin Thin Quad Flat Pack (TQFP)  
176-Pin Thin Quad Flat Pack (TQFP)  
208-Pin Plastic Quad Flat Pack (PQFP)  
208-Pin Ceramic Quad Flat Pack (CQFP)*  
256-Pin Ceramic Quad Flat Pack (CQFP)*  
144-Pin Fine Pitch Ball Grid Array (FBGA)  
256-Pin Fine Pitch Ball Grid Array (FBGA)  
329-Pin Plastic Ball Grid Array (PBGA)  
484-Pin Fine Pitch Ball Grid Array (FBGA)  
A54SX72A Device  
208-Pin Plastic Quad Flat Pack (PQFP)  
208-Pin Ceramic Quad Flat Pack (CQFP)*  
256-Pin Ceramic Quad Flat Pack (CQFP)*  
256-Pin Fine Pitch Ball Grid Array (FBGA)  
484-Pin Fine Pitch Ball Grid Array (FBGA)  
Contact your Actel sales representative for product availability.  
*For more information about the CQFP package options, refer to the HiRel SX-A datasheet at: www.actel.com/documents/HRSXADS.pdf  
Applications: C = Commercial  
= Industrial  
Availability: = Available  
**Speed Grade: –1 = Approx. 15% faster than Standard  
I
–2 = Approx. 25% faster than Standard  
–3 = Approx. 35% faster than Standard  
M = Military  
A = Automotive  
–F = Approx. 40% slower than Standard  
Only Std, –1, –2 Speed Grade  
Only Std, 1 Speed Grade  
v4 .0  
3
S X -A F a m i l y F P G A s  
G e n e r a l D e s c r i p t i o n  
Actels SX-A family of FPGAs features a sea-of-modules  
utilization, enables concurrent PCB development, reduces  
architecture that delivers high device performance. SX-A design time, and allows designers to achieve performance  
devices simplify design time, enable dramatic reductions in  
design costs and power consumption, and further decrease  
time-to-market for performance-intensive applications.  
goals with minimum effort.  
Further complementing SX-As flexible routing structure is a  
hardwired, constantly loaded clock network that has been  
tuned to provide fast clock propagation with minimal clock  
skew. Additionally, the high performance of the internal  
logic has eliminated the need to embed latches or flip-flops  
in the I/O cells to achieve fast clock-to-out or fast input  
set-up times. SX-A devices have easy-to-use I/O cells that do  
not require HDL instantiation, facilitating design re-use and  
reducing design and verification time.  
Actels SX-A architecture features two types of logic  
modules, the combinatorial cell (C-cell) and the register  
cell (R-cell), each optimized for fast and efficient mapping  
of synthesized logic functions. The routing and interconnect  
resources are in the metal layers above the logic modules,  
providing optimal use of silicon. This enables the entire  
floor of the device to be spanned with an uninterrupted grid  
of fine-grained, synthesis-friendly logic modules (or  
sea-of-modules), which reduces the distance signals have  
to travel between logic modules. To minimize signal  
propagation delay, SX-A devices employ both local and  
general routing resources. The high-speed local routing  
resources (DirectConnect and FastConnect) enable very  
fast local signal propagation that is optimal for fast  
counters, state machines, and datapath logic. The general  
system of segmented routing tracks allows any logic module  
in the array to be connected to any other logic or I/O  
module. Within this system, propagation delay is minimized  
by limiting the number of antifuse interconnect elements to  
five (90 percent of connections typically use only three or  
fewer antifuses). The unique local and general routing  
structure featured in SX-A devices gives fast and predictable  
performance, allows 100% pin-locking with full logic  
S X -A F a m i l y A r c h i t e c t u r e  
The SX-A family architecture was designed to satisfy  
performance  
and  
integration  
requirements  
for  
production-volume designs in a broad range of applications.  
P r o g r a m m a b l e I n t e r c o n n e c t E le m e n t  
The SX-A family provides efficient use of silicon by locating  
the routing interconnect resources between the top two  
metal layers (Figure 1). This completely eliminates the  
channels of routing and interconnect resources between  
logic modules (as implemented on SRAM FPGAs and  
previous generations of antifuse FPGAs), and enables the  
entire floor of the device to be spanned with an  
uninterrupted grid of logic modules.  
Routing Tracks  
Amorphous Silicon/  
Dielectric Antifuse  
Tungsten Plug Via  
Metal 4  
Metal 3  
Tungsten Plug Via  
Metal 2  
Metal 1  
Tungsten Plug Contact  
Silicon Substrate  
Note: A54SX72A has four layers of metal with the antifuse between Metal 3 and Metal 4. A54SX08A, A54SX16A, and  
A54SX32A have three layers of metal with antifuse between Metal 2 and Metal 3.  
Figure 1 SX-A Family Interconnect Elements  
4
v4 .0  
S X -A F a m i l y F P G A s  
Interconnection between these logic modules is achieved  
using Actels patented metal-to-metal programmable  
antifuse interconnect elements. The antifuses are normally  
open circuit and, when programmed, form a permanent  
low-impedance connection.  
modules, the register cell (R-cell) and the combinatorial  
cell (C-cell).  
The R-cell contains a flip-flop featuring asynchronous clear,  
asynchronous preset, and clock enable (using the S0 and S1  
lines) control signals (Figure 2). The R-cell registers  
feature programmable clock polarity selectable on a  
register-by-register basis. This provides additional flexibility  
while allowing mapping of synthesized functions into the  
SX-A FPGA. The clock source for the R-cell can be chosen  
from either the hardwired clock, the routed clocks, or  
internal logic.  
The extremely small size of these interconnect elements  
gives the SX-A family abundant routing resources and  
provides excellent protection against design pirating.  
Reverse engineering is virtually impossible because it is  
extremely difficult to distinguish between programmed and  
unprogrammed antifuses, and since SX-A is a nonvolatile,  
single-chip solution, there is no configuration bitstream to  
intercept.  
The C-cell implements a range of combinatorial functions of  
up to five inputs (Figure 3 on page 6). Inclusion of the DB  
input and its associated inverter function increases the  
number of combinatorial functions that can be implemented  
in a single module from 800 options (as in previous  
architectures) to more than 4,000 in the SX-A architecture.  
An example of the improved flexibility enabled by the  
inversion capability is the ability to integrate a 3-input  
exclusive-OR function into a single C-cell. This facilitates  
construction of 9-bit parity-tree functions with 1.9 ns  
propagation delays. At the same time, the C-cell structure is  
extremely synthesis friendly, simplifying the overall design  
and reducing synthesis time.  
Additionally, the interconnect (i.e., the antifuses and metal  
tracks) have lower capacitance and lower resistance than  
any other device of similar capacity, leading to the fastest  
signal propagation in the industry.  
L o g i c M o d u l e D e s ig n  
The SX-A family architecture is described as a  
sea-of-modulesarchitecture because the entire floor of  
the device is covered with a grid of logic modules with  
virtually no chip area lost to interconnect elements or  
routing. Actels SX-A family provides two types of logic  
Routed  
Data Input  
S0  
S1  
PRE  
DirectConnect  
Input  
D
Q
Y
HCLK  
CLKA,  
CLKB,  
CLR  
Internal Logic  
CKS  
CKP  
Figure 2 R-Cell  
v4 .0  
5
S X -A F a m i l y F P G A s  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
B1  
A1  
A0 B0  
Figure 3 C-Cell  
C h i p A r c h i t e c t u r e  
FastConnect enables horizontal routing between any two  
logic modules within a given SuperCluster and vertical  
routing with the SuperCluster immediately below it. Only  
The SX-A familys chip architecture provides a unique  
approach to module organization and chip routing that  
delivers the best register/logic mix for a wide variety of new one programmable connection is used in a FastConnect  
and emerging applications.  
path, delivering a maximum pin-to-pin propagation time of  
0.3 ns.  
M o d u le O r g a n i z a t io n  
In addition to DirectConnect and FastConnect, the  
architecture makes use of two globally oriented routing  
resources known as segmented routing and high-drive  
routing. Actels segmented routing structure provides a  
variety of track lengths for extremely fast routing between  
SuperClusters. The exact combination of track lengths and  
antifuses within each path is chosen by the 100% automatic  
place-and-route software to minimize signal propagation  
delays.  
Actel has arranged all C-cell and R-cell logic modules into  
horizontal banks called Clusters. There are two types of  
Clusters: Type 1 contains two C-cells and one R-cell, while  
Type 2 contains one C-cell and two R-cells.  
To increase design efficiency and device performance, Actel  
has further organized these modules into SuperClusters  
(Figure 4 on page 7). SuperCluster 1 is a two-wide grouping  
of Type 1 Clusters. SuperCluster 2 is a two-wide group  
containing one Type 1 Cluster and one Type 2 Cluster. SX-A  
devices feature more SuperCluster 1 modules than  
SuperCluster 2 modules because designers typically require  
significantly more combinatorial logic than flip-flops.  
C lo c k R e s o u r c e s  
Actels high-drive routing structure provides three clock  
networks (Table 1). The first clock, called HCLK, is hardwired  
from the HCLK buffer to the clock select MUX in each R-cell.  
HCLK cannot be connected to combinatorial logic. This  
provides a fast propagation path for the clock signal, enabling  
the 3.8 ns clock-to-out (pad-to-pad) performance of the SX-A  
devices. The hardwired clock is tuned to provide clock skew  
less than 0.3 ns worst case. If not used, this pin must be set as  
LOW or HIGH on the board. It must not be left floating.  
Figure 7 describes the clock circuit used for the constant load  
HCLK. Upon power-up of the SX-A device, four clock pulses  
must be detected on HCLK before the clock signal will be  
propagated to registers in the design.  
R o u t i n g R e s o u r c e s  
Clusters and SuperClusters can be connected through the  
use of two innovative local routing resources called  
FastConnect and DirectConnect, which enable extremely  
fast and predictable interconnection of modules within  
Clusters and SuperClusters (Figure 5 and Figure 6 on  
page 8). This routing architecture also dramatically reduces  
the number of antifuses required to complete a circuit,  
ensuring the highest possible performance.  
DirectConnect is a horizontal routing resource that provides  
connections from a C-cell to its neighboring R-cell in a given  
SuperCluster. DirectConnect uses a hardwired signal path  
requiring no programmable interconnection to achieve its  
fast signal propagation time of less than 0.1 ns.  
Two additional clocks (CLKA, CLKB) are global clocks that  
can be sourced from external pins or from internal logic  
signals within the SX-A device. CLKA and CLKB may be  
connected to sequential cells or to combinational logic. If  
6
v4 .0  
S X -A F a m i l y F P G A s  
R-Cell  
C-Cell  
D0  
D1  
Routed  
Data Input  
S1  
S0  
PRE  
Y
D2  
D3  
DirectConnect  
Input  
D
Q
Y
Sa  
Sb  
HCLK  
CLKA,  
CLKB,  
Internal Logic  
CLR  
DB  
CKS  
CKP  
A0 B0  
A1 B1  
Cluster 1  
Cluster 1  
Cluster 2  
Cluster 1  
Type 1 SuperCluster  
Type 2 SuperCluster  
Figure 4 Cluster Organization  
DirectConnect  
No antifuses  
0.1 ns maximum routing delay  
FastConnect  
One antifuse  
0.3 ns maximum routing delay  
Routing Segments  
Typically 2 antifuses  
Max. 5 antifuses  
Type 1 SuperClusters  
Figure 5 DirectConnect and FastConnect for Type 1 SuperClusters  
v4 .0  
7
S X -A F a m i l y F P G A s  
DirectConnect  
No antifuses  
0.1 ns maximum routing delay  
FastConnect  
One antifuse  
0.3 ns maximum routing delay  
Routing Segments  
Typically 2 antifuses  
Max. 5 antifuses  
Type 2 SuperClusters  
Figure 6 DirectConnect and FastConnect for Type 2 SuperClusters  
CLKA or CLKB pins are not used or sourced from signals, then  
or they can be grouped together to drive multiple quadrants.  
these pins must be set as LOW or HIGH on the board. They If QCLKs are not used as quadrant clocks, they will behave as  
must not be left floating (except in the A54SX72A where these  
clocks can be configured as regular I/Os and can float).  
regular I/Os. Bidirectional clock buffers are also available on  
the A54SX72A. The CLKA, CLKB, and QCLK circuits for  
Figure 8 describes the CLKA and CLKB circuit used in SX-A A54SX72A are shown in Figure 9 on page 9. Note that  
devices with the exception of A54SX72A.  
bidirectional clock buffers are only available in A54SX72A.  
For more information, refer to the Pin Descriptionsection  
on page 53.  
In addition, the A54SX72A device provides four quadrant  
clocks (QCLKA, QCLKB, QCLKC, QCLKD corresponding to  
bottom-left, bottom-right, top-left, and top-right locations on  
the die, respectively), which can be sourced from external  
pins or from internal logic signals within the device. Each of  
these clocks can individually drive up to a quarter of the chip,  
For more information on how to use quadrant clocks in the  
A54SX72A device, refer to the Global Clock Networks in  
Actels Antifuse Devices and Using A54SX72A and  
RT54SX72S Quadrant Clocks application notes.  
Table 1 SX-A Clock Resources  
A54SX08A  
A54SX16A  
A54SX32A  
A54SX72A  
Routed Clocks (CLKA, CLKB)  
2
1
0
2
1
0
2
1
0
2
1
4
Hardwired Clocks (HCLK)  
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)  
Constant Load  
Clock Network  
Clock Network  
HCLKBUF  
From Internal Logic  
Figure 7 SX-A HCLK Clock Pad  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
Note: This does not include the clock pad for HiRel A54SX72A.  
Figure 8 SX-A Routed Clock Structure  
8
v4 .0  
S X -A F a m i l y F P G A s  
OE  
From Internal Logic  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
CLKBIBUF  
QCLKBUF  
QCLKBUFI  
QCLKINT  
QCLKINTI  
QCLKBIBUF  
Figure 9 A54SX72A Routed Clock and QClock Structure  
O t h e r A r c h i t e c t u r a l F e a t u r e s  
Look for this symbol to ensure your valuable IP is secure.  
T e c h n o lo g y  
Actels SX-A family is implemented on a high-voltage,  
twin-well CMOS process using 0.22µ/0.25µ design rules. The  
metal-to-metal antifuse is comprised of a combination of  
amorphous silicon and dielectric material with barrier  
metals and has a programmed (onstate) resistance of  
25with capacitance of 1.0 fF for low signal impedance.  
u
e
For more information, refer to Actels Implementation of  
Security in Actel Antifuse FPGAs application note.  
P e r f o r m a n c e  
I /O M o d u l e s  
The combination of architectural features described above  
enables SX-A devices to operate with internal clock  
frequencies of 350 MHz, enabling very fast execution of even  
complex logic functions. Thus, the SX-A family is an optimal  
platform upon which to integrate the functionality  
previously contained in multiple CPLDs. In addition,  
designs that previously would have required a gate array to  
meet performance goals can be integrated into an SX-A  
device with dramatic improvements in cost and  
time-to-market. Using timing-driven place-and-route tools,  
designers can achieve highly deterministic device  
performance.  
Each user I/O on an SX-A device can be configured as an  
input, an output, a tristate output, or a bidirectional pin.  
Mixed I/O standards can be set for individual pins, though  
this is only allowed with the same voltage as the input. These  
I/Os, combined with array registers, can achieve  
clock-to-output-pad timing as fast as 3.8 ns even without the  
dedicated I/O registers. In most FPGAs, I/O cells that have  
embedded latches and flip-flops require instantiation in HDL  
code; this is a design complication not encountered in SX-A  
FPGAs. Fast pin-to-pin timing ensures that the device is able  
to interface with any other device in the system, which in  
turn enables parallel design of system components and  
reduces overall design time. All unused I/Os are configured as  
tristate outputs by Actels Designer software, for maximum  
flexibility when designing new boards or migrating existing  
designs.  
U s e r S e c u r it y  
The Actel FuseLock advantage ensures that unauthorized  
users will not be able to read back the contents of an Actel  
antifuse FPGA. In addition to the inherent strengths of the  
architecture, special security fuses that prevent internal  
probing and overwriting are hidden throughout the fabric of  
the device. They are located such that they cannot be  
accessed or bypassed without destroying the rest of the  
device, making both invasive and more-subtle noninvasive  
attacks ineffective against Actel antifuse FPGAs.  
SX-A inputs should be driven by high-speed push-pull devices  
with a low-resistance pull-up device. If the input voltage is  
greater than VCCI and a fast push-pull device is NOT used, the  
high-resistance pull-up of the driver and the internal circuitry  
of the SX-A I/O may create a voltage divider. This voltage  
divider could pull the input voltage below specification for  
some devices connected to the driver. A logic '1' may not be  
correctly presented in this case. For example, if an open  
v4 .0  
9
S X -A F a m i l y F P G A s  
drain driver is used with a pull-up resistor to 5V to provide the  
logic 1input, and VCCI is set to 3.3V on the SX-A device, the  
input signal may be pulled down by the SX-A input.  
During power-up/down (or partial up/down), all I/Os are  
tristated. VCCA and V do not have to be stable during  
CCI  
power-up/down. After the SX-A device is plugged into an  
electrically active system, the device will not degrade the  
reliability of or cause damage to the host system. The  
devices output pins are driven to a high impedance state  
until normal chip operating conditions are reached. Table 4  
Each I/O module has an available power-up resistor of  
approximately 50kthat can configure the I/O in a known  
state during power-up. Just slightly before VCCA reaches 2.5V,  
the resistors are disabled, so the I/Os will be controlled by  
user logic. See Table 2 and Table 3 for more information  
concerning available I/O features.  
summarizes the V  
voltage at which the I/Os behave  
CCA  
according to the users design for an SX-A device at room  
temperature for various ramp-up rates. The data reported  
assumes a linear ramp-up profile to 2.5V. For more  
information on power-up and hot-swapping, refer to the  
application note, Actel SX-A and RT54SX-S Devices in  
Hot-Swap and Cold-Sparing Applications.  
H o t S w a p p in g  
SX-A I/Os can be configured to be hot-swappable in  
compliance with the Compact PCI (5.0V) Specification.  
However, note that 3.3V PCI device is not hot swappable.  
Table 2 I/O Features  
Function  
Description  
Input Buffer Threshold Selections  
5V PCI, TTL  
3.3V PCI, LVTTL  
2.5V LVCMOS2  
Flexible Output Driver  
Output Buffer  
5V: PCI, TTL  
3.3V: PCI, LVTTL  
2.5V: LVCMOS2  
Hot-SwapCapability (3.3V PCI is not hot swappable)  
I/O on an unpowered device does not sink current  
Can be used for cold-sparing”  
Selectable on an individual I/O basis  
Individually selectable slew rate, high slew or low slew (The default is high slew  
rate). The slew is only affected on the falling edge of an output. Rising edges of  
outputs are not affected.  
Power-Up  
Individually selectable pull-ups and pull-downs during power-up (default is to  
power-up in tristate)  
Enables deterministic power-up of device  
VCCA and VCCI can be powered in any order  
Table 3 I/O Characteristics for All I/O Configurations  
Hot Swappable  
Slew Rate Control  
Power-up Resistor  
TTL, LVTTL, LVCMOS2  
3.3V PCI  
Yes  
No  
Yes. Only affects falling edges of outputs pull-up or pull-down  
No. High slew rate only  
No. High slew rate only  
pull-up or pull-down  
pull-up or pull-down  
5V PCI  
Yes  
Table 4 Power-up Time at which I/Os Become Active  
Supply Ramp Rate 0.25V/µs 0.025V/µs  
5V/ms  
ms  
2.5V/ms  
ms  
0.5V/ms  
ms  
0.25V/ms  
0.1V/ms 0.025V/ms  
Units  
µs  
10  
10  
10  
10  
µs  
96  
ms  
5.4  
4.7  
5.2  
5.0  
ms  
ms  
A54SX08A  
A54SX16A  
A54SX32A  
A54SX72A  
0.34  
0.36  
0.46  
0.41  
0.65  
2.7  
12.9  
11.0  
12.1  
12.1  
50.8  
41.6  
47.2  
47.2  
100  
100  
100  
0.62  
2.5  
0.74  
2.8  
0.67  
2.6  
1 0  
v4 .0  
S X -A F a m i l y F P G A s  
B o u n d a r y -S c a n T e s t i n g ( B S T )  
All SX-A devices are IEEE 1149.1 compliant and offer superior  
diagnostic and testing capabilities by providing Boundary  
Scan Testing (BST) and probing capabilities. The BST  
function is controlled through the special JTAG pins (TMS,  
TDI, TCK, TDO, and TRST). The functionality of the JTAG  
pins is defined by two available modes: Dedicated and  
Flexible. TMS cannot be employed as user I/O in either mode.  
Dedicated Mode  
In Dedicated mode, all JTAG pins are reserved for BST;  
designers cannot use them as regular I/Os. An internal  
pull-up resistor is automatically enabled on both TMS and  
TDI pins, and the TMS pin will function as defined in the  
IEEE 1149.1 (JTAG) specification.  
Figure 10 Device Selection Wizard  
Designer software. In Flexible mode, TDI, TCK and TDO pins  
may function as user I/Os or BST pins. The functionality is  
controlled by the BST TAP controller. The TAP controller  
receives two control inputs, TMS and TCK. Upon power-up,  
the TAP controller enters the Test-Logic-Reset state. In this  
state, TDI, TCK and TDO function as user I/Os. The TDI, TCK,  
and TDO are transformed from user I/Os into BST pins when  
a rising edge on TCK is detected while TMS is at logic low. To  
return to Test-Logic Reset state, TMS must be high for at  
To select Dedicated mode, users need to reserve the JTAG  
pins in Actels Designer software. To reserve the JTAG pins,  
users can check the "Reserve JTAG" box in "Device Selection  
Wizard" (Figure 10).  
Flexible Mode  
In Flexible mode, TDI, TCK, and TDO may be employed as  
either user I/Os or as JTAG input pins. The internal resistors  
on the TMS and TDI pins are not present in flexible JTAG  
mode.  
least five TCK cycles. An external 10K pull-up resistor to V  
should be placed on the TMS pin to pull it HIGH by default.  
CCI  
Table 5 describes the different configuration requirements of  
BST pins and their functionality in different modes.  
To select the Flexible mode, users need to uncheck the  
"Reserve JTAG" box in "Device Selection Wizard" in Actels  
Table 5 Boundary-Scan Pin Configurations and Functions  
Mode  
Designer "Reserve JTAG" Selection  
Checked  
TAP Controller State  
Dedicated (JTAG)  
Flexible (User I/O)  
Flexible (JTAG)  
Any  
Unchecked  
Unchecked  
Test-Logic-Reset  
Any EXCEPT Test-Logic-Reset  
TRST Pin  
observation. Silicon Explorer II automatically places the  
device into JTAG mode. However, probing functionality is  
only activated when the TRST pin is driven high or left  
floating, allowing the internal pull-up resistor to pull TRST  
HIGH. If the TRST pin is held LOW, the TAP controller  
remains in the Test-Logic-Reset state so no probing can be  
performed. However, the user must drive the TRST pin HIGH  
or allow the internal pull-up resistor to pull TRST HIGH.  
The TRST pin functions as a dedicated Boundary-Scan Reset  
pin when the "Reserve JTAG Test Reset" option is selected as  
shown in Figure 10. An internal pull-up resistor is  
permanently enabled on the TRST pin in this mode. Actel  
recommends connecting this pin to ground in normal  
operation to keep the JTAG state controller in the  
Test-Logic-Reset state. When JTAG is being used, it can be  
left floating or be driven high.  
When selecting the "Reserve Probe Pin" box as shown in  
Figure 10, direct the layout tool to reserve the PRA and PRB  
pins as dedicated outputs for probing. This "reserve" option is  
merely a guideline. If the designer assigns user I/Os to the  
PRA and PRB pins and selects the "Reserve Probe Pin"  
option, Designer Layout will override the "Reserve Probe Pin"  
option and place the user I/Os on those pins.  
When the "Reserve JTAG Test Reset" option is not selected,  
this pin will function as a regular I/O. If unused as an I/O in  
the design, it will be configured as a tristated output.  
P r o b in g C a p a b i li t i e s  
SX-A devices also provide an internal probing capability that  
is accessed with the JTAG pins. The Silicon Explorer II  
Diagnostic Hardware is used to control the TDI, TCK, TMS  
and TDO pins to select the desired nets for debugging. The  
user assigns the selected internal nets in Actels Silicon  
Explorer II software to the PRA/PRB output pins for  
To allow probing capabilities, the security fuse must not be  
programmed. Programming the security fuse disables the  
probe circuitry. Table 6 summarizes the possible device  
configurations for probing once the device leaves the  
"Test-Logic-Reset" JTAG state.  
v4 .0  
1 1  
S X -A F a m i l y F P G A s  
Table 6 Device Configuration Options for Probe Capability (TRST pin reserved)  
JTAG Mode  
TRST1  
Security Fuse Programmed  
PRA, PRB2  
TDI, TCK, TDO2  
Dedicated  
Flexible  
Dedicated  
Flexible  
LOW  
LOW  
HIGH  
HIGH  
No  
No  
No  
No  
Yes  
User I/O3  
User I/O3  
Probing Unavailable  
User I/O3  
Probe Circuit Outputs  
Probe Circuit Outputs  
Probe Circuit Inputs  
Probe Circuit Inputs  
Probe Circuit Secured Probe Circuit Secured  
Notes:  
1. If the TRST pin is not reserved, the device behaves according to TRST=HIGH as described in the table.  
2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input  
signals will not pass through these pins and may cause contention.  
3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by the  
Designer software.  
SX-A Probe Circuit Control Pins  
verification. The selected internal nets are assigned to the  
PRA/PRB pins for observation. Figure 11 illustrates the  
interconnection between Silicon Explorer II and the FPGA  
to perform in-circuit verification.  
SX-A devices contain internal probing circuitry that provides  
built-in access to every node in a design, enabling 100%  
real-time observation and analysis of a devices internal logic  
nodes without design iteration. The probe circuitry is  
accessed by Silicon Explorer II, an easy to use integrated  
verification and logic analysis tool that can sample data at  
100 MHz (asynchronous) or 66 MHz (synchronous).  
Silicon Explorer II attaches to a PCs standard COM port,  
turning the PC into a fully functional 18 channel logic  
analyzer. Silicon Explorer II allows designers to complete the  
design verification process at their desks and reduces  
verification time from several hours per cycle to a few  
seconds.  
D e s i g n C o n s i d e r a t io n s  
Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input  
or bidirectional ports. Since these pins are active during  
probing, critical input signals through these pins are not  
available. In addition, do not program the Security Fuse.  
Programming the Security Fuse disables the Probe Circuit.  
Actel recommends that you use a 70series termination  
resistor on every probe connector (TDI, TCK, TMS, TDO,  
PRA, PRB). The 70series termination is used to prevent  
data transmission corruption during probing and reading  
back the checksum.  
The Silicon Explorer II tool uses the boundary-scan ports  
(TDI, TCK, TMS, and TDO) to select the desired nets for  
SX-A FPGA  
70  
70 Ω  
70 Ω  
TDI  
TCK  
Serial Connection  
Silicon Explorer II  
TMS  
70 Ω  
TDO  
70 Ω  
70 Ω  
PRA  
PRB  
Figure 11 Probe Setup  
1 2  
v4 .0  
S X -A F a m i l y F P G A s  
D e v e l o p m e n t T o o l S u p p o r t  
Libero IDE provides an integrated design manager that  
seamlessly integrates design tools while guiding the user  
through the design flow, managing all design and log files,  
and passing necessary design data among tools. Libero IDE  
includes Synplicity ® Synplify for Actel, Mentor Graphics™  
ViewDraw for Actel, Actel's own Designer software, Model  
The SX-A family of FPGAs is fully supported by both the  
Actel LiberoIntegrated Design Environment and the  
Actel Designer FPGA Development Software. Actel's  
Designer software provides a comprehensive suite of  
back-end development tools for FPGA development. The  
Designer software includes timing-driven place and route, a  
world-class integrated static timing analyzer and  
constraints editor, and a design netlist schematic viewer.  
Technology™  
ModelSim  
HDL  
Simulator,  
and  
SynaptiCADWaveFormer Lite (Figure 12).  
TM  
Libero IDE Project Manager  
Design Creation/Verification  
ACTgen  
Macro Builder  
HDL Editor  
User  
Testbench  
Stimulus Generation  
Functional Simulation  
Synthesis  
Synthesis  
Libraries  
Design Synthesis and Optimization  
Simulator  
Schematic Entry  
Timing Simulation  
Design Implementation  
Timer  
Compile  
SmartPower  
Optimization and DRC  
Static Timing Analyzer  
and Constraints Editor  
Power Analysis  
Layout  
NetlistViewer  
PinEdit  
I/O Assignments  
Schematic Viewer  
Timing Driven Place-and-Route  
ChipEdit and  
ChipViewer  
Placement Editor  
Back-Annotate  
Cross-Probing  
Fuse or Bitstream  
System Verification  
Programming  
Silicon Sculptor  
Actel  
Device  
(Antifuse and Flash Families)  
Silicon Explorer II  
(Antifuse and Flash Families)  
FlashPro  
(Flash Families)  
FlashPro Lite  
(ProASICPLUS Family)  
BP Microsystems  
Programmers  
Figure 12 Design Flow  
v4 .0  
1 3  
S X -A F a m i l y F P G A s  
2 . 5 V /3 . 3 V /5 V O p e r a t i n g C o n d i t i o n s  
1
A b s o l u t e M a x im u m R a t i n g s  
Symbol  
Parameter  
Limits  
Units  
VCCI  
VCCA  
VI  
DC Supply Voltage  
DC Supply Voltage  
Input Voltage  
0.3 to +6.0  
0.3 to +3.0  
0.5 to +5.75  
0.5 to +VCCI  
65 to +150  
V
V
V
VO  
Output Voltage  
V
TSTG  
Note:  
Storage Temperature  
°C  
1. Stresses beyond those listed under Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may  
affect device reliability. Devices should not be operated outside  
the Recommended Operating Conditions.  
R e c o m m e n d e d O p e r a t i n g C o n d it io n s  
Parameter  
Commercial  
Industrial  
Military  
Units  
Temperature Range1  
2.5V Power Supply Range  
3.3V Power Supply Range  
5V Power Supply Range  
Note:  
0 to +70  
2.25 to 2.75  
3.0 to 3.6  
40 to +85  
2.25 to 2.75  
3.0 to 3.6  
55 to +125  
2.25 to 2.75  
3.0 to 3.6  
°C  
V
V
4.75 to 5.25  
4.75 to 5.25  
4.75 to 5.25  
V
1. Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used  
for military.  
3 . 3 V LVT T L a n d 5 V T T L E le c t r ic a l S p e c ific a t io n s  
Commercial  
Industrial  
Symbol Parameter  
Min.  
Max.  
Min.  
Max.  
Units  
VCCI = MIN  
(IOH = -1mA) 0.9 VCCI  
0.9 VCCI  
V
VI = VIH or VIL  
VOH  
VCCI = MIN, VCCI  
(IOH = -8mA)  
(IOL= 1mA)  
(IOL= 12mA)  
2.4  
2.4  
V
V
V
VI = VIH or VIL  
VCCI = MIN, VCCI  
VI = VIH or VIL  
0.4  
0.4  
0.4  
0.4  
VOL  
VCCI = MIN, VCCI  
VI = VIH or VIL  
VIL  
Input Low Voltage  
0.8  
0.8  
V
V
VIH  
Input High Voltage  
2.0  
10  
10  
VCCI + 0.5  
2.0  
10  
10  
VCCI + 0.5  
IIL/ IIH  
IOZ  
Input Leakage Current, VIN = VCCI or GND  
3-State Output Leakage Current  
Input Transition Time tR, tF  
I/O Capacitance  
10  
10  
10  
10  
10  
10  
10  
10  
10  
20  
µA  
µA  
ns  
pF  
mA  
tR, tF  
CIO  
ICC  
Standby Current  
IV Curve* Can be derived from the IBIS model on the web.  
Note: *The IBIS model can be found at www.actel.com/support/support/support_ibis.html.  
1 4  
v4 .0  
S X -A F a m i l y F P G A s  
2 . 5 V L V C M O S 2 E l e c t r ic a l S p e c if i c a t io n s  
Symbol Parameter  
Commercial  
Min. Max. Min.  
(IOH = -100µA) 2.1  
Industrial  
Max.  
Units  
VDD = MIN,  
VI = VIH or VIL  
2.1  
2.0  
1.7  
V
VDD = MIN,  
VOH  
(IOH = -1 mA)  
(IOH = -2 mA)  
(IOL= 100µA)  
(IOL= 1mA)  
2.0  
1.7  
V
V
V
V
V
VI = VIH or VIL  
VDD = MIN,  
VI = VIH or VIL  
VDD = MIN,  
VI = VIH or VIL  
0.2  
0.4  
0.7  
0.7  
0.2  
0.4  
0.7  
0.7  
VDD = MIN,  
VOL  
VI = VIH or VIL  
VDD = MIN,  
VI = VIH or VIL  
(IOL= 2 mA)  
VIL  
Input Low Voltage, VOUT VVOL(max)  
Input High Voltage, VOUT VVOH(min)  
3-State Output Leakage Current, VOUT = VCCI or GND  
Input Transition Time tR, tF  
-0.3  
-0.3  
V
V
VIH  
IOZ  
1.7 VDD + 0.3 1.7 VDD + 0.3  
10  
10  
10  
10  
10  
10  
10  
10  
10  
20  
µA  
ns  
pF  
mA  
tR, tF  
CIO  
ICC  
I/O Capacitance  
Standby Current  
IV Curve1 Can be derived from the IBIS model on the web.  
Note:  
1. The IBIS model can be found at www.actel.com/support/support/support_ibis.html.  
P C I C o m p l i a n c e f o r t h e S X -A F a m i l y  
The SX-A family supports 3.3V and 5V PCI and is compliant  
with the PCI Local Bus Specification Rev. 2.1.  
v4 .0  
1 5  
S X -A F a m i l y F P G A s  
D C S p e c if i c a t io n s ( 5 V P C I O p e r a t io n )  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Units  
VCCA  
VCCI  
VIH  
Supply Voltage for Array  
Supply Voltage for I/Os  
Input High Voltage  
2.3  
4.75  
2.0  
2.7  
5.25  
V
V
VCCI + 0.5  
0.8  
V
VIL  
Input Low Voltage  
0.5  
V
IIH  
Input High Leakage Current1  
Input Low Leakage Current1  
Output High Voltage  
VIN = 2.7  
70  
µA  
µA  
V
IIL  
VIN = 0.5  
70  
VOH  
VOL  
CIN  
IOUT = 2 mA  
IOUT = 3 mA, 6 mA  
2.4  
5
Output Low Voltage2  
Input Pin Capacitance3  
CLK Pin Capacitance  
0.55  
10  
V
pF  
pF  
CCLK  
Notes:  
12  
1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.  
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter includes  
FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.  
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).  
1 6  
v4 .0  
S X -A F a m i l y F P G A s  
A C S p e c if i c a t io n s ( 5 V P C I O p e r a t io n )  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Units  
0 < VOUT 1.4 1  
1.4 VOUT < 2.4 1, 2  
44  
mA  
mA  
Switching Current High  
(44 + (VOUT 1.4)/0.024)  
IOH(AC)  
Equation A  
on page 18  
1, 3  
3.1 < VOUT < VCCI  
VOUT = 3.1 3  
(Test Point)  
142  
mA  
mA  
mA  
V
OUT 2.2 1  
95  
2.2 > VOUT > 0.55 1  
(VOUT/0.023)  
Switching Current Low  
IOL(AC)  
Equation B  
on page 18  
0.71 > VOUT > 0 1, 3  
(Test Point)  
VOUT = 0.71 3  
206  
mA  
mA  
ICL  
Low Clamp Current  
Output Rise Slew Rate  
Output Fall Slew Rate  
5 < VIN 1  
25 + (VIN + 1)/0.015  
slewR  
slewF  
Notes:  
0.4V to 2.4V load 4  
2.4V to 0.4V load 4  
1
1
5
5
V/ns  
V/ns  
1. Refer to the V/I curves in Figure 13 on page 18. Switching current characteristics for REQ# and GNT# are permitted to be one half of that  
specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are  
system outputs. Switching Current Highspecifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain  
outputs.  
2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the  
voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.  
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B)  
are provided with the respective diagrams in Figure 13 on page 18. The equation defined maxima should be met by design. In order to  
facilitate component testing, a maximum current test point is defined for each side of the output driver.  
4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point  
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an  
unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is  
now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to  
revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard  
designers must bear in mind that rise and fall times faster than this specification could occur and should ensure that signal integrity  
modeling accounts for this. Rise slew rate does not apply to open drain outputs.  
pin  
1/2 in. max.  
output  
buffer  
50 pF  
v4 .0  
1 7  
S X -A F a m i l y F P G A s  
Figure 13 shows the 5V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.  
200.0  
150.0  
100.0  
50.0  
I
MAX Spec  
OL  
I
OL  
I
MIN Spec  
3.5  
OL  
0.0  
0
0.5  
1
1.5  
2
2.5  
3
4
4.5  
I
5
5.5  
6
–50.0  
–100.0  
–150.0  
–200.0  
I
MIN Spec  
OH  
MAX Spec  
OH  
I
OH  
Voltage Out (V)  
Figure 13 5V PCI V/I Curve for SX-A Family  
Equation A  
Equation B  
IOH = 11.9 * (VOUT 5.25) * (VOUT + 2.45)  
for VCCI > VOUT > 3.1V  
I
OL = 78.5 * V  
* (4.4 V  
)
OUT  
OUT  
for 0V < VOUT < 0.71V  
DC S p e c ific a t io n s (3 . 3 V P C I O p e r a t io n )  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Units  
VCCA  
VCCI  
VIH  
Supply Voltage for Array  
Supply Voltage for I/Os  
Input High Voltage  
2.3  
3.0  
2.7  
3.6  
V
V
0.5VCCI VCCI + 0.5  
V
VIL  
Input Low Voltage  
0.5  
0.7VCCI  
10  
0.3VCCI  
V
IIPU  
Input Pull-up Voltage1  
Input Leakage Current2  
Output High Voltage  
Output Low Voltage  
Input Pin Capacitance3  
CLK Pin Capacitance  
V
IIL  
0 < VIN < VCCI  
IOUT = 500 µA  
IOUT = 1500 µA  
+10  
µA  
V
VOH  
VOL  
CIN  
0.9VCCI  
0.1VCCI  
10  
V
pF  
pF  
CCLK  
Notes:  
5
12  
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated  
network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications sensitive to  
static power utilization.  
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.  
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).  
1 8  
v4 .0  
S X -A F a m i l y F P G A s  
AC S p e c ific a t io n s (3 . 3 V P C I O p e r a t io n )  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Units  
1
0 < VOUT 0.3VCCI  
12VCCI  
mA  
mA  
1
Switching Current High  
0.3VCCI VOUT < 0.9VCCI  
(17.1(VCCI VOUT))  
IOH(AC)  
Equation C  
on page 20  
1, 2  
0.7VCCI < VOUT < VCCI  
2
(Test Point)  
VOUT = 0.7VCC  
32VCCI  
mA  
mA  
mA  
1
V
CCI > VOUT 0.6VCCI  
16VCCI  
1
Switching Current Low  
0.6VCCI > VOUT > 0.1VCCI  
0.18VCCI > VOUT > 0 1, 2  
(26.7VOUT)  
IOL(AC)  
Equation D  
on page 20  
2
(Test Point)  
VOUT = 0.18VCC  
38VCCI  
mA  
mA  
ICL  
Low Clamp Current  
High Clamp Current  
Output Rise Slew Rate  
Output Fall Slew Rate  
3 < VIN 1  
25 + (VIN + 1)/0.015  
ICH  
VCCI + 4 > VIN VCCI + 1  
0.2VCCI - 0.6VCCI load 3  
0.6VCCI - 0.2VCCI load 3  
25 + (VIN VCCI 1)/0.015  
mA  
slewR  
slewF  
Notes:  
1
1
4
4
V/ns  
V/ns  
1. Refer to the V/I curves in Figure 14 on page 20. Switching current characteristics for REQ# and GNT# are permitted to be one half of that  
specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are  
system outputs. Switching Current Highspecifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain  
outputs.  
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D)  
are provided with the respective diagrams in Figure 14 on page 20. The equation defined maximum should be met by design. In order to  
facilitate component testing, a maximum current test point is defined for each side of the output driver.  
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point  
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an  
unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum  
parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.  
pin  
1/2 in. max.  
output  
buffer  
10 pF  
1k/25Ω  
pin  
1k/25Ω  
output  
buffer  
10 pF  
v4 .0  
1 9  
S X -A F a m i l y F P G A s  
Figure 14 shows the 3.3V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.  
150.0  
100.0  
50.0  
I
MAX Spec  
OL  
I
OL  
I
MIN Spec  
2.5  
OL  
0.0  
0
0.5  
MIN Spec  
1
1.5  
2
3
3.5  
4
50.0  
100.0  
150.0  
I
OH  
I
MAX Spec  
I
OH  
OH  
Voltage Out (V)  
Figure 14 3.3V PCI V/I Curve for SX-A Family  
Equation C  
Equation D  
IOH = (98.0/V ) * (VOUT V ) * (VOUT + 0.4V )  
IOL = (256/V ) * V  
* (VCCI V  
)
CCI  
CCI  
CCI  
CCI  
OUT  
OUT  
for 0.7 VCCI < VOUT < V  
for 0V < VOUT < 0.18 V  
CCI  
CCI  
2 0  
v4 .0  
S X -A F a m i l y F P G A s  
J u n c t i o n T e m p e r a t u r e ( T J )  
P = Power  
= Junction to ambient of package. θ numbers are  
located in the Package Thermal Characteristics table  
below.  
The temperature variable in the Designer Series software  
refers to the junction temperature, not the ambient  
temperature. This is an important distinction because the  
heat generated from dynamic power consumption is usually  
hotter than the ambient temperature. Equation 1, shown  
below, can be used to calculate junction temperature.  
θ
ja  
ja  
P a c k a g e T h e r m a l C h a r a c t e r i s t i c s  
The device junction-to-case thermal characteristic is θjc,  
and the junction-to-ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two different  
air flow rates.  
Junction Temperature = T + T  
(1)  
a
Where:  
T = Ambient Temperature  
a
The maximum junction temperature is 150°C.  
T = Temperature gradient between junction (silicon) and  
ambient  
A sample calculation of the absolute maximum power  
dissipation allowed for a TQFP 176-pin package at  
commercial temperature and still air is as follows:  
T = θ * P  
(2)  
ja  
Max. junction temp. (°C) – Max. ambient temp. (°C) 150°C – 70°C  
--------------------------------------------------------------------------------------------------------------------------------- ----------------------------------  
= 2.86W  
Maximum Power Allowed =  
=
θja(°C/W)  
28°C/W  
P a c k a g e T h e r m a l C h a r a c t e r is t ic s  
θja  
θja  
Package Type  
Pin Count  
θjc  
Still Air  
300 ft/min  
Units  
Thin Quad Flat Pack (TQFP)  
100  
144  
176  
208  
208  
329  
144  
256  
484  
12  
11  
11  
8
37.5  
32  
30  
24  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thin Quad Flat Pack (TQFP)  
Thin Quad Flat Pack (TQFP)  
28  
21  
Plastic Quad Flat Pack (PQFP)1  
Plastic Quad Flat Pack (PQFP) with Heat Spreader2  
Plastic Ball Grid Array (PBGA)  
30  
23  
3.8  
3
20  
17  
18  
13.5  
26.7  
25  
Fine Pitch Ball Grid Array (FBGA)  
Fine Pitch Ball Grid Array (FBGA)  
Fine Pitch Ball Grid Array (FBGA)  
1. The A54SX08A PQ208 has no heat spreader.  
3.8  
3.3  
3
38.8  
30  
20  
15  
2. The SX-A PQ208 package has a heat spreader for A54SX16A, A54SX32A, and A54SX72A.  
For Power Estimator information, please go to http://www.actel.com/products/tools/index.html.  
v4 .0  
2 1  
S X -A F a m i l y F P G A s  
S X -A T i m i n g M o d e l *  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Cell  
t
t
= 0.3 ns  
= 0.4 ns  
I/O Module  
I/O Module  
IRD1  
IRD2  
t
= 0.5 ns  
INYH  
t
= 2.0 ns  
DHL  
t
= 0.8 ns  
PD  
t
t
t
= 0.3 ns  
RD1  
= 0.7 ns  
RD4  
= 1.2 ns  
RD8  
I/O Module  
t
t
t
t
= 2.0 ns  
Register  
Cell  
DHL  
D
Q
t
t
RD1  
= 0.7 ns  
= 0.3 ns  
SUD  
HD  
t
= 0.0 ns  
= 1.4 ns  
ENZL  
Routed  
Clock  
t
= 1.2 ns  
RCKH  
t
= 0.6 ns  
(100% Load)  
RCO  
I/O Module  
= 2.0 ns  
DHL  
Register  
Cell  
I/O Module  
t
= 1.0 ns  
INYH  
D
Q
t
t
t
RD1  
= 0.7 ns  
= 0.0 ns  
= 0.3 ns  
SUD  
HD  
= 1.4 ns  
ENZL  
Hard-Wired  
Clock  
t
t
RCO  
= 1.1 ns  
= 0.6 ns  
HCKH  
Note: *Values shown for A54SX08A, 3, worst-case commercial conditions at 3.3V PCI with standard place-and-route.  
S a m p l e P a t h C a l c u l a t i o n s  
H a r d w i r e d C lo c k  
R o u t e d C l o c k  
External Setup = (tINYH + tIRD2 + tSUD) tHCKH  
External Setup = (tINYH + tIRD2 + tSUD) tRCKH  
= 0.5 + 0.4 + 0.71.2= 0.4 ns  
= 0.5 + 0.4+ 0.7 1.1 = 0.5 ns  
Clock-to-Out (Pad-to-Pad)  
Clock-to-Out (Pad-to-Pad)  
= tHCKH + tRCO + tRD1 + tDHL  
= tRCKH + tRCO + tRD1 + tDHL  
= 1.1 + 0.6 + 0.3 + 2.0= 4.0 ns  
=
1.2+ 0.6 + 0.3 + 2.0 = 4.1 ns  
2 2  
v4 .0  
S X -A F a m i l y F P G A s  
O u t p u t B u f f e r D e l a y s  
E
D
To AC test loads (shown below)  
PAD  
TRIBUFF  
VCC  
VCC  
VCC  
In  
GND  
50%  
VOH  
En  
Out  
GND  
10%  
50%  
En  
GND  
90%  
50%  
50%  
VCC  
50%  
VOH  
50%  
1.5V  
1.5V  
VOL  
Out  
VOL  
Out  
GND  
1.5V  
1.5V  
tDLH  
tDHL  
tENZL  
tENLZ  
tENZH  
tENHZ  
A C T e s t L o a d s  
Load 3  
Load 2  
Load 1  
(Used to measure  
propagation delay)  
(Used to measure disable delays)  
(Used to measure enable delays)  
VCC  
VCC  
GND  
GND  
To the output  
under test  
35 pF  
R to VCC for tPLZ  
R to GND for tPHZ  
R = 1 kΩ  
R to VCC for tPZL  
R to GND for tPZH  
R = 1 kΩ  
To the output  
under test  
To the output  
under test  
5 pF  
35 pF  
I n p u t B u f f e r D e l a y s  
C -C e l l D e l a y s  
S
A
B
Y
Y
PAD  
INBUF  
VCC  
GND  
S, A, or B  
50% 50%  
VCC  
3V  
In  
0V  
50%  
1.5V  
VCC  
1.5V  
50%  
Out  
50%  
GND  
tPD  
tPD  
Out  
GND  
50%  
VCC  
50%  
Out  
GND  
tPD  
50%  
tPD  
v4 .0  
2 3  
S X -A F a m i l y F P G A s  
C e l l T i m i n g C h a r a c t e r i s t i c s  
F l ip -F lo p s  
D
Q
PRESET  
CLR  
CLK  
(Positive edge triggered)  
tHD  
D
tSUD  
CLK  
tHP  
tHPWH  
tRPWH  
,
tHPWL  
,
tRPWL  
tRCO  
Q
tCLR  
tPRESET  
CLR  
tWASYN  
PRESET  
L o n g T r a c k s  
T i m i n g C h a r a c t e r i s t i c s  
Some nets in the design use long tracks. Long tracks are special  
routing resources that span multiple rows, columns, or modules.  
Long tracks employ three to five antifuse connections. This  
increases capacitance and resistance, resulting in longer net  
delays for macros connected to long tracks. Typically, up to  
6 percent of nets in a fully utilized device require long tracks.  
Long tracks contribute approximately 4 ns to 8.4 ns delay. This  
additional delay is represented statistically in higher fanout  
routing delays.  
Timing characteristics for SX-A devices fall into three  
categories: family-dependent, device-dependent, and  
design-dependent. The input and output buffer characteristics  
are common to all SX-A family members. Internal routing  
delays are device-dependent. Design dependency means actual  
delays are not determined until after placement and routing of  
the users design are complete. Delay values may then be  
determined by using the Timer utility or performing simulation  
with post-layout delays.  
T im i n g D e r a t in g  
C r it ic a l N e t s a n d T y p i c a l N e t s  
SX-A devices are manufactured with a CMOS process.  
Therefore, device performance varies according to  
temperature, voltage, and process changes. Minimum timing  
parameters reflect maximum operating voltage, minimum  
operating temperature, and best-case processing. Maximum  
timing parameters reflect minimum operating voltage,  
maximum operating temperature, and worst-case processing.  
Propagation delays are expressed only for typical nets,  
which are used for initial design performance evaluation.  
Critical net delays can then be applied to the most timing  
critical paths. Critical nets are determined by net property  
assignment prior to placement and routing. Up to 6 percent  
of the nets in a design may be designated as critical, while  
90 percent of the nets in a design are typical.  
T e m p e r a t u r e a n d V o l t a g e D e r a t i n g F a c t o r s  
( N o r m a li z e d t o W o r s t -C a s e C o m m e r c i a l, T J = 7 0 °C , V C C A = 2 . 3 V )  
Junction Temperature (TJ)  
VCCA  
2.3V  
2.5V  
2.7V  
55°C  
0.75  
40°C  
0.79  
0°C  
0.88  
0.82  
0.79  
25°C  
0.89  
0.83  
0.79  
70°C  
1.00  
0.93  
0.88  
85°C  
1.04  
0.97  
0.92  
125°C  
1.16  
0.70  
0.74  
1.08  
0.66  
0.69  
1.02  
2 4  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 0 8 A T i m i n g C h a r a c t e r i s t i c s  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s , V C C A = 2 . 3 V, V C C I = 3 . 0 V, T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
0.8  
1.0  
1.1  
1.3  
1.8  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, Direct Connect  
0.1  
0.3  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.1  
0.3  
0.3  
0.5  
0.6  
0.8  
1.4  
2.0  
0.1  
0.3  
0.4  
0.5  
0.7  
0.9  
1.5  
2.2  
0.1  
0.4  
0.5  
0.6  
0.8  
1.0  
1.8  
2.6  
0.1  
0.6  
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.6  
0.7  
0.7  
0.7  
0.8  
0.8  
0.8  
0.9  
0.9  
0.9  
1.1  
1.1  
1.3  
1.6  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Hold Time  
tPRESET  
tSUD  
0.7  
0.0  
1.3  
0.3  
0.3  
0.8  
0.0  
1.5  
0.4  
0.3  
0.9  
0.0  
1.7  
0.4  
0.3  
1.1  
0.0  
2.0  
0.5  
0.4  
1.6  
0.0  
2.8  
0.7  
0.6  
tHD  
tWASYN  
tRECASYN  
tHASYN  
Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
0.5  
0.8  
0.6  
1.0  
0.7  
1.0  
0.8  
1.3  
1.1  
1.8  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.3  
0.5  
0.6  
0.8  
1.4  
2.0  
0.3  
0.5  
0.7  
0.9  
1.5  
2.2  
0.4  
0.6  
0.8  
1.0  
1.8  
2.6  
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
v4 .0  
2 5  
S X -A F a m i l y F P G A s  
A 5 4 S X 0 8 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 2 . 3 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.1  
1.1  
1.3  
1.2  
1.5  
1.4  
1.8  
1.6  
2.4  
2.2  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
0.2  
0.2  
0.2  
0.3  
0.4  
Minimum Period  
2.8  
3.2  
3.6  
4.2  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
238  
166 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
1.1  
1.3  
1.2  
1.4  
1.3  
1.5  
1.2  
1.4  
1.4  
1.6  
1.5  
1.7  
1.3  
1.6  
1.6  
1.9  
1.7  
2.0  
1.6  
1.9  
1.9  
2.2  
2.0  
2.3  
2.2  
2.6  
2.6  
3.0  
2.8  
3.1  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.3  
0.4  
0.4  
0.4  
0.7  
0.7  
2 6  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 0 8 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 3 . 0 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.1  
1.0  
1.2  
1.2  
1.4  
1.3  
1.6  
1.5  
2.4  
2.3  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
0.2  
0.2  
0.2  
0.3  
0.4  
Minimum Period  
2.8  
3.2  
3.6  
4.2  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
238  
166 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
1.0  
1.3  
1.1  
1.4  
1.2  
1.5  
1.2  
1.4  
1.3  
1.5  
1.4  
1.6  
1.3  
1.7  
1.5  
1.9  
1.6  
2.0  
1.6  
2.0  
1.8  
2.2  
1.9  
2.3  
2.2  
2.8  
2.5  
3.1  
2.6  
3.4  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.2  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.7  
0.7  
v4 .0  
2 7  
S X -A F a m i l y F P G A s  
A 5 4 S X 0 8 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 4 . 7 5 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.0  
1.0  
1.2  
1.1  
1.4  
1.3  
1.5  
1.5  
2.3  
2.2  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
0.2  
0.2  
0.2  
0.3  
0.4  
Minimum Period  
2.8  
3.2  
3.6  
4.2  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
238  
166 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
1.0  
1.2  
1.1  
1.3  
1.2  
1.4  
1.1  
1.4  
1.3  
1.6  
1.4  
1.7  
1.2  
1.6  
1.5  
1.9  
1.6  
2.0  
1.5  
1.8  
1.8  
2.1  
1.9  
2.2  
2.0  
2.6  
2.5  
3.1  
2.6  
3.2  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.2  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.7  
0.7  
2 8  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 0 8 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 2 . 3 V , T J = 7 0 °C )  
‘–3Speed ‘–2Speed ‘–1Speed StdSpeed ‘–FSpeed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter Description  
2.5V LVTTL Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
3.2  
2.6  
3.8  
3.0  
4.3  
3.4  
5.0  
4.0  
7.0  
5.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
11.3  
2.4  
13.0  
2.8  
14.8  
3.2  
17.4  
3.7  
24.4  
5.2  
Data-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
11.8  
3.4  
13.7  
4.0  
15.5  
4.5  
18.2  
5.3  
25.5  
7.5  
Enable-to-Pad, L to Z  
2.1  
2.5  
2.8  
3.3  
4.7  
Enable-to-Pad, H to Z  
3.4  
4.0  
4.5  
5.3  
7.5  
Delta LOW to HIGH  
0.031  
0.017  
0.057  
0.037  
0.017  
0.060  
0.043  
0.023  
0.071  
0.051  
0.023  
0.086  
0.071 ns/pF  
0.037 ns/pF  
0.117 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Note:  
Delta HIGH to LOWlow slew  
1. Delays based on 35 pF loading.  
v4 .0  
2 9  
S X -A F a m i l y F P G A s  
A 5 4 S X 0 8 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 3 . 0 V , T J = 7 0 °C )  
‘–3Speed ‘–2Speed ‘–1Speed StdSpeed ‘–FSpeed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter Description  
3.3V PCI Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta LOW to HIGH  
2.0  
2.0  
2.3  
2.3  
2.6  
2.6  
3.0  
3.0  
4.3  
4.3  
3.1  
3.1  
5.3  
5.3  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
1.4  
1.7  
1.9  
2.2  
1.4  
1.7  
1.9  
2.2  
2.5  
2.8  
3.2  
3.8  
2.5  
2.8  
3.2  
3.8  
0.025  
0.015  
0.03  
0.015  
0.03  
0.015  
0.04  
0.015  
0.045 ns/pF  
0.025 ns/pF  
Delta HIGH to LOW  
3.3V LVTTL Output Module Timing2  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
2.7  
2.5  
3.2  
2.8  
3.6  
3.2  
4.2  
3.8  
5.9  
5.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
9.0  
10.4  
2.6  
11.8  
2.9  
13.8  
3.4  
19.4  
4.8  
2.2  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
15.8  
2.9  
18.9  
3.3  
21.3  
3.7  
25.4  
4.4  
34.9  
6.2  
Enable-to-Pad, L to Z  
2.9  
3.3  
3.7  
4.4  
6.2  
Enable-to-Pad, H to Z  
2.5  
2.8  
3.2  
3.8  
5.3  
Delta LOW to HIGH  
0.025  
0.015  
0.053  
0.03  
0.015  
0.053  
0.03  
0.015  
0.067  
0.04  
0.015  
0.073  
0.045 ns/pF  
0.025 ns/pF  
0.107 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Notes:  
Delta HIGH to LOWlow slew  
1. Delays based on 10 pF loading and 25resistance.  
2. Delays based on 35 pF loading.  
3 0  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 0 8 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 4 . 7 5 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
5.0V PCI Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
2.1  
2.7  
2.5  
3.1  
2.8  
3.5  
3.3  
4.2  
4.6  
5.8  
15.9  
2.8  
9.7  
2.8  
6.4  
6.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
7.4  
8.5  
9.6  
11.3  
2.0  
1.3  
1.5  
1.7  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
3.5  
5.1  
5.9  
6.9  
1.3  
1.5  
1.7  
2.0  
Enable-to-Pad, L to Z  
3.0  
3.5  
3.9  
4.6  
Enable-to-Pad, H to Z  
3.0  
3.5  
3.9  
4.6  
Delta LOW to HIGH  
0.016  
0.026  
0.04  
0.016  
0.03  
0.052  
0.02  
0.032  
0.06  
0.022  
0.04  
0.07  
0.032 ns/pF  
0.052 ns/pF  
0.096 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Delta HIGH to LOWlow slew  
5.0V TTL Output Module Timing2  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
1.9  
2.5  
2.2  
2.9  
2.5  
3.3  
3.0  
3.9  
4.2  
5.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
6.6  
7.6  
8.6  
10.2  
3.2  
14.2  
4.5  
2.1  
2.4  
2.7  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
7.4  
8.4  
9.5  
11.0  
3.6  
15.4  
5.0  
2.3  
2.7  
3.1  
Enable-to-Pad, L to Z  
3.6  
4.2  
4.7  
5.6  
7.8  
Enable-to-Pad, H to Z  
3.0  
3.5  
3.9  
4.6  
6.4  
Delta LOW to HIGH  
0.014  
0.023  
0.043  
0.017  
0.029  
0.046  
0.017  
0.031  
0.057  
0.023  
0.037  
0.066  
0.031 ns/pF  
0.051 ns/pF  
0.089 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Notes:  
Delta HIGH to LOWlow slew  
1. Delays based on 50 pF loading.  
2. Delays based on 35 pF loading  
v4 .0  
3 1  
S X -A F a m i l y F P G A s  
A 5 4 S X 1 6 A T i m i n g C h a r a c t e r i s t i c s  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s , V C C A = 2 . 3 V , V C C I = 3 . 0 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
0.8  
1.0  
1.1  
1.3  
1.8  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, Direct Connect  
0.1  
0.3  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.1  
0.3  
0.3  
0.5  
0.6  
0.8  
1.4  
2.0  
0.1  
0.3  
0.4  
0.5  
0.7  
0.9  
1.5  
2.2  
0.1  
0.4  
0.5  
0.6  
0.8  
1.0  
1.8  
2.6  
0.1  
0.6  
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.6  
0.7  
0.7  
0.7  
0.8  
0.8  
0.8  
0.9  
0.9  
0.9  
1.1  
1.1  
1.3  
1.6  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Removal Time  
tPRESET  
tSUD  
0.7  
0.0  
1.3  
0.3  
0.3  
0.8  
0.0  
1.5  
0.4  
0.3  
0.9  
0.0  
1.7  
0.4  
0.3  
1.1  
0.0  
2.0  
0.5  
0.4  
1.6  
0.0  
2.8  
0.7  
0.6  
tHD  
tWASYN  
tRECASYN  
tHASYN  
Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
0.5  
0.8  
0.6  
1.0  
0.7  
1.0  
0.8  
1.3  
1.1  
1.8  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.3  
0.5  
0.6  
0.8  
1.4  
2.0  
0.3  
0.5  
0.7  
0.9  
1.5  
2.2  
0.4  
0.6  
0.8  
1.0  
0.8  
2.6  
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
3 2  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 1 6 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 2 . 3 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.2  
1.1  
1.5  
1.4  
1.6  
1.5  
1.9  
1.8  
2.9  
2.8  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
0.1  
0.1  
0.1  
0.1  
0.2  
Minimum Period  
2.7  
3.2  
3.6  
4.2  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
238  
166 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
1.2  
1.3  
1.5  
1.6  
1.7  
1.8  
1.3  
1.4  
1.7  
1.8  
1.9  
2.0  
1.5  
1.6  
2.0  
2.1  
2.2  
2.3  
1.8  
1.9  
2.3  
2.4  
2.6  
2.7  
2.5  
2.7  
3.3  
3.4  
3.6  
3.8  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.3  
0.5  
0.5  
0.4  
0.6  
0.6  
0.4  
0.7  
0.7  
0.4  
0.8  
0.8  
0.6  
1.3  
1.3  
v4 .0  
3 3  
S X -A F a m i l y F P G A s  
A 5 4 S X 1 6 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 3 . 0 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.2  
1.1  
1.5  
1.4  
1.6  
1.5  
1.9  
1.8  
2.9  
2.8  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
0.1  
0.1  
0.1  
0.1  
0.2  
Minimum Period  
2.7  
3.2  
3.6  
4.2  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
238  
166 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
1.2  
1.3  
1.5  
1.6  
1.7  
1.8  
1.3  
1.4  
1.7  
1.8  
1.9  
2.0  
1.5  
1.7  
2.0  
2.1  
2.2  
2.3  
1.8  
2.0  
2.3  
2.4  
2.6  
2.7  
2.4  
2.8  
3.3  
3.4  
3.6  
3.8  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.3  
0.5  
0.5  
0.4  
0.6  
0.6  
0.4  
0.7  
0.7  
0.4  
0.8  
0.8  
0.6  
1.3  
1.3  
3 4  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 1 6 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 4 . 7 5 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.2  
1.1  
1.4  
1.3  
1.6  
1.5  
1.8  
1.7  
2.8  
2.7  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
0.1  
0.1  
0.1  
0.1  
0.2  
Minimum Period  
2.7  
3.2  
3.6  
4.2  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
238  
166 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
1.1  
1.2  
1.4  
1.5  
1.6  
1.7  
1.2  
1.4  
1.6  
1.7  
1.9  
2.0  
1.4  
1.6  
1.8  
1.9  
2.1  
2.2  
1.7  
1.8  
2.2  
2.3  
2.5  
2.6  
2.3  
2.6  
3.1  
3.4  
3.5  
4.0  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
ns  
ns  
ns  
ns  
ns  
ns  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
3.0  
3.0  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.3  
0.5  
0.5  
0.4  
0.6  
0.6  
0.4  
0.7  
0.7  
0.4  
0.8  
0.8  
0.6  
1.3  
1.3  
v4 .0  
3 5  
S X -A F a m i l y F P G A s  
A 5 4 S X 1 6 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 2 . 3 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
2.5V LVTTL Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
3.2  
2.6  
3.8  
3.0  
4.3  
3.4  
5.0  
4.0  
7.0  
5.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
11.3  
2.4  
13.0  
2.8  
14.8  
3.2  
17.4  
3.7  
24.4  
5.2  
Data-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
11.8  
3.4  
13.7  
4.0  
15.5  
4.5  
18.2  
5.3  
25.5  
7.5  
Enable-to-Pad, L to Z  
2.1  
2.5  
2.8  
3.3  
4.7  
Enable-to-Pad, H to Z  
3.4  
4.0  
4.5  
5.3  
7.5  
Delta LOW to HIGH  
0.031  
0.017  
0.057  
0.037  
0.017  
0.060  
0.043  
0.023  
0.071  
0.051  
0.023  
0.086  
0.071 ns/pF  
0.037 ns/pF  
0.117 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Note:  
Delta HIGH to LOWlow slew  
1. Delays based on 35 pF loading.  
3 6  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 1 6 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 3 . 0 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
3.3V PCI Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta LOW to HIGH  
2.0  
2.0  
2.3  
2.3  
2.6  
2.6  
3.0  
3.0  
4.3  
4.3  
3.1  
3.1  
5.3  
5.3  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
1.4  
1.7  
1.9  
2.2  
1.4  
1.7  
1.9  
2.2  
2.5  
2.8  
3.2  
3.8  
2.5  
2.8  
3.2  
3.8  
0.025  
0.015  
0.03  
0.015  
0.03  
0.015  
0.04  
0.015  
0.045 ns/pF  
0.025 ns/pF  
Delta HIGH to LOW  
3.3V LVTTL Output Module Timing2  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
2.7  
2.5  
3.2  
2.8  
3.6  
3.2  
4.2  
3.8  
5.9  
5.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
9.0  
10.4  
2.6  
11.8  
2.9  
13.8  
3.4  
19.4  
4.8  
2.2  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
15.8  
2.9  
18.9  
3.3  
21.3  
3.7  
25.4  
4.4  
34.9  
6.2  
Enable-to-Pad, L to Z  
2.9  
3.3  
3.7  
4.4  
6.2  
Enable-to-Pad, H to Z  
2.5  
2.8  
3.2  
3.8  
5.3  
Delta LOW to HIGH  
0.025  
0.015  
0.053  
0.03  
0.015  
0.053  
0.03  
0.015  
0.067  
0.04  
0.015  
0.073  
0.045 ns/pF  
0.025 ns/pF  
0.107 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Notes:  
Delta HIGH to LOWlow slew  
1. Delays based on 10 pF loading and 25resistance.  
2. Delays based on 35 pF loading.  
v4 .0  
3 7  
S X -A F a m i l y F P G A s  
A 5 4 S X 1 6 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 4 . 7 5 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
5.0V PCI Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
2.1  
2.73  
7.4  
2.5  
3.1  
2.8  
3.5  
3.3  
4.2  
4.6  
5.8  
15.9  
2.8  
9.7  
2.8  
6.4  
6.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
8.5  
9.6  
11.3  
2.0  
1.3  
1.5  
1.7  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
3.5  
5.1  
5.9  
6.9  
1.3  
1.5  
1.7  
2.0  
Enable-to-Pad, L to Z  
3.0  
3.5  
3.9  
4.6  
Enable-to-Pad, H to Z  
3.0  
3.5  
3.9  
4.6  
Delta LOW to HIGH  
0.016  
0.026  
0.04  
0.016  
0.03  
0.052  
0.02  
0.032  
0.06  
0.022  
0.04  
0.07  
0.032 ns/pF  
0.052 ns/pF  
0.096 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Delta HIGH to LOWlow slew  
5.0V TTL Output Module Timing2  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
1.9  
2.5  
2.2  
2.9  
2.5  
3.3  
3.0  
3.9  
4.2  
5.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
6.6  
7.6  
8.6  
10.2  
3.2  
14.2  
4.5  
2.1  
2.4  
2.7  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
7.4  
8.4  
9.5  
11.0  
3.6  
15.4  
5.0  
2.3  
2.7  
3.1  
Enable-to-Pad, L to Z  
3.6  
4.2  
4.7  
5.6  
7.8  
Enable-to-Pad, H to Z  
3.0  
3.5  
3.9  
4.6  
6.4  
Delta LOW to HIGH  
0.014  
0.023  
0.043  
0.017  
0.029  
0.046  
0.017  
0.031  
0.057  
0.023  
0.037  
0.066  
0.031 ns/pF  
0.051 ns/pF  
0.089 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Notes:  
Delta HIGH to LOWlow slew  
1. Delays based on 50 pF loading.  
2. Delays based on 35 pF loading.  
3 8  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 3 2 A T i m i n g C h a r a c t e r i s t i c s  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s , V C C A = 2 . 3 V, V C C I = 3 . 0 V, T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
0.8  
1.0  
1.1  
1.3  
1.8  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, Direct Connect  
0.1  
0.3  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.1  
0.3  
0.3  
0.5  
0.6  
0.8  
1.4  
2.0  
0.1  
0.3  
0.4  
0.5  
0.7  
0.9  
1.5  
2.2  
0.1  
0.4  
0.5  
0.6  
0.8  
1.0  
1.8  
2.6  
0.1  
0.6  
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.6  
0.7  
0.7  
0.7  
0.8  
0.8  
0.8  
0.9  
0.9  
0.9  
1.1  
1.1  
1.3  
1.6  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Removal Time  
tPRESET  
tSUD  
0.7  
0.0  
1.3  
0.3  
0.3  
0.8  
0.0  
1.5  
0.4  
0.3  
0.9  
0.0  
1.7  
0.4  
0.3  
1.1  
0.0  
2.0  
0.5  
0.4  
1.6  
0.0  
2.8  
0.7  
0.6  
tHD  
tWASYN  
tRECASYN  
tHASYN  
Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
0.5  
0.8  
0.6  
1.0  
0.7  
1.0  
0.8  
1.3  
1.1  
1.8  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.3  
0.5  
0.6  
0.8  
1.4  
2.0  
0.3  
0.5  
0.7  
0.9  
1.5  
2.2  
0.4  
0.6  
0.8  
1.0  
1.8  
2.6  
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
v4 .0  
3 9  
S X -A F a m i l y F P G A s  
A 5 4 S X 3 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 2 . 3 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.7  
1.5  
2.0  
1.7  
2.3  
1.9  
2.7  
2.3  
4.1  
3.5  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
0.3  
0.4  
0.4  
0.5  
0.8  
Minimum Period  
2.7  
3.2  
3.6  
4.4  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
227  
166 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
1.7  
2.1  
2.1  
2.3  
2.5  
2.5  
2.0  
2.4  
2.4  
2.5  
2.9  
2.9  
2.2  
2.7  
2.8  
2.9  
3.2  
3.2  
2.6  
3.2  
3.2  
3.4  
3.8  
3.8  
3.7  
4.5  
4.5  
5.0  
6.4  
6.4  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.9  
1.2  
1.3  
1.0  
1.4  
1.5  
1.1  
1.6  
1.7  
1.3  
1.9  
2.0  
2.2  
3.2  
3.4  
4 0  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 3 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 3 . 0 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.7  
1.5  
2.0  
1.7  
2.3  
1.9  
2.7  
2.3  
4.1  
3.5  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
0.3  
0.4  
0.4  
0.5  
0.8  
Minimum Period  
2.7  
3.2  
3.6  
4.4  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
227  
166 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
1.7  
2.1  
2.1  
2.3  
2.5  
2.5  
2.0  
2.4  
2.4  
2.5  
2.9  
2.9  
2.2  
2.8  
2.8  
2.9  
3.2  
3.2  
2.6  
3.3  
3.2  
3.4  
3.8  
3.8  
3.7  
4.6  
4.5  
5.0  
6.4  
6.4  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.9  
1.2  
1.3  
1.0  
1.4  
1.5  
1.1  
1.6  
1.7  
1.3  
1.9  
2.0  
2.2  
3.2  
3.4  
v4 .0  
4 1  
S X -A F a m i l y F P G A s  
A 5 4 S X 3 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 4 . 7 5 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.7  
1.5  
1.9  
1.7  
2.3  
1.9  
2.6  
2.2  
4.0  
3.5  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
0.3  
0.4  
0.4  
0.5  
0.8  
Minimum Period  
2.7  
3.2  
3.6  
4.4  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
227  
166 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
1.6  
2.0  
2.0  
2.2  
2.5  
2.5  
1.9  
2.4  
2.4  
2.5  
2.9  
2.9  
2.1  
2.7  
2.7  
2.8  
3.2  
3.2  
2.5  
3.1  
3.1  
3.3  
3.8  
3.8  
3.5  
4.4  
2.5  
5.5  
6.4  
6.4  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.9  
1.2  
1.3  
1.0  
1.4  
1.5  
1.1  
1.6  
1.7  
1.3  
1.9  
2.0  
2.0  
3.2  
3.4  
4 2  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 3 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 2 . 3 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
2.5V LVTTL Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
3.2  
2.6  
3.8  
3.0  
4.3  
3.4  
5.0  
4.0  
7.0  
5.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
11.3  
2.4  
13.0  
2.8  
14.8  
3.2  
17.4  
3.7  
24.4  
5.2  
Data-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
11.8  
3.4  
13.7  
4.0  
15.5  
4.5  
18.2  
5.3  
25.5  
7.5  
Enable-to-Pad, L to Z  
2.1  
2.5  
2.8  
3.3  
4.7  
Enable-to-Pad, H to Z  
3.4  
4.0  
4.5  
5.3  
7.5  
Delta LOW to HIGH  
0.031  
0.017  
0.057  
0.037  
0.017  
0.060  
0.043  
0.023  
0.071  
0.051  
0.023  
0.086  
0.071 ns/pF  
0.037 ns/pF  
0.117 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Note:  
Delta HIGH to LOWlow slew  
1. Delays based on 35 pF loading.  
v4 .0  
4 3  
S X -A F a m i l y F P G A s  
A 5 4 S X 3 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 3 . 0 V , T J = 7 0 °C )  
‘–3Speed ‘–2Speed ‘–1Speed StdSpeed ‘–FSpeed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter Description  
3.3V PCI Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta LOW to HIGH  
2.0  
2.0  
2.3  
2.3  
2.6  
2.6  
3.0  
3.0  
4.3  
4.3  
3.1  
3.1  
5.3  
5.3  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
1.4  
1.7  
1.9  
2.2  
1.4  
1.7  
1.9  
2.2  
2.5  
2.8  
3.2  
3.8  
2.5  
2.8  
3.2  
3.8  
0.025  
0.015  
0.03  
0.015  
0.03  
0.015  
0.04  
0.015  
0.045 ns/pF  
0.025 ns/pF  
Delta HIGH to LOW  
3.3V LVTTL Output Module Timing2  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
2.7  
2.5  
3.2  
2.8  
3.6  
3.2  
4.2  
3.8  
5.9  
5.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
9.0  
10.4  
2.6  
11.8  
2.9  
13.8  
3.4  
19.4  
4.8  
2.2  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
15.8  
2.9  
18.9  
3.3  
21.3  
3.7  
25.4  
4.4  
34.9  
6.2  
Enable-to-Pad, L to Z  
2.9  
3.3  
3.7  
4.4  
6.2  
Enable-to-Pad, H to Z  
2.5  
2.8  
3.2  
3.8  
5.3  
Delta LOW to HIGH  
0.025  
0.015  
0.053  
0.03  
0.015  
0.053  
0.03  
0.015  
0.067  
0.04  
0.015  
0.073  
0.045 ns/pF  
0.025 ns/pF  
0.107 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Notes:  
Delta HIGH to LOWlow slew  
1. Delays based on 10 pF loading and 25resistance.  
2. Delays based on 35 pF loading.  
4 4  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 3 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 4 . 7 5 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
5.0V PCI Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
2.1  
2.7  
2.5  
3.1  
2.8  
3.5  
3.3  
4.2  
4.6  
5.8  
15.9  
2.8  
9.7  
2.8  
6.4  
6.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
7.4  
8.5  
9.6  
11.3  
2.0  
1.3  
1.5  
1.7  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
3.5  
5.1  
5.9  
6.9  
1.3  
1.5  
1.7  
2.0  
Enable-to-Pad, L to Z  
3.0  
3.5  
3.9  
4.6  
Enable-to-Pad, H to Z  
3.0  
3.5  
3.9  
4.6  
Delta LOW to HIGH  
0.016  
0.026  
0.04  
0.016  
0.03  
0.052  
0.02  
0.032  
0.06  
0.022  
0.04  
0.07  
0.032 ns/pF  
0.052 ns/pF  
0.096 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Delta HIGH to LOWlow slew  
5.0V TTL Output Module Timing2  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
1.9  
2.5  
2.2  
2.9  
2.5  
3.3  
3.0  
3.9  
4.2  
5.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
6.6  
7.6  
8.6  
10.2  
3.2  
14.2  
4.5  
2.1  
2.4  
2.7  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
7.4  
8.4  
9.5  
11.0  
3.6  
15.4  
5.0  
2.3  
2.7  
3.1  
Enable-to-Pad, L to Z  
3.6  
4.2  
4.7  
5.6  
7.8  
Enable-to-Pad, H to Z  
3.0  
3.5  
3.9  
4.6  
6.4  
Delta LOW to HIGH  
0.014  
0.023  
0.043  
0.017  
0.029  
0.046  
0.017  
0.031  
0.057  
0.023  
0.037  
0.066  
0.031 ns/pF  
0.051 ns/pF  
0.089 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Notes:  
Delta HIGH to LOWlow slew  
1. Delays based on 50 pF loading.  
2. Delays based on 35 pF loading.  
v4 .0  
4 5  
S X -A F a m i l y F P G A s  
A 5 4 S X 7 2 A T i m i n g C h a r a c t e r i s t i c s  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s , V C C A = 2 . 3 V , V C C I = 3 . 0 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
0.8  
1.0  
1.1  
1.3  
1.8  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, Direct Connect  
0.1  
0.3  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.1  
0.3  
0.3  
0.5  
0.7  
0.9  
1.5  
2.2  
0.1  
0.3  
0.4  
0.6  
0.8  
1.0  
1.7  
2.5  
0.1  
0.4  
0.5  
0.7  
0.9  
1.1  
2.1  
3.0  
0.1  
0.6  
0.7  
1.0  
1.3  
1.5  
2.9  
4.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.6  
0.7  
0.7  
0.7  
0.8  
0.8  
0.8  
0.9  
0.9  
0.9  
1.1  
1.1  
1.3  
1.6  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
tPRESET  
tSUD  
0.7  
0.0  
1.3  
0.3  
0.3  
0.8  
0.0  
1.5  
0.4  
0.3  
0.9  
0.0  
1.7  
0.4  
0.3  
1.1  
0.0  
2.0  
0.5  
0.4  
1.6  
0.0  
2.8  
0.7  
0.6  
tHD  
tWASYN  
tRECASYN Asynchronous Recovery Time  
tHASYN Asynchronous Hold Time  
Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
0.5  
0.8  
0.6  
1.0  
0.7  
1.0  
0.8  
1.3  
1.1  
1.8  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.3  
0.5  
0.7  
0.9  
1.5  
2.2  
0.4  
0.6  
0.8  
1.0  
1.7  
2.5  
0.5  
0.7  
0.9  
1.1  
2.1  
3.0  
0.7  
1.0  
1.3  
1.5  
2.9  
4.2  
ns  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
4 6  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 7 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 2 . 3 V , T J = 7 0 °C )  
‘–3Speed ‘–2Speed ‘–1Speed StdSpeed ‘–FSpeed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter Description  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.3  
1.1  
1.5  
1.3  
1.7  
1.5  
2.1  
1.9  
3.1  
2.9  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
0.7  
0.8  
0.9  
1.0  
1.6  
Minimum Period  
2.8  
3.2  
3.6  
4.4  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
227  
166 MHz  
Routed Array Clock Networks  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
2.3  
2.6  
3.0  
3.3  
3.7  
4.0  
2.6  
3.1  
3.5  
3.8  
4.3  
4.6  
2.9  
3.4  
3.9  
4.2  
4.8  
5.1  
3.5  
4.0  
4.6  
4.9  
5.7  
6.0  
4.8  
5.6  
6.5  
7.1  
8.0  
8.6  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.8  
1.2  
1.4  
2.1  
1.4  
1.5  
2.4  
1.6  
1.7  
2.7  
1.9  
2.0  
3.8  
3.2  
3.4  
v4 .0  
4 7  
S X -A F a m i l y F P G A s  
A 5 4 S X 7 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 3 . 0 V , T J = 7 0 °C )  
‘–3Speed ‘–2Speed ‘–1Speed StdSpeed ‘–FSpeed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter Description  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.3  
1.1  
1.5  
1.3  
1.7  
1.5  
2.1  
1.9  
3.1  
2.9  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
0.7  
0.8  
0.9  
1.0  
1.6  
Minimum Period  
2.8  
3.2  
3.6  
4.4  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
227  
166 MHz  
Routed Array Clock Networks  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
2.2  
2.7  
3.0  
3.3  
3.7  
4.0  
2.6  
3.1  
3.5  
3.8  
4.3  
4.6  
2.9  
3.5  
3.9  
4.2  
4.8  
5.1  
3.5  
4.1  
4.6  
4.9  
5.7  
6.0  
4.8  
5.7  
6.5  
7.1  
8.0  
8.6  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.8  
1.2  
1.4  
2.1  
1.4  
1.5  
2.4  
1.6  
1.7  
2.7  
1.9  
2.0  
3.8  
3.2  
3.4  
4 8  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 7 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 4 . 7 5 V , T J = 7 0 °C )  
‘–3Speed ‘–2Speed ‘–1Speed StdSpeed ‘–FSpeed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter Description  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.3  
1.1  
1.4  
1.2  
1.7  
1.5  
2.0  
1.8  
3.0  
2.8  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
0.7  
0.8  
0.9  
1.0  
1.6  
Minimum Period  
2.8  
3.2  
3.6  
4.4  
6.0  
fHMAX  
Maximum Frequency  
350  
310  
277  
227  
166 MHz  
Routed Array Clock Networks  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
2.2  
2.6  
3.0  
3.3  
3.7  
4.0  
2.5  
3.0  
3.5  
3.8  
4.3  
4.6  
2.8  
3.4  
3.9  
4.2  
4.8  
5.1  
3.4  
3.9  
4.6  
4.9  
5.7  
6.0  
4.6  
5.5  
6.5  
7.1  
8.0  
8.6  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.8  
2.1  
1.4  
1.5  
2.4  
1.6  
1.7  
2.7  
1.9  
2.0  
3.8  
3.2  
3.4  
v4 .0  
4 9  
S X -A F a m i l y F P G A s  
A 5 4 S X 7 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 2 . 3 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
2.5V LVTTL Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
3.3  
2.6  
3.9  
3.0  
4.4  
3.4  
5.2  
4.0  
7.2  
5.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
11.7  
2.4  
13.5  
2.8  
15.3  
3.2  
18.0  
3.7  
25.9  
5.2  
Data-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
11.8  
3.4  
13.7  
4.0  
15.5  
4.5  
18.2  
5.3  
25.5  
7.5  
Enable-to-Pad, L to Z  
2.1  
2.5  
2.8  
3.3  
4.7  
Enable-to-Pad, H to Z  
3.4  
4.0  
4.5  
5.3  
7.5  
Delta LOW to HIGH  
0.031  
0.017  
0.057  
0.037  
0.017  
0.060  
0.043  
0.023  
0.071  
0.051  
0.023  
0.086  
0.071 ns/pF  
0.037 ns/pF  
0.117 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Note:  
Delta HIGH to LOWlow slew  
1. Delays based on 35 pF loading.  
5 0  
v4 .0  
S X -A F a m i l y F P G A s  
A 5 4 S X 7 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s VC C A = 2 . 3 V, VC C I = 3 . 0 V, T J = 7 0 °C )  
‘–3Speed ‘–2Speed ‘–1Speed StdSpeed ‘–FSpeed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter Description  
3.3V PCI Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta LOW to HIGH  
2.0  
2.0  
2.3  
2.3  
2.6  
2.6  
3.0  
3.0  
4.3  
4.3  
3.1  
3.1  
5.3  
5.3  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
1.4  
1.7  
1.9  
2.2  
1.4  
1.7  
1.9  
2.2  
2.5  
2.8  
3.2  
3.8  
2.5  
2.8  
3.2  
3.8  
0.025  
0.015  
0.03  
0.015  
0.03  
0.015  
0.04  
0.015  
0.045 ns/pF  
0.025 ns/pF  
Delta HIGH to LOW  
3.3V LVTTL Output Module Timing2  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
2.7  
2.5  
3.2  
2.8  
3.6  
3.2  
4.2  
3.8  
5.9  
5.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
9.0  
10.4  
2.6  
11.8  
2.9  
13.8  
3.4  
19.4  
4.8  
2.2  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
15.8  
2.9  
18.9  
3.3  
21.3  
3.7  
25.4  
4.4  
34.9  
6.2  
Enable-to-Pad, L to Z  
2.9  
3.3  
3.7  
4.4  
6.2  
Enable-to-Pad, H to Z  
2.5  
2.8  
3.2  
3.8  
5.3  
Delta LOW to HIGH  
0.025  
0.015  
0.053  
0.03  
0.015  
0.053  
0.03  
0.015  
0.067  
0.04  
0.015  
0.073  
0.045 ns/pF  
0.025 ns/pF  
0.107 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Notes:  
Delta HIGH to LOWlow slew  
1. Delays based on 10 pF loading and 25resistance.  
2. Delays based on 35 pF loading.  
v4 .0  
5 1  
S X -A F a m i l y F P G A s  
A 5 4 S X 7 2 A T i m i n g C h a r a c t e r i s t i c s (C o n t in u e d )  
( W o r s t -C a s e C o m m e r c ia l C o n d it io n s V C C A = 2 . 3 V , V C C I = 4 . 7 5 V , T J = 7 0 °C )  
Std’  
Speed  
‘–3Speed ‘–2Speed ‘–1Speed  
‘–FSpeed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
5.0V PCI Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
2.1  
2.7  
2.5  
3.1  
2.8  
3.5  
3.3  
4.2  
4.6  
5.8  
15.9  
2.8  
9.7  
2.8  
6.4  
6.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
7.4  
8.5  
9.6  
11.3  
2.0  
1.3  
1.5  
1.7  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
3.5  
5.1  
5.9  
6.9  
1.3  
1.5  
1.7  
2.0  
Enable-to-Pad, L to Z  
3.0  
3.5  
3.9  
4.6  
Enable-to-Pad, H to Z  
3.0  
3.5  
3.9  
4.6  
Delta LOW to HIGH  
0.016  
0.026  
0.04  
0.016  
0.03  
0.052  
0.02  
0.032  
0.06  
0.022  
0.04  
0.07  
0.032 ns/pF  
0.052 ns/pF  
0.096 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Delta HIGH to LOWlow slew  
5.0V TTL Output Module Timing2  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOWlow slew  
Enable-to-Pad, Z to L  
1.9  
2.5  
2.2  
2.9  
2.5  
3.3  
3.0  
3.9  
4.2  
5.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
6.6  
7.6  
8.6  
10.2  
3.2  
14.2  
4.5  
2.1  
2.4  
2.7  
Enable-to-Pad, Z to Llow slew  
Enable-to-Pad, Z to H  
7.4  
8.4  
9.5  
11.0  
3.6  
15.4  
5.0  
2.3  
2.7  
3.1  
Enable-to-Pad, L to Z  
3.6  
4.2  
4.7  
5.6  
7.8  
Enable-to-Pad, H to Z  
3.0  
3.5  
3.9  
4.6  
6.4  
Delta LOW to HIGH  
0.014  
0.023  
0.043  
0.017  
0.029  
0.046  
0.017  
0.031  
0.057  
0.023  
0.037  
0.066  
0.031 ns/pF  
0.051 ns/pF  
0.089 ns/pF  
dTHL  
Delta HIGH to LOW  
dTHLS  
Notes:  
Delta HIGH to LOWlow slew  
1. Delays based on 50 pF loading.  
2. Delays based on 35 pF loading.  
5 2  
v4 .0  
S X -A F a m i l y F P G A s  
P i n D e s c r i p t i o n  
capabilities can be permanently disabled to protect  
programmed design confidentiality.  
C LK A/B  
C lo c k A a n d B  
T C K , I/O  
Te s t C lo c k  
These pins are clock inputs for clock distribution networks.  
Input levels are compatible with standard TTL, LVTTL, 3.3V  
PCI or 5V PCI specifications. The clock input is buffered  
prior to clocking the R-cells. If not used, this pin must be set  
LOW or HIGH on the board except A54SX72A. In A54SX72A  
these clocks can be configured as user I/O.  
Test clock input for diagnostic probe and device  
programming. In flexible mode, TCK becomes active when  
the TMS pin is set LOW (refer to Table 5 on page 11). This  
pin functions as an I/O when the boundary scan state  
machine reaches the logic resetstate.  
Q C LK A/B /C /D, Q u a d r a n t C lo c k A, B , C , a n d D  
I/O  
T D I, I/O  
Te s t D a t a In p u t  
Serial input for boundary scan testing and diagnostic probe.  
In flexible mode, TDI is active when the TMS pin is set LOW  
(refer to Table 5 on page 11). This pin functions as an I/O  
when the boundary scan state machine reaches the logic  
resetstate.  
These four pins are the quadrant clock inputs and are only  
for A54SX72A with A, B, C, and D corresponding to  
bottom-left, bottom-right, top-left, and top-right quadrants,  
respectively. They are clock inputs for clock distribution  
networks. Input levels are compatible with standard TTL,  
LVTTL, 3.3V PCI or 5V PCI specifications. Each of these  
clock inputs can drive up to a quarter of the chip, or they  
can be grouped together to drive multiple quadrants. The  
clock input is buffered prior to clocking the R-cells. If not  
used as a clock it will behave as a regular I/O.  
T DO , I/O  
Te s t Da t a O u t p u t  
Serial output for boundary scan testing. In flexible mode,  
TDO is active when the TMS pin is set LOW (refer to Table 5  
on page 11). This pin functions as an I/O when the boundary  
scan state machine reaches the "logic reset" state. When  
Silicon Explorer II is being used, TDO will act as an output  
when the "checksum" command is run. It will return to user  
IO when "checksum" is complete.  
G N D  
G r o u n d  
LOW supply voltage.  
H C LK  
De d ic a t e d (H a r d w ir e d )  
Ar r a y C lo c k  
T M S  
Te s t M o d e S e le c t  
The TMS pin controls the use of the IEEE 1149.1 Boundary  
Scan pins (TCK, TDI, TDO, TRST). In flexible mode when  
the TMS pin is set LOW, the TCK, TDI, and TDO pins are  
boundary scan pins (refer to Table 5 on page 11). Once the  
boundary scan pins are in test mode, they will remain in  
that mode until the internal boundary scan state machine  
reaches the logic resetstate. At this point, the boundary  
scan pins will be released and will function as regular I/O  
pins. The logic resetstate is reached 5 TCK cycles after  
the TMS pin is set HIGH. In dedicated test mode, TMS  
functions as specified in the IEEE 1149.1 specifications.  
This pin is the clock input for sequential modules. Input  
levels are compatible with standard TTL, LVTTL, 3.3V PCI  
or 5V PCI specifications. This input is directly wired to each  
R-cell and offers clock speeds independent of the number of  
R-cells being driven. If not used, this pin must be set LOW  
or HIGH on the board. It must not be left floating.  
I/O  
In p u t /O u t p u t  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Based on certain configurations, input  
and output levels are compatible with standard TTL, LVTTL,  
3.3V PCI or 5V PCI specifications. Unused I/O pins are  
automatically tristated by the Designer Series software.  
T R S T, I/O  
B o u n d a r y S c a n R e s e t P in  
Once it is configured as the JTAG Reset pin, the TRST pin  
functions as an active-low input to asynchronously initialize  
or reset the boundary scan circuit. The TRST pin is  
equipped with an internal pull-up resistor. This pin  
functions as an I/O when the Reserve JTAG Reset Pinis  
not selected in Designer.  
N C  
N o C o n n e c t io n  
This pin is not connected to circuitry within the device.  
These pins can be driven to any voltage or can be left  
floating with no effect on the operation of the device. The  
only exception is for the A54SX32A FG-484, where the NC  
pins must be left floating.  
VC C I  
S u p p ly Vo lt a g e  
Supply voltage for I/Os. See Recommended Operating  
P R A, I/O  
P R B , I/O  
P ro b e A/B  
Conditionstable on page 14. All V power pins in the  
CCI  
device should be connected.  
The Probe pin is used to output data from any user-defined  
design node within the device. This independent diagnostic  
pin can be used in conjunction with the other probe pin to  
allow real-time diagnostic output of any signal path within  
the device. The Probe pin can be used as a user-defined I/O  
when verification has been completed. The pins probe  
VC C A  
S u p p ly Vo lt a g e  
Supply voltage for Array. See Recommended Operating  
Conditionstable on page 14. All VCCA power pins in the  
device should be connected.  
v4 .0  
5 3  
P a c k a g e P i n A s s i g n m e n t s  
2 0 8 -P in P Q F P ( T o p V i e w )  
208  
1
208-Pin PQFP  
5 4  
v4 .0  
2 0 8 -P in P Q F P  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
2
3
4
NC  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
6
NC  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
9
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
I/O  
I/O  
I/O  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCA  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
TRST, I/O  
NC  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
v4 .0  
5 5  
2 0 8 -P in P Q F P ( C o n t in u e d )  
A54SX08A  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
Function  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
NC  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKA  
I/O  
NC  
PRB, I/O  
GND  
VCCA  
GND  
NC  
I/O  
I/O  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
NC  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
NC  
I/O  
PRB,I/O  
GND  
VCCA  
GND  
NC  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
VCCI  
QCLKB  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
5 6  
v4 .0  
2 0 8 -P in P Q F P ( C o n t in u e d )  
A54SX08A  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
Function  
93  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
94  
95  
I/O  
I/O  
I/O  
96  
I/O  
I/O  
I/O  
I/O  
97  
NC  
VCCI  
I/O  
I/O  
I/O  
I/O  
98  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
GND  
NC  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
NC  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
GND  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCA  
GND  
NC  
I/O  
GND  
VCCA  
GND  
NC  
I/O  
GND  
VCCA  
GND  
NC  
I/O  
GND  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
v4 .0  
5 7  
2 0 8 -P in P Q F P ( C o n t in u e d )  
A54SX08A  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
Function  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKD  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
NC  
GND  
VCCA  
CLKA  
CLKB  
NC  
GND  
VCCA  
CLKA  
CLKB  
NC  
GND  
VCCA  
CLKA  
CLKB  
NC  
GND  
VCCA  
5 8  
v4 .0  
2 0 8 -P in P Q F P ( C o n t in u e d )  
A54SX08A  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
Function  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
GND  
PRA, I/O  
I/O  
GND  
PRA, I/O  
I/O  
GND  
PRA, I/O  
I/O  
GND  
PRA, I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
NC  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
v4 .0  
5 9  
P a c k a g e P i n A s s i g n m e n t s (C o n t in u e d )  
1 0 0 -P in T Q F P ( T o p V i e w )  
100  
1
100-Pin  
TQFP  
6 0  
v4 .0  
1 0 0 -T Q F P  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
Pin Number  
Pin Number  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GND  
I/O  
GND  
I/O  
GND  
I/O  
2
3
I/O  
I/O  
I/O  
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
7
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
VCCA  
GND  
NC  
PRB, I/O  
VCCA  
GND  
NC  
PRB, I/O  
VCCA  
GND  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
I/O  
I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
v4 .0  
6 1  
P a c k a g e P i n A s s i g n m e n t s ( c o n t i n u e d )  
1 4 4 -P in T Q F P ( T o p V i e w )  
144  
1
144-Pin  
TQFP  
6 2  
v4 .0  
1 4 4 -P in T Q F P  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
Pin Number  
Pin Number  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
3
I/O  
I/O  
I/O  
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
7
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
9
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
NC  
VCCA  
GND  
NC  
VCCA  
GND  
NC  
NC  
NC  
NC  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCI  
VCCA  
I/O  
GND  
VCCI  
VCCA  
I/O  
GND  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
v4 .0  
6 3  
1 4 4 -P in T Q F P ( C o n t in u e d )  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
Pin Number  
Pin Number  
77  
78  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
79  
VCCA  
VCCI  
GND  
I/O  
VCCA  
VCCI  
GND  
I/O  
VCCA  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
80  
I/O  
I/O  
I/O  
81  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
82  
83  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
84  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
89  
VCCA  
NC  
VCCA  
NC  
VCCA  
NC  
I/O  
I/O  
I/O  
90  
I/O  
I/O  
I/O  
91  
I/O  
I/O  
I/O  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
92  
I/O  
I/O  
I/O  
93  
I/O  
I/O  
I/O  
94  
I/O  
I/O  
I/O  
GND  
VCCA  
I/O  
GND  
VCCA  
I/O  
GND  
VCCA  
I/O  
95  
I/O  
I/O  
I/O  
96  
I/O  
I/O  
I/O  
97  
I/O  
I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
98  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
99  
I/O  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
I/O  
I/O  
I/O  
GND  
VCCI  
I/O  
GND  
VCCI  
I/O  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
6 4  
v4 .0  
P a c k a g e P i n A s s i g n m e n t s (C o n t in u e d )  
1 7 6 -P in T Q F P (T o p Vie w )  
176  
1
176-Pin  
TQFP  
v4 .0  
6 5  
1 7 6 -P in T Q F P  
Pin  
Number  
A54SX32A  
Function  
Pin  
Number  
A54SX32A  
Function  
Pin  
Number  
A54SX32A  
Function  
Pin  
Number  
A54SX32A  
Function  
1
GND  
TDI, I/O  
I/O  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
I/O  
I/O  
91  
I/O  
I/O  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
I/O  
I/O  
2
92  
3
I/O  
93  
I/O  
I/O  
4
I/O  
I/O  
94  
I/O  
I/O  
5
I/O  
I/O  
95  
I/O  
VCCI  
I/O  
6
I/O  
I/O  
96  
I/O  
7
I/O  
VCCI  
I/O  
97  
I/O  
I/O  
8
I/O  
98  
VCCA  
VCCI  
I/O  
I/O  
9
I/O  
I/O  
99  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
TMS  
VCCI  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
NC  
I/O  
I/O  
GND  
VCCA  
GND  
I/O  
I/O  
PRB, I/O  
GND  
VCCA  
NC  
I/O  
GND  
VCCA  
PRA, I/O  
I/O  
GND  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
HCLK  
I/O  
I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
VCCA  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
6 6  
v4 .0  
P a c k a g e P i n A s s i g n m e n t s (C o n t in u e d )  
3 2 9 -P in P B G A ( T o p V i e w )  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
v4 .0  
6 7  
3 2 9 -P in P B G A  
A54SX32A  
A54SX32A  
Pin Number Function  
A54SX32A  
Pin Number Function  
A54SX32A  
Pin Number Function  
Pin Number Function  
A1  
A2  
GND  
GND  
VCCI  
NC  
AA23  
AB1  
VCCI  
I/O  
AC22  
AC23  
B1  
VCCI  
GND  
VCCI  
GND  
I/O  
C21  
C22  
C23  
D1  
VCCI  
GND  
NC  
I/O  
A3  
AB2  
GND  
I/O  
A4  
AB3  
B2  
A5  
I/O  
AB4  
I/O  
B3  
D2  
I/O  
A6  
I/O  
AB5  
I/O  
B4  
I/O  
D3  
I/O  
A7  
VCCI  
NC  
AB6  
I/O  
B5  
I/O  
D4  
TCK, I/O  
I/O  
A8  
AB7  
I/O  
B6  
I/O  
D5  
A9  
I/O  
AB8  
I/O  
B7  
I/O  
D6  
I/O  
A10  
A11  
I/O  
AB9  
I/O  
B8  
I/O  
D7  
I/O  
I/O  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AC1  
I/O  
B9  
I/O  
D8  
I/O  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
I/O  
PRB, I/O  
I/O  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
C1  
I/O  
D9  
I/O  
CLKB  
I/O  
I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
E1  
I/O  
HCLK  
I/O  
PRA, I/O  
CLKA  
I/O  
VCCA  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
VCCI  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
GND  
VCCI  
NC  
I/O  
GND  
VCCI  
NC  
I/O  
I/O  
GND  
I/O  
AC2  
I/O  
AC3  
C2  
TDI, I/O  
GND  
I/O  
VCCI  
I/O  
I/O  
AC4  
C3  
E2  
I/O  
AC5  
I/O  
C4  
E3  
I/O  
I/O  
AC6  
I/O  
C5  
I/O  
E4  
I/O  
I/O  
AC7  
I/O  
C6  
I/O  
E20  
E21  
E22  
E23  
F1  
I/O  
I/O  
AC8  
I/O  
C7  
I/O  
I/O  
I/O  
AC9  
VCCI  
I/O  
C8  
I/O  
I/O  
I/O  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
C9  
I/O  
I/O  
I/O  
I/O  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
I/O  
I/O  
I/O  
I/O  
I/O  
F2  
TMS  
I/O  
I/O  
I/O  
I/O  
F3  
I/O  
I/O  
I/O  
F4  
I/O  
I/O  
NC  
I/O  
I/O  
F20  
F21  
F22  
F23  
G1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
G2  
I/O  
NC  
I/O  
G3  
I/O  
6 8  
v4 .0  
3 2 9 -P in P B G A ( C o n t in u e d )  
A54SX32A  
Pin Number Function  
A54SX32A  
Pin Number Function  
A54SX32A  
Pin Number Function  
A54SX32A  
Pin Number Function  
G4  
G20  
G21  
G22  
G23  
H1  
I/O  
I/O  
L20  
L21  
L22  
L23  
M1  
NC  
I/O  
R1  
R2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
VCCA  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
Y4  
Y5  
GND  
I/O  
I/O  
I/O  
R3  
Y6  
I/O  
I/O  
NC  
R4  
Y7  
I/O  
GND  
I/O  
I/O  
R20  
R21  
R22  
R23  
T1  
Y8  
I/O  
M2  
I/O  
Y9  
I/O  
H2  
I/O  
M3  
I/O  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
I/O  
H3  
I/O  
M4  
VCCA  
GND  
GND  
GND  
GND  
GND  
VCCA  
I/O  
I/O  
H4  
I/O  
M10  
M11  
M12  
M13  
M14  
M20  
M21  
M22  
M23  
N1  
VCCA  
NC  
I/O  
H20  
H21  
H22  
H23  
J1  
VCCA  
I/O  
T2  
T3  
I/O  
T4  
I/O  
I/O  
T20  
T21  
T22  
T23  
U1  
I/O  
NC  
I/O  
I/O  
J2  
I/O  
J3  
I/O  
I/O  
I/O  
J4  
I/O  
VCCI  
I/O  
GND  
I/O  
J20  
J21  
J22  
J23  
K1  
I/O  
U2  
I/O  
N2  
TRST, I/O  
I/O  
U3  
I/O  
I/O  
N3  
U4  
I/O  
I/O  
N4  
I/O  
U20  
U21  
U22  
U23  
V1  
I/O  
N10  
N11  
N12  
N13  
N14  
N20  
N21  
N22  
N23  
P1  
GND  
GND  
GND  
GND  
GND  
NC  
K2  
I/O  
K3  
I/O  
K4  
I/O  
K10  
K11  
K12  
K13  
K14  
K20  
K21  
K22  
K23  
L1  
GND  
GND  
GND  
GND  
GND  
I/O  
V2  
V3  
I/O  
V4  
I/O  
V20  
V21  
V22  
V23  
W1  
W2  
W3  
W4  
W20  
W21  
W22  
W23  
Y1  
I/O  
I/O  
I/O  
P2  
I/O  
I/O  
P3  
I/O  
I/O  
P4  
I/O  
I/O  
P10  
P11  
P12  
P13  
P14  
P20  
P21  
P22  
P23  
GND  
GND  
GND  
GND  
GND  
I/O  
L2  
I/O  
L3  
I/O  
L4  
NC  
L10  
L11  
L12  
L13  
L14  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
Y2  
I/O  
Y3  
v4 .0  
6 9  
P a c k a g e P i n A s s i g n m e n t s (C o n t in u e d )  
1 4 4 -P in F B G A (To p Vie w )  
4
1
2
3
5
6
7
8
10 11 12  
9
A
B
C
D
E
F
G
H
J
K
L
M
7 0  
v4 .0  
1 4 4 -P in F B G A  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
Pin Number  
Pin Number  
A1  
A2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
TDI, I/O  
I/O  
TDI, I/O  
I/O  
TDI, I/O  
I/O  
A3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A5  
VCCA  
GND  
CLKA  
I/O  
VCCA  
GND  
CLKA  
I/O  
VCCA  
GND  
CLKA  
I/O  
I/O  
I/O  
I/O  
A6  
I/O  
I/O  
I/O  
A7  
I/O  
I/O  
I/O  
A8  
I/O  
I/O  
I/O  
A9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A10  
A11  
A12  
B1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
E2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
E3  
I/O  
I/O  
I/O  
B2  
GND  
I/O  
GND  
I/O  
GND  
I/O  
E4  
I/O  
I/O  
I/O  
B3  
E5  
TMS  
VCCI  
VCCI  
VCCI  
VCCA  
I/O  
TMS  
VCCI  
VCCI  
VCCI  
VCCA  
I/O  
TMS  
VCCI  
VCCI  
VCCI  
VCCA  
I/O  
B4  
I/O  
I/O  
I/O  
E6  
B5  
I/O  
I/O  
I/O  
E7  
B6  
I/O  
I/O  
I/O  
E8  
B7  
CLKB  
I/O  
CLKB  
I/O  
CLKB  
I/O  
E9  
B8  
E10  
E11  
E12  
F1  
B9  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
B10  
B11  
B12  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
D1  
D2  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
F2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
F3  
NC  
NC  
NC  
I/O  
I/O  
I/O  
F4  
I/O  
I/O  
I/O  
TCK, I/O  
I/O  
TCK, I/O  
I/O  
TCK, I/O  
I/O  
F5  
GND  
GND  
GND  
VCCI  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
F6  
I/O  
I/O  
I/O  
F7  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
F8  
F9  
I/O  
I/O  
I/O  
F10  
F11  
F12  
G1  
G2  
G3  
G4  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCI  
VCCI  
I/O  
I/O  
I/O  
v4 .0  
7 1  
1 4 4 -P in F B G A ( C o n t i n u e d )  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
Pin Number  
Pin Number  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
GND  
GND  
GND  
VCCI  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
K3  
K4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K5  
I/O  
I/O  
I/O  
K6  
I/O  
I/O  
I/O  
K7  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
K8  
I/O  
I/O  
I/O  
K9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K10  
K11  
K12  
L1  
GND  
I/O  
GND  
I/O  
GND  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
L2  
VCCA  
VCCA  
VCCI  
VCCI  
VCCA  
I/O  
VCCA  
VCCA  
VCCI  
VCCI  
VCCA  
I/O  
VCCA  
VCCA  
VCCI  
VCCI  
VCCA  
I/O  
L3  
I/O  
I/O  
I/O  
L4  
I/O  
I/O  
I/O  
L5  
I/O  
I/O  
I/O  
L6  
I/O  
I/O  
I/O  
L7  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
L8  
I/O  
I/O  
I/O  
L9  
I/O  
I/O  
I/O  
NC  
NC  
NC  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J6  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
J7  
I/O  
I/O  
I/O  
J8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J9  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
J10  
J11  
J12  
K1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
K2  
I/O  
I/O  
I/O  
7 2  
v4 .0  
P a c k a g e P i n A s s i g n m e n t s (C o n t in u e d )  
2 5 6 -P in F B G A (To p Vie w )  
1
2
3
4
6
7
8
9 10 11 12  
13 14  
5
15 16  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
v4 .0  
7 3  
2 5 6 -P in F B G A  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
Pin Number  
A1  
A2  
GND  
TCK, I/O  
I/O  
GND  
TCK, I/O  
I/O  
GND  
TCK, I/O  
I/O  
C14  
C15  
C16  
D1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A3  
I/O  
I/O  
I/O  
A4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A5  
I/O  
I/O  
I/O  
D2  
I/O  
I/O  
I/O  
A6  
I/O  
I/O  
I/O  
D3  
I/O  
I/O  
I/O  
A7  
I/O  
I/O  
I/O  
D4  
I/O  
I/O  
I/O  
A8  
I/O  
I/O  
I/O  
D5  
I/O  
I/O  
I/O  
A9  
CLKB  
I/O  
CLKB  
I/O  
CLKB  
I/O  
D6  
I/O  
I/O  
I/O  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
D7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D8  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
QCLKD  
I/O  
NC  
I/O  
I/O  
D9  
I/O  
I/O  
I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
B2  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
B3  
I/O  
I/O  
I/O  
B4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
B5  
I/O  
I/O  
I/O  
E2  
I/O  
I/O  
I/O  
B6  
NC  
I/O  
I/O  
E3  
I/O  
I/O  
I/O  
B7  
I/O  
I/O  
I/O  
E4  
I/O  
I/O  
I/O  
B8  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
E5  
I/O  
I/O  
I/O  
B9  
E6  
I/O  
I/O  
I/O  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
I/O  
I/O  
I/O  
E7  
I/O  
I/O  
QCLKC  
I/O  
NC  
I/O  
I/O  
E8  
I/O  
I/O  
I/O  
I/O  
I/O  
E9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
C2  
TDI, I/O  
GND  
I/O  
TDI, I/O  
GND  
I/O  
TDI, I/O  
GND  
I/O  
I/O  
I/O  
I/O  
C3  
I/O  
I/O  
I/O  
C4  
I/O  
I/O  
I/O  
C5  
NC  
I/O  
I/O  
F2  
I/O  
I/O  
I/O  
C6  
I/O  
I/O  
I/O  
F3  
I/O  
I/O  
I/O  
C7  
I/O  
I/O  
I/O  
F4  
TMS  
I/O  
TMS  
I/O  
TMS  
I/O  
C8  
I/O  
I/O  
I/O  
F5  
C9  
CLKA  
I/O  
CLKA  
I/O  
CLKA  
I/O  
F6  
I/O  
I/O  
I/O  
C10  
C11  
C12  
C13  
F7  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
I/O  
I/O  
F8  
I/O  
I/O  
I/O  
F9  
I/O  
I/O  
I/O  
F10  
7 4  
v4 .0  
2 5 6 -P in F B G A ( C o n t i n u e d )  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
Pin Number  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
I/O  
VCCA  
I/O  
I/O  
VCCA  
I/O  
I/O  
VCCA  
I/O  
J8  
J9  
GND  
GND  
GND  
VCCI  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
G2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
G3  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
G4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
G5  
I/O  
I/O  
I/O  
K2  
I/O  
I/O  
I/O  
G6  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
K3  
NC  
I/O  
I/O  
G7  
K4  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
G8  
K5  
G9  
K6  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
K7  
K8  
K9  
GND  
NC  
GND  
I/O  
GND  
I/O  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
H2  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
H3  
VCCA  
TRST, I/O  
I/O  
VCCA  
TRST, I/O  
I/O  
VCCA  
TRST, I/O  
I/O  
I/O  
I/O  
I/O  
H4  
I/O  
I/O  
I/O  
H5  
L2  
I/O  
I/O  
I/O  
H6  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
L3  
I/O  
I/O  
I/O  
H7  
L4  
I/O  
I/O  
I/O  
H8  
L5  
I/O  
I/O  
I/O  
H9  
L6  
I/O  
I/O  
I/O  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
L7  
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
L8  
L9  
I/O  
I/O  
I/O  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
J2  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
J3  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
J4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J6  
VCCI  
GND  
VCCI  
GND  
VCCI  
GND  
I/O  
I/O  
I/O  
J7  
I/O  
I/O  
I/O  
v4 .0  
7 5  
2 5 6 -P in F B G A ( C o n t i n u e d )  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
Pin Number  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKA  
PRB, I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
R2  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
R3  
NC  
I/O  
I/O  
R4  
NC  
I/O  
I/O  
I/O  
R5  
I/O  
I/O  
I/O  
I/O  
I/O  
R6  
I/O  
I/O  
I/O  
I/O  
I/O  
R7  
I/O  
I/O  
I/O  
N2  
I/O  
I/O  
R8  
I/O  
I/O  
I/O  
N3  
I/O  
I/O  
R9  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
QCLKB  
I/O  
N4  
I/O  
I/O  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
N5  
I/O  
I/O  
I/O  
I/O  
N6  
I/O  
I/O  
I/O  
I/O  
I/O  
N7  
I/O  
I/O  
I/O  
I/O  
I/O  
N8  
I/O  
I/O  
I/O  
I/O  
I/O  
N9  
I/O  
I/O  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
I/O  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
T2  
I/O  
I/O  
T3  
I/O  
I/O  
I/O  
I/O  
I/O  
T4  
NC  
I/O  
I/O  
I/O  
I/O  
T5  
I/O  
I/O  
I/O  
I/O  
I/O  
T6  
I/O  
I/O  
I/O  
I/O  
I/O  
T7  
I/O  
I/O  
I/O  
P2  
GND  
I/O  
GND  
I/O  
T8  
I/O  
I/O  
I/O  
P3  
T9  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
P4  
I/O  
I/O  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
P5  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
P6  
I/O  
NC  
I/O  
I/O  
P7  
I/O  
I/O  
I/O  
I/O  
I/O  
P8  
I/O  
I/O  
I/O  
I/O  
I/O  
P9  
I/O  
I/O  
TDO, I/O  
GND  
TDO, I/O  
GND  
TDO, I/O  
GND  
P10  
NC  
I/O  
7 6  
v4 .0  
P a c k a g e P i n A s s i g n m e n t s (C o n t in u e d )  
4 8 4 -P in F B G A ( T o p V ie w )  
1
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
2
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
v4 .0  
7 7  
4 8 4 -P in F B G A  
Pin  
Number  
A54SX32A A54SX72A  
Pin  
Number  
A54SX32A A54SX72A  
Pin  
Number  
A54SX32A A54SX72A  
Function  
Function  
Function  
Function  
Function  
Function  
A1  
A2  
NC*  
NC*  
NC*  
NC*  
NC*  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AC1  
I/O  
PRB, I/O  
VCCA  
I/O  
I/O  
PRB, I/O  
VCCA  
I/O  
AD5  
AD6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A3  
AD7  
I/O  
A4  
AD8  
I/O  
A5  
I/O  
I/O  
AD9  
VCCI  
I/O  
A6  
I/O  
I/O  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AE1  
A7  
I/O  
I/O  
I/O  
I/O  
A8  
I/O  
I/O  
I/O  
I/O  
A9  
I/O  
I/O  
I/O  
VCCI  
I/O  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
AA1  
AA2  
AA3  
AA4  
AA5  
AA22  
AA23  
AA24  
AA25  
AA26  
AB1  
AB2  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
AB9  
AB10  
I/O  
TDO, I/O  
GND  
NC*  
I/O  
TDO, I/O  
GND  
I/O  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
NC*  
NC*  
NC*  
I/O  
I/O  
I/O  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AC2  
I/O  
I/O  
I/O  
I/O  
AC3  
I/O  
I/O  
VCCI  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
AC4  
NC*  
VCCI  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
VCCA  
I/O  
AC5  
VCCI  
I/O  
AC6  
AC7  
VCCI  
I/O  
VCCI  
I/O  
AC8  
AE2  
AC9  
I/O  
I/O  
AE3  
NC*  
NC*  
NC*  
NC*  
I/O  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD1  
I/O  
I/O  
AE4  
I/O  
I/O  
AE5  
I/O  
QCLKA  
I/O  
AE6  
I/O  
AE7  
I/O  
I/O  
AE8  
I/O  
I/O  
I/O  
I/O  
AE9  
I/O  
I/O  
I/O  
I/O  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
I/O  
I/O  
I/O  
I/O  
NC*  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
VCCI  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
NC*  
NC*  
I/O  
I/O  
I/O  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
I/O  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
AD2  
I/O  
I/O  
I/O  
AD3  
GND  
I/O  
GND  
I/O  
I/O  
AD4  
Note: *These pins must be left floating on the A54SX32A device.  
7 8  
v4 .0  
4 8 4 -P in F B G A ( C o n t i n u e d )  
Pin  
Number  
A54SX32A A54SX72A  
Pin  
Number  
A54SX32A A54SX72A  
Pin  
Number  
A54SX32A A54SX72A  
Function  
Function  
Function  
Function  
Function  
Function  
AE25  
AE26  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
B1  
NC*  
NC*  
NC*  
NC*  
NC  
NC  
NC  
NC  
NC  
I/O  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
I/O  
I/O  
I/O  
I/O  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
NC*  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
I/O  
I/O  
C2  
I/O  
I/O  
I/O  
C3  
I/O  
I/O  
I/O  
C4  
I/O  
I/O  
I/O  
NC*  
NC*  
HCLK  
I/O  
I/O  
C5  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
NC  
HCLK  
QCLKB  
I/O  
C6  
VCCI  
I/O  
VCCI  
I/O  
I/O  
C7  
I/O  
C8  
I/O  
I/O  
E2  
I/O  
NC*  
NC*  
I/O  
C9  
VCCI  
I/O  
VCCI  
I/O  
E3  
I/O  
I/O  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
E4  
I/O  
I/O  
I/O  
I/O  
I/O  
E5  
GND  
TDI, IO  
I/O  
GND  
TDI, IO  
I/O  
I/O  
I/O  
I/O  
I/O  
E6  
I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
E7  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
E8  
I/O  
I/O  
I/O  
I/O  
QCLKD  
I/O  
E9  
I/O  
I/O  
I/O  
I/O  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
F1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
I/O  
I/O  
I/O  
VCCA  
CLKB  
I/O  
VCCA  
CLKB  
I/O  
VCCI  
I/O  
VCCI  
I/O  
B2  
I/O  
I/O  
I/O  
I/O  
B3  
I/O  
I/O  
I/O  
I/O  
B4  
I/O  
I/O  
I/O  
I/O  
I/O  
B5  
I/O  
NC*  
NC*  
NC*  
TMS  
I/O  
I/O  
I/O  
I/O  
B6  
I/O  
I/O  
I/O  
I/O  
B7  
I/O  
I/O  
I/O  
I/O  
I/O  
B8  
I/O  
I/O  
D2  
TMS  
I/O  
I/O  
I/O  
B9  
I/O  
I/O  
D3  
I/O  
I/O  
B10  
B11  
I/O  
I/O  
D4  
VCCI  
NC*  
TCK, I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
NC*  
NC*  
VCCI  
CLKA  
NC*  
NC*  
I/O  
I/O  
D5  
VCCI  
GND  
VCCI  
NC*  
NC*  
I/O  
VCCI  
GND  
VCCI  
I/O  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
I/O  
D6  
TCK, I/O  
I/O  
VCCI  
CLKA  
I/O  
D7  
D8  
I/O  
I/O  
F2  
D9  
I/O  
I/O  
F3  
I/O  
I/O  
D10  
D11  
D12  
I/O  
I/O  
F4  
I/O  
I/O  
I/O  
I/O  
F5  
I/O  
I/O  
VCCI  
VCCI  
I/O  
QCLKC  
F22  
I/O  
I/O  
Note: *These pins must be left floating on the A54SX32A device.  
v4 .0  
7 9  
4 8 4 -P in F B G A ( C o n t i n u e d )  
Pin  
Number  
A54SX32A A54SX72A  
Pin  
Number  
A54SX32A A54SX72A  
Pin  
Number  
A54SX32A A54SX72A  
Function  
Function  
Function  
Function  
Function  
Function  
F23  
F24  
F25  
F26  
G1  
I/O  
I/O  
I/O  
I/O  
K17  
K22  
K23  
K24  
K25  
K26  
L1  
GND  
I/O  
GND  
I/O  
N5  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N22  
N23  
N24  
N25  
N26  
P1  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCA  
I/O  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
NC*  
I/O  
NC  
I/O  
I/O  
G2  
I/O  
I/O  
G3  
I/O  
I/O  
G4  
I/O  
L2  
I/O  
G5  
I/O  
I/O  
L3  
I/O  
G22  
G23  
G24  
G25  
G26  
H1  
I/O  
I/O  
L4  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
L5  
I/O  
I/O  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L22  
L23  
L24  
L25  
L26  
M1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
I/O  
NC  
I/O  
I/O  
H2  
I/O  
P2  
I/O  
H3  
I/O  
P3  
I/O  
H4  
I/O  
I/O  
P4  
I/O  
I/O  
H5  
I/O  
I/O  
P5  
VCCA  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
VCCA  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
H22  
H23  
H24  
H25  
H26  
J1  
I/O  
I/O  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P22  
P23  
P24  
P25  
P26  
R1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
I/O  
NC  
J2  
I/O  
M2  
I/O  
J3  
I/O  
M3  
I/O  
I/O  
J4  
I/O  
I/O  
M4  
I/O  
I/O  
J5  
I/O  
I/O  
M5  
I/O  
I/O  
I/O  
I/O  
J22  
J23  
J24  
J25  
J26  
K1  
I/O  
I/O  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M22  
M23  
M24  
M25  
M26  
N1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
NC*  
I/O  
VCCI  
I/O  
NC*  
I/O  
R2  
NC*  
I/O  
I/O  
R3  
I/O  
I/O  
K2  
VCCI  
I/O  
VCCI  
I/O  
R4  
I/O  
I/O  
K3  
R5  
TRST, I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
TRST, I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
K4  
I/O  
I/O  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R22  
K5  
VCCA  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCA  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
I/O  
I/O  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
N2  
VCCI  
I/O  
VCCI  
I/O  
N3  
N4  
I/O  
I/O  
Note: *These pins must be left floating on the A54SX32A device.  
8 0  
v4 .0  
4 8 4 -P in F B G A ( C o n t i n u e d )  
Pin  
Number  
A54SX32A A54SX72A  
Pin  
Number  
A54SX32A A54SX72A  
Pin  
Number  
A54SX32A A54SX72A  
Function  
Function  
Function  
Function  
Function  
Function  
R23  
R24  
R25  
R26  
T1  
I/O  
I/O  
I/O  
I/O  
U3  
U4  
I/O  
I/O  
I/O  
I/O  
V25  
V26  
W1  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
U5  
I/O  
I/O  
I/O  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U22  
U23  
U24  
U25  
U26  
V1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
W2  
I/O  
I/O  
W3  
I/O  
T2  
I/O  
W4  
I/O  
T3  
I/O  
W5  
I/O  
T4  
I/O  
I/O  
W22  
W23  
W24  
W25  
W26  
Y1  
I/O  
T5  
I/O  
I/O  
VCCA  
I/O  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T22  
T23  
T24  
T25  
T26  
U1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
Y2  
VCCI  
I/O  
VCCI  
I/O  
Y3  
Y4  
I/O  
NC*  
NC*  
I/O  
I/O  
Y5  
NC*  
I/O  
V2  
I/O  
Y22  
Y23  
Y24  
Y25  
Y26  
I/O  
I/O  
V3  
I/O  
I/O  
I/O  
I/O  
V4  
I/O  
I/O  
VCCI  
I/O  
NC*  
NC*  
I/O  
I/O  
V5  
I/O  
I/O  
I/O  
V22  
V23  
V24  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
U2  
VCCI  
VCCI  
I/O  
I/O  
Note: *These pins must be left floating on the A54SX32A device.  
v4 .0  
8 1  
L i s t o f C h a n g e s  
The following table lists critical changes that were made in the current version of the document.  
Previous version Changes in current version (v3.0)  
Page  
The SX-A Product Profiletable on page 1 was updated.  
The Ordering Informationsection on page 2 was updated.  
The Product Plansection on page 3 was updated.  
Figure 1 on page 4 was updated.  
page 1  
page 2  
page 3  
page 4  
page 6  
page 8  
page 9  
page 9  
page 10  
page 10  
page 10  
page 11  
page 11  
The Clock Resourcessection on page 6was updated  
The SX-A Clock Resourcestable on page 8 is new.  
The User Securitysection on page 9 is new.  
The I/O Modulessection on page 9 was updated.  
The I/O Featurestable on page 10 was updated.  
The I/O Characteristics for All I/O Configurationstable on page 10 is new.  
The Power-up Time at which I/Os Become Activetable on page 10 is new  
Figure 10 on page 11 is new.  
The Boundary-Scan Pin Configurations and Functionstable on page 11 is new.  
v4.0  
The Device Configuration Options for Probe Capability (TRST pin reserved)table  
page 12  
on page 12 is new.  
The SX-A Probe Circuit Control Pinssection on page 12 was updated.  
The Design Considerationssection on page 12 was updated.  
Figure 11 on page 12 was updated.  
page 12  
page 12  
page 12  
page 13  
page 13  
page 14  
page 14  
The Development Tool Supportsection on page 13 was updated.  
Figure 12 on page 13 is new.  
The Absolute Maximum Ratings1table on page 14 was updated.  
The Recommended Operating Conditionstable on page 14 was updated.  
The 3.3V LVTTL and 5V TTL Electrical Specificationstable on page 14 was  
updated.  
page 14  
The 2.5V LVCMOS2 Electrical Specificationstable on page 15 was updated.  
The SX-A Timing Model* and Sample Path Calculations equations were updated.  
The Pin Descriptionsection on page 53 was updated.  
page 15  
page 22  
page 53  
page 10  
The section, Development Tool Supportsection on page 13 has been updated.  
The section, I/O Modulessection on page 9, and the table, I/O Features, Table 2 on  
page 10 have been updated.  
page 9  
v2.0.1  
The SX-A Timing Model*section on page 22 and several timing tables on pages  
22-49 have new timing numbers.  
pages 19,  
22-49  
D a t a S h e e t C a t e g o r i e s  
In order to provide the latest information to designers, some data sheets are published before data has been fully  
characterized. These data sheets are marked as Advancedor Preliminarydata sheets. The definition of these categories  
are as follows:  
A d v a n c e d  
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This  
information can be used as estimates, but not for production.  
8 2  
v4 .0  
P r e l im i n a r y  
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be  
correct, but changes are possible.  
U n m a r k e d ( p r o d u c t io n )  
The data sheet contains information that is considered to be final.  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Corporation  
955 East Arques Avenue  
Sunnyvale, California 94086  
USA  
Actel Europe Ltd.  
Actel Japan  
Actel Hong Kong  
39th Floor  
One Pacific Place  
88 Queensway  
Dunlop House, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Tel: (408) 739-1010  
Fax: (408) 739-1540  
Tel: +44 (0)1276 401450  
Fax: +44 (0)1276 401490  
Tel: +81 03-3445-7671  
Fax: +81 03-3445-7668  
Admiralty, Hong Kong  
Tel: 852-22735712  
5172147-6/4.03  

相关型号:

A54SX32A-1BG329I

Field Programmable Gate Array, 2880 CLBs, 48000 Gates, 278MHz, 2880-Cell, CMOS, PBGA329
ACTEL

A54SX32A-1BG329IX79

Field Programmable Gate Array, 2880 CLBs, 48000 Gates, 278MHz, CMOS, PBGA329, 1.27 MM PITCH, PLASTIC, BGA-329
ACTEL

A54SX32A-1BG329M

Field Programmable Gate Array, 2880 CLBs, 48000 Gates, 278MHz, 2880-Cell, CMOS, PBGA329, 1.27 MM PITCH, PLASTIC, BGA-329
ACTEL

A54SX32A-1BG329X79

Field Programmable Gate Array, 2880 CLBs, 48000 Gates, 278MHz, CMOS, PBGA329, 1.27 MM PITCH, PLASTIC, BGA-329
ACTEL

A54SX32A-1BGG208

SX-A Family FPGAs
ACTEL

A54SX32A-1BGG208A

SX-A Family FPGAs
ACTEL

A54SX32A-1BGG208B

SX-A Family FPGAs
ACTEL

A54SX32A-1BGG208I

SX-A Family FPGAs
ACTEL

A54SX32A-1BGG208M

SX-A Family FPGAs
ACTEL

A54SX32A-1BGG329

Field Programmable Gate Array, 2880 CLBs, 48000 Gates, 278MHz, 2880-Cell, CMOS, PBGA329, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, BGA-329
ACTEL

A54SX32A-1BGG329I

Field Programmable Gate Array, 2880 CLBs, 48000 Gates, 278MHz, 2880-Cell, CMOS, PBGA329
ACTEL

A54SX32A-1BGG329M

Field Programmable Gate Array, 2880 CLBs, 48000 Gates, 278MHz, 2880-Cell, CMOS, PBGA329
ACTEL