LX8117A-25CDT-TR [MICROSEMI]

暂无描述;
LX8117A-25CDT-TR
型号: LX8117A-25CDT-TR
厂家: Microsemi    Microsemi
描述:

暂无描述

稳压器
文件: 总9页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LIN DOC #: 8117  
LX8117-xx/8117A-xx/8117B-xx  
0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS  
P R O D U C T I O N D A T A S H E E T  
T H E I N F I N I T E P O W E R O F I N N O V A T I O N  
DESCRIPTION  
KEY FEATURES  
0.2% Line Regulation Maximum  
The LX8117/8117A/8117B series are  
positive Low Dropout (LDO) regulators.  
At the designed maximum load current,  
theLX8117seriesdropoutvoltageisguar-  
anteed to be 1.2V or lower at 0.8A  
(LX8117A 1.3V @ 1A). The dropout  
voltage decreases with load current.  
An adjustable output voltage version  
of the LX8117/17A/17B is available, as  
well as versions with fixed outputs of  
2.5V, 2.85V, 3.3V and 5V. The 2.85V  
version is specifically designed for use  
as a component of active termination  
networks for the SCSI bus. On-chip  
trimmingoftheinternalvoltagereference  
allows specification of the initial output  
voltage to within ±1% of its nominal  
value. The output current-limit point is  
also trimmed, which helps to minimize  
stress on both the regulator and the  
system power source when they are  
operated under short-circuit conditions.  
The regulator's internal circuitry will  
operate at input-to-output differential  
voltages down to 1V.  
0.4% Load Regulation Maximum  
Output Current Of 800mA  
Most regulator circuit designs include  
outputcapacitorswithvaluesintherange  
of tens to hundreds of microfarads or  
more. The LX8117/17A/17B typically  
requires at least 10µF of output capaci-  
tance for stable operation.  
PNP-type regulators can waste current  
equal to as much as 10 percent of their  
output as a quiescent current which flows  
directly to ground, bypassing the load.  
Quiescent current from the LX8117/17A/  
17B flows through the load, increasing  
power-useefficiencyandallowingcooler  
operation.  
The LX8117 is available in low-profile  
plastic SOT-223 and D-Pak packages for  
applicationswherespaceisatapremium.  
The LX8117 is also available in a plastic  
TO-263 package for instances when the  
thermal resistance from the circuit die to  
the environment must be minimized.  
Regulates Down To 1.2V Dropout  
(LX8117) And 1.3V Dropout (LX8117A)  
Operates Down To 1V Dropout  
Space Saving SOT-223 Surface  
Mount Package  
Guaranteed Dropout Voltage At Multiple  
Current Levels  
Three-Terminal Adjustable Or Fixed 2.5V,  
2.85V, 3.3V & 5V  
APPLICATIONS  
Battery Chargers  
Active SCSI Terminators  
5V To 3.3V Linear Regulators  
High-Efficiency Linear Regulators  
Post Regulators For Switching Supplies  
AVAILABLE OPTIONS PER PART #  
NOTE: For current data & package dimensions, visit our web site: http://www.linfinity.com.  
Output  
Part #  
Voltage  
PRODUCT HIGHLIGHT  
LX8117/8117A/8117B-00 Adjustable  
LX8117/8117A/8117B-25  
LX8117/8117A/8117B-28  
LX8117/8117A/8117B-33  
LX8117/8117A/8117B-05  
2.5V  
2.85V  
3.3V  
5V  
ACTIVE TERMINATOR FOR SCSI-2 BUS  
110  
110  
110  
LX8117-28  
IN OUT  
18 to 27  
Lines  
GND  
4.75V to  
5.25V  
22µF  
10µF  
110  
PACKAGE ORDER INFORMATION  
O/P  
Current  
Plastic SOT-223  
3-pin  
Plastic T0-263  
DD  
3-pin  
Plastic T0-252  
DT  
TA (°C)  
ST  
(D-Pak) 3-pin  
0.8A  
1.0A  
1.2A  
LX8117-xxCST  
LX8117A-xxCST  
LX8117B-xxCST  
LX8117-xxCDD  
LX8117-xxCDT  
LX8117A-xxCDT  
LX8117B-xxCDT  
0 to 125  
LX8117A-xxCDD  
LX8117B-xxCDD  
Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number  
(i.e. LX8117-28CSTT). "xx" refers to output voltage, please see table above.  
L I N F I N I T Y M I C R O E L E C T R O N I C S I N C .  
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841, 714-898-8121, FAX: 714-893-2570  
Copyright © 1999  
Rev. 1.4 3/99  
1
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8117-xx/8117A-xx/8117B-xx  
0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS  
P R O D U C T I O N D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
Power Dissipation .................................................................................. Internally Limited  
Input Voltage  
TAB IS VOUT  
LX8117-00/8117A-00/8117B-00 (Adj.) ..................................................................... 15V  
LX8117-33/8117A-33/8117B-33 (3.3V), LX8117-05/8117A-05/8117B-05 (5.0V).... 15V  
LX8117-25/8117A-25/8117B-25 (2.5V), LX8117-28/8117A-28/8117B-28 (2.85V).. 12V  
Surge Voltage ............................................................................................................... 15V  
Operating Junction Temperature  
3. IN  
2. OUT  
1. ADJ / GND  
Plastic (ST, DD & DT Packages) .......................................................................... 150°C  
Storage Temperature Range ...................................................................... -65°C to 150°C  
Lead Temperature (Soldering, 10 seconds) ............................................................. 300°C  
Short-Circuit Protection....................................................................................... Indefinite  
ST PACKAGE  
(Top View)  
TAB IS VOUT  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with  
respect to Ground. Currents are positive into, negative out of the specified terminal.  
3
2
1
IN  
OUT  
THERMAL DATA  
ADJ / GND  
ST PACKAGE:  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DD PACKAGE:  
15°C/W  
DD PACKAGE (D2 Pak)  
*150°C/W  
(Top View)  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DT PACKAGE:  
10°C/W  
TAB IS VOUT  
*60°C/W  
3. IN  
2. OUT  
THERMAL RESISTANCE-JUNCTION TO TAB, θJC  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
9°C/W  
*80°C/W  
1. ADJ / GND  
Junction Temperature Calculation: TJ = TA + (PD x θJA). The θJA numbers are guidelines for the  
thermalperformanceofthedevice/pc-boardsystem. Alloftheaboveassumenoambientairflow.  
* θJAcan be improved with package soldered to 0.5IN2 copper area over backside ground  
plane or internal power plane. θJAcan vary from 20ºC/W to > 40ºC/W depending on  
mounting technique. (See Application Notes Section: Thermal Considerations)  
DT PACKAGE (D-Pak)  
(Top View)  
BLOCK DIAGRAM  
VIN  
Bias  
Circuit  
Bandgap  
Circuit  
Control  
Circuit  
Output  
Circuit  
Thermal  
Limit Circuit  
VOUT  
Current  
Limit Circuit  
ADJ  
Copyright © 1999  
Rev. 1.4 3/99  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8117-xx/8117A-xx/8117B-xx  
0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS  
P R O D U C T I O N D A T A S H E E T  
RECOMMENDED OPERATING CONDITIONS  
(Note 2)  
Recommended Operating Conditions  
Parameter  
Symbol  
Units  
Min.  
Typ.  
Max.  
Input Voltage  
Operating Voltage  
LX8117(A/B)-00 / 8117(A/B)-05  
15  
12  
10  
V
V
V
LX8117(A/B)-25 / -28 / -33  
LX8117(A/B)-00  
Input-Output Differential  
0
125  
°C  
Operating Ambient Temperature Range  
Note 2. Range over which the device is functional.  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified: 0°C T 125°C, IMAX = 0.8A for the LX8117-xx, IMAX = 1.0A for the LX8117A-xx, and IMAX = 1.2A for the LX8117B-xx.)  
J
LX8117-00 / 8117A-00 / 8117B-00 (Adjustable)  
LX8117 / 17A / 17B-00  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
1.238 1.250 1.262  
1.225 1.250 1.270  
V
V
Reference Voltage  
VREF  
IOUT = 10mA, (VIN - VOUT) = 2V, TJ = 25°C  
10mA IOUT IOUT (MAX), 1.4V (V - VOUT) 10V  
IN  
0.05  
0.15  
0.97  
1.00  
1.05  
1.15  
950  
1200  
1500  
0.5  
0.2  
0.4  
1.10  
1.15  
1.20  
1.30  
%
Line Regulation (Note 3)  
Load Regulation (Note 3)  
VREF(V ) IOUT = 10mA, 1.5V (VIN - VOUT) 7V  
IN  
VREF(IOUT  
)
(VIN - VOUT) = 3V, 10mA IOUT IOUT (MAX)  
IOUT = 100mA  
%
V
V
Dropout Voltage  
(Note 4)  
V  
IOUT = 500mA  
V
V
LX8117-00  
IOUT = IOUT (MAX)  
LX8117A/B-00  
LX8117-00  
IOUT = IOUT (MAX)  
IOUT (MAX) (VIN - VOUT) = 5V, TJ = 25°C  
(VIN - VOUT) = 5V, TJ = 25°C  
800  
1000  
1200  
mA  
mA  
mA  
mA  
%/W  
dB  
µA  
µA  
%
Current Limit  
LX8117A-00  
LX8117B-00  
Minimum Load Current (Note 5)  
Thermal Regulation  
(VIN - VOUT) = 5V, TJ = 25°C  
5
0.2  
IOUT (MIN)  
V 10V  
IN  
0.08  
75  
45  
VOUT(Pwr) TA = 25°C, 30ms pulse  
60  
Ripple Rejection  
Adjust Pin Current  
fRIPPLE =120Hz, (V - VOUT) = 3V, VRIPPLE = 1Vp-p  
IN  
100  
5
IADJ  
IADJ  
0.2  
Adjust Pin Current Change  
Temperature Stability  
Long Term Stability  
10mA IOUT IOUT (MAX) , 1.4V (V - VOUT) 10V  
IN  
0.5  
0.3  
VOUT (T)  
%
VOUT (t) TA = 125°C, 1000 hours  
VOUT (RMS) 10Hz f 10kHz  
0.003  
%
RMS Output Noise (% of VOUT  
)
Notes: 3. See thermal regulation specification for changes in output voltage due to heating effects. Load regulation and line regulation are measured at a constant junction  
temperature by low duty cycle pulse testing.  
4. Dropout voltage is specified over the full output current range of the device. Dropout voltage is defined as the minimum input/output differential measured  
at the specified output current. Test points and limits are also shown on the Dropout Voltage Curve.  
5. Minimum load current is defined as the minimum output current required to maintain regulation.  
(Other Voltage Options on following pages.)  
Copyright © 1999  
Rev. 1.4 3/99  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8117-xx/8117A-xx/8117B-xx  
0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS (continued)  
LX8117-25 / 8117A-25 / 8117B-25 (2.5V Fixed)  
LX8117 / 17A / 17B-25  
Min. Typ. Max.  
Parameter  
Symbol  
Test Conditions  
Units  
2.475 2.500 2.525  
2.450 2.500 2.550  
V
V
mV  
mV  
V
Output Voltage  
VOUT  
IOUT = 10mA, VIN = 5V, TA = 25°C  
0mA IOUT IOUT (MAX) , 4.75V VIN 10V  
IOUT = 0mA, 4.25V VIN 10V  
VIN = 4.25V, 0mA IOUT IOUT (MAX)  
IOUT = 100mA  
(VIN)  
VOUT  
Line Regulation (Note 3)  
Load Regulation (Note 3)  
Dropout Voltage  
(Note 4)  
1
6
VOUT (IOUT  
)
2
10  
V  
0.97  
1.00  
1.05  
1.15  
950  
1200  
1500  
4.5  
1.10  
1.15  
1.20  
1.30  
V
IOUT = 500mA  
IOUT = IOUT (MAX)  
LX8117-25  
V
V
LX8117A/B-25  
LX8117-25  
LX8117A-25  
LX8117B-25  
IOUT = IOUT (MAX)  
800  
1000  
1200  
mA  
mA  
mA  
mA  
%/W  
dB  
%
Current Limit  
IOUT (MAX) (VIN - VOUT) = 5V, TJ = 25°C  
(VIN - VOUT) = 5V, TJ = 25°C  
(VIN - VOUT) = 5V, TJ = 25°C  
10  
Quiescent Current  
Thermal Regulation  
Ripple Rejection  
Temperature Stability  
Long Term Stability  
IQ  
VOUT(Pwr) TA = 25°C, 30ms pulse  
fRIPPLE =120Hz, (VIN - VOUT) = 3V, VRIPPLE = 1Vp-p  
VIN 10V  
0.08  
75  
0.2  
60  
0.5  
0.3  
VOUT (T)  
%
VOUT (t) TA = 125°C, 1000 hours  
VOUT (RMS) 10Hz f 10kHz  
0.003  
%
RMS Output Noise (% of VOUT  
)
LX8117-28 / 8117A-28 / 8117B-28 (2.8V Fixed)  
LX8117 / 17A / 17B-28  
Min. Typ. Max.  
Parameter  
Symbol  
Test Conditions  
Units  
2.820 2.850 2.880  
2.790 2.850 2.910  
2.790 2.850 2.910  
V
V
V
Output Voltage  
VOUT  
IOUT = 10mA, VIN = 4.85V, TA = 25°C  
0mA IOUT IOUT (MAX) , 4.25V VIN 10V  
0mA IOUT 500mA, VIN = 3.95V  
IOUT = 0mA, 4.25V VIN 10V  
VIN = 4.25V, 0mA IOUT IOUT (MAX)  
IOUT = 100mA  
(VIN)  
VOUT  
Line Regulation (Note 3)  
Load Regulation (Note 3)  
1
6
mV  
mV  
V
VOUT (IOUT  
)
2
10  
0.97  
1.00  
1.05  
1.15  
950  
1200  
1500  
4.5  
1.10  
1.15  
1.20  
1.30  
Dropout Voltage  
(Note 4)  
V  
IOUT = 500mA  
V
V
LX8117-28  
LX8117A/B-28  
LX8117-28  
LX8117A-28  
LX8117B-28  
IOUT = IOUT (MAX)  
IOUT = IOUT (MAX)  
V
800  
1000  
1200  
mA  
mA  
mA  
mA  
%/W  
dB  
%
Current Limit  
IOUT (MAX) (VIN - VOUT) = 5V, TJ = 25°C  
(VIN - VOUT) = 5V, TJ = 25°C  
(VIN - VOUT) = 5V, TJ = 25°C  
VIN 10V  
10  
Quiescent Current  
Thermal Regulation  
Ripple Rejection  
IQ  
VOUT(Pwr) TA = 25°C, 30ms pulse  
fRIPPLE =120Hz, (VIN - VOUT) = 3V, VRIPPLE = 1Vp-p  
0.08  
75  
0.2  
60  
0.5  
Temperature Stability  
Long Term Stability  
VOUT (T)  
VOUT (t) TA = 125°C, 1000 hours  
VOUT (RMS) 10Hz f 10kHz  
0.3  
0.003  
%
%
RMS Output Noise (% of VOUT  
)
Notes: 3. See thermal regulation specification for changes in output voltage due to heating effects. Load regulation and line regulation are measured at a constant junction  
temperature by low duty cycle pulse testing.  
4. Dropout voltage is specified over the full output current range of the device. Dropout voltage is defined as the minimum input/output differential measured  
at the specified output current. Test points and limits are also shown on the Dropout Voltage Curve.  
5. Minimum load current is defined as the minimum output current required to maintain regulation.  
Copyright © 1999  
Rev. 1.4 3/99  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8117-xx/8117A-xx/8117B-xx  
0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS (continued)  
LX8117-33 / 8117A-33 / 8117B-33 (3.3V Fixed)  
LX8117 / 17A / 17B-33  
Min. Typ. Max.  
Parameter  
Symbol  
Test Conditions  
Units  
3.267 3.300 3.333  
3.235 3.300 3.365  
V
V
Output Voltage  
VOUT  
IOUT = 10mA, V = 5V, TA = 25°C  
0mA IOUT IOUT (MAX) , 4.75V VIN 10V  
IN  
(VIN)  
VOUT  
Line Regulation (Note 3)  
Load Regulation (Note 3)  
Dropout Voltage  
(Note 4)  
IOUT = 0mA, 4.25V VIN 10V  
VIN = 4.25V, 0mA IOUT IOUT (MAX)  
IOUT = 100mA  
1
2
6
mV  
mV  
V
VOUT (IOUT  
)
10  
V  
0.97  
1.00  
1.05  
1.15  
950  
1200  
1500  
4.5  
1.10  
1.15  
1.20  
1.30  
V
IOUT = 500mA  
IOUT = IOUT (MAX)  
LX8117-33  
V
V
LX8117A/B-33  
LX8117-33  
IOUT = IOUT (MAX)  
800  
1000  
1200  
mA  
mA  
mA  
mA  
%/W  
dB  
%
Current Limit  
IOUT (MAX) (VIN - VOUT) = 5V, TJ = 25°C  
(VIN - VOUT) = 5V, TJ = 25°C  
LX8117A-33  
LX8117B-33  
(VIN - VOUT) = 5V, TJ = 25°C  
10  
0.2  
Quiescent Current  
Thermal Regulation  
Ripple Rejection  
Temperature Stability  
Long Term Stability  
IQ  
VOUT(Pwr) TA = 25°C, 30ms pulse  
fRIPPLE =120Hz, (VIN - VOUT) = 3V, VRIPPLE = 1Vp-p  
VIN 10V  
0.08  
75  
0.5  
60  
VOUT (T)  
0.3  
%
VOUT (t) TA = 125°C, 1000 hours  
VOUT (RMS) 10Hz f 10kHz  
0.003  
%
RMS Output Noise (% of VOUT  
)
LX8117-05 / 8117A-05 / 8117B-05 (5.0V Fixed)  
LX8117 / 17A / 17B-05  
Min. Typ. Max.  
Parameter  
Symbol  
Test Conditions  
Units  
4.950 5.000 5.050  
4.900 5.000 5.100  
V
V
Output Voltage  
VOUT  
IOUT = 10mA, V = 7V, TA = 25°C  
0mA IOUT IOUT (MAX) , 6.50V VIN 10V  
IN  
(VIN)  
VOUT  
Line Regulation (Note 3)  
Load Regulation (Note 3)  
Dropout Voltage  
(Note 4)  
IOUT = 0mA, 6.5V VIN 10V  
VIN = 6.5V, 0mA IOUT IOUT (MAX)  
IOUT = 100mA  
1
10  
mV  
mV  
V
VOUT (IOUT  
)
2.5  
15  
V  
0.97  
1.00  
1.05  
1.15  
950  
1200  
1500  
4.5  
1.10  
1.15  
1.20  
1.30  
V
IOUT = 500mA  
IOUT = IOUT (MAX)  
LX8117-05  
V
V
LX8117A/B-05  
LX8117-05  
IOUT = IOUT (MAX)  
800  
1000  
1200  
mA  
mA  
mA  
mA  
%/W  
dB  
%
Current Limit  
IOUT (MAX) (VIN - VOUT) = 5V, TJ = 25°C  
(VIN - VOUT) = 5V, TJ = 25°C  
LX8117A-05  
LX8117B-05  
(VIN - VOUT) = 5V, TJ = 25°C  
10  
0.2  
Quiescent Current  
Thermal Regulation  
Ripple Rejection  
Temperature Stability  
Long Term Stability  
IQ  
VOUT(Pwr) TA = 25°C, 30ms pulse  
fRIPPLE =120Hz, (VIN - VOUT) = 3V, VRIPPLE = 1Vp-p  
VIN 10V  
0.08  
75  
0.5  
60  
VOUT (T)  
0.3  
%
VOUT (t) TA = 125°C, 1000 hours  
VOUT (RMS) 10Hz f 10kHz  
0.003  
%
RMS Output Noise (% of VOUT  
)
Notes: 3. See thermal regulation specification for changes in output voltage due to heating effects. Load regulation and line regulation are measured at a constant junction  
temperature by low duty cycle pulse testing.  
4. Dropout voltage is specified over the full output current range of the device. Dropout voltage is defined as the minimum input/output differential measured  
at the specified output current. Test points and limits are also shown on the Dropout Voltage Curve.  
5. Minimum load current is defined as the minimum output current required to maintain regulation.  
Copyright © 1999  
Rev. 1.4 3/99  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8117-xx/8117A-xx/8117B-xx  
0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
Minumum Load  
(Larger resistor)  
The LX8117 series ICs are easy to use Low-Dropout (LDO) voltage  
Power Supply  
IN  
OUT  
LX8117-xx  
regulators. They have all of the standard self-protection features  
expected of a voltage regulator: short circuit protection, safe  
operating area protection and automatic thermal shutdown if the  
device temperature rises above approximately 165°C.  
Use of an output capacitor is REQUIRED with the LX8117 series.  
Please see the table below for recommended minimum capacitor  
values.  
Full Load  
(Smaller resistor)  
ADJ  
RDSON << RL  
C1  
C2  
1 sec  
10ms  
Star Ground  
These regulators offer a more tightly controlled reference voltage  
tolerance and superior reference stability when measured against  
the older pin-compatible regulator types that they replace.  
FIGURE 1 — DYNAMIC INPUT and OUTPUT TEST  
OVERLOAD RECOVERY  
Like almost all IC power regulators, the LX8117 regulators are  
equipped with Safe Operating Area (SOA) protection. The SOA  
circuit limits the regulator's maximum output current to progres-  
sively lower values as the input-to-output voltage difference  
increases. By limiting the maximum output current, the SOA circuit  
keeps the amount of power that is dissipated in the regulator itself  
within safe limits for all values of input-to-output voltage within the  
operating range of the regulator. The LX8117 SOA protection  
system is designed to be able to supply some output current for all  
values of input-to-output voltage, up to the device breakdown  
voltage.  
Under some conditions, a correctly operating SOA circuit may  
prevent a power supply system from returning to regulated  
operation after removal of an intermittent short circuit at the output  
of the regulator. This is a normal mode of operation which can be  
seen in most similar products, including older devices such as 7800  
series regulators. It is most likely to occur when the power system  
input voltage is relatively high and the load impedance is relatively  
low.  
STABILITY  
The output capacitor is part of the regulator’s frequency compen-  
sation system. Many types of capacitors are available, with different  
capacitance value tolerances, capacitance temperature coefficients,  
and equivalent series impedances. For all operating conditions,  
connection of a 220µF aluminum electrolytic capacitor or a 47µF  
solid tantalum capacitor between the output terminal and ground  
will guarantee stable operation.  
If a bypass capacitor is connected between the output voltage  
adjust (ADJ) pin and ground, ripple rejection will be improved  
(please see the section entitled “RIPPLE REJECTION”). When ADJ  
pinbypassingisused,therequiredoutputcapacitorvalueincreases.  
Output capacitor values of 220µF (aluminum) or 47µF (tantalum)  
provide for all cases of bypassing the ADJ pin. If an ADJ pin bypass  
capacitor is not used, smaller output capacitor values are adequate.  
Thetablebelowshowsrecommendedminimumcapacitancevalues  
for stable operation.  
When the power system is started “cold”, both the input and  
output voltages are very close to zero. The output voltage closely  
follows the rising input voltage, and the input-to-output voltage  
difference is small. The SOA circuit therefore permits the regulator  
to supply large amounts of current as needed to develop the  
designed voltage level at the regulator output. Now consider the  
casewheretheregulatorissupplyingregulatedvoltagetoaresistive  
load under steady state conditions. A moderate input-to-output  
voltage appears across the regulator but the voltage difference is  
small enough that the SOA circuitry allows sufficient current to flow  
throughtheregulatortodevelopthedesignedoutputvoltageacross  
theloadresistance. Iftheoutputresistorisshort-circuitedtoground,  
theinput-to-outputvoltagedifferenceacrosstheregulatorsuddenly  
becomes larger by the amount of voltage that had appeared across  
the load resistor. The SOA circuit reads the increased input-to-  
output voltage, and cuts back the amount of current that it will  
permittheregulatortosupplytoitsoutputterminal. Whentheshort  
circuit across the output resistor is removed, all the regulator output  
current will again flow through the output resistor. The maximum  
current that the regulator can supply to the resistor will be limited  
bytheSOAcircuit,basedonthelargeinput-to-outputvoltageacross  
theregulatoratthetimetheshortcircuitisremovedfromtheoutput.  
RECOMMENDED CAPACITOR VALUES  
INPUT  
OUTPUT  
ADJ  
None  
15µF  
10µF  
10µF  
15µF Tantalum, 100µF Aluminum  
47µF Tantalum, 220µF Aluminum  
In order to ensure good transient response from the power supply  
system under rapidly changing current load conditions, designers  
generally use several output capacitors connected in parallel. Such  
an arrangement serves to minimize the effects of the parasitic  
resistance (ESR) and inductance (ESL) that are present in all  
capacitors. Cost-effective solutions that sufficiently limit ESR and  
ESL effects generally result in total capacitance values in the range  
of hundreds to thousands of microfarads, which is more than  
adequate to meet regulator output capacitor specifications. Output  
capacitance values may be increased without limit.  
ThecircuitshowninFigure1canbeusedtoobservethetransient  
response characteristics of the regulator in a power system under  
changing loads. The effects of different capacitor types and values  
on transient response parameters, such as overshoot and under-  
shoot, can be quickly compared in order to develop an optimum  
solution.  
Copyright © 1999  
Rev. 1.4 3/99  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8117-xx/8117A-xx/8117B-xx  
0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
OVERLOAD RECOVERY (continued)  
If this limited current is not sufficient to develop the designed  
voltage across the output resistor, the voltage will stabilize at some  
lower value, and willnever reach the designed value. Under these  
circumstances, it may be necessary to cycle the input voltage down  
to zero in order to make the regulator output voltage return to  
regulation.  
LX8117-xx  
OUT  
IN  
VIN  
VOUT  
ADJ  
VREF  
R1  
R2  
IADJ  
50µA  
RIPPLE REJECTION  
R2  
R1  
VOUT = VREF 1 +  
+ IADJ R2  
Ripple rejection can be improved by connecting a capacitor  
betweentheADJpinandground. Thevalueofthecapacitorshould  
be chosen so that the impedance of the capacitor is equal in  
magnitude to the resistance of R1 at the ripple frequency. The  
capacitor value can be determined by using this equation:  
FIGURE 2 — BASIC ADJUSTABLE REGULATOR  
LOAD REGULATION  
C = 1 / (6.28 F R1)  
*
*
Because the LX8117 regulators are three-terminal devices, it is not  
possible to provide true remote load sensing. Load regulation will  
be limited by the resistance of the wire connecting the regulator to  
the load. The data sheet specification for load regulation is  
measured at the bottom of the package. Negative side sensing is a  
true Kelvin connection, with the bottom of the output divider  
returned to the negative side of the load. Although it may not be  
immediately obvious, best load regulation is obtained when the top  
of the resistor divider, (R1), is connected directly to the case of the  
regulator, not to the load. This is illustrated in Figure 3. If R1 were  
connectedtotheload,theeffectiveresistancebetweentheregulator  
and the load would be:  
R
where: C the value of the capacitor in Farads;  
select an equal or larger standard value.  
FR the ripple frequency in Hz  
R1 the value of resistor R1 in ohms  
At a ripple frequency of 120Hz, with R1 = 100:  
C = 1 / (6.28 120Hz 100) = 13.3µF  
*
*
The closest equal or larger standard value should be used, in this  
case, 15µF.  
When an ADJ pin bypass capacitor is used, output ripple  
amplitude will be essentially independent of the output voltage. If  
an ADJ pin bypass capacitor is not used, output ripple will be  
proportional to the ratio of the output voltage to the reference  
voltage:  
R2+R1  
R1  
RPeff = RP  
*
where: RP Actual parasitic line resistance.  
M = VOUT/VREF  
When the circuit is connected as shown in Figure 3, the parasitic  
resistance appears as its actual value, rather than the higher RPeff.  
where: M a multiplier for the ripple seen when the  
ADJ pin is optimally bypassed.  
VREF = 1.25V.  
R
ParaPsitic  
LX8117-xx  
OUT  
Line Resistance  
For example, if VOUT = 2.5V the output ripple will be:  
M = 2.5V/1.25V= 2  
IN  
VIN  
ADJ  
Connect  
R1 to Case  
of Regulator  
Output ripple will be twice as bad as it would be if the ADJ pin  
were to be bypassed to ground with a properly selected capacitor.  
R1  
R2  
RL  
OUTPUT VOLTAGE  
Connect  
R2  
The LX8117 ICs develop a 1.25V reference voltage between the output  
and the adjust terminal (See Figure 2). By placing a resistor, R1,  
between these two terminals, a constant current is caused to flow  
through R1 and down through R2 to set the overall output voltage.  
Normally this current is the specified minimum load current of 10mA.  
BecauseIADJisverysmallandconstantwhencomparedwiththecurrent  
through R1, it represents a small error and can usually be ignored.  
to Load  
FIGURE 3 — CONNECTIONS FOR BEST LOAD REGULATION  
Copyright © 1999  
Rev. 1.4 3/99  
7
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8117-xx/8117A-xx/8117B-xx  
0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
LOAD REGULATION (continued)  
THERMAL CONSIDERATIONS (continued)  
Example  
Given: VIN = 5.0V ±5%, VOUT = 2.5V ±3%  
Even when the circuit is optimally configured, parasitic resistance  
can be a significant source of error. A 100 mil (2.54 mm) wide PC  
trace built from 1 oz. copper-clad circuit board material has a  
parasitic resistance of about 5 milliohms per inch of its length at  
roomtemperature. Ifa3-terminalregulatorusedtosupply2.50volts  
is connected by 2 inches of this trace to a load which draws 5 amps  
of current, a50 millivoltdrop will appear between theregulatorand  
the load. Even when the regulator output voltage is precisely  
2.50 volts, the load will only see 2.45 volts, which is a 2% error. It  
is important to keep the connection between the regulator output  
pin and the load as short as possible, and to use wide traces or  
heavy-gauge wire.  
IOUT = 0.5A, TA = 55°C, TJ = 125°C  
RθJT = 15°C/W, RθTS = 5°C/W  
Find: The size of a square area of 1oz. copper circuit-  
board trace-foil that will serve as a heatsink,  
adequate to maintain the junction temperature of the  
LX8117 in the ST (SOT-223) package within  
specified limits.  
Solution: The junction temperature is:  
TJ = PD (RθJT + RθCS + RθSA) + TA  
The minimum specified output capacitance for the regulator  
should be located near the reglator package. If several capacitors  
are used in parallel to construct the power system output capaci-  
tance, any capacitors beyond the minimum needed to meet the  
specified requirements of the regulator should be located near the  
sections of the load that require rapidly-changing amounts of  
current. Placing capacitors near the sources of load transients will  
help ensure that power system transient response is not impaired  
by the effects of trace impedance.  
To maintain good load regulation, wide traces should be used on  
the input side of the regulator, especially between the input  
capacitors and the regulator. Input capacitor ESR must be small  
enoughthatthevoltageattheinputpindoesnotdropbelowVIN(MIN)  
during transients.  
where: PD Dissipated power.  
RθJT Thermal resistance from the junction to the  
mounting tab of the package.  
RθTS Thermal resistance through the interface  
between the IC and the surface on which  
it is mounted.  
RθSA  
Thermal resistance from the mounting surface  
of the heatsink to ambient.  
TS Heat sink temperature.  
TJ TC TS  
TA  
RqJT  
RqCS  
RqSA  
First, find the maximum allowable thermal resistance of the  
heat sink:  
VIN (MIN) = VOUT + VDROPOUT (MAX)  
PD = [[VIN (1 + Tol )] - [V  
(1 - Tol )]] I  
*
VOUT OUT  
*
*
VIN  
OUT  
where: VIN (MIN)  
VOUT  
the lowest allowable instantaneous  
voltage at the input pin.  
the designed output voltage for the  
power supply system.  
PD = 1.4W  
TJ - TA  
RθSA  
=
- (RθJT + RθTS) ,  
RθSA = 29.6°C/W  
PD  
VDROPOUT (MAX) the specified dropout voltage  
for the installed regulator.  
A test was conducted to determine the thermal characteristics of  
1 oz. copper circuit-board trace material. The following equation  
describes the observed relationship between the area of a square  
copper pad, and the thermal resistance from the tab of a SOT-223  
package soldered at the center of the pad to ambient.  
THERMAL CONSIDERATIONS  
The LX8117 regulators have internal power and thermal limiting  
circuitrydesignedtoprotecteachdeviceunderoverloadconditions.  
For continuous normal load conditions, however, maximum junc-  
tion temperature ratings must not be exceeded. It is important to  
give careful consideration to all sources of thermal resistance from  
junctiontoambient. Thisincludesjunctiontocase, casetoheatsink  
interface, and heat sink thermal resistance itself.  
3.1°C/W  
AreaSINK  
=
in2  
RθSA - 22.3°C/W  
Substituting the value for RθSA calculated above, we find that a  
square pad with area:  
AreaSINK = 0.43 in2 (0.66" x 0.66"), 280mm2 (17 x 17 mm)  
will be required to maintain the LX8117 junction temperature  
within specified limits.  
Copyright © 1999  
Rev. 1.4 3/99  
8
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8117-xx/8117A-xx/8117B-xx  
0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATIONS  
LX8117-xx  
OUT  
LX8117-xx  
OUT  
VIN  
(Note A)  
(Note A)  
VIN  
IN  
VOUT**  
5V  
VOUT  
IN  
ADJ  
R1  
121  
R1  
ADJ  
10µF  
121  
C2  
100µF  
C1*  
10µF  
1%  
150µF  
R2  
1k  
R2  
C1  
10µF*  
* C1 improves ripple rejection.  
365  
XC should be  
frequency.  
R1 at ripple  
1%  
* Needed if device is far from filter capacitors.  
R2  
R1  
**VOUT = 1.25V 1 +  
FIGURE 4 — IMPROVING RIPPLE REJECTION  
FIGURE 5 — 1.2V - 8V ADJUSTABLE REGULATOR  
LX8117-33  
VIN  
OUT  
IN  
3.3V  
GND  
10µF Tantalum  
or 100µF Aluminum  
Min. 15µF Tantalum or  
100µF Aluminum capacitor.  
May be increased without  
limit. ESR must be less  
than 50m.  
FIGURE 6 — FIXED 3.3V OUTPUT REGULATOR  
Note A: VIN (MIN) = (Intended VOUT) + (VDROPOUT (MAX)  
)
PRODUCTION DATA - Information contained in this document is proprietary to Linfinity, and is current as of publication date. This document  
may not be modified in any way without the express written consent of Linfinity. Product processing does not necessarily include testing of  
all parameters. Linfinity reserves the right to change the configuration and performance of the product and to discontinue product at any time.  
Copyright © 1999  
Rev. 1.4 3/99  
9

相关型号:

LX8117A-25CDTT

Positive Fixed Voltage Regulator
MICROSEMI

LX8117A-25CST

0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8117A-25CST-TR

Fixed Positive LDO Regulator, 2.5V, 1.3V Dropout, BIPolar, PDSO4, PLASTIC, SOT-223, 3 PIN
MICROSEMI

LX8117A-25CSTT

Positive Fixed Voltage Regulator
MICROSEMI

LX8117A-28

0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8117A-28CDD

0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8117A-28CDD-TR

Fixed Positive LDO Regulator, 2.85V, 1.3V Dropout, PSSO3, PLASTIC, TO-263, D2PAK-3
MICROSEMI

LX8117A-28CDDT

Positive Fixed Voltage Regulator
MICROSEMI

LX8117A-28CDT

0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8117A-28CDT-TR

暂无描述
MICROSEMI

LX8117A-28CDTT

Positive Fixed Voltage Regulator
MICROSEMI

LX8117A-28CST

0.8, 1 & 1.2A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI