APA1000-CQ208M [MICROSEMI]

Field Programmable Gate Array, 1000000 Gates, 180MHz, 56320-Cell, CMOS, CQFP208, 1.05 MM PITCH, CERAMIC, QFP-208;
APA1000-CQ208M
型号: APA1000-CQ208M
厂家: Microsemi    Microsemi
描述:

Field Programmable Gate Array, 1000000 Gates, 180MHz, 56320-Cell, CMOS, CQFP208, 1.05 MM PITCH, CERAMIC, QFP-208

时钟 栅 可编程逻辑
文件: 总83页 (文件大小:2197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v5.8  
®
ProASICPLUS® Flash Family FPGAs  
High Performance Routing Hierarchy  
Features and Benefits  
High Capacity  
Ultra-Fast Local and Long-Line Network  
High-Speed Very Long-Line Network  
High-Performance, Low Skew, Splittable Global Network  
100% Routability and Utilization  
Commercial and Industrial  
75,000 to 1 Million System Gates  
27 k to 198 kbits of Two-Port SRAM  
66 to 712 User I/Os  
I/O  
Schmitt-Trigger Option on Every Input  
2.5 V/3.3 V Support with Individually-Selectable Voltage and  
Slew Rate  
Military  
Bidirectional Global I/Os  
300, 000 to 1 million System Gates  
72 k to 198 kbits of Two Port SRAM  
158 to 712 User I/Os  
Compliance with PCI Specification Revision 2.2  
Boundary-Scan Test IEEE Std. 1149.1 (JTAG) Compliant  
PLUS  
Pin Compatible Packages across the ProASIC  
Family  
Reprogrammable Flash Technology  
Unique Clock Conditioning Circuitry  
0.22 µm 4 LM Flash-Based CMOS Process  
Live At Power-Up (LAPU) Level 0 Support  
Single-Chip Solution  
No Configuration Device Required  
Retains Programmed Design during Power-Down/Up Cycles  
Mil/Aero Devices Operate over Full Military Temperature  
Range  
PLL with Flexible Phase, Multiply/Divide and Delay  
Capabilities  
Internal and/or External Dynamic PLL Configuration  
Two LVPECL Differential Pairs for Clock or Data Inputs  
Standard FPGA and ASIC Design Flow  
Flexibility with Choice of Industry-Standard Front-End Tools  
Efficient Design through Front-End Timing and Gate Optimization  
Performance  
3.3 V, 32-Bit PCI, up to 50 MHz (33 MHz over military  
temperature)  
ISP Support  
In-System Programming (ISP) via JTAG Port  
Two Integrated PLLs  
SRAMs and FIFOs  
External System Performance up to 150 MHz  
SmartGen Netlist Generation Ensures Optimal Usage of  
Embedded Memory Blocks  
24 SRAM and FIFO Configurations with Synchronous and  
Asynchronous Operation up to 150 MHz (typical)  
Secure Programming  
®
The Industry’s Most Effective Security Key (FlashLock )  
Low Power  
Low Impedance Flash Switches  
Segmented Hierarchical Routing Structure  
Small, Efficient, Configurable (Combinatorial or Sequential)  
Logic Cells  
Table 1 ProASICPLUS Product Profile  
1
1
1
Device  
Maximum System Gates  
Tiles (Registers)  
Embedded RAM Bits (k=1,024 bits)  
APA075  
75,000  
3,072  
27 k  
12  
APA150  
150,000  
6,144  
36k  
16  
APA300  
APA450  
450,000  
12,288  
108 k  
48  
APA600  
APA750  
750,000  
32,768  
144 k  
64  
APA1000  
300,000  
8,192  
72 k  
32  
600,000  
21,504  
126 k  
56  
1,000,000  
56,320  
198 k  
88  
Embedded RAM Blocks (256x9)  
LVPECL  
2
2
2
2
2
2
2
PLL  
2
2
2
2
2
2
2
Global Networks  
Maximum Clocks  
Maximum User I/Os  
JTAG ISP  
4
24  
158  
Yes  
Yes  
4
32  
242  
Yes  
Yes  
4
32  
290  
Yes  
Yes  
4
48  
344  
Yes  
Yes  
4
56  
454  
Yes  
Yes  
4
64  
562  
Yes  
Yes  
4
88  
712  
Yes  
Yes  
PCI  
Package (by pin count)  
TQFP  
PQFP  
100, 144  
208  
100  
208  
456  
208  
456  
208  
456  
208  
456  
208  
456  
208  
456  
PBGA  
FBGA  
CQFP  
CCGA/LGA  
144  
144, 256  
144, 256  
208, 352  
144, 256, 484 256, 484, 676  
676, 896  
896, 1152  
208, 352  
624  
2
208, 352  
624  
2
Notes:  
1. Available as Commercial/Industrial and Military/MIL-STD-883B devices.  
2. These packages are available only for Military/MIL-STD-883B devices.  
June 2009  
i
© 2009 Actel Corporation  
See the Actel website for the latest version of the datasheet.  
PLUS  
ProASIC  
Flash Family FPGAs  
Ordering Information  
_
APA1000  
F
FG  
G
1152  
I
Application (Ambient Temperature Range)  
Blank = Commercial (0˚C to +70˚C)  
I = Industrial (-40˚C to +85˚C)  
PP = Pre-production  
ES = Engineering Silicon (Room Temperature Only)  
M = Military (-55˚C to 125˚C)  
B
= MIL-STD-883 Class B  
Package Lead Count  
Lead-free packaging  
Blank = Standard Packaging  
G = RoHS Compliant Packaging  
Package Type  
=
=
=
=
=
=
=
TQ  
PQ  
FG  
BG  
CQ  
CG  
LG  
Thin Quad Flat Pack (0.5 mm pitch)  
Plastic Quad Flat Pack (0.5 mm pitch)  
Fine Pitch Ball Grid Array (1.0 mm pitch)  
Plastic Ball Grid Array (1.27 mm pitch)  
Ceramic Quad Flat Pack (1.05 mm pitch)  
Ceramic Column Grid Array (1.27 mm pitch)  
Land Grid Array (1.27 mm pitch)  
Speed Grade  
=
Blank  
F
Standard Speed  
= 20% Slower than Standard  
Part Number  
APA075 = 75,000 Equivalent System Gates  
APA150 = 150,000 Equivalent System Gates  
APA300 = 300,000 Equivalent System Gates  
APA450 = 450,000 Equivalent System Gates  
APA600 = 600,000 Equivalent System Gates  
APA750 = 750,000 Equivalent System Gates  
APA1000 = 1,000,000 Equivalent System Gates  
ii  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Device Resources  
User I/Os2  
Commercial/Industrial  
Military/MIL-STD-883B  
CCGA/  
TQFP  
TQFP  
107  
PQFP  
PBGA FBGA FBGA FBGA FBGA FBGA  
FBGA  
CQFP  
CQFP  
LGA  
Device  
APA075  
APA150  
APA300  
APA450  
APA600  
APA750  
APA1000  
Notes:  
100-Pin 144-Pin 208-Pin 456-Pin 144-Pin 256-Pin 484-Pin 676-Pin 896-Pin 1152-Pin 208-Pin 352-Pin 624-Pin  
66  
66  
158  
158  
158 4  
100  
100  
242  
290 4  
344  
186 3  
100 4 186 3, 4  
100  
186 3  
186 3, 4 370 3  
158  
158  
158  
248  
248  
248  
158  
344 3  
158 4  
158  
158 4  
356 4  
454  
454  
440  
440  
356  
562 5  
356 4  
642 4, 5 712 5  
1. Package Definitions: TQFP = Thin Quad Flat Pack, PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch Ball Grid  
Array, CQFP = Ceramic Quad Flat Pack, CCGA = Ceramic Column Grid Array, LGA = Land Grid Array  
2. Each pair of PECL I/Os is counted as one user I/O.  
3. FG256 and FG484 are footprint-compatible packages.  
4. Military Temperature Plastic Package Offering  
5. FG896 and FG1152 are footprint-compatible packages.  
General Guideline  
Maximum performance numbers in this datasheet are based on characterized data. Actel does not guarantee  
performance beyond the limits specified within the datasheet.  
v5.8  
iii  
PLUS  
ProASIC  
Flash Family FPGAs  
Temperature Grade Offerings  
Package  
TQ100  
TQ144  
PQ208  
BG456  
FG144  
FG256  
FG484  
FG676  
FG896  
FG1152  
CQ208  
CQ352  
CG624  
APA075  
APA150  
APA300  
APA450  
APA600  
APA750 APA1000  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I, M  
C, I, M  
C, I, M  
C, I, M  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I, M  
C, I, M  
C, I  
C, I  
C, I, M  
C, I, M  
C, I  
C, I, M  
C, I, M  
C, I, M  
C, I  
C, I  
C, I, M  
C, I  
M, B  
M, B  
M, B  
M, B  
M, B  
M, B  
M, B  
M, B  
Note: C = Commercial  
I = Industrial  
M = Military  
B = MIL-STD-883  
Speed Grade and Temperature Matrix  
–F  
Std.  
C
I
M, B  
Note: C = Commercial  
I = Industrial  
M = Military  
B = MIL-STD-883  
iv  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Table of Contents  
General Description  
ProASICPLUS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Timing Control and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
Sample Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16  
Adjustable Clock Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16  
Clock Skew Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16  
PLL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21  
Design Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28  
ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30  
Calculating Typical Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34  
Tristate Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-45  
Output Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-47  
Input Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-49  
Global Input Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-51  
Predicted Global Routing Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-53  
Global Routing Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-53  
Module Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54  
Sample Macrocell Library Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54  
Embedded Memory Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-76  
Recommended Design Practice for V /V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-77  
PN PP  
Package Pin Assignments  
100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
144-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
208-Pin PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
208-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12  
352-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
456-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22  
144-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37  
256-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40  
484-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45  
676-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51  
896-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59  
1152-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69  
624-Pin CCGA/LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-78  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Data Sheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
Actel Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . 3-8  
v5.8  
v
PLUS  
ProASIC  
Flash Family FPGAs  
General Description  
The ProASICPLUS family of devices, Actel’s second-  
generation Flash FPGAs, offers enhanced performance  
over Actel’s ProASIC family. It combines the advantages  
of ASICs with the benefits of programmable devices  
through nonvolatile Flash technology. This enables  
engineers to create high-density systems using existing  
ASIC or FPGA design flows and tools. In addition, the  
ProASICPLUS family offers a unique clock conditioning  
circuit based on two on-board phase-locked loops (PLLs).  
The family offers up to one million system gates,  
supported with up to 198 kbits of two-port SRAM and up  
to 712 user I/Os, all providing 50 MHz PCI performance.  
combination of fine granularity, flexible routing  
resources, and abundant Flash switches allow 100%  
utilization and over 95% routability for highly congested  
designs. Tiles and larger functions are interconnected  
through a four-level routing hierarchy.  
Embedded two-port SRAM blocks with built-in FIFO/RAM  
control logic can have user-defined depths and widths.  
Users can also select programming for synchronous or  
asynchronous operation, as well as parity generations or  
checking.  
The unique clock conditioning circuitry in each device  
includes two clock conditioning blocks. Each block  
provides a PLL core, delay lines, phase shifts (0° and  
180°), and clock multipliers/dividers, as well as the  
circuitry needed to provide bidirectional access to the  
PLL. The PLL block contains four programmable  
frequency dividers which allow the incoming clock signal  
to be divided by a wide range of factors from 1 to 64.  
The clock conditioning circuit also delays or advances the  
incoming reference clock up to 8 ns (in increments of  
0.25 ns). The PLL can be configured internally or  
externally during operation without redesigning or  
reprogramming the part. In addition to the PLL, there  
are two LVPECL differential input pairs to accommodate  
high-speed clock and data inputs.  
Advantages  
to  
the  
designer  
extend  
beyond  
performance. Unlike SRAM-based FPGAs, four levels of  
routing hierarchy simplify routing, while the use of Flash  
technology allows all functionality to be live at power-  
up. No external boot PROM is required to support device  
programming. While on-board security mechanisms  
prevent  
access  
to  
the  
program  
information,  
reprogramming can be performed in-system to support  
future design iterations and field upgrades. The device’s  
architecture mitigates the complexity of ASIC migration  
at higher user volume. This makes ProASICPLUS a cost-  
effective solution for applications in the networking,  
communications, computing, and avionics markets.  
The ProASICPLUS family achieves its nonvolatility and  
reprogrammability through an advanced Flash-based  
0.22 μm LVCMOS process with four layers of metal.  
Standard CMOS design techniques are used to  
implement logic and control functions, including the  
PLLs and LVPECL inputs. This results in predictable  
performance compatible with gate arrays.  
The ProASICPLUS architecture provides granularity  
comparable to gate arrays. The device core consists of a  
Sea-of-Tiles. Each tile can be configured as a flip-flop,  
latch, or three-input/one-output logic function by  
programming the appropriate Flash switches. The  
To support customer needs for more comprehensive,  
lower-cost, board-level testing, Actel’s ProASICPLUS  
devices are fully compatible with IEEE Standard 1149.1  
for test access port and boundary-scan test architecture.  
For more information concerning the Flash FPGA  
implementation, please refer to the "Boundary Scan  
(JTAG)" section on page 1-11.  
ProASICPLUS devices are available in a variety of high-  
performance plastic packages. Those packages and the  
performance features discussed above are described in  
more detail in the following sections.  
v5.8  
1-1  
PLUS  
ProASIC  
Flash Family FPGAs  
PLUS  
the appropriate logic cell inputs and outputs. Dedicated  
high-performance lines are connected as needed for fast,  
low-skew global signal distribution throughout the core.  
Maximum core utilization is possible for virtually any  
design.  
ProASICPLUS devices also contain embedded, two-port  
SRAM blocks with built-in FIFO/RAM control logic.  
ProASIC  
Architecture  
The proprietary ProASICPLUS architecture provides  
granularity comparable to gate arrays.  
The ProASICPLUS device core consists of a Sea-of-Tiles  
(Figure 1-1). Each tile can be configured as a three-input  
logic function (e.g., NAND gate, D-Flip-Flop, etc.) by  
programming  
the  
appropriate  
Flash  
switch  
Programming  
options  
include  
synchronous  
or  
interconnections (Figure 1-2 and Figure 1-3 on page 1-3).  
Tiles and larger functions are connected with any of the  
four levels of routing hierarchy. Flash switches are  
distributed throughout the device to provide  
nonvolatile, reconfigurable interconnect programming.  
Flash switches are programmed to connect signal lines to  
asynchronous operation, two-port RAM configurations,  
user defined depth and width, and parity generation or  
checking. Please see the "Embedded Memory  
Configurations" section on page 1-23 for more  
information.  
RAM Block  
256x9 Two-Port SRAM  
or FIFO Block  
I/Os  
Logic Tile  
RAM Block  
256x9 Two Port SRAM  
or FIFO Block  
Figure 1-1 The ProASICPLUS Device Architecture  
Switch In  
Floating Gate  
Sensing  
Switching  
Word  
Switch Out  
Figure 1-2 Flash Switch  
1-2  
v5.8  
 
 
PLUS  
ProASIC  
Flash Family FPGAs  
Local Routing  
In 1  
Efficient Long-Line Routing  
In 2 (CLK)  
In 3 (Reset)  
Figure 1-3 Core Logic Tile  
Live at Power-Up  
Flash Switch  
The Actel Flash-based ProASICPLUS devices support  
Level 0 of the live at power-up (LAPU) classification  
standard. This feature helps in system component  
initialization, executing critical tasks before the  
processor wakes up, setting up and configuring memory  
blocks, clock generation, and bus activity management.  
The LAPU feature of Flash-based ProASICPLUS devices  
greatly simplifies total system design and reduces total  
system cost, often eliminating the need for Complex  
Programmable Logic Device (CPLD) and clock generation  
PLLs that are used for this purpose in a system. In  
addition, glitches and brownouts in system power will  
not corrupt the ProASICPLUS device's Flash configuration,  
and unlike SRAM-based FPGAs, the device will not have  
to be reloaded when system power is restored. This  
enables the reduction or complete removal of the  
configuration PROM, expensive voltage monitor,  
brownout detection, and clock generator devices from  
the PCB design. Flash-based ProASICPLUS devices simplify  
total system design, and reduce cost and design risk,  
while increasing system reliability and improving system  
initialization time.  
Unlike SRAM FPGAs, ProASICPLUS uses a live-on-power-up  
ISP Flash switch as its programming element.  
In the ProASICPLUS Flash switch, two transistors share the  
floating gate, which stores the programming  
information. One is the sensing transistor, which is only  
used for writing and verification of the floating gate  
voltage. The other is the switching transistor. It can be  
used in the architecture to connect/separate routing nets  
or to configure logic. It is also used to erase the floating  
gate (Figure 1-2 on page 1-2).  
Logic Tile  
The logic tile cell (Figure 1-3) has three inputs (any or all  
of which can be inverted) and one output (which can  
connect to both ultra-fast local and efficient long-line  
routing resources). Any three-input, one-output logic  
function (except a three-input XOR) can be configured as  
one tile. The tile can be configured as a latch with clear  
or set or as a flip-flop with clear or set. Thus, the tiles can  
flexibly map logic and sequential gates of a design.  
v5.8  
1-3  
 
PLUS  
ProASIC  
Flash Family FPGAs  
Routing Resources  
The routing structure of ProASICPLUS devices is designed  
to provide high performance through a flexible four-  
level hierarchy of routing resources: ultra-fast local  
resources, efficient long-line resources, high-speed, very  
long-line resources, and high performance global  
networks.  
can in turn access every input of every tile. Active buffers  
are inserted automatically by routing software to limit  
the loading effects due to distance and fanout.  
The high-speed, very long-line resources, which span the  
entire device with minimal delay, are used to route very  
long or very high fanout nets. (Figure 1-6 on page 1-6).  
The ultra-fast local resources are dedicated lines that  
allow the output of each tile to connect directly to every  
input of the eight surrounding tiles (Figure 1-4).  
The high-performance global networks are low-skew,  
high fanout nets that are accessible from external pins or  
from internal logic (Figure 1-7 on page 1-7). These nets  
are typically used to distribute clocks, resets, and other  
high fanout nets requiring a minimum skew. The global  
networks are implemented as clock trees, and signals can  
be introduced at any junction. These can be employed  
hierarchically with signals accessing every input on all  
tiles.  
The efficient long-line resources provide routing for  
longer distances and higher fanout connections. These  
resources vary in length (spanning 1, 2, or 4 tiles), run  
both vertically and horizontally, and cover the entire  
ProASICPLUS device (Figure 1-5 on page 1-5). Each tile can  
drive signals onto the efficient long-line resources, which  
L
L
L
L
Inputs  
L
L
Ultra-Fast  
Local Lines  
(connects a tile to the  
adjacent tile, I/O buffer,  
or memory block)  
L
L
L
Figure 1-4 Ultra-Fast Local Resources  
1-4  
v5.8  
 
PLUS  
ProASIC  
Flash Family FPGAs  
Spans 4 Tiles  
L
Spans 2 Tiles  
L
Spans 1 Tile  
Logic Tile  
L
L
L
L
L
L
L
L
L
L
L
L
Spans 1 Tile  
Spans 2 Tiles  
Spans 4 Tiles  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Logic Cell  
Figure 1-5 Efficient Long-Line Resources  
v5.8  
1-5  
PLUS  
ProASIC  
Flash Family FPGAs  
High Speed Very Long-Line Resouces  
PAD RING  
SRAM  
SRAM  
PAD RING  
Figure 1-6 High-Speed, Very Long-Line Resources  
Clock Resources  
Clock Trees  
The ProASICPLUS family offers powerful and flexible  
control of circuit timing through the use of analog  
circuitry. Each chip has two clock conditioning blocks  
containing a phase-locked loop (PLL) core, delay lines,  
phase shifter (0° and 180°), clock multiplier/dividers, and  
all the circuitry needed for the selection and  
interconnection of inputs to the global network (thus  
providing bidirectional access to the PLL). This permits  
the PLL block to drive inputs and/or outputs via the two  
global lines on each side of the chip (four total lines).  
This circuitry is discussed in more detail in the  
"ProASICPLUS Clock Management System" section on  
page 1-13.  
One of the main architectural benefits of ProASICPLUS is  
the set of power- and delay-friendly global networks.  
ProASICPLUS offers four global trees. Each of these trees  
is based on a network of spines and ribs that reach all  
the tiles in their regions (Figure 1-7 on page 1-7). This  
flexible clock tree architecture allows users to map up to  
88 different internal/external clocks in an APA1000  
device. Details on the clock spines and various numbers  
of the family are given in Table 1-1 on page 1-7.  
The flexible use of the ProASICPLUS clock spine allows the  
designer to cope with several design requirements. Users  
implementing clock-resource intensive applications can  
easily route external or gated internal clocks using global  
routing spines. Users can also drastically reduce delay  
penalties and save buffering resources by mapping  
critical high fanout nets to spines. For design hints on  
using these features, refer to Actel’s Efficient Use of  
ProASIC Clock Trees application note.  
1-6  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
High-Performance  
Global Network  
PAD RING  
Top Spine  
Global Networks  
Global  
Pads  
Global  
Pads  
Global Spine  
Global Ribs  
Bottom Spine  
Scope of Spine  
(Shaded area  
plus local RAMs  
and I/Os)  
PAD RING  
Note: This figure shows routing for only one global path.  
Figure 1-7 High-Performance Global Network  
Table 1-1 Clock Spines  
APA075  
APA150  
APA300  
APA450  
4
APA600  
4
APA750 APA1000  
Global Clock Networks (Trees)  
Clock Spines/Tree  
4
6
4
8
4
8
4
16  
4
22  
12  
14  
Total Spines  
24  
32  
32  
48  
56  
64  
88  
Top or Bottom Spine Height (Tiles)  
Tiles in Each Top or Bottom Spine  
Total Tiles  
16  
24  
32  
32  
48  
64  
80  
512  
3,072  
768  
6,144  
1,024  
8,192  
1,024  
12,288  
1,536  
21,504  
2,048  
32,768  
2,560  
56,320  
v5.8  
1-7  
 
PLUS  
ProASIC  
Flash Family FPGAs  
Array Coordinates  
During many place-and-route operations in Actel’s  
Designer software tool, it is possible to set constraints  
that require array coordinates.  
cells and core cells. In addition, the I/O coordinate system  
changes depending on the die/package combination.  
Core cell coordinates start at the lower left corner  
(represented as (1,1)) or at (1,5) if memory blocks are  
present at the bottom. Memory coordinates use the  
same system and are indicated in Table 1-2. The memory  
coordinates for an APA1000 are illustrated in Figure 1-8.  
For more information on how to use constraints, see the  
Designer User’s Guide or online help for ProASICPLUS  
software tools.  
Table 1-2 is provided as a reference. The array coordinates  
are measured from the lower left (0,0). They can be used in  
region constraints for specific groups of core cells, I/Os, and  
RAM blocks. Wild cards are also allowed.  
I/O and cell coordinates are used for placement  
constraints. Two coordinate systems are needed because  
there is not a one-to-one correspondence between I/O  
Table 1-2 Array Coordinates  
Logic Tile  
Memory Rows  
Min.  
Max.  
Bottom  
y
Top  
All  
Device  
APA075  
APA150  
APA300  
APA450  
APA600  
APA750  
APA1000  
x
1
1
1
1
1
1
1
y
1
1
5
5
5
5
5
x
y
y
Min.  
0,0  
0,0  
0,0  
0,0  
0,0  
0,0  
0,0  
Max.  
97, 37  
96  
32  
(33,33) or (33, 35)  
(49,49) or (49, 51)  
(69,69) or (69, 71)  
(69,69) or (69, 71)  
(101,101) or (101, 103)  
(133,133) or (133, 135)  
(165,165) or (165, 167)  
128  
128  
192  
224  
256  
352  
48  
129, 53  
129, 73  
193, 73  
68  
(1,1) or (1,3)  
(1,1) or (1,3)  
(1,1) or (1,3)  
(1,1) or (1,3)  
(1,1) or (1,3)  
68  
100  
132  
164  
225, 105  
257, 137  
353, 169  
Memory  
Blocks  
(1,169)  
(1,167)  
(1,165)  
(1,164)  
(353,169)  
(352,167)  
(352,165)  
(352,164)  
Core  
(1,5)  
(1,3)  
(1,1)  
(352,5)  
(352,3)  
(352,1)  
(0,0)  
(353,0)  
Memory  
Blocks  
Figure 1-8 Core Cell Coordinates for the APA1000  
1-8  
v5.8  
 
 
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-3 ProASICPLUS I/O Power Supply Voltages  
Input/Output Blocks  
VDDP  
To meet complex system demands, the ProASICPLUS  
family offers devices with a large number of user I/O  
pins, up to 712 on the APA1000. Table 1-3 shows the  
available supply voltage configurations (the PLL block  
uses an independent 2.5 V supply on the AVDD and  
AGND pins). All I/Os include ESD protection circuits. Each  
I/O has been tested to 2000 V to the human body model  
(per JESD22 (HBM)).  
2.5 V  
2.5 V  
2.5 V  
3.3 V  
3.3 V  
3.3 V  
Input Compatibility  
Output Drive  
3.3V/2.5V  
Signal Control  
Six or seven standard I/O pads are grouped with a GND  
pad and either a VDD (core power) or VDDP (I/O power)  
pad. Two reference bias signals circle the chip. One  
protects the cascaded output drivers, while the other  
creates a virtual VDD supply for the I/O ring.  
Pull-up  
Control  
Y
EN  
Pad  
I/O pads are fully configurable to provide the maximum  
flexibility and speed. Each pad can be configured as an  
input, an output, a tristate driver, or a bidirectional  
buffer (Figure 1-9 and Table 1-4).  
A
3.3 V/2.5 V Signal Control Drive  
Strength and Slew-Rate Control  
Figure 1-9 I/O Block Schematic Representation  
Table 1-4 I/O Features  
Function  
Description  
I/O pads configured as inputs  
Selectable 2.5 V or 3.3 V threshold levels  
Optional pull-up resistor  
Optionally configurable as Schmitt trigger input. The Schmitt trigger input option can be  
configured as an input only, not a bidirectional buffer. This input type may be slower than  
a standard input under certain conditions and has a typical hysteresis of 0.35 V. I/O macros  
with an “S” in the standard I/O library have added Schmitt capabilities.  
3.3 V PCI Compliant (except Schmitt trigger inputs)  
Selectable 2.5 V or 3.3 V compliant output signals  
2.5 V – JEDEC JESD 8-5  
I/O pads configured as outputs  
3.3 V – JEDEC JESD 8-A (LVTTL and LVCMOS)  
3.3 V PCI compliant  
Ability to drive LVTTL and LVCMOS levels  
Selectable drive strengths  
Selectable slew rates  
Tristate  
I/O pads configured as bidirectional • Selectable 2.5 V or 3.3 V compliant output signals  
buffers  
2.5 V – JEDEC JESD 8-5  
3.3 V – JEDEC JESD 8-A (LVTTL and LVCMOS)  
3.3 V PCI compliant  
Optional pull-up resistor  
Selectable drive strengths  
Selectable slew rates  
Tristate  
v5.8  
1-9  
 
 
 
PLUS  
ProASIC  
Flash Family FPGAs  
low voltage differential amplifier) and a signal and its  
complement, PPECL (I/P) (PECLN) and NPECL (PECLREF).  
The LVPECL input pad cell differs from the standard I/O  
cell in that it is operated from VDD only.  
Power-Up Sequencing  
While ProASICPLUS devices are live at power-up, the order  
of VDD and VDDP power-up is important during system  
start-up. VDD should be powered up simultaneously with  
VDDP on ProASICPLUS devices. Failure to follow these  
guidelines may result in undesirable pin behavior during  
system start-up. For more information, refer to Actel’s  
Power-Up Behavior of ProASICPLUS Devices application  
note.  
Since it is exclusively an input, it requires no output  
signal, output enable signal, or output configuration  
bits. As a special high-speed differential input, it also  
does not require pull ups. Recommended termination for  
LVPECL inputs is shown in Figure 1-10. The LVPECL pad  
cell compares voltages on the PPECL (I/P) pad (as  
illustrated in Figure 1-11) and the NPECL pad and sends  
the results to the global MUX (Figure 1-14 on page 1-14).  
This high-speed, low-skew output essentially controls the  
clock conditioning circuit.  
LVPECL Input Pads  
In addition to standard I/O pads and power pads,  
ProASICPLUS devices have a single LVPECL input pad on  
both the east and west sides of the device, along with  
AVDD and AGND pins to power the PLL block. The  
LVPECL pad cell consists of an input buffer (containing a  
LVPECLs are designed to meet LVPECL JEDEC receiver  
standard levels (Table 1-5).  
Z 0= 50 Ω  
PPECL  
+
From LVPECL Driver  
R = 100 Ω  
Data  
_
Z 0= 50 Ω  
NPECL  
Figure 1-10 Recommended Termination for LVPECL Inputs  
Voltage  
2.72  
2.125  
1.49  
0.86  
Figure 1-11 LVPECL High and Low Threshold Values  
Table 1-5 LVPECL Receiver Specifications  
Symbol  
VIH  
Parameter  
Input High Voltage  
Min.  
Max  
2.72  
2.125  
VDD  
Units  
1.49  
0.86  
0.3  
V
V
V
VIL  
Input Low Voltage  
VID  
Differential Input Voltage  
1-10  
v5.8  
 
 
 
PLUS  
ProASIC  
Flash Family FPGAs  
pins are dedicated for boundary-scan test usage. Actel  
recommends that a nominal 20 kΩ pull-up resistor is  
added to TDO and TCK pins.  
Boundary Scan (JTAG)  
ProASICPLUS devices are compatible with IEEE Standard  
1149.1, which defines a set of hardware architecture and  
mechanisms for cost-effective, board-level testing. The  
basic ProASICPLUS boundary-scan logic circuit is composed  
of the TAP (test access port), TAP controller, test data  
registers, and instruction register (Figure 1-12). This  
circuit supports all mandatory IEEE 1149.1 instructions  
(EXTEST, SAMPLE/PRELOAD and BYPASS) and the  
optional IDCODE instruction (Table 1-6).  
The TAP controller is a four-bit state machine (16 states)  
that operates as shown in Figure 1-13 on page 1-12. The  
’1’s and ‘0’s represent the values that must be present at  
TMS at a rising edge of TCK for the given state transition  
to occur. IR and DR indicate that the instruction register  
or the data register is operating in that state.  
ProASICPLUS devices have to be programmed at least  
once for complete boundary-scan functionality to be  
available. Prior to being programmed, EXTEST is not  
available. If boundary-scan functionality is required prior  
to programming, refer to online technical support on the  
Actel website and search for ProASICPLUS BSDL.  
Each test section is accessed through the TAP, which has  
five associated pins: TCK (test clock input), TDI and TDO  
(test data input and output), TMS (test mode selector)  
and TRST (test reset input). TMS, TDI and TRST are  
equipped with pull-up resistors to ensure proper  
operation when no input data is supplied to them. These  
I/O  
I/O  
I/O  
I/O  
I/O  
Test Data  
Registers  
Bypass Register  
Instruction  
Register  
TAP  
Controller  
Device  
Logic  
I/O  
I/O  
I/O  
I/O  
I/O  
Figure 1-12 ProASICPLUS JTAG Boundary Scan Test Logic Circuit  
Table 1-6 Boundary-Scan Opcodes  
Table 1-6 Boundary-Scan Opcodes  
Hex Opcode  
Hex Opcode  
EXTEST  
00  
01  
0F  
CLAMP  
BYPASS  
05  
FF  
SAMPLE/PRELOAD  
IDCODE  
v5.8  
1-11  
 
 
PLUS  
ProASIC  
Flash Family FPGAs  
The TAP controller receives two control inputs (TMS and  
TCK) and generates control and clock signals for the rest  
of the test logic architecture. On power-up, the TAP  
controller enters the Test-Logic-Reset state. To guarantee  
a reset of the controller from any of the possible states,  
TMS must remain high for five TCK cycles. The TRST pin  
may also be used to asynchronously place the TAP  
controller in the Test-Logic-Reset state.  
ProASICPLUS devices support three types of test data  
registers: bypass, device identification, and boundary  
scan. The bypass register is selected when no other  
register needs to be accessed in a device. This speeds up  
test data transfer to other devices in a test data path.  
The 32-bit device identification register is a shift register  
with four fields (lowest significant byte (LSB), ID number,  
part number and version). The boundary-scan register  
observes and controls the state of each I/O pin.  
Each I/O cell has three boundary-scan register cells, each  
with a serial-in, serial-out, parallel-in, and parallel-out  
pin. The serial pins are used to serially connect all the  
boundary-scan register cells in a device into a boundary-  
scan register chain, which starts at the TDI pin and ends  
at the TDO pin. The parallel ports are connected to the  
internal core logic tile and the input, output, and control  
ports of an I/O buffer to capture and load data into the  
register to control or observe the logic state of each I/O.  
Test-Logic  
1
Reset  
0
1
0
1
0
1
Run-Test/  
Idle  
Select-DR-  
Scan  
Select-IR-  
Scan  
0
0
0
Capture-DR  
0
Capture-IR  
0
1
1
Shift-IR  
1
Shift-DR  
1
1
1
Exit-DR  
Exit-IR  
0
Pause-DR  
1
0
Pause-IR  
1
0
0
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
0
0
1
1
Figure 1-13 TAP Controller State Diagram  
1-12  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
follows (Figure 1-15 on page 1-15, Table 1-7 on page 1-  
15, and Table 1-8 on page 1-16):  
Timing Control and  
Characteristics  
Global A (secondary clock)  
Output from Global MUX A  
PLUS  
ProASIC  
Clock Management System  
Conditioned version of PLL output (fOUT) – delayed  
or advanced  
ProASICPLUS devices provide designers with very flexible  
clock conditioning capabilities. Each member of the  
ProASICPLUS family contains two phase-locked loop (PLL)  
blocks which perform the following functions:  
Divided version of either of the above  
Further delayed version of either of the above  
(0.25 ns, 0.50 ns, or 4.00 ns delay)1  
Clock Phase Adjustment via Programmable Delay  
(250 ps steps from –7 ns to +8 ns)  
Global B  
Output from Global MUX B  
Delayed or advanced version of fOUT  
Divided version of either of the above  
Further delayed version of either of the above  
(0.25 ns, 0.50 ns, or 4.00 ns delay)2  
Clock Skew Minimization  
Clock Frequency Synthesis  
Each PLL has the following key features:  
Input Frequency Range (fIN) = 1.5 to 180 MHz  
Feedback Frequency Range (fVCO) = 24 to 180 MHz  
Output Frequency Range (fOUT) = 8 to 180 MHz  
Output Phase Shift = 0 ° and 180 °  
Functional Description  
Each PLL block contains four programmable dividers as  
shown in Figure 1-14 on page 1-14. These allow  
frequency scaling of the input clock signal as follows:  
Output Duty Cycle = 50%  
Low Output Jitter (max at 25°C)  
The n divider divides the input clock by integer  
factors from 1 to 32.  
f
VCO <10 MHz. Jitter 1% or better  
10 MHz < fVCO < 60 MHz. Jitter 2% or better  
VCO > 60 MHz. Jitter 1% or better  
The m divider in the feedback path allows  
multiplication of the input clock by integer factors  
ranging from 1 to 64.  
f
Note: Jitter(ps) = Jitter(%)* period  
The two dividers together can implement any  
combination of multiplication and division  
resulting in a clock frequency between 24 and 180  
MHz exiting the PLL core. This clock has a fixed  
50% duty cycle.  
The output frequency of the PLL core is given by  
the formula EQ 1-1 (fREF is the reference clock  
frequency):  
For Example:  
Jitter in picoseconds at 100 MHz = 0.01 * (1/100E6) = 100 ps  
Maximum Acquisition = 80 µs for fVCO > 40 MHz  
Time  
= 30 µs for fVCO < 40 MHz  
Low Power Consumption – 6.9 mW (max – analog  
f
OUT = fREF * m/n  
supply) + 7.0μW/MHz (max – digital supply)  
EQ 1-1  
Physical Implementation  
The third and fourth dividers (u and v) permit the  
signals applied to the global network to each be  
further divided by integer factors ranging from 1  
to 4.  
Each side of the chip contains a clock conditioning circuit  
based on a 180 MHz PLL block (Figure 1-14 on page 1-  
14). Two global multiplexed lines extend along each side  
of the chip to provide bidirectional access to the PLL on  
that side (neither MUX can be connected to the opposite  
side's PLL). Each global line has optional LVPECL input  
pads (described below). The global lines may be driven  
by either the LVPECL global input pad or the outputs  
from the PLL block, or both. Each global line can be  
driven by a different output from the PLL. Unused global  
pins can be configured as regular I/Os or left  
unconnected. They default to an input with pull-up. The  
two signals available to drive the global networks are as  
The implementations shown in EQ2 and EQ3 enable the  
user to define a wide range of frequency multiplier and  
divisors.  
fGLB = m/(n*u)  
EQ 1-2  
fGLA = m/(n*v)  
EQ 1-3  
1. This mode is available through the delay feature of the Global MUX driver.  
v5.8  
1-13  
 
PLUS  
ProASIC  
Flash Family FPGAs  
enable the user to define a wide range of frequency  
multipliers and divisors. The clock conditioning circuit can  
advance or delay the clock up to 8 ns (in increments of  
0.25 ns) relative to the positive edge of the incoming  
reference clock. The system also allows for the selection of  
output frequency clock phases of 0° and 180°.  
signals relative to other signals to assist in the control of  
input set-up times. Not all possible combinations of input  
and output modes can be used. The degrees of freedom  
available in the bidirectional global pad system and in  
the clock conditioning circuit have been restricted. This  
avoids unnecessary and unwieldy design kit and software  
work.  
Prior to the application of signals to the rib drivers, they  
pass through programmable delay units, one per global  
network. These units permit the delaying of global  
V
AVDD AGND  
GND  
DD  
GLA  
GLB  
Global MUX B OUT  
Input Pins to the PLL  
See Figure 1-15  
Clock Conditioning  
Circuitry  
(Top level view)  
External Feedback Signal  
Global MUX A OUT  
27  
Flash  
Configuration Bits  
Dynamic  
on page 1-14  
4
Configuration Bits  
8
Clock Conditioning Circuitry Detailed Block Diagram  
CLK  
Bypass Primary  
OBMUX[2:0]  
1
P+  
P-  
FIVDIV[4:0]  
7
DLYB[1:0]  
Delay Line 0.0 ns, 0.25 ns,  
0.50 ns and 4.00 ns  
0
÷n  
6
5
4
GLB  
180˚  
0˚  
PLL Core  
÷u  
÷m  
OBDIV[1:0]  
FBDIV[5:0]  
2
Clock from Core  
(GLINT mode)  
1
2
Delay Line  
0.25 ns to  
4.00 ns,  
16 steps,  
0.25 ns  
increments  
0
3
Deskew  
Delay  
2.95 ns  
1
OADIV[1:0]  
3
DLYA[1:0]  
Delay Line 0.0 ns, 0.25 ns,  
0.50 ns and 4.00 ns  
XDLYSEL  
2
1
÷v  
EXTFB  
FBDLY[3:0]  
GLA  
FBSEL[1:0]  
OAMUX[1:0]  
CLKA  
Bypass Secondary  
Clock from Core  
(GLINT mode)  
Notes:  
1. FBDLY is a programmable delay line from 0 to 4 ns in 250 ps increments.  
2. DLYA and DLYB are programmable delay lines, each with selectable values 0 ps, 250 ps, 500 ps, and 4 ns.  
3. OBDIV will also divide the phase-shift since it takes place after the PLL Core.  
Figure 1-14 PLL Block – Top-Level View and Detailed PLL Block Diagram  
1-14  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Package Pins  
Physical I/O  
Buffers  
Global MUX  
Configuration Tile  
GL  
Std. Pad Cell  
PECL Pad Cell  
Global MUX B  
OUT  
NPECL  
PPECL  
External  
Feedback  
Global MUX A  
OUT  
GLMX  
GL  
Std. Pad Cell  
Std. Pad Cell  
Configuration Tile  
CORE  
Legend  
Physical Pin  
DATA Signals to the Global MUX  
DATA Signals to the Core  
Control Signals to the Global MUX  
DATA Signals to the PLL Block  
Note: When a signal from an I/O tile is connected to the core, it cannot be connected to the Global MUX at the same time.  
Figure 1-15 Input Connectors to ProASICPLUS Clock Conditioning Circuitry  
Table 1-7 Clock-Conditioning Circuitry MUX Settings  
MUX  
Datapath  
Comments  
FBSEL  
1
Internal Feedback  
2
Internal Feedback and Advance Clock Using FBDLY  
External Feedback (EXTFB)  
–0.25 to –4 ns in 0.25 ns increments  
3
XDLYSEL  
0
Feedback Unchanged  
Deskew feedback by advancing clock by system delay  
GLB  
1
Fixed delay of -2.95 ns  
OBMUX  
0
Primary bypass, no divider  
Primary bypass, use divider  
Delay Clock Using FBDLY  
Phase Shift Clock by 0°  
Reserved  
1
2
+0.25 to +4 ns in 0.25 ns increments  
4
5
6
Phase Shift Clock by +180°  
Reserved  
7
OAMUX  
GLA  
0
1
2
3
Secondary bypass, no divider  
Secondary bypass, use divider  
Delay Clock Using FBDLY  
Phase Shift Clock by 0°  
+0.25 to +4 ns in 0.25 ns increments  
v5.8  
1-15  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-8 Clock-Conditioning Circuitry Delay-Line  
Sample Implementations  
Settings  
Delay Line  
Delay Value (ns)  
Frequency Synthesis  
DLYB  
0
0
Figure 1-16 on page 1-17 illustrates an example where  
the PLL is used to multiply a 33 MHz external clock up to  
133 MHz. Figure 1-17 on page 1-17 uses two dividers to  
synthesize a 50 MHz output clock from a 40 MHz input  
reference clock. The input frequency of 40 MHz is  
multiplied by five and divided by four, giving an output  
clock (GLB) frequency of 50 MHz. When dividers are  
used, a given ratio can be generated in multiple ways,  
allowing the user to stay within the operating frequency  
ranges of the PLL. For example, in this case the input  
divider could have been two and the output divider also  
two, giving us a division of the input frequency by four  
to go with the feedback loop division (effective  
multiplication) by five.  
1
+0.25  
+0.50  
+4.0  
2
3
DLYA  
0
1
2
3
0
+0.25  
+0.50  
+4.0  
Lock Signal  
An active-high Lock signal (added via the SmartGen PLL  
development tool) indicates that the PLL has locked to  
the incoming clock signal. The PLL will acquire and  
maintain lock even when there is jitter on the incoming  
clock signal. The PLL will maintain lock with an input  
jitter up to 5% of the input period, with a maximum of  
5 ns. Users can employ the Lock signal as a soft reset of  
the logic driven by GLB and/or GLA. Note if FIN is not  
within specified frequencies, then both the FOUT and lock  
signal are indeterminate.  
Adjustable Clock Delay  
Figure 1-18 on page 1-18 illustrates the delay of the  
input clock by employing one of the adjustable delay  
lines. This is easily done in ProASICPLUS by bypassing the  
PLL core entirely and using the output delay line. Notice  
also that the output clock can be effectively advanced  
relative to the input clock by using the delay line in the  
feedback path. This is shown in Figure 1-19 on page 1-18.  
PLL Configuration Options  
Clock Skew Minimization  
The PLL can be configured during design (via Flash-  
configuration bits set in the programming bitstream) or  
dynamically during device operation, thus eliminating  
the need to reprogram the device. The dynamic  
configuration bits are loaded into a serial-in/parallel-out  
shift register provided in the clock conditioning circuit.  
The shift register can be accessed either from user logic  
within the device or via the JTAG port. Another option is  
internal dynamic configuration via user-designed  
hardware. Refer to Actel's ProASICPLUS PLL Dynamic  
Reconfiguration Using JTAG application note for more  
information.  
Figure 1-20 on page 1-19 indicates how feedback from  
the clock network can be used to create minimal skew  
between the distributed clock network and the input  
clock. The input clock is fed to the reference clock input  
of the PLL. The output clock (GLA) feeds a clock network.  
The feedback input to the PLL uses a clock input delayed  
by a routing network. The PLL then adjusts the phase of  
the input clock to match the delayed clock, thus  
providing nearly zero effective skew between the two  
clocks. Refer to Actel's Using ProASICPLUS Clock  
Conditioning Circuits application note for more  
information.  
For information on the clock conditioning circuit, refer  
to Actel’s Using ProASICPLUS Clock Conditioning Circuits  
application note.  
1-16  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
÷1  
÷n  
Global MUX B OUT  
33 MHz  
180  
˚
GLB  
D
PLL Core  
÷u  
÷1  
0
˚
133 MHz  
÷m  
÷4  
D
D
External Feedback  
Global MUX A OUT  
÷v  
D
GLA  
Figure 1-16 Using the PLL 33 MHz In, 133 MHz Out  
÷4  
÷n  
180  
˚
Global MUX B OUT  
40 MHz  
GLB  
D
PLL Core  
÷u  
÷1  
0
50 MHz  
˚
÷m  
÷5  
D
D
External Feedback  
Global MUX A OUT  
÷v  
D
GLA  
Figure 1-17 Using the PLL 40 MHz In, 50 MHz Out  
v5.8  
1-17  
PLUS  
ProASIC  
Flash Family FPGAs  
÷1  
÷n  
Global MUX B OUT  
180  
˚
GLB  
D
133 MHz  
PLL Core  
÷u  
÷1  
133 MHz  
÷m  
÷1  
0
˚
D
D
External Feedback  
Global MUX A OUT  
÷v  
D
GLA  
Figure 1-18 Using the PLL to Delay the Input Clock  
÷1  
÷n  
180  
˚
Global MUX B OUT  
133 MHz  
GLB  
D
PLL Core  
÷u  
÷1  
0
133 MHz  
˚
÷m  
÷1  
D
D
External Feedback  
Global MUX A OUT  
÷v  
D
GLA  
Figure 1-19 Using the PLL to Advance the Input Clock  
1-18  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
On chip  
Off chip  
/1  
÷n  
180˚  
0˚  
Global MUX B  
OUT  
GL  
B
D
PLL Core  
133 MHz  
÷u  
÷m  
/1  
D
External  
Feedback  
D
133 MHz  
GL  
A
÷v  
D
Global MUX A  
OUT  
Q
Q
SET D  
Reference  
clock  
CLR  
Figure 1-20 Using the PLL for Clock Deskewing  
v5.8  
1-19  
PLUS  
ProASIC  
Flash Family FPGAs  
Logic Tile Timing Characteristics  
Timing Derating  
Timing characteristics for ProASICPLUS devices fall into  
three categories: family dependent, device dependent,  
and design dependent. The input and output buffer  
characteristics are common to all ProASICPLUS family  
members. Internal routing delays are device dependent.  
Design dependency means that actual delays are not  
determined until after placement and routing of the  
user’s design are complete. Delay values may then be  
determined by using the Timer utility or by performing  
simulation with post-layout delays.  
Since ProASICPLUS devices are manufactured with a  
CMOS process, device performance will vary with  
temperature, voltage, and process. Minimum timing  
parameters reflect maximum operating voltage,  
minimum operating temperature, and optimal process  
variations. Maximum timing parameters reflect minimum  
operating voltage, maximum operating temperature,  
and worst-case process variations (within process  
specifications). The derating factors shown in Table 1-9  
should be applied to all timing data contained within  
this datasheet.  
All timing numbers listed in this datasheet represent  
sample timing characteristics of ProASICPLUS devices.  
Actual timing delay values are design-specific and can be  
derived from the Timer tool in Actel’s Designer software  
after place-and-route.  
Critical Nets and Typical Nets  
Propagation delays are expressed only for typical nets,  
which are used for initial design performance evaluation.  
Critical net delays can then be applied to the most  
timing-critical paths. Critical nets are determined by net  
property assignment prior to place-and-route. Refer to  
the Actel Designer User’s Guide or online help for details  
on using constraints.  
Table 1-9 Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Commercial, TJ = 70°C, VDD = 2.3 V)  
–55°C  
0.84  
–40°C  
0.86  
0°C  
0.91  
0.87  
0.83  
25°C  
0.94  
0.90  
0.86  
70°C  
1.00  
0.95  
0.91  
85°C  
1.02  
0.98  
0.93  
110°C  
1.05  
125°C  
1.13  
135°C  
1.18  
150°C  
1.27  
2.3 V  
2.5 V  
2.7 V  
Notes:  
0.81  
0.82  
1.01  
1.09  
1.13  
1.21  
0.77  
0.79  
0.96  
1.04  
1.08  
1.16  
1. The user can set the junction temperature in Designer software to be any integer value in the range of –55°C to 175°C.  
2. The user can set the core voltage in Designer software to be any value between 1.4 V and 1.6 V.  
1-20  
v5.8  
 
PLUS  
ProASIC  
Flash Family FPGAs  
PLL Electrical Specifications  
Parameter  
Value TJ –40°C  
Value TJ > –40°C  
Notes  
Frequency Ranges  
Reference Frequency fIN (min.)  
2.0 MHz  
180 MHz  
60  
1.5 MHz  
180 MHz  
24 MHz  
180 MHz  
6 MHz  
Clock conditioning circuitry (min.) lowest input  
frequency  
Reference Frequency fIN (max.)  
OSC Frequency fVCO (min.)  
OSC Frequency fVCO (max.)  
Clock conditioning circuitry (max.) highest input  
frequency  
Lowest output frequency voltage controlled  
oscillator  
180  
Highest output frequency voltage controlled  
oscillator  
Clock Conditioning Circuitry fOUT (min.) fIN 40 = 18 MHz  
Lowest output frequency clock conditioning  
circuitry  
fIN > 40 = 16 MHz  
Clock Conditioning Circuitry fOUT (max.) 180  
180 MHz  
Highest output frequency clock conditioning  
circuitry  
Acquisition Time from Cold Start  
Acquisition Time (max.)  
Acquisition Time (max.)  
80 μs  
80 μs  
30 μs  
80 μs  
fVCO 40 MHz  
fVCO > 40 MHz  
Long Term Jitter Peak-to-Peak Max.*  
Temperature  
Frequency MHz  
f
VCO< 10<fV fVCO  
10  
CO<60 >60  
25°C (or higher)  
1ꢀ  
2ꢀ  
1ꢀ Jitter(ps) = Jitter(ꢀ)*period  
For example:  
Jitter in picoseconds at 100 MHz  
= 0.01 * (1/100E6) = 100 ps  
0°C  
1.5ꢀ 2.5ꢀ 1ꢀ  
2.5ꢀ 3.5ꢀ 1ꢀ  
2.5ꢀ 3.5ꢀ 1ꢀ  
–40°C  
–55°C  
Power Consumption  
Analog Supply Power (max.*)  
Digital Supply Current (max.)  
Duty Cycle  
6.9 mW per PLL  
7 μW/MHz  
50ꢀ 0.5ꢀ  
5ꢀ input period (max. Maximum jitter allowable on an input  
5 ns) clock to acquire and maintain lock.  
Input Jitter Tolerance  
Note: *High clock frequencies (>60 MHz) under typical setup conditions  
v5.8  
1-21  
PLUS  
ProASIC  
Flash Family FPGAs  
PLL I/O Constraints  
PLL locking is guaranteed only when the following constraints are followed:  
Table 1-10 PLL I/O Constraints  
TJ –40°C  
Value TJ > –40°C  
I/O Type  
PLL locking is guaranteed only when using low drive strength and  
low slew rate I/O. PLL locking may be inconsistent when using high  
drive strength or high slew rate I/Os  
No Constraints  
SSO  
APA300  
APA600  
APA1000  
APA300  
APA600  
APA1000  
Hermetic packages 8 SSO  
Plastic packages 16 SSO  
Hermetic packages 16 SSO  
Plastic packages 32 SSO  
Hermetic packages 16 SSO  
Plastic packages 32 SSO  
Hermetic packages 12 SSO  
Plastic packages 20 SSO  
Hermetic packages 32 SSO  
Plastic packages 64 SSO  
Hermetic packages 32 SSO  
Plastic packages 64 SSO  
With FIN  
outputs  
simultaneously  
180 MHz and  
switching  
With FIN 50 MHz and half  
outputs switching on positive  
clock edge, half switching on  
the negative clock edge no less  
than 10nsec later  
1-22  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
®
User Security  
Embedded Memory Configurations  
ProASICPLUS devices have FlashLock protection bits that,  
once programmed, block the entire programmed  
contents from being read externally. Please refer to  
Table 1-11 for details on the number of bits in the key for  
each device. If locked, the user can only reprogram the  
device employing the user-defined security key. This  
protects the device from being read back and duplicated.  
Since programmed data is stored in nonvolatile memory  
cells (actually very small capacitors) rather than in the  
wiring, physical deconstruction cannot be used to  
compromise data. This type of security breach is further  
discouraged by the placement of the memory cells  
beneath the four metal layers (whose removal cannot be  
accomplished without disturbing the charge in the  
capacitor). This is the highest security provided in the  
industry. For more information, refer to Actel’s Design  
Security in Nonvolatile Flash and Antifuse FPGAs white  
paper.  
The embedded memory in the ProASICPLUS family  
provides great configuration flexibility (Table 1-12). Each  
ProASICPLUS block is designed and optimized as a two-  
port memory (one read, one write). This provides 198  
kbits of two-port and/or single port memory in the  
APA1000 device.  
Each memory block can be configured as FIFO or SRAM,  
with independent selection of synchronous or  
asynchronous read and write ports (Table 1-13).  
Additional characteristics include programmable flags as  
well as parity checking and generation. Figure 1-21 on  
page 1-25 and Figure 1-22 on page 1-26 show the block  
diagrams of the basic SRAM and FIFO blocks. Table 1-14  
on page 1-25 and Table 1-15 on page 1-26 describe  
memory block SRAM and FIFO interface signals,  
respectively. A single memory block is designed to  
operate at up to 150 MHz (standard speed grade typical  
conditions). Each block is comprised of 256 9-bit words  
(one read port, one write port). The memory blocks may  
be cascaded in width and/or depth to create the desired  
memory organization. (Figure 1-23 on page 1-27). This  
provides optimal bit widths of 9 (one block), 18, 36, and  
72, and optimal depths of 256, 512, 768, and 1,024. Refer  
to Actel’s SmartGen User’s Guide for more information.  
Table 1-11 Flashlock Key Size by Device  
Device  
APA075  
APA150  
APA300  
APA450  
APA600  
APA750  
APA1000  
Key Size  
79 bits  
79 bits  
79 bits  
Figure 1-24 on page 1-27 gives an example of optimal  
memory usage. Ten blocks with 23,040 bits have been  
used to generate three arrays of various widths and  
depths. Figure 1-25 on page 1-27 shows how RAM blocks  
can be used in parallel to create extra read ports. In this  
example, using only 10 of the 88 available blocks of the  
APA1000 yields an effective 6,912 bits of multiple port  
RAM. The Actel SmartGen software facilitates building  
wider and deeper memory configurations for optimal  
memory usage.  
119 bits  
167 bits  
191 bits  
263 bits  
Embedded Memory Floorplan  
The embedded memory is located across the top and  
bottom of the device in 256x9 blocks (Figure 1-1 on page  
1-2). Depending on the device, up to 88 blocks are  
available to support a variety of memory configurations.  
Each block can be programmed as an independent  
memory array or combined (using dedicated memory  
routing resources) to form larger, more complex memory  
configurations. A single memory configuration could  
include blocks from both the top and bottom memory  
locations.  
Table 1-12 ProASICPLUS Memory Configurations by Device  
Maximum Width  
Maximum Depth  
Device  
APA075  
APA150  
APA300  
APA450  
APA600  
Bottom  
Top  
12  
D
W
D
W
0
256  
256  
256  
256  
256  
108  
144  
144  
216  
252  
1,536  
2,048  
2,048  
3,072  
3,584  
9
9
9
9
9
0
16  
16  
24  
28  
16  
24  
28  
v5.8  
1-23  
 
 
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-12 ProASICPLUS Memory Configurations by Device  
Maximum Width  
Maximum Depth  
Device  
APA750  
APA1000  
Bottom  
32  
Top  
32  
D
W
D
W
256  
256  
288  
396  
4,096  
5,632  
9
9
44  
44  
Table 1-13 Basic Memory Configurations  
Write Access  
Asynchronous  
Type  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
RAM  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
Read Access  
Parity  
Library Cell Name  
Asynchronous  
Checked  
RAM256x9AA  
Asynchronous  
Asynchronous  
Asynchronous  
Asynchronous  
Asynchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Asynchronous  
Asynchronous  
Asynchronous  
Asynchronous  
Asynchronous  
Asynchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Asynchronous  
Generated  
Checked  
RAM256x9AAP  
RAM256x9AST  
RAM256x9ASTP  
RAM256x9ASR  
RAM256x9ASRP  
RAM256x9SA  
RAM256xSAP  
RAM256x9SST  
RAM256x9SSTP  
RAM256x9SSR  
RAM256x9SSRP  
FIFO256x9AA  
FIFO256x9AAP  
FIFO256x9AST  
FIFO256x9ASTP  
FIFO256x9ASR  
FIFO256x9ASRP  
FIFO256x9SA  
Synchronous Transparent  
Synchronous Transparent  
Synchronous Pipelined  
Synchronous Pipelined  
Asynchronous  
Generated  
Checked  
Generated  
Checked  
Asynchronous  
Generated  
Checked  
Synchronous Transparent  
Synchronous Transparent  
Synchronous Pipelined  
Synchronous Pipelined  
Asynchronous  
Generated  
Checked  
Generated  
Checked  
Asynchronous  
Generated  
Checked  
Synchronous Transparent  
Synchronous Transparent  
Synchronous Pipelined  
Synchronous Pipelined  
Asynchronous  
Generated  
Checked  
Generated  
Checked  
Asynchronous  
Generated  
Checked  
FIFO256x9SAP  
FIFO256x9SST  
FIFO256x9SSTP  
FIFO256x9SSR  
FIFO256x9SSRP  
Synchronous Transparent  
Synchronous Transparent  
Synchronous Pipelined  
Synchronous Pipelined  
Generated  
Checked  
Generated  
1-24  
v5.8  
 
PLUS  
ProASIC  
Flash Family FPGAs  
DI <0:8>  
WADDR <0:7>  
DO <0:8>  
RADDR <0:7>  
DO <0:8>  
RADDR <0:7>  
DI <0:8>  
WADDR <0:7>  
SRAM  
(256x9)  
SRAM  
(256x9)  
WRB  
WBLKB  
RDB  
RBLKB  
RCLKS  
RDB  
RBLKB  
RCLKS  
WRB  
Sync Write  
and  
Sync Read  
Ports  
Async Write  
and  
Async Read  
Ports  
WCLKS  
WBLKB  
WPE  
RPE  
RPE  
WPE  
PARODD  
PARODD  
DI <0:8>  
WADDR <0:7>  
DO <0:8>  
RADDR <0:7>  
DI <0:8>  
WADDR <0:7>  
DO <0:8>  
RADDR <0:7>  
SRAM  
(256x9)  
SRAM  
(256x9)  
WRB  
WBLKB  
WRB  
WBLKB  
RDB  
RBLKB  
RDB  
RBLKB  
Sync Write  
and  
Async Read  
Ports  
Async Write  
and  
Sync Read  
Ports  
WCLKS  
WPE  
RCLKS  
RPE  
RPE  
WPE  
PARODD  
PARODD  
Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not  
consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when  
RAM blocks are cascaded and are automatically inserted by the software tools.  
Figure 1-21 Example SRAM Block Diagrams  
Table 1-14 Memory Block SRAM Interface Signals  
Description  
Write clock used on synchronization on write side  
Read clock used on synchronization on read side  
Read address  
SRAM Signal  
WCLKS  
RCLKS  
Bits  
1
In/Out  
In  
1
In  
RADDR<0:7>  
RBLKB  
8
In  
1
In  
Read block select (active Low)  
RDB  
1
In  
Read pulse (active Low)  
WADDR<0:7>  
WBLKB  
8
In  
Write address  
1
In  
Write block select (active Low)  
DI<0:8>  
WRB  
9
In  
Input data bits <0:8>, <8> can be used for parity In  
Write pulse (active Low)  
1
In  
DO<0:8>  
RPE  
9
Out  
Out  
Out  
In  
Output data bits <0:8>, <8> can be used for parity Out  
Read parity error (active High)  
1
WPE  
1
Write parity error (active High)  
PARODD  
1
Selects Odd parity generation/detect when High, Even parity when Low  
Note: Not all signals shown are used in all modes.  
v5.8  
1-25  
 
PLUS  
ProASIC  
Flash Family FPGAs  
DI<0:8>  
DI<0:8>  
LEVEL<0:7>  
LGDEP<0:2>  
DO <0:8>  
LEVEL<0:7>  
DO <0:8>  
WPE  
LGDEP<0:2>  
FIFO  
(256x9)  
FIFO  
(256x9)  
WPE  
RPE  
WRB  
WBLKB  
WRB  
WBLKB  
RPE  
FULL  
EMPTY  
FULL  
EMPTY  
Sync Write  
and  
Sync Read  
Ports  
Sync Write  
and  
Async Read  
Ports  
RDB  
RBLKB  
RDB  
RBLKB  
EQTH  
EQTH  
PARODD  
PARODD  
GEQTH  
GEQTH  
WCLKS  
WCLKS  
RESET  
RCLKS  
RESET  
DI <0:8>  
LEVEL <0:7>  
LGDEP<0:2>  
DI <0:8>  
LEVEL <0:7>  
LGDEP<0:2>  
DO <0:8>  
WPE  
DO <0:8>  
FIFO  
(256x9)  
FIFO  
(256x9)  
WRB  
WBLKB  
WRB  
WBLKB  
WPE  
RPE  
RPE  
FULL  
FULL  
EMPTY  
Async Write  
and  
Sync Read  
Ports  
Async Write  
and  
Async Read  
Ports  
RDB  
RBLKB  
EMPTY  
EQTH  
EQTH  
RDB  
PARODD  
RBLKB  
GEQTH  
RESET  
RCLKS  
GEQTH  
PARODD  
RESET  
Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not  
consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when  
RAM blocks are cascaded and are automatically inserted by the software tools.  
Figure 1-22 Basic FIFO Block Diagrams  
Table 1-15 Memory Block FIFO Interface Signals  
FIFO Signal  
WCLKS  
Bits  
1
In/Out  
In  
Description  
Write clock used for synchronization on write side  
Read clock used for synchronization on read side  
Direct configuration implements static flag logic  
Read block select (active Low)  
RCLKS  
1
In  
LEVEL <0:7>  
RBLKB  
8
In  
1
In  
RDB  
1
In  
Read pulse (active Low)  
RESET  
1
In  
Reset for FIFO pointers (active Low)  
WBLKB  
1
In  
Write block select (active Low)  
DI<0:8>  
WRB  
9
In  
Input data bits <0:8>, <8> will be generated parity if PARGEN is true  
Write pulse (active Low)  
1
In  
FULL, EMPTY  
EQTH, GEQTH  
2
Out  
Out  
FIFO flags. FULL prevents write and EMPTY prevents read  
2
EQTH is true when the FIFO holds the number of words specified by the LEVEL signal.  
GEQTH is true when the FIFO holds (LEVEL) words or more  
DO<0:8>  
RPE  
9
1
1
3
1
Out  
Out  
Out  
In  
Output data bits <0:8>. <8> will be parity output if PARGEN is true.  
Read parity error (active High)  
WPE  
Write parity error (active High)  
Configures DEPTH of the FIFO to 2 (LGDEP+1)  
LGDEP <0:2>  
PARODD  
In  
Parity generation/detect – Even when Low, Odd when High  
1-26  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
9
Word Width  
9
9
9
9
256  
9
256  
256  
9
256  
256  
9
256  
9
256  
256  
Word  
Depth  
256  
88 blocks  
Figure 1-23 APA1000 Memory Block Architecture  
Word Width  
9
9
9
9
9
Word  
256  
256 256  
256 256  
256 256  
Depth  
256 words x 18 bits, 1 read, 1 write  
256  
512 words x 18 bits, 1 read, 1 write  
256  
256  
1,024 words x 9 bits, 1 read, 1 write  
Total Memory Blocks Used = 10  
Total Memory Bits = 23,040  
Figure 1-24 Example Showing Memory Arrays with Different Widths and Depths  
Word Width  
9
9
9
Write Port  
Write Port  
9
9
9  
9
9
Word  
Depth  
256 256  
256 256 256 256  
256 256 256 256  
Read Ports  
256 words x 9 bits, 2 read, 1 write  
Read Ports  
512 words x 9 bits, 4 read, 1 write  
Total Memory Blocks Used = 10  
Total Memory Bits = 6,912  
Figure 1-25 Multi-Port Memory Usage  
v5.8  
1-27  
PLUS  
ProASIC  
Flash Family FPGAs  
Design Environment  
The ProASICPLUS family of FPGAs is fully supported by  
both Actel's Libero® Integrated Design Environment  
(IDE) and Designer FPGA Development software. Actel  
Libero IDE is an integrated design manager that  
seamlessly integrates design tools while guiding the user  
through the design flow, managing all design and log  
files, and passing necessary design data among tools.  
Additionally, Libero IDE allows users to integrate both  
schematic and HDL synthesis into a single flow and verify  
the entire design in a single environment (see Actel’s  
website for more information about Libero IDE). Libero  
IDE includes Synplify® AE from Synplicity®, ViewDraw®  
AE from Mentor Graphics®, ModelSim® HDL Simulator  
from Mentor Graphics, WaveFormer Lite™ AE from  
SynaptiCAD®, PALACE™ AE Physical Synthesis from  
Magma, and Designer software from Actel.  
With the Designer software, a user can lock the design  
pins before layout while minimally impacting the results  
of place-and-route. Additionally, Actel’s back-annotation  
flow is compatible with all the major simulators. Another  
tool included in the Designer software is the SmartGen  
macro builder, which easily creates popular and  
commonly used logic functions for implementation into  
your schematic or HDL design.  
Actel's Designer software is compatible with the most  
popular FPGA design entry and verification tools from  
EDA vendors, such as Mentor Graphics, Synplicity,  
Synopsys, and Cadence Design Systems. The Designer  
software is available for both the Windows and UNIX  
operating systems.  
PALACE is an effective tool when designing with  
ProASICPLUS. PALACE AE Physical Synthesis from Magma  
takes an EDIF netlist and optimizes the performance of  
ProASICPLUS devices through a physical placement-driven  
process, ensuring that timing closure is easily achieved.  
ISP  
The user can generate *.bit or *.stp programming files  
from the Designer software and can use these files to  
program a device.  
ProASICPLUS devices can be programmed in-system. For  
more information on ISP of ProASICPLUS devices, refer to  
the In-System Programming ProASICPLUS Devices and  
Performing Internal In-System Programming Using Actel’s  
ProASICPLUS Devices application notes. Prior to being  
programmed for the first time, the ProASICPLUS device I/Os  
are in a tristate condition with the pull-up resistor option  
enabled.  
Actel's Designer software is a place-and-route tool that  
provides a comprehensive suite of back-end support  
tools for FPGA development. The Designer software  
includes the following:  
Timer – a world-class integrated static timing  
analyzer and constraints editor that support  
timing-driven place-and-route  
NetlistViewer – a design netlist schematic viewer  
ChipPlanner – a graphical floorplanner viewer and  
editor  
SmartPower – allows the designer to quickly  
estimate the power consumption of a design  
PinEditor – a graphical application for editing pin  
assignments and I/O attributes  
I/O Attribute Editor – displays all assigned and  
unassigned I/O macros and their attributes in a  
spreadsheet format  
1-28  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Related Documents  
Application Notes  
Efficient Use of ProASIC Clock Trees  
http://www.actel.com/documents/A500K_Clocktree_AN.pdf  
I/O Features in ProASICPLUS Flash FPGAs  
http://www.actel.com/documents/APA_LVPECL_AN.pdf  
Power-Up Behavior of ProASICPLUS Devices  
http://www.actel.com/documents/APA_PowerUp_AN.pdf  
ProASICPLUS PLL Dynamic Reconfiguration Using JTAG  
http://www.actel.com/documents/APA_PLLdynamic_AN.pdf  
Using ProASICPLUS Clock Conditioning Circuits  
http://www.actel.com/documents/APA_PLL_AN.pdf  
In-System Programming ProASICPLUS Devices  
http://www.actel.com/documents/APA_External_ISP_AN.pdf  
Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices  
http://www.actel.com/documents/APA_Microprocessor_AN.pdf  
ProASICPLUS RAM and FIFO Blocks  
http://www.actel.com/documents/APA_RAM_FIFO_AN.pdf  
White Paper  
Design Security in Nonvolatile Flash and Antifuse FPGAs  
http://www.actel.com/documents/DesignSecurity_WP.pdf  
User’s Guide  
Designer User’s Guide  
http://www.actel.com/documents/designer_UG.pdf  
SmartGen Cores Reference Guide  
http://www.actel.com/documents/gen_refguide_ug.pdf  
ProASIC and ProASICPLUS Macro Library Guide  
http://www.actel.com/documents/pa_libguide_UG.pdf  
Additional Information  
The following link contains additional information on ProASICPLUS devices.  
http://www.actel.com/products/proasicplus/default.aspx  
v5.8  
1-29  
PLUS  
ProASIC  
Flash Family FPGAs  
the maximum allowable temperature on the active  
surface of the IC and is 110° C. P is defined as:  
Package Thermal Characteristics  
The ProASICPLUS family is available in several package  
types with a range of pin counts. Actel has selected  
packages based on high pin count, reliability factors, and  
superior thermal characteristics.  
TJ – TA  
P = ------------------  
Θja  
EQ 1-4  
Thermal resistance defines the ability of a package to  
conduct heat away from the silicon, through the  
package to the surrounding air. Junction-to-ambient  
thermal resistance is measured in degrees Celsius/Watt  
Θ
is a function of the rate (in linear feet per minute  
ja  
(lfpm)) of airflow in contact with the package. When the  
estimated power consumption exceeds the maximum  
allowed power, other means of cooling, such as  
increasing the airflow rate, must be used. The maximum  
power dissipation allowed for a Military temperature  
and is represented as Theta ja (Θ ). The lower the  
ja  
thermal resistance, the more efficiently a package will  
dissipate heat.  
device is specified as a function of Θ . The absolute  
maximum junction temperature is 150°C.  
jc  
A package’s maximum allowed power (P) is a function of  
maximum junction temperature (TJ), maximum ambient  
operating temperature (TA), and junction-to-ambient  
The calculation of the absolute maximum power  
dissipation allowed for  
application is illustrated in the following example for a  
456-pin PBGA package:  
a
Military temperature  
thermal resistance Θ . Maximum junction temperature is  
ja  
Max. junction temp. (°C) – Max. case temp. (°C) 150°C – 125°C  
------------------------------------------------------------------------------------------------------------------------ -------------------------------------  
Maximum Power Allowed =  
=
= 8.333W  
θjc(°C/W)  
3.0°C/W  
EQ 1-5  
Table 1-16 Package Thermal Characteristics  
θja  
1.0 m/s  
2.5 m/s  
Plastic Packages  
Pin Count  
θjc  
14.0  
11.0  
8.0  
3.8  
3.0  
3.8  
3.8  
3.2  
3.2  
3.2  
2.4  
1.8  
2.0  
2.0  
6.5  
Still Air  
33.5  
33.5  
26.1  
16.2  
15.6  
26.9  
26.6  
18.0  
20.5  
16.4  
13.6  
12.0  
22.0  
17.9  
8.9  
200 ft./min.  
500 ft./min.  
Units  
Thin Quad Flat Pack (TQFP)  
Thin Quad Flat Pack (TQFP)  
Plastic Quad Flat Pack (PQFP)1  
PQFP with Heat spreader2  
100  
144  
208  
208  
456  
144  
256  
484  
484  
676  
896  
1152  
208  
352  
624  
27.4  
28.0  
22.5  
13.3  
12.5  
22.9  
22.8  
14.7  
17.0  
13.0  
10.4  
8.9  
25.0  
25.7  
20.8  
11.9  
11.6  
21.5  
21.5  
13.6  
15.9  
12.0  
9.4  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Plastic Ball Grid Array (PBGA)  
Fine Pitch Ball Grid Array (FBGA)  
Fine Pitch Ball Grid Array (FBGA)  
Fine Pitch Ball Grid Array (FBGA)3  
Fine Pitch Ball Grid Array (FBGA)4  
Fine Pitch Ball Grid Array (FBGA)  
Fine Pitch Ball Grid Array (FBGA)  
Fine Pitch Ball Grid Array (FBGA)  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Column Grid Array (CCGA/LGA)  
Notes:  
7.9  
19.8  
16.1  
8.5  
18.0  
14.7  
8.0  
1. Valid for the following devices irrespective of temperature grade: APA075, APA150, and APA300  
2. Valid for the following devices irrespective of temperature grade: APA450, APA600, APA750, and APA1000  
3. Depopulated Array  
4. Full array  
1-30  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Calculating Typical Power Dissipation  
ProASICPLUS device power is calculated with both a static and an active component. The active component is a function  
of both the number of tiles utilized and the system speed. Power dissipation can be calculated using the following  
formula:  
Total Power Consumption—P  
total  
Ptotal = Pdc + Pac  
where:  
Pdc  
=
7 mW for the APA075  
8 mW for the APA150  
11 mW for the APA300  
12 mW for the APA450  
12 mW for the APA600  
13 mW for the APA750  
19 mW for the APA1000  
P
dc includes the static components of PVDDP + PVDD + PAVDD  
Pclock + Pstorage + Plogic + Poutputs + Pinputs + Ppll + Pmemory  
Global Clock Contribution—P  
Pac  
=
clock  
Pclock, the clock component of power dissipation, is given by the piece-wise model:  
for R < 15000 the model is: (P1 + (P2*R) - (P7*R2)) * Fs (lightly-loaded clock trees)  
for R > 15000 the model is: (P10 + P11*R) * Fs (heavily-loaded clock trees)  
where:  
100 µW/MHz is the basic power consumption of the clock tree per MHz of the clock  
P1  
P2  
=
=
1.3 µW/MHz is the incremental power consumption of the clock tree per storage tile – also per MHz of the  
clock  
0.00003 µW/MHz is a correction factor for partially-loaded clock trees  
P7  
=
6850 µW/MHz is the basic power consumption of the clock tree per MHz of the clock  
=
P10  
P11  
0.4 µW/MHz is the incremental power consumption of the clock tree per storage tile – also per MHz of  
the clock  
=
the number of storage tiles clocked by this clock  
the clock frequency  
R
=
=
Fs  
Storage-Tile Contribution—P  
storage  
Pstorage, the storage-tile (Register) component of AC power dissipation, is given by  
Pstorage = P5 * ms * Fs  
where:  
P5  
=
1.1 μW/MHz is the average power consumption of a storage tile per MHz of its output toggling rate. The  
maximum output toggling rate is Fs/2.  
ms  
Fs  
=
=
the number of storage tiles (Register) switching during each Fs cycle  
the clock frequency  
v5.8  
1-31  
PLUS  
ProASIC  
Flash Family FPGAs  
Logic-Tile Contribution—P  
logic  
Plogic, the logic-tile component of AC power dissipation, is given by  
Plogic = P3 * mc * Fs  
where:  
P3  
=
1.4 μW/MHz is the average power consumption of a logic tile per MHz of its output toggling rate. The  
maximum output toggling rate is Fs/2.  
mc  
Fs  
=
=
the number of logic tiles switching during each Fs cycle  
the clock frequency  
I/O Output Buffer Contribution—P  
outputs  
Poutputs, the I/O component of AC power dissipation, is given by  
Poutputs = (P4 + (Cload * VDDP2)) * p * Fp  
where:  
P4  
=
326 μW/MHz is the intrinsic power consumption of an output pad normalized per MHz of the output  
frequency. This is the total I/O current VDDP  
.
Cload  
p
Fp  
=
=
=
the output load  
the number of outputs  
the average output frequency  
I/O Input Buffer's Buffer Contribution—P  
inputs  
The input’s component of AC power dissipation is given by  
Pinputs = P8 * q * Fq  
where:  
P8  
=
29 μW/MHz is the intrinsic power consumption of an input pad normalized per MHz of the input  
frequency.  
q
=
=
the number of inputs  
Fq  
the average input frequency  
PLL Contribution—P  
pll  
Ppll = P9 * Npll  
where:  
P9  
=
=
7.5 mW. This value has been estimated at maximum PLL clock frequency.  
number of PLLs used  
NPll  
RAM Contribution—P  
memory  
Finally, Pmemory, the memory component of AC power consumption, is given by  
Pmemory = P6 * Nmemory * Fmemory * Ememory  
where:  
P6  
Nmemory  
=
=
175 μW/MHz is the average power consumption of a memory block per MHz of the clock  
the number of RAM/FIFO blocks  
(1 block = 256 words * 9 bits)  
Fmemory  
Ememory  
=
=
the clock frequency of the memory  
the average number of active blocks divided by the total number of blocks (N) of the memory.  
Typical values for Ememory would be 1/4 for a 1k x 8,9,16, 32 memory and 1/16 for a 4kx8,  
9, 16, and 32 memory configuration  
In addition, an application-dependent component to Ememory can be considered. For  
example, for a 1kx8 memory configuration using only 1 cycle out of 2, Ememory = 1/4*1/2 = 1/8  
1-32  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
The following is an APA750 example using a shift register design with 13,440 storage tiles (Register) and 0 logic tiles.  
This design has one clock at 10 MHz, and 24 outputs toggling at 5 MHz. We then calculate the various components as  
follows:  
P
clock  
Fs = 10 MHz  
= 13,440  
=> Pclock = (P1 + (P2*R) - (P7*R2)) * Fs = 121.5 mW  
R
P
storage  
ms  
= 13,440 (in a shift register 100% of storage tiles are toggling at each clock cycle and Fs = 10 MHz)  
=> Pstorage = P5 * ms * Fs = 147.8 mW  
P
logic  
mc = 0 (no logic tiles in this shift register)  
=> Plogic = 0 mW  
P
outputs  
Cload  
=
=
=
=
40 pF  
3.3 V  
24  
VDDP  
p
Fp  
5 MHz  
=> Poutputs = (P4 + (Cload * VDDP2)) * p * Fp = 91.4 mW  
P
inputs  
q
=
=
1
Fq  
10 MHz  
=> Pinputs = P8 * q * Fq = 0.3 mW  
P
memory  
Nmemory  
=
0 (no RAM/FIFO blocks in this shift register)  
=> Pmemory = 0 mW  
Pac  
=> 361 mW  
Ptotal  
Pdc + Pac = 374 mW (typical)  
v5.8  
1-33  
PLUS  
ProASIC  
Flash Family FPGAs  
Operating Conditions  
Standard and –F parts are the same unless otherwise noted. All –F parts are only available as commercial.  
Table 1-17 Absolute Maximum Ratings*  
Parameter  
Condition  
Minimum  
–0.3  
–0.3  
–0.3  
–1.0  
10  
Maximum  
3.0  
Units  
Supply Voltage Core (VDD  
)
V
V
Supply Voltage I/O Ring (VDDP  
)
4.0  
DC Input Voltage  
VDDP + 0.3  
VDDP + 1.0  
V
PCI DC Input Voltage  
V
PCI DC Input Clamp Current (absolute)  
LVPECL Input Voltage  
GND  
VIN < –1 or VIN = VDDP + 1 V  
mA  
V
–0.3  
0
VDDP + 0.5  
0
V
Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the  
Recommended Operating Conditions.  
Table 1-18 Programming, Storage, and Operating Limits  
Storage Temperature Operating  
TJ Max.  
Junction  
Product Grade  
Commercial  
Industrial  
Programming Cycles (min.)  
Program Retention (min.)  
20 years  
Min.  
–55°C  
–55°C  
–65°C  
–65°C  
Max.  
110°C  
110°C  
150°C  
150°C  
Temperature  
500  
500  
100  
100  
110°C  
20 years  
110°C  
Military  
Refer to Table 1-19 on page 1-35  
Refer to Table 1-19 on page 1-35  
150°C  
MIL-STD-883  
150°C  
Example – the ambient temperature of a system cycles  
between 100°C (25% of the time) and 50°C (75% of the  
time). No forced ventilation cooling system is in use. An  
APA600-PQ208M FPGA operates in the system,  
dissipating 1 W. The package thermal resistance  
Performance Retention  
For devices operated and stored at 110°C or less, the  
performance retention period is 20 years after  
programming. For devices operated and stored at  
temperatures greater than 110°C, refer to Table 1-19 on  
page 1-35 to determine the performance retention  
period. Actel does not guarantee performance if the  
performance retention period is exceeded. Designers can  
determine the performance retention period from the  
following table.  
(junction-to-ambient) in still air Θ is 20°C/W, indicating  
ja  
that the junction temperature of the FPGA will be 120°C  
(25% of the time) and 70°C (75% of the time). The entry  
in Table 1-19 on page 1-35, which most closely matches  
the application, is 25% at 125°C with 75% at 110°C.  
Performance retention in this example is at least 16.0  
years.  
Evaluate the percentage of time spent at the highest  
temperature, then determine the next highest  
temperature to which the device will be exposed. In  
Table 1-19 on page 1-35, find the temperature profile  
that most closely matches the application.  
Note that exceeding the stated retention period may  
result in a performance degradation in the FPGA below  
the worst-case performance indicated in the Actel Timer.  
To ensure that performance does not degrade below the  
worst-case values in the Actel Timer, the FPGA must be  
reprogrammed within the performance retention  
period. In addition, note that performance retention is  
independent of whether or not the FPGA is operating.  
The retention period of a device in storage at a given  
temperature will be the same as the retention period of  
a device operating at that junction temperature.  
1-34  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-19 Military Temperature Grade Product Performance Retention  
Minimum Time at TJ Minimum Time at TJ Minimum Time at TJ Minimum Time at TJ  
Minimum  
Performance  
110°C or below  
100ꢀ  
90ꢀ  
125°C or below  
135°C or below  
150°C or below  
Retention (Years)  
20.0  
18.2  
16  
10ꢀ  
25ꢀ  
75ꢀ  
90ꢀ  
10ꢀ  
25ꢀ  
15.4  
13.3  
11.8  
11.4  
10  
50ꢀ  
50ꢀ  
90ꢀ  
10ꢀ  
75ꢀ  
100ꢀ  
90ꢀ  
10ꢀ  
50ꢀ  
25ꢀ  
9.1  
8
50ꢀ  
75ꢀ  
75ꢀ  
90ꢀ  
8
10ꢀ  
25ꢀ  
7.7  
7.3  
6.7  
5.7  
5
50ꢀ  
75ꢀ  
50ꢀ  
25ꢀ  
100ꢀ  
90ꢀ  
10ꢀ  
50ꢀ  
50ꢀ  
25ꢀ  
50ꢀ  
100ꢀ  
4.5  
4.4  
4
50ꢀ  
50ꢀ  
75ꢀ  
50ꢀ  
4
3.3  
2.5  
v5.8  
1-35  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-20 Recommended Maximum Operating Conditions Programming and PLL Supplies  
Commercial/Industrial/Military/MIL-STD-883  
Parameter  
Condition  
During Programming  
Normal Operation1  
During Programming  
Normal Operation2  
During Programming  
During Programming  
Minimum  
15.8  
Maximum  
16.5  
16.5  
–13.2  
0.5  
Units  
V
VPP  
0
V
VPN  
–13.8  
–13.8  
V
V
IPP  
25  
mA  
mA  
V
IPN  
10  
AVDD  
VDD  
VDD  
AGND  
GND  
GND  
V
Notes:  
1. Please refer to the "VPP Programming Supply Pin" section on page 1-77 for more information.  
2. Please refer to the "VPN Programming Supply Pin" section on page 1-77 for more information.  
Table 1-21 Recommended Operating Conditions  
Limits  
Parameter  
Symbol  
Commercial  
Industrial  
Military/MIL-STD-883  
DC Supply Voltage (2.5 V I/Os)  
DC Supply Voltage (3.3 V I/Os)  
VDD and VDDP  
2.5 V ± 0.2 V  
2.5 V ± 0.2 V  
2.5 V ± 0.2 V  
VDDP  
VDD  
3.3 V ± 0.3 V  
2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
2.5 V ± 0.2 V  
Operating Ambient Temperature Range  
Maximum Operating Junction Temperature  
TA, TC  
TJ  
0°C to 70°C  
–40°C to 85°C  
–55°C (TA) to 125°C (TC)  
110°C  
110°C  
150°C  
Note: For I/O long-term reliability, external pull-up resistors cannot be used to increase output voltage above VDDP  
.
1-36  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-22 DC Electrical Specifications (VDDP = 2.5 V ±0.2V)  
Commercial/Industrial/  
Military/MIL-STD-8831, 2  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
VOH  
Output High Voltage  
High Drive (OB25LPH)  
IOH = –6 mA  
IOH = –12 mA  
IOH = –24 mA  
2.1  
2.0  
1.7  
V
I
OH = –3 mA  
2.1  
1.9  
1.7  
Low Drive (OB25LPL)  
IOH = –6 mA  
IOH = –8 mA  
VOL  
Output Low Voltage  
High Drive (OB25LPH)  
IOL = 8 mA  
IOL = 15 mA  
IOL = 24 mA  
0.2  
0.4  
0.7  
V
Low Drive (OB25LPL)  
IOL = 4 mA  
IOL = 8 mA  
IOL = 15 mA  
0.2  
0.4  
0.7  
6
VIH  
Input High Voltage  
Input Low Voltage  
1.7  
–0.3  
6
VDDP + 0.3  
V
V
7
VIL  
0.7  
56  
RWEAKPULLUP Weak Pull-up Resistance  
(OTB25LPU)  
VIN 1.25 V  
kΩ  
HYST  
IIN  
Input Hysteresis Schmitt  
Input Current  
See Table 1-4 on page 1-9  
with pull up (VIN = GND)  
without pull up (VIN = GND or VDD  
VIN = GND4 or VDD  
0.3  
–240  
–10  
0.35  
0.45  
– 20  
10  
V
µA  
µA  
mA  
mA  
)
IDDQ  
IDDQ  
IDDQ  
Quiescent Supply Current  
(standby)  
Commercial  
Std.  
–F3  
5.0  
5.0  
15  
25  
Quiescent Supply Current  
(standby)  
Industrial  
VIN = GND4 or VDD  
VIN = GND4 or VDD  
Std.  
5.0  
5.0  
20  
mA  
Quiescent Supply Current  
(standby)  
Military/MIL-STD-883  
Std.  
25  
10  
mA  
µA  
µA  
IOZ  
Tristate Output Leakage Current VOH = GND or VDD  
Std.  
–10  
–10  
–F3, 5  
100  
Notes:  
1. All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.  
2. All process conditions. Military: Junction Temperature: –55 to +150°C.  
3. All –F parts are available only as commercial.  
4. No pull-up resistor.  
5. This will not exceed 2 mA total per device.  
6. During transitions, the input signal may overshoot to VDDP +1.0V for a limited time of no larger than 10% of the duty cycle.  
7. During transitions, the input signal may undershoot to -1.0V for a limited time of no larger than 10% of the duty cycle.  
v5.8  
1-37  
 
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-22 DC Electrical Specifications (VDDP = 2.5 V ±0.2V) (Continued)  
Commercial/Industrial/  
Military/MIL-STD-8831, 2  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
IOSH  
Output Short Circuit Current High  
High Drive (OB25LPH)  
Low Drive (OB25LPL)  
mA  
VIN = VSS  
VIN = VSS  
–120  
–100  
IOSL  
Output Short Circuit Current Low  
High Drive (OB25LPH)  
Low Drive (OB25LPL)  
mA  
VIN = VDDP  
VIN = VDDP  
100  
30  
CI/O  
I/O Pad Capacitance  
10  
10  
pF  
pF  
CCLK  
Notes:  
Clock Input Pad Capacitance  
1. All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.  
2. All process conditions. Military: Junction Temperature: –55 to +150°C.  
3. All –F parts are available only as commercial.  
4. No pull-up resistor.  
5. This will not exceed 2 mA total per device.  
6. During transitions, the input signal may overshoot to VDDP +1.0V for a limited time of no larger than 10% of the duty cycle.  
7. During transitions, the input signal may undershoot to -1.0V for a limited time of no larger than 10% of the duty cycle.  
1-38  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-23 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)  
Applies to Commercial and Industrial Temperature Only  
Commercial/Industrial1  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
VOH  
Output High Voltage  
3.3 V I/O, High Drive (OB33P)  
IOH = –14 mA  
IOH = –24 mA  
0.9VDDP  
2.4  
V
3.3 V I/O, Low Drive (OB33L)  
IOH = –6 mA  
0.9VDDP  
IOH = –12 mA  
2.4  
VOL  
Output Low Voltage  
3.3 V I/O, High Drive (OB33P)  
IOL = 15 mA  
IOL = 20 mA  
IOL = 28 mA  
0.1VDDP  
0.4  
0.7  
V
V
3.3 V I/O, Low Drive (OB33L)  
IOL = 7 mA  
IOL = 10 mA  
IOL = 15 mA  
0.1VDDP  
0.4  
0.7  
5
VIH  
Input High Voltage  
3.3 V Schmitt Trigger Inputs  
3.3 V LVTTL/LVCMOS  
2.5 V Mode  
1.6  
2
1.7  
VDDP + 0.3  
VDDP + 0.3  
VDDP + 0.3  
6
VIL  
Input Low Voltage  
3.3 V Schmitt Trigger Inputs  
3.3 V LVTTL/LVCMOS  
2.5 V Mode  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.7  
V
RWEAKPULLUP Weak  
(IOB33U)  
Pull-up  
Resistance VIN 1.5 V  
7
43  
kΩ  
kΩ  
RWEAKPULLUP Weak  
(IOB25U)  
Pull-up  
Resistance VIN 1.5 V  
7
43  
IIN  
Input Current  
with pull up (VIN = GND)  
–300  
–10  
–40  
10  
µA  
µA  
without pull up (VIN = GND or VDD  
)
IDDQ  
Quiescent Supply Current  
(standby)  
Commercial  
VIN = GND3 or VDD  
Std.  
–F2  
5.0  
5.0  
15  
mA  
mA  
25  
IDDQ  
Quiescent Supply Current  
(standby)  
VIN = GND3 or VDD  
Industrial  
Std.  
Std.  
5.0  
5.0  
20  
25  
mA  
mA  
IDDQ  
Quiescent Supply Current  
(standby)  
Military  
V
IN = GND3 or VDD  
Notes:  
1. All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.  
2. All –F parts are only available as commercial.  
3. No pull-up resistor required.  
4. This will not exceed 2 mA total per device.  
5. During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.  
6. During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.  
v5.8  
1-39  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-23 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) (Continued)  
Applies to Commercial and Industrial Temperature Only  
Commercial/Industrial1  
Symbol  
Parameter  
Conditions  
Min.  
–10  
Typ.  
Max.  
10  
Units  
µA  
IOZ  
Tristate  
Current  
Output  
Leakage VOH = GND or VDD  
Std.  
–F2, 4  
–10  
100  
µA  
IOSH  
Output Short Circuit Current  
High  
3.3 V High Drive (OB33P)  
3.3 V Low Drive (OB33L)  
VIN = GND  
VIN = GND  
–200  
–100  
IOSL  
Output Short Circuit Current  
Low  
3.3 V High Drive  
3.3 V Low Drive  
VIN = VDD  
VIN = VDD  
200  
100  
CI/O  
I/O Pad Capacitance  
10  
10  
pF  
pF  
CCLK  
Notes:  
Clock Input Pad Capacitance  
1. All process conditions. Commercial/Industrial: Junction Temperature: –40 to +110°C.  
2. All –F parts are only available as commercial.  
3. No pull-up resistor required.  
4. This will not exceed 2 mA total per device.  
5. During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.  
6. During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.  
1-40  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-24 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V)  
Applies to Military Temperature and MIL-STD-883B Temperature Only  
Military/MIL-STD-883B1  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
VOH  
Output High Voltage  
3.3 V I/O, High Drive, High Slew IOH = –8 mA  
(OB33PH) IOH = –16 mA  
0.9VDDP  
2.4  
3.3V I/O, High Drive, Normal/ IOH = –3mA  
Low Slew (OB33PN/OB33PL)  
0.9VDDP  
V
2.4  
I
OH = –8mA  
3.3 V I/O, Low Drive , High/  
Normal/Low Slew (OB33LH/  
OB33LN/OB33LL)  
0.9VDDP  
IOH = –3 mA  
IOH = –8 mA  
2.4  
VOL  
Output Low Voltage  
3.3 V I/O, High Drive, High Slew IOL = 12 mA  
0.1VDDP  
0.4  
0.7  
(OB33PH)  
IOL = 17 mA  
IOL = 28 mA  
3.3V I/O, High Drive, Normal/ IOL = 4 mA  
0.1VDDP  
0.4  
0.7  
V
V
Low Slew (OB33PN/OB33PL))  
IOL = 6 mA  
IOL = 13 mA  
3.3 V I/O, Low Drive, High/ IOL = 4 mA  
Normal/Low Slew (OB33LH/ IOL = 6 mA  
0.1VDDP  
0.4  
0.7  
OB33LN/OB33LL)  
IOL = 13 mA  
4
VIH  
Input High Voltage  
3.3 V Schmitt Trigger Inputs  
3.3 V LVTTL/LVCMOS  
2.5 V Mode  
1.6  
2
1.7  
VDDP + 0.3  
VDDP + 0.3  
VDDP + 0.3  
5
VIL  
Input Low Voltage  
3.3 V Schmitt Trigger Inputs  
3.3 V LVTTL/LVCMOS  
2.5 V Mode  
–0.3  
–0.3  
–0.3  
0.7  
0.8  
0.7  
V
RWEAKPULLUP Weak Pull-up Resistance  
(IOB33U)  
VIN 1.5 V  
VIN 1.5 V  
7
43  
kΩ  
kΩ  
RWEAKPULLUP Weak Pull-up Resistance  
(IOB25U)  
7
43  
IIN  
Input Current  
with pull up (VIN = GND)  
without pull up (VIN = GND or VDD  
VIN = GND2 or VDD  
–300  
–10  
–40  
10  
µA  
µA  
)
IDDQ  
Quiescent Supply Current  
(standby)  
Commercial  
Std.  
–F  
5.0  
5.0  
15  
mA  
mA  
25  
Notes:  
1. All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: –55 to +125°C.  
2. No pull-up resistor required.  
3. This will not exceed 2 mA total per device.  
4. During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.  
5. During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.  
v5.8  
1-41  
 
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-24 DC Electrical Specifications (VDDP = 3.3 V ±0.3 V and VDD = 2.5 V ±0.2 V) (Continued)  
Applies to Military Temperature and MIL-STD-883B Temperature Only  
Military/MIL-STD-883B1  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
IDDQ  
Quiescent Supply Current  
(standby)  
V
IN = GND2 or VDD  
Industrial  
Std.  
5.0  
20  
mA  
IDDQ  
Quiescent Supply Current  
(standby)  
V
IN = GND2 or VDD  
Military  
Std.  
Std.  
–F3  
5.0  
25  
10  
mA  
µA  
µA  
IOZ  
Tristate  
Current  
Output  
Leakage VOH = GND or VDD  
–10  
–10  
100  
IOSH  
Output Short Circuit Current  
High  
3.3 V High Drive (OB33P)  
3.3 V Low Drive (OB33L)  
VIN = GND  
VIN = GND  
–200  
–100  
IOSL  
Output Short Circuit Current  
Low  
3.3 V High Drive  
3.3 V Low Drive  
VIN = VDD  
VIN = VDD  
200  
100  
CI/O  
I/O Pad Capacitance  
10  
10  
pF  
pF  
CCLK  
Notes:  
Clock Input Pad Capacitance  
1. All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: –55 to +125°C.  
2. No pull-up resistor required.  
3. This will not exceed 2 mA total per device.  
4. During transitions, the input signal may overshoot to VDDP +1.0 V for a limited time of no larger than 10% of the duty cycle.  
5. During transitions, the input signal may undershoot to –1.0 V for a limited time of no larger than 10% of the duty cycle.  
1-42  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-25 DC Specifications (3.3 V PCI Operation)1  
Commercial/  
Industrial2,3  
Military/MIL-STD- 8832,3  
Symbol Parameter  
Condition  
Min.  
2.3  
Max.  
2.7  
Min.  
2.3  
Max.  
2.7  
Units  
V
VDD  
VDDP  
VIH  
VIL  
Supply Voltage for Core  
Supply Voltage for I/O Ring  
Input High Voltage  
3.0  
3.6  
3.0  
3.6  
V
0.5VDDP VDDP + 0.5  
0.5VDDP  
–0.5  
VDDP + 0.5  
0.3VDDP  
V
Input Low Voltage  
–0.5  
0.7VDDP  
–10  
0.3VDDP  
V
IIPU  
IIL  
Input Pull-up Voltage4  
Input Leakage Current5  
0.7VDDP  
–50  
V
0 < VIN < VDDP  
Std.  
10  
50  
μA  
μA  
V
–F3, 6  
–10  
100  
VOH  
Output High Voltage  
IOUT = –500 µA  
IOUT = 1500 µA  
0.9VDDP  
0.9VDDP  
VOL  
Output Low Voltage  
0.1VDDP  
10  
0.1VDDP  
10  
V
CIN  
Input Pin Capacitance (except CLK)  
CLK Pin Capacitance  
pF  
pF  
CCLK  
Notes:  
5
12  
5
12  
1. For PCI operation, use GL33, OTB33PH, OB33PH, IOB33PH, IB33, or IB33S macro library cell only.  
2. All process conditions. Junction Temperature: –40 to +110°C for Commercial and Industrial devices and –55 to +125°C for Military.  
3. All –F parts are available as commercial only.  
4. This specification is guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated  
network. Designers with applications sensitive to static power utilization should ensure that the input buffer is conducting minimum  
current at this input voltage.  
5. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.  
6. The sum of the leakage currents for all inputs shall not exceed 2mA per device.  
v5.8  
1-43  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-26 AC Specifications (3.3 V PCI Revision 2.2 Operation)  
Commercial/Industrial/Military/MIL-STD- 883  
Symbol Parameter  
Condition  
Min.  
–12VDDP  
Max.  
Units  
mA  
*
IOH(AC) Switching Current High 0 < VOUT 0.3VDDP  
*
0.3VDDP VOUT < 0.9VDDP  
(–17.1 + (VDDP – VOUT))  
mA  
*
0.7VDDP < VOUT < VDDP  
See equation C – page 124 of  
the PCI Specification  
document rev. 2.2  
*
(Test Point)  
VOUT = 0.7VDDP  
–32VDDP  
mA  
mA  
mA  
*
IOL(AC)  
Switching Current Low VDDP > VOUT 0.6VDDP  
16VDDP  
1
0.6VDDP > VOUT > 0.1VDDP  
(26.7VOUT  
)
0.18VDDP > VOUT > 0*  
See equation D – page 124 of  
the PCI Specification  
document rev. 2.2  
(Test Point)  
VOUT = 0.18VDDP  
38VDDP  
mA  
mA  
ICL  
Low Clamp Current  
High Clamp Current  
Output Rise Slew Rate  
Output Fall Slew Rate  
–3 < VIN –1  
–25 + (VIN + 1)/0.015  
ICH  
VDDP + 4 > VIN VDDP + 1  
0.2VDDP to 0.6VDDP load*  
0.6VDDP to 0.2VDDP load*  
25 + (VIN – VDDP – 1)/0.015  
mA  
slewR  
slewF  
1
1
4
4
V/ns  
V/ns  
Note: * Refer to the PCI Specification document rev. 2.2.  
Pad Loading Applicable to the Rising Edge PCI  
pin  
1/2 in. max  
output  
buffer  
10 pF  
1kΩ  
Pad Loading Applicable to the Falling Edge PCI  
pin  
1kΩ  
output  
buffer  
10 pF  
1-44  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Tristate Buffer Delays  
EN  
A
PA D  
OTBx  
50% 50%  
35pF  
EN  
A
50% 50%  
EN  
PAD  
50% 50%  
VDDP  
VOH  
VOH  
50%  
VOL  
90%  
50%  
PAD  
50%  
PAD  
GND  
10%  
50%  
VOL  
tDLH  
tENZL  
tENZH  
tDHL  
Figure 1-26 Tristate Buffer Delays  
Table 1-27 Worst-Case Commercial Conditions  
VDDP = 3.0 V, VDD = 2.3 V, 35 pF load, TJ = 70°C  
Max  
Max  
Max3  
tENZH  
Max4  
tENZL  
1
2
tDLH  
tDHL  
Macro Type  
OTB33PH  
OTB33PN  
OTB33PL  
OTB33LH  
OTB33LN  
OTB33LL  
Notes:  
Description  
Std. –F Std. –F Std. –F Std. –F Units  
3.3 V, PCI Output Current, High Slew Rate  
3.3 V, High Output Current, Nominal Slew Rate  
3.3 V, High Output Current, Low Slew Rate  
3.3 V, Low Output Current, High Slew Rate  
3.3 V, Low Output Current, Nominal Slew Rate  
3.3 V, Low Output Current, Low Slew Rate  
2.0 2.4 2.2 2.6 2.2 2.6 2.0 2.4  
2.2 2.6 2.9 3.5 2.4 2.9 2.1 2.5  
2.5 3.0 3.2 3.9 2.7 3.3 2.8 3.4  
2.6 3.1 4.0 4.8 2.8 3.4 3.0 3.6  
2.9 3.5 4.3 5.2 3.2 3.8 4.1 4.9  
3.0 3.6 5.6 6.7 3.3 3.9 5.5 6.6  
ns  
ns  
ns  
ns  
ns  
ns  
1. tDLH=Data-to-Pad High  
2. tDHL=Data-to-Pad Low  
3. tENZH=Enable-to-Pad, Z to High  
4. tENZL = Enable-to-Pad, Z to Low  
5. All –F parts are only available as commercial.  
Table 1-28 Worst-Case Commercial Conditions  
VDDP = 2.3 V, VDD = 2.3 V, 35 pF load, TJ = 70°C  
Max  
Max  
Max3  
tENZH  
Max4  
tENZL  
1
2
tDLH  
tDHL  
Macro Type  
Description  
2.5 V, Low Power, High Output Current, High Slew Rate5  
2.5 V, Low Power, High Output Current, Nominal Slew Rate5 2.4 2.9 3.0 3.6 2.7 3.2 2.1 2.5  
Std. –F Std. –F Std. –F Std. –F Units  
OTB25LPHH  
OTB25LPHN  
OTB25LPHL  
OTB25LPLH  
Notes:  
2.0 2.4 2.1 2.5 2.3 2.7 2.0 2.4  
ns  
ns  
ns  
ns  
2.5 V, Low Power, High Output Current, Low Slew Rate5  
2.5 V, Low Power, Low Output Current, High Slew Rate5  
2.9 3.5 3.2 3.8 3.1 3.8 2.7 3.2  
2.7 3.3 4.6 5.5 3.0 3.6 2.6 3.1  
1. tDLH=Data-to-Pad High  
2. tDHL=Data-to-Pad Low  
3. tENZH=Enable-to-Pad, Z to High  
4. tENZL = Enable-to-Pad, Z to Low  
5. Low power I/O work with VDDP=2.5 V 10% only. VDDP=2.3 V for delays.  
6. All –F parts are only available as commercial.  
v5.8  
1-45  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-28 Worst-Case Commercial Conditions  
DDP = 2.3 V, VDD = 2.3 V, 35 pF load, TJ = 70°C  
V
Max  
Max  
Max3  
tENZH  
Max4  
tENZL  
1
2
tDLH  
tDHL  
Macro Type  
Description  
2.5 V, Low Power, Low Output Current, Nominal Slew Rate5 3.5 4.2 4.2 5.1 3.8 4.5 3.8 4.6  
2.5 V, Low Power, Low Output Current, Low Slew Rate5  
4.0 4.8 5.3 6.4 4.2 5.1 5.1 6.1  
Std. –F Std. –F Std. –F Std. –F Units  
OTB25LPLN  
OTB25LPLL  
Notes:  
ns  
ns  
1. tDLH=Data-to-Pad High  
2. tDHL=Data-to-Pad Low  
3. tENZH=Enable-to-Pad, Z to High  
4. tENZL = Enable-to-Pad, Z to Low  
5. Low power I/O work with VDDP=2.5 V 10% only. VDDP=2.3 V for delays.  
6. All –F parts are only available as commercial.  
Table 1-29 Worst-Case Military Conditions  
VDDP = 3.0 V, VDD = 2.3 V, 35 pF load, TJ = 125°C for Military/MIL-STD-883  
Max  
tDLH  
Max  
Max  
Max  
1
2
3
4
tDHL  
Std.  
2.4  
tENZH  
Std.  
2.3  
tENZL  
Std.  
2.1  
Macro Type  
OTB33PH  
OTB33PN  
OTB33PL  
OTB33LH  
OTB33LN  
OTB33LL  
Notes:  
Description  
Std.  
2.2  
2.4  
2.7  
2.7  
3.3  
3.2  
Units  
ns  
3.3 V, PCI Output Current, High Slew Rate  
3.3 V, High Output Current, Nominal Slew Rate  
3.3 V, High Output Current, Low Slew Rate  
3.3 V, Low Output Current, High Slew Rate  
3.3 V, Low Output Current, Nominal Slew Rate  
3.3 V, Low Output Current, Low Slew Rate  
3.2  
2.7  
2.3  
ns  
3.5  
2.9  
3.0  
ns  
4.3  
3.0  
3.1  
ns  
4.7  
3.4  
4.4  
ns  
6.0  
3.5  
5.9  
ns  
1. tDLH=Data-to-Pad High  
2. tDHL=Data-to-Pad Low  
3. tENZH=Enable-to-Pad, Z to High  
4. tENZL = Enable-to-Pad, Z to Low  
Table 1-30 Worst-Case Military Conditions  
VDDP = 2.3 V, VDD = 2.3 V, 35 pF load, TJ = 125°C for Military/MIL-STD-883  
Max  
tDLH  
Max  
Max  
Max  
1
2
3
4
tDHL  
Std.  
2.3  
tENZH  
Std.  
2.4  
tENZL  
Std.  
2.1  
Macro Type  
OTB25LPHH  
OTB25LPHN  
Description  
Std.  
2.3  
Units  
ns  
2.5 V, Low Power, High Output Current, High Slew Rate5  
2.5 V, Low Power, High Output Current, Nominal Slew  
Rate5  
2.7  
3.2  
2.8  
2.1  
ns  
OTB25LPHL  
OTB25LPLH  
OTB25LPLN  
OTB25LPLL  
Notes:  
2.5 V, Low Power, High Output Current, Low Slew Rate5  
2.5 V, Low Power, Low Output Current, High Slew Rate5  
2.5 V, Low Power, Low Output Current, Nominal Slew Rate5  
2.5 V, Low Power, Low Output Current, Low Slew Rate5  
3.2  
3.0  
3.7  
4.4  
3.5  
5.0  
4.5  
5.8  
3.3  
3.2  
4.1  
4.4  
2.8  
2.8  
4.1  
5.4  
ns  
ns  
ns  
ns  
1. tDLH=Data-to-Pad High  
2. tDHL=Data-to-Pad Low  
3. tENZH=Enable-to-Pad, Z to High  
4. tENZL = Enable-to-Pad, Z to Low  
5. Low power I/O work with VDDP=2.5V 10% only. VDDP=2.3V for delays.  
1-46  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Output Buffer Delays  
A
50%  
50%  
VOH  
PAD  
A
50%  
PAD  
VOL  
50%  
35pF  
OBx  
tDLH  
tDHL  
Figure 1-27 Output Buffer Delays  
Table 1-31 Worst-Case Commercial Conditions  
VDDP = 3.0 V, VDD = 2.3 V, 35 pF load, TJ = 70°C  
1
2
Max tDLH  
Max tDHL  
Std.  
Macro Type  
OB33PH  
OB33PN  
OB33PL  
Description  
3.3 V, PCI Output Current, High Slew Rate  
3.3 V, High Output Current, Nominal Slew Rate  
3.3 V, High Output Current, Low Slew Rate  
3.3 V, Low Output Current, High Slew Rate  
3.3 V, Low Output Current, Nominal Slew Rate  
3.3 V, Low Output Current, Low Slew Rate  
Std.  
2.0  
2.2  
2.5  
2.6  
2.9  
3.0  
–F  
–F  
2.6  
3.5  
3.9  
4.8  
5.2  
6.7  
Units  
ns  
2.4  
2.6  
3.0  
3.1  
3.5  
3.6  
2.2  
2.9  
3.2  
4.0  
4.3  
5.6  
ns  
ns  
OB33LH  
OB33LN  
OB33LL  
ns  
ns  
ns  
Notes:  
1. tDLH = Data-to-Pad High  
2. tDHL = Data-to-Pad Low  
3. All –F parts are only available as commercial.  
Table 1-32 Worst-Case Commercial Conditions  
VDDP = 2.3 V, VDD = 2.3 V, 35 pF load, TJ = 70°C  
1
2
Max tDLH  
Max tDHL  
Macro Type  
Description  
Std.  
2.0  
2.4  
2.9  
2.7  
3.5  
4.0  
–F  
Std.  
2.1  
3.0  
3.2  
4.6  
4.2  
5.3  
–F  
2.6  
3.6  
3.8  
5.5  
5.1  
6.4  
Units  
ns  
OB25LPHH  
OB25LPHN  
OB25LPHL  
OB25LPLH  
OB25LPLN  
OB25LPLL  
Notes:  
2.5 V, Low Power, High Output Current, High Slew Rate3  
2.4  
2.9  
3.5  
3.3  
4.2  
4.8  
2.5 V, Low Power, High Output Current, Nominal Slew Rate3  
2.5 V, Low Power, High Output Current, Low Slew Rate3  
2.5 V, Low Power, Low Output Current, High Slew Rate3  
2.5 V, Low Power, Low Output Current, Nominal Slew Rate3  
2.5 V, Low Power, Low Output Current, Low Slew Rate3  
ns  
ns  
ns  
ns  
ns  
1. tDLH = Data-to-Pad High  
2. tDHL = Data-to-Pad Low  
3. Low-power I/Os work with VDDP=2.5 V 10% only. VDDP=2.3 V for delays.  
4. All –F parts are only available as commercial.  
v5.8  
1-47  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-33 Worst-Case Military Conditions  
VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 125°C for Military/MIL-STD-883  
Max.  
tDLH  
Max.  
tDHL  
1
2
Macro Type  
OB33PH  
OB33PN  
OB33PL  
Description  
Std.  
2.1  
2.5  
2.7  
2.7  
3.3  
3.3  
Std.  
2.3  
3.2  
3.5  
4.3  
4.7  
6.1  
Units  
ns  
3.3V, PCI Output Current, High Slew Rate  
3.3V, High Output Current, Nominal Slew Rate  
3.3V, High Output Current, Low Slew Rate  
3.3V, Low Output Current, High Slew Rate  
3.3V, Low Output Current, Nominal Slew Rate  
3.3V, Low Output Current, Low Slew Rate  
ns  
ns  
OB33LH  
OB33LN  
OB33LL  
ns  
ns  
ns  
Notes:  
1. tDLH = Data-to-Pad High  
2. tDHL = Data-to-Pad Low  
Table 1-34 Worst-Case Military Conditions  
VDDP = 2.3 V, VDD = 2.3V, 35 pF load, TJ = 125°C for Military/MIL-STD-883  
Max.  
tDLH  
Max.  
tDHL  
1
2
Macro Type  
Description  
Std.  
2.3  
2.7  
3.2  
3.0  
3.9  
4.3  
Std.  
2.4  
3.3  
3.5  
5.0  
4.6  
5.7  
Units  
ns  
OB25LPHH  
OB25LPHN  
OB25LPHL  
OB25LPLH  
OB25LPLN  
OB25LPLL  
Notes:  
2.5V, Low Power, High Output Current, High Slew Rate3  
2.5V, Low Power, High Output Current, Nominal Slew Rate3  
2.5V, Low Power, High Output Current, Low Slew Rate3  
2.5V, Low Power, Low Output Current, High Slew Rate3  
2.5V, Low Power, Low Output Current, Nominal Slew Rate3  
2.5V, Low Power, Low Output Current, Low Slew Rate3  
ns  
ns  
ns  
ns  
ns  
1. tDLH = Data-to-Pad High  
2. tDHL = Data-to-Pad Low  
3. Low power I/O work with VDDP=2.5V 10% only. VDDP=2.3V for delays.  
1-48  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Input Buffer Delays  
V
DDP  
PAD  
0 V  
50% 50%  
VDD  
Y
PAD  
50%  
Y
GND  
50%  
IBx  
t
t
INYH  
INYL  
Figure 1-28 Input Buffer Delays  
Table 1-35 Worst-Case Commercial Conditions  
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C  
1
2
Max. tINYH  
Max. tINYL  
Macro Type  
IB33  
Description  
Std.  
–F  
0.5  
0.7  
Std.  
0.6  
–F  
0.7  
0.9  
Units  
ns  
3.3 V, CMOS Input Levels3, No Pull-up Resistor  
0.4  
0.6  
IB33S  
3.3 V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger  
0.8  
ns  
Notes:  
1. tINYH = Input Pad-to-Y High  
2. tINYL = Input Pad-to-Y Low  
3. LVTTL delays are the same as CMOS delays.  
4. For LP Macros, VDDP=2.3 V for delays.  
5. All –F parts are only available as commercial.  
Table 1-36 Worst-Case Commercial Conditions  
VDDP = 2.3 V, VDD = 2.3 V, TJ = 70°C  
1
2
Max. tINYH  
Max. tINYL  
Macro Type  
Description  
Std.  
0.9  
–F  
1.1  
0.9  
Std.  
0.6  
–F  
0.8  
1.1  
Units  
ns  
IB25LP  
2.5 V, CMOS Input Levels3, Low Power  
IB25LPS  
Notes:  
2.5 V, CMOS Input Levels3, Low Power, Schmitt Trigger  
0.7  
0.9  
ns  
1. tINYH = Input Pad-to-Y High  
2. tINYL = Input Pad-to-Y Low  
3. LVTTL delays are the same as CMOS delays.  
4. For LP Macros, VDDP=2.3 V for delays.  
5. All –F parts are only available as commercial.  
v5.8  
1-49  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-37 Worst-Case Military Conditions  
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883  
1
2
Max. tINYH  
Std.  
Max. tINYL  
Std.  
Macro Type  
IB33  
Description  
Units  
ns  
3.3V, CMOS Input Levels3, No Pull-up Resistor  
0.5  
0.6  
IB33S  
3.3V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger  
0.6  
0.8  
ns  
Notes:  
1. tINYH = Input Pad-to-Y High  
2. tINYL = Input Pad-to-Y Low  
3. LVTTL delays are the same as CMOS delays.  
4. For LP Macros, VDDP=2.3V for delays.  
Table 1-38 Worst-Case Military Conditions  
VDDP = 2.3V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883  
1
2
Max. tINYH  
Std.  
Max. tINYL  
Std.  
Macro Type  
IB25LP  
Description  
Units  
ns  
2.5V, CMOS Input Levels3, Low Power  
0.9  
0.7  
IB25LPS  
2.5V, CMOS Input Levels3, Low Power, Schmitt Trigger  
0.8  
1.0  
ns  
Notes:  
1. tINYH = Input Pad-to-Y High  
2. tINYL = Input Pad-to-Y Low  
3. LVTTL delays are the same as CMOS delays.  
4. For LP Macros, VDDP=2.3V for delays.  
1-50  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Global Input Buffer Delays  
Table 1-39 Worst-Case Commercial Conditions  
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C  
1
2
Max. tINYH  
Max. tINYL  
Units  
Macro Type  
GL33  
Description  
Std.3  
–F  
1.2  
1.2  
1.2  
Std.3  
–F  
1.3  
1.3  
1.3  
3.3 V, CMOS Input Levels4, No Pull-up Resistor  
3.3 V, CMOS Input Levels4, No Pull-up Resistor, Schmitt Trigger  
PPECL Input Levels  
1.0  
1.1  
ns  
ns  
ns  
GL33S  
1.0  
1.1  
PECL  
1.0  
1.1  
Notes:  
1. tINYH = Input Pad-to-Y High  
2. tINYL = Input Pad-to-Y Low  
3. Applies to Military ProASICPLUS devices.  
4. LVTTL delays are the same as CMOS delays.  
5. For LP Macros, VDDP=2.3 V for delays.  
6. All –F parts are only available as commercial.  
Table 1-40 Worst-Case Commercial Conditions  
VDDP = 2.3 V, VDD = 2.3 V, TJ = 70°C  
1
2
Max. tINYH  
Max. tINYL  
Units  
Macro Type  
GL25LP  
Description  
2.5 V, CMOS Input Levels4, Low Power  
2.5 V, CMOS Input Levels4, Low Power, Schmitt Trigger  
Std.3  
–F  
Std.3  
–F  
1.1  
1.2  
1.6  
1.0  
1.3  
1.1  
ns  
ns  
GL25LPS  
Notes:  
1.3  
1.0  
1. tINYH = Input Pad-to-Y High  
2. tINYL = Input Pad-to-Y Low  
3. Applies to Military ProASICPLUS devices.  
4. LVTTL delays are the same as CMOS delays.  
5. For LP Macros, VDDP=2.3 V for delays.  
6. All –F parts are only available as commercial.  
v5.8  
1-51  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-41 Worst-Case Military Conditions  
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883  
1
2
Max. tINYH  
Max. tINYL  
Std.  
Macro Type  
GL33  
Description  
3.3V, CMOS Input Levels3, No Pull-up Resistor  
3.3V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger  
PPECL Input Levels  
Std.  
1.1  
1.1  
GL33S  
1.1  
1.1  
PECL  
1.1  
1.1  
Notes:  
1. tINYH = Input Pad-to-Y High  
2. tINYL = Input Pad-to-Y Low  
3. LVTTL delays are the same as CMOS delays.  
4. For LP Macros, VDDP=2.3V for delays.  
Table 1-42 Worst-Case Military Conditions  
VDDP = 2.3V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883  
1
2
Max. tINYH  
Std.  
Max. tINYL  
Std.  
Macro Type  
Description  
2.5V, CMOS Input Levels3, Low Power  
2.5V, CMOS Input Levels3, Low Power, Schmitt Trigger  
GL25LP  
GL25LPS  
Notes:  
1.0  
1.1  
1.4  
1.0  
1. tINYH = Input Pad-to-Y High  
2. tINYL = Input Pad-to-Y Low  
3. LVTTL delays are the same as CMOS delays.  
4. For LP Macros, VDDP=2.3V for delays.  
1-52  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Predicted Global Routing Delay  
Table 1-43 Worst-Case Commercial Conditions1  
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C  
Max.  
Parameter  
tRCKH  
Description  
Std.  
1.1  
1.0  
0.8  
0.8  
–F2  
1.3  
1.2  
1.0  
1.0  
Units  
ns  
Input Low to High3  
Input High to Low3  
Input Low to High4  
Input High to Low4  
tRCKL  
ns  
tRCKH  
ns  
tRCKL  
ns  
Notes:  
1. The timing delay difference between tile locations is less than 15ps.  
2. All –F parts are only available as commercial.  
3. Highly loaded row 50%.  
4. Minimally loaded row.  
Table 1-44 Worst-Case Military Conditions  
VDDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883  
Parameter  
tRCKH  
Description  
Max.  
Units  
ns  
Input Low to High (high loaded row of 50ꢀ)  
Input High to Low (high loaded row of 50ꢀ)  
Input Low to High (minimally loaded row)  
Input High to Low (minimally loaded row)  
1.1  
1.0  
0.8  
0.8  
tRCKL  
ns  
tRCKH  
ns  
tRCKL  
ns  
Note: * The timing delay difference between tile locations is less than 15 ps.  
Global Routing Skew  
Table 1-45 Worst-Case Commercial Conditions  
VDDP = 3.0 V, VDD = 2.3 V, TJ = 70°C  
Max.  
Parameter  
tRCKSWH  
Description  
Maximum Skew Low to High  
Maximum Skew High to Low  
Std.  
270  
270  
–F*  
320  
320  
Units  
ps  
tRCKSHH  
ps  
Note: *All –F parts are only available as commercial.  
Table 1-46 Worst-Case Commercial Conditions  
V
DDP = 3.0V, VDD = 2.3V, TJ = 125°C for Military/MIL-STD-883  
Description  
Maximum Skew Low to High  
Maximum Skew High to Low  
Parameter  
tRCKSWH  
Max.  
Units  
270  
270  
ps  
ps  
tRCKSHH  
v5.8  
1-53  
PLUS  
ProASIC  
Flash Family FPGAs  
Module Delays  
A
B
C
Y
50%50%  
A
B
50%50%  
C
Y
50%50%  
50%  
50%  
50%  
50%  
50%  
tDBLH  
50%  
tDCHL  
tDCLH  
tDBHL  
tDAHL  
tDALH  
Figure 1-29 Module Delays  
Sample Macrocell Library Listing  
Table 1-47 Worst-Case Military Conditions1  
VDD = 2.3 V, TJ = 70º C, TJ = 70°C, TJ = 125°C for Military/MIL-STD-883  
Std.  
–F2  
Cell Name  
NAND2  
AND2  
Description  
Max  
Min  
Max  
0.6  
0.8  
1.0  
0.6  
1.0  
0.8  
Min  
Units  
ns  
2-Input NAND  
2-Input AND  
3-Input NOR  
0.5  
0.7  
0.8  
0.5  
0.8  
0.6  
ns  
NOR3  
ns  
MUX2L  
OA21  
2-1 MUX with Active Low Select  
2-Input OR into a 2-Input AND  
2-Input Exclusive OR  
ns  
ns  
XOR2  
ns  
LDL  
Active Low Latch (LH/HL)  
ns  
LH3  
HL3  
0.9  
0.8  
1.1  
0.9  
CLK-Q  
ns  
ns  
ns  
ns  
tsetup  
0.7  
0.1  
0.8  
0.2  
thold  
DFFL  
Negative Edge-Triggered D-type Flip-Flop (LH/HL)  
LH3  
HL3  
0.9  
0.8  
1.1  
1.0  
CLK-Q  
ns  
ns  
ns  
tsetup  
thold  
0.6  
0.0  
0.7  
0.0  
Notes:  
1. Intrinsic delays have a variable component, coupled to the input slope of the signal. These numbers assume an input slope typical of  
local interconnect.  
2. All –F parts are only available as commercial.  
3. LH and HL refer to the Q transitions from Low to High and High to Low, respectively.  
1-54  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-48 Recommended Operating Conditions  
Limits  
Parameter  
Symbol  
fCLOCK  
fRAM  
Commercial/Industrial  
180 MHz  
Military/MIL-STD-883  
180 MHz  
Maximum Clock Frequency*  
Maximum RAM Frequency*  
Maximum Rise/Fall Time on Inputs*  
150 MHz  
150 MHz  
Schmitt Trigger Mode (10ꢀ to 90ꢀ)  
tR/tF  
tR/tF  
N/A  
100 ns  
10 ns  
Non-Schmitt Trigger Mode (10ꢀ to  
90ꢀ)  
100 ns  
Maximum LVPECL Frequency*  
Maximum TCK Frequency (JTAG)  
180 MHz  
10 MHz  
180 MHz  
10 MHz  
fTCK  
Note: *All –F parts will be 20% slower than standard commercial devices.  
Table 1-49 Slew Rates Measured at C = 30pF, Nominal Power Supplies and 25°C  
Type  
Trig. Level Rising Edge (ns) Slew Rate (V/ns) Falling Edge (ns) Slew Rate (V/ns)  
PCI Mode  
Yes  
No  
OB33PH  
OB33PN  
OB33PL  
OB33LH  
OB33LN  
OB33LL  
10ꢀ-90ꢀ  
10ꢀ-90ꢀ  
10ꢀ-90ꢀ  
10ꢀ-90ꢀ  
10ꢀ-90ꢀ  
10ꢀ-90ꢀ  
1.60  
1.57  
1.57  
3.80  
4.19  
5.49  
1.55  
1.70  
1.97  
3.57  
4.65  
5.52  
1.65  
1.68  
1.68  
0.70  
0.63  
0.48  
1.29  
1.18  
1.02  
0.56  
0.43  
0.36  
1.65  
3.32  
1.99  
4.84  
3.37  
2.98  
1.56  
2.08  
2.09  
3.93  
3.28  
3.44  
1.60  
0.80  
1.32  
0.55  
0.78  
0.89  
1.28  
0.96  
0.96  
0.51  
0.61  
0.58  
No  
No  
No  
No  
OB25LPHH 10ꢀ-90ꢀ  
OB25LPHN 10ꢀ-90ꢀ  
No  
No  
OB25LPHL  
OB25LPLH  
OB25LPLN  
OB25LPLL  
Notes:  
10ꢀ-90ꢀ  
10ꢀ-90ꢀ  
10ꢀ-90ꢀ  
10ꢀ-90ꢀ  
No  
No  
No  
No  
1. Standard and –F parts.  
2. All –F only available as commercial.  
v5.8  
1-55  
PLUS  
ProASIC  
Flash Family FPGAs  
Table 1-50 JTAG Switching Characteristics  
Description  
Symbol  
tTCKTDI  
tTDOTCK  
tTCKTDO  
tTCK  
Min  
–4  
Max  
Unit  
ns  
Output delay from TCK falling to TDI, TMS  
TDO Setup time before TCK rising  
TDO Hold time after TCK rising  
TCK period  
4
10  
ns  
0
ns  
100 2  
1,000  
1,000  
ns  
RCK period  
tRCK  
100  
ns  
Notes:  
1. For DC electrical specifications of the JTAG pins (TCK, TDI, TMS, TDO, TRST), refer to Table 1-22 on page 1-37 when VDDP = 2.5 V  
and Table 1-24 on page 1-41 when VDDP = 3.3 V.  
2. If RCK is being used, there is no minimum on the TCK period.  
TCK  
tTCK  
TMS, TDI  
tTCKTDI  
TDO  
tTDOTCK  
tTCKTDO  
Figure 1-30 JTAG Operation Timing  
1-56  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Embedded Memory Specifications  
This section discusses ProASICPLUS SRAM/FIFO embedded  
memory and its interface signals, including timing  
diagrams that show the relationships of signals as they  
pertain to single embedded memory blocks (Table 1-51).  
Table 1-13 on page 1-24 shows basic SRAM and FIFO  
configurations. Simultaneous read and write to the same  
location must be done with care. On such accesses the DI  
bus is output to the DO bus. Refer to the ProASICPLUS  
RAM and FIFO Blocks application note for more  
information.  
"Asynchronous SRAM Read, RDB Controlled"  
section on page 1-62  
"Synchronous SRAM Write"  
Embedded Memory Specifications  
The difference between synchronous transparent and  
pipeline modes is the timing of all the output signals  
from the memory. In transparent mode, the outputs will  
change within the same clock cycle to reflect the data  
requested by the currently valid access to the memory. If  
clock cycles are short (high clock speed), the data  
requires most of the clock cycle to change to valid values  
(stable signals). Processing of this data in the same clock  
cycle is nearly impossible. Most designers add registers at  
all outputs of the memory to push the data processing  
into the next clock cycle. An entire clock cycle can then  
be used to process the data. To simplify use of this  
Enclosed Timing Diagrams—SRAM Mode:  
"Synchronous SRAM Read, Access Timed Output  
Strobe (Synchronous Transparent)" section on  
page 1-58  
"Synchronous SRAM Read, Pipeline Mode Outputs  
(Synchronous Pipelined)" section on page 1-59  
memory  
setup,  
suitable  
registers  
have  
been  
"Asynchronous SRAM Write" section on page 1-60  
implemented as part of the memory primitive and are  
available to the user in the synchronous pipeline mode.  
In this mode, the output signals will change shortly after  
the second rising edge, following the initiation of the  
read access.  
"Asynchronous SRAM Read, Address Controlled,  
RDB=0" section on page 1-61  
Table 1-51 Memory Block SRAM Interface Signals  
SRAM Signal  
WCLKS  
RCLKS  
Bits  
1
In/Out  
In  
Description  
Write clock used on synchronization on write side  
1
In  
Read clock used on synchronization on read side  
Read address  
RADDR<0:7>  
RBLKB  
8
In  
1
In  
True read block select (active Low)  
True read pulse (active Low)  
RDB  
1
In  
WADDR<0:7>  
WBLKB  
8
In  
Write address  
1
In  
Write block select (active Low)  
DI<0:8>  
WRB  
9
In  
Input data bits <0:8>, <8> can be used for parity In  
Negative true write pulse  
1
In  
DO<0:8>  
RPE  
9
Out  
Out  
Out  
In  
Output data bits <0:8>, <8> can be used for parity Out  
Read parity error (active High)  
1
WPE  
1
Write parity error (active High)  
PARODD  
1
Selects Odd parity generation/detect when high, Even when low  
Note: Not all signals shown are used in all modes.  
v5.8  
1-57  
 
PLUS  
ProASIC  
Flash Family FPGAs  
Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)  
RCLKS  
Cycle Start  
RBD, RBLKB  
New Valid  
RADDR  
Address  
Old Data Out  
New Valid Data Out  
DO  
RPE  
t
RACS  
t
RDCS  
t
RDCH  
t
RACH  
t
OCH  
t
RPCH  
t
t
CMH  
CML  
t
OCA  
t
RPCA  
t
CCYC  
Note: The plot shows the normal operation status.  
Figure 1-31 Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)  
Table 1-52 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
CCYC  
CMH  
Description  
Min.  
7.5  
Max.  
Units  
ns  
Notes  
Cycle time  
Clock high phase  
3.0  
ns  
CML  
Clock low phase  
3.0  
ns  
OCA  
New DO access from RCLKS ↑  
Old DO valid from RCLKS ↑  
RADDR hold from RCLKS ↑  
RADDR setup to RCLKS ↑  
RDB hold from RCLKS ↑  
RDB setup to RCLKS ↑  
7.5  
ns  
OCH  
3.0  
ns  
RACH  
RACS  
0.5  
1.0  
0.5  
1.0  
9.5  
ns  
ns  
RDCH  
RDCS  
ns  
ns  
RPCA  
New RPE access from RCLKS ↑  
Old RPE valid from RCLKS ↑  
ns  
RPCH  
3.0  
ns  
Note: All –F speed grade devices are 20% slower than the standard numbers.  
1-58  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)  
RCLKS  
Cycle Start  
RDB, RBLKB  
New Valid  
RADDR  
Address  
DO  
New Valid Data Out  
New RPE Out  
Old Data Out  
RPE  
Old RPE Out  
t
t
RACS  
OCA  
t
t
RACH  
RPCH  
t
t
RDCH  
OCH  
t
t
RPCA  
RDCS  
t
t
CML  
CMH  
t
CCYC  
Note: The plot shows the normal operation status.  
Figure 1-32 Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)  
Table 1-53 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = 0°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
CCYC  
CMH  
Description  
Min.  
7.5  
Max.  
Units  
ns  
Notes  
Cycle time  
Clock high phase  
3.0  
ns  
CML  
Clock low phase  
3.0  
ns  
OCA  
New DO access from RCLKS ↑  
Old DO valid from RCLKS ↑  
RADDR hold from RCLKS ↑  
RADDR setup to RCLKS ↑  
RDB hold from RCLKS ↑  
RDB setup to RCLKS ↑  
2.0  
ns  
OCH  
0.75  
ns  
RACH  
RACS  
0.5  
1.0  
0.5  
1.0  
4.0  
ns  
ns  
RDCH  
RDCS  
ns  
ns  
RPCA  
New RPE access from RCLKS ↑  
Old RPE valid from RCLKS ↑  
ns  
RPCH  
1.0  
ns  
Note: All –F speed grade devices are 20% slower than the standard numbers.  
v5.8  
1-59  
PLUS  
ProASIC  
Flash Family FPGAs  
Asynchronous SRAM Write  
WADDR  
WRB, WBLKB  
DI  
WPE  
t
t
AWRS  
AWRH  
t
t
DWRH  
WPDH  
t
WPDA  
t
DWRS  
t
t
WRMH  
WRML  
t
WRCYC  
Note: The plot shows the normal operation status.  
Figure 1-33 Asynchronous SRAM Write  
Table 1-54 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883B  
Symbol txxx  
AWRH  
Description  
WADDR hold from WB ↑  
Min.  
1.0  
0.5  
1.5  
0.5  
2.5  
3.0  
Max.  
Units  
Notes  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AWRS  
WADDR setup to WB ↓  
DI hold from WB ↑  
DI setup to WB ↑  
DI setup to WB ↑  
WPE access from DI  
WPE hold from DI  
Cycle time  
DWRH  
DWRS  
PARGEN is inactive.  
PARGEN is active.  
DWRS  
WPDA  
WPE is invalid, while PARGEN is  
active.  
WPDH  
1.0  
WRCYC  
WRMH  
WRML  
7.5  
3.0  
3.0  
WB high phase  
Inactive  
Active  
WB low phase  
Note: All –F speed grade devices are 20% slower than the standard numbers.  
1-60  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Asynchronous SRAM Read, Address Controlled, RDB=0  
RADDR  
DO  
RPE  
t
OAH  
t
RPAH  
t
OAA  
t
RPAA  
t
ACYC  
Note: The plot shows the normal operation status.  
Figure 1-34 Asynchronous SRAM Read, Address Controlled, RDB=0  
Table 1-55 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883B  
Symbol txxx  
ACYC  
Description  
Read cycle time  
Min.  
7.5  
Max.  
Units  
ns  
Notes  
OAA  
New DO access from RADDR stable  
Old DO hold from RADDR stable  
New RPE access from RADDR stable  
Old RPE hold from RADDR stable  
7.5  
ns  
OAH  
3.0  
3.0  
ns  
RPAA  
10.0  
ns  
RPAH  
ns  
Note: All –F speed grade devices are 20% slower than the standard numbers.  
v5.8  
1-61  
PLUS  
ProASIC  
Flash Family FPGAs  
Asynchronous SRAM Read, RDB Controlled  
RB=(RDB+RBLKB)  
DO  
RPE  
t
ORDH  
t
RPRDH  
t
ORDA  
t
RPRDA  
t
t
RDML  
RDMH  
t
RDCYC  
Note: The plot shows the normal operation status.  
Figure 1-35 Asynchronous SRAM Read, RDB Controlled  
Table 1-56 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
ORDA  
Description  
New DO access from RB ↓  
Old DO valid from RB ↓  
Read cycle time  
Min.  
Max.  
Units  
ns  
Notes  
7.5  
ORDH  
3.0  
ns  
RDCYC  
RDMH  
7.5  
3.0  
3.0  
9.5  
ns  
RB high phase  
ns  
Inactive setup to new cycle  
Active  
RDML  
RB low phase  
ns  
RPRDA  
RPRDH  
New RPE access from RB ↓  
Old RPE valid from RB ↓  
ns  
3.0  
ns  
Note: All –F speed grade devices are 20% slower than the standard numbers.  
1-62  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Synchronous SRAM Write  
WCLKS  
WRB, WBLKB  
WADDR, DI  
WPE  
Cycle Start  
t
, t  
WRCH WBCH  
t
, t  
WRCS WBCS  
t
, t  
DCS WDCS  
t
WPCH  
t
, t  
DCH WACH  
t
WPCA  
t
t
CML  
CMH  
t
CCYC  
Note: The plot shows the normal operation status.  
Figure 1-36 Synchronous SRAM Write  
Table 1-57 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
CCYC  
CMH  
Description  
Min.  
7.5  
3.0  
3.0  
0.5  
1.0  
0.5  
1.0  
3.0  
Max.  
Units  
ns  
Notes  
Cycle time  
Clock high phase  
ns  
CML  
Clock low phase  
ns  
DCH  
DI hold from WCLKS ↑  
DI setup to WCLKS ↑  
ns  
DCS  
ns  
WACH  
WDCS  
WPCA  
WPCH  
WADDR hold from WCLKS ↑  
WADDR setup to WCLKS ↑  
New WPE access from WCLKS ↑  
Old WPE valid from WCLKS ↑  
ns  
ns  
ns  
WPE is invalid while  
PARGEN is active  
0.5  
ns  
WRCH, WBCH WRB & WBLKB hold from WCLKS ↑  
WRCS, WBCS WRB & WBLKB setup to WCLKS ↑  
Notes:  
0.5  
1.0  
ns  
ns  
1. On simultaneous read and write accesses to the same location, DI is output to DO.  
2. All –F speed grade devices are 20% slower than the standard numbers.  
v5.8  
1-63  
PLUS  
ProASIC  
Flash Family FPGAs  
Synchronous Write and Read to the Same Location  
t
CCYC  
t
t
CMH  
CML  
RCLKS  
DO  
New Data*  
Last Cycle Data  
WCLKS  
t
WCLKRCLKH  
t
WCLKRCLKS  
t
OCH  
t
OCA  
* New data is read if WCLKS occurs before setup time.  
The data stored is read if WCLKS occurs after hold time.  
Note: The plot shows the normal operation status.  
Figure 1-37 Synchronous Write and Read to the Same Location  
Table 1-58 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
CCYC  
Description  
Min.  
7.5  
Max.  
Units  
ns  
Notes  
Cycle time  
CMH  
Clock high phase  
3.0  
ns  
CML  
Clock low phase  
3.0  
ns  
WCLKRCLKS  
WCLKRCLKH  
OCH  
WCLKS to RCLKS setup time  
WCLKS to RCLKS hold time  
Old DO valid from RCLKS ↑  
New DO valid from RCLKS ↑  
0.1  
ns  
7.0  
3.0  
ns  
ns  
OCA/OCH displayed for  
Access Timed Output  
OCA  
7.5  
ns  
Notes:  
1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.  
2. During synchronous write and synchronous read access to the same location, the new write data will be read out if the active write  
clock edge occurs before or at the same time as the active read clock edge. The negative setup time insures this behavior for WCLKS  
and RCLKS driven by the same design signal.  
3. If WCLKS changes after the hold time, the data will be read.  
4. A setup or hold time violation will result in unknown output data.  
5. All –F speed grade devices are 20% slower than the standard numbers.  
1-64  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Asynchronous Write and Synchronous Read to the Same Location  
t
t
CMH  
CML  
RCLKS  
DO  
New Data*  
Last Cycle Data  
WB = {WRB + WBLKB}  
DI  
t
WRCKS  
t
BRCLKH  
t
OCH  
OCA  
t
t
t
DWRRCLKS  
DWRH  
t
CCYC  
* New data is read if WB occurs before setup time.  
The stored data is read if WB occurs after hold time.  
Note: The plot shows the normal operation status.  
Figure 1-38 Asynchronous Write and Synchronous Read to the Same Location  
Table 1-59 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
CCYC  
Description  
Min.  
7.5  
Max.  
Units  
ns  
Notes  
Cycle time  
CMH  
Clock high phase  
3.0  
ns  
CML  
Clock low phase  
3.0  
ns  
WBRCLKS  
WBRCLKH  
OCH  
WB to RCLKS setup time  
WB to RCLKS hold time  
Old DO valid from RCLKS ↑  
New DO valid from RCLKS ↑  
DI to RCLKS setup time  
DI to WB hold time  
0.1  
ns  
7.0  
3.0  
ns  
ns  
OCA/OCH  
Access Timed Output  
displayed  
for  
OCA  
7.5  
0
ns  
DWRRCLKS  
DWRH  
ns  
1.5  
ns  
Notes:  
1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.  
2. In asynchronous write and synchronous read access to the same location, the new write data will be read out if the active write  
signal edge occurs before or at the same time as the active read clock edge. If WB changes to low after hold time, the data will be  
read.  
3. A setup or hold time violation will result in unknown output data.  
4. All –F speed grade devices are 20% slower than the standard numbers.  
v5.8  
1-65  
 
PLUS  
ProASIC  
Flash Family FPGAs  
Asynchronous Write and Read to the Same Location  
RB, RADDR  
NEW  
NEWER  
DO  
OLD  
WB = {WRB+WBLKB}  
t
t
ORDA  
RAWRH  
t
ORDH  
t
t
RAWRS  
OWRA  
t
OWRH  
Note: The plot shows the normal operation status.  
Figure 1-39 Asynchronous Write and Read to the Same Location  
Table 1-60 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
ORDA  
Description  
New DO access from RB ↓  
Old DO valid from RB ↓  
Min.  
Max.  
Units  
ns  
Notes  
7.5  
ORDH  
3.0  
ns  
OWRA  
New DO access from WB ↑  
Old DO valid from WB ↑  
RB or RADDR from WB ↓  
RB or RADDR from WB ↑  
3.0  
ns  
OWRH  
0.5  
ns  
RAWRS  
RAWRH  
Notes:  
5.0  
5.0  
ns  
ns  
1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automatically  
trigger a read operation which updates the read data. Refer to the ProASICPLUS RAM and FIFO Blocks application note for more  
information.  
2. Violation or RAWRS will disturb access to the OLD data.  
3. Violation of RAWRH will disturb access to the NEWER data.  
4. All –F speed grade devices are 20% slower than the standard numbers.  
1-66  
v5.8  
 
PLUS  
ProASIC  
Flash Family FPGAs  
Synchronous Write and Asynchronous Read to the Same Location  
RB, RADDR  
DO  
NEW  
NEWER  
OLD  
WCLKS  
t
t
ORDA  
RAWCLKH  
t
ORDH  
t
OWRA  
t
OWRH  
t
RAWCLKS  
Note: The plot shows the normal operation status.  
Figure 1-40 Synchronous Write and Asynchronous Read to the Same Location  
Table 1-61 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
ORDA  
Description  
New DO access from RB ↓  
Old DO valid from RB ↓  
Min.  
Max.  
Units  
ns  
Notes  
7.5  
ORDH  
3.0  
ns  
OWRA  
New DO access from WCLKS ↓  
Old DO valid from WCLKS ↓  
RB or RADDR from WCLKS ↑  
RB or RADDR from WCLKS ↓  
3.0  
ns  
OWRH  
0.5  
ns  
RAWCLKS  
RAWCLKH  
Notes:  
5.0  
5.0  
ns  
ns  
1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automatically  
trigger a read operation which updates the read data.  
2. Violation of RAWCLKS will disturb access to OLD data.  
3. Violation of RAWCLKH will disturb access to NEWER data.  
4. All –F speed grade devices are 20% slower than the standard numbers.  
v5.8  
1-67  
PLUS  
ProASIC  
Flash Family FPGAs  
Asynchronous FIFO Full and Empty Transitions  
The asynchronous FIFO accepts writes and reads while  
not full or not empty. When the FIFO is full, all writes are  
inhibited. Conversely, when the FIFO is empty, all reads  
are inhibited. A problem is created if the FIFO is written  
to during the transition from full to not full, or read  
during the transition from empty to not empty. The  
exact time at which the write or read operation changes  
from inhibited to accepted after the read (write) signal  
which causes the transition from full or empty to not full  
or not empty is indeterminate. For slow cycles, this  
indeterminate period starts 1 ns after the RB (WB)  
transition, which deactivates full or not empty and ends  
3 ns after the RB (WB) transition. For fast cycles, the  
indeterminate period ends 3 ns (7.5 ns – RDL (WRL)) after  
the RB (WB) transition, whichever is later (Table 1-1 on  
page 1-7).  
empty flag will be asserted, the counters will reset, the  
outputs go to zero, but the internal RAM is not erased.  
Enclosed Timing Diagrams – FIFO Mode:  
The following timing diagrams apply only to single cell;  
they are not applicable to cascaded cells. For more  
information, refer to the ProASICPLUS RAM/FIFO Blocks  
application note.  
"Asynchronous FIFO Read" section on page 1-70  
"Asynchronous FIFO Write" section on page 1-71  
"Synchronous FIFO Read, Access Timed Output  
Strobe (Synchronous Transparent)" section on  
page 1-72  
"Synchronous FIFO Read, Pipeline Mode Outputs  
(Synchronous Pipelined)" section on page 1-73  
The timing diagram for write is shown in Figure 1-38 on  
page 1-65. The timing diagram for read is shown in  
Figure 1-39 on page 1-66. For basic SRAM configurations,  
see Table 1-14 on page 1-25. When reset is asserted, the  
"Synchronous FIFO Write" section on page 1-74  
"FIFO Reset" section on page 1-75  
Table 1-62 Memory Block FIFO Interface Signals  
FIFO Signal  
WCLKS  
Bits  
In/Out  
In  
Description  
1
Write clock used for synchronization on write side  
Read clock used for synchronization on read side  
Direct configuration implements static flag logic  
Read block select (active Low)  
RCLKS  
1
8
1
1
1
1
9
1
2
2
In  
LEVEL <0:7>*  
RBLKB  
In  
In  
RDB  
In  
Read pulse (active Low)  
RESET  
In  
Reset for FIFO pointers (active Low)  
WBLKB  
In  
Write block select (active Low)  
DI<0:8>  
WRB  
In  
Input data bits <0:8>, <8> will be generated if PARGEN is true  
Write pulse (active Low)  
In  
FULL, EMPTY  
EQTH, GEQTH*  
Out  
Out  
FIFO flags. FULL prevents write and EMPTY prevents read  
EQTH is true when the FIFO holds the number of words specified by the LEVEL signal.  
GEQTH is true when the FIFO holds (LEVEL) words or more  
DO<0:8>  
RPE  
9
1
1
3
1
Out  
Out  
Out  
In  
Output data bits <0:8>  
Read parity error (active High)  
WPE  
Write parity error (active High)  
LGDEP <0:2>  
PARODD  
Configures DEPTH of the FIFO to 2 (LGDEP+1)  
In  
Selects Odd parity generation/detect when high, Even when low  
Note: *LEVEL is always eight bits (0000.0000, 0000.0001). That means for values of DEPTH greater than 256, not all values will be  
possible, e.g. for DEPTH=512, the LEVEL can only have the values 2, 4, . . ., 512. The LEVEL signal circuit will generate signals that  
indicate whether the FIFO is exactly filled to the value of LEVEL (EQTH) or filled equal or higher (GEQTH) than the specified LEVEL.  
Since counting starts at 0, EQTH will become true when the FIFO holds (LEVEL+1) words for 512-bit FIFOs.  
1-68  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
FULL  
RB  
Write  
cycle  
Write inhibited  
Write accepted  
1 ns  
3 ns  
WB  
Note: All –F speed grade devices are 20% slower than the standard numbers.  
Figure 1-41 Write Timing Diagram  
EMPTY  
WB  
Read  
cycle  
Read inhibited  
Read accepted  
1 ns  
3 ns  
RB  
Note: All –F speed grade devices are 20% slower than the standard numbers.  
Figure 1-42 Read Timing Diagram  
v5.8  
1-69  
PLUS  
ProASIC  
Flash Family FPGAs  
Asynchronous FIFO Read  
t
RPRDA  
t
t
RDH  
RDL  
Cycle Start  
RB = (RDB+RBLKB)  
(Empty inhibits read)  
RDATA  
RPE  
WB  
EMPTY  
FULL  
EQTH, GETH  
t
t
t
, t  
RDWRS  
ERDH FRDH  
t
, t  
ORDH  
ERDA FRDA  
t
t
RPRDH  
THRDH  
t
t
ORDA  
THRDA  
t
RPRDA  
t
t
RDL  
RDH  
t
RDCYC  
Note: The plot shows the normal operation status.  
Figure 1-43 Asynchronous FIFO Read  
Table 1-63 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
Description  
Min.  
Max. Units  
Notes  
ERDH, FRDH, Old EMPTY, FULL, EQTH, & GETH valid hold  
0.5  
ns  
Empty/full/thresh are invalid from the end of  
hold until the new access is complete  
THRDH  
time from RB ↑  
ERDA  
New EMPTY access from RB ↑  
FULLaccess from RB ↑  
New DO access from RB ↓  
Old DO valid from RB ↓  
Read cycle time  
3.01  
3.01  
7.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FRDA  
ORDA  
ORDH  
RDCYC  
RDWRS  
3.0  
1.0  
7.5  
3.02  
WB , clearing EMPTY, setup to  
RB ↓  
Enabling the read operation  
Inhibiting the read operation  
Inactive  
RDH  
RB high phase  
3.0  
3.0  
9.5  
RDL  
RB low phase  
Active  
RPRDA  
RPRDH  
THRDA  
Notes:  
New RPE access from RB ↓  
Old RPE valid from RB ↓  
EQTH or GETH access from RB↑  
4.0  
4.5  
1. At fast cycles, ERDA and FRDA = MAX (7.5 ns – RDL), 3.0 ns.  
2. At fast cycles, RDWRS (for enabling read) = MAX (7.5 ns – WRL), 3.0 ns.  
3. All –F speed grade devices are 20% slower than the standard numbers.  
1-70  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Asynchronous FIFO Write  
Cycle Start  
WB = (WRB+WBLKB)  
WDATA  
WPE  
(Full inhibits write)  
RB  
FULL  
EMPTY  
EQTH, GETH  
t
t
t
WRRDS  
DWRH  
WPDH  
t
WPDA  
t
DWRS  
t
t
, t  
EWRH FWRH  
, t  
EWRA FWRA  
t
t
THWRH  
THWRA  
t
t
WRL  
WRH  
t
WRCYC  
Note: The plot shows the normal operation status.  
Figure 1-44 Asynchronous FIFO Write  
Table 1-64 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
DWRH  
Description  
DI hold from WB ↑  
Min.  
1.5  
Max.  
Units  
ns  
Notes  
DWRS  
DI setup to WB ↑  
DI setup to WB ↑  
0.5  
ns  
PARGEN is inactive  
PARGEN is active  
DWRS  
2.5  
ns  
EWRH, FWRH, Old EMPTY, FULL, EQTH, & GETH valid hold  
0.5  
ns  
Empty/full/thresh are invalid from the end  
of hold until the new access is complete  
THWRH  
time after WB ↑  
EWRA  
EMPTY access from WB ↑  
New FULL access from WB ↑  
EQTH or GETH access from WB ↑  
WPE access from DI  
3.01  
3.01  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FWRA  
THWRA  
WPDA  
WPDH  
WRCYC  
WRRDS  
3.0  
WPE is invalid while PARGEN is active  
WPE hold from DI  
1.0  
1.0  
Cycle time  
7.5  
3.02  
RB , clearing FULL, setup to  
WB ↓  
Enabling the write operation  
Inhibiting the write operation  
Inactive  
WRH  
WRL  
WB high phase  
WB low phase  
3.0  
3.0  
ns  
ns  
Active  
Notes:  
1. At fast cycles, EWRA, FWRA = MAX (7.5 ns – WRL), 3.0 ns.  
2. At fast cycles, WRRDS (for enabling write) = MAX (7.5 ns – RDL), 3.0 ns.  
3. All –F speed grade devices are 20% slower than the standard numbers.  
4. After FIFO reset, WRB needs an initial falling edge prior to any write actions.  
v5.8  
1-71  
PLUS  
ProASIC  
Flash Family FPGAs  
Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)  
RCLK  
Cycle Start  
RDB  
RDATA  
RPE  
Old Data Out  
New Valid Data Out (Empty Inhibits Read)  
EMPTY  
FULL  
EQTH, GETH  
t
t
t
, t  
RDCH  
ECBH FCBH  
, t  
t
ECBA FCBA  
RDCS  
t
t
THCBH  
t
OCH  
t
RPCH  
HCBA  
t
OCA  
t
RPCA  
t
t
CML  
CMH  
t
CCYC  
Note: The plot shows the normal operation status.  
Figure 1-45 Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)  
Table 1-65 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
CCYC  
Description  
Min.  
7.5  
Max. Units  
Notes  
Cycle time  
ns  
ns  
ns  
ns  
ns  
CMH  
Clock high phase  
3.0  
CML  
Clock low phase  
3.0  
ECBA  
New EMPTY access from RCLKS ↓  
FULL access from RCLKS ↓  
3.01  
3.01  
FCBA  
ECBH, FCBH, Old EMPTY, FULL, EQTH, & GETH valid hold  
1.0  
3.0  
ns  
Empty/full/thresh are invalid from the end  
of hold until the new access is complete  
THCBH  
time from RCLKS ↓  
OCA  
New DO access from RCLKS ↑  
Old DO valid from RCLKS ↑  
RDB hold from RCLKS ↑  
7.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OCH  
RDCH  
RDCS  
RPCA  
RPCH  
HCBA  
Notes:  
0.5  
1.0  
9.5  
RDB setup to RCLKS ↑  
New RPE access from RCLKS ↑  
Old RPE valid from RCLKS ↑  
EQTH or GETH access from RCLKS ↓  
3.0  
4.5  
1. At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMH), 3.0 ns.  
2. All –F speed grade devices are 20% slower than the standard numbers.  
1-72  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)  
RCLK  
Cycle Start  
RDB  
RDATA  
RPE  
Old Data Out  
New Valid Data Out  
New RPE Out  
Old RPE Out  
EMPTY  
FULL  
EQTH, GETH  
t
, t  
t
ECBH FCBH  
OCA  
t
t
t
t
, t  
RDCH  
ECBA FCBA  
t
t
RDCS  
THCBH  
t
RPCH  
OCH  
HCBA  
t
RPCA  
t
t
CML  
CMH  
t
CCYC  
Note: The plot shows the normal operation status.  
Figure 1-46 Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)  
Table 1-66 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
CCYC  
Description  
Min. Max. Units  
Notes  
Cycle time  
7.5  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
Clock high phase  
CML  
Clock low phase  
3.0  
ECBA  
New EMPTY access from RCLKS ↓  
FULL access from RCLKS ↓  
3.01  
3.01  
FCBA  
ECBH, FCBH, Old EMPTY, FULL, EQTH, & GETH valid hold  
THCBH  
1.0  
Empty/full/thresh are invalid from the end of  
hold until the new access is complete  
time from RCLKS ↓  
OCA  
New DO access from RCLKS ↑  
Old DO valid from RCLKS ↑  
RDB hold from RCLKS ↑  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OCH  
0.75  
RDCH  
RDCS  
RPCA  
RPCH  
HCBA  
Notes:  
0.5  
1.0  
4.0  
RDB setup to RCLKS ↑  
New RPE access from RCLKS ↑  
Old RPE valid from RCLKS ↑  
EQTH or GETH access from RCLKS ↓  
1.0  
4.5  
1. At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMS), 3.0 ns.  
2. All –F speed grade devices are 20% slower than the standard numbers.  
v5.8  
1-73  
PLUS  
ProASIC  
Flash Family FPGAs  
Synchronous FIFO Write  
WCLKS  
Cycle Start  
WRB, WBLKB  
(Full Inhibits Write)  
DI  
WPE  
FULL  
EMPTY  
EQTH, GETH  
t
, t  
t
t
, t  
WRCH WBCH  
ECBH FCBH  
, t  
t
, t  
ECBA FCBA  
WRCS WBCS  
t
t
DCS  
HCBH  
t
t
HCBA  
t
WPCH  
t
DCH  
t
WPCA  
t
CMH  
CML  
t
CCYC  
Note: The plot shows the normal operation status.  
Figure 1-47 Synchronous FIFO Write  
Table 1-67 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
CCYC  
CMH  
Description  
Min.  
7.5  
Max. Units  
Notes  
Cycle time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock high phase  
3.0  
CML  
Clock low phase  
3.0  
DCH  
DI hold from WCLKS ↑  
DI setup to WCLKS ↑  
0.5  
DCS  
1.0  
FCBA  
New FULL access from WCLKS ↓  
EMPTYaccess from WCLKS ↓  
3.01  
3.01  
ECBA  
ECBH,  
FCBH,  
HCBH  
Old EMPTY, FULL, EQTH, & GETH valid hold  
time from WCLKS ↓  
1.0  
0.5  
Empty/full/thresh are invalid from the end of  
hold until the new access is complete  
HCBA  
WPCA  
WPCH  
EQTH or GETH access from WCLKS ↓  
New WPE access from WCLKS ↑  
Old WPE valid from WCLKS ↑  
4.5  
3.0  
ns  
ns  
ns  
ns  
ns  
WPE is invalid, while PARGEN is active  
WRCH, WBCH WRB & WBLKB hold from WCLKS ↑  
WRCS, WBCS WRB & WBLKB setup to WCLKS ↑  
Notes:  
0.5  
1.0  
1. At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMH), 3.0 ns.  
2. All –F speed grade devices are 20% slower than the standard numbers.  
1-74  
v5.8  
PLUS  
ProASIC  
Flash Family FPGAs  
FIFO Reset  
RESETB  
Cycle Start  
WRB/RBD1  
WCLKS, RCLKS1  
FULL  
Cycle Start  
EMPTY  
EQTH, GETH  
t
CBRSS  
t
, t  
t
ERSA FRSA  
CBRSH  
t
t
WBRSH  
THRSA  
t
RSL  
t
WBRSS  
Notes:  
1. During reset, either the enables (WRB and RBD) OR the clocks (WCLKS and RCKLS) must be low.  
2. The plot shows the normal operation status.  
Figure 1-48 FIFO Reset  
Table 1-68 TJ = 0°C to 110°C; VDD = 2.3 V to 2.7 V for Commercial/industrial  
TJ = –55°C to 150°C, VDD = 2.3 V to 2.7 V for Military/MIL-STD-883  
Symbol txxx  
CBRSH1  
CBRSS1  
ERSA  
Description  
WCLKS or RCLKS hold from RESETB ↑  
WCLKS or RCLKS setup to RESETB ↑  
New EMPTY access from RESETB ↓  
FULL access from RESETB ↓  
RESETB low phase  
Min.  
1.5  
1.5  
3.0  
3.0  
7.5  
4.5  
1.5  
1.5  
Max.  
Units  
ns  
Notes  
Synchronous mode only  
Synchronous mode only  
ns  
ns  
FRSA  
ns  
RSL  
ns  
THRSA  
WBRSH1  
WBRSS1  
Notes:  
EQTH or GETH access from RESETB ↓  
WB hold from RESETB ↑  
ns  
ns  
Asynchronous mode only  
Asynchronous mode only  
WB setup to RESETB ↑  
ns  
1. During rest, the enables (WRB and RBD) must be high OR the clocks (WCLKS and RCKLS) must be low.  
2. All –F speed grade devices are 20% slower than the standard numbers.  
v5.8  
1-75  
TMS  
Test Mode Select  
Pin Description  
The TMS pin controls the use of boundary-scan circuitry.  
This pin has an internal pull-up resistor.  
User Pins  
TCK  
Test Clock  
I/O  
User Input/Output  
Clock input pin for boundary scan (maximum 10 MHz). Actel  
recommends adding a nominal 20 kΩ pull-up resistor to this  
pin.  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Input and output signal levels are  
compatible with standard LVTTL and LVCMOS  
specifications. Unused I/O pins are configured as inputs  
with pull-up resistors.  
TDI  
Test Data In  
Serial input for boundary scan. A dedicated pull-up  
resistor is included to pull this pin high when not being  
driven.  
NC  
No Connect  
To maintain compatibility with other Actel ProASICPLUS  
products, it is recommended that this pin not be  
connected to the circuitry on the board.  
TDO  
Test Data Out  
Serial output for boundary scan. Actel recommends  
adding a nominal 20kΩ pull-up resistor to this pin.  
GL  
Global Pin  
TRST  
Test Reset Input  
Low skew input pin for clock or other global signals. This  
pin can be configured with an internal pull-up resistor.  
When it is not connected to the global network or the  
clock conditioning circuit, it can be configured and used  
as a normal I/O.  
Asynchronous, active-low input pin for resetting  
boundary-scan circuitry. This pin has an internal pull-up  
resistor. For more information, please refer to Power-up  
Behavior of ProASICPLUS Devices application note.  
GLMX  
Global Multiplexing Pin  
Special Function Pins  
Low skew input pin for clock or other global signals. This  
pin can be used in one of two special ways (refer to  
Actel’s Using ProASICPLUS Clock Conditioning Circuits).  
RCK  
Running Clock  
A free running clock is needed during programming if  
the programmer cannot guarantee that TCK will be  
uninterrupted. If not used, this pin has an internal pull-  
up and can be left floating.  
When the external feedback option is selected for the  
PLL block, this pin is routed as the external feedback  
source to the clock conditioning circuit.  
In applications where two different signals access the  
same global net at different times through the use of  
GLMXx and GLMXLx macros, this pin will be fixed as one  
of the source pins.  
NPECL  
User Negative Input  
Provides high speed clock or data signals to the PLL  
block. If unused, leave the pin unconnected.  
This pin can be configured with an internal pull-up  
resistor. When it is not connected to the global network  
or the clock conditioning circuit, it can be configured and  
used as any normal I/O. If not used, the GLMXx pin will  
be configured as an input with pull-up.  
PPECL  
User Positive Input  
Provides high speed clock or data signals to the PLL  
block. If unused, leave the pin unconnected.  
AVDD  
PLL Power Supply  
Analog VDD should be VDD (core voltage) 2.5 V (nominal)  
and be decoupled from GND with suitable decoupling  
capacitors to reduce noise. For more information, refer  
to Actel’s Using ProASICPLUS Clock Conditioning Circuits  
application note. If the clock conditioning circuitry is not  
used in a design, AVDD can either be left floating or tied  
to 2.5 V.  
Dedicated Pins  
GND  
Ground  
Common ground supply voltage.  
V
Logic Array Power Supply Pin  
DD  
2.5 V supply voltage.  
AGND  
PLL Power Ground  
V
I/O Pad Power Supply Pin  
DDP  
The analog ground can be connected to the system  
ground. For more information, refer to Actel’s Using  
ProASICPLUS Clock Conditioning Circuits application note.  
If the PLLs or clock conditioning circuitry are not used in  
a design, AGND should be tied to GND.  
2.5 V or 3.3 V supply voltage.  
PLUS  
ProASIC  
Flash Family FPGAs  
V
Programming Supply Pin  
finite length conductors that distribute the power to the  
device. This can be accomplished by providing sufficient  
bypass capacitance between the VPP and VPN pins and  
GND (using the shortest paths possible). Without  
sufficient bypass capacitance to counteract the  
inductance, the VPP and VPN pins may incur a voltage  
spike beyond the voltage that the device can withstand.  
This issue applies to all programming configurations.  
PP  
This pin may be connected to any voltage between GND  
and 16.5 V during normal operation, or it can be left  
unconnected.2 For information on using this pin during  
programming,  
ProASICPLUS Devices application note. Actel recommends  
floating the pin or connecting it to VDDP  
see  
the  
In-System Programming  
.
V
Programming Supply Pin  
PN  
The solution prevents spikes from damaging the  
ProASICPLUS devices. Bypass capacitors are required for  
the VPP and VPN pads. Use a 0.01 µF to 0.1 µF ceramic  
capacitor with a 25 V or greater rating. To filter low-  
frequency noise (decoupling), use a 4.7 µF (low ESR, <1  
<Ω, tantalum, 25 V or greater rating) capacitor. The  
capacitors should be located as close to the device pins as  
possible (within 2.5 cm is desirable). The smaller, high-  
frequency capacitor should be placed closer to the device  
pins than the larger low-frequency capacitor. The same  
dual-capacitor circuit should be used on both the VPP and  
VPN pins (Figure 1-49).  
This pin may be connected to any voltage between 0.5V  
and –13.8 V during normal operation, or it can be left  
unconnected.3 For information on using this pin during  
programming,  
see  
the  
In-System Programming  
ProASICPLUS Devices application note. Actel recommends  
floating the pin or connecting it to GND.  
Recommended Design Practice  
for V /V  
PN PP  
PLUS  
PLUS  
ProASIC  
Devices – APA450, APA600,  
ProASIC  
APA300  
Devices – APA075, APA150,  
APA750, APA1000  
Bypass capacitors are required from VPP to GND and VPN  
to GND for all ProASICPLUS devices during programming.  
During the erase cycle, ProASICPLUS devices may have  
current surges on the VPP and VPN power supplies. The  
only way to maintain the integrity of the power  
distribution to the ProASICPLUS device during these  
current surges is to counteract the inductance of the  
These devices do not require bypass capacitors on the VPP  
and VPN pins as long as the total combined distance of  
the programming cable and the trace length on the  
board is less than or equal to 30 inches. Note: For trace  
lengths greater than 30 inches, use the bypass capacitor  
recommendations in the previous section.  
2.5cm  
_
+
V
PP  
0.1μF  
+
+
to  
4.7μF  
4.7μF  
Programming  
Header  
or  
Actel  
ProASIC  
Device  
0.01μF  
PLUS  
Supplies  
_
+
V
PN  
0.1μF  
to  
0.01μF  
Figure 1-49 ProASICPLUS VPP and VPN Capacitor Requirements  
2. There is a nominal 40 kΩ pull-up resistor on VPP.  
3. There is a nominal 40 kΩ pull-down resistor on VPN  
.
v5.8  
1-77  
 

相关型号:

APA1000-CQB

ProASIC Flash Family FPGAs
ACTEL

APA1000-CQES

ProASIC Flash Family FPGAs
ACTEL

APA1000-CQGB

ProASIC Flash Family FPGAs
ACTEL

APA1000-CQGES

ProASIC Flash Family FPGAs
ACTEL

APA1000-CQGI

ProASIC Flash Family FPGAs
ACTEL

APA1000-CQGM

ProASIC Flash Family FPGAs
ACTEL

APA1000-CQGPP

ProASIC Flash Family FPGAs
ACTEL

APA1000-CQI

ProASIC Flash Family FPGAs
ACTEL

APA1000-CQM

ProASIC Flash Family FPGAs
ACTEL

APA1000-CQPP

ProASIC Flash Family FPGAs
ACTEL

APA1000-FBGB

ProASIC Flash Family FPGAs
ACTEL

APA1000-FBGES

ProASIC Flash Family FPGAs
ACTEL