LX8584-00CP [MICROSEMI]

7 A LOW DROPOUT POSITIVE REGULATORS; 7低压差稳压器正
LX8584-00CP
型号: LX8584-00CP
厂家: Microsemi    Microsemi
描述:

7 A LOW DROPOUT POSITIVE REGULATORS
7低压差稳压器正

稳压器
文件: 总7页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LIN DOC #: 8584  
LX8584-xx/8584A-xx/8584B-xx  
7 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
T H E I N F I N I T E P O W E R O F I N N O V A T I O N  
P R O D U C T I O N D A T A S H E E T  
DESCRIPTION  
KEY FEATURES  
THREE-TERMINAL ADJUSTABLE OR FIXED  
The LX8584/84A/84B series ICs are low drop-  
out three-terminal positive regulators with a  
nominal 7A output current. This product  
family is ideally suited for Pentium® Proces-  
sor and Power PCTM applications requiring  
fast transient response. The LX8584A isguar-  
anteed to have < 1.2V at 7A and the  
LX8584/84B < 1.4V at 7A dropout voltage,  
making them ideal to provide well regulated  
outputs of 2.5V to 3.6V using a 5V input  
supply. In addition, the LX8584B also of-  
fers ±1% maximum voltage reference ac-  
curacy over temperature. Fixed versions  
are also available and are specified in the  
Available Options table below.  
Current limit is trimmed above 7.1A to  
ensure adequate output current and con-  
trolled short-circuit current. On-chip ther-  
mal limiting provides protection against any  
combination of overload that would create  
excessive junction temperatures.  
The LX8584/84A series products are avail-  
able in both the through-hole versions of  
the industry standard 3-pin TO-220 and  
TO-247 power packages.  
The LX1431 Programmable Reference in  
conjunction with the LX8584 7A LDO prod-  
ucts offer precision output voltage (see ap-  
plication below) and are ideal for use in VRE  
applications.  
OUTPUT  
GUARANTEED 1% VOLTAGE ACCURACY  
OVER TEMPERATURE (LX8584B)  
GUARANTEED 1.2V HEADROOM AT 7A  
(LX8584A)  
GUARANTEED 1.4V HEADROOM AT 7A  
(LX8584/84B)  
OUTPUT CURRENT OF 7A  
p FAST TRANSIENT RESPONSE  
p 1% VOLTAGE REFERENCE INITIAL  
ACCURACY  
p OUTPUT SHORT CIRCUIT PROTECTION  
p BUILT-IN THERMAL SHUTDOWN  
EVALUATION BOARD AVAILABLE:  
REQUEST LXE9001 EVALUATION KIT  
PRODUCT HIGHLIGHT  
APPLICATIONS  
PENTIUM PROCESSOR SUPPLIES  
POWER PC SUPPLIES  
MICROPROCESSOR SUPPLIES  
LOW VOLTAGE LOGIC SUPPLIES  
POST REGULATOR FOR SWITCHING SUPPLY  
THE APPLICATION OF THE LX8584A & LX1431 IN A  
75 & 166MHZ P54C PROCESSORS USING 3.3V CACHE  
VO 7A  
(See Table Below)  
PLACE IN µP SOCKET CAVITY  
3
2
VIN  
VOUT  
LX8584A  
5V  
3x  
330µF, 6.3V  
1kW  
Low ESR  
Oscon Type  
from Sanyo  
ADJ  
1
0.01µF  
1kW  
DROPOUT VOLTAGE V S.  
OUTPUT CURRENT  
100µF x 6  
10V  
AVX TYPE  
TPS  
250pF  
2
1
COL  
1.5  
1.0  
0.5  
1k  
0.1%  
µP  
Load  
TJ = 125°C  
LX8584/84A  
3
8
V+  
220µF  
10V  
Low ESR  
from  
Sanyo  
REF  
2.84kW  
0.1%  
21k  
1%  
LX1431  
1µF x 10  
SMD  
0.1µF  
50V  
LX8584  
JP1  
SGND FGND  
5
6
LX8584A  
VOUT  
JP1  
TYPICAL APPLICATION  
3.50  
3.38  
Short  
Open  
120/166MHz, VRE, 3.3V Cache  
75/90/100/133MHz, STND, 3.3V Cache  
Thick traces represent high current traces which must be low resistance /  
low inductance in order to achieve good transient response.  
0
1.75  
3.5  
5.25  
7
Output Current - (A)  
PACKAGE ORDER INFORMATION  
AVAILABLE OPTIONS PER PART #  
Plastic TO-220  
3-pin  
Plastic TO-247  
3-terminal  
Dropout  
Voltage  
TA (°C)  
Part #  
LX8584/A/B-00  
Output Voltage  
Adjustable  
3.3V  
P
V
LX8584-xxCP  
LX8584B-xxCP  
LX8584A-xxCP  
LX8584-xxCV  
LX8584B-xxCV  
LX8584A-xxCV  
1.4V  
1.2V  
LX8584/A/B-33  
Other voltage options may be available —  
Please contact factory for details.  
0 to 125  
"xx" refers to output voltage, please see table above.  
F O R F U R T H E R I N F O R M AT I O N C A L L ( 7 1 4 ) 8 9 8 - 8 1 2 1  
Copyright © 1997  
Rev. 1.2 4/97  
1
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8584-xx/8584A-xx/8584B-xx  
7 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
Power Dissipation .................................................................................. Internally Limited  
Input Voltage................................................................................................................ 10V  
Input to Output Voltage Differential........................................................................... 10V  
Maximum Output Current ............................................................................................. 8A  
Operating Junction Temperature  
TAB IS VOUT  
3
VIN  
2
1
VOUT  
ADJ / GND*  
Plastic (P Package) ................................................................................................ 150°C  
Storage Temperature Range ...................................................................... -65°C to 150°C  
Lead Temperature (Soldering, 10 seconds) ............................................................. 300°C  
P PACKAGE  
(Top View)  
* Pin 1 is GND for fixed voltage versions.  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect  
to Ground. Currents are positive into, negative out of the specified terminal.  
TAB ON REVERSE SIDE IS VOUT  
3
2
1
VIN  
THERMAL DATA  
VOUT  
ADJ / GND*  
P PACKAGE:  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
V PACKAGE:  
2.7°C/W  
60°C/W  
V PACKAGE  
(Top View)  
* Pin 1 is GND for fixed voltage versions.  
THERMAL RESISTANCE-JUNCTION TO TAB, θJT  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
1.6°C/W  
35°C/W  
Junction Temperature Calculation: TJ = TA + (PD x θJA).  
The θJA numbers are guidelines for the thermal performance of the device/pc-board system.  
All of the above assume no ambient airflow.  
Copyright © 1997  
Rev. 1.2 4/97  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8584-xx/8584A-xx/8584B-xx  
7 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for the LX8584-xxC/84A-xxC/84B-xxC with 0°C TA 125°C;  
VIN - VOUT = 3V; IOUT = 7A. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)  
LX8584-00/84A-00/84B-00 (Adjustable)  
LX8584/84A/84B-00  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
1.238 1.250 1.263  
1.225 1.250 1.275  
1.240 1.250 1.260  
1.238 1.250 1.263  
V
V
Reference Voltage  
LX8584/84A-00  
LX8584B-00  
VREF  
IOUT = 10mA, TA = 25°C  
10mA IOUT 7A, 1.5V (V - VOUT), VIN 7V, P PMAX  
IOUT = 10mA, TA = 25°C  
IN  
V
V
10mA IOUT 7A, 1.5V (V - VOUT), VIN 7V, P PMAX  
IN  
Line Regulation (Note 2)  
Load Regulation (Note 2)  
Thermal Regulation  
VREF (VIN) IOUT = 10mA, 1.5V (VIN - VOUT), VIN 7V  
VIN - VOUT = 3V, 10mA IOUT 7A  
VOUT(Pwr) TA = 25°C, 20ms pulse  
VOUT = 3.3V, f =120Hz, COUT = 100µf Tantalum, VIN = 5V  
0.035  
0.1  
0.2  
0.5  
%
%
%/W  
dB  
VREF (IOUT  
)
0.01  
83  
0.02  
Ripple Rejection (Note 3)  
65  
CADJ = 10µF, IOUT = 7A  
Adjust Pin Current  
Adjust Pin Current Change  
IADJ  
IADJ  
V  
55  
0.2  
1.1  
1.2  
1.1  
2
100  
5
µA  
µA  
V
10mA IOUT 7A, 1.5V (V - VOUT), VIN 7V  
IN  
Dropout Voltage  
LX8584A  
VREF = 1%, IOUT = 7A  
VREF = 1%, IOUT = 7A  
VREF = 1%, IOUT = 6A  
1.2  
1.4  
1.3  
10  
LX8584/84B  
LX8584/84B  
V
V
Minimum Load Current  
Maximum Output Current  
Temperature Stability  
IOUT(MIN) VIN 7V  
IOUT (MAX) 1.4V (VIN - VOUT), VIN 7V  
VOUT (T)  
mA  
A
7
8
0.25  
0.3  
0.003  
%
%
%
Long Term Stability  
VOUT (t) TA = 125°C, 1000 hrs  
VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
1
RMS Output Noise (% of VOUT  
)
LX8584-33/84A-33/84B-33 (3.3V Fixed)  
LX8584/84A/84B-33  
Parameter  
Symbol  
Test Conditions  
Units  
Min. Typ.  
Max.  
3.267  
3.234  
3.274  
3.267  
3.30  
3.30  
3.30  
3.30  
1
3.333  
3.366  
3.326  
3.333  
6
V
V
V
Output Voltage  
LX8584/84A-33  
LX8584B-33  
VOUT  
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V VIN 10V, 0mA IOUT 7A, P PMAX  
VIN = 5V, IOUT = 0mA, TA = 25°C  
4.75V VIN 10V, 0mA IOUT 7A, P PMAX  
V
Line Regulation (Note 2)  
VOUT  
4.75V VIN 10V  
VIN = 5V, 0mA IOUT IOUT (MAX)  
VOUT(Pwr) TA = 25°C, 20ms pulse  
COUT = 100µF (Tantalum), IOUT = 7.5V  
4.75V VIN 7V  
mV  
mV  
mV  
% / W  
dB  
mA  
V
(VIN)  
2
10  
Load Regulation (Note 2)  
Thermal Regulation  
VOUT (IOUT  
)
5
0.01  
83  
15  
0.02  
Ripple Rejection (Note 3)  
Quiescent Current  
60  
7
IQ  
0mA IOUT IOUT (MAX) , 4.75V VIN 10V  
VOUT = 1%, IOUT = IOUT (MAX)  
VOUT = 1%, IOUT = IOUT (MAX)  
4
10  
1.4  
1.2  
1.4  
Dropout Voltage  
LX8584-xx  
LX8584A-xx  
LX8584B-xx  
V  
V
V
VOUT = 1%, IOUT = IOUT (MAX)  
`
8
A
Maximum Output Current  
IOUT (MAX)  
VIN 7V  
0.25  
0.3  
%
%
Temperature Stability (Note 3)  
Long Term Stability (Note 3)  
VOUT (T)  
1
VOUT (t) TA = 125°C, 1000 hours  
0.003  
%
RMS Output Noise (% of VOUT) (Note 3) VOUT (RMS) TA = 25°C, 10Hz f 10kHz  
Note 2. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to  
heating effects are covered under the specification for thermal regulation.  
Note 3. These parameters, although guaranteed, are not tested in production.  
Copyright © 1997  
Rev. 1.2 4/97  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8584-xx/8584A-xx/8584B-xx  
7 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
Minumum Load  
(Larger resistor)  
TheLX8584/84A/84BseriesICsareeasytouseLow-Dropout(LDO)  
Power Supply  
LX8584/84A  
/84B  
ADJ  
IN  
OUT  
voltage regulators. They have all of the standard self-protection  
features expected of a voltage regulator: short circuit protection,  
safe operating area protection and automatic thermal shutdown if  
the device temperature rises above approximately 165°C.  
Use of an output capacitor is REQUIRED with the LX8584/84A/  
84B series. Please see the table below for recommended minimum  
capacitor values.  
Full Load  
(Smaller resistor)  
RDSON << RL  
1 sec  
10ms  
Star Ground  
These regulators offer a more tightly controlled reference voltage  
tolerance and superior reference stability when measured against  
the older pin-compatible regulator types that they replace.  
FIGURE 1 — DYNAMIC INPUT and OUTPUT TEST  
OVERLOAD RECOVERY  
Like almost all IC power regulators, the LX8584/84A/84B regulators  
are equipped with Safe Operating Area (SOA) protection. The SOA  
circuit limits the regulator's maximum output current to progres-  
sively lower values as the input-to-output voltage difference  
increases. By limiting the maximum output current, the SOA circuit  
keeps the amount of power that is dissipated in the regulator itself  
within safe limits for all values of input-to-output voltage within the  
operating range of the regulator. The LX8584/84A/84B SOA  
protection system is designed to be able to supply some output  
current for all values of input-to-output voltage, up to the device  
breakdown voltage.  
Under some conditions, a correctly operating SOA circuit may  
prevent a power supply system from returning to regulated  
operation after removal of an intermittent short circuit at the output  
of the regulator. This is a normal mode of operation which can be  
seen in most similar products, including older devices such as 7800  
series regulators. It is most likely to occur when the power system  
input voltage is relatively high and the load impedance is relatively  
low.  
STABILITY  
The output capacitor is part of the regulator’s frequency compen-  
sation system. Many types of capacitors are available, with different  
capacitance value tolerances, capacitance temperature coefficients,  
and equivalent series impedances. For all operating conditions,  
connection of a 220µF aluminum electrolytic capacitor or a 47µF  
solid tantalum capacitor between the output terminal and ground  
will guarantee stable operation.  
If a bypass capacitor is connected between the output voltage  
adjust (ADJ) pin and ground, ripple rejection will be improved  
(please see the section entitled “RIPPLE REJECTION”). When ADJ  
pinbypassingisused,therequiredoutputcapacitorvalueincreases.  
Output capacitor values of 220µF (aluminum) or 47µF (tantalum)  
provide for all cases of bypassing the ADJ pin. If an ADJ pin bypass  
capacitor is not used, smaller output capacitor values are adequate.  
Thetablebelowshowsrecommendedminimumcapacitancevalues  
for stable operation.  
When the power system is started “cold”, both the input and  
output voltages are very close to zero. The output voltage closely  
follows the rising input voltage, and the input-to-output voltage  
difference is small. The SOA circuit therefore permits the regulator  
to supply large amounts of current as needed to develop the  
designed voltage level at the regulator output. Now consider the  
casewheretheregulatorissupplyingregulatedvoltagetoaresistive  
load under steady state conditions. A moderate input-to-output  
voltage appears across the regulator but the voltage difference is  
small enough that the SOA circuitry allows sufficient current to flow  
throughtheregulatortodevelopthedesignedoutputvoltageacross  
theloadresistance. Iftheoutputresistorisshort-circuitedtoground,  
theinput-to-outputvoltagedifferenceacrosstheregulatorsuddenly  
becomes larger by the amount of voltage that had appeared across  
the load resistor. The SOA circuit reads the increased input-to-  
output voltage, and cuts back the amount of current that it will  
permittheregulatortosupplytoitsoutputterminal. Whentheshort  
circuit across the output resistor is removed, all the regulator output  
current will again flow through the output resistor. The maximum  
current that the regulator can supply to the resistor will be limited  
bytheSOAcircuit,basedonthelargeinput-to-outputvoltageacross  
theregulatoratthetimetheshortcircuitisremovedfromtheoutput.  
RECOMMENDED CAPACITOR VALUES  
INPUT  
OUTPUT  
ADJ  
None  
15µF  
10µF  
10µF  
15µF Tantalum, 100µF Aluminum  
47µF Tantalum, 220µF Aluminum  
In order to ensure good transient response from the power supply  
system under rapidly changing current load conditions, designers  
generally use several output capacitors connected in parallel. Such  
an arrangement serves to minimize the effects of the parasitic  
resistance (ESR) and inductance (ESL) that are present in all  
capacitors. Cost-effective solutions that sufficiently limit ESR and  
ESL effects generally result in total capacitance values in the range  
of hundreds to thousands of microfarads, which is more than  
adequate to meet regulator output capacitor specifications. Output  
capacitance values may be increased without limit.  
ThecircuitshowninFigure1canbeusedtoobservethetransient  
response characteristics of the regulator in a power system under  
changing loads. The effects of different capacitor types and values  
on transient response parameters, such as overshoot and under-  
shoot, can be quickly compared in order to develop an optimum  
solution.  
Copyright © 1997  
Rev. 1.2 4/97  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8584-xx/8584A-xx/8584B-xx  
7 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
OVERLOAD RECOVERY (continued)  
If this limited current is not sufficient to develop the designed  
voltage across the output resistor, the voltage will stabilize at some  
lower value, and willnever reach the designed value. Under these  
circumstances, it may be necessary to cycle the input voltage down  
to zero in order to make the regulator output voltage return to  
regulation.  
LX8584/84A/84B  
IN  
OUT  
VIN  
VOUT  
ADJ  
VREF  
R1  
R2  
IADJ  
50µA  
RIPPLE REJECTION  
R2  
R1  
VOUT = VREF 1 +  
+ IADJ R2  
Ripple rejection can be improved by connecting a capacitor  
betweentheADJpinandground. Thevalueofthecapacitorshould  
be chosen so that the impedance of the capacitor is equal in  
magnitude to the resistance of R1 at the ripple frequency. The  
capacitor value can be determined by using this equation:  
FIGURE 2 — BASIC ADJUSTABLE REGULATOR  
LOAD REGULATION  
C = 1 / (6.28 F R1)  
*
*
Because the LX8584/84A/84B regulators are three-terminal devices,  
it is not possible to provide true remote load sensing. Load  
regulation will be limited by the resistance of the wire connecting  
the regulator to the load. The data sheet specification for load  
regulation is measured at the bottom of the package. Negative side  
sensing is a true Kelvin connection, with the bottom of the output  
divider returned to the negative side of the load. Although it may  
not be immediately obvious, best load regulation is obtained when  
the top of the resistor divider, (R1), is connected directly to the case  
of the regulator, not to the load. This is illustrated in Figure 3. If R1  
were connected to the load, the effective resistance between the  
regulator and the load would be:  
R
where: C the value of the capacitor in Farads;  
select an equal or larger standard value.  
FR the ripple frequency in Hz  
R1 the value of resistor R1 in ohms  
At a ripple frequency of 120Hz, with R1 = 100:  
C = 1 / (6.28 120Hz 100) = 13.3µF  
*
*
The closest equal or larger standard value should be used, in this  
case, 15µF.  
When an ADJ pin bypass capacitor is used, output ripple  
amplitude will be essentially independent of the output voltage. If  
an ADJ pin bypass capacitor is not used, output ripple will be  
proportional to the ratio of the output voltage to the reference  
voltage:  
R2+R1  
R1  
RPeff = RP  
*
where: RP Actual parasitic line resistance.  
M = VOUT/VREF  
When the circuit is connected as shown in Figure 3, the parasitic  
resistance appears as its actual value, rather than the higher RPeff.  
where: M a multiplier for the ripple seen when the  
ADJ pin is optimally bypassed.  
VREF = 1.25V.  
R
ParaPsitic  
LX8584/84A/84B  
IN  
Line Resistance  
For example, if VOUT = 2.5V the output ripple will be:  
M = 2.5V/1.25V= 2  
OUT  
VIN  
ADJ  
Connect  
R1 to Case  
of Regulator  
Output ripple will be twice as bad as it would be if the ADJ pin  
were to be bypassed to ground with a properly selected capacitor.  
R1  
R2  
RL  
OUTPUT VOLTAGE  
Connect  
R2  
The LX8584/84A/84BICs develop a 1.25V reference voltage between  
the output and the adjust terminal (See Figure 2). By placing a resistor,  
R1, between these two terminals, a constant current is caused to flow  
through R1 and down through R2 to set the overall output voltage.  
Normally this current is the specified minimum load current of 10mA.  
BecauseIADJisverysmallandconstantwhencomparedwiththecurrent  
through R1, it represents a small error and can usually be ignored.  
to Load  
FIGURE 3 — CONNECTIONS FOR BEST LOAD REGULATION  
Copyright © 1997  
Rev. 1.2 4/97  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8584-xx/8584A-xx/8584B-xx  
7 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L AT O R S  
P R O D U C T I O N D A T A S H E E T  
APPLICATION NOTES  
LOAD REGULATION (continued)  
Even when the circuit is optimally configured, parasitic resistance  
can be a significant source of error. A 100 mil (2.54 mm) wide PC  
trace built from 1 oz. copper-clad circuit board material has a  
parasitic resistance of about 5 milliohms per inch of its length at  
roomtemperature. Ifa3-terminalregulatorusedtosupply2.50volts  
is connected by 2 inches of this trace to a load which draws 5 amps  
of current, a50 millivolt dropwill appearbetween theregulatorand  
the load. Even when the regulator output voltage is precisely  
2.50 volts, the load will only see 2.45 volts, which is a 2% error. It  
is important to keep the connection between the regulator output  
pin and the load as short as possible, and to use wide traces or  
heavy-gauge wire.  
can be used, as long as its added contribution to thermal resistance  
is considered. Note that the case of all devices in this series is  
electrically connected to the output.  
Example  
Given: VIN = 5V  
VOUT = 2.8V, IOUT = 5.0A  
Ambient Temp., TA = 50°C  
RθJT = 2.7°C/W for TO-220  
300 ft/min airflow available  
Find: Proper Heat Sink to keep IC's junction  
temperature below 125°C.**  
The minimum specified output capacitance for the regulator  
should be located near the reglator package. If several capacitors  
are used in parallel to construct the power system output capaci-  
tance, any capacitors beyond the minimum needed to meet the  
specified requirements of the regulator should be located near the  
sections of the load that require rapidly-changing amounts of  
current. Placing capacitors near the sources of load transients will  
help ensure that power system transient response is not impaired  
by the effects of trace impedance.  
To maintain good load regulation, wide traces should be used on  
the input side of the regulator, especially between the input  
capacitors and the regulator. Input capacitor ESR must be small  
enoughthatthevoltageattheinputpindoesnotdropbelowVIN(MIN)  
during transients.  
Solution: The junction temperature is:  
TJ = PD (RθJT + RθCS + RθSA) + TA  
where: PD Dissipated power.  
RθJT Thermal resistance from the junction to the  
mounting tab of the package.  
RθCS Thermal resistance through the interface  
between the IC and the surface on which  
it is mounted. (1.0°C/W at 6 in-lbs  
mounting screw torque.)  
RθSA  
Thermal resistance from the mounting surface  
to ambient (thermal resistance of the heat sink).  
TS Heat sink temperature.  
TJ TC TS  
TA  
VIN (MIN) = VOUT + VDROPOUT (MAX)  
Rq JT  
RqCS  
RqSA  
where: VIN (MIN)  
VOUT  
the lowest allowable instantaneous  
voltage at the input pin.  
the designed output voltage for the  
power supply system.  
First, find the maximum allowable thermal resistance of the  
heat sink:  
TJ - TA  
RθSA  
=
- (RθJT + RθCS)  
PD  
VDROPOUT (MAX) the specified dropout voltage  
for the installed regulator.  
PD = (VIN(MAX) - VOUT) IOUT = (5.0V-2.8V) 5.0A  
*
= 11.0W  
THERMAL CONSIDERATIONS  
125°C - 50°C  
RθSA  
=
- (2.7°C/W + 1.0°C/W)  
The LX8584/84A/84B regulators have internal power and thermal  
limiting circuitry designed to protect each device under overload  
conditions. For continuous normal load conditions, however,  
maximum junction temperature ratings must not be exceeded. It is  
important to give careful consideration to all sources of thermal  
resistance from junction to ambient. This includes junction to case,  
case to heat sink interface, and heat sink thermal resistance itself.  
Junction-to-case thermal resistance is specified from the IC  
junction to the back surface of the case directly opposite the die.  
This is the lowest resistance path for heat flow. Proper mounting  
is required to ensure the best possible thermal flow from this area  
of the package to the heat sink. Thermal compound at the case-to-  
heat-sink interface is strongly recommended. If the case of the  
device must be electrically isolated, a thermally conductive spacer  
(5.0V-2.8V) 5.0A  
*
= 3.1°C/W  
Next,selectasuitableheatsink. Theselectedheatsinkmusthave  
RθSA3.1°C/W. Thermalloyheatsink6296BhasRθSA =3.0°C/Wwith  
300ft/min air flow.  
Finally, verify that junction temperature remains within speci-  
fication using the selected heat sink:  
TJ = 11W (2.7°C/W + 1.0°C/W + 3.0°C/W) + 50°C = 124°C  
** Although the device can operate up to 150°C junction, it is recom-  
mended for long term reliability to keep the junction temperature  
below 125°C whenever possible.  
Copyright © 1997  
Rev. 1.2 4/97  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
LX8584-xx/8584A-xx/8584B-xx  
7 A L O W  
D
R O P O U T  
P
O S I T I V E  
R
E G U L A T O R S  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATIONS  
LX8584/84A/84B  
OUT  
LX8584/84A/84B  
OUT  
VIN  
(Note A)  
(Note A)  
VIN  
IN  
VOUT**  
5V  
VOUT  
IN  
ADJ  
R1  
121W  
R1  
121W  
1%  
ADJ  
10µF  
C2  
100µF  
C1*  
10µF  
150µF  
R2  
1k  
R2  
C1  
10µF*  
* C1 improves ripple rejection.  
XC should be » R1 at ripple  
frequency.  
365W  
1%  
* Needed if device is far from filter capacitors.  
R2  
R1  
**VOUT = 1.25V 1 +  
FIGURE 4 — IMPROVING RIPPLE REJECTION  
FIGURE 5 — 1.2V - 8V ADJUSTABLE REGULATOR  
LX8584/84A/84B  
VIN  
(Note A)  
OUT  
IN  
5V  
ADJ  
121W  
1%  
100µF  
10µF  
1k  
TTL  
Output  
2N3904  
365W  
1%  
1k  
FIGURE 6 — 5V REGULATOR WITH SHUTDOWN  
LX8584/84A/84B-33  
VIN  
OUT  
IN  
3.3V  
GND  
10µF Tantalum  
or 100µF Aluminum  
Min. 15µF Tantalum or  
100µF Aluminum capacitor.  
May be increased without  
limit. ESR must be less  
than 50mW.  
FIGURE 7 — FIXED 3.3V OUTPUT REGULATOR  
Note A: VIN (MIN) = (Intended VOUT) + (VDROPOUT (MAX)  
)
Pentium is a registered trademark of Intel Corporation.  
Power PC is a trademark of International Business Machines Corporation..  
Copyright © 1997  
Rev. 1.2 4/97  
7

相关型号:

LX8584-00CP-TR

Adjustable Positive LDO Regulator
MICROSEMI

LX8584-00CV

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8584-14CP

7A Low Dropout Positive Regualtors
MICROSEMI

LX8584-33

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8584-33CP

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8584-33CP-TR

Fixed Positive LDO Regulator
MICROSEMI

LX8584-33CV

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8584-XX

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8584/A/B

Positive Adjustable Voltage Regulator
ETC

LX8584A-00

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8584A-00CP

7 A LOW DROPOUT POSITIVE REGULATORS
MICROSEMI

LX8584A-00CP-TR

Adjustable Positive LDO Regulator
MICROSEMI