APT50GT60SRG [MICROSEMI]

Thunderbolt IGBT; 迅雷IGBT
APT50GT60SRG
型号: APT50GT60SRG
厂家: Microsemi    Microsemi
描述:

Thunderbolt IGBT
迅雷IGBT

晶体 晶体管 功率控制 双极性晶体管
文件: 总6页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LowTailꢀCurrentꢀ  
                                       
LowꢀForwardꢀVoltageꢀDropꢀ  
                                       
•ꢀHighꢀFreq.ꢀSwitchingꢀtoꢀ100KHz  
•ꢀUltraꢀLowꢀLeakageꢀCurrent  
600V  
APT50GT60BR  
APT50GT60SR  
APT50GT60BRG* APT50GT60SRG*  
*GꢀDenotesꢀRoHSꢀCompliant,ꢀPbꢀFreeTerminalꢀFinish.  
(B)  
Thunderbolt IGBT®  
D3PAK  
(S)  
TheThunderblot IGBT® is a new generation of high voltage power IGBTs.Using Non- Punch  
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast  
switching speed.  
C
G
E
G
C
E
C
E
RBSOAꢀandꢀSCSOAꢀRated  
G
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specified.  
C
Parameter  
Symbol  
UNIT  
APT50GT60BR_SR(G)  
VCES  
VGE  
IC1  
Collector-Emitter Voltage  
Gate-Emitter Voltage  
600  
Volts  
30  
7
Continuous Collector Current @ TC = 25°C  
Continuous Collector Current @ TC = 110°C  
110  
IC2  
52  
Amps  
1
ICM  
Pulsed Collector Current  
150  
Switching Safe Operating Area @ TJ = 150°C  
150A @ 600V  
446  
SSOA  
PD  
Watts  
°C  
Total Power Dissipation  
TJ,TSTG  
Operating and Storage Junction Temperature Range  
-55 to 150  
300  
TL  
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.  
STATICꢀELECTRICALꢀCHARACTERISTICS  
Symbol Characteristicꢀ/TestꢀConditions  
MIN  
TYP  
MAX  
Units  
V(BR)CES  
VGE(TH)  
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 2mA)  
Gate Threshold Voltage (VCE = VGE, IC = 1mA, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 25°C)  
Collector-Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 125°C)  
600  
3
4
5
Volts  
1.7  
2.0  
2.2  
2.5  
VCE(ON)  
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)  
25  
ICES  
IGES  
µA  
nA  
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)  
TBD  
120  
Gate-Emitter Leakage Current (VGE = 20V)  
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.  
MicrosemiWebsite-http://www.microsemi.com  
DYNAMICꢀCHARACTERISTICS  
Symbol Characteristic  
APT50GT60BR_SR(G)  
UNIT  
TestꢀConditions  
Capacitance  
MIN  
TYP  
MAX  
Cies  
Coes  
Cres  
VGEP  
Qg  
Input Capacitance  
2660  
250  
153  
7.5  
pF  
V
Output Capacitance  
VGE = 0V, VCE = 25V  
f = 1 MHz  
Reverse Transfer Capacitance  
Gate-to-Emitter Plateau Voltage  
Gate Charge  
VGE = 15V  
VCE = 300V  
IC = 50A  
3
Total Gate Charge  
240  
20  
Qge  
Qgc  
nC  
Gate-Emitter Charge  
Gate-Collector ("Miller") Charge  
110  
TJ = 150°C, RG = 4.3Ω, VGE  
=
Switching Safe Operating Area  
SSOA  
td(on)  
A
150  
15V, L = 100µH,VCE = 600V  
InductiveꢀSwitchingꢀ(25°C)  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
Current Fall Time  
14  
32  
VCC = 400V  
VGE = 15V  
IC = 50A  
tr  
ns  
td(off)  
240  
36  
tf  
RG = 4.3Ω  
TJ = +25°C  
4
Eon1  
Eon2  
Turn-on Switching Energy  
995  
1110  
1070  
14  
5
µJ  
ns  
Turn-on Switching Energy (Diode)  
6
Eoff  
Turn-off Switching Energy  
td(on)  
InductiveꢀSwitchingꢀ(125°C)  
Turn-on Delay Time  
Current Rise Time  
Turn-off Delay Time  
tr  
VCC = 400V  
VGE = 15V  
IC = 50A  
32  
td(off)  
tf  
270  
95  
Current Fall Time  
RG = 4.3Ω  
TJ = +125°C  
4 4  
Eon1  
Eon2  
Eoff  
1035  
1655  
1505  
Turn-on Switching Energy  
55  
µJ  
Turn-on Switching Energy (Diode)  
6
Turn-off Switching Energy  
THERMALꢀANDꢀMECHANICALꢀCHARACTERISTICS  
Symbol Characteristic  
UNIT  
MIN  
TYP  
MAX  
.28  
R
Junction to Case (IGBT)  
Junction to Case (DIODE)  
Package Weight  
θJC  
°C/W  
gm  
R
N/A  
θJC  
WT  
5.9  
1
2
3
4
Repetitive Rating: Pulse width limited by maximum junction temperature.  
For Combi devices, Ices includes both IGBT and FRED leakages  
See MIL-STD-750 Method 3471.  
Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current  
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.  
5
Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching  
loss. (See Figures 21, 22.)  
6
7
Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)  
Continuous current limited by package lead temperature.  
Microsemiꢀreservesꢀtheꢀrightꢀtoꢀchange,ꢀwithoutꢀnotice,ꢀtheꢀspecificationsꢀandꢀinformationꢀcontainedꢀherein.  
TYPICAL PERFORMANCE CURVES  
APT50GT60BR_SR(G)  
160  
200  
180  
160  
140  
120  
100  
80  
15V  
V
= 15V  
13V  
11V  
GE  
140  
120  
100  
80  
10V  
TJ = 25°C  
TJ = -55°C  
TJ = 125°C  
9V  
60  
8V  
60  
40  
40  
7V  
6V  
10  
0
20  
0
0
1
2
3
4
5
0
V
5
10  
, COLLECTER-TO-EMITTER VOLTAGE (V)  
CE  
15  
20  
V
, COLLECTER-TO-EMITTER VOLTAGE (V)  
CE  
FIGUREꢀ1,ꢀꢀOutputꢀꢀCharacteristics(T =ꢀ25°C)ꢀ  
FIGUREꢀ2,ꢀꢀOutputꢀꢀCharacteristicsꢀ(T =ꢀ125°C)  
J
J
160  
16  
14  
12  
250µs PULSE  
TEST<0.5 % DUTY  
CYCLE  
I
T
= 50A  
= 25°C  
C
J
140  
120  
100  
80  
TJ = -55°C  
V
= 120V  
CE  
V
= 300V  
CE  
10  
8
V
= 480V  
CE  
6
60  
TJ = 25°C  
TJ = 125°C  
4
40  
2
20  
0
0
0
2
4
6
8
10  
12  
0
50  
100  
150  
200  
250  
V
, GATE-TO-EMITTER VOLTAGE (V)  
GATE CHARGE (nC)  
GE  
FIGUREꢀ3,ꢀTransferꢀꢀCharacteristicsꢀ  
FIGUREꢀ4,ꢀGateꢀꢀCharge  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5
4
3
2
1
0
TJ = 25°C.  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
I
= 100A  
C
I
= 100A  
= 50A  
C
I
I
= 50A  
C
C
I
= 25A  
C
I
= 25A  
C
VGE = 15V.  
250µs PULSE TEST  
<0.5 % DUTY CYCLE  
0.5  
0
6
8
10  
12  
14  
16  
0
25  
50  
75  
100  
125  
V
,ꢀGATE-TO-EMITTERꢀVOLTAGEꢀ(V)ꢀ  
T ,ꢀJunctionTemperatureꢀ(°C)  
GE  
J
FIGUREꢀ5,ꢀꢀOnꢀꢀStateꢀVoltageꢀvsꢀGate-to-ꢀEmitterꢀVoltageꢀ  
FIGUREꢀ6,ꢀOnꢀStateꢀVoltageꢀvsꢀJunctionTemperature  
1.15  
160  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
140  
120  
100  
80  
LeadTemperature  
Limited  
60  
40  
20  
0
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
T ,ꢀJUNCTIONTEMPERATUREꢀ(°C)ꢀ  
T ,ꢀCASETEMPERATUREꢀ(°C)  
J
C
FIGUREꢀ7,ThresholdꢀVoltageꢀꢀvs.ꢀJunctionTemperatureꢀ  
FIGUREꢀ8,ꢀDCꢀCollectorꢀCurrentꢀvsꢀCaseTemperature  
APT50GT60BR_SR(G)  
350  
300  
250  
200  
150  
50  
25  
20  
15  
10  
5
V
= 15V  
VGE =15V,TJ=125°C  
GE  
VGE =15V,TJ=25°C  
VCE = 400V  
VCE = 400V  
RG = 4.3Ω  
L = 100µH  
TJ = 25°C, or 125°C  
RG = 4.3Ω  
L = 100µH  
0
I
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
125  
I
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGUREꢀ9,Turn-OnꢀDelayTimeꢀvsꢀCollectorꢀCurrentꢀ  
FIGUREꢀ10,Turn-OffꢀDelayTimeꢀvsꢀCollectorꢀCurrent  
180  
90  
RG = 4.3, L = 100µH, VCE = 400V  
RG = 4.3, L = 100µH, VCE = 400V  
160  
140  
120  
100  
80  
80  
70  
60  
50  
40  
30  
20  
T
J = 125°C, VGE = 15V  
60  
40  
T
J = 25 or 125°C,VGE = 15V  
T
J = 25°C, VGE = 15V  
20  
10  
0
0
I
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
I
, COLLECTOR TO EMITTER CURRENT (A)  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGUREꢀ11,ꢀꢀCurrentꢀRiseTimeꢀvsꢀCollectorꢀCurrentꢀ  
FIGUREꢀ12,ꢀꢀCurrentꢀFallTimeꢀvsꢀCollectorꢀCurrent  
5000  
4000  
3000  
2000  
1000  
0
3500  
3000  
2500  
2000  
1500  
1000  
500  
V
V
R
= 400V  
= +15V  
= 4.3Ω  
V
V
R
= 400V  
= +15V  
= 4.3Ω  
CE  
GE  
CE  
GE  
G
G
T
J = 125°C  
T
J = 125°C  
T
J = 25°C  
TJ = 25°C  
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
I
,ꢀCOLLECTORTOꢀEMITTERꢀCURRENTꢀ(A)ꢀ  
I
,ꢀCOLLECTORTOꢀEMITTERꢀCURRENTꢀ(A)  
CE  
CE  
FIGUREꢀ13,Turn-OnꢀEnergyꢀLossꢀvsꢀCollectorꢀCurrentꢀ  
FIGUREꢀꢀ14,ꢀTurnꢀOffꢀEnergyꢀLossꢀvsꢀCollectorꢀCurrent  
10,000  
8,000  
6,000  
4,000  
5,000  
V
V
T
= 400V  
= +15V  
= 125°C  
V
V
R
= 400V  
= +15V  
= 4.3Ω  
CE  
GE  
CE  
GE  
E
100A  
on2,  
E
100A  
on2,  
J
G
4,000  
3,000  
2,000  
1,000  
0
E
100A  
off,  
E
100A  
off,  
E
50A  
50A  
off,  
E
50A  
on2,  
E
E
50A  
on2,  
off,  
2,000  
0
E
25A  
E
25A  
off,  
on2,  
E 25A  
on2,  
E
25A  
off,  
0
10  
20  
30  
40  
50  
0
25  
50  
75  
100  
125  
R
,ꢀGATEꢀꢀRESISTANCEꢀ(OHMS)ꢀ  
T ,ꢀJUNCTIONTEMPERATUREꢀ(°C)  
G
J
FIGUREꢀ15,ꢀSwitchingꢀEnergyꢀLossesꢀꢀvs.ꢀGateꢀResistanceꢀ  
FIGUREꢀ16,ꢀSwitchingꢀEnergyꢀLossesꢀꢀvsꢀJunctionTemperature  
TYPICAL PERFORMANCE CURVES  
APT50GT60BR_SR(G)  
160  
140  
120  
100  
80  
4,000  
Cies  
1,000  
500  
60  
40  
Coes  
Cres  
20  
100  
0
0
10  
20  
30  
40  
50  
0
100 200 300 400 500 600 700  
V , COLLECTOR TO EMITTER VOLTAGE  
CE  
V
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)  
CE  
Figureꢀ17,ꢀCapacitanceꢀꢀvsꢀꢀCollector-To-EmitterꢀꢀVoltageꢀ  
Figureꢀ18,MinimimꢀSwitchingꢀSafeꢀOperatingꢀArea  
0.30  
D = 0.9  
0.25  
0.7  
0.20  
0.5  
0.3  
0.15  
0.10  
Note:  
t
1
t
SINGLE PULSE  
2
0.05  
0
t
1
t
0.1  
Duty Factor D =  
Peak T = P x Z  
/
2
+ T  
C
0.05  
J
DM  
θJC  
10-5  
10-4  
10-3  
RECTANGULAR PULSE DURATION (SECONDS)  
Figureꢀ19a,ꢀMaximumꢀEffectiveTransientꢀThermalꢀImpedance,ꢀJunction-To-CaseꢀvsꢀPulseꢀDuration  
10-2  
10-1  
1.0  
TJ (°C)  
TC (°C)  
ZEXT are the external thermal  
impedances: Case to sink,  
sink to ambient, etc. Set to  
zero when modeling only  
the case to junction.  
0.114  
0.113  
Dissipated Power  
(Watts)  
0.0057  
0.0276  
FIGUREꢀ19b,ꢀTRANSIENTꢀTHERMALꢀIMPEDANCEꢀꢀMODEL  
120  
50  
Fmax = min (fmax, fmax2  
)
0.05  
fmax1  
=
td(on) + tr + td(off) + tf  
10  
2
Pdiss - Pcond  
Eon2 + Eoff  
fmax2  
=
T
T
= 125°C  
= 75°C  
J
C
D = 50 %  
V
R
TJ - TC  
RθJC  
= 400V  
Pdiss  
=
CE  
= 4.3Ω  
G
10 20 30 40 50 60 70 80 90 100  
I , COLLECTOR CURRENT (A)  
C
Figureꢀ20,ꢀOperatingꢀꢀFrequencyꢀꢀvsꢀCollectorꢀꢀCurrent  
APT50GT60BR_SR(G)  
Gate Voltage  
10%  
APT40DQ60  
T
= 125°C  
J
td(on)  
tr  
Collector Current  
Collector Voltage  
90%  
VCE  
IC  
VCC  
5%  
5%  
10%  
A
D.U.T.  
Switching Energy  
Figureꢀ22,Turn-onꢀSwitchingꢀWaveformsꢀandꢀDefinitions  
Figureꢀ21,ꢀInductiveꢀSwitchingꢀTestꢀCircuit  
90%  
Gate Voltage  
T
= 125°C  
J
td(off)  
90%  
Collector Voltage  
tf  
10%  
0
Collector Current  
Switching Energy  
Figureꢀ23,Turn-offꢀSwitchingꢀWaveformsꢀandꢀDefinitions  
D3PAKPackageOutline  
TO-247 Package Outline  
SAC: Tin, Silver, Copper  
e1  
e3  
SAC: Tin, Silver, Copper  
4.98 (.196)  
5.08 (.200)  
1.47 (.058)  
1.57 (.062)  
4.69 (.185)  
15.95 (.628)  
16.05(.632)  
13.41 (.528)  
13.51(.532)  
5.31 (.209)  
15.49 (.610)  
16.26 (.640)  
1.04 (.041)  
1.15(.045)  
1.49 (.059)  
2.49 (.098)  
5.38 (.212)  
6.20 (.244)  
6.15 (.242) BSC  
Revised  
8/29/97  
11.51 (.453)  
11.61 (.457)  
13.79 (.543)  
13.99(.551)  
20.80 (.819)  
21.46 (.845)  
3.50 (.138)  
3.81 (.150)  
0.46 (.018)  
0.56 (.022)  
{3 Plcs}  
1.27 (.050)  
1.40 (.055)  
0.020 (.001)  
0.178 (.007)  
2.87 (.113)  
3.12 (.123)  
3.81 (.150)  
4.50 (.177) Max.  
1.98 (.078)  
2.08 (.082)  
4.06 (.160)  
2.67 (.105)  
2.84 (.112)  
(Base of Lead)  
1.65 (.065)  
2.13 (.084)  
1.22 (.048)  
1.32 (.052)  
0.40 (.016)  
0.79 (.031)  
19.81 (.780)  
20.32 (.800)  
HeatꢀSinkꢀ(Collector)  
andꢀLeads areꢀPlated  
5.45 (.215) BSC  
{2 Plcs.}  
1.01 (.040)  
1.40 (.055)  
Gate  
Collector  
Emitterꢀ  
Emitterꢀ  
Collectorꢀ  
Gate  
Dimensions in Millimeters (Inches)  
2.21 (.087)  
2.59 (.102)  
5.45 (.215) BSC  
2-Plcs.  
Dimensions in Millimeters and (Inches)  
Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786  
5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.  

相关型号:

APT50M38JFLL

Power MOS 7TM is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS.
ADPOW

APT50M38JFLL

POWER MOS 7 R FREDFET
MICROSEMI

APT50M38JFLL_04

POWER MOS 7 R FREDFET
MICROSEMI

APT50M38JLL

Power MOS 7TM is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS.
ADPOW

APT50M38JLL

POWER MOS 7 R MOSFET
MICROSEMI

APT50M38JLL_04

POWER MOS 7 R MOSFET
MICROSEMI

APT50M50

Power MOS V is a new generation of high voltage N-Channel enhancement mode power MOSFETs.
ADPOW

APT50M50JFLL

Power MOS 7TM is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS.
ADPOW

APT50M50JFLL

POWER MOS 7 R FREDFET
MICROSEMI

APT50M50JFLL_04

POWER MOS 7 R FREDFET
MICROSEMI

APT50M50JLC

Power MOS VITM is a new generation of low gate charge, high voltage N-Channel enhancement mode power MOSFETs.
ADPOW

APT50M50JLL

POWER MOS 7 MOSFET
ADPOW