LX1571MY [MICROSEMI]

AC Synchronous. Secondary-Side Controller ; 交流同步。二次侧控制器\n
LX1571MY
型号: LX1571MY
厂家: Microsemi    Microsemi
描述:

AC Synchronous. Secondary-Side Controller
交流同步。二次侧控制器\n

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 CD
文件: 总12页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LIN DOC #: 1570  
P A T E N T P E N D I N G  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
S
ECONDARY-SIDE  
C
ONTROLLER  
T H E I N F I N I T E P O W E R O F I N N O V A T I O N  
P R E L I M I N A R Y D A T A S H E E T  
DESCRIPTION  
KEY FEATURES  
p REPLACES COSTLY MAG-AMP CORES WITH  
The LX1570/71 series of controller ICs are  
designed to provide all control functions in  
a secondary-side regulator for isolated auxil-  
iary or secondary power supplies. Auxiliary  
or secondary-side controllers are used in a  
variety of applications including multiple  
output off-line power supplies, commonly  
found in desktop computers, as well as tele-  
communications applications. Although they  
can be used in all secondary output applica-  
tions requiring precision regulation, they are  
mainly optimized for outputs delivering more  
than 3A current where standard three-termi-  
nal regulators lack the desired efficiency. For  
these applications, the Mag Amp regulators  
have traditionally been used. However, Mag  
Amps have several disadvantages. First, be-  
cause they have to withstand the maximum  
input voltage during a short-circuit condition,  
they are "over designed", typically by 2 times,  
increasing the cost and size of the power  
supply. Second, Mag Amps are inherently  
leading edge modulators, so they can only  
approach a certain maximum duty cycle, lim-  
ited by the minimum delay and the mag-  
netic BH loop characteristic of the Mag Amp  
core. This forces an increase in the size of  
the main transformer as well as the output  
inductor, resulting in higher overall system  
cost. The LX1570/71 eliminates all the  
disadvantages of the Mag Amp approach  
as well as improving system perfor-  
mance and reducing overall system cost.  
The LX1570/71 is a current mode control-  
ler IC that controls the duty cycle of a switch  
in series with the secondary AC output of  
the power transformer in buck-derived ap-  
plications, such as forward or bridge topolo-  
gies. It offers features such as 100% duty  
cycle operation for maximum energy trans-  
fer, pulse-by-pulse and hiccup current limit-  
ing with long off-time between the cycles  
for reduced power dissipation, high-fre-  
quency operation for smaller magnetics, soft-  
start, and current mode control for excel-  
lent dynamic response.  
A LOW ON-RESISTANCE MOSFET  
p LOOK-AHEAD SWITCHINGTM ENSURES  
SWITCH TURN ON BEFORE THE AC INPUT  
TO ACHIEVE 100% ENERGY TRANSFER  
p LOWER OVERALL SYSTEM COST  
p LOWER PEAK CURRENT STRESS ON THE  
PRIMARY SWITCH  
p ALLOWS HIGHER OPERATING FREQUENCY  
AND SMALLER OUTPUT INDUCTOR  
p EASY SHORT-CIRCUIT PROTECTION  
p CURRENT MODE APPROACH ACHIEVES  
EXCELLENT DYNAMIC RESPONSE  
APPLICATIONS  
SECONDARY-SIDE REGULATOR IN OFF-LINE  
POWER SUPPLIES  
COMPUTER POWER SUPPLIES, 3.3V OUTPUT  
FOR NEW LOW-VOLTAGE PROCESSORS  
AND MEMORIES  
TELECOMMUNICATION AND MILITARY  
DC/DC CONVERTERS  
PRODUCT HIGHLIGHT  
AVA I L A B L E OP T I O N S P E R PA R T #  
Aux Output  
12V/8A  
C.L.  
C.S.  
Part #  
Application  
Threshold  
Option  
Output  
Currents  
< 4A  
Resistive  
Sensing  
LX1570 -0.2V  
Current  
Output  
LX1571  
1V  
Transformer Currents  
Sensing  
> 4A  
OUT  
C.S.  
DRV  
VCC  
VFB  
LX1571  
COMP  
S.S.  
CT  
GND  
PACKAGE ORDER INFORMATION  
Plastic DIP  
8-pin  
Plastic SOIC  
8-pin  
Ceramic DIP  
Y
8-pin  
TA (°C)  
M
DM  
0 to 70  
-40 to 85  
-55 to 125  
LX157xCM  
LX157xIM  
LX157xCDM  
LX157xIDM  
LX157xMY  
Note: All surface-mount packages are available in Tape & Reel.  
Append the letter "T" to part number. (i.e. LX157xCDMT)  
F O R F U R T H E R I N F O R M AT I O N C A L L ( 7 1 4 ) 8 9 8 - 8 1 2 1  
Copyright © 1997  
Rev. 0.9.3 1/97  
1
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
SECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
Supply Voltage (VCC) .................................................................................................... 40V  
Digital Inputs.......................................................................................................-0.3 to 7V  
Output Peak Current Source (500nS) ........................................................................... 1A  
Output Peak Current Sink (500nS)................................................................................ 1A  
S.S.  
VFB  
COMP  
C.S.  
1
2
3
4
8
7
6
5
CT  
VCC  
OUT DRV  
GND  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect  
to Ground. Currents are positive into, negative out of the specified terminal.  
M & Y PACKAGE  
(Top View)  
THERMAL DATA  
M PACKAGE:  
1
2
3
4
8
7
6
5
S.S.  
VFB  
COMP  
C.S.  
CT  
VCC  
OUT DRV  
GND  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DM PACKAGE:  
95°C/W  
165°C/W  
130°C/W  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
Y PACKAGE:  
DM PACKAGE  
(Top View)  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
Junction Temperature Calculation: TJ = T + (PD x θJA).  
The θJA numbers are guidelines for the theArmal performance of the device/pc-board system.  
All of the above assume no ambient airflow.  
LX1571 BLOCK DIAGRAM  
Minimum  
Current Comp  
2.5V  
0.25V  
PWM Latch  
R
Q
6
OUT DRV  
Error Amp  
1
S.S.  
2R  
1V  
C.S. Comp  
S
VFB  
COMP  
C.S.  
2
3
R
Current Mode  
Hiccup Comp  
2.5V  
5V  
4
1.5V  
0.5V  
Voltage Hiccup  
Comp.  
2.5V  
REF  
Voltage Mode Hiccup  
Internal  
Bias  
QUICK  
CHG  
CONTROL  
CHG  
CONTROL  
LATCH RESET  
CONTROL  
Timing / Duty Cycle  
Control  
8
7
5
VCC  
CT  
6V  
LATCH  
SET CONTROL  
16V  
DISCH  
CONTROL  
VALLEY  
THRESHOLD  
CONTROL  
GND  
Q
Q
R
S
Hiccup  
Latch  
Copyright © 1997  
Rev. 0.9.3 1/97  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
S
ECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, these specifications apply over the ranges TA = -55 to 125ºC for the LX1570M/1571M, TA = -40 to 85ºC for the  
LX1570I/1571I, and TA = 0 to 70ºC for LX1570C/1571C. VCC = 15V. Typ. number represents TA = 25ºC value.)  
LX1570/1571  
Parameter  
Reference Section  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
Initial Accuracy  
Line Regulation  
Temp Stability  
VRI  
VRL  
VRT  
TA = 25ºC, measured at F.B pin  
11V < VCC < 25  
2.475 2.500 2.525  
V
%
%
1
Note 2  
1.5  
Timing Section  
Initial Accuracy  
fO  
CT = , TJ = 25°C, measured at pin 6  
Over Temp, measured at pin 6  
90  
85  
100  
100  
110  
115  
1
kHz  
kHz  
%
mA  
mA  
µA  
V
Line Voltage Stability  
Charging Current  
Discharging Current  
Leakage Current  
Ramp PK to PK  
fOL  
ICHG  
IDISCH  
ILK  
3
3.5  
4
C.S.INPUT = 1.5V  
VRPP  
C.S.INPUT = 0V  
C.S.INPUT = 1.5V (1571), C.S.INPUT = -0.4V (1570)  
0.6  
6
V
Error Amp / Soft Start Comp Section  
Transconductance  
gm  
IB  
AVOL  
0.005  
0.1  
70  
µΩ  
µA  
dB  
Input Bias Current  
Open Loop Gain  
1
60  
200  
200  
Output Sink Current  
Output Source Current  
Output HI Voltage  
IEA(SINK) VFB = 2.6V  
400  
400  
5.1  
µA  
µA  
V
IEA(SOURCE) VFB = 2.4V  
VCOMP-HI  
VCOMP-LO  
S
0.8  
65  
V
Output LO Voltage  
1
V/µSec  
Slew Rate  
Soft-Start Section  
Soft Start Timing Factor  
Soft Start Discharge Current  
KSS  
35  
50  
ms/µF  
mA  
ISS-DIS  
TBD  
Current Sense Section  
Input Range  
LX1570  
VCSI  
ICSB  
-0.8  
6
25  
V
V
LX1571  
LX1570  
LX1571  
LX1570  
LX1571  
LX1570  
LX1571  
-0.3  
µA  
µA  
V/V  
V/V  
mV  
mV  
ns  
V
Input Current  
1
-13.5  
2.7  
-15  
3
-16.5  
3.3  
C.S. Amplifier Gain  
Minimum Current Threshold Voltage  
ACS  
-50  
250  
100  
-0.2  
1
VCSMIN  
200  
-0.22  
1.1  
C.S. Delay to Driver Output  
10% Overdrive  
-0.18  
0.9  
C.L. Pulse-By-Pulse Threshold Voltage  
LX1570  
LX1571  
LX1570  
LX1571  
VCLP  
VCLH  
V
-0.3  
1.5  
2
V
V
C.L. Hiccup Threshold Voltage  
V
Voltage Hiccup Threshold  
VHCCP  
Note 2. Although this parameter is guaranteed, it is not 100% tested in production.  
Copyright © 1997  
Rev. 0.9.3 1/97  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
SECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
ELECTRICAL CHARACTERISTICS (Con't.)  
LX1570/1571  
Min. Typ. Max.  
Parameter  
Symbol  
Test Conditions  
Units  
PWM Section  
E.A. Output to PWM Drive Offset  
Fixed Duty Cycle  
VOFS  
D
1.7  
52  
2.0  
54  
2.4  
56  
V
%
Output Drive Section  
Rise / Fall Time  
Output HI  
tR / tF CL = 1000pF  
50  
13.5  
0.8  
1
ns  
V
V
VDH  
VDL  
ISOURCE = 200mA, VCS = 0V, VFB = 2.3V  
ISINK = 200mA, VCS = 1.2V, VFB = 2.3V  
VCC = 0V, IPULL UP = 2mA  
Output LO  
Output Pull Down  
VDPD  
V
UVLO Section  
Start-Up Threshold  
Turn Off Threshold  
Hysterises  
VST  
VOFF  
VH  
15  
9
16  
10  
6
17  
11  
V
V
V
5.5  
6.5  
Supply Current Section  
Dynamic Operating Current  
Start-Up Current  
IQd  
IST  
Out Freq = 100kHz, CL = 0  
18  
30  
mA  
µA  
150  
250  
FUNCTIONAL PIN DESCRIPTION  
Pin  
#
Description  
S.S.  
1
This pin acts as the soft-start pin. A capacitor connected from this pin to GND allows slow ramp up of the NI input  
resulting in output soft start during start up. This pin is clamped to the internal voltage reference during the normal  
operation and sets the reference for the feedback regulator.  
VFB  
2
This pin is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output  
through a resistor divider to program the power supply voltage. This pin instead of the NI pin is internally trimed to  
1% tolerance to include the offset voltage error of the error amp.  
COMP  
C.S.  
3
4
This pin is the Error Amplifier output and is made available for loop compensation. Typically a series R&C network  
is connected from this pin to GND.  
Avoltageproportionaltotheinductorcurrentissensedbyanexternalsenseresistor(1570) orcurrenttransformer(1571)  
inserieswiththereturnlineandisconnectedtothispin. Theoutputdriveisterminatedandlatchedoffwhenthisvoltage  
amplified by the internal gain (see option table) exceeds the voltage set by the E.A output voltage. The maximum  
allowable voltage at this pin during normal operation is -0.8V typ for LX1570 and 6V typ for LX1571.  
GND  
5
6
7
This pin is combined control circuitry and power GND. All other pins must be positive with respect to this pin, except  
for C.S pin.  
OUT  
DRV  
This pin drives a gate drive transformer which drives the power mosfet. A Schottky diode such as 1N5817 must be  
connected from this pin to GND in order to prevent the substrate diode conduction.  
VCC  
This pin is the positive supply voltage for the control IC. A high frequency capacitor must be closely placed and  
connectedfromthispintoGNDtoprovidetheturn-onandturn-offpeakcurrentsrequiredforfastswitchingofthepower  
Mosfet.  
CT  
8
The free running oscillator frequency is programmed by connecting a capacitor from this pin to GND.  
Copyright © 1997  
Rev. 0.9.3 1/97  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
S
ECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
APPLICATION INFORMATION  
R2  
C1  
0.1µF, 50V  
300, 2W  
L1  
10µH (PE53700)  
D8  
1N4937  
VOUT  
(+)  
AC(+)  
D1 1/2  
See Note 2  
100kHz - 150kHz  
Q1  
IRLZ44  
MBR2545CT  
D1 2/2  
MBR2545CT  
20-30V, 100-150kHz  
Secondary Transformer  
C10  
1500µF  
C12  
1500µF  
20V-30V  
T2  
See Note 1  
3.3V / 7A  
C9  
1500µF  
C11  
1500µF  
AC(-)  
VOUT  
(-)  
R5  
0.02, 5W  
C2  
0.1µF  
D4  
1N4148  
VIN (17 to 20V)  
R15  
1M  
R11  
1.1k  
R4  
47  
U1  
LX1570  
R6  
324, 1%  
1
2
3
4
S.S.  
CT  
8
7
6
5
VFB  
VCC  
C5  
1µF  
C4  
0.047µF  
COMP  
C.S.  
OUT DRV  
GND  
R7  
1k, 1%  
C8  
1000pF  
R10  
5k  
1%  
Note 1. T2 Core = RM4Z  
Np = 25T #28AWG  
Ns = 25T #28AWG  
2. For further information on PE53700 and PE64978,  
contact Pulse Engineering at (619) 674-8100.  
FIGURE 1 — THE LX1570 IN A TYPICAL 3.3V / 7A SECONDARY-SIDE POWER SUPPLY APPLICATION  
Copyright © 1997  
Rev. 0.9.3 1/97  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
SECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
APPLICATION INFORMATION  
L1  
(+)  
VOUT (+)  
Q1  
1/2 D1  
Secondary  
Transformer  
Voltage  
1/2 D1  
C9  
T2  
(-)  
VOUT (-)  
D4  
T1  
R5  
C2  
(Note A)  
D2  
R3  
D3  
R4  
C5  
D6  
D5  
C3  
8
CT  
7
6
5
C4  
VCC OUT GND  
Pwr  
Gnd  
DRV  
U1, 1571  
Signal Gnd  
S.S. VFB COMP C.S.  
1
2
3
4
D7  
R6  
R7  
R10  
C8  
C6  
R9  
C10  
R8  
C7  
FIGURE 2 — THE LX1571 IN A TYPICAL SECONDARY-SIDE POWER SUPPLY APPLICATION  
Copyright © 1997  
Rev. 0.9.3 1/97  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
S
ECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
IC DESCRIPTION  
STEADY-STATE OPERATION  
Steady-state operation is best described by referring to the main  
block diagram and the typical application circuit shown in Fig-  
ure 2. The output drive turns the external power MOSFET on  
and current ramps up in the inductor. Inductor current is sensed  
with an external resistor (or in the case of LX1571 with a current  
transformer) and is compared to the threshold at the inverting  
input of the current sense (C.S.) comparator. This threshold is  
set by the voltage feedback loop, which is controlled by the  
error amplifier. Exceeding this threshold resets the PWM latch  
and turns the MOSFET off. The Output drive goes low, turning  
the CT charging current off and the discharging current on, caus-  
ing the CT voltage to ramp down. When this voltage goes below  
1.5V, it sets the PWM latch and turns the output drive back on  
prior to the next rising edge of the transformer voltage, and the  
cycle repeats.  
tion. Notice that when the current sense signal turns the MOSFET  
off, it also synchronizes the output drive to the transformer volt-  
age (see discussion under heading Timing Section). In addition,  
the energy transfer occurs only when both transformer voltage  
and OUT DRV pin are "HI" at the same time, establishing the  
effective on-time of the converter. This shows that the regula-  
tion of this converter is achieved by modulating the trailing edge  
of the output drive with respect to the leading edge of the AC  
voltage, while maintaining a fixed output drive duty cycle. In  
other words, the converter duty cycle seen by L1 is controlled by  
varying the phase between the AC voltage and the output driver  
signal (phase modulation). Maximum converter duty cycle is  
achieved when both signals are in phase, as shown in Figure 4B.  
The LX1570/71 output drive always maintains a fixed duty cycle  
(54%), since both charge and discharge currents are almost equal  
as shown in Figures 4A and 4B.  
The Steady-State Operation Timing Diagram - Normal Mode  
(Figure 4A) shows typical waveforms in the steady-state condi-  
2.5V  
PWM Latch  
R
Q
6
OUT DRV  
Error Amp  
1
S.S.  
C.S. Comp  
S
VFB  
2
3
R
1V  
COMP  
2.5V  
4
C.S.  
2.5V  
REF  
CHG  
CONTROL  
5V  
Internal  
Bias  
Timing / Duty Cycle  
Control  
8
CT  
DISCH  
CONTROL  
7
5
VCC  
LATCH  
SET CONTROL  
GND  
FIGURE 3 — STEADY-STATE OPERATION BLOCK DIAGRAM  
Copyright © 1997  
Rev. 0.9.3 1/97  
7
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
SECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
IC DESCRIPTION  
Transformer  
Voltage  
Transformer  
Voltage  
LX157x  
LX157x  
OUT DRV  
OUT DRV  
LX1571  
LX1571  
C.S. Signal  
C.S. Signal  
CT Voltage  
CT Voltage  
2µs / Div.  
2µs / Div.  
FIGURE 4A — STEADY-STATE OPERATION TIMING DIAGRAM  
FIGURE 4B — STEADY-STATE OPERATION TIMING DIAGRAM  
(NORMAL MODE)  
(MAXIMUM DUTY CYCLE)  
START-UP OPERATION  
where CSS is in µF and tRAMP is in ms.  
Using the main Block Diagram and the LX157x VCC Start-Up  
Voltage Timing Diagram (Figure 5) as a reference, when the VCC  
voltage passes the UVLO threshold (16V typ.), the output of the  
UVLO comparator changes to the "HI" state, which causes the  
following: a) provides biasing for internal circuitry, and b)  
enables the output drive and the HICCUP latch. This signal sets  
the "Q" output of the HICCUP latch "LO", allowing the soft-start  
(S.S.) capacitor voltage to ramp up, forcing the regulator output  
to follow this voltage. Since the IC provides a constant current  
source for charging the S.S. capacitor, the resulting waveform is  
a smooth linear ramp, which provides lower in-rush current  
during start up.  
The Start-Up Timing Diagram (Figure 6) shows the output  
voltage and the S.S. capacitor during start up. Notice that the  
output voltage does not respond to the S.S. capacitor until this  
voltage goes above0.65 volts, allowing this pin to be used as an  
external shutdown pin. The value of the soft start capacitor must  
be selected such that its ramp up time (tRAMP) is always greater than  
the start up time of the converter, so that the converter is able to  
follow the soft-start capacitor.  
Example: If CO = 1600µF, VO = 12V, IO = 4A  
1600 10-6 12  
*
*
tRAMP = 4 *  
= 19.2ms  
4
19.2  
35  
CSS =  
= 0.55µF  
The LX1570/71 series also features micropower start-up current  
that allows these controllers to be powered off the transformer  
voltageviaalow-powerresistorandastart-upcapacitor. Afterthe  
IC starts operating, the output of the converter can be used to  
power the IC. In applications where the output is less than the  
minimum operating voltage of the IC, an extra winding on the  
inductor can be used to perform the same function. The start-up  
capacitor must also be selected so that it can supply the power to  
the IC long enough for the output of the converter to ramp up  
beyond the start-up threshold of the IC. Equation 3 shows how  
to select the start-up capacitor.  
IQ  
VH  
t
ST  
*
CST = 2  
Equation 3  
Itisrecommendedthatthesoftstartcapacitorisalwaysselected  
such that its ramp up time (tRAMP) be at least 4 times greater than  
the converter's minimum start-up time. Equations 1 and 2 show  
how to select this capacitor.  
where: IQ  
tST  
Dynamic operating current of the IC  
Time for the bootstrap voltage to go above  
the minimum operating voltage (10V typ.)  
CO  
V
O
*
IO  
VHYST Minimum hysteresis voltage of the IC  
tRAMP = 4  
Equation 1  
*
Example: If IQ = 30mA, tST = 19ms, VHYST = 5.5V  
30 10-3 19 10-3  
Once tRAMP is known, the soft-start capacitor can then be  
calculated as follows:  
tRAMP  
35  
*
*
*
CST = 2  
= 207µF  
CSS =  
Equation 2  
5.5  
Copyright © 1997  
Rev. 0.9.3 1/97  
8
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
S
ECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
IC DESCRIPTION  
16V  
VO  
VSTART UP Cap  
VCAP  
10V  
Output  
Voltage - 5V / Div.  
VO  
tRAMP  
Soft-Start  
Voltage - 1V / Div.  
tST  
COMP Pin  
OUT DRV  
L1 Current  
1ms / Div.  
FIGURE 5 — LX157x VCC START-UP VOLTAGE TIMING DIAGRAM  
FIGURE 6 — START-UP TIMING DIAGRAM  
TIMING SECTION  
A capacitor connected from the CT pin to ground performs sev-  
eral functions. First, it sets the OUT DRV duty cycle to a constant  
54% (regardless of the CT value) in order to: a) provide the gate  
drive for an N-channel MOSFET, utilizing a simple gate drive  
transformer, and b) insure reliable operation with a transformer  
duty cycle within a 0 to 50% range. Second, it sets the free-  
running frequency of the converter in order to insure the con-  
tinuous operation during non-steady state conditions, such as  
start up, load transient and current limiting operations. The value  
of the timing capacitor is selected so that the free-running fre-  
quency is always 20% below the minimum operating frequency  
of the secondary transformer voltage, insuring proper operation.  
Equation 4 shows how to select the timing capacitor CT.  
Example: Assuming the transformer frequency is at 100kHz,  
RPP = 0.6V, ICHG = 3mA, IDISCH = 3.5mA.  
V
1
CT =  
= 0.033µF  
1
1
0.6 80 103  
+
3 103 3.5 103  
CURRENT LIMITING  
Using the main Block Diagram as a reference and the typical  
application circuit of Figure 2, note that current limiting is per-  
formed by sensing the current in the return line using a current  
transformer in series with the switch. The voltage at C.S. pin is  
then amplified and compared with an internal threshold. Ex-  
ceeding this threshold turns the output drive off and latches it off  
until the set input of the PWM latch goes high again. However,  
if the current keeps rising such that it exceeds the HICCUP com-  
parator threshold, or if the output of the converter drops by  
20% from its regulated point, two things will happen. First, the  
HICCUP comparator pulls CT pin to 6V, which keeps the output  
drive off and causes CT charging current to be disconnected.  
Second, it sets the HICCUP latch, causing the discharge current  
to be turned off until the CT capacitor voltage goes below 0.3V.  
Since both charge and discharge currents are disconnected from  
the capacitor, the only discharge path for CT is the internal 2µA  
current source. When this happens, a very slow discharge oc-  
curs, resulting in a long delay time between current limit cycles  
which greatly reduces power MOSFET dissipation under short  
circuit conditions.  
1
CT =  
Equation 4  
1
1
VRPP fS  
+
ICHG IDISCH  
where: VRPP Peak to peak voltage of CT (0.6V typ.)  
fS  
Free-running frequency of the converter.  
Selected to be 80% of the minimum freq.  
of the seconday side transformer voltage.  
ICHG CT charging current (3mA typ.)  
IDISCH CT discharge current (3.5mA typ.)  
Copyright © 1997  
Rev. 0.9.3 1/97  
9
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
SECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
IC DESCRIPTION  
MINIMUM CURRENT COMPARATOR  
One of the main advantages of replacing a Magnetic Amplifier  
with a MOSFET, is the MOSFET's ability to respond quickly to  
large changes in load requirements. Because the LX1570/71 re-  
lies on the C.S. signal for synchronization, special circuitry had to  
be added to keep the output drive synchronized to the trans-  
former voltage during such load transient conditions. This con-  
dition is best explained by referring to Figure 7. In Figure 7, it  
can be seen that the load current is stepped from 0.4A to 4A,  
causing the COMP pin to slew faster than the inductor current,  
starting with the second switching cycle after the load transient  
has occured. This condition eliminates the normal means of  
resetting the PWM latch through the C.S. comparator path. To  
compensate for this condition, a second comparator is ORed  
with the C.S. comparator, which resets the latch on the falling  
edge of the C.S. signal caused by the falling edge of the trans-  
former voltage.  
Transformer  
Voltage  
100V / Div.  
LX157x  
OUT DRV  
20V / Div.  
LX157x  
COMP PIN  
2V / Div.  
Output Current &  
Inductor Current  
2A / Div.  
In other words, the function of the minimum C.S. comparator  
is to turn OUT DRV off on the falling edge of the C.S. signal, if it  
is not already off. This assures that the output drive is on before  
the start of the next AC input cycle (Look-Ahead Switching™),  
allowing maximum converter duty cycle.  
FIGURE 7 — MINIMUM CURRENT COMPARATOR EFFECT  
DURING LOAD TRANSIENT  
ERROR AMPLIFIER  
The function of the error amplifier is to set a threshold voltage  
for inductor peak current and to control the converter duty cycle,  
such that power supply output voltage is closely regulated.  
Regulation is done by sensing the output voltage and comparing  
it to the internal 2.5V reference. A compensation network based  
on the application is placed from the output of the amplifier to  
GND for closed loop stability purposes as well as providing high  
DC gain for tight regulation. The function of "3VBE" offset is to  
keep output drive off without requiring the error amplifier output  
to swing to ground level. The transfer function between error  
amp output (VCOMP) and peak inductor current is therefore given  
by:  
VCOMP - 3VBE = IP  
G
where:  
*
IP = inductor peak current,  
G = resistor divider gain,  
(-15 for LX1570, 3 for LX1571)  
VBE = diode forward voltage  
(0.65V typ)  
Copyright © 1997  
Rev. 0.9.3 1/97  
10  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
S
ECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
12V/8A SCHEMATIC  
Note: Linfinity provides a complete and  
tested evaluation board. For further  
information contact factory.  
80V  
R2, 2W  
4.7k  
C1, 0.1µF  
250V  
L1  
140µH  
f = 100 to 150kHz  
D8, 1N4937  
(+)  
VOUT (+)  
Q1  
IRF530  
1/2 D1  
MUR1620  
NS  
NP  
1
6
3
Secondary  
Transformer  
Voltage  
T2  
12V/8A  
VOUT (-)  
4
1/2 D1  
MUR1620  
C9  
820µF  
16V  
C10  
820µF  
16V  
4
3
2
(-)  
1
D4  
1N4148  
T1  
PE64978  
C2 0.1  
(Note 1)  
D2  
D3  
1N4001  
1N4935  
R5  
475  
W
1%  
2.7k  
1/2W  
R4 47W  
R3  
VIN  
C3  
220µF  
25V  
D6  
C5  
1µF  
1N5819  
D5  
1N5819  
8
CT  
7
6
5
C4  
0.047µF  
VCC OUT GND  
Pwr  
Gnd  
DRV  
R8  
SHORT  
U1, LX1571  
Signal Gnd  
100  
R12  
1M  
Note 2  
S.S. VFB COMP C.S.  
W
1
2
3
4
W
D7  
1N4148  
R6  
3.83k  
W
C6  
0.56µF  
R11  
C13  
1%  
R9  
4.99  
W
1%  
R7  
C8  
1k  
W
1%  
Core = RM4Z  
C7  
1000pF  
NP =  
NS =  
20T #32AWG  
60T #32AWG  
T2  
FIGURE 8 — THE LX1571 IN A 12V/8A SECONDARY-SIDE POWER SUPPLY APPLICATION  
Unless otherwise noted all resistors are 1/4W, 5%.  
Note 1: For further information on PE64978 contact Pulse Engineering at 619-674-8100.  
Note 2: A high value resistor must be coupled back to "COMP" pin to insure proper operation under light load conditions.  
Copyright © 1997  
Rev. 0.9.3 1/97  
11  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1570/1571  
PHASE  
MODULATED AC SYNCHRONOUS  
SECONDARY-SIDE  
C
ONTROLLER  
P R E L I M I N A R Y D A T A S H E E T  
3.3V/10A SCHEMATIC  
Note: Linfinity provides a complete and  
tested evaluation board. For further  
information contact factory.  
VP (10 to 30V)  
VP  
R2, 2W  
W
L1  
300  
C1, 0.1µF  
50V  
10µH  
PE53700  
f = 100kHz to 150kHz  
(+)  
D8, 1N4937  
VOUT  
(+)  
Q1  
IRLZ44  
(Note 1)  
1/2 D1  
MBR2545CT  
NS  
NP  
1
6
3
Secondary  
Transformer  
Voltage  
T2  
1/2 D1  
MBR2545CT  
3.3V/10A  
4
C9  
1500 1500 1500 1500  
µF µF µF µF  
6.3V 6.3V 6.3V 6.3V  
C10  
C11  
C12  
4
3
2
(-)  
VOUT  
(-)  
1
D4  
1N4148  
T1  
PE64978  
C2 0.1  
(Note 1)  
R5  
475  
W
1%  
R4 47  
W
VIN  
(17 to 20V)  
D6  
C5  
1µF  
C3  
1N5819  
22µF  
25V  
D5  
1N5819  
8
CT  
7
6
5
C4  
VCC OUT GND  
Pwr  
Gnd  
0.047µF  
DRV  
R8  
SHORT  
U1, LX1571  
Signal Gnd  
100  
S.S. VFB COMP C.S.  
1M  
Note2  
1
2
3
4
W
D7  
1N4148  
R6  
324  
W
C6  
0.56µF  
R11  
C13  
1%  
R9  
3.3  
W
1%  
C7  
R7  
C8  
1k  
W
1%  
1000pF  
Core = RM4Z  
NP =  
NS =  
25T #28AWG  
25T #28AWG  
T2  
FIGURE 9 — THE LX1571 IN A 3.3V/10A SECONDARY-SIDE POWER SUPPLY APPLICATION  
Unless otherwise noted all resistors are 1/4W, 5%.  
Note 1: For further information on PE53700 and PE64978 contact Pulse Engineering at 619-674-8100.  
Note 2: A high value resistor must be coupled back to "COMP" pin to insure proper operation under light load conditions.  
Look-ahead SwitchingTM is a trademark of Linfinity Microelectronics Inc.  
Copyright © 1997  
Rev. 0.9.3 1/97  
12  

相关型号:

LX160M0220BPF-2230

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 160V, 20% +Tol, 20% -Tol, 220uF, Through Hole Mount
YAGEO

LX160M0820BPF-3530

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 160V, 20% +Tol, 20% -Tol, 820uF, Through Hole Mount
YAGEO

LX160M1000BPF-3535

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 160V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount
YAGEO

LX160VB10RM12X20LL

LXA/LX Series
ETC

LX160VB22RM16X25LL

LXA/LX Series
ETC

LX160VB33RM16X25LL

LXA/LX Series
ETC

LX160VB47RM16X31LL

LXA/LX Series
ETC

LX160VB68RM18X35LL

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 160V, 20% +Tol, 20% -Tol, 68uF, Through Hole Mount, RADIAL LEADED
CHEMI-CON

LX1660

ADVANCED PWM CONTROLLER
MICROSEMI

LX1660CD

Switching Controller, Current-mode, 1.5A, PDSO16, LEAD FREE, PLASTIC, SOIC-16
MICROSEMI

LX1660CD-TR

Switching Controller, Current-mode, 1.5A, PDSO16, LEAD FREE, PLASTIC, SOIC-16
MICROSEMI

LX1661

ADVANCED PWM CONTROLLER
MICROSEMI