LX1661CD-TR [MICROSEMI]

Switching Controller, Current-mode, 1.5A, PDIP16, LEAD FREE, PLASTIC, DIP-16;
LX1661CD-TR
型号: LX1661CD-TR
厂家: Microsemi    Microsemi
描述:

Switching Controller, Current-mode, 1.5A, PDIP16, LEAD FREE, PLASTIC, DIP-16

开关 光电二极管
文件: 总15页 (文件大小:806K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Not Recommended For New Design  
LX1660 / 1661  
ADVANCED PWM CONTROLLER  
P
R O D U C T I O N D A T A S H E E T  
T
H E  
I
N F I N I T E  
P
O W E R O F  
I N N O V A T I O N  
KEY FEATURES  
DESCRIPTION  
The LX1660 and LX1661 Are Monolithic Short-Circuit Current Limiting Without  
Switching Regulator Controller ICs designed to Expensive Current Sense Resistors. The  
provide low-cost, high performance adjustable current sensing mechanism can use a PCB trace  
power supply for microprocessors and other resistance or the parasitic resistance of the main  
applications requiring a fast transient response and inductor. For applications requiring a high degree  
a high degree of accuracy. They provide an of accuracy, a conventional sense resistor can be  
adjustable synchronous Pulse Width Modulator used.  
„
Designed To Drive A  
Synchronous Rectifier Stage —  
Can Also Be Used In Non-  
Synchronous Applications  
Soft-Start Capability  
Hiccup-Mode Fault Protection  
No Current-Sense Resistor  
Required For Current Limiting  
ModulaConstant Off-Time  
Conism For Fast  
Tponse And Simple  
Ssign  
„
„
„
output suitable for a power supply for Pentium  
other microprocessors.  
Synchronous Rectifier Driver For CPU Core.  
®
or Hiccup Mode Fault Protection. The hiccup  
mode is programmable and with pulse-by-pulse  
current limiting will help protect the power  
„
The devices can drive dual MOSFETs resulting in supply system and load in the even of a short  
typical efficiencies of 85 - 90%, even with loads in circuit.  
„
2InternVoltage  
Refe Brht Out  
excess of 10A. Synchronous shutdown results in  
increased efficiency in light load applications.  
Ultra-Fast Transient Response Reduce
System Cost. The fixed frequency modulated  
off-time architecture results in the fastest  
transient response for a given inductor. Adaptive  
voltage positioning (LX1661 only) requi
low-ESR capacitors to meet stringen
over and under-shoot spections.  
PLICATIONS  
„
„
„
„
„
Pentium Processor Supplies  
AMD-K6TM Supplies  
Cyrix® 6x86TM Supplies  
Voltage Regulator Modules  
General Purpose DC:DC  
Supplies  
IMPORTANT: For the most current data, consult MICROSEMI’s website: http://www.memi.com  
PRODUCT HIGGHT  
OUTEN  
V
5V  
LX1661 I  
N
SOCKET  
7
IN  
PROCESSOR  
SUPPLY  
APPLICATION  
C2  
C7  
Q1  
IRL3103  
16V, 1000µF  
Sanyo MV-GX or equivalent  
R14, 1%  
See Table 5  
VOUT  
U1  
61  
L1  
C9  
1µF  
R1, 5m  
R15  
2.0k  
1%  
4
5
6
7
8
16  
5µH Toroid  
D1  
VC1  
TDRV  
PGND  
BDRV  
VCC  
C5  
C6  
15  
14  
13  
12  
11  
10  
9
R16  
10k  
VRE
16V, 1000µF  
Sanyo MV-GX or  
equivalent  
INV  
NINV  
HICCUP  
CT  
SYNCEN  
CS+  
R5, 1k  
C1  
390pF  
CS-  
C3  
0.1µF  
390pF  
16-pin SOIC  
R6, 1k  
PACKAGE ORDER INFO  
Plastic DIP  
16-Pin  
RoHS Compliant / Pb-free  
Transition DC: 0503  
Plastic SOIC  
16-Pin  
RoHS Compliant / Pb-free  
Transition DC: 0440  
N
D
TA (°C)  
0 to 70  
LX166xCN  
LX166xCD  
Note: Available in Tape & Reel. Append the letters “TR” to the part number.  
(i.e. :LX1661CD-TR)  
L
I N  
F
I N I T Y  
M
I C R O E L E C T R O N I C S  
I N C .  
Copyright © 1998  
Rev. 1.1a,2005-03-09  
1
11861 WESTERN  
A
VENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
Supply Voltage ............................................................................................................. 25V  
Output Peak Current Source (500ns)......................................................................... 1.5A  
Output Peak Current Sink (500ns) ............................................................................. 1.5A  
Analog Inputs ................................................................................................... -0.3 to +6V  
Power Dissipation at TA = 25°C  
N Package............................................................................................................... 1.5W  
D Package........................................................................................................... 830mW  
Operating Junction Temperature  
EN  
OTADJ  
SGND  
VREF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VC1  
TDRV  
PGND  
BDRV  
VCC  
SYNCEN  
CS+  
INV  
NINV/SS  
HICCUP  
CS-  
CKAGE  
Top w)  
Plastic (N, D Packages)......................................................................................... 150°C  
Storage Temperature Range .................................................................... -65°C to +150°C  
Lead Temperature (Soldering, 10 Seconds)............................................................. 300°C  
Peak Package Solder Reflow Temp. (40 second max. exposure)..........................................260°C (+0, -5)  
1
16  
15  
14  
13  
12  
11  
10  
9
EN  
OTJ  
G
REF  
INV  
NINV/SS  
VC1  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect  
to Ground. Currents are positive into, negative out of the specified terminal. Pin  
numbers refer to DIL packages only.  
2
3
4
5
6
7
8
TDRV  
PGND  
BDRV  
VCC  
SYNCEN  
CS+  
THERMAL DATA  
HICCUP  
CT  
N PACKAGE:  
CS-  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
D PACKAGE:  
W  
D PACKAGE  
(Top View)  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
Junction Temperature Calculation: TJ = TA + (PD x θJA).  
0°C/W  
RoHS / Pb-free 100% Matte Tin Lead Finish  
The θJA numbers are guidelines for the thermal performance of the ystem.  
All of the above assume no ambient airflow  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, 10.8 < VCC < 13.2, 0°C TA 85°C. Test conditions: VCC = 12V, T = 25°C.)  
LX1660  
LX1661  
Units  
Parameter  
Symbol  
Test Conditions  
Min. Typ. Max. Min. Typ. Max.  
Reference Section  
Initial Output Voltage  
Load Regulation  
VCC = 12V, IL = 100µA  
1.98  
2
2
24  
2.02 1.98  
2
2
24  
2.02  
V
VCC = 12V, IL = 10µA to 5mA  
VREF = 1.96V  
mV  
mA  
Short Circuit Current ISH  
Timing Section  
Off Time Initial  
OT  
IDIS  
OTADJ = 1.8V, CT = 390pF  
OTADJ = 3.5V, CT = 390pF  
OTADJ = 1.8V to 3.5V  
2
1
2
2
µS  
µS  
%
µA  
µA  
V
Off Time Temp Stability  
Discharging Current  
10 240 210 240  
180 240 180 210 240  
VNINV = 1.8V, VCT = 1.5V  
VNINV = 3.5V, VCT = 1.75V  
2
2
Ramp Peak  
VP  
0.9 1.0 0.8 0.9 1.0  
.475 0.5 0.525 0.475 0.5 0.525  
100 100  
00.9 1.2 0.6 0.9 1.2  
V
Ramp Peak-Valley  
VRPP  
OTADJ = 1.8V  
V
nS  
V
OTADJ = 3.5V  
Ramp Valley Delay to Output  
Turn Off Threshold  
10% Overdrive  
(Voltage at OTADJ Pin)  
VOFF  
Error Comparator Section  
Input Bias Current  
Input Offset Voltage  
EC Delay to Output  
IB  
VIO  
VFB = VSET  
0.1 1.0  
2
0.1 1.0  
µA  
mV  
nS  
36  
42  
48  
10% Overdrive  
150  
150  
Synchronous Control Section  
Synchronous Enable Threshold  
SYCEN  
0.5 0.7 0.9 0.5 0.7 0.9  
V
Current Sense Section  
Input Bias Current  
Pulse By Pulse CL  
IB  
VCLP  
1.8VCS+ = V3.5V  
IniAc
0.1 0.1  
1
1
µA  
mV  
nS  
80  
90 100 80  
150  
90 100  
150  
CS Delay to Output  
10% drive  
Output Drivers Section  
Output Rise Time  
Output Fall Time  
VC2 = 12V, CL = 3000pF  
2 = 12V, CL = 3000pF  
= 0, IPULL UP = 2mA  
= 500ns  
70  
70  
1
70  
70  
1
nSec  
nSec  
V
Output Pull Down  
Peak Current  
1.0  
1.0  
A
UVLO and S.S.
Start-Up Thresh
Hysteresis  
VST  
VHYST  
ISD  
VOL  
VEN  
IEN  
9.85 10.15 10.45 9.85 10.15 10.45  
V
V
mA  
V
0.31  
0.31  
2
3
2
3
S.S. Sink Current  
S.S. Sat Voltage  
VCL = 10.1V  
VCL = 9V, ISD = 20µA  
0.2 0.6  
0.2 0.6  
1.3 1.4 1.5 1.3 1.4 1.5  
V
Enable Shutdown Thre
Enable Bias Current  
-0.5  
0.5  
-1  
1
-0.5  
0.5  
-1  
1
µA  
µA  
V
IEN (Low), VEN = 0V  
IEN (High), VEN = 2V  
0.14 0.16 0.18 0.14 0.16 0.18  
Enable Hysteresis  
Supply Current Section  
Dynamic Operating Current  
Start-Up Current  
ICD  
IST  
VCC = VC = 12V, Out Freq = 200kHz, CL = 0  
VCL = 10V  
25  
25  
mA  
µA  
500 1000  
500 1000  
Hiccup Section  
Hiccup Factor “ON” Time  
Hiccup Duty Cycle  
(CHICCUP = 0.1µF typ.)  
100  
10  
100  
10  
mS/µF  
%
Copyright © 1998  
Rev. 1.1a 10/25/2004  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
BLOCK DIAGRAM  
VCC  
2V OUT  
ENABLE  
2V REF  
EN  
1
V
C1  
16  
15  
UVLO  
10.6/10.1  
PWM LATCH  
TDRV  
S
Q
1.4V  
EN  
INTERNAL  
VCC  
R DOM  
VREG 5V  
R
Q
OTADJ  
2
3
PGND  
BDRV  
14  
13  
BREAK  
E  
E  
SGND  
VREF  
INV  
4
5
VREG GOOD  
40mV (1661 only)  
ERROR  
COMP  
V
12  
11  
CC  
SYNC EN  
COMP  
OTADJ  
NINV/SS  
6
VPEAK = 2V  
VVAL = 1V  
SYNCEN  
OFFTIME CONTROL  
HICCUP  
CT  
7
8
UPGRADE  
IMAX  
CS+  
CS-  
10  
9
0.7V  
90mV  
HICCUP  
R
I
1.5V  
CCUP LATCH  
FIGURE 1 — Block Diagram  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
FUNCTIONAL PIN DESCRIPTION  
Pin  
#
Description  
EN  
1
A low voltage at this pin puts the IC in sleep-mode.  
OTADJ  
2
The purpose of this pin is to allow modulation of the OFF-time relative to the reference voltage. The OFF-time is  
inversely proportional to the reference voltage. The inverting input of the upgrade voltage comparator is also  
connected to this pin, when the voltage at this pin is below 0.7V, the controller shuts down.  
SGND  
VREF  
3
4
5
6
This pin is the signal ground of the IC.  
2V reference.  
INV  
This pin is the inverting input of the error comparator.  
NINV/SS  
This pin is the non-inverting input of the error comparator (LX1661 omV offsen this pin and error  
comparator). This pin is pulled low during sleep-mode to allow sion during start up.  
HICCUP  
CT  
7
8
9
A hiccup-mode capacitor connected to this pin adjustty cycle.  
The OFF-time is programmed by connecting a capacitor frhis pin tund.  
This is the inverting input of the pulse-by-pulse cmparat
CS-  
CS+  
10 This is the non-inverting input of the pulse-bymparator.  
SYNCEN 11 This pin enables the synchronous (bottom) drivltage at this pin disables the synchronous driver.  
VCC  
BDRV  
PGND  
TDRV  
VC1  
12 This is the IC supply voltage as ll as the ply to the bottom MOSFET.  
13 This is the gate drive to the bottoOSFET  
14 This is a seate ge top bottom MOSFET.  
15 This is the gate SFET.  
16 parate supply input for the top drive.  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
THEORY OF OPERATION  
IC OPERATION  
Referring to the block diagram and typical application circuit, the  
output turns ON the top MOSFET, allowing the inductor current  
to increase. At the error comparator threshold, the PWM latch is  
reset, the top MOSFET turns OFF and the synchronous MOSFET  
turnsON. The OFF-timecapacitorCT isnowallowedtodischarge.  
At the valley voltage, the synchronous MOSFET turns OFF and the  
top MOSFET turns on. A special break-before-make circuit  
prevents simultaneous conduction of the two MOSFETs.  
To minimize frequency variation with varying output voltage,  
the OFF-time is modulated as a function of the voltage at the OTADJ  
pin. The OTADJ pin is also being monitored for a minimum voltage  
of 0.7V. Below 0.7V the controller will shut down. A low voltage  
at the EN pin or the OTADJ pin will put the controller in a sleep  
mode. During the sleep mode the NINV pin is pulled low. This  
dischargestheexternalbypasscapacitoronthispinandallowsfor  
a soft-start.  
The peak voltage at the VFB pin is 40mV higher than the set  
voltage and its average is the peak voltage minus the ripple volt-  
age at VFB pin.  
The output voltage is the voltage at the VFB pin minus the voltage  
drop across the current sensing resistor (I  
RSENSE).  
*
At light loads, the voltage drop acensing resistor is small;  
hence, the output voltage is aphe voltage at the VFB  
pin (approximately 40mV hignomnal set-point volt-  
age, VSET).  
At heavy loads, lrrent fin the nse resistor, there-  
fore, the voltage digher and tput voltage is lower.  
This adaptive positioninthe output voltage as the load  
changes allows er outpuge excursion during a fast  
step-load traquires fewer output capacitors to meet  
ttransienspefication.  
+V  
Q1  
Regulation  
C
VFB  
(LX1661)  
VFB  
(LX1660)  
LX1660 Only: The INV pin is connected to the negative side  
of the sense resistor (i.e. the actual voltage supplied to the  
load) — See Figure 2. The LX1660 will achieve a high DC se
point accuracy, since it regulates at the load, but it will ha
greater transient voltage over- and under-shoots than the LX16
L
RS  
A
B
E
LOAD  
TDRV  
INV  
NINV  
Q2  
COUT  
BDRV  
VREF  
CS+  
CS-  
HICCUP  
2V  
CT  
CS-  
LX1661 Only: The INV pin is connected to the positive side o
the sense resistor (between the inductor and the sresistor)  
— See Figure 2. The LX1661 has a 40mV offset the NIn  
to enhance transient response, as shown in Fiw.  
CS+  
C
CHICCUP  
CT  
R
R
To RS  
Figure 2 — LX1660 / 1661 General Circuit Configuration  
Steady
Load current  
Nominal set-point  
voltage, VSET  
Output voltage  
(VOUT  
)
Voltage drop (mainly) due  
to current change and ESR  
of capacitors, V = I * ESR  
Steady-state voltage at  
high current is approximately  
VSET + 40mV - I * RSENSE  
(Effects of ESL ignored  
in this analysis)  
Figure 3 — Adaptive Voltage Positioning  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
THEORY OF OPERATION (continued)  
ERROR VOLTAGE COMPARATOR  
OFF TIME CONTROL TIMING SECTION (continued)  
The error voltage comparator compares the feedback voltage at  
the positive side of the sense resistor to the set voltage (set voltage  
plus40mVinLX1661). Anexternalfilterisrecommendedforhigh-  
frequency noise.  
In order to minimize frequency variations while providing  
different supply voltages, the discharge current is modulated by  
the voltage at the OTADJ pin. The OFF-time is inversely propor-  
tional to the OTADJ voltage. If the OTADJ voltage drops below 0.7V,  
the IC shuts down into a low quiescent current mode.  
CURRENT LIMIT AND HICCUP SECTIONS  
UNDER VOLTAGE LOCKOUT AND N SECTION  
Current limiting is performed by sensing the inductor current  
across the sense resistor. Exceeding this threshold turns the  
output drive OFF and latches it OFF until the PWM latch set input  
goes high again. To reduce stress on the external MOSFET and  
SCR during output shorts or heavy-load conditions, a hiccup  
circuit is incorporated, which provides 10% duty cycle. The  
hiccup time is programmed via a capacitor at the HICCUP pin. A  
low voltage at this pin disables the hiccup function.  
The purpose of the UVLO is to kutpdrive off and to  
maintain low quiesceurrnt uninput age reaches the  
start-up threshold. At ges belrt-up voltage, the  
UVLO comparator disaeinternal biasing, and turns off the  
output drives. The NINV pipulled low.  
SYNCHRONOOL SECTION  
synchrontrol ction incorporates a unique break-  
bemake fon to ure that the primary switch and the  
synchus swit turned on at the same time. Approxi-  
mately 1anoseconds of deadtime is provided by the break-  
ore-makcuitry to protect the MOSFET switches.  
OFF TIME CONTROL TIMING SECTION  
ThetimingcapacitorCT allowsprogrammingoftheOFF-time. The  
timing capacitor is quickly charged during the ON time of the top  
MOSFET and allowed to discharge when the top MOSFET is OFF.  
APPLICATIOMATION  
Fuse (F1)  
is optional  
VIN 5V  
See Note 1  
C2 x 3  
F1  
6.3V, 1500µF  
Sanyo MV-GX  
or equivalent  
VOUT = VREF (1 + R14/R15)  
*
(VREF = 2.0V)  
VOUT 3.3V  
Q1  
R14  
IRL3103  
1.3k (See Table 5)  
L1  
See Note 2  
C9  
1µF  
R1, 5m  
R15  
2.0k  
LX1660  
2
3
4
5
6
7
8
16  
5µH Toroid  
EN  
VC1  
TDRV  
PGND  
BDRV  
VCC  
C5 x 6  
15  
14  
13  
12  
11  
10  
9
OTADJ  
SGND  
VREF  
D1  
See Note 4  
6.3V, 1500µF  
Sanyo MV-GX or  
equivalent  
INV  
NINV  
HICCUP  
CT  
SYNCEN  
CS+  
R5, 1k  
C1  
390pF  
CS-  
C7  
C3  
0.1µF  
0.1µF  
16-pin SOIC  
C8  
680pF  
R6, 1k  
See Note 3  
Notes 1. The number of capacitors within this bank may be reduced for cost savings at a penalty of increased ripple on the input bus.  
2. The number of capacitors in the output filter bank may be reduced by two in a typical application; more may be removed for systems  
with lesser transient requirements.  
3. If pulse-by-pulse current limiting is desired, remove C7 and short LX1660 pin 7 to ground.  
4. D1 is Motorola MBR1035 for 10A capability; downsize as per required current.  
Figure 4 — LX1660 Controller Used In A Typical Stand-Alone High-Current 5V To 3.3V Regulator Application  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
7
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
APPLICATION INFORMATION  
See Note 1  
JP1  
D1  
1N4148  
12VIN  
5VIN  
F1  
JP2  
D2  
1N4148  
C20  
0.1µF  
16A 32V  
R13  
10  
C2  
C11  
See Note 1  
JP4  
1500µF  
6.3V  
1500µF  
6.3V  
JP3  
Q1  
IRL3
C9  
1µF  
R4  
1K  
VRM  
CONTROLLER  
See Note 1  
C19  
0.1µF  
L1  
R1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
VC1  
EN  
C10  
R7 10  
TDRV  
PGND  
BDRV  
VCC  
OROID  
5µH  
5m  
OTADJ  
SGND  
VVREF  
0.1µF  
C5  
C12  
C13  
C4  
390µF  
Q2  
IRL3103  
R
LX1670  
INV  
R2  
R3  
1K  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NINV/SS  
HICCUP  
CT  
VCC  
D4B  
D4  
D3  
D2  
VIDO  
VSENSE  
PGOOD  
OVOUT  
ENABLE  
BLKEN  
GND  
10K  
C
VID4  
VID3  
VID2  
VID1  
VID0  
PWRGD  
OUTEN  
C1  
390pF  
C7  
0.1µF  
C8  
680pF  
C3  
0.1µF  
LX1661  
R6  
1K  
D1  
D0  
8
Q3  
2N6504  
SUPPLY OUTPUT CLAMP  
Note 1. Setup shown is for 5V application. For 12V inange the f
-
-
-
-
Close JP1 and JP4  
Open JP2 and JP3  
For C2 and C11, use 16V/850µF capacitors instead  
Inductor L1 = 10µH  
Figure 5 — Full Featured Voltator Usi661 Controller And LX1670 Programmable Reference / DAC Chip  
FoProcessor Or Pentium II Processor Applications  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
8
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
APPLICATION INFORMATION  
OUTEN  
12V  
VIN 5V  
C2  
C7  
16V, 1000µF  
Sanyo MV-GX or equivalent  
VOUT  
Q1  
IRL3103  
R4  
1k  
U2 1/2 LM358  
3
8
U1  
LX1661  
1  
C9  
1µF  
1
2
3
4
5
6
7
8
16  
5roid  
D1  
2
EN  
VC1  
TDRV  
PGND  
BDRV  
4
C5  
C6  
15  
14  
13  
12  
11  
OTADJ  
SGND  
VREF  
R24  
R16  
10k  
16V, 1000µF  
Sanyo MV-GX or  
equivalent  
C4  
390pF  
1k, 1%  
INV  
Jumper  
VID0  
NINV  
HICCUP  
CT  
SYN
CS
R23, 20k 1%  
R5, 1k  
R22, 10k 1%  
R21, 5k 1%  
C3  
0.1µF  
390pF  
CS-  
VID1  
VID2  
VID3  
16-pin SOIC  
R6, 1k  
C8  
680pF  
R20, 2.5k 1%  
Figure 6 — Low Cost Programmabpply For Socket 7 Processors  
TABLE 1 - Voltage Identification Co(VID)  
Setting The Output Voltage  
VID3  
VID2  
VID1  
VID0  
Ouge  
The output voltage is set by means of a 4-bit digital VID code.  
For processors that do not have VID coded into the package, the  
VID code can be set by means of a jumper or DIP switch. For  
low or ‘0’ signal, connect the VID pin to ground (DIP switch  
ON). For high or ‘1’, leave open (DIP switch OFF).  
1
1
1
1
1
1
1
1
0
1
0
1
2.0V  
2.1V  
2.2V  
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
1
1
1
0
0
0
0
0
0
1
1
0
0
0
1
1
0
1
0
1
0
1
0
.3V  
2.4V  
2.5V  
2.6V  
2.7V  
2.8V  
2.9V  
3.0V  
3.1V  
3.2V  
3.3V  
3.4V  
3.5V  
Note: Costs are estimates only. Check with suppliers for exact  
quotation.  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
9
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1660/61 DEVICES  
The LX1660/61 devices are very easy to design with, requiring  
only a few simple calculations to implement a given design. The  
followingproceduresandconsiderationsshouldprovideeffective  
operation for virtually all applications. Refer to theApplication  
Information section for component reference designators.  
INPUT INDUCTOR  
In order to supply faster transient load changes, a smaller output  
inductor is needed. However, reducing the size of the output  
inductor will result in a higher ripple voltage on the input supply.  
Thisnoiseonthe5Vrailcanaffectothersystemcomponents, such  
as graphic cards. In this case, it is recommended that a 1 - 1.5µH  
inductor is used on the input to the rtor, to filter the ripple  
on the 5V supply. Ensure that this s the same current  
rating as the output inductor.  
SELECTING BETWEEN THE LX1660 AND THE LX1661  
In order to provide maximum user versatility, the Advanced PWM  
Controller is offered in two versions: the LX1660 and the LX1661.  
The LX1661 has a 40mV offset built-in which compensates for  
the current sense resistor voltage drop. This allows optimal  
transient response for high-speed systems, such as Pentium Pro  
processor power supplies. Overall system design could be more  
economical with the LX1661, since output capacitance require-  
ments could be eased.  
The LX1660 provides a very accurate DC set-point, since the  
40mV offset is not included in the device. This device is good for  
critical DC applications, such as core power in slower micropro-  
cessors and related systems.  
OUTPUT CAPACITOR  
The output capacitor s d to meet ripple and transient  
performance specifications. tive Series Resistance (ESR) is a  
critical parametn a stecurrent occurs, the output  
voltage will hat equals the product of the ESR and the  
crent step,advae microprocessor power supply, the  
ot capacsually ected for ESR instead of capacitance  
or RcurrenabilA capacitor that satisfies the ESR  
requiret usually s a larger capacitance and current capabil-  
ity than stneeded. The allowed ESR can be found by:  
See "Theory Of Operation" section earlier in this data sheet.  
OUTPUT INDUCTOR  
R (IRIPPLE + I) < VEX  
*
The output inductor should be selected to meet the requireme
of the output voltage ripple in steady-state operation and t
inductor current slew-rate during transient.  
IRIPPLE is the inductor ripple current, I is the maximum  
rrent step change, and VEX is the allowed output voltage  
ursion in the transient. Adaptive voltage positioning increases  
the value ofVEX, allowingahigherESRvalueandreducingthecost  
of the output capacitor.  
The peak-to-peak output voltage ripple is:  
VRIPPLE = ESR  
I
RIPPLE  
*
Typically, the positioning voltage is 40mV, using the LX1661,  
and the transient tolerance is 100mV, resulting in a VEX of 140mV  
(See Figure 3). The LX1660 does not have the positioning voltage  
offset, so VEX is 100mV maximum.  
where,  
VIN - VOUT  
VIN  
IRIPPLE  
=
*
fSW  
L
*
Electrolytic capacitors can be used for the output capacitor, but  
arelessstablewithagethantantalumcapacitors. Astheyage,their  
ESR degrades, reducing the system performance and increasing  
the risk of failure. It is recommended that multiple parallel  
capacitors be used, so that, as ESR increases with age, overall  
performance will still meet the processor's requirements.  
There is frequently strong pressure to use the least expensive  
components possible, however, this could lead to degraded long-  
termreliability,especiallyinthecaseoffiltercapacitors. Linfinity's  
demonstration boards use Sanyo MV-GX filter capacitors, which  
are aluminum electrolytic, and have demonstrated reliability. The  
Oscon series from Sanyo generally provides the very best  
performance in terms of long term ESR stability and general  
reliability, but at a substantial cost penalty. The MV-GX series  
provides excellent ESR performance at a reasonable cost. Beware  
of off-brand, very low-cost filter capacitors, which have been  
shown to degrade in both ESR and general electrolytic character-  
istics over time.  
IRIPPLE is the indue curretput inductor  
value and ESR ieries nce of the output  
capacitor.  
IRIPPLE shouange of 20% to 40% of the  
maximum ounductance results in lower  
output voltage tly higher ESR to satisfy the  
transient specificactance also slows the inductor  
current slew rate in rthe load-current step change, I,  
resulting in more output-capacitor voltage droop. The inductor-  
current slew rates at rise and fall edges are:  
TRISE = L I / (V - V  
)
OUT  
*
IN  
and,  
TFALL = L I / V  
*
OUT  
When using electrolytic capacitors, the capacitor voltage  
droop is usually negligible, due to the large capacitance.  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
10  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1660/61 DEVICES  
INPUT CAPACITOR  
CURRENT LIMIT (continued)  
The input capacitor and the input inductor are to filter the  
pulsating current generated by the buck converter to reduce  
interference to other circuits connected to the same 5V rail. In  
addition, the input capacitor provides local de-coupling of the  
buck converter. The capacitor should be rated to handle the RMS  
current requirement. The RMS current is:  
parasitic resistance of the inductor. One should include an RC  
filter at the CS+ and CS- inputs, as shown in the Application  
Information section, to eliminate jitter and noise.  
For most applications, the resistors R5, R6 can be set at 1k,  
and C1 can be in the 300-500pF range as a starting point. If a fine  
trim or adjustment of the current trip s required, C1 may be  
shunted by a resistor. C1 will inmall delay into the  
current limit trip point, which efises he threshold.  
I
RMS = IL d(1-d)  
where IL is the inductor current and d is the duty cycle. The  
maximum value, when d = 50%, IRMS = 0.5IL . For 5V input and  
output in the range of 2 to 3V, the required RMS current is very  
close to 0.5IL .  
Sense Resistor  
The current sense resi1) is seleccording to the for-  
mula:  
R1 = VTRIP / I
A high-frequency (ceramic) capacitor should be placed across  
the drain of the top MOSFET and the source of the bottom one to  
avoidringingduetotheparasiticinductorbeingswitchedONand  
OFF. See capacitor C7 in the Product Highlight on the first page  
of this data sheet.  
Where VTent sense comparator threshold (100mV)  
ITRIP is thcunt limit. Typical choices are shown  
be
E 2 - CSense Resistor Selection Guide  
Load  
Sense Resistor Value  
TIMING CAPACITOR SELECTION  
-Class cessor (<10A)  
Class (>10A)  
5mΩ  
2.5mΩ  
The frequency of operation of the LX1660 / 1661 is a function
the duty cycle and OFF-time. The OFF-time is proportional to
timing capacitor (connected to Pin 8, CT ), and is modulated
minimize frequency variations with duty cycle. The frequency i
constant, during steady-state operation, due to the lation of  
the OFF-time.  
r sense resistor will result in lower heat dissipation (I²R)  
lso a smaller output voltage droop at higher currents.  
There are several alternative types of sense resistor. The sur-  
face-mount metal “staple” form of resistor has the advantage of  
exposure to free air to dissipate heat and its value can be con-  
trolled very tightly. Its main drawback, however, is cost. An alter-  
native is to construct the sense resistor using a copper PCB trace.  
Although the resistance cannot be controlled as tightly, the PCB  
trace is very low cost.  
The timing capacitor (CT) should be selected g llo
ing equation:  
(1 - VOUT / V ) I  
IN  
DIS  
CT =  
f (1.52 - 0.29 V  
)
*
S
where IDIS is fixed at 200µA ang frequency  
(recommended to b200kHperation and  
component sele
Whenusingeswitcgfrequency(fS)can  
be approxima
PCB Sense Resistor  
A PCB sense resistor should be constructed as shown in Figure  
7. By attaching directly to the large pads for the capacitor and  
inductor, heat is dissipated efficiently by the larger copper masses.  
Connect the current sense lines as shown to avoid any errors.  
C = 0.62
T
2.5mSense Resistor  
100mil Wide, 850mil Long  
Choosing a 680pF pacitor will result in an operating  
frequency of 183kHz at VOUT = 2.8V. When a 12V power input is  
used, the capacitor value must be changed (the optimal timing  
capacitor for 12V input will be in the range of 1000 - 1500pF).  
2.5mm x 22mm (2 oz/ft2 copper)  
Inductor  
CURRENT LIMIT  
Output  
Capacitor Pad  
Current limiting occurs when a sensed voltage, proportional to  
load current, exceeds the current-sense comparator threshold  
value (90mV). The current can be sensed either by using a fixed  
sense resistor in series with the inductor to cause a voltage drop  
proportional to current, or by using a resistor and capacitor in  
parallel with the inductor to sense the voltage drop across the  
Sense Lines  
FIGURE 7 — Sense Resistor Construction Diagram  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
11  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1660/61 DEVICES  
CURRENT LIMIT (continued)  
CURRENT LIMIT (continued)  
Recommended sense resistor sizes are given in the following  
table:  
The dc/static tripping current Itrip,S satisfies:  
Vtrip  
RL  
TABLE 3 - PCB Sense Resistor Selection Guide  
Itrip,S  
=
Copper  
Copper Desired Resistor  
Value  
Dimensions (w x l)  
Weight Thickness  
mm  
inches  
Select L/RSCS RL to have higher dynamic tripping current  
than the static one. The dynamic tricurrent Itrip,d satisfies:  
2 oz/ft2  
68µm  
2.5m  
5m  
2.5 x 22  
2.5 x 43  
0.1 x 0.85  
0.1 x 1.7  
Vtrip  
Itrip,d  
=
L/(RSCS)  
Loss-Less Current Sensing Using Resistance of Inductor  
Any inductor has a parasitic resistance, RL, which causes a DC  
voltage drop when current flows through the inductor. Figure 8  
shows a sensor circuit comprising of a surface mount resistor, RS,  
and capacitor, CS, in parallel with the inductor, eliminating the  
current sense resistor.  
General Guidelines focting RS , d RL  
Vtrip  
RL =  
Se10 kΩ  
Itri
Ln  
and CS ac
CS n  
=
RL RS  
L
RL  
Load  
above tion taken into account the current-de-  
pendeof the ce. Typical values are: RL = 3m, RS =  
9k, CS µF, and L is 2.5µH at 0A current.  
RS  
n cases re RL is so large that the trip point current would  
r than desired short-circuit current limit, a resistor (RS2)  
t in parallel withCS, as shown in Figure 8. The selection  
nents is as follows:  
CS  
RS2  
Current  
Sense  
Comparator  
VCS  
RL (Required)  
RS2  
=
RL (Actual)  
RS2 + RS  
FIGURE 8 — Current Sense Circui
L
L
RS + RS2  
The current flowing through the inductor is iawa
If the sensor components are selected such that:  
CS =  
=
*
RL (Actual) (R // R )  
RL (Actual)  
RS2 R  
*
S
*
S2  
S
L/RL = RS CS  
*
Again, select (RS2//RS) < 10k.  
C4 ERROR COMPARATOR INPUT BYPASS CAPACITOR  
The voltage across the capao the current  
flowing through the resistor, i.e.  
VCS = ILRL  
The LX1660/61 device has a unique topology which results in  
extremely fast response to transient disturbances. Actual loop  
closure is around a comparator. A capacitor should be placed  
between the INV and NINV Error Comparator inputs to eliminate  
jitter and noise. This capacitor value should be: C = ½ CT, where  
CT is the timing capacitor. Refer to Capacitor C4 in the Applica-  
tion Information section.  
Since VCS rerrent, belecting the appro-  
priate RS and e to reach the comparator  
voltage at the
Design Example  
(Pentium II circuit, wum static current of 14.2A)  
The gain of the sensor can be characterized as:  
C7 HICCUP CAPACITOR SELECTION  
|T(jω)|  
The hiccup capacitor controls two time periods; the ON time  
duration of 10% duty cycle mode, and the OFF-time duration  
before re-try. The ON:OFF-time ratios will always be 1:10 due to  
the current sources which charge (10I) and discharge (I) the  
hiccup capacitor. Select CHICCUP by using:  
RL  
L/RSCS  
Duration of reduced D operation = 100ms/µF  
ω
1/RSCS RL/L  
FIGURE 9 — Sensor Gain  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
12  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1660/61 DEVICES  
C7 HICCUP CAPACITOR SELECTION (continued)  
FET SELECTION (continued)  
The resulting time is the duration allowed for the 10% duty  
cycle drive to be applied to the bottom switch (the top switch is  
OFF during current limit). The OFF-time will be fixed at ten times  
(10x) this number, and determines the time interval the supply  
remains completely OFF until re-try. If the short has been  
removed, the supply will resume normal operation. No power  
cycling is necessary to reset the VRM module after a current limit  
event.  
For the IRL3102 (13mRDS(ON)), converting 5V to 2.8V at 14A  
will result in typical heat dissipation of 1.48W.  
Synchronous Rectification – Lower MOSFET  
The lower pass element can be either a MOSFET or a Schottky  
diode. The use of a MOSFET (synus rectification) will  
result in higher efficiency, but at hin using a Schottky  
diode (non-synchronous).  
As an example, if a 0.1µF hiccup capacitor is chosen, the  
bottomswitchdrivewillpulseat(approximately)a10%dutycycle  
for 10mA, when current limit is reached. It will then shut OFF for  
100ms, at which time a re-try cycle is attempted, which will result  
in either normal operation or another 10% duty cycle burst.  
Power dissipated ithe bottoFET wbe:  
PD = I2  
R
ty Cycle] W  
*
*
DS(ON)  
[IRL3303 or 1.12W foIRL3102]  
Non-Synchrotion - Sottky Diode  
FET SELECTION  
A typical Sche, with a forward drop of 0.6V will dissi-  
0.6 14 .8/5] 3.7W (compared to the 1.1 to 2.2W  
*
To insure reliable operation, the operating junction temperature  
of the FET switches must be kept below certain limits. The Intel  
specification states that 115°C maximum junction temperature  
should be maintained with an ambient of 50°C. This is achieved  
by properly derating the part, and by adequate heat sinking. One  
of the most critical parameters for FET selection is the RDS(
resistance. This parameter directly contributes to the pow
dissipation of the FET devices, and thus impacts heat sink desig
mechanical layout, and reliability. In general, the larger the  
current handling capability of the FET, the lower tDS(ON) will  
be, since more die area is available.  
dised by SFET er the same conditions). This power  
loss bes musignificant at lower duty cycles – syn-  
chronoutification is recommended especially when a 12V-  
er inpused. The use of a dual Schottky diode in a single  
packa(e.g. the MBR2535) helps improve thermal dis-  
GATE BIAS  
e power MOSFETs can be biased by one of two methods:  
charge pump or 12V supply connected to VC1.  
TABLE 4 - FET Selection Guide  
This table gives selection of suitable FETs from International Rectifi
1) Charge Pump (Bootstrap)  
When 12V is supplied to the drain of the MOSFET, as in  
Figure5(option), thegatedriveneedstobehigherthan12V  
in order to turn the MOSFET on. Capacitor C20 and diodes  
D1 & D2 are used as a charge pump voltage doubling circuit  
to raise the voltage of VC1 so that the TDRV pin always  
provides a high enough voltage to turn on Q1. The 12V  
supply must always be connected to VCC to provide power  
fortheICitself, aswellasgatedriveforthebottomMOSFET.  
Device  
RDS(ON)  
@
I
Max. k-  
10V (m)  
=
own Voltage  
IRL3803  
IRL22203N  
IRL3103  
IRL3102  
IRL3303  
IRL2703  
6
40  
56  
24  
17  
30  
30  
30  
20  
30  
30  
2) 12V Supply  
When5VissuppliedtothedrainofQ1, a12Vsupplyshould  
be connected to both VCC and VC1.  
All devices in TOrface mount devices (TO-263 /  
D2-Pak), add 'S' to . IRL3103S.  
The recommended solution is to use IRL3102 for the high side  
and IRL3303 for the low side FET, for the best combination of  
cost and performance. Alternative FET’s from any manufacturer  
CURRENT SHARE APPLICATION  
Synchronous rectifier stages should not be paralleled unless they  
are locked in at the same frequency, or undesirable current  
sourcing/sinking could occur. If synchronization is not practical,  
the next best alternative is to disable the synchronous (bottom)  
switch. This is easilyaccomplished with theLX1660/61bypulling  
the SYNCEN pin HIGH. In most applications, a 5 to 6% reduction  
in efficiency will result when the synchronous driver is disabled.  
A Schottky diode of the proper voltage and current ratings should  
be installed across the inactive FET to conduct the inductor  
current.  
could be used, provided they meet the same criteria for RDS(ON)  
.
Heat Dissipated In Upper MOSFET  
The heat dissipated in the top MOSFET will be:  
PD = (I2  
R
Duty Cycle) + (0.5 I V  
t
f )  
*
S
*
*
*
*
*
DS(ON)  
IN  
SW  
where tSW is switching transition line for body diode (~100ns)  
and fS is the switching frequency.  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
13  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1660/61 DEVICES  
USING THE LX1660/1661 IN PROGRAMMABLE APPLICATIONS  
LAYOUT GUIDELINES - THERMAL DESIGN (continued)  
The LX1660/61 device may be used in conjunction with the  
LX1670 Programmable Reference to implement a high-perfor-  
mance,digitally-controlledswitched-modepowersupplysuitable  
for Pentium Pro Processors and other advanced microprocessor-  
based designs. The LX1670 incorporates a 5-bit equivalent DAC,  
which can be programmed by the microprocessor’s Voltage  
Identification Code (VID). The LX1670 then commands the  
LX1660/61 to provide the required output voltage. System  
protection functions such as over voltage, SCR drive, and power-  
good detection are embedded within the LX1670 device. See  
Figure 5.  
cases are well suited for this application, and are the preferred  
packages. Remember to remove any conformal coating from all  
exposed PC traces which are involved in heatsinking.  
General Notes  
As always, be sure to provide local cive de-coupling close  
to the chip. Be sure use ground uction for all high-  
frequency work. Use low ESR chere justified, but be  
alert for damping and nging proHighquency designs  
demand careful routlayond mrequire several  
iterations to achieve dperformavels.  
PROGRAMMING THE OUTPUT VOLTAGE  
Power Traces  
To reduce poue to oc resistance, careful consid-  
eration shoun to the layout of traces that carry high  
nts. Thaths consider are:  
SelectthevoltagedividerR14andR15valuesasshowninthetable  
below, using 1% metal film resistors:  
TABLE 5  
t powV supply to drain of top MOSFET.  
Traetween top MOSFET and lower MOSFET or Schottky  
diode
ace bween lower MOSFET or Schottky diode and  
und.  
Desired Converter VOUT  
R14 Value  
R15 Value  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
806Ω  
909Ω  
1.0kΩ  
1.10kΩ  
1.21kΩ  
1.30kΩ  
1.40kΩ  
1.50kΩ  
2kΩ  
2kΩ  
2kΩ  
2kΩ  
2kΩ  
2kΩ  
2kΩ  
ce between source of top MOSFET and inductor, sense  
istor and load.  
All of these traces should be made as wide and thick as pos-  
sible, in order to minimize resistance and hence power losses. It  
is also recommended that, whenever possible, the ground, input  
and output power signals should be on separate planes (PCB  
layers). See Figure 10 – bold traces are power traces.  
If other VOUT values are needed, the divider vs may
calculated as follows:  
VOUT = VREF (1 + R14/R15)  
5V Input  
where VREF = 2.that reart of a filter  
element, and dothe caions.  
Please refer Infortion schematic for  
the reference ocations.  
LAYOUT GUIDSIGN  
LX166x  
A great deal of timre spent optimizing the thermal  
design of the demo boarAny user who intends to implement  
an embedded motherboard would be well advised to carefully  
read and follow these guidelines. If the FET switches have been  
carefully selected, external heatsinking is generally not required.  
However, this means that copper trace on the PC board must now  
be used. This is a potential trouble spot;as much copper area as  
possible must be dedicated to heatsinking the FET switches, and  
the diode as well if a non-synchronous solution is used.  
Output  
FIGURE 10 — Power Traces  
In our VRM module, heatsink area was taken from internal  
ground and VCC planes which were actually split and connected  
with VIAS to the power device tabs. The TO-220 and TO-263  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
14  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX1660/1661  
A
D V A N C E D P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
USING THE LX1660/61 DEVICES  
C9 Input De-coupling (VCC) Capacitor  
Ensure that this 1µF capacitor is placed as close to the IC as  
possible to minimize the effects of noise on the device.  
Layout Assistance  
Please contact Linfinity’s Applications Engineers for assistance  
with any layout or component selection issues. A Gerber file  
with layout for the most popular devices is available upon re-  
quest.  
Evaluation boards are also available upon request. Please  
check Linfinity's web site for further application notes.  
RELATED DECES  
LX1662/1663  
Single-Chip Programmable PWM Controw/ 5-Bit DAC  
LX16
Dual Output PWM fApplications  
L
Triple Output PWM foor Applications  
X1553  
WM 5V 3.3V Conversion  
X1670  
mmabeference & Voltage Monitor  
Pentium is a registered trademark of Intel Corporation.  
Cyrix is a registered trademark and 6x86 is a trademark of Cyrix Corporation. K6 is a trademark of AMD.  
PRODUCTIONDATA-InformationcontainedinthisdocumentisproprietarytoLinFinity, andiscurrentasofpublicationdate. Thisdocument  
may not be modified in any way without the express written consent of LinFinity. Product processing does not necessarily include testing of  
all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time.  
Copyright © 1998  
Rev. 1.1a 10/25/2004  
15  

相关型号:

LX1661CDT

Switching Controller, Current-mode, 1.5A, PDSO16, PLASTIC, SOIC-16
MICROSEMI

LX1661CN

Switching Controller, Current-mode, 1.5A, PDIP16, LEAD FREE, PLASTIC, DIP-16
MICROSEMI

LX1661CN-TR

Switching Controller
MICROSEMI

LX1662

SINGLE-CHIP PROGRAMMABLE PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1662A

SINGLE-CHIP PROGRAMMABLE PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1662ACD

SINGLE-CHIP PROGRAMMABLE PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1662ACN

SINGLE-CHIP PROGRAMMABLE PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1662ACN-TR

Switching Controller
MICROSEMI

LX1662ALX1663

Current-Mode SMPS Controller
ETC

LX1662CD

SINGLE-CHIP PROGRAMMABLE PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI

LX1662CD-TR

Switching Controller, Current-mode, 1.5A, 200kHz Switching Freq-Max, PDSO14, ROHS COMPLIANT, PLASTIC, SOIC-14
MICROSEMI

LX1662CN

SINGLE-CHIP PROGRAMMABLE PWM CONTROLLERS WITH 5-BIT DAC
MICROSEMI