MAX24510EXG2 [MICROSEMI]

Clock Generator,;
MAX24510EXG2
型号: MAX24510EXG2
厂家: Microsemi    Microsemi
描述:

Clock Generator,

时钟 外围集成电路 晶体
文件: 总59页 (文件大小:1034K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
April 2019  
MAX24505, MAX24510  
5 or 10 Output Any-to-Any Clock Multipliers  
with Internal EEPROM  
General Description  
Features  
Input Clocks  
The MAX24505 and MAX24510 are flexible, high-  
performance clock multiplier/synthesizer ICs with two  
independent APLLs. Each APLL performs any-to-any  
frequency conversion. From any input clock frequency  
9.72MHz to 750MHz these devices can produce  
frequency-locked APLL output frequencies up to  
750MHz and as many as 10 differential output clock  
signals that are integer divisors of the APLL  
frequencies. Output jitter is typically 0.18 to 0.3ps RMS  
for an integer multiply and 0.25 to 0.4ps RMS for a  
fractional multiply (12kHz to 20MHz). Each device can  
configure itself from internal EEPROM so that clock  
signals are available immediately after power-up or  
reset.  
One Crystal or CMOS Input  
Three Differential or CMOS Inputs  
Differential to 750MHz, CMOS/TTL to 160MHz  
Clock Selection By Pin or Register Control  
Two APLLs Plus 5 or 10 Output Clocks  
APLLs Perform High Resolution Fractional-N  
Clock Multiplication  
Any Output Frequency from <1Hz to 750MHz  
Each Output Has an Independent Divider  
Output Jitter Typically 0.18 to 0.3ps RMS for  
Integer Multiply and 0.25 to 0.4ps RMS for  
Fractional Multiply (12kHz to 20MHz)  
Outputs are CML or 2xCMOS, Can Interface to  
LVDS, LVPECL, HSTL, SSTL and HCSL  
Applications  
Frequency conversion and synthesis applications in a  
wide variety of equipment types  
CMOS Output Voltage from 1.5V to 3.3V  
General Features  
Ordering Information  
Automatic Self-Configuration at Power-Up  
from Internal EEPROM Memory  
TEMP  
PIN-  
PART  
OUTPUTS  
RANGE  
PACKAGE  
SPI™ Processor Interface  
MAX24505EXG2  
MAX24510EXG2  
5
-40 to +85  
-40 to +85  
81-CSBGA  
81-CSBGA  
1.8V + 3.3V Operation (5V Tolerant)  
-40 to +85C Operating Temp. Range  
10  
Suffix 2 denotes a lead(Pb)-free/RoHS-compliant package.  
Register Map appears on page 18.  
Block Diagram  
DIV1  
DIV2  
DIV3  
DIV4  
DIV5  
DIV6  
DIV7  
DIV8  
DIV9  
OC1POS/NEG  
OC2POS/NEG  
OC3POS/NEG  
OC4POS/NEG  
OC5POS/NEG  
OC6POS/NEG  
OC7POS/NEG  
OC8POS/NEG  
OC9POS/NEG  
OC10POS/NEG  
APLL1  
3.7-4.2GHz,  
Sub-ps jitter,  
Fractional-N  
A
B
Figure 4-2  
MAX24510 only  
MAX24510 only  
IC1POS/NEG  
IC2POS/NEG  
IC3POS/NEG  
XIN  
APLL2  
3.7-4.2GHz,  
Sub-ps jitter,  
Fractional-N  
C
D
XO  
XOUT  
EEPROM  
DIV10  
SPI Interface  
JTAG  
and HW Control and Status Pins  
1
MAX24505, MAX24510  
Table of Contents  
1.  
2.  
APPLICATION EXAMPLES.......................................................................................................... 4  
DETAILED FEATURES................................................................................................................. 5  
2.1 APLL FEATURES.......................................................................................................................... 5  
2.2 OUTPUT CLOCK FEATURES........................................................................................................... 5  
2.3 GENERAL FEATURES .................................................................................................................... 5  
3.  
4.  
PIN DESCRIPTIONS..................................................................................................................... 6  
FUNCTIONAL DESCRIPTION ...................................................................................................... 9  
4.1 DEVICE IDENTIFICATION AND PROTECTION..................................................................................... 9  
4.2 LOCAL OSCILLATOR OR CRYSTAL .................................................................................................. 9  
4.2.1  
4.2.2  
External Oscillator...................................................................................................................................9  
On-Chip Crystal Oscillator ......................................................................................................................9  
4.3 INPUT SIGNAL FORMAT CONFIGURATION.......................................................................................10  
4.4 APLL CONFIGURATION ................................................................................................................11  
4.4.1  
4.4.2  
Input Selection and Frequency ............................................................................................................ 11  
Output Frequency ................................................................................................................................ 11  
4.5 OUTPUT CLOCK CONFIGURATION .................................................................................................12  
4.5.1  
4.5.2  
4.5.3  
Enable, Signal Format, Voltage and Interfacing .................................................................................. 12  
Frequency Configuration...................................................................................................................... 13  
Phase Adjustment................................................................................................................................ 13  
4.6 MICROPROCESSOR INTERFACE ....................................................................................................14  
4.7 RESET LOGIC..............................................................................................................................16  
4.8 POWER-SUPPLY CONSIDERATIONS...............................................................................................16  
4.9 INITIALIZATION AND EEPROM CONFIGURATION MEMORY..............................................................16  
5.  
REGISTER DESCRIPTIONS........................................................................................................17  
5.1 REGISTER TYPES ........................................................................................................................17  
5.1.1  
5.1.2  
5.1.3  
Status Bits............................................................................................................................................ 17  
Configuration Fields ............................................................................................................................. 17  
Bank-Switched Registers..................................................................................................................... 17  
5.2 REGISTER MAP ...........................................................................................................................18  
5.3 REGISTER DEFINITIONS ...............................................................................................................19  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
Global Registers................................................................................................................................... 19  
GPIO Registers.................................................................................................................................... 24  
APLL Registers .................................................................................................................................... 27  
Output Clock Registers ........................................................................................................................ 33  
6.  
JTAG AND BOUNDARY SCAN...................................................................................................37  
6.1 JTAG DESCRIPTION ....................................................................................................................37  
6.2 JTAG TAP CONTROLLER STATE MACHINE DESCRIPTION ..............................................................38  
6.3 JTAG INSTRUCTION REGISTER AND INSTRUCTIONS.......................................................................40  
6.4 JTAG TEST REGISTERS...............................................................................................................41  
7.  
8.  
ELECTRICAL CHARACTERISTICS ............................................................................................42  
PIN ASSIGNMENTS.....................................................................................................................51  
8.1 MAX24505 PIN ASSSIGNMENT ....................................................................................................51  
8.2 MAX24510 PIN ASSSIGNMENT ....................................................................................................53  
9.  
PACKAGE AND THERMAL INFORMATION...............................................................................55  
9.1 PACKAGE TOP MARK FORMAT......................................................................................................55  
9.2 THERMAL SPECIFICATIONS...........................................................................................................56  
2
MAX24505, MAX24510  
10. ACRONYMS AND ABBREVIATIONS..........................................................................................57  
11. DATA SHEET REVISION HISTORY ........................................................................................... 58  
List of Figures  
Figure 1-1. Frequency Synthesis Application Example................................................................................................4  
Figure 1-2. Frequency Conversion Application Example .............................................................................................4  
Figure 4-1. Crystal Equivalent Circuit / Crystal and Capacitor Connections ............................................................. 10  
Figure 4-2. APLL Block Diagram ............................................................................................................................... 11  
Figure 4-3. SPI Read Transaction Functional Timing................................................................................................ 15  
Figure 4-4. SPI Write Enable Transaction Functional Timing ................................................................................... 15  
Figure 4-5. SPI Write Transaction Functional Timing................................................................................................ 15  
Figure 6-1. JTAG Block Diagram............................................................................................................................... 37  
Figure 6-2. JTAG TAP Controller State Machine ...................................................................................................... 39  
Figure 7-1. Recommended External Components for Interfacing to Differential Inputs............................................ 44  
Figure 7-2. Recommended External Components for Interfacing to CML Outputs................................................... 46  
Figure 7-3. Recommended Confguration for Interfacing to HCSL Components....................................................... 47  
Figure 7-4. SPI Interface Timing Diagram ................................................................................................................. 49  
Figure 7-5. JTAG Timing Diagram............................................................................................................................. 50  
Figure 8-1. MAX24505 Pin Assignment Diagram...................................................................................................... 52  
Figure 8-2. MAX24510 Pin Assignment Diagram...................................................................................................... 54  
Figure 10-1. Non-Customized Device Top Mark ....................................................................................................... 55  
Figure 10-2. Custom Factory-Programmed Device Top Mark .................................................................................. 55  
List of Tables  
Table 3-1. Input Clock Pin Descriptions .......................................................................................................................6  
Table 3-2. Output Clock Pin Descriptions.....................................................................................................................6  
Table 3-3. Global Pin Descriptions ...............................................................................................................................6  
Table 3-4. SPI Interface Pin Descriptions.....................................................................................................................7  
Table 3-5. JTAG Interface Pin Descriptions .................................................................................................................7  
Table 3-6. Power-Supply Pin Descriptions ...................................................................................................................7  
Table 4-1. Crystal Selection Parameters................................................................................................................... 10  
Table 4-2. Input Clock Capabilities............................................................................................................................ 11  
Table 5-1. Register Map ............................................................................................................................................ 18  
Table 6-1. JTAG Instruction Codes ........................................................................................................................... 40  
Table 6-2. JTAG ID Code .......................................................................................................................................... 41  
Table 7-1. Recommended DC Operating Conditions................................................................................................ 42  
Table 7-2. Electrical Characteristics: Supply Currents .............................................................................................. 42  
Table 7-3. Electrical Characteristics: Non-Clock CMOS/TTL Pins............................................................................ 43  
Table 7-4. Electrical Characteristics: Clock Inputs .................................................................................................... 44  
Table 7-5. Electrical Characteristics: CML Clock Outputs......................................................................................... 45  
Table 7-6. Electrical Characteristics: CMOS and HSTL (Class I) Clock Outputs...................................................... 46  
Table 7-7. Electrical Characteristics: Clock Output Timing ....................................................................................... 47  
Table 7-8. Electrical Characteristics: Jitter Specifications......................................................................................... 47  
Table 7-9. Electrical Characteristics: Typical Output Jitter Performance.................................................................. 47  
Table 7-10. Electrical Characteristics: Typical Input-to-Output Clock Delay............................................................. 48  
Table 7-11. Electrical Characteristics: Typical Output-to-Output Clock Delay.......................................................... 48  
Table 7-12. Electrical Characteristics: SPI Interface Timing ..................................................................................... 49  
Table 7-13. Electrical Characteristics: JTAG Interface Timing.................................................................................. 50  
Table 8-1. MAX24505 Pin Assignments Sorted by Signal Name.............................................................................. 51  
Table 8-2. MAX24510 Pin Assignments Sorted by Signal Name.............................................................................. 53  
Table 9-1. Package Top Mark Legend ...................................................................................................................... 55  
Table 9-2. CSBGA Package Thermal Properties ...................................................................................................... 56  
3
MAX24505, MAX24510  
1. Application Examples  
Figure 1-1. Frequency Synthesis Application Example  
MAX24510  
25MHz  
125MHz  
50MHz  
XO  
APLL1  
125MHz  
Combination of 25MHz, 125MHz and  
156.25MHz  
156.25MHz  
156.25MHz Ethernet frequencies  
-plus-  
Multiples of 33MHz and 100MHz for  
processor and memory clocks  
133MHz  
200MHz  
100MHz  
66MHz  
APLL2  
Any combination of differential or  
2x single-ended signal format  
33MHz  
Figure 1-2. Frequency Conversion Application Example  
MAX24510  
25MHz  
125MHz  
125MHz  
156.25MHz  
156.25MHz  
Synchronous Ethernet Clocks:  
any combination of 25M, 125M,  
156.25M and related frequencies  
APLL1  
19.44MHz  
Reference Clock  
155.52MHz  
155.52MHz  
77.76MHz  
622.08MHz  
622.08MHz  
SDH/SONET Clocks: Nx6.48MHz  
to 622.08MHz  
APLL2  
Any combination of differential or  
2x single-ended signal format  
4
MAX24505, MAX24510  
2. Detailed Features  
2.1  
APLL Features  
Two independent APLLs  
Very high-resolution fractional scaling (i.e. non-integer multiplication)  
Output jitter is typically 0.18 to 0.3ps RMS for an integer multiply and 0.25 to 0.4ps RMS for a fractional multiply  
(12kHz to 20MHz integration band, for output frequencies >100MHz)  
Telecom output frequencies include 622.08MHz for SONET/SDH and 625MHz for Synchronous Ethernet  
Bypass mode for each APLL supports system testing and allows the devices to be used in fanout  
applications  
2.2  
Output Clock Features  
Up to five (MAX24505) or ten (MAX24510) low-jitter output clocks  
Each output can be one differential output or two CMOS/TTL outputs  
Outputs easily interface with CML, LVDS, LVPECL, HSTL, SSTL, HCSL components  
Each output can be any integer divisor of an APLL output clock  
Supported telecom frequencies include PDH, SDH, Synchronous Ethernet, OTN  
Can also produce clock frequencies for microprocessors, ASICs, FPGAs and other components  
Can produce PCIe-compliant output clocks (PCIe gen. 1, 2 and 3)  
Per-output delay adjustment  
Per-output enable/disable  
2.3  
General Features  
SPI serial microprocessor interface  
Automatic self-configuration at power-up from internal EEPROM memory  
Four general-purpose I/O pins  
Register set can be write-protected  
5
 
 
MAX24505, MAX24510  
3. Pin Descriptions  
Table 3-1. Input Clock Pin Descriptions  
PIN NAME  
TYPE(1)  
PIN DESCRIPTION  
Input Clocks 1 3.  
IC1POS, IC1NEG  
Differential or CMOS/TTL signal format. Programmable frequency.  
Differential: See Table 7-4 for electrical specifications, and see Figure 7-1 for  
recommended external circuitry for interfacing these differential inputs to LVDS,  
LVPECL or CML output pins on other devices.  
CMOS/TTL: Connect the single-ended signal to the POS pin. Connect the NEG pin to a  
capacitor (0.1F or 0.01F) to VSS_IO. As shown in Figure 7-1, the NEG pin is  
internally biased to approximately 1.2V. Treat the NEG pin as a sensitive node;  
minimize stubs; do not connect to anything else including other NEG pins.  
Unused: The POS and NEG pins can be left floating.  
IC2POS, IC2NEG  
IC3POS, IC3NEG  
IDIFF  
Crystal Oscillator Input.  
An on-chip XO circuit is designed to work with an external crystal connected to  
the XIN and XOUT pins. See section 4.2.2 for crystal characteristics and  
recommended external components. Alternately, the on-chip XO circuit can be  
disabled, and XIN can be used as a single-ended input clock pin that can  
accept a clock signal amplitude from 1.8V to 3.3V.  
XIN  
I
Crystal Oscillator Output.  
XOUT  
See section 4.2.2 for crystal characteristics and recommended external  
components.  
O
Table 3-2. Output Clock Pin Descriptions  
PIN NAME  
TYPE(1)  
PIN DESCRIPTION  
OC1POS, OC1NEG  
OC2POS, OC2NEG  
OC3POS, OC3NEG  
OC4POS, OC4NEG  
OC5POS, OC5NEG  
OC6POS, OC6NEG  
OC7POS, OC7NEG  
OC8POS, OC8NEG  
OC9POS, OC9NEG  
OC10POS, OC10NEG  
Differential Output Clocks 1 through 10.  
CML, HSTL or 1 or 2 CMOS. Programmable frequency.  
See Table 7-5 and Figure 7-2 for electrical specifications and recommended external  
circuitry for interfacing to LVDS, LVPECL or CML input pins on other devices.  
See Table 7-6 for electrical specifications for interfacing to CMOS and HSTL inputs on  
other devices.  
ODIFF  
See Figure 7-3 for recommended external circuitry for interfacing to HCSL inputs on  
other devices.  
Table 3-3. Global Pin Descriptions  
PIN NAME  
TYPE(1)  
PIN DESCRIPTION  
Reset (Active Low). When this global asynchronous reset is pulled low, all internal  
circuitry is reset to default values. The device is held in reset as long as RST_N is low.  
RST_N should be held low for at least 100ns.  
RST_N  
IPU  
TEST  
Factory Test Mode Select. Wire this pin to VSS for normal operation.  
IPD  
General-Purpose I/O Pin 1.  
GPCR.GPIO1C configures this pin. Its state is indicated in GPSR.GPIO1.  
GPIO1  
I/OPU  
General-Purpose I/O Pin 2.  
GPCR.GPIO2C configures this pin. Its state is indicated in GPSR.GPIO2.  
GPIO2  
I/OPD  
Auto Configuration / General-Purpose I/O Pin 3.  
If this pin is high when RST_N goes high the device automatically configures its  
registers based on the configuration script stored in EEPROM memory. See section  
4.9. After reset GPCR.GPIO3C configures this pin. Its state is indicated in  
GPSR.GPIO3.  
AC / GPIO3  
I/OPU  
Source Switch / General-Purpose I/O Pin 4.  
When APLLCR2.EXTSW=1 this pin behaves as SS, the source-switching control input..  
See section 4.4.1. When EXTSW=0 this pin behaves as GPIO4, it is configured by  
GPCR.GPIO4C, and its state is indicated in GPSR.GPIO4.  
SS / GPIO4  
I/OPD  
6
MAX24505, MAX24510  
Table 3-4. SPI Interface Pin Descriptions  
See section 4.6 for functional description and Table 7-12 for timing specifications.  
PIN NAME  
TYPE(1)  
PIN DESCRIPTION  
Chip Select. The CS_N, SCLK, SDI and SDO pins together are a SPI slave port  
through which an external SPI master can communicate with the device. This pin must  
be asserted (low) to read or write internal registers.  
CS_N  
I
SCLK  
SDI  
I
I
Serial Clock. SCLK is always driven by the SPI bus master.  
Serial Data Input. The SPI bus master transmits data to the device on this pin.  
Serial Data Output. The device transmits data to the SPI bus master on this pin.  
SDO  
O3  
Table 3-5. JTAG Interface Pin Descriptions  
See Section 6 for functional description and Table 7-13 for timing specifications.  
PIN NAME  
TYPE(1)  
PIN DESCRIPTION  
JTAG Test Reset (Active Low). Asynchronously resets the test access port (TAP)  
controller. JTRST_N should be held low during device power-up. If not used, JTRST_N  
can be held low or high after power-up.  
JTRST_N  
IPU  
JTAG Clock. Shifts data into JTDI on the rising edge and out of JTDO on the falling  
edge. If not used, JTCLK can be held low or high.  
JTAG Test Data Input. Test instructions and data are clocked in on this pin on the  
rising edge of JTCLK. If not used, JTDI can be held low or high.  
JTAG Test Data Output. Test instructions and data are clocked out on this pin on the  
falling edge of JTCLK. If not used, leave floating.  
JTCLK  
JTDI  
I
IPU  
O3  
JTDO  
JTAG Test Mode Select. Sampled on the rising edge of JTCLK and is used to place  
the port into the various defined IEEE 1149.1 states. If not used connect to 3.3V or  
leave floating.  
JTMS  
IPU  
Table 3-6. Power-Supply Pin Descriptions  
PIN NAME  
TYPE(1)  
PIN DESCRIPTION  
VDD_18  
P
P
P
P
P
P
P
P
P
Digital I/O Power Supply. 1.8V 5%.  
Digital I/O Power Supply. 3.3V 5%.  
VDD_33  
VDD_APLL1_18  
VDD_APLL1_33  
VDD_APLL2_18  
VDD_APLL2_33  
VDD_DIG_18  
VDD_OC_18  
VDD_XO_18  
VDD_XO_33  
VDDO18A  
VDDO18B  
VDDO18C  
VDDO18D  
VDDOA  
APLL1 Power Supply. 1.8V 5%. Also supply for IC1 input.  
APLL1 Power Supply. 3.3V 5%. Also supply for IC1 input.  
APLL2 Power Supply. 1.8V 5%. Also supply for IC2 and IC3 inputs.  
APLL2 Power Supply. 3.3V 5%. Also supply for IC2 and IC3 inputs.  
Core Digital Power Supply. 1.8V 5%.  
Output Clock Power Supply. 1.8V 5%.  
Crystal Oscillator Power Supply. 1.8V 5%.  
Crystal Oscillator Power Supply. 3.3V 5%.  
Output Clock Power Supply, Bank A (OC1, OC2). 1.8V ±5%.  
Output Clock Power Supply, Bank B (OC3OC5). 1.8V ±5%.  
Output Clock Power Supply, Bank C (OC6-OC8). 1.8V ±5%.  
Output Clock Power Supply, Bank D (OC9, OC10). 1.8V ±5%.  
Output Clock Power Supply, Bank A (OC1, OC2). 1.5V to 3.3V ±5%.  
Output Clock Power Supply, Bank B (OC3OC5). 1.5V to 3.3V ±5%.  
Output Clock Power Supply, Bank C (OC6-OC8). 1.5V to 3.3V ±5%.  
Output Clock Power Supply, Bank D (OC9, OC10). 1.5V to 3.3V ±5%.  
Return for VDD_APLL1 Supplies.  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
VDDOB  
VDDOC  
VDDOD  
VSS_APLL1  
VSS_APLL2  
VSS_DIG  
Return for VDD_APLL2 Supplies.  
Core Digital Return.  
VSS_OC  
Output Clock Return.  
VSS_XO  
Crystal Oscillator Return.  
VSSOA  
Return for VDDOA Supply.  
VSSOB  
Return for VDDOB Supply.  
VSSOC  
Return for VDDOC Supply.  
7
 
MAX24505, MAX24510  
PIN NAME  
VSSOD  
VSUB  
TYPE(1)  
PIN DESCRIPTION  
P
P
Return for VDDOD Supply.  
Substrate Voltage. Connect to board ground.  
Note 1: All pins, except power and analog pins, are CMOS/TTL unless otherwise specified in the pin description.  
PIN TYPES  
I = input pin  
IDIFF = differential input, can be interfaced to LVDS, LVPECL, CML, HSTL or CMOS/TTL signals  
IPD = input pin with internal 50kpulldown  
IPU = input pin with internal 50kpullup  
I/O = input/output pin  
IOPD = input/output pin with internal 50kpulldown  
IOPU = input/output pin with internal 50kpullup  
O = output pin  
O3 = output pin that can be tri-stated (i.e., placed in a high-impedance state)  
ODIFF = differential output, CML format  
P = power-supply pin  
Note 2: All digital pins, except ICn and OCn, are I/O pins in JTAG mode. ICn and OCn pins do not have JTAG functionality.  
8
 
MAX24505, MAX24510  
4. Functional Description  
4.1 Device Identification and Protection  
The 16-bit read-only ID field in the ID1 and ID2 registers is set to 00C3h = 195 decimal. The device revision can be  
read from the REV register. Contact the factory to interpret this value and determine the latest revision. The  
register set can be protected from inadvertent writes using the PROT register.  
4.2  
Local Oscillator or Crystal  
Section 4.2.1 describes how to connect an external oscillator and the required characteristics of the oscillator.  
Section 4.2.2 describes how to connect an external crystal to the on-chip crystal oscillator and the required  
characteristics of the crystal.  
4.2.1 External Oscillator  
A signal from an external oscillator can be connected to any of the clock inputs: IC1, IC2, IC3 or XIN. The external  
oscillator can be any frequency from 9.72MHz to 750MHz and either differential or single-ended (single-ended only  
on XIN). For lowest output jitter, a differential signal is best. To minimize jitter when a single-ended signal is used,  
the signal must be properly terminated and must have very short trace length. A poorly terminated single-ended  
signal can greatly increase output jitter, and long single-ended trace lengths are more susceptible to noise. If the  
oscillator is located more than 2cm away from the device, consider connecting the single-ended oscillator output to  
an LVDS driver IC (such as MAX9110) and sending a differential clock signal to the device pins.  
While the stability of the external oscillator over temperature can be important, its absolute frequency accuracy is  
less important. This is because any known frequency inaccuracy of the oscillator can be compensated in the  
APLLs by adjusting the APLLs' fractional feedback divider values (AFBDIV) by ppb or ppm to compensate for  
oscillator frequency error.  
4.2.1.1 Oscillator Characteristics to Minimize Output Jitter  
The jitter on output clock signals depends on the phase noise and frequency of the external oscillator. For the  
device to operate with the lowest possible output jitter, the external oscillator should have the following  
characteristics:  
Phase Noise: Typical value of -148dBc/Hz or lower at 10kHz offset from the carrier.  
Frequency: The higher the better, subject to 102.4MHz maximum.  
4.2.2 On-Chip Crystal Oscillator  
The crystal oscillator is designed to drive a fundamental mode, AT-cut crystal resonator. See Table 4-1 for  
recommended crystal specifications. When a crystal is not connected between XIN and XOUT, the XIN pin can be  
used as a single-ended input to the APLLs.  
To use the crystal oscillator with an external crystal, set MCR2.XIEN=1 to enable the XIN pin logic and set  
MCR2.XOEN=1 to enable the XOUT pin so the XO can oscillate. To use the XIN pin as a single-ended input, set  
MCR2.XIEN=1 to enable the XIN pin and set MCR2.XOEN=0 to disable the XOUT pin to minimize power and  
noise. If the XIN pin is not used, set MCR2.XIEN=0 and MCR2.XOEN=0 to minimize power and noise.  
See Figure 4-1 for the crystal equivalent circuit and the recommended external capacitor connections. To achieve a  
crystal load (CL) of 10pF, an external 16pF is placed in parallel with the 4pF internal capacitance of the XIN pin,  
and an external 16pF is placed in parallel with the 4pF internal capacitance of the XOUT pin. The crystal then sees  
a load of 20pF in series with 20pF, which is 10pF total load. Note that the 16pF capacitance values in Figure 4-1  
include all capacitance on those nodes. If, for example, PCB trace capacitance between crystal pin and IC pin is  
2pF then 14pF capacitors should be used to make 16pF total.  
9
 
 
 
MAX24505, MAX24510  
The crystal, traces, and two external capacitors should be placed on the board as close as possible to the XIN and  
XOUT pins to reduce crosstalk of active signals into the oscillator. Also no active signals should be routed under  
the crystal circuitry.  
Note: Crystals have temperature sensitivies that can cause crystal oscillator frequency changes in response to  
ambient temperature changes. In applications where significant temperature changes are expected near the  
crystal, it is recommended that the crystal be covered with a thermal cap, or an external XO, TCXO or OCXO  
should be used instead.  
Figure 4-1. Crystal Equivalent Circuit / Crystal and Capacitor Connections  
XTAL  
4pF  
16pF  
XIN  
CO  
LS  
Crystal  
R1  
R2  
(CL = 10pF)  
XOUT  
4pF  
CS  
16pF  
RS  
Note 1: R1=1M. The value of R2 is a function of crystal frequency, loading and maximum power rating. Contact the factory for guidance in  
choosing the right R1 resistor for a specific crystal.  
Table 4-1. Crystal Selection Parameters  
PARAMETER  
SYMBOL  
MIN  
TYP  
25, 50,  
51.21  
2
MAX  
52  
UNITS  
Crystal Oscillation Frequency  
fOSC  
25  
MHz  
Shunt Capacitance  
Load Capacitance  
Equivalent Series Resistance  
(ESR)2  
CO  
CL  
RS  
RS  
5
pF  
pF  
10  
fOSC < 40MHz  
fOSC > 40MHz  
60  
50  
Maximum Crystal Drive Level  
Note 1: Crystal frequencies of 49.152MHz, 50MHz and 51.2MHz are excellent choices for lowest output jitter.  
100  
W  
Note 2: These ESR limits are chosen to constrain crystal drive level to less than 100W. If the crystal can tolerate a drive level greater than  
100W then proportionally higher ESR is acceptable.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Crystal Oscillator Frequency Stability vs. Power  
Supply  
ppm per 10%  
in VDD  
fFVD  
0.2  
0.5  
Any known frequency inaccuracy of the crystal can be compensated in the APLLs by adjusting the APLLs'  
fractional feedback divider values (AFBDIV) by ppb or ppm to compensate for crystal frequency error.  
4.3  
Input Signal Format Configuration  
Input clocks IC1 and IC2 are enabled by setting MCR2.IC1EN=1 and IC2EN=1, respectively. The power consumed  
by a differential receiver is shown in Table 7-2. The electrical specifications for these inputs are listed in Table 7-4.  
Each input clock can be configured to accept nearly any differential signal format by using the proper set of  
external components (see Table 7-4 and Figure 7-1). To configure these differential inputs to accept single-ended  
CMOS or TTL signals, connect the single-ended signal to the POS pin, and connect the NEG pin to a capacitor  
(0.1F or 0.01F) to VSS. As shown in Figure 7-1, the NEG pin is internally biased to approximately 1.2V. If a 1.2V  
bias is unsuitable, an external voltage divider can be used to set a different bias. If an input is not used, both POS  
and NEG pins can be left floating.  
10  
 
 
 
MAX24505, MAX24510  
Table 4-2. Input Clock Capabilities  
Input Clock  
Signal Format  
Frequence Range (MHz)  
Differential: 9.72MHz to 750MHz  
Single-ended: 9.72MHz to 160MHz  
IC1  
Diferential  
or  
CMOS/TTL  
IC2  
IC3  
4.4  
APLL Configuration  
4.4.1 Input Selection and Frequency  
The input to each APLL can be controlled by the SS input pin or by the APLLCR2.APLLMUX register field. When  
APLLCR2.EXTSW=0, the APLLCR2.APLLMUX register field controls the APLL input mux.  
When APLLCR2.EXTSW=1, the SS input pin controls the APLL input mux. When SS=0, the mux selects the input  
specified by APLLCR2.APLLMUX. When SS=1, the mux selects the input specified by APLLCR2.ALTMUX.  
The input signal to the APLL’s phase-frequency detector must be in the range 9.72MHz to 102.4MHz. For input  
frequenices above 102.4MHz, the APLL's input divider can be configured to divide the signal by 2, 4 or 8  
(APLLCR2.AIDIV) to get a frequency below 102.4MHz. Note that higher APLL input frequencies give lower output  
jitter, all else being equal.  
4.4.2 Output Frequency  
Figure 4-2. APLL Block Diagram  
APLL  
APLLCR1.HSDIV[2:0]  
Input  
Divider  
(÷1, 2, 4, 8)  
Phase/  
Freq  
Detector  
High-Speed  
Divider  
(÷ 4.5 to 15)  
Clock to  
Output  
Dividers  
VCO  
3.7 to 4.2  
GHz  
Loop  
Filter  
Clock from  
APLL Mux  
APLLCR2.  
AIDIV[1:0]  
Feedback  
Divider  
(fractional)  
Input Frequency Range: AFBDIV[74:0], AFBREM,  
9.72MHz to 102MHz AFBDEN, AFBBP  
250MHz to 750MHz  
An APLL is enabled when APLLCR1.APLLEN=1. The APLLs have a fractional-N architecture and therefore can  
produce output frequencies that are either integer or non-integer multiples of the input clock frequency. Figure 4-2  
shows a block diagram of the APLL, which is built around an ultra-low-jitter multi-GHz VCO. Register fields  
AFBDIV, AFBREM, AFBDEN and AFBBP configure the frequency multiplication ratio of the APLL. The  
APLLCR1.HSDIV field specifies how the VCO frequency is divided down by the high-speed divider. Dividing by six  
is the typical setting to produce 622.08MHz for SDH/SONET or 625MHz for Ethernet applications. The HSDIV  
divider produces a clock signal with a 50% duty cycle for all divider values including odd numbers.  
Internally, the exact APLL feedback divider value is expressed in the form AFBDIV + AFBREM / AFBDEN *  
2-(66-AFBBP). This feedback divider value must be chosen such that APLL_input_frequency * feedback_divider_value  
is in the operating range of the VCO (as specified in Table 7-7). The AFBDIV term is a fixed-point number with 9  
integer bits and a configurable number of fractional bits (up to 66, as specified by AFBBP). Typically AFBBP is set  
11  
 
 
 
MAX24505, MAX24510  
to 42 to specify that AFBDIV has 66 42 = 24 fractional bits. Using more than 24 fractional bits does not yield a  
detectable benefit. Using less than 12 fractional bits is not recommended.  
The following equations show how to calculate the feedback divider values for the situation where the APLL should  
multiply the APLL input frequency by integer M and also fractionally scale by the ratio of integers N / D. In other  
words, VCO_frequency = input_frequency * M * N / D. An example of this is multiplying 77.76MHz by M=48 and  
scaling by N / D = 255 / 237 for forward error correction applications.  
AFBDIV = trunc(M * N / D * 224)  
lsb_fraction = M * N / D * 224 AFBDIV  
AFBDEN = D  
(1)  
(2)  
(3)  
(4)  
(5)  
AFBREM = round(lsb_fraction * AFBDEN)  
AFBBP = 66 24 = 42  
The trunc() function returns only the integer portion of the number. The round() function rounds the number to the  
nearest integer. In Equation (1), AFBDIV is set to the full-precision feedback divider value, M * N / D, truncated  
after the 24th fractional bit. In Equation (2) the temporary variable 'lsb_fraction' is the fraction that was truncated in  
Equation (1) and therefore is not represented in the AFBDIV value. In Equation (3), AFBDEN is set to the  
denominator of the original M * N / D ratio. In Equation (4), AFBREM is calculated as the integer numerator of a  
fraction (with denominator AFBDEN) that equals the 'lsb_fraction' temporary variable. Finally, in Equation (5)  
AFBBP is set to 66 24 = 42 to correspond with AFBDIV having 24 fractional bits.  
When a fractional scaling scenario involves multiplying an integer M times multiple scaling ratios N1 / D1 through  
Nn / Dn, the equations above can still be used if the numerators are multiplied together to get N = N1 x N2 x … x Nn  
and the denominators are multiplied together to get D = D1 x D2 x … x Dn.  
Note that one easy way to calculate the exact values to write to the APLL registers is to use the  
MAX24505/MAX24510 evaluation board software, available on the MAX24505/MAX24510 page of Microsemi's  
website. This software can be used even when no evaluation board is attached to the computer.  
Note: After the APLL's feedback divider settings are configured in register fields AFBDIV, AFBREM, AFBDEN and  
AFBBP, the APLL enable bit APLLCR1.APLLEN must be changed from 0 to 1 to cause the APLL to reacquire lock  
with the new settings.  
4.5  
Output Clock Configuration  
The MAX24505 has five output clocks signals. The MAX24510 has ten output clocks signals. Each output has  
individual divider, enable and signal format controls.  
4.5.1 Enable, Signal Format, Voltage and Interfacing  
Using the OCCR2.OCSF register field, each output pair can be disabled or configured as a CML output, an HSTL  
output, or one or two CMOS outputs. When an output is disabled it is high impedance and the output driver is in a  
low-power state. In CMOS mode, the OCxNEG pin can be disabled, in phase or inverted vs. the OCxPOS pin. In  
CML mode the normal 800mV VOD differential voltage is available as well as a lower-power 400mV VOD. All of these  
options are specified by OCCR2.OCSF.  
12  
 
MAX24505, MAX24510  
Device clock outputs are grouped into four banks as shown below:  
Bank MAX24505 Outputs MAX24510 Outputs  
A
B
C
D
OC1, OC2  
OC3  
OC8  
OC1, OC2  
OC3, OC4, OC5  
OC6, OC7, OC8  
OC9, OC10  
OC10  
Each bank has its own power supply and ground pin to allow CMOS or HSTL signal swing from 1.5V to 3.3V for  
glueless interfacing to neighboring components. If OCSF is set to HSTL mode then a 1.5V power supply voltage  
should be used to get a standards-compliant HSTL output.  
Note that differential (CML) outputs must have a bank power supply of 3.3V. If other outputs in that bank are  
configured for CMOS operation, the CMOS outputs will also have a 3.3V power supply. However, CMOS outputs  
from that bank can be externally attenuated using resistor divider networks if needed.  
The differential outputs can be easily interfaced to LVDS, LVPECL, CML, HSTL and other differential inputs on  
neighboring ICs using a few external passive components. See App Note HFAN-1.0 for details.  
4.5.2 Frequency Configuration  
The frequency of each output is determined by which APLL it is connected to, the configuration the APLL and the  
per-output dividers. Each bank of outputs can be connected to either APLL1 or APLL2. The register fields to control  
the bank muxes are AMUX, BMUX, CMUX and DMUX, respectively, in the MCR1 register.  
Each output has two output dividers, a 7-bit medium-speed divider (OCCR1.MSDIV) and a 24-bit output divider  
(OCDIV registers). These dividers are in series, medium-speed divider first then output divider. These dividers  
produce signals with 50% duty cycle for all divider values including odd numbers.  
Since each output has its own independent dividers, the device can output families of related frequencies that have  
an APLL output frequency as a common multiple. For example, for Ethernet clocks, a 625MHz APLL output clock  
can be divided by four for some outputs to get 156.25MHz, divided by five for other outputs to get 125MHz, and  
divided by 25 for other outputs to get 25MHz. Similarly, for SDH/SONET clocks, a 622.08MHz APLL output clock  
can be divided by 4 to get 155.52MHz, by 8 to get 77.76MHz, by 16 to get 38.88MHz or by 32 to get 19.44MHz.  
Various divisors of the APLL output clock can be brought out on any combination of outputs. For the very lowest  
output jitter, however, frequencies such as 156.25MHz and 125MHz that are not integer divisors of one another  
should come from separate banks whenever possible.  
4.5.3 Phase Adjustment  
The phase of an output signal can be shifted by 180by setting OCCR1.POL=1. In addition, the phase can be  
adjusted using the OCCR3.PHADJ register field. The adjustment is in units of APLL output clock cycles. For  
example, if the APLL output frequency is 625MHz then one APLL output clock cycle is 1.6ns, the smallest phase  
adjustment is 0.8ns, and the adjustment range is ±5.6ns.  
13  
 
 
MAX24505, MAX24510  
4.6  
Microprocessor Interface  
The device presents a SPI slave port on the CS_N, SCLK, SDI, and SDO pins. SPI is a widely used master/slave  
bus protocol that allows a master and one or more slaves to communicate over a serial bus. The device is always a  
slave. Masters are typically microprocessors, ASICs or FPGAs. Data transfers are always initiated by the master,  
which also generates the SCLK signal. The device receives serial data on the SDI pin and transmits serial data on  
the SDO pin. SDO is high impedance except when the device is transmitting data to the bus master.  
Bit Order. The register address and all data bytes are transmitted most significant bit first on both SDI and SDO.  
Clock Polarity and Phase. The device latches data on SDI on the rising edge of SCLK and updates data on SDO  
on the falling edge of SCLK. SCLK does not have to toggle between accesses, i.e., when CS_N is high.  
Device Selection. Each SPI slave has its own chip-select line. To select the device, the bus master drives its  
CS_N pin low.  
Command and Address. After driving CS_N low, the bus master transmits an 8-bit command followed by a 16-bit  
register address. The available commands are shown below.  
Command  
Write Enable  
Write  
Read  
Read Status  
Hex  
Bit Order, Left to Right  
0000 0110  
0000 0010  
0000 0011  
0000 0101  
0x06  
0x02  
0x03  
0x05  
Read Transactions. The device registers are accessible when EESEL=0. The internal EEPROM memory is  
accessible when EESEL=1. See section 5.1.3. After driving CS_N low, the bus master transmits the read  
command followed by the 16-bit register address. The device then responds with the requested data byte on SDO,  
increments its address counter, and prefetches the next data byte. If the bus master continues to demand data, the  
device continues to provide the data on SDO, increment its address counter, and prefetch the following byte. The  
read transaction is completed when the bus master drives CS_N high. See Figure 4-3.  
Register Write Transactions. The device registers are accessible when EESEL=0. After driving CS_N low, the  
bus master transmits the write command followed by the 16-bit register address followed by the first data byte to be  
written. The device receives the first data byte on SDI, writes it to the specified register, increments its internal  
address register, and prepares to receive the next data byte. If the master continues to transmit, the device  
continues to write the data received and increment its address counter. The write transaction is completed when  
the bus master drives CS_N high. See Figure 4-5.  
EEPROM Writes. The EEPROM memory is accessible when EESEL=1. After driving CS_N low, the bus master  
transmits the write enable command and then drives CS_N high to set the internal write enable latch. The bus  
master then drives CS_N low again and transmits the write command followed by the 16-bit register address  
followed by the first data byte to be written. The device first copies the page to be written from EEPROM to its page  
buffer. The device then receives the first data byte on SDI, writes it to its page buffer, increments its internal  
address register, and prepares to receive the next data byte. If the master continues to transmit, the device  
continues to write the data received to its page buffer and continues to increment its address counter. The address  
counter rolls over at the 32-byte boundary (i.e. when the five least-significant address bits are 11111). When the  
bus master drives CS_N high, the device transfers the data in the page buffer to the appropriate page in the  
EEPROM memory. See Figure 4-4 and Figure 4-5.  
EEPROM Read Status. After the bus master drives CS_N high to end an EEPROM write command, the EEPROM  
memory is not accessible for up to 5ms while the data is transferred from the page buffer. To determine when this  
transfer is complete, the bus master can use the Read Status command. After driving CS_N low, the bus master  
transmits the Read Status command. The device then responds with the status byte on SDO. In this byte, the least  
significant bit is set to 1 if the transfer is still in progress and 0 if the transfer has completed.  
14  
 
MAX24505, MAX24510  
Early Termination of Bus Transactions. The bus master can terminate SPI bus transactions at any time by  
pulling CS_N high. In response to early terminations, the device resets its SPI interface logic and waits for the start  
of the next transaction. If a register write transaction is terminated prior to the SCLK edge that latches the least  
significant bit of a data byte, the data byte is not written. If an EEPROM write transaction is terminated prior to the  
SCLK edge that latches the least significant bit of a data byte, none of the bytes in that write transaction are written.  
Design Option: Wiring SDI and SDO Together. Because communication between the bus master and the device  
is half-duplex, the SDI and SDO pins can be wired together externally to reduce wire count. To support this option,  
the bus master must not drive the SDI/SDO line when the device is transmitting.  
AC Timing. See Table 7-12 and Figure 7-4 for AC timing specifications for the SPI interface.  
Figure 4-3. SPI Read Transaction Functional Timing  
CS  
0
1
2
3
4
5
6
7
8
9
10  
22 23 24 25 26 27 28 29 30 31  
SCLK  
Command  
16-bit Address  
15 14 13  
SDI  
0
0
0
0
0
0
1
1
1
0
Data Byte1  
Data Byte n  
SDO  
High Impedance  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Figure 4-4. SPI Write Enable Transaction Functional Timing  
CS  
0
1
2
3
4
5
6
7
SCLK  
SDI  
Command  
0
0
0
0
0
1
1
0
Figure 4-5. SPI Write Transaction Functional Timing  
CS  
0
1
2
3
4
5
6
7
8
9
10  
22 23 24 25 26 27 28 29 30 31  
SCLK  
SDI  
Command  
16-bit Address  
15 14 13  
Data Byte 1  
Data Byte n  
0
0
0
0
0
0
1
0
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
15  
MAX24505, MAX24510  
4.7  
Reset Logic  
The device has three reset controls: the RST_N pin, the RST bit in MCR1, and the JTAG reset pin JTRST_N. The  
RST_N pin asynchronously resets the entire device, except for the JTAG logic. When the RST_N pin is low all  
internal registers are reset to their default values, including those fields which latch their default values from, or  
based on, the states of configuration input pins when the RST_N goes high. The RST_N pin must be asserted  
once after power-up while the external oscillator is stabilizing. Reset should be asserted for at least 100ns.  
The MCR1.RST bit resets the entire device (except for the microprocessor interface, the JTAG logic and the RST  
bit itself), but when RST is active, the register fields with pin-programmed defaults do not latch their values from, or  
based on, the corresponding input pins. Instead these fields are reset to the default values that were latched when  
the RST_N pin was last active.  
Microsemi recommends holding RST_N low while the external oscillator starts up and stabilizes. An incorrect reset  
condition could result if RST_N is released before the oscillator has started up completely.  
Important: System software must wait at least 100µs after reset (RST_N pin or RST bit) is deasserted before  
initializing the device as described in section 4.9.  
4.8  
Power-Supply Considerations  
Due to the multi-power-supply nature of the device, some I/Os have parasitic diodes between a <3.3V supply and a  
3.3V supply. When ramping power supplies up or down, care must be taken to avoid forward-biasing these diodes  
because it could cause latchup. Two methods are available to prevent this. The first method is to place a Schottky  
diode external to the device between the <3.3V supply and the 3.3V supply to force the 3.3V supply to be within  
one parasitic diode drop of the <3.3V supply. The second method is to ramp up the 3.3V supply first and then ramp  
up the <3.3V supply.  
4.9  
Initialization and EEPROM Configuration Memory  
After power-up or reset, a series of writes must be done to the device to tune it for optimal performance. This series  
of writes is called the initialization script. Each die revision has a different initialization script. For the latest  
initialization scripts contact Microsemi timing products technical support. The initialization script must be part of the  
self-configuration script stored in the device’s internal EEPROM memory. The MAX24505/MAX24510 EV kit  
software automatically includes the correct initialization script in configuration scripts it creates.  
16  
 
 
MAX24505, MAX24510  
5. Register Descriptions  
The device has an overall address range from 000h to 1FFh. Table 5-1 in Section 5.2 shows the register map. In  
each register, bit 7 is the MSB and bit 0 is the LSB. Register addresses not listed and bits marked “—“ are reserved  
and must be written with 0. Writing other values to these registers may put the device in a factory test mode  
resulting in undefined operation. Bits labeled “0” or “1” must be written with that value for proper operation. Register  
fields with underlined names are read-only fields; writes to these fields have no effect. All other fields are read-  
write. Register fields are described in detail in the register descriptions that follow Table 5-1.  
5.1  
Register Types  
5.1.1 Status Bits  
The device has two types of status bits. Real-time status bits are read-only and indicate the state of a signal at the  
time it is read. Latched status bits are set when a signal changes state (low-to-high, high-to-low, or both, depending  
on the bit) and cleared when written with a logic 1 value. Writing a 0 has no effect. When set, some latched status  
bits can cause an interrupt request if enabled to do so by corresponding interrupt enable bits.  
5.1.2 Configuration Fields  
Configuration fields are read-write. During reset, each configuration field reverts to the default value shown in the  
register definition. Configuration register bits marked “—“ are reserved and must be written with 0.  
5.1.3 Bank-Switched Registers  
To simplify the device’s register map and documentation, some registers are bank-switched, meaning banks of  
registers are switched in and out of the register map based on the value of a bank-select control field.  
At the top level, The EESEL register is a bank-select control field that maps the device registers into the memory  
map at address 0x1 and above when EESEL=0 and maps the EEPROM memory into the memory map at address  
0x1 and above when EESEL=1. The EESEL register itself is always in the memory map at address 0x0 for both  
EESEL=0 and EESEL=1.  
When EESEL=0 (device registers) the bank-switched sections of the memory map are: the APLL registers and the  
output clock registers.  
The registers for the APLLs are bank-switched in the APLL Registers section of Table 5-1. The APLLSEL register  
is the bank-select control field for the APLL registers.  
The registers for the output clocks are bank-switched in the Output Clock Registers section of Table 5-1. The  
OCSEL register is the bank-select control field for the output clock registers.  
17  
 
MAX24505, MAX24510  
5.2  
Register Map  
Table 5-1. Register Map  
Note: Register names are hyperlinks to register definitions. Underlined fields are read-only.  
ADDR  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Global Registers  
00h  
01  
02  
03  
04  
05  
06  
07  
EESEL  
ID1  
ID2  
EESEL  
ID[7:0]  
ID[15:8]  
REV  
REV[7:0]  
PROT[7:0]  
PROT  
MCR1  
MCR2  
APLLSR  
RST  
XIEN  
XOEN  
A2LKIE  
IC1EN  
A2LKL  
IC2EN  
A2LK  
AMUX  
IC3EN  
BMUX  
A1LKIE  
CMUX  
DMUX  
A1LKL  
A1LK  
GPIO Registers  
GPIO4C[1:0]  
GPIO3C[1:0]  
GPIO2C[1:0]  
GPIO1C[1:0]  
08  
09  
0A  
0B  
0C  
0D  
GPCR  
GPSR  
GPIO1SS  
GPIO2SS  
GPIO3SS  
GPIO4SS  
GPIO4  
GPIO3  
GPIO2  
BIT[2:0]  
BIT[2:0]  
BIT[2:0]  
BIT[2:0]  
GPIO1  
POL  
POL  
POL  
POL  
OD  
OD  
OD  
OD  
REG[2:0]  
REG[2:0]  
REG[2:0]  
REG[2:0]  
APLL Registers  
APLLSEL  
10  
11  
12  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
APLLSEL[1:0]  
HSDIV[3:0]  
APLLCR1 APLLEN APLLBYP DALIGN  
AIDIV[1:0] EXTSW  
AFBDIV[3:0]  
APLLCR2  
AFBDIV1  
AFBDIV2  
AFBDIV3  
AFBDIV4  
AFBDIV5  
AFBDIV6  
AFBDIV7  
AFBDIV8  
AFBDIV9  
AFBDIV10  
AFBDEN1  
AFBDEN2  
AFBDEN3  
AFBDEN4  
AFBREM1  
AFBREM2  
AFBREM3  
AFBREM4  
AFBBP  
ALTMUX[1:0]  
APLLMUX[2:0]  
AFBDIV[11:4]  
AFBDIV[19:12]  
AFBDIV[27:20]  
AFBDIV[35:28]  
AFBDIV[43:36]  
AFBDIV[51:44]  
AFBDIV[59:52]  
AFBDIV[67:60]  
AFBDIV[74:68]  
AFBDEN[7:0]  
AFBDEN[15:8]  
AFBDEN[23:16]  
AFBDEN[31:24]  
AFBREM[7:0]  
AFBREM[15:8]  
AFBREM[23:16]  
AFBREM[31:24]  
AFBBP[7:0]  
Output Clock Registers  
40  
41  
OCSEL  
OCCR1  
OCSEL[3:0]  
MSDIV[6:0]  
18  
 
MAX24505, MAX24510  
ADDR  
42  
43  
44  
45  
REGISTER  
OCCR2  
OCCR3  
OCDIV1  
OCDIV2  
OCDIV3  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
OCSF[3:0]  
POL  
BIT 1  
BIT 0  
DRIVE[1:0]  
PHADJ[3:0]  
DALEN  
OCDIV[7:0]  
OCDIV[15:8]  
OCDIV[23:16]  
46  
5.3  
Register Definitions  
5.3.1 Global Registers  
Register Name:  
EESEL  
Register Description:  
Register Address:  
EEPROM Memory Selection Register  
00h  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
EESEL  
0
Name  
Default  
Bit 0: EEPROM Memory Select (EESEL). This bit is a bank-select that specfies whether device register space or  
EEPROM memory is mapped into addresses 0x1 and above. See sections 4.6 and 5.1.3.  
0 = Device registers  
1= EEPROM memory  
19  
MAX24505, MAX24510  
Register Name:  
ID1  
Register Description:  
Register Address:  
Device Identification Register, LSB  
01h  
Bit 7  
Name  
Default  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ID[7:0]  
see below  
Bits 7 to 0: Device ID (ID[7:0]). The full 16-bit ID field spans this register and ID2.  
MAX24505: ID[15:0] = 0x00C6.  
MAX24510: ID[15:0] = 0x00C7.  
Register Name:  
ID2  
Register Description:  
Register Address:  
Device Identification Register, MSB  
02h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
ID[15:8]  
Bit 2  
Bit 1  
Bit 0  
Name  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Device ID (ID[15:8]). See the ID1 register description.  
Register Name:  
REV  
Register Description:  
Register Address:  
Device Revision Register  
03h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
REV[7:0]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Device Revision (REV[7:0]). Contact the factory to interpret this value and determine the latest  
revision.  
Register Name:  
PROT  
Register Description:  
Register Address:  
Protection Register  
04h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
PROT[7:0]  
Default  
1
0
0
0
0
1
0
1
Bits 7 to 0: Protection Control (PROT[7:0]). This field can be used to protect the rest of the register set from  
inadvertent writes. In protected mode writes to all other registers are ignored. In single unprotected mode, one  
register (other than PROT) can be written, but after that write the device reverts to protected mode (and the value  
of PROT is internally changed to 00h). In fully unprotected mode all register can be written without limitation. See  
section 4.1.  
1000 0101 = Fully unprotected mode  
1000 0110 = Single unprotected mode  
All other values = Protected mode  
20  
 
 
MAX24505, MAX24510  
Register Name:  
MCR1  
Register Description:  
Register Address:  
Master Configuration Register 1  
05h  
Bit 7  
RST  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
AMUX  
0
Bit 2  
BMUX  
0
Bit 1  
CMUX  
0
Bit 0  
DMUX  
0
Name  
Default  
Bit 7: Device Reset (RST). When this bit is high the entire device is held in reset, and all register fields, except the  
RST bit itself, are reset to their default states. When RST is active, the register fields with pin-programmed defaults  
do not latch their values from the corresponding input pins. Instead these fields are reset to the default values that  
were latched from the pins when the RST pin was last active. See section 4.7.  
0 = Normal operation  
1 = Reset  
Bit 3: Bank A Mux Control (AMUX). This field selects the source APLL for the bank A outputs. See the block  
diagram on page 1 and section 4.5.2.  
0 = APLL1  
1 = APLL2  
Bit 2: Bank B Mux Control (BMUX). This field selects the source APLL for the bank B outputs. See the block  
diagram on page 1 and section 4.5.2.  
0 = APLL1  
1 = APLL2  
Bit 1: Bank C Mux Control (CMUX). This field selects the source APLL for the bank C outputs. See the block  
diagram on page 1 and section 4.5.2.  
0 = APLL1  
1 = APLL2  
Bit 0: Bank D Mux Control (DMUX). This field selects the source APLL for the bank D outputs. See the block  
diagram on page 1 and section 4.5.2.  
0 = APLL1  
1 = APLL2  
21  
MAX24505, MAX24510  
Register Name:  
MCR2  
Register Description:  
Register Address:  
Master Configuration Register 2  
06h  
Bit 7  
XIEN  
0
Bit 6  
XOEN  
0
Bit 5  
IC1EN  
0
Bit 4  
IC2EN  
0
Bit 3  
IC3EN  
0
Bit 2  
0
Bit 1  
0
Bit 0  
0
Name  
Default  
Bit 7: XIN Enable (XIEN). This field enables/disables the XIN pin and the XO analog circuitry. See section 4.2.2.  
0 = Disable  
1 = Enable  
Bit 6: XOUT Enable (XOEN). This field enables and disables the XOUT pin driver. When XOUT is disabled the  
external crystal is not driven and the XO doesn't oscillate. See section 4.2.2.  
0 = Disable (high impedance)  
1 = Enable (XO amplifier drives external crystal)  
Bit 5: IC1POS/NEG Enable (IC1EN). This field enables and disables the IC1POS/NEG differential receiver. The  
power consumption for the differential receiver is shown in Table 7-2. See section 4.3.  
0 = Disable (power down)  
1 = Enable  
Bit 4: IC2POS/NEG Enable (IC2EN). This field enables and disables the IC2POS/NEG differential receiver. The  
power consumption for the differential receiver is shown in Table 7-2. See section 4.3.  
0 = Disable (power down)  
1 = Enable  
Bit 3: IC3POS/NEG Enable (IC3EN). This field enables and disables the IC3POS/NEG differential receiver. The  
power consumption for the differential receiver is shown in Table 7-2. See section 4.3.  
0 = Disable (power down)  
1 = Enable  
22  
MAX24505, MAX24510  
Register Name:  
APLLSR  
Register Description:  
Register Address:  
APLL Status Register  
07h  
Bit 7  
0
Bit 6  
A2LKIE  
0
Bit 5  
A2LKL  
0
Bit 4  
A2LK  
0
Bit 3  
0
Bit 2  
A1LKIE  
0
Bit 1  
A1LKL  
0
Bit 0  
A1LK  
0
Name  
Default  
Bit 6: APLL2 Lock Interrupt Enable (A2LKIE). This bit is an interrupt enable for the A2LKL bit.  
0 = Mask the interrupt  
1 = Enable the interrupt  
Bit 5: APLL2 Lock Latched Status (A2LKL). This latched status bit is set to 1 when the A2LK status bit changes  
state (set or cleared). A2LKL is cleared when written with a 1. When A2LKL is set it can cause an interrupt request  
if the A2LKIE interrupt enable bit is set.  
Bit 4: APLL2 Lock Status (A2LK). This real-time status bit indicates the lock status of APLL2.  
0 = Not locked  
1 = Locked  
Bit 2: APLL1 Lock Interrupt Enable (A1LKIE). This bit is an interrupt enable for the A1LKL bit.  
0 = Mask the interrupt  
1 = Enable the interrupt  
Bit 1: APLL1 Lock Latched Status (A1LKL). This latched status bit is set to 1 when the A1LK status bit changes  
state (set or cleared). A1LKL is cleared when written with a 1. When A1LKL is set it can cause an interrupt request  
if the A1LKIE interrupt enable bit is set.  
Bit 0: APLL1 Lock Status (A1LK). This real-time status bit indicates the lock status of APLL1.  
0 = Not locked  
1 = Locked  
23  
 
 
MAX24505, MAX24510  
5.3.2 GPIO Registers  
Register Name:  
GPCR  
Register Description:  
Register Address:  
GPIO Configuration Register  
08h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
GPIO4C[1:0]  
GPIO3C[1:0]  
GPIO2C[1:0]  
GPIO1C[1:0]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 6: GPIO4 Configuration (GPIO4C[1:0]). When APLLCR2.EXTSW=0, the SS/GPIO4 pin behaves as  
GPIO4, and this field configures the GPIO4 pin as a general-purpose input a general-purpose output driving low or  
high, or a status output. When GPIO4 is an input its current state can be read from GPSR.GPIO4. When GPIO4 is  
a status output, the GPIO4SS register specifies which status bit is output. When APLLCR2.EXTSW=1 the  
SS/GPIO4 pin behaves as SS and this field is ignored.  
00 = General-purpose input  
01 = Status output  
10 = General-purpose output driving low  
11 = General-purpose output driving high  
Bits 5 to 4: GPIO3 Configuration (GPIO3C[1:0]). This field configures the GPIO3 pin as a general-purpose input,  
a general-purpose output driving low or high, or a status output. When GPIO3 is an input its current state can be  
read from GPSR.GPIO3. When GPIO3 is a status output, the GPIO3SS register specifies which status bit is output.  
00 = General-purpose input  
01 = Status output  
10 = General-purpose output driving low  
11 = General-purpose output driving high  
Bits 3 to 2: GPIO2 Configuration (GPIO2C[1:0]). This field configures the GPIO2 pin as a general-purpose input,  
a general-purpose output driving low or high, or a status output. When GPIO2 is an input its current state can be  
read from GPSR.GPIO2. When GPIO2 is a status output, the GPIO2SS register specifies which status bit is output.  
00 = General-purpose input  
01 = Status output  
10 = General-purpose output driving low  
11 = General-purpose output driving high  
Bits 1 to 0: GPIO1 Configuration (GPIO1C[1:0]). This field configures the GPIO1 pin as a general-purpose input  
a general-purpose output driving low or high, or a status output. When GPIO1 is an input its current state can be  
read from GPSR.GPIO1. When GPIO1 is a status output, the GPIO1SS register specifies which status bit is output.  
00 = General-purpose input  
01 = Status output  
10 = General-purpose output driving low  
11 = General-purpose output driving high  
24  
 
MAX24505, MAX24510  
Register Name:  
GPSR  
Register Description:  
Register Address:  
GPIO Status Register  
09h  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
GPIO4  
0
Bit 2  
GPIO3  
0
Bit 1  
GPIO2  
0
Bit 0  
GPIO1  
0
Name  
Default  
Bit 3: GPIO4 State (GPIO4). This bit indicates the current state of the GPIO4 pin.  
0 = low  
1 = high  
Bit 2: GPIO3 State (GPIO3). This bit indicates the current state of the GPIO3 pin.  
0 = low  
1 = high  
Bit 1: GPIO2 State (GPIO2). This bit indicates the current state of the GPIO2 pin.  
0 = low  
1 = high  
Bit 0: GPIO1 State (GPIO1). This bit indicates the current state of the GPIO1 pin.  
0 = low  
1 = high  
Register Name:  
GPIO1SS  
Register Description:  
Register Address:  
GPIO1 Status Select Register  
0Ah  
Bit 7  
POL  
0
Bit 6  
OD  
0
Bit 5  
Bit 4  
REG[2:0]  
0
Bit 3  
Bit 2  
Bit 1  
BIT[2:0]  
0
Bit 0  
Name  
Default  
0
0
0
0
Bit 7: Pin Polarity (POL).  
0 = Normal: GPIO pin has the same polarity as the status bit it follows  
1 = Inverted: GPIO pin has inverted polarity vs. the status bit it follows  
Bit 6: Open-Drain Enable (OD).  
0 = Push-Pull: GPIO pin is driven in both inactive and active state  
1 = Open-Drain: GPIO pin is driven in the active state but is high impedance in the inactive state  
Bits 5 to 3: Status Register (REG[2:0]). When GPCR.GPIO1C=01, this field specifies the register of the status bit  
that GPIO1 will follow while the BIT field below specifies the status bit within the register. Setting the combination of  
this field and the BIT field below to point to a bit that isn’t implemented as a real-time or latched status register bit  
results in GPIO1 being driven low.  
000 100 = {unused value}  
101 = APLL Lock. The address of the status bit that GPIO follows is 07h (APLLSR register)  
110 = {unused value}  
111 = Interrupt Output: GPIO1 is active when a latched status bit and its corresponding interrupt  
enable bit are both active. The POL and OD bits define pin behavior for the active and  
inactive states.  
Bits 2 to 0: Status Bit (BIT[2:0]). When GPCR.GPIO1C=01, the REG field above specifies the register of the  
status bit that GPIO1 will follow while this field specifies the status bit within the register. Setting the combination of  
the REG field and this field to point to a bit that isn’t implemented as a real-time or latched status register bit results  
in GPIO1 being driven low. 000=bit 0 of the register. 111=bit 7 of the register.  
25  
 
MAX24505, MAX24510  
Register Name:  
GPIO2SS  
Register Description:  
Register Address:  
GPIO2 Status Select Register  
0Bh  
Bit 7  
POL  
0
Bit 6  
OD  
0
Bit 5  
Bit 4  
REG[2:0]  
0
Bit 3  
Bit 2  
Bit 1  
BIT[2:0]  
0
Bit 0  
Name  
Default  
0
0
0
0
These fields are identical to those in GPIO1SS except they control GPIO2.  
Register Name:  
GPIO3SS  
Register Description:  
Register Address:  
GPIO3 Status Select Register  
0Ch  
Bit 7  
POL  
0
Bit 6  
OD  
0
Bit 5  
Bit 4  
REG[2:0]  
0
Bit 3  
Bit 2  
Bit 1  
BIT[2:0]  
0
Bit 0  
Name  
Default  
0
0
0
0
These fields are identical to those in GPIO1SS except they control GPIO3.  
Register Name:  
GPIO4SS  
Register Description:  
Register Address:  
GPIO4 Status Select Register  
0Dh  
Bit 7  
POL  
0
Bit 6  
OD  
0
Bit 5  
Bit 4  
REG[2:0]  
0
Bit 3  
Bit 2  
Bit 1  
BIT[2:0]  
0
Bit 0  
Name  
Default  
0
0
0
0
These fields are identical to those in GPIO1SS except they control GPIO4.  
26  
MAX24505, MAX24510  
5.3.3 APLL Registers  
Register Name:  
APLLSEL  
Register Description:  
Register Address:  
APLL Select Register  
10h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
APLLSEL[1:0]  
Bit 0  
Name  
Default  
0
0
0
0
0
0
0
1
Bits 1 to 0: APLL Select (APLLSEL[1:0]). This field is a bank-select control that specifies the APLL for which  
registers are mapped into the APLL Registers section of Table 5-1. See Section 5.1.3.  
00 = {unused value}  
01 = APLL1  
10 = APLL2  
11 = {unused value}  
Register Name:  
APLLCR1  
Register Description:  
Register Address:  
APLL Configuration Register 1  
11h  
Bit 7  
APLLEN  
0
Bit 6  
APLLBYP  
0
Bit 5  
DALIGN  
0
Bit 4  
0
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Default  
HSDIV[3:0]  
0
0
0
0
The APLL registers are bank-selected by the APLLSEL register. See section 5.1.3.  
Bit 7: APLL Enable (APLLEN). This bit enables and disables the APLL. When unused, the APLL should be  
disabled to reduce power consumption. See section 4.4.2.  
0 = Disabled  
1 = Enabled  
Bit 6: APLL Bypass (APLLBYP). This bit controls an internal bypass mux in the APLL.  
0 = Normal APLL operation  
1 = APLL bypass: the APLL input signal is routed directly to the APLL output  
Bit 5: Align Output Dividers (DALIGN). A 0 to 1 transition on this bit causes a simultaneous reset of the medium-  
speed dividers and the output clock dividers for all output clocks where OCCR3.DALEN=1. After this reset all  
DALEN=1 output clocks derived from the same APLL will be falling-edge aligned. This bit should be set then  
cleared once during system startup. Setting this bit during normal system operation can cause phase jumps in the  
output clock signals.  
Bits 3 to 0: APLL High-Speed Divider (HSDIV[3:0]). This bit controls the high-speed divider block in the APLL  
(see Figure 4-2). See section 4.4.2.  
0000 = Divide by 6  
0001 = Divide by 4.5  
0010 = Divide by 5  
0011 = Divide by 5.5  
0100 = Divide by 6  
0101 = Divide by 6.5  
0110 = Divide by 7  
0111 = Divide by 7.5  
1000 = Divide by 8  
1001 = Divide by 9  
1010 = Divide by 10  
1011 = Divide by 11  
1100 = Divide by 12  
1101 = Divide by 13  
1110 = Divide by 14  
1111 = Divide by 15  
27  
 
 
MAX24505, MAX24510  
Register Name:  
APLLCR2  
Register Description:  
Register Address:  
APLL Configuration Register 2  
12h  
Bit 7  
Bit 6  
Bit 5  
EXTSW  
0
Bit 4  
ALTMUX[1:0]  
0
Bit 3  
Bit 2  
Bit 1  
APLLMUX[2:0]  
0
Bit 0  
Name  
Default  
AIDIV[1:0]  
0
0
0
0
0
The APLL registers are bank-selected by the APLLSEL register. See section 5.1.3.  
Bits 7 to 6: APLL Input Divider (AIDIV). This field controls the APLL input divider. See Figure 4-2.  
00 = Divide by 1  
01 = Divide by 2  
10 = Divide by 4  
11 = Divide by 8  
Bit 5: APLL External Switching Mode (EXTSW). This bit enables APLL external reference switching mode. In  
this mode, if the SS pin is low the APLL input mux is controlled by APLLCR2.APLLMUX. If the the SS pin is high  
the APLL input mux is controlled by APLLCR2.ALTMUX. See section 4.4.1.  
Bits 4 to 3: APLL Alternate Mux Control (ALTMUX[1:0]). When APLLCR2.EXTSW=0 this field is ignored. When  
APLLCR2.EXTSW=1 and the SS pin is high this field controls the APLL input mux. See section 4.4.1.  
00 = IC1 input  
01 = IC2 input  
10 = Crystal oscillator (XO) block if crystal is connected, otherwise XIN input  
11 = IC3 input  
Bits 2 to 0: APLL Mux Control (APLLMUX[2:0]). By default this field controls the APLL input mux. See the block  
diagram on page 1 for the location of this mux. When APLLCR2.EXTSW=1 and the SS pin is high, this field is  
ignored, and the APLL's clock source is specified by APLLCR2.ALTMUX. See section 4.4.1.  
000 = IC1 input  
001 = IC2 input  
010 = Crystal oscillator (XO) block if crystal is connected, otherwise XIN input  
011 = IC3 input  
100 to 111 = {unused value}  
28  
 
MAX24505, MAX24510  
Register Name:  
AFBDIV1  
Register Description:  
Register Address:  
APLL Feedback Divider Register 1  
22h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDIV[3:0]  
Default  
0
0
0
0
0
0
0
0
The APLL registers are bank-selected by the APLLSEL register. See section 5.1.3.  
Bits 7 to 4: APLL Feedback Divider Register (AFBDIV[3:0]). The full 75 bit AFBDIV[74:0] field spans the  
AFBDIV1 through AFBDIV10 registers. AFBDIV is an unsigned number with 9 integer bits (AFBDIV[74:66]) and up  
to 66 fractional bits. AFBDIV specifies the fixed-point term of the APLL's fractional feedback divide value. The value  
AFBDIV=0 is undefined. Unused least significant bits must be written with 0. See section 4.4.2.  
Register Name:  
AFBDIV2  
Register Description:  
Register Address:  
APLL Feedback Divider Register 2  
23h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDIV[11:4]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Register (AFBDIV[11:4]). See the AFBDIV1 register description.  
Register Name:  
AFBDIV3  
Register Description:  
Register Address:  
APLL Feedback Divider Register 3  
24h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDIV[19:12]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Register (AFBDIV[19:12]). See the AFBDIV1 register description.  
Register Name:  
AFBDIV4  
Register Description:  
Register Address:  
APLL Feedback Divider Register 4  
25h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDIV[27:20]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Register (AFBDIV[27:20]). See the AFBDIV1 register description.  
Register Name:  
AFBDIV5  
Register Description:  
APLL Feedback Divider Register 5  
Register Address:  
26h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDIV[35:28]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Register (AFBDIV[35:28]). See the AFBDIV1 register description.  
29  
 
MAX24505, MAX24510  
Register Name:  
AFBDIV6  
Register Description:  
Register Address:  
APLL Feedback Divider Register 6  
27h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDIV[43:36]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Register (AFBDIV[43:36]). See the AFBDIV1 register description.  
Register Name:  
AFBDIV7  
Register Description:  
Register Address:  
APLL Feedback Divider Register 7  
28h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDIV[51:44]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Register (AFBDIV[51:44]). See the AFBDIV1 register description.  
Register Name:  
AFBDIV8  
Register Description:  
Register Address:  
APLL Feedback Divider Register 8  
29h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDIV[59:52]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Register (AFBDIV[59:52]). See the AFBDIV1 register description.  
Register Name:  
AFBDIV9  
Register Description:  
Register Address:  
APLL Feedback Divider Register 9  
2Ah  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDIV[67:60]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Register (AFBDIV[67:60]). See the AFBDIV1 register description.  
Register Name:  
AFBDIV10  
Register Description:  
Register Address:  
APLL Feedback Divider Register 10  
2Bh  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Default  
0
AFBDIV[74:68]  
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Register (AFBDIV[74:68]). See the AFBDIV1 register description.  
30  
MAX24505, MAX24510  
Register Name:  
AFBDEN1  
Register Description:  
Register Address:  
APLL Feedback Divider Denominator Register 1  
2Ch  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDEN[7:0]  
Default  
0
0
0
0
0
0
0
1
The APLL registers are bank-selected by the APLLSEL register. See section 5.1.3.  
Bits 7 to 0: APLL Feedback Divider Denominator Register (AFBDEN[7:0]). The full 32-bit AFBDEN[31:0] field  
spans AFBDEN1 through AFBDEN4 registers. AFBDEN is an unsigned integer that specifies the denominator of  
the APLL's fractional feedback divide value. The value AFBDEN=0 is undefined. When AFBBP=0, AFBDEN must  
be set to 1. See section 4.4.2.  
Register Name:  
AFBDEN2  
Register Description:  
Register Address:  
APLL Feedback Divider Denominator Register 2  
2Dh  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDEN[15:8]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Denominator Register (AFBDEN[15:8]). See the AFBDEN1 register  
description.  
Register Name:  
AFBDEN3  
Register Description:  
Register Address:  
APLL Feedback Divider Denominator Register 3  
2Eh  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDEN[23:16]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Denominator Register (AFBDEN[23:16]). See the AFBDEN1 register  
description.  
Register Name:  
AFBDEN4  
Register Description:  
Register Address:  
APLL Feedback Divider Denominator Register 4  
2Fh  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBDEN[31:24]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Denominator Register (AFBDEN[31:24]). See the AFBDEN1 register  
description.  
31  
 
 
MAX24505, MAX24510  
Register Name:  
AFBREM1  
Register Description:  
Register Address:  
APLL Feedback Divider Remainder Register 1  
30h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBREM[7:0]  
Default  
0
0
0
0
0
0
0
0
The APLL registers are bank-selected by the APLLSEL register. See section 5.1.3.  
Bits 7 to 0: APLL Feedback Divider Remainder Register (AFBREM[7:0]). The full 32-bit AFBDEN[31:0] field  
spans AFBREM1 through AFBREM4 registers. AFBREM is an unsigned integer that specifies the remainder of the  
APLL's fractional feedback divider value. When AFBBP=0, AFBREM must be set to 0. See section 4.4.2.  
Register Name:  
AFBREM2  
Register Description:  
Register Address:  
APLL Feedback Divider Remainder Register 2  
31h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBREM[15:8]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Remainder Register (AFBREM[15:8]). See the AFBREM1 register  
description.  
Register Name:  
AFBREM3  
Register Description:  
Register Address:  
APLL Feedback Divider Remainder Register 3  
32h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBREM[23:16]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Remainder Register (AFBREM[23:16]). See the AFBREM1 register  
description.  
Register Name:  
AFBREM4  
Register Description:  
Register Address:  
APLL Feedback Divider Remainder Register 4  
33h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBREM[31:24]  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: APLL Feedback Divider Remainder Register (AFBREM[31:24]). See the AFBREM1 register  
description.  
32  
 
 
MAX24505, MAX24510  
Register Name:  
AFBBP  
Register Description:  
Register Address:  
APLL Feedback Divider Truncate Bit Position  
34h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
AFBBP[7:0]  
Default  
0
0
0
0
0
0
0
0
The APLL registers are bank-selected by the APLLSEL register. See section 5.1.3.  
Bits 7 to 0: APLL Feedback Divider Truncate Bit Position (AFBBP[7:0]). This unsigned integer specifies the  
number of fractional bits that are valid in the AFBDIV value. There are 66 fractional bits in AFBDIV. The value in  
this AFBBP field specifies 66 number_of_valid_AFBDIV_fractional_bits. When AFBBP=0 all 66 AFBDIV fractional  
bits are valid. When AFBBP=42, the most significant 24 AFBDIV fractional bits are valid and the least significant 42  
bits must be set to 0. This register field is only used when the feedback divider value is expressed in the form  
AFBDIV + AFBREM / AFBDEN. AFBBP values greater than 66 are invalid. When AFBBP=0, AFBREM must be set  
to 0 and AFBDEN must be set to 1. See section 4.4.2.  
5.3.4 Output Clock Registers  
Register Name:  
OCSEL  
Register Description:  
Register Address:  
Output Clock Select Register  
40h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
Default  
0
0
0
0
0
0
0
0
OCSEL[3:0]  
0
0
0
1
Bits 3 to 0: Output Clock Select (OCSEL[2:0]). This field is a bank-select control that specifies the output clock  
for which registers are mapped into the Output Clock Registers section of Table 5-1. See section 5.1.3.  
0000 = {unused value}  
0001 = Output clock 1  
0010 = Output clock 2  
0011 = Output clock 3  
0100 = Output clock 4 (MAX24510 only)  
0101 = Output clock 5 (MAX24510 only)  
0110 = Output clock 6 (MAX24510 only)  
0111 = Output clock 7 (MAX24510 only)  
1000 = Output clock 8  
1001 = Output clock 9 (MAX24510 only)  
1010 = Output clock 10  
1011 to 1111 = {unused value}  
33  
 
MAX24505, MAX24510  
Register Name:  
OCCR1  
Register Description:  
Register Address:  
Output Clock Configuration Register 1  
41h  
Bit 7  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
MSDIV[6:0]  
0
Bit 2  
Bit 1  
Bit 0  
Name  
Default  
0
0
0
0
0
0
The output clock registers are bank-selected by the OCSEL register. See section 5.1.3.  
Bits 6 to 0: Medium-Speed Divider Value (MSDIV[6:0]). This field specifies the setting for the output clock's  
medium-speed divider. The divisor is MSDIV+1. Note that MSDIV must be set to a value that causes the output  
clock of the medium-speed divider to be 312.5MHz or less. See section 4.5.2.  
Register Name:  
OCCR2  
Register Description:  
Register Address:  
Output Clock Configuration Register 2  
42h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
DRIVE[1:0]  
OCSF[3:0]  
Default  
0
0
0
0
0
0
0
0
The output clock registers are bank-selected by the OCSEL register. See section 5.1.3.  
Bits 5 to 4: CMOS/HSTL Output Drive Strength (DRIVE[1:0]). The CMOS/HSTL output drivers have four equal  
sections that can be enabled or disabled to achieve four different drive strengths from 1x to 4x. When the output  
power supply VDDOx is 3.3V or 2.5V, the user should start with 1x and only increase drive strength if the output is  
highly loaded and signal transition time is unacceptable. When VDDOx is 1.8V or 1.5V the user should start with 4x  
and only decrease drive strength if the output signal has unacceptable overshoot.  
00 = 1x  
01 = 2x  
10 = 3x  
11 = 4x  
Bits 3 to 0: Output Clock Signal Format (OCSF[3:0]). See section 4.5.1.  
0000 = Disabled (high-impedance, low power mode)  
0001 = CML, standard swing (VOD=800mVP-P typical)  
0010 = CML, narrow swing (VOD=400mVP-P typical)  
0011 = {unused value}  
0100 = One CMOS, OCxPOS enabled, OCxNEG high impedance  
0101 = Two CMOS, OCxNEG in phase with OCxPOS  
0110 = Two CMOS, OCxNEG inverted vs. OCxPOS  
0111 = HSTL (Set OCCR2.DRIVE=11 (4x) to meet JESD8-6)  
34  
 
 
MAX24505, MAX24510  
Register Name:  
OCCR3  
Register Description:  
Register Address:  
Output Clock Configuration Register 3  
43h  
Bit 7  
Bit 6  
PHADJ[3:0]  
0
Bit 5  
Bit 4  
Bit 3  
0
Bit 2  
POL  
0
Bit 1  
0
Bit 0  
DALEN  
0
Name  
Default  
0
0
0
The output clock registers are bank-selected by the OCSEL register. See section 5.1.3.  
Bits 7 to 4: Output Clock Phase Adjustment (PHADJ[3:0]). This field can be used to adjust the phase of output  
OCxPOS/NEG vs. the phase of the other clock outputs. The adjustment is in units of APLL output clock cycles. For  
example, if the APLL output frequency is 625MHz then one APLL output clock cycle is 1.6ns, the smallest phase  
adjustment is 0.8ns, and the adjustment range is ±5.6ns. See section 4.5.3.  
0000 = 0 APLL output clock cycles  
0001 = 0.5  
1000 = -1.0 APLL output clock cycles  
1001 = -0.5  
0010 = 1.0  
1010 = -2.0  
0011 = 1.5  
1011 = -1.5  
0100 = 2.0  
1100 = -3.0  
0101 = 2.5  
1101 = -2.5  
0110 = 3.0  
1110 = -4.0  
0111 = 3.5  
1111 = -3.5  
Bit 2: Polarity (POL). This bit specifies the polarity of the output clock signal. When OCCR2.OCSF configures the  
output for one of the 2x CMOS modes, POL=1 inverts both CMOS outputs vs. the polarity they have when POL=0.  
See section 4.5.3.  
0 = Normal  
1 = Inverted  
Bit 0: Divider Align Enable (DALEN). This bit enables alignment of the output clock's medium-speed divider and  
output clock divider when the APLLCR1.DALIGN bit is set to 1. For best results, this signal should be set to 1 for at  
least 2ms then set back to 0.  
0 = Do not align the output clock dividers  
1 = Align the output clock dividers  
35  
 
MAX24505, MAX24510  
Register Name:  
OCDIV1  
Register Description:  
Register Address:  
Output Clock Divider Register 1  
44h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
OCDIV[7:0]  
Default  
0
0
0
0
0
0
0
0
The output clock registers are bank-selected by the OCSEL register. See section 5.1.3.  
Bits 7 to 0: Output Clock Divider (OCDIV[7:0]). The full 24-bit OCDIV[23:0] field spans this register, OCDIV2 and  
OCDIV3. OCDIV is an unsigned integer. The frequency of the clock from the medium-speed divider is divided by  
OCDIV+1 to make the output clock signal. See section 4.5.2.  
Register Name:  
OCDIV2  
Register Description:  
Register Address:  
Output Clock Divider Register 2  
45h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
OCDIV[15:8]  
Default  
0
0
0
0
0
0
0
0
The output clock registers are bank-selected by the OCSEL register. See section 5.1.3.  
Bits 7 to 0: Output Clock Divider (OCDIV[15:8]). See the OCDIV1 register description.  
Register Name:  
OCDIV3  
Register Description:  
Register Address:  
Output Clock Divider Register 3  
46h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
OCDIV[23:16]  
Default  
0
0
0
0
0
0
0
0
The output clock registers are bank-selected by the OCSEL register. See section 5.1.3.  
Bits 7 to 0: Output Clock Divider (OCDIV[23:16]). See the OCDIV1 register description.  
36  
 
 
 
MAX24505, MAX24510  
6. JTAG and Boundary Scan  
6.1 JTAG Description  
The device supports the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional public  
instructions included are HIGHZ, CLAMP, and IDCODE. Figure 6-1 shows a block diagram. The device contains  
the following items, which meet the requirements set by the IEEE 1149.1 Standard Test Access Port and Boundary  
Scan Architecture:  
Test Access Port (TAP)  
TAP Controller  
Instruction Register  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
The TAP has the necessary interface pins, namely JTCLK, JTRST_N, JTDI, JTDO, and JTMS. Details on these  
pins can be found in Table 3-5. Details about the boundary scan architecture and the TAP can be found in  
IEEE 1149.1-1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.  
Figure 6-1. JTAG Block Diagram  
BOUNDARY  
SCAN  
REGISTER  
DEVICE  
IDENTIFICATION  
REGISTER  
BYPASS  
REGISTER  
INSTRUCTION  
REGISTER  
SELECT  
TEST ACCESS PORT  
HIGH-Z  
CONTROLLER  
50k  
50k  
50k  
JTDI  
JTMS  
JTCLK  
JTRST_N  
JTDO  
37  
 
MAX24505, MAX24510  
6.2  
JTAG TAP Controller State Machine Description  
This section discusses the operation of the TAP controller state machine. The TAP controller is a finite state  
machine that responds to the logic level at JTMS on the rising edge of JTCLK. Each of the states denoted in  
Figure 6-2 is described in the following paragraphs.  
Test-Logic-Reset. Upon device power-up, the TAP controller starts in the Test-Logic-Reset state. The instruction  
register contains the IDCODE instruction. All system logic on the device operates normally.  
Run-Test-Idle. Run-Test-Idle is used between scan operations or during specific tests. The instruction register and  
all test registers remain idle.  
Select-DR-Scan. All test registers retain their previous state. With JTMS low, a rising edge of JTCLK moves the  
controller into the Capture-DR state and initiates a scan sequence. JTMS high moves the controller to the Select-  
IR-SCAN state.  
Capture-DR. Data can be parallel-loaded into the test register selected by the current instruction. If the instruction  
does not call for a parallel load or the selected test register does not allow parallel loads, the register remains at its  
current value. On the rising edge of JTCLK, the controller goes to the Shift-DR state if JTMS is low or to the Exit1-  
DR state if JTMS is high.  
Shift-DR. The test register selected by the current instruction is connected between JTDI and JTDO and data is  
shifted one stage toward the serial output on each rising edge of JTCLK. If a test register selected by the current  
instruction is not placed in the serial path, it maintains its previous state.  
Exit1-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state,  
which terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Pause-DR  
state.  
Pause-DR. Shifting of the test registers is halted while in this state. All test registers selected by the current  
instruction retain their previous state. The controller remains in this state while JTMS is low. A rising edge on  
JTCLK with JTMS high puts the controller in the Exit2-DR state.  
Exit2-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state  
and terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Shift-DR  
state.  
Update-DR. A falling edge on JTCLK while in the Update-DR state latches the data from the shift register path of  
the test registers into the data output latches. This prevents changes at the parallel output because of changes in  
the shift register. A rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS  
high, the controller enters the Select-DR-Scan state.  
Select-IR-Scan. All test registers retain their previous state. The instruction register remains unchanged during this  
state. With JTMS low, a rising edge on JTCLK moves the controller into the Capture-IR state and initiates a scan  
sequence for the instruction register. JTMS high during a rising edge on JTCLK puts the controller back into the  
Test-Logic-Reset state.  
Capture-IR. The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This  
value is loaded on the rising edge of JTCLK. If JTMS is high on the rising edge of JTCLK, the controller enters the  
Exit1-IR state. If JTMS is low on the rising edge of JTCLK, the controller enters the Shift-IR state.  
Shift-IR. In this state, the instruction register’s shift register is connected between JTDI and JTDO and shifts data  
one stage for every rising edge of JTCLK toward the serial output. The parallel register and the test registers  
remain at their previous states. A rising edge on JTCLK with JTMS high moves the controller to the Exit1-IR state.  
A rising edge on JTCLK with JTMS low keeps the controller in the Shift-IR state, while moving data one stage  
through the instruction shift register.  
38  
MAX24505, MAX24510  
Exit1-IR. A rising edge on JTCLK with JTMS low puts the controller in the Pause-IR state. If JTMS is high on the  
rising edge of JTCLK, the controller enters the Update-IR state and terminates the scanning process.  
Pause-IR. Shifting of the instruction register is halted temporarily. With JTMS high, a rising edge on JTCLK puts  
the controller in the Exit2-IR state. The controller remains in the Pause-IR state if JTMS is low during a rising edge  
on JTCLK.  
Exit2-IR. A rising edge on JTCLK with JTMS high puts the controller in the Update-IR state. The controller loops  
back to the Shift-IR state if JTMS is low during a rising edge of JTCLK in this state.  
Update-IR. The instruction shifted into the instruction shift register is latched into the parallel output on the falling  
edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A  
rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS high, the controller  
enters the Select-DR-Scan state.  
Figure 6-2. JTAG TAP Controller State Machine  
Test-Logic-Reset  
1
0
1
1
Select  
Select  
1
Run-Test/Idle  
DR-Scan  
IR-Scan  
0
0
0
1
1
Capture-DR  
0
Capture-IR  
0
Shift-DR  
1
Shift-IR  
1
0
1
0
1
Exit1- DR  
0
Exit1-IR  
0
Pause-DR  
1
Pause-IR  
1
0
0
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
39  
MAX24505, MAX24510  
6.3  
JTAG Instruction Register and Instructions  
The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the  
TAP controller enters the Shift-IR state, the instruction shift register is connected between JTDI and JTDO. While in  
the Shift-IR state, a rising edge on JTCLK with JTMS low shifts data one stage toward the serial output at JTDO. A  
rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS high moves the controller to the Update-  
IR state. The falling edge of that same JTCLK latches the data in the instruction shift register to the instruction  
parallel output. Table 6-1 shows the instructions supported and their respective operational binary codes.  
Table 6-1. JTAG Instruction Codes  
INSTRUCTIONS  
SAMPLE/PRELOAD  
BYPASS  
SELECTED REGISTER  
Boundary Scan  
Bypass  
INSTRUCTION CODES  
010  
111  
000  
011  
100  
001  
EXTEST  
CLAMP  
Boundary Scan  
Bypass  
HIGHZ  
Bypass  
IDCODE  
Device Identification  
SAMPLE/PRELOAD. SAMPLE/PRELOAD is a mandatory instruction for the IEEE 1149.1 specification. This  
instruction supports two functions. First, the digital I/Os of the device can be sampled at the boundary scan  
register, using the Capture-DR state, without interfering with the device’s normal operation. Second, data can be  
shifted into the boundary scan register through JTDI using the Shift-DR state.  
EXTEST. EXTEST allows testing of the interconnections to the device. When the EXTEST instruction is latched in  
the instruction register, the following actions occur: (1) Once the EXTEST instruction is enabled through the  
Update-IR state, the parallel outputs of the digital output pins are driven. (2) The boundary scan register is  
connected between JTDI and JTDO. (3) The Capture-DR state samples all digital inputs into the boundary scan  
register.  
BYPASS. When the BYPASS instruction is latched into the parallel instruction register, JTDI is connected to JTDO  
through the 1-bit bypass register. This allows data to pass from JTDI to JTDO without affecting the device’s normal  
operation.  
IDCODE. When the IDCODE instruction is latched into the parallel instruction register, the device identification  
register is selected. The device ID code is loaded into the device identification register on the rising edge of JTCLK,  
following entry into the Capture-DR state. Shift-DR can be used to shift the ID code out serially through JTDO.  
During Test-Logic-Reset, the ID code is forced into the instruction register’s parallel output.  
HIGHZ. All digital outputs are placed into a high-impedance state. The bypass register is connected between JTDI  
and JTDO.  
CLAMP. All digital output pins output data from the boundary scan parallel output while connecting the bypass  
register between JTDI and JTDO. The outputs do not change during the CLAMP instruction.  
40  
 
MAX24505, MAX24510  
6.4  
JTAG Test Registers  
IEEE 1149.1 requires a minimum of two test registersthe bypass register and the boundary scan register. An  
optional test register, the identification register, has been included in the device design. It is used with the IDCODE  
instruction and the Test-Logic-Reset state of the TAP controller.  
Bypass Register. This is a single 1-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions to  
provide a short path between JTDI and JTDO.  
Boundary Scan Register. This register contains a shift register path and a latched parallel output for control cells  
and digital I/O cells. BSDL files are available on the MAX24505/10 page of Microsemi’s website.  
Identification Register. This register contains a 32-bit shift register and a 32-bit latched parallel output. It is  
selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state. The device  
identification codes for the MAX24505 and MAX24510 are shown in Table 6-2.  
Table 6-2. JTAG ID Code  
DEVICE  
MAX24505  
MAX24510  
REVISION  
DEVICE CODE  
MANUFACTURER CODE  
00010100001  
REQUIRED  
Contact factory  
Contact factory  
0000 0000 1100 0110  
0000 0000 1100 0111  
1
1
00010100001  
41  
 
MAX24505, MAX24510  
7. Electrical Characteristics  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Pin with Respect to VSS (except Power Supply Pins)........................................-0.3V to +5.5V  
Supply Voltage Range, Nominal 1.8V Supply with Respect to VSS ......................................................-0.3V to +1.98V  
Supply Voltage Range, Nominal 3.3V Supply with Respect to VSS ......................................................-0.3V to +3.63V  
Supply Voltage Range, VDDOx (x=A|B|C|D) with Respect to VSS .......................................................-0.3V to +3.63V  
Ambient Operating Temperature Range................................................................................................-40°C to +85°C  
Junction Operating Temperature Range .............................................................................................-40°C to +125°C  
Storage Temperature Range ...............................................................................................................-55°C to +125°C  
Soldering Temperature (reflow)  
Lead (Pb) free .............................................................................................................................................+260°C  
Containing lead (Pb)....................................................................................................................................+240°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is  
not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device. Ambient operating temperature range  
when device is mounted on a four-layer JEDEC test board with no airflow.  
Note 1: The typical values listed in the tables of Section 7 are not production tested.  
Note 2: Specifications to -40C are guaranteed by design and not production tested.  
Table 7-1. Recommended DC Operating Conditions  
PARAMETER  
Supply Voltage, Nominal 1.8V  
Supply Voltage, Nominal 3.3V  
SYMBOL  
VDD18  
CONDITIONS  
MIN  
1.71  
TYP  
1.8  
MAX  
1.89  
UNITS  
V
V
VDD33  
3.135  
3.3  
3.465  
1.5, 1.8,  
2.5, 3.3  
Supply Voltage, VDDOx (x=A|B|C|D)  
VDDOx  
1.425  
3.465  
V
Ambient Temperature Range  
Junction Temperature Range  
TA  
TJ  
-40  
-40  
+85  
°C  
°C  
+125  
Table 7-2. Electrical Characteristics: Supply Currents  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, TA = -40°C to +85°C)(Note 3)  
PARAMETER  
SYMBOL CONDITIONS  
MIN  
TYP2  
264  
MAX  
325  
305  
455  
408  
UNITS  
mA  
MAX24505 Total Current, All 1.8V Supply Pins  
MAX24505 Total Current, All 3.3V Supply Pins  
MAX24510 Total Current, All 1.8V Supply Pins  
MAX24510 Total Current, All 3.3V Supply Pins  
IDD18  
IDD33  
IDD18  
IDD33  
Note 1  
Note 1  
Note 1  
Note 1  
246  
mA  
369  
mA  
327  
mA  
1.8V Supply Current Change from Enabling or  
Disabling APLL2  
3.3V Supply Current Change from Enabling or  
Disabling APLL2  
50  
75  
22  
16  
22  
8
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD18APLL  
IDD33APLL  
IDD18CML  
IDD33CML  
IDD18CMLN  
IDD33CMLN  
IDD18CMOS  
IDD33CMOS  
IDD18IN  
1.8V Supply Current Change from Enabling or  
Disabling a CML Output, Standard Swing  
3.3V Supply Current Change from Enabling or  
Disabling a CML Output, Standard Swing  
1.8V Supply Current Change from Enabling or  
Disabling a CML Output, Narrow Swing  
3.3V Supply Current Change from Enabling or  
Disabling a CML Output, Narrow Swing  
VDDO18x Supply Current Change from Enabling  
or Disabling a Pair of Single-Ended Outputs  
VDDOx Supply Current Change from Enabling or  
Disabling a Pair of Single-Ended Outputs  
1.8V Supply Current Change from Enabling or  
Disabling an Input Clock  
8
6
6
1.8V Supply Current Change from Enabling or  
Disabling the Crystal Oscillator  
4
IDD18DFS  
42  
 
MAX24505, MAX24510  
Note 1:  
Max IDD measurements made with all blocks enabled, 750MHz signals on both inputs, and all outputs enabled as CML outputs  
driving 750MHz signals.  
Note 2:  
Note 3:  
Typical values measured at 1.80V and 3.30V supply voltages and 25C ambient temperature.  
Limits are 100% production tested at Ta = +25C and/or Ta = +85C. Limits over the operating temperature range and relevant  
supply voltage range are guaranteed by design and characterization. Typical values are not guaranteed.  
Table 7-3. Electrical Characteristics: Non-Clock CMOS/TTL Pins  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, TA = -40°C to +85°C)  
PARAMETER  
Input High Voltage  
SYMBOL  
CONDITIONS  
MIN  
2.0  
TYP  
MAX  
UNITS  
VIH  
V
Input Low Voltage  
Input Leakage  
VIL  
0.8  
10  
V
IIL  
Note 1  
-10  
-85  
A  
A  
Input Leakage, Pins with Internal Pullup  
Resistor (50ktyp)  
Input Leakage, Pins with Internal Pulldown  
IILPU  
Note 1  
Note 1  
10  
IILPD  
-10  
85  
10  
A  
Resistor (50ktyp)  
Output Leakage (when High Impedance)  
Output High Voltage  
ILO  
VOH  
VOL  
CIN  
Note 1  
-10  
2.4  
A  
V
IO = -4.0mA  
IO = 4.0mA  
Output Low Voltage  
0.4  
V
Input Capacitance  
3
pF  
Note 1:  
0V < VIN < VDD33 for all other digital inputs.  
43  
 
MAX24505, MAX24510  
Table 7-4. Electrical Characteristics: Clock Inputs  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, TA = -40°C to +85°C)  
PARAMETER  
Input Voltage Tolerance (ICPOS or ICNEG,  
Single-Ended)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VTOL  
Note 1  
0
VDD33  
V
Input Voltage Range, (ICPOS or ICNEG,  
Single-Ended)  
VIN  
|VID| = 100mV  
0
2.4  
V
Input Bias Voltage  
VCMI  
|VID|  
fI  
Note 2  
1.2  
V
V
Input Differential Voltage  
Input Frequency to APLL Mux  
Note 3  
0.1  
1.4  
750  
160  
Differential  
9.72  
9.72  
MHz  
Input Frequency to APLL Mux  
Minimum Input Clock High, Low Time  
Differential Input Capacitance  
fI  
Single-Ended  
MHz  
smaller  
of 3ns or  
0.3 x 1/ fI  
tH, tL  
CID  
ns  
1.5  
pF  
Note 1:  
The device can tolerate voltages as specified in VTOL w.r.t. VSS on its ICxPOS and ICxNEG pins without being damaged.  
For differential input signals, proper operation of the input circuitry is only guaranteed when the other specifications in this table,  
including VIN, are met.  
For single-ended signals, the input circuitry accepts signals that meet the VIH and VIL specifications in Table 7-3 above (but with VIH  
max of VDD33).  
Note 2:  
Note 3:  
Note 4:  
See internal resistors in Figure 7-1. Other common mode voltages can be set using external resistors.  
VID=VICPOS VICNEG  
The differential inputs can easily be interfaced to LVDS, LVPECL, and CML outputs on neighboring ICs using a few external  
passive components. See Figure 7-1 and App Note HFAN-1.0 for details.  
Figure 7-1. Recommended External Components for Interfacing to Differential Inputs  
VDD_IO_33  
MAX245xx  
50  
ICnPOS  
+
Signal  
Source  
100  
Receiver  
-
50  
ICnNEG  
44  
 
MAX24505, MAX24510  
Table 7-5. Electrical Characteristics: CML Clock Outputs  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, VDDOx = 3.3V±5% (x=A|B|C|D); TA = -40°C to +85°C)  
PARAMETER  
Output Frequency  
SYMBOL  
CONDITIONS  
MIN  
<1Hz2  
TYP  
MAX  
750  
UNITS  
MHz  
fOCML  
Output High Voltage (OCPOS or OCNEG,  
Singled-Ended)  
Output Low Voltage (OCPOS or OCNEG,  
Singled-Ended)  
VDDOx  
0.2  
VOH,S  
VOL,S  
VCM,S  
V
V
V
VDDOx  
0.6  
VDDOx  
0.4  
Standard Swing  
(OCCR2.OCSF=1),  
AC coupled to  
Output Common Mode Voltage  
50termination  
Differential Output Voltage  
|VOD,S  
|VOD,S,PP  
VOH,N  
|
320  
640  
400  
800  
VDDOx  
0.1  
500  
mV  
Differential Output Voltage Peak-to-Peak  
Output High Voltage (OCPOS or OCNEG,  
Singled-Ended)  
Output Low Voltage (OCPOS or OCNEG,  
Singled-Ended)  
|
1000  
mVP-P  
V
V
V
Narrow Swing  
(half the power)  
(OCCR2.OCSF=2),  
AC coupled to  
VDDOx  
0.3  
VDDOx  
0.2  
VOL,N  
Output Common Mode Voltage  
VCM,N  
|VOD,N  
|VOD,N,PP  
VDOS  
50termination  
Differential Output Voltage  
|
160  
320  
200  
400  
250  
500  
mV  
Differential Output Voltage Peak-to-Peak  
|
mVP-P  
Difference in Magnitude of Differential  
Voltage for Complementary States  
Output Rise/Fall Time  
Output Duty-Cycle  
Output Duty-Cycle  
50  
mV  
tR, tF  
20%-80%  
Notes 2  
Notes 3  
150  
50  
ps  
%
%
45  
40  
55  
60  
Single Ended, to  
VDDOx  
Output Impedance  
Mismatch in a pair  
ROUT  
50  
10  
%
ROUT  
Note 1:  
The differential CML outputs can easily be interfaced to LVDS, LVPECL, and CML outputs on neighboring ICs using a few  
external passive components. See Figure 7-2 and App Note HFAN-1.0 for details.  
Note 2:  
Note 3:  
For all HSDIV, MSDIV and OCDIV combinations other than those specified in Note 3.  
For the case when APLLCR1.HSDIV specifies a half divide and OCCR1.MSDIV=0 and OCDIV=0.  
1/fOCML  
VOCxPOS  
VOH  
VCM  
VOL  
|VOD  
|
VOCxNEG  
VOCxPOS - VOCxNEG  
0
|VOD,PP  
|
45  
 
MAX24505, MAX24510  
Figure 7-2. Recommended External Components for Interfacing to CML Outputs  
MAX245xx  
VDD_APLLx_33  
k  
LVDS  
Receiver  
50  
50  
3.3V  
+
CML Tx  
-
MAX245xx  
82  
82  
VDD_APLLx_33  
LVPECL  
Receiver  
50  
50  
k  
+
CML Tx  
-
MAX245xx  
VDD_APLLx_33  
CML  
Receiver  
50  
50  
+
130  
130  
CML Tx  
-
can be AC or  
DC coupled  
Table 7-6. Electrical Characteristics: CMOS and HSTL (Class I) Clock Outputs  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, VDDOx = 1.425V to 3.465V (x=A|B|C|D);TA = -40°C to +85°C)  
PARAMETER  
Output Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
160  
UNITS  
MHz  
<<1Hz1  
fOCML  
VDDOx  
0.4  
VDDOx  
0.4  
Output High Voltage  
VOH  
VOL  
Notes 3, 4  
Notes 3, 4  
2pF load  
V
V
Output Low Voltage  
Output Rise/Fall Time, VDDOx=1.8V,  
OCCR2.DRIVE=4x  
Output Rise/Fall Time, VDDOx=1.8V,  
OCCR2.DRIVE=4x  
Output Rise/Fall Time, VDDOx=3.3V,  
OCCR2.DRIVE=1x  
0
tR, tF  
0.4  
1.2  
0.7  
2.2  
ns  
tR, tF  
tR, tF  
tR, tF  
15pF load  
2pF load  
15pF load  
ns  
ns  
ns  
Output Rise/Fall Time, VDDOx=3.3V,  
OCCR2.DRIVE=1x  
Output Duty-Cycle  
45  
50  
10  
55  
%
Output Current When Output Disabled  
OCCR2.OCSF=0  
A  
Note 1:  
Note 2:  
Guaranteed by design.  
Measured with a series resistor of 33and a 10pF load capacitance unless otherwise specified.  
Note 3:  
For HSTL Class I, VOH and VOL apply for both unterminated loads and for symmetrically terminated loads, i.e. 50to  
VDDOx/2.  
Note 4:  
For VDDOx=3.3V and OCCR2.DRIVE=1x, IO=4mA. For VDDOx=1.5V and OCCR2.DRIVE=4x, IO=8mA.  
46  
 
MAX24505, MAX24510  
Interfacing to HCSL Components  
Outputs in HSTL mode with VDDOx=1.5V or VDDOx=1.8V can provide an HCSL signal (VOH typ. 0.75V) to a  
neighboring component when configured as shown in Figure 7-3 For VDDOx=1.5V the value of RS should be set to  
30and OCCR2.DRIVE should be set to 4x. For VDDOx=1.8V the value of RS should be set to 20and  
OCCR2.DRIVE should be set to 2x.  
Figure 7-3. Recommended Confguration for Interfacing to HCSL Components  
Device with  
HCSL Input  
1.5V  
MAX245xx  
VDDOx  
RS  
RS  
50  
50  
POS  
HSTL Mode  
NEG  
POS  
NEG  
Table 7-7. Electrical Characteristics: Clock Output Timing  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, TA = -40°C to +85°C)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
APLL VCO Frequency Range  
fVCO  
3715  
4180  
MHz  
APLL Phase-Frequency Detector Compare  
Frequency  
tPFD  
9.72  
102.4  
MHz  
Table 7-8. Electrical Characteristics: Jitter Specifications  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, TA = -40°C to +85°C)  
PARAMETER  
Output Jitter, 622.08MHz  
Jitter Transfer Bandwidth  
SYMBOL  
CONDITIONS  
Notes 1, 3  
Note 2  
MIN  
TYP  
0.19  
400  
MAX  
0.35  
UNITS  
ps RMS  
kHz  
Note 1:  
Note 2:  
Note 3:  
Jitter calculated from integrated phase noise from 12kHz to 20MHz.  
APLL bandwidth and damping factor can be field configured over a limited range. Contact the factory for details.  
Tested with 77.76MHz from production tester, 3732.48MHz VCO frequency.  
Table 7-9. Electrical Characteristics: Typical Output Jitter Performance  
APLL Locked to External 78.125MHz XO (Vectron VCC1-1540-78M12500)  
Output Jitter  
Output Jitter  
APLL1 Output Frequency  
625MHz  
156.25MHz  
125MHz  
25MHz CMOS  
622.08MHz  
155.52MHz  
622.08MHz * 255/237  
155.52MHz * 255/237  
614.4MHz  
ps RMS  
0.18  
0.23  
0.27  
0.34  
0.28  
0.35  
0.30  
0.36  
0.29  
0.33  
0.19  
0.24  
0.23  
APLL2 Output Frequency  
ps RMS  
APLL2 Disabled  
153.6MHz  
625MHz  
156.25MHz  
156.25MHz  
622.08MHz  
155.52MHz  
156.25MHz * 66/64  
0.27  
0.38  
0.38  
Note: All signals in Table 7-9 are differential unless otherwise stated. Jitter is integrated 12kHz to 5MHz for 25MHz output frequency and 12kHz  
to 20MHz for all other output frequencies.  
47  
 
 
 
 
MAX24505, MAX24510  
Table 7-10. Electrical Characteristics: Typical Input-to-Output Clock Delay  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, TA = -40°C to +85°C)  
MODE  
DELAY, INPUT CLOCK EDGE TO OUTPUT CLOCK EDGE  
non-deterministic but constant as long as the APLL remains locked and  
alignment is not changed by the APLLCR1.DALIGN and  
OCCR3.DALEN bits.  
All Modes  
Table 7-11. Electrical Characteristics: Typical Output-to-Output Clock Delay  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, TA = -40°C to +85°C)  
MODE  
DELAY, OUTPUT CLOCK EDGE TO OUTPUT CLOCK EDGE  
<100ps  
All Modes  
Requires use of APLLCR1.DALIGN and OCCR3.DALEN bits. See the  
register field descriptions for details.  
48  
MAX24505, MAX24510  
Table 7-12. Electrical Characteristics: SPI Interface Timing  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, TA = -40°C to +85°C) (See Figure 7-4.)  
CONDITIONS  
PARAMETER (Note 1, 2)  
SCLK Frequency  
SYMBOL  
fBUS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
4
SCLK Cycle Time  
tCYC  
250  
125  
125  
100  
100  
30  
CS_N Setup to First SCLK Edge  
CS_N Hold Time After Last SCLK Edge  
SCLK High Time  
tSUC  
ns  
tHDC  
ns  
tCLKH  
tCLKL  
tSUI  
ns  
SCLK Low Time  
ns  
SDI Data Setup Time  
ns  
SDI Data Hold Time  
tHDI  
40  
ns  
SDO Enable Time (High-Impedance to  
Output Active)  
tEN  
0
ns  
SDO Disable Time (Output Active to High-  
Impedance)  
tDIS  
tDV  
25  
ns  
ns  
ns  
SDO Data Valid Time  
100  
SDO Data Hold Time After Update SCLK  
Edge  
tHDO  
5
Note 1:  
Note 2:  
All timing is specified with 100pF load on all SPI pins.  
All parameters in this table are guaranteed by design.  
Figure 7-4. SPI Interface Timing Diagram  
CS_N  
tHDC  
tSUC  
tCYC  
tCLKL  
SCLK  
tCLKH  
tSUI tHDI  
SDI  
tDV  
tDIS  
SDO  
tEN  
tHDO  
49  
 
MAX24505, MAX24510  
Table 7-13. Electrical Characteristics: JTAG Interface Timing  
(1.8V Supplies: 1.8V 5%; 3.3V Supplies: 3.3V 5%, TA = -40°C to +85°C) (See Figure 7-5.)  
PARAMETER (Note 1)  
JTCLK Clock Frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
15.625  
UNITS  
MHz  
fJTAG  
JTCLK Clock Period  
t1  
t2/t3  
t4  
64  
32  
16  
16  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JTCLK Clock High/Low Time  
JTCLK to JTDI, JTMS Setup Time  
JTCLK to JTDI, JTMS Hold Time  
JTCLK to JTDO Delay  
Note 2  
t5  
t6  
16  
16  
JTCLK to JTDO High-Impedance Delay  
JTRST_N Width Low Time  
t7  
2
t8  
100  
Note 1:  
Note 2:  
All parameters in this table are guaranteed by design.  
Clock can be stopped high or low.  
Figure 7-5. JTAG Timing Diagram  
t1  
t2  
t3  
JTCLK  
t4  
t5  
JTDI, JTMS, JTRST_N  
t6  
t7  
JTDO  
t8  
JTRST_N  
50  
 
 
MAX24505, MAX24510  
8. Pin Assignments  
8.1 MAX24505 Pin Asssignment  
Table 8-1 below lists pin assignments sorted in alphabetical order by pin name. Figure 8-1 shows pin assignments  
arranged by pin number.  
Table 8-1. MAX24505 Pin Assignments Sorted by Signal Name  
PIN NAME  
PIN NUMBERS  
PIN NAME  
PIN NUMBERS  
CS_N  
B7  
A8  
B8  
A2  
B2  
B9  
A9  
B1  
A1  
B3  
A3  
B5  
C5  
B6  
C7  
C6  
E8  
E9  
F8  
F9  
H9  
J9  
VDD_33  
D7  
GPIO1  
VDD_APLL1_18  
VDD_APLL1_33  
VDD_APLL2_18  
VDD_APLL2_33  
VDD_DIG_18  
VDD_OC_18  
VDD_XO_18  
VDD_XO_33  
VDDO18A  
VDDO18B  
VDDO18C  
VDDO18D  
VDDOA  
E6  
GPIO2  
E7  
GPIO3  
E4  
GPIO4  
E3  
IC1NEG  
IC1POS  
IC2NEG  
IC2POS  
IC3NEG  
IC3POS  
JTCLK  
D4, E5  
G3  
G5  
G6  
C9  
H6  
H4  
JTDI  
C1  
JTDO  
D8  
JTMS  
VDDOB  
G8  
JTRST_N  
OC1NEG  
OC1POS  
OC2NEG  
OC2POS  
OC3NEG  
OC3POS  
OC8NEG  
OC8POS  
OC10NEG  
OC10POS  
RST_N  
SCLK  
VDDOC  
G2  
VDDOD  
D2  
VSS_APLL1  
VSS_APLL2  
VSS_DIG  
VSS_OC  
F6, F7  
F3, F4  
D5, F5  
G4  
VSS_XO  
G7  
H1  
J1  
VSSOA  
D9  
VSSOB  
G9, J6  
E2  
E1  
C8  
A6  
A7  
A5  
C2  
D6  
VSSOC  
G1, J4  
VSSOD  
D1  
VSUB  
D3  
XIN  
H5  
SDI  
XOUT  
J5  
SDO  
N.C.  
F1, F2, H2, H3, H7, H8, J2, J3, J7, J8  
A4, B4, C3, C4  
TEST  
D.N.C.  
VDD_18  
51  
 
MAX24505, MAX24510  
Figure 8-1. MAX24505 Pin Assignment Diagram  
1
2
3
4
5
6
7
8
9
IC2POS  
GPIO3  
IC3POS  
D.N.C.  
SDO  
SCLK  
SDI  
GPIO1  
IC1POS  
A
B
C
D
E
F
IC2NEG  
VDDO18D  
VSSOD  
OC10POS  
NC  
GPIO4  
TEST  
IC3NEG  
D.N.C.  
VSUB  
D.N.C.  
D.N.C.  
JTCLK  
JTDI  
JTDO  
CS_N  
JTMS  
GPIO2  
RST_N  
VDDOA  
OC1NEG  
OC2NEG  
VDDOB  
N.C.  
IC1NEG  
VDDO18A  
VSSOA  
JTRST_N  
VDD_18  
VDDOD  
OC10NEG  
NC  
VDD_DIG_18  
VSS_DIG  
VDD_DIG_18  
VSS_DIG  
VDD_XO_18  
XIN  
VDD_33  
VDD_APLL2  
_33  
VDD_APLL2  
_18  
VDD_APLL1  
_18  
VDD_APLL1  
_33  
OC1POS  
OC2POS  
VSSOB  
VSS_APLL2  
VDD_OC_18  
N.C.  
VSS_APLL2  
VSS_OC  
VDDO18C  
VSSOC  
VSS_APLL1  
VDD_XO_33  
VDDO18B  
VSSOB  
VSS_APLL1  
VSS_XO  
N.C.  
VSSOC  
OC8NEG  
OC8POS  
VDDOC  
N.C.  
G
H
J
OC3NEG  
OC3POS  
N.C.  
N.C.  
XOUT  
N.C.  
N.C.  
Differential I/O (up to 750MHz)  
Low-Speed Digital I/O (10MHz)  
VDD 3.3V  
VDD 1.8V  
VSS  
APLL or XO VDD 3.3V  
APLL or XO VDD 1.8V  
APLL or XO VSS  
Output VDD 1.5-3.3V  
Output VDD 1.8V  
Output VSS  
Crystal I/O  
N.C. = No Connection. Lead is not connected to anything inside the device  
D.N.C. = Do Not Connect. Lead is internally connected. Do not connect anything to this lead.  
52  
MAX24505, MAX24510  
8.2  
MAX24510 Pin Asssignment  
Table 8-2 below lists pin assignments sorted in alphabetical order by pin name. Figure 8-2 shows pin assignments  
arranged by pin number.  
Table 8-2. MAX24510 Pin Assignments Sorted by Signal Name  
PIN NAME  
PIN NUMBERS  
PIN NAME  
PIN NUMBERS  
CS_N  
B7  
A8  
B8  
A2  
B2  
B9  
A9  
B1  
A1  
B3  
A3  
B5  
C5  
B6  
C7  
C6  
E8  
E9  
F8  
F9  
H9  
J9  
RST_N  
C8  
GPIO1  
SCLK  
A6  
GPIO2  
SDI  
A7  
GPIO3  
SDO  
A5  
GPIO4  
TEST  
C2  
IC1NEG  
IC1POS  
IC2NEG  
IC2POS  
IC3NEG  
IC3POS  
JTCLK  
VDD_18  
D6  
VDD_33  
D7  
VDD_APLL1_18  
VDD_APLL1_33  
VDD_APLL2_18  
VDD_APLL2_33  
VDD_DIG_18  
VDD_OC_18  
VDD_XO_18  
VDD_XO_33  
VDDO18A  
VDDO18B  
VDDO18C  
VDDO18D  
VDDOA  
E6  
E7  
E4  
E3  
D4, E5  
G3  
JTDI  
JTDO  
G5  
JTMS  
G6  
JTRST_N  
OC1NEG  
OC1POS  
OC2NEG  
OC2POS  
OC3NEG  
OC3POS  
OC4NEG  
OC4POS  
OC5NEG  
OC5POS  
OC6NEG  
OC6POS  
OC7NEG  
OC7POS  
OC8NEG  
OC8POS  
OC9NEG  
OC9POS  
OC10NEG  
OC10POS  
C9  
H6  
H4  
C1  
D8  
VDDOB  
G8  
VDDOC  
G2  
H8  
J8  
VDDOD  
D2  
VSS_APLL1  
VSS_APLL2  
VSS_DIG  
VSS_OC  
VSS_XO  
VSSOA  
F6, F7  
F3, F4  
D5, F5  
G4  
H7  
J7  
H3  
J3  
G7  
H2  
J2  
D9  
VSSOB  
G9, J6  
G1, J4  
D1  
H1  
J1  
VSSOC  
VSSOD  
F2  
F1  
E2  
E1  
VSUB  
D3  
XIN  
H5  
XOUT  
J5  
D.N.C.  
A4, B4, C3, C4  
none  
N.C.  
53  
 
MAX24505, MAX24510  
Figure 8-2. MAX24510 Pin Assignment Diagram  
1
2
3
4
5
6
7
8
9
IC2POS  
GPIO3  
IC3POS  
D.N.C.  
SDO  
SCLK  
SDI  
GPIO1  
IC1POS  
A
B
C
D
E
F
IC2NEG  
VDDO18D  
VSSOD  
GPIO4  
TEST  
IC3NEG  
D.N.C.  
VSUB  
D.N.C.  
D.N.C.  
JTCLK  
JTDI  
JTDO  
CS_N  
JTMS  
GPIO2  
RST_N  
IC1NEG  
VDDO18A  
VSSOA  
JTRST_N  
VDD_18  
VDDOD  
OC10NEG  
OC9NEG  
VDDOC  
OC7NEG  
OC7POS  
VDD_DIG_18  
VSS_DIG  
VDD_DIG_18  
VSS_DIG  
VDD_XO_18  
XIN  
VDD_33  
VDDOA  
OC1NEG  
OC2NEG  
VDDOB  
OC4NEG  
OC4POS  
VDD_APLL2  
_33  
VDD_APLL2  
_18  
VDD_APLL1  
_18  
VDD_APLL1  
_33  
OC10POS  
OC9POS  
VSSOC  
OC1POS  
OC2POS  
VSSOB  
VSS_APLL2  
VDD_OC_18  
OC6NEG  
VSS_APLL2  
VSS_OC  
VDDO18C  
VSSOC  
VSS_APLL1  
VDD_XO_33  
VDDO18B  
VSSOB  
VSS_APLL1  
VSS_XO  
G
H
J
OC8NEG  
OC8POS  
OC5NEG  
OC5POS  
OC3NEG  
OC3POS  
OC6POS  
XOUT  
Differential I/O (up to 750MHz)  
Low-Speed Digital I/O (10MHz)  
VDD 3.3V  
VDD 1.8V  
VSS  
APLL or XO VDD 3.3V  
APLL or XO VDD 1.8V  
APLL or XO VSS  
Output VDD 1.5-3.3V  
Output VDD 1.8V  
Output VSS  
Crystal I/O  
N.C. = No Connection. Lead is not connected to anything inside the device  
D.N.C. = Do Not Connect. Lead is internally connected. Do not connect anything to this lead.  
54  
MAX24505, MAX24510  
9. Package and Thermal Information  
For the latest package outline information and land patterns contact Microsemi timing products technical support.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0360  
LAND PATTERN  
81 CSBGA  
X8100M+4  
See IPC-7351  
9.1  
Package Top Mark Format  
Figure 9-1. Non-Customized Device Top Mark  
LOGO  
LOGO  
M A X 2 4 5 0 5 E X G  
M A X 2 4 5 1 0 E X G  
e1  
e1  
F
R
F
R
Y Y W W A Z Z  
Y Y W W A Z Z  
Pin 1 corner  
Pin 1 corner  
Figure 9-2. Custom Factory-Programmed Device Top Mark  
LOGO  
LOGO  
M A X 2 4 5 0 5 E X G  
M A X 2 4 5 1 0 E X G  
e1  
e1  
F
R
F
R
Y Y W W A Z Z  
C C I D W P  
Y Y W W A Z Z  
C C I D W P  
Pin 1 corner  
Pin 1 corner  
Table 9-1. Package Top Mark Legend  
Line  
Characters  
Description  
1
MAX24505EXG or  
Part Number  
MAX24510EXG  
2
2
2
3
3
3
3
4
4
F
R
e1  
YY  
WW  
A
ZZ  
CCID  
WP  
Fab Code  
Product Revision Code  
Denotes Pb-Free Package  
Last Two Digits of the Year of Encapsulation  
Work Week of Assembly  
Assembly Location Code  
Assembly Lot Sequence Code  
Custom Programming Identification Code  
Work Week of Programming  
55  
 
 
MAX24505, MAX24510  
9.2  
Thermal Specifications  
Table 9-2. CSBGA Package Thermal Properties  
PARAMETER  
SYMBOL  
CONDITIONS  
VALUE  
-40  
85  
UNITS  
C  
C  
C  
C  
TA  
TA  
TJ  
TJ  
Minimum Ambient Temperature  
Maximum Ambient Temperature  
Minimum Junction Temperature  
Maximum Junction Temperature  
-40  
125  
24.9  
22.7  
21.9  
14.1  
4.1  
still air,  
1m/s airflow  
2m/s airflow  
Junction to Ambient Thermal Resistance  
(Note 1)  
JA  
C/W  
Junction to Board Thermal Resistance  
Junction to Case Thermal Resistance  
JB  
JC  
C/W  
C/W  
still air,  
1m/s airflow  
2m/s airflow  
0.3  
0.4  
0.4  
Junction to Top-Center Thermal  
Characterization Parameter  
JT  
C/W  
Note 1:  
Theta-JA (JA) is the junction to ambient thermal resistance when the package is mounted on a six-layer JEDEC standard test  
board and dissipating maximum power.  
If the maximum ambient temperature seen by the device in the application is greater than 70C then care must be  
taken to keep the device’s junction temperature below the 125C max specification. In this case CML outputs  
should be configured for half-swing mode whenever possible, and air flow may be required, depending on which  
blocks in the device are enabled in the application. Microsemi offers the MAX24xxx Power and Thermal Calculator  
spreadsheet to calculate typical and worst-case power consumption and device junction temperature. Contact  
Microsemi applications support to request this spreadsheet.  
56  
 
MAX24505, MAX24510  
10. Acronyms and Abbreviations  
APLL  
CML  
EEC  
analog phase locked loop  
current mode logic  
Ethernet equipment clock  
gigabit Ethernet  
GbE  
I/O  
input/output  
LVDS  
LVPECL  
PFD  
low-voltage differential signal  
low-voltage positive emitter-coupled logic  
phase/frequency detector  
phase locked loop  
PLL  
ppb  
parts per billion  
ppm  
parts per million  
pk-pk  
RMS  
RO  
peak-to-peak  
root-mean-square  
read-only  
R/W  
read/write  
SDH  
SEC  
SONET  
STM  
TCXO  
UI  
synchronous digital hierarchy  
SDH equipment clock  
synchronous optical network  
synchronous transport module  
temperature-compensated crystal oscillator  
unit interval  
UIPP or UIP-P  
XO  
unit interval, peak to peak  
crystal oscillator  
57  
MAX24505, MAX24510  
11. Data Sheet Revision History  
REVISION  
DATE  
DESCRIPTION  
2012-05  
2012-06  
2012-07  
Initial Release  
Updated page 1 and section 2.1 statements about output jitter to say 0.35-0.5ps RMS typical.  
Corrected several typos (no effect on electrical specs or behavior).  
Change Note 1 below Figure 4-1 to discuss final R1 and R2 values.  
Changed Table 7-7 to show final VCO range rather than rev A1 VCO range.  
Updated Table 9-2 to latest JA numbers and added JB, JC, and JT numbers.  
2012-08  
2012-11  
On page 1 and in section 2.1, reduced jitter numbers from “0.35 to 0.5ps and as low as 0.24ps”  
to “typically 0.18 to 0.3ps RMS for an integer multiply and 0.25 to 0.4ps RMS for a fractional multiply”  
In section 2.3, deleted “Internal compensation for local oscillator frequency error” bullet.  
In section Table 7-8 changed typical APLL jitter transfer bandwidth from 200kHz to 400kHz.  
In Table 7-7 changed VCO range from 3700MHz min, 4200MHz max to 3715MHz min,  
4180MHz max.  
2013-02  
In Table 7-8, changed output jitter max from 0.5 to 0.35ps RMS and changed VCO frequency in  
Note 3 from 4043.52MHz to 3732.48MHz.  
In Table 7-9 revised all numbers lower and specified XO used for rev B jitter measurement.  
Added 49.152MHz to Note 1 of Table 4-1.  
2013-05  
2013-07  
In section 9 replaced the land pattern hyperlink with the recommendation to see IPC-7351.  
In Table 7-8 reduced the output jitter spec from “0.23 typ, 0.48 max” to “0.19 typ, 0.35 max.”  
In the heading of Table 7-9 changed “50MHz” to “78.125MHz.”  
The old values were typos.  
In the JTRST_N pin description in Table 3-5 specified that JTRST_N should be held low during  
device power-up.  
2014-08  
Changed title to Any-to-Any.  
In Table 7-5 changed differential output voltage symbols (regular and peak-to-peak) to have  
abosolute value bars and added definition figure below the table.  
In Table 7-6 corrected typo: changed VCCOx to VDDOx.  
Added section 9.1 to document package top mark.  
2014-10  
2015-06  
Above Table 7-7 in the Interfacing to HCSL Components paragraph, added component values  
and settings for VDDOx=1.8V.  
In Table 7-5 deleted the max rise/fall time number. This was erroneously left in this data sheet  
but should not have been there from first data sheet release as is the case in other MAX24xxx  
family data sheets.  
2016-11  
2019-04  
In Table 7-13 updated JTAG interface timing from 1MHz to 15.625MHz.  
Change "+" to "2" in ordering part numbers.  
58  
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor  
and system solutions for communications, defense & security, aerospace and industrial  
markets. Products include high-performance and radiation-hardened analog mixed-signal  
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and  
synchronization devices and precise time solutions, setting the world’s standard for time;  
voice processing devices; RF solutions; discrete components; security technologies and  
scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom  
design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has  
approximately 3,400 employees globally. Learn more at www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise  
Aliso Viejo, CA 92656 USA  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein  
or the suitability of its products and services for any particular purpose, nor does Microsemi assume  
any liability whatsoever arising out of the application or use of any product or circuit. The products sold  
hereunder and any other products sold by Microsemi have been subject to limited testing and should  
not be used in conjunction with mission-critical equipment or applications. Any performance  
specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all  
performance and other testing of the products, alone and together with, or installed in, any end-  
products. Buyer shall not rely on any data and performance specifications or parameters provided by  
Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to  
test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is”  
and with all faults, and the entire risk associated with such information is entirely with the Buyer.  
Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP  
rights, whether with regard to such information itself or anything described by such information.  
Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to  
make any changes to the information in this document or to any products and services at any time  
without notice.  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
Fax: +1 (949) 215-4996  
E-mail: sales.support@microsemi.com  
©2019 Microsemi Corporation. All  
rights reserved. Microsemi and the  
Microsemi logo are trademarks of  
Microsemi Corporation. All other  
trademarks and service marks are the  
property of their respective owners.  

相关型号:

MAX2451CSE

3V, Ultra-Low-Power Quadrature Demodulator
MAXIM

MAX2451CSE+T

Demodulator, Quadraphase, 70MHz Min, 160MHz Max
MAXIM

MAX2451CSE-T

Demodulator, Quadraphase, 70MHz Min, 160MHz Max
MAXIM

MAX2452

3V, Ultra-Low-Power Quadrature Modulator
MAXIM

MAX2452CSE

Telecommunication IC
MAXIM

MAX2452EVKIT

Evaluation Kit for the MAX2450/MAX2451/MAX2452
MAXIM

MAX2452ISE

Telecommunication IC
MAXIM

MAX2452ISE+

Modulator, Quadraphase, 70MHz Min, 160MHz Max
MAXIM

MAX2452ISE+T

Modulator, Quadraphase, 70MHz Min, 160MHz Max
MAXIM

MAX2452ISE-T

暂无描述
MAXIM

MAX245C

+5V-Powered, Multichannel RS-232 Drivers/Receivers
MAXIM

MAX245C/D

Transceiver
MAXIM