LX8383B-00CP [MICROSEMI]

7.5 A LOW DROPOUT POSITIVE REGULATORS; 7.5低压差稳压器正
LX8383B-00CP
型号: LX8383B-00CP
厂家: Microsemi    Microsemi
描述:

7.5 A LOW DROPOUT POSITIVE REGULATORS
7.5低压差稳压器正

稳压器
文件: 总7页 (文件大小:202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LIN DOC #: 8383  
LX8383-xx/8383A-xx/8383B-xx  
7. 5A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
T H E I N F I N I T E P O W E R O F I N N O V A T I O N  
P R O D U C T I O N D A T A S H E E T  
DESCRIPTION  
KEY FEATURES  
THREE-TERMINAL ADJUSTABLE OR FIXED  
The LX8383/8383A/8383B series ICs are  
positive regulators designed to provide  
7.5A output current. All internal circuitry  
is designed to operate down to a 1V in-  
put-to-output differential, so the LX8383/  
83A/83B can operate with greater effi-  
ciency than previously available devices.  
The dropout voltage for each product is  
fully specified as a function of load cur-  
rent. Dropout is guaranteed at a maxi-  
mum of 1.3V for the LX8383A/83B and  
1.5V for the LX8383, at maximum output  
current, decreasing at lower load currents.  
Fixed versions are also available and speci-  
fied in the Available Options table below.  
The LX8383B offers a tighter voltage ref-  
erence tolerance: 0.8% initial accuracy and  
1% over line, load and temperature. The  
LX8383/83A have 1% initial accuracy and  
2% over line, load and temperature.  
The LX8383/83A/83B series devices are  
OUTPUT VOLTAGE  
GUARANTEED < 1.3V HEADROOM AT  
7.5A (LX8383A/8383B)  
GUARANTEED < 1.5V HEADROOM AT  
7.5A (LX8383)  
OUTPUT CURRENT OF 7.5A MINIMUM  
p 0.015% LINE REGULATION  
p 0.15% LOAD REGULATION  
EVALUATION BOARD AVAILABLE:  
REQUEST LXE9001 EVALUATION KIT  
pin-compatible with earlier 3-terminal  
regulators, such as the 117 series prod-  
ucts. While a 10µF output capacitor is  
required on both input and output of these  
new devices, this capacitor is generally  
included in most regulator designs.  
The LX8383/83A/83B series quiescent  
current flows into the load, thereby  
increasing efficiency. This feature  
contrasts with PNP regulators, where up  
to 10% of the output current is wasted as  
quiescent current. The LX8383I/8383AI is  
specified over the industrial temperature  
range of -25°C to +125°C and the  
LX8383C/8383AC/8383BC is specified  
over the commercial range of 0°C to  
+125°C.  
APPLICATIONS  
PENTIUM® PROCESSOR APPLICATIONS  
HIGH EFFICIENCY LINEAR REGULATORS  
POST REGULATORS FOR SWITCHING  
POWER SUPPLIES  
BATTERY CHARGERS  
CONSTANT CURRENT REGULATORS  
CYRIX® 6x86TM  
AMD-K5TM  
PRODUCT HIGHLIGHT  
AVAILABLE OPTIONS PER PAR T #  
3.3V, 7.5A REGULATOR  
Output  
Part #  
Voltage  
IN  
OUT  
LX8383/83A/83B-00  
LX8383/83A/83B-33  
Other voltage options may be available —  
Please contact factory for details.  
Adjustable  
3.3V  
3.38V at 7.5A  
V
IN 4.75V  
LX8383A  
121Ω  
1%  
1500µF  
2x 330µF, 6.3V  
Oscon SA type  
from Sanyo  
-or-  
ADJ  
6.3V  
6MV1500GX  
from Sanyo  
3x 1500µF, 6.3V  
6MV1500GX  
from Sanyo  
205  
1%  
Application of the LX8383A for the standard voltage (non VRE) Pentium Processor motherboard  
with less than 130mV dynamic response to a 7.5A load transient.  
PACKAGE ORDER INFORMATION  
Plastic TO-220  
3-pin  
Plastic TO-247  
Dropout  
Voltage  
TA (°C)  
0 to 125  
-25 to 125  
P
V
3-terminal  
1.5V  
1.3V  
1.3V  
1.5V  
1.3V  
LX8383-xxCP  
LX8383A-xxCP  
LX8383B-xxCP  
LX8383-xxIP  
LX8383-xxCV  
LX8383A-xxCV  
LX8383B-xxCV  
LX8383-xxIV  
LX8383A-xxIP  
"xx" refers to output voltage, please see table above.  
LX8383A-xxIV  
F O R F U R T H E R I N F O R M AT I O N C A L L ( 7 1 4 ) 8 9 8 - 8 1 2 1  
Copyright © 1996  
Rev. 1.0 12/96  
1
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8383-xx/8383A-xx/8383B-xx  
7. 5A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
Power Dissipation .................................................................................. Internally Limited  
Input Voltage................................................................................................................ 10V  
Input to Output Voltage Differential........................................................................... 10V  
Operating Junction Temperature  
TAB IS VOUT  
3
VIN  
2
1
VOUT  
ADJ / GND*  
Plastic (P & V Packages)....................................................................................... 150°C  
Storage Temperature Range ...................................................................... -65°C to 150°C  
Lead Temperature (Soldering, 10 seconds) ............................................................. 300°C  
P PACKAGE  
(Top View)  
* Pin 1 is GND for fixed voltage versions.  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect  
to Ground. Currents are positive into, negative out of the specified terminal.  
TAB ON REVERSE SIDE IS VOUT  
THERMAL DATA  
3
VIN  
VOUT  
2
1
P PACKAGE:  
ADJ / GND*  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
V PACKAGE:  
2.7°C/W  
60°C/W  
V PACKAGE  
(Top View)  
* Pin 1 is GND for fixed voltage versions.  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
1.6°C/W  
35°C/W  
Junction Temperature Calculation: TJ = TA + (PD x θJA).  
The θJA numbers are guidelines for the thermal performance of the device/pc-board system.  
All of the above assume no ambient airflow.  
BLOCK DIAGRAM  
VIN  
Bias  
Circuit  
Bandgap  
Circuit  
Control  
Circuit  
Output  
Circuit  
Thermal  
Limit Circuit  
VOUT  
SOA Protection  
Circuit  
ADJ or  
GND*  
Current  
Limit Circuit  
* This pin GND for fixed voltage versions.  
Copyright © 1996  
Rev. 1.0 12/96  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8383-xx/8383A-xx/8383B-xx  
7. 5A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for the LX8383-xxC/8383A-xxC/8383B-xxC with 0°C ≤  
TA 125°C, the LX8383-xxI/8383A-xxI with -25°C TA 125°C; VIN - VOUT = 3V; IOUT = 7.5A. Low duty cycle pulse testing techniques are used which  
maintains junction and case temperatures equal to the ambient temperature.)  
LX8383-00/83A-00/83B-00 (Adjustable)  
LX8383/83A/83B-00  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
Reference Voltage  
(Note 4)  
LX8383/83A-00  
LX8383B-00  
VREF  
IOUT = 10mA, TA = 25°C  
10mA IOUT IOUT (MAX), 1.5V (V - VOUT), V 10V, P PMAX  
1.238 1.250 1.262  
1.225 1.250 1.270  
1.240 1.250 1.260  
1.238 1.250 1.262  
V
V
V
IN  
IN  
IOUT = 10mA, TA = 25°C  
10mA IOUT IOUT (MAX), 1.5V (V - VOUT), V 10V, P PMAX  
V
IN  
IN  
Line Regulation (Note 2)  
Load Regulation (Note 2)  
VREF 1.5V (VIN - VOUT), VIN 7V  
0.015  
0.035  
0.15  
0.3  
0.2  
0.3  
%
%
%
%
%/W  
dB  
(VIN)  
1.5V (VIN - VOUT), VIN 10V  
VREF VOUT VREF, VIN - VOUT = 3V, 10mA IOUT 7.5A, TA = 25°C  
(IOUT  
0.4  
0.5  
)
VIN - VOUT = 3V, 10mA IOUT 7.5A  
Thermal Regulation  
VOUT(Pwr) TA = 25°C, 20ms pulse  
VOUT = 5V, f =120Hz, COUT = 100µf Tantalum, VIN = 6.5V  
CADJ = 10µF, IOUT = 7.5A  
0.01  
83  
0.02  
65  
Ripple Rejection (Note 3)  
55  
0.2  
1.2  
1
100  
5
1.5  
1.3  
10  
µA  
µA  
V
Adjust Pin Current  
Adjust Pin Current Change (Note 4)  
IADJ  
IADJ 10mA IOUT IOUT (MAX) , 1.5V (V - VOUT), V 10V  
IN  
IN  
Dropout Voltage  
LX8383-00  
V  
VREF = 1%, IOUT = 7.5A  
VREF = 1%, IOUT = 7.5A  
V
LX8383A/83B-00  
Minimum Load Current  
IOUT (MIN)  
V
10V  
2
mA  
A
IN  
7.5  
9.5  
0.25  
0.3  
0.003  
Maximum Output Current  
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
IOUT (MAX) (VIN - VOUT) 7V  
VOUT (T)  
%
%
%
1
VOUT (t) TA = 125°C, 1000 hours  
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
LX8383-33/83A-33/83B-33 (3.3V Fixed)  
LX8383/83A/83B-33  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
Output Voltage  
(Note 4)  
LX8383/83A-33  
LX8383B-33  
VOUT  
VIN = 5V, IOUT = 0mA, TA = 25°C  
3.267  
3.235  
3.274  
3.267  
3.3  
3.3  
3.3  
3.3  
1
3.333  
3.365  
3.326  
3.333  
6
V
V
4.75V VIN 10V, 0mA IOUT 7.5A, P PMAX  
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V VIN 10V, 0mA IOUT 7.5A, P PMAX  
V
V
Line Regulation (Note 2)  
VOUT 4.75V VIN 7V  
(VIN)  
mV  
mV  
mV  
% / W  
dB  
mA  
V
4.75V VIN 10V  
2
5
10  
15  
Load Regulation (Note 2)  
Thermal Regulation  
Ripple Rejection (Note 3)  
Quiescent Current  
VOUT (IOUT  
)
VIN = 5V, 0mA IOUT IOUT (MAX)  
VOUT(Pwr) TA = 25°C, 20ms pulse  
COUT = 100µF (Tantalum), IOUT = 7.5A  
0.01  
83  
4
0.02  
60  
IQ  
V  
0mA IOUT IOUT (MAX) , 4.75V VIN 10V  
VOUT = 1%, IOUT IOUT (MAX) , VIN 7V  
VOUT = 1%, IOUT IOUT (MAX) , VIN 7V  
10  
1.5  
1.3  
Dropout Voltage  
LX8383-33  
LX8383A/83B-33  
V
7.5  
9.5  
0.25  
0.3  
A
%
Maximum Output Current  
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
IOUT (MAX) VIN 7V  
VOUT (T)  
1
%
VOUT (t) TA = 125°C, 1000 hours  
0.003  
%
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
Note 2. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to  
heating effects are covered under the specification for thermal regulation.  
Note 3. These parameters, although guaranteed, are not tested in production.  
Note 4. See Maximum Output Current Section above.  
Copyright © 1996  
Rev. 1.0 12/96  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8383-xx/8383A-xx/8383B-xx  
7. 5A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
Minumum Load  
(Larger resistor)  
TheLX8383/83A/83BseriesICsareeasytouseLow-Dropout(LDO)  
Power Supply  
LX8383/83A  
/83B  
ADJ  
IN  
OUT  
voltage regulators. They have all of the standard self-protection  
features expected of a voltage regulator: short circuit protection,  
safe operating area protection and automatic thermal shutdown if  
the device temperature rises above approximately 165°C.  
Use of an output capacitor is REQUIRED with the LX8383/83A/  
83B series. Please see the table below for recommended minimum  
capacitor values.  
Full Load  
(Smaller resistor)  
RDSON << RL  
1 sec  
10ms  
Star Ground  
These regulators offer a more tightly controlled reference voltage  
tolerance and superior reference stability when measured against  
the older pin-compatible regulator types that they replace.  
FIGURE 1 — DYNAMIC INPUT and OUTPUT TEST  
OVERLOAD RECOVERY  
Like almost all IC power regulators, the LX8383/83A/83B regulators  
are equipped with Safe Operating Area (SOA) protection. The SOA  
circuit limits the regulator's maximum output current to progres-  
sively lower values as the input-to-output voltage difference  
increases. By limiting the maximum output current, the SOA circuit  
keeps the amount of power that is dissipated in the regulator itself  
within safe limits for all values of input-to-output voltage within the  
operating range of the regulator. The LX8383/83A/83B SOA  
protection system is designed to be able to supply some output  
current for all values of input-to-output voltage, up to the device  
breakdown voltage.  
Under some conditions, a correctly operating SOA circuit may  
prevent a power supply system from returning to regulated  
operation after removal of an intermittent short circuit at the output  
of the regulator. This is a normal mode of operation which can be  
seen in most similar products, including older devices such as 7800  
series regulators. It is most likely to occur when the power system  
input voltage is relatively high and the load impedance is relatively  
low.  
STABILITY  
The output capacitor is part of the regulator’s frequency compen-  
sation system. Many types of capacitors are available, with different  
capacitance value tolerances, capacitance temperature coefficients,  
and equivalent series impedances. For all operating conditions,  
connection of a 220µF aluminum electrolytic capacitor or a 47µF  
solid tantalum capacitor between the output terminal and ground  
will guarantee stable operation.  
If a bypass capacitor is connected between the output voltage  
adjust (ADJ) pin and ground, ripple rejection will be improved  
(please see the section entitled “RIPPLE REJECTION”). When ADJ  
pinbypassingisused,therequiredoutputcapacitorvalueincreases.  
Output capacitor values of 220µF (aluminum) or 47µF (tantalum)  
provide for all cases of bypassing the ADJ pin. If an ADJ pin bypass  
capacitor is not used, smaller output capacitor values are adequate.  
Thetablebelowshowsrecommendedminimumcapacitancevalues  
for stable operation.  
When the power system is started “cold”, both the input and  
output voltages are very close to zero. The output voltage closely  
follows the rising input voltage, and the input-to-output voltage  
difference is small. The SOA circuit therefore permits the regulator  
to supply large amounts of current as needed to develop the  
designed voltage level at the regulator output. Now consider the  
casewheretheregulatorissupplyingregulatedvoltagetoaresistive  
load under steady state conditions. A moderate input-to-output  
voltage appears across the regulator but the voltage difference is  
small enough that the SOA circuitry allows sufficient current to flow  
throughtheregulatortodevelopthedesignedoutputvoltageacross  
theloadresistance. Iftheoutputresistorisshort-circuitedtoground,  
theinput-to-outputvoltagedifferenceacrosstheregulatorsuddenly  
becomes larger by the amount of voltage that had appeared across  
the load resistor. The SOA circuit reads the increased input-to-  
output voltage, and cuts back the amount of current that it will  
permittheregulatortosupplytoitsoutputterminal. Whentheshort  
circuit across the output resistor is removed, all the regulator output  
current will again flow through the output resistor. The maximum  
current that the regulator can supply to the resistor will be limited  
bytheSOAcircuit,basedonthelargeinput-to-outputvoltageacross  
theregulatoratthetimetheshortcircuitisremovedfromtheoutput.  
RECOMMENDED CAPACITOR VALUES  
INPUT  
OUTPUT  
ADJ  
None  
15µF  
10µF  
10µF  
15µF Tantalum, 100µF Aluminum  
47µF Tantalum, 220µF Aluminum  
In order to ensure good transient response from the power supply  
system under rapidly changing current load conditions, designers  
generally use several output capacitors connected in parallel. Such  
an arrangement serves to minimize the effects of the parasitic  
resistance (ESR) and inductance (ESL) that are present in all  
capacitors. Cost-effective solutions that sufficiently limit ESR and  
ESL effects generally result in total capacitance values in the range  
of hundreds to thousands of microfarads, which is more than  
adequate to meet regulator output capacitor specifications. Output  
capacitance values may be increased without limit.  
ThecircuitshowninFigure1canbeusedtoobservethetransient  
response characteristics of the regulator in a power system under  
changing loads. The effects of different capacitor types and values  
on transient response parameters, such as overshoot and under-  
shoot, can be quickly compared in order to develop an optimum  
solution.  
Copyright © 1996  
Rev. 1.0 12/96  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8383-xx/8383A-xx/8383B-xx  
7. 5A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
OVERLOAD RECOVERY (continued)  
If this limited current is not sufficient to develop the designed  
voltage across the output resistor, the voltage will stabilize at some  
lower value, and willnever reach the designed value. Under these  
circumstances, it may be necessary to cycle the input voltage down  
to zero in order to make the regulator output voltage return to  
regulation.  
LX8383/83A/83B  
IN  
OUT  
VIN  
VOUT  
ADJ  
VREF  
R1  
R2  
IADJ  
50µA  
RIPPLE REJECTION  
R2  
R1  
VOUT = VREF 1 +  
+ IADJ R2  
Ripple rejection can be improved by connecting a capacitor  
betweentheADJpinandground. Thevalueofthecapacitorshould  
be chosen so that the impedance of the capacitor is equal in  
magnitude to the resistance of R1 at the ripple frequency. The  
capacitor value can be determined by using this equation:  
FIGURE 2 — BASIC ADJUSTABLE REGULATOR  
LOAD REGULATION  
C = 1 / (6.28 F R1)  
*
*
Because the LX8383/83A/83B regulators are three-terminal devices,  
it is not possible to provide true remote load sensing. Load  
regulation will be limited by the resistance of the wire connecting  
the regulator to the load. The data sheet specification for load  
regulation is measured at the bottom of the package. Negative side  
sensing is a true Kelvin connection, with the bottom of the output  
divider returned to the negative side of the load. Although it may  
not be immediately obvious, best load regulation is obtained when  
the top of the resistor divider, (R1), is connected directly to the case  
of the regulator, not to the load. This is illustrated in Figure 3. If R1  
were connected to the load, the effective resistance between the  
regulator and the load would be:  
R
where: C the value of the capacitor in Farads;  
select an equal or larger standard value.  
FR the ripple frequency in Hz  
R1 the value of resistor R1 in ohms  
At a ripple frequency of 120Hz, with R1 = 100:  
C = 1 / (6.28 120Hz 100) = 13.3µF  
*
*
The closest equal or larger standard value should be used, in this  
case, 15µF.  
When an ADJ pin bypass capacitor is used, output ripple  
amplitude will be essentially independent of the output voltage. If  
an ADJ pin bypass capacitor is not used, output ripple will be  
proportional to the ratio of the output voltage to the reference  
voltage:  
R2+R1  
R1  
RPeff = RP  
*
where: RP Actual parasitic line resistance.  
M = VOUT/VREF  
When the circuit is connected as shown in Figure 3, the parasitic  
resistance appears as its actual value, rather than the higher RPeff.  
where: M a multiplier for the ripple seen when the  
ADJ pin is optimally bypassed.  
VREF = 1.25V.  
R
ParaPsitic  
LX8383/83A/83B  
IN  
Line Resistance  
For example, if VOUT = 2.5V the output ripple will be:  
M = 2.5V/1.25V= 2  
OUT  
VIN  
ADJ  
Connect  
R1 to Case  
of Regulator  
Output ripple will be twice as bad as it would be if the ADJ pin  
were to be bypassed to ground with a properly selected capacitor.  
R1  
R2  
RL  
OUTPUT VOLTAGE  
Connect  
R2  
The LX8383/83A/83B ICs develop a 1.25V reference voltage between  
the output and the adjust terminal (See Figure 2). By placing a resistor,  
R1, between these two terminals, a constant current is caused to flow  
through R1 and down through R2 to set the overall output voltage.  
Normally this current is the specified minimum load current of 10mA.  
BecauseIADJisverysmallandconstantwhencomparedwiththecurrent  
through R1, it represents a small error and can usually be ignored.  
to Load  
FIGURE 3 — CONNECTIONS FOR BEST LOAD REGULATION  
Copyright © 1996  
Rev. 1.0 12/96  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8383-xx/8383A-xx/8383B-xx  
7. 5A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
LOAD REGULATION (continued)  
Even when the circuit is optimally configured, parasitic resistance  
can be a significant source of error. A 100 mil (2.54 mm) wide PC  
trace built from 1 oz. copper-clad circuit board material has a  
parasitic resistance of about 5 milliohms per inch of its length at  
roomtemperature. Ifa3-terminalregulatorusedtosupply2.50volts  
is connected by 2 inches of this trace to a load which draws 5 amps  
of current, a50 millivolt dropwill appearbetween theregulatorand  
the load. Even when the regulator output voltage is precisely  
2.50 volts, the load will only see 2.45 volts, which is a 2% error. It  
is important to keep the connection between the regulator output  
pin and the load as short as possible, and to use wide traces or  
heavy-gauge wire.  
can be used, as long as its added contribution to thermal resistance  
is considered. Note that the case of all devices in this series is  
electrically connected to the output.  
Example  
Given: VIN = 5V  
VOUT = 2.8V, IOUT = 5.0A  
Ambient Temp., TA = 50°C  
RθJT = 2.7°C/W for TO-220  
300 ft/min airflow available  
Find: Proper Heat Sink to keep IC's junction  
temperature below 125°C.**  
The minimum specified output capacitance for the regulator  
should be located near the reglator package. If several capacitors  
are used in parallel to construct the power system output capaci-  
tance, any capacitors beyond the minimum needed to meet the  
specified requirements of the regulator should be located near the  
sections of the load that require rapidly-changing amounts of  
current. Placing capacitors near the sources of load transients will  
help ensure that power system transient response is not impaired  
by the effects of trace impedance.  
To maintain good load regulation, wide traces should be used on  
the input side of the regulator, especially between the input  
capacitors and the regulator. Input capacitor ESR must be small  
enoughthatthevoltageattheinputpindoesnotdropbelowVIN(MIN)  
during transients.  
Solution: The junction temperature is:  
TJ = PD (RθJT + RθCS + RθSA) + TA  
where: PD Dissipated power.  
RθJT Thermal resistance from the junction to the  
mounting tab of the package.  
RθCS Thermal resistance through the interface  
between the IC and the surface on which  
it is mounted. (1.0°C/W at 6 in-lbs  
mounting screw torque.)  
RθSA  
Thermal resistance from the mounting surface  
to ambient (thermal resistance of the heat sink).  
TS Heat sink temperature.  
TJ TC TS  
TA  
VIN (MIN) = VOUT + VDROPOUT (MAX)  
RθJT  
RθCS  
RθSA  
where: VIN (MIN)  
VOUT  
the lowest allowable instantaneous  
voltage at the input pin.  
the designed output voltage for the  
power supply system.  
First, find the maximum allowable thermal resistance of the  
heat sink:  
TJ - TA  
RθSA  
=
- (RθJT + RθCS)  
PD  
VDROPOUT (MAX) the specified dropout voltage  
for the installed regulator.  
PD = (VIN(MAX) - VOUT) IOUT = (5.0V-2.8V) 5.0A  
*
= 11.0W  
THERMAL CONSIDERATIONS  
125°C - 50°C  
RθSA  
=
- (2.7°C/W + 1.0°C/W)  
The LX8383/83A/83B regulators have internal power and thermal  
limiting circuitry designed to protect each device under overload  
conditions. For continuous normal load conditions, however,  
maximum junction temperature ratings must not be exceeded. It is  
important to give careful consideration to all sources of thermal  
resistance from junction to ambient. This includes junction to case,  
case to heat sink interface, and heat sink thermal resistance itself.  
Junction-to-case thermal resistance is specified from the IC  
junction to the back surface of the case directly opposite the die.  
This is the lowest resistance path for heat flow. Proper mounting  
is required to ensure the best possible thermal flow from this area  
of the package to the heat sink. Thermal compound at the case-to-  
heat-sink interface is strongly recommended. If the case of the  
device must be electrically isolated, a thermally conductive spacer  
(5.0V-2.8V) 5.0A  
*
= 3.1°C/W  
Next,selectasuitableheatsink. Theselectedheatsinkmusthave  
RθSA3.1°C/W. Thermalloyheatsink6296BhasRθSA =3.0°C/Wwith  
300ft/min air flow.  
Finally, verify that junction temperature remains within speci-  
fication using the selected heat sink:  
TJ = 11W (2.7°C/W + 1.0°C/W + 3.0°C/W) + 50°C = 124°C  
** Although the device can operate up to 150°C junction, it is recom-  
mended for long term reliability to keep the junction temperature  
below 125°C whenever possible.  
Copyright © 1996  
Rev. 1.0 12/96  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8383-xx/8383A-xx/8383B-xx  
7. 5A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATIONS  
LX8383/83A/83B  
OUT  
LX8383/83A/83B  
OUT  
VIN  
(Note A)  
(Note A)  
VIN  
IN  
VOUT**  
5V  
VOUT  
IN  
ADJ  
R1  
121Ω  
R1  
121Ω  
1%  
ADJ  
10µF  
C2  
100µF  
C1*  
10µF  
150µF  
R2  
1k  
R2  
C1  
10µF*  
* C1 improves ripple rejection.  
XC should be R1 at ripple  
frequency.  
365Ω  
1%  
* Needed if device is far from filter capacitors.  
R2  
R1  
**VOUT = 1.25V 1 +  
FIGURE 4 — IMPROVING RIPPLE REJECTION  
FIGURE 5 — 1.2V - 8V ADJUSTABLE REGULATOR  
LX8383/83A/83B  
VIN  
(Note A)  
OUT  
IN  
5V  
ADJ  
121Ω  
1%  
100µF  
10µF  
1k  
TTL  
Output  
2N3904  
365Ω  
1%  
1k  
FIGURE 6 — 5V REGULATOR WITH SHUTDOWN  
LX8383/83A/83B-33  
VIN  
OUT  
IN  
3.3V  
GND  
10µF Tantalum  
or 100µF Aluminum  
Min. 15µF Tantalum or  
100µF Aluminum capacitor.  
May be increased without  
limit. ESR must be less  
than 50m.  
FIGURE 7 — FIXED 3.3V OUTPUT REGULATOR  
Note A: VIN (MIN) = (Intended VOUT) + (VDROPOUT (MAX)  
)
Pentium is a registered trademark of Intel Corporation.  
Cyrix is a registered trademark and 6x86 is a trademark of Cyrix Corporation. K5 is a trademark of AMD.  
Copyright © 1996  
Rev. 1.0 12/96  
7

相关型号:

LX8383B-00CV

7.5 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8383B-33

7.5 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8383B-33CP

7.5 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8383B-33CV

7.5 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8384

5A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8384-00

5A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8384-00CDD

5A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8384-00CDD-TR

Regulator, 1 Output, BIPolar,
MICROSEMI

LX8384-00CDDT

Positive Adjustable Voltage Regulator
ETC

LX8384-00CDT

Adjustable Positive LDO Regulator, 1.2V Min, 8V Max, 1.5V Dropout, BIPolar, PSSO2, PLASTIC, TO-252, 2/3 PIN
MICROSEMI

LX8384-00CDT-TR

Regulator, 1 Output, BIPolar,
MICROSEMI

LX8384-00CDTT

Adjustable Positive LDO Regulator, 1.2V Min, 8V Max, 1.5V Dropout, PSSO2, PLASTIC, TO-252, 2/3 PIN
MICROSEMI