RP1280A-CQ172B [MICROSEMI]

Field Programmable Gate Array, 41MHz, 1232-Cell, CMOS, CQFP172;
RP1280A-CQ172B
型号: RP1280A-CQ172B
厂家: Microsemi    Microsemi
描述:

Field Programmable Gate Array, 41MHz, 1232-Cell, CMOS, CQFP172

时钟 栅 可编程逻辑
文件: 总34页 (文件大小:437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
P r e l i m i n a r y v 1 . 1  
®
RadTolerant RAD-PAK  
Field Programmable Gate Arrays  
F e a t u r e s  
Highly Predictable Performance with 100% Automatic  
Place and Route  
R a d ia t io n C h a r a c t e r is t ic s  
• 100% Resource Utilization with 100% Pin-Locking  
RAD-PAK® Package Technology from Space Electronics,  
Inc.  
• Secure Programming Technology Prevents Reverse  
Engineering and Design Theft  
• Improved Total Ionizing Dose (TID) Survivability  
Can Improve TID 2-10x Over Standard Package  
Can Achieve > 100 KRads (Si) in Some Orbits  
• Packages: 172-Pin and 256-Pin RAD-PAK® Ceramic Quad  
Flat Pack  
• Permanently Programmed for Instantaneous Operation on  
Power-Up  
Unique In-System Diagnostic and Debug Facility with  
Silicon Explorer  
Actel Designer Series Design Tools, Supported by  
Cadence, Exemplar, Mentor Graphics, Model Tech,  
Synopsys, Synplicity and Viewlogic Design Entry and  
Simulation Tools  
Offered as E-Flow (Actel Space Level Flow) and Class B  
H ig h De n s it y a n d P e r fo r m a n c e  
• 16,000 and 20,000 Gates  
• 8,000 and 10,000 ASIC Equivalent Gates  
Up to 85 MHz On-Chip Performance  
Up to 228 User I/Os  
G e n e r a l D e s c r i p t i o n  
Actel builds the most reliable field programmable gate arrays  
(FPGAs) in the industry, with overall antifuse reliability  
ratings of less than 10 failures-in-time (FITs), corresponding  
to a useful life of more than 40 years. Actel FPGAs are  
production-proven, with more than five million devices  
shipped and more than one trillion antifuses manufactured.  
Actel devices are fully tested prior to shipment, with an  
out-going defect level of only 122 ppm. (Further reliability  
data is available in the “Actel Device Reliability Report” at  
http://www.actel.com/products/devices/hireldev.html.)  
Up to Four Fast, Low-Skew Clock Networks  
E a s y Lo g ic In t e g r a t io n  
Non-Volatile, User Programmable  
• Pin-Compatible Commercial Devices Available for  
Prototyping  
P r o d u c t F a m i l y P r o f i l e  
Device  
RP1280A  
RP14100A  
Gates  
16,000  
8,000  
20,000  
200  
20,000  
10,000  
25,000  
250  
ASIC Equivalent Gates  
PLD Equivalent Gates  
TTL Equivalent Package  
20-Pin PAL Equivalent Packages  
80  
100  
Logic Modules  
S-Modules  
1,232  
624  
1,377  
697  
C-Modules  
608  
680  
User I/Os  
140  
172  
228  
256  
CQFP Package Pin Count  
Performance System Speed (Maximum)  
40 MHz  
60 MHz  
Ordering Information  
Part Number (Class B)  
Part Number (E-Flow)  
Commercial Equivalent for Prototyping  
RP1280A-CQ172B  
RP1280A-CQ172E  
A1280A-CQ172C  
RP14100A-CQ256B  
RP14100A-CQ256E  
A14100A-CQ256C  
J a n u a r y 1 9 9 9  
1
© 1999 Actel Corporation  
Additionally, the programmable architecture of both the  
RP1280A and RP14100A offers high performance, design  
flexibility, and fast and inexpensive prototyping—all without  
the expense of test vectors, NRE charges, long lead times, and  
schedule and cost penalties for design refinements.  
the Actel Web site at:  
http://www.actel.com/products/devices/radhard/radperf.pdf.  
R a d i a t i o n P e r f o r m a n c e  
®
o f R A D -P A K F P G A s  
Recently, Actel joined with Space Electronics, Inc. (SEi) to  
combine Actels antifuse-based FPGAs with SEis RAD-PAK®  
package shielding technology. This technology incorporates  
radiation shielding in the FPGA package, eliminating the  
requirement for box- or board-level shielding and significantly  
improving the total ionizing dose survivability of Actel  
devices. The RP1280A and the RP14100A provide a  
high-reliability, low-risk, and fast time-to-launch solution that  
survives in a wide subset of Earth orbits and deep space  
environments.  
The components of natural radiation in space consist of  
trapped electrons, trapped protons, galactic cosmic rays, solar  
flare protons, and alpha particles. Depending on the orbit or  
deep space probe mission, the energy levels and magnitude of  
each component will vary. Since shielding effectiveness is  
dependent on the radiation component type and its energy  
level, the overall performance of RAD-PAK® FPGAs will vary  
with the application. Typical applications for two different  
orbits are shown below. Figure 1 and Figure 2 show the  
amount of mission dose which can be expected when a given  
amount of shielding is utilized for the two sample orbits.  
A closer examination of the box shielding and RAD-PAK®  
shielding shows how the specific requirements for  
components are originated. Figure 3 below shows a typical  
orbit of 705 km, 98 degrees, for 5 years. Under these  
conditions, typical satellite designers might have a 40 to 120  
mil aluminum box shield between the components and the  
outside environment. The figure shows that a shield of  
average thickness yields approximately 10 KRad (Si) inside  
the box shield. This specification becomes a design  
requirement for all of the active components in the satellite.  
When the RAD-PAK® shielding is added to the box shielding,  
as shown by the RP line, the total dose seen by the component  
is only 2.4 KRad (Si).  
The RP1280A device uses the A1280A die from the ACT 2  
Family of Actel FPGAs in a RAD-PAK® package. It utilizes a  
two-module architecture, consisting of combinatorial  
modules (C-modules) and sequential modules (S-modules)  
optimized for both combinatorial and sequential designs.  
Based on Actels patented channeled array architecture, the  
RP1280A has 8,000 ASIC-equivalent gates and 140 user I/Os.  
The RP1280A device is fully pin- and function-compatible  
with the commercially-equivalent A1280A-CQ172C device for  
easy and inexpensive prototyping.  
The RP14100A device uses the A14100A die in a RAD-PAK®  
package. This device is from the ACT 3 Family of Actel  
devices, which also utilizes the two-module architecture. The  
RP14100A offers additional device resources above the  
RP1280A, including increased gates (10,000 gate array When a second orbit (35,790 km, 0 degrees, for 5 years) is  
equivalent gates), higher I/Os (228), and faster performance.  
examined using the same methodology, similar results can be  
achieved at higher total dose levels. Figure 4 below shows that  
average box shielding provides protection to 250 KRad(Si).  
Use of the RAD-PAK® design brings the total dose seen at the  
device level down to 5.8 KRad (Si).  
The RP14100A device is fully pin- and function-compatible  
with the commercially-equivalent A14100A-CQ256C device for  
easy and inexpensive prototyping.  
The above discussion shows how use of RAD-PAK® products  
can shield significant levels of total dose seen at the die level.  
The ability of the Actel FPGA die to meet these lower levels of  
total dose radiation make the RAD-PAK® FPGAs a design  
choice for many space applications.  
For proper application of the RAD-PAK® FPGA products, the  
following information should be available:  
R a d i a t i o n S u r v i v a b i l i t y  
The bare die of both the RP1280A and RP14100A devices have  
some inherent total dose radiation survivability. The levels at  
which these bare die are able to survive varies by lot and  
device type. Actel provides Group E testing on the bare die  
that gives an indication of the lot characteristics. These  
results are provided for reference and customer evaluation,  
and the testing is performed to MIL-STD-883, Method 1019.5  
by Space Electronics, Inc.  
The radiation survivability levels of the RAD-PAK® devices  
varies due to a number of factors. The customer must  
evaluate and determine the applicability of these devices to  
their specific design and environmental requirements.  
Orbit or mission  
• Satellite level shielding thickness and type  
or  
Mission dose vs. shielding thickness curves  
Actel personnel can then assist in determining whether the  
RAD-PAK® FPGA devices are usable for the customers  
application and radiation requirements.  
A summary of the radiation performance of Actel products  
(Radiation Performance of Actel Products”) can be found on  
2
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
1.0E+07  
1.0E+06  
1.0E+05  
1.0E+04  
1.0E+03  
1.0E+02  
1.0E+01  
1.0E+00  
Total Dose  
Protons  
Solar Protons  
Electrons  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Normalized Shielding Thickness  
Figure 1 Space-Level Total Dose: Typical Orbit—705km, 98°, 5 years  
1.0E+10  
Protons  
1.0E+09  
1.0E+08  
1.0E+07  
1.0E+06  
1.0E+05  
1.0E+04  
1.0E+03  
Total Dose  
Solar Protons  
Electrons  
1.0E+02  
1.0E+01  
1.0E+00  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Normalized Shielding Thickness  
Figure 2 Space-Level Total Dose: Typical Orbit—35,790 km, 0°, 5 years  
3
1.0E+07  
1.0E+06  
1.0E+05  
1.0E+04  
1.0E+03  
1.0E+02  
1.0E+01  
1.0E+00  
Box and Standard  
Package Shielding  
®
RAD-PAK  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Normalized Shielding Thickness  
Figure 3 RAD-PAK® Total Dose Shielding: Typical Orbit—705 km, 98°, 5 years  
1.0E+10  
1.0E+09  
1.0E+08  
1.0E+07  
1.0E+06  
1.0E+05  
1.0E+04  
1.0E+03  
1.0E+02  
1.0E+01  
1.0E+00  
Box and Standard  
Package Shielding  
®
RAD-PAK  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Normalized Shielding Thickness  
Figure 4 RAD-PAK® Total Dose Shielding: Typical Orbit—35,790 km, 0°, 5 years  
4
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
D i s c l a i m e r  
Designer Series supports industry-leading VHDL- and  
Verilog-based design tools, including synthesis tools from  
All radiation performance information is provided for  
information purposes only and is not guaranteed. The total  
dose effects on the bare die is lot-dependent, and Actel does  
not warrant that future devices will continue to exhibit  
similar radiation characteristics. In addition, due to the  
nature of RAD-PAK® shielding, actual performance can vary  
widely due to a variety of factors, including but not limited to,  
characteristics of the orbit, radiation environment, proximity  
to satellite exterior, amount of inherent shielding from other  
sources within the satellite and actual bare die variations.  
For these reasons, Actel does not warrant any level of  
radiation survivability, and it is solely the responsibility of the  
customer to determine whether the device will meet the  
requirements of the specific design.  
industry leaders such as Exemplar Logic, Synplicity, and  
Synopsys.1  
In addition, the RAD-PAK® devices are supported by Actels  
new Silicon Explorer diagnostic and debugging tool kit.  
Silicon Explorer dramatically reduces verification time from  
several hours per cycle to a few seconds by enabling  
real-time, in-circuit debugging. Silicon Explorer includes:  
• Probe Pilot, a high-speed signal acquisition and control  
tool that samples data at 100 MHz (asynchronous) or 66  
MHz (synchronous). Probe Pilot features 18 probing  
channels and connects to the users PC via a standard  
serial port connection.  
Diagnostic software, which turns the PC into a  
fully-featured, 100 MHz logic analyzer for easy graphical  
analysis of waveforms.  
D e s i g n T o o l S u p p o r t  
As with all Actel FPGAs, RAD-PAK® devices are fully  
supported by Actels Designer Series development tools,  
which include:  
Silicon Explorer probes 100 percent of the device circuitry  
using Probe Pilots powerful, 18-channel signal acquisition  
capability. Individual bugs are then isolated and passed to the  
user interface, providing the user with complete waveform  
data.  
DirectTime for automated, timing-driven place and route;  
ACTgen for fast development using a wide range of macro  
functions; and  
1. Designer Series also supports design entry and simulation tools from Cadence,  
Mentor Graphics, and Viewlogic.  
ACTmap for logic synthesis.  
®
R A D -P A K D e v i c e O r d e r i n g I n f o r m a t i o n  
RP1280A  
CQ  
172  
E
Application (Temperature Range)  
C = Commercial (0 to +70°C)  
M = Military (–55 to +125°C)  
B = MIL-STD-883 Class B  
E = Extended Flow (Space Level)  
Package Lead Count  
Package Type  
CQ = Ceramic Quad Flat Pack (CQFP)  
Speed Grade  
Std = Standard Speed  
–1 = Approximately 15% Faster than Standard  
Part Number  
®
RP1280A = 8,000 Gates—RAD-PAK ACT 2  
RP14100A = 10,000 Gates—RAD-PAK ACT 3  
A1280A = 8,000 Gates—ACT 2  
®
A14100A = 10,000 Gates—ACT 3  
5
P r o d u c t P l a n  
Application  
C
M
B
E
ACT 2  
®
RP1280A RAD-PAK Device  
172-Pin Ceramic Quad Flat Pack (CQFP)  
A1280A Device (Prototyping Use)  
172-Pin Ceramic Quad Flat Pack (CQFP)  
ACT 3  
RP14100A RAD-PAK® Device  
256-Pin Ceramic Quad Flat Pack (CQFP)  
A14100A Device (Prototyping Use)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
P
P
Applications: C = Commercial  
M = Military  
Availability: = Available  
= Planned  
— = Not Planned  
P
B = MIL-STD-883 Class B  
E = Extended Flow (Space Level)  
D e v i c e R e s o u r c e s  
User I/Os  
Gate Array  
Equivalent Gates  
CQFP  
172-Pin  
CQFP  
256-Pin  
FPGA Device Type  
Logic Modules  
RP1280A/A1280A  
1232  
1377  
8000  
140  
RP14100A/A14100A  
10000  
228  
6
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
A r c h i t e c t u r a l O v e r v i e w  
The RP1280A and RP14100A architecture is composed of  
fine-grained logic modules which produce fast, efficient logic  
designs. All devices are composed of logic modules, routing  
resources, clock networks, and I/O modules which are the  
building blocks for fast logic designs.  
A0  
B0  
S0  
D00  
D00  
D10  
D11  
Y
Lo g ic Mo d u le s  
Both devices contain two types of logic modules:  
combinatorial (C-modules) and sequential (S-modules).  
The C-module, shown in Figure 5, implements the following  
function:  
S1  
A1  
B1  
Y=!S1*!S0*D00+!S1*S0*D01+S1*!S0*D10+S1*S0*D11  
where:  
Figure 5 C-Module Implementation  
S0=A0*B0  
S1=A1+B1  
function as the C-module while adding a sequential element.  
The sequential element can be configured as either a D-type  
flip-flop or a transparent latch. To increase flexibility, the  
S-module register can be by-passed so it implements purely  
combinatorial logic.  
The S-module shown in Figure 6 is designed to implement  
high-speed sequential functions within a single logic module.  
The S-module implements the same combinatorial logic  
D00  
D01  
D00  
D01  
OUT  
OUT  
Y
D
Q
Y
D
Q
D10  
D10  
S0  
D11  
S1  
D11  
S1  
S0  
GATE  
CLR  
Up to 7-Input Function Plus D-Type Flip-Flop with Clear  
Up to 7-Input Function Plus Latch  
D00  
D01  
D0  
Y
OUT  
OUT  
Y
D
Q
D10  
S0  
D1  
D11  
S1  
GATE  
S
CLR  
Up to 8-Input Function (Same as C-Module)  
Up to 4-Input Function Plus Latch with Clear  
Figure 6 S-Module Implementation  
7
 
 
IO P C L  
De d ic a t e d (H a r d -Wir e d ) I/O  
P r e s e t /C le a r (In p u t )  
Flip-flops can also be created using two C-modules. The single  
event upset (SEU) characteristics differ between an  
S-module flip-flop and a flip-flop created using two  
C-modules. See the Radiation Specifications in this Data  
Sheet for details and the Actel Application Note, Design  
RP14100A and A14100A only. TTL input for I/O preset or  
clear. This global input is directly wired to the preset and  
clear inputs of all I/O registers. This pin functions as an I/O  
Techniques for RadHard Field Programmable Gate Arrays when no I/O preset or clear macros are used.  
found at http://www.actel.com/products/radhard.html.  
MO DE  
Mo d e (In p u t )  
The MODE pin controls the use of diagnostic pins (DCLK,  
PRA, PRB, SDI). When the MODE pin is HIGH, the special  
functions are active. When the MODE pin is LOW, the pins  
function as I/Os. To provide ActionProbe capability, the  
MODE pin should be terminated to GND through a 10K  
resistor so that the MODE pin can be pulled HIGH when  
required.  
P i n D e s c r i p t i o n  
C LK A  
C lo c k A (In p u t )  
TTL clock input for global clock distribution networks. The  
clock input is buffered prior to clocking the logic modules.  
This pin can also be used as an I/O.  
C LK B  
C lo c k B (In p u t )  
N C  
N o C o n n e c t io n  
TTL clock input for global clock distribution networks. The  
clock input is buffered prior to clocking the logic modules.  
This pin can also be used as an I/O.  
This pin is not connected to circuitry within the device.  
P R A, I/O  
P r o b e A (O u t p u t )  
DC LK  
Dia g n o s t ic C lo c k (In p u t )  
The Probe A pin is used to output data from any user-defined  
design node within the device. This independent diagnostic  
pin can be used in conjunction with the Probe B pin to allow  
real-time diagnostic output of any signal path within the  
device. The Probe A pin can be used as a user-defined I/O  
when debugging has been completed. PRA is accessible when  
the MODE pin is HIGH. This pin functions as an I/O when the  
MODE pin is LOW.  
TTL clock input for diagnostic probe and device  
programming. DCLK is active when the MODE pin is HIGH.  
This pin functions as an I/O when the MODE pin is LOW.  
G N D  
G r o u n d  
LOW supply voltage.  
H C LK  
De d ic a t e d (H a r d -Wir e d ) Ar r a y  
C lo c k (In p u t )  
P R B , I/O  
P r o b e B (O u t p u t )  
RP14100A and A14100A only. TTL clock input for sequential  
modules. This input is directly wired to each S-module,  
offering clock speeds independent of the number of  
S-modules being driven. This pin can also be used as an I/O.  
The Probe B pin is used to output data from any user-defined  
design node within the device. This independent diagnostic  
pin can be used in conjunction with the Probe A pin to allow  
real-time diagnostic output of any signal path within the  
device. The Probe B pin can be used as a user-defined I/O  
when debugging has been completed. PRB is accessible when  
the MODE pin is HIGH. This pin functions as an I/O when the  
MODE pin is LOW.  
I/O  
In p u t /O u t p u t (In p u t , O u t p u t )  
I/O pin functions as an input, output, tri-state, or  
bi-directional buffer. Input and output levels are compatible  
with standard TTL and CMOS specifications. Unused I/O pins  
are automatically driven LOW.  
S DI  
S e r ia l Da t a In p u t (In p u t )  
IO C LK  
De d ic a t e d (H a r d -Wir e d ) I/O  
C lo c k (In p u t )  
Serial data input for diagnostic probe and device  
programming. SDI is active when the MODE pin is HIGH. This  
pin functions as an I/O when the MODE pin is LOW.  
RP14100A and A14100A only. TTL clock input for I/O  
modules. This input is directly wired to each I/O module,  
offering clock speeds independent of the number of I/O  
modules being driven. This pin can also be used as an I/O.  
V
5 V S u p p ly Vo lt a g e  
C C  
HIGH supply voltage.  
8
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
A c t e l M I L -S T D -8 8 3 P r o d u c t F l o w  
883—Class B  
Step  
1.0  
Screen  
883 Method  
Requirement  
Internal Visual  
2010, Test Condition B  
1010, Test Condition C  
100%  
100%  
100%  
2.0  
3.0  
Temperature Cycling  
Constant Acceleration  
2001, Test Condition E  
(Min), Y1, Orientation Only  
4.0  
Seal  
1014  
a. Fine  
b. Gross  
100%  
100%  
1
5.0  
6.0  
7.0  
Particle Impact Noise Detection  
Visual Inspection  
2020, Test Condition A  
2009  
100%  
100%  
100%  
Pre-Burn-In  
Electrical Parameters  
In accordance with applicable Actel  
device specification  
8.0  
9.0  
Burn-in Test  
1015 Condition D  
160 hours @ 125°C Min.  
100%  
100%  
Interim (Post-Burn-In)  
Electrical Parameters  
In accordance with applicable Actel  
device specification  
10.0  
11.0  
Percent Defective Allowable  
Final Electrical Test  
5%  
All Lots  
In accordance with applicable Actel  
device specification  
a. Static Tests  
(1) 25°C  
100%  
100%  
(Subgroup 1, Table I, 5005)  
(2) –55°C and +125°C  
(Subgroups 2, 3, Table I, 5005)  
b. Dynamic and Functional Tests  
(1) 25°C  
(Subgroup 7, Table I, 5005)  
(2) –55°C and +125°C  
(Subgroups 8A and 8B, Table I, 5005)  
c. Switching Tests at 25°C  
(Subgroup 9, Table I, 5005)  
100%  
12.0  
Qualification or Quality  
Confirmation Inspection Test  
Sample Selection (Group A and Group B)  
5005  
2009  
All Lots  
13.0  
External Visual  
100%  
Notes:  
1. Particle Impact Noise Detection (PIND) is included in the flow for RAD-PAdevices, although it is not normally required in the  
MIL-STD-883 Class B flow.  
9
1
A c t e l E x t e n d e d F l o w  
Require-  
ment  
Step Screen  
Method  
2
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
Wafer Lot Acceptance  
5007 with Step Coverage Waiver  
2011, Condition D  
All Lots  
Sample  
100%  
100%  
100%  
100%  
100%  
100%  
3
Destructive In-Line Bond Pull  
Internal Visual  
2010, Condition A  
Serialization  
Temperature Cycling  
Constant Acceleration  
Visual Inspection  
1010, Condition C  
2001, Condition E (Min), Y Orientation Only  
1
2009  
Particle Impact Noise Detection  
2020, Condition A  
2012  
4
Radiographic  
Not  
Performed  
10. Pre-Burn-In Test  
11. Burn-in Test  
In accordance with applicable Actel device specification  
1015, Condition D, 240 hours @ 125°C minimum  
100%  
100%  
100%  
100%  
100%  
All Lots  
12. Interim (Post-Burn-In) Electrical Parameters In accordance with applicable Actel device specification  
13. Reverse Bias Burn-In 1015, Condition C, 72 hours @ 150°C minimum  
14. Interim (Post-Burn-In) Electrical Parameters In accordance with applicable Actel device specification  
15. Percent Defective Allowable (PDA)  
Calculation  
5%, 3% Functional Parameters @ 25°C  
16. Final Electrical Test  
In accordance with Actel applicable device specification  
100%  
100%  
a. Static Tests  
(1) 25°C  
5005  
5005  
(Subgroup 1, Table1)  
(2) –55°C and +125°C  
(Subgroups 2, 3, Table 1)  
100%  
b. Dynamic and Functional Tests  
(1) 25°C  
(Subgroup 7, Table 15)  
(2) –55°C and +125°C  
(Subgroups 5 and 6, 8a and b, Table 1)  
5005  
5005  
c. Switching Tests at 25°C  
(Subgroup 9, Table 1)  
100%  
100%  
5005  
1014  
17. Seal  
a. Fine  
b. Gross  
18. Qualification or Quality Conformance  
Inspection Test Sample Selection  
5005  
2009  
Group A &  
Group B  
19 External Visual  
100%  
Notes:  
1. Actel offers the extended flow for customers that require additional screening beyond the requirements of MIL-STD-883, Class B. Actel is  
compliant to the requirements of MIL-STD-883, Paragraph 1.2.1, and MIL-I-38535, Appendix A. Actel is offering this extended flow  
incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883 Class S. The exceptions to Method 5004  
are shown in notes 2 to 4 below.  
2. Wafer lot acceptance is performed to Method 5007; however, the step coverage requirement as specified in Method 2018 must be waived.  
3. Method 5004 requires a 100 percent, non-destructive bond pull to Method 2023. Actel substitutes a destructive bond pull to Method 2011,  
Condition D on a sample basis only.  
®
4. Radiographic test is not performed since RAD-PAK package technology screens all X-rays and the test results are uninformative.  
1 0  
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
1
A b s o l u t e M a x i m u m R a t i n g s  
R e c o m m e n d e d O p e r a t i n g C o n d i t i o n s  
Free Air Temperature Range  
Parameter  
Commercial Military  
Units  
Symbol  
Parameter  
Limits  
Units  
Temperature  
Range  
0 to +70  
–55 to +125 °C  
1
2
V
V
DC Supply Voltage  
Input Voltage  
–0.5 to +7.0  
V
V
CC  
Power Supply  
Tolerance  
±5  
±10  
%V  
–0.5 to V +0.5  
CC  
I
CC  
V
Output Voltage  
–0.5 to V +0.5  
V
O
CC  
Note:  
I
I/O Source Sink  
Current  
±20  
mA  
IO  
5
1. Ambient temperature (T ) is used for commercial and  
A
industrial; case temperature (T ) is used for military.  
C
T
Storage Temperature  
–65 to +150  
°C  
STG  
Notes:  
1. Stresses beyond those listed under “Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may  
affect device reliability. Device should not be operated outside the  
recommended operating conditions.  
2. Device inputs are normally high impedance and draw  
extremely low current. However, when input voltage is greater  
than V + 0.5V or less than GND – 0.5V, the internal protection  
CC  
diode will be forward-biased and can draw excessive current.  
P a c k a g e T h e r m a l C h a r a c t e r i s t i c s  
The device junction to case thermal characteristic is θjc.  
Maximum junction temperature is 150°C.  
A sample calculation of the absolute maximum power  
dissipation allowed for a CQFP 172-pin package at military  
temperature is as follows:  
Max. junction temp. (°C) – Max. military temp.  
150°C – 125°C  
------------------------------------------------------------------------------------------------------------------ = ------------------------------------ = 4.2W  
θjc(°C/W)  
6°C/W  
Package Type  
Pin Count  
θ
Units  
jc  
Ceramic Quad Flat Pack  
176  
256  
6
TBD  
°C/W  
°C/W  
1 1  
E l e c t r i c a l S p e c i f i c a t i o n s  
Commercial  
Military  
Max.  
Symbol Parameter  
Test Condition  
Min.  
Max.  
Min.  
Units  
1, 2  
V
HIGH Level Output  
I
I
I
= –4 mA (CMOS)  
= –6 mA (CMOS)  
= +6 mA (CMOS)  
3.7  
V
V
OH  
OH  
OH  
OL  
3.84  
1, 2  
V
V
V
LOW Level Output  
HIGH Level Input  
LOW Level Input  
Input Leakage  
0.33  
0.4  
+ 0.3  
CC  
V
OL  
IH  
IL  
TTL Inputs  
TTL Inputs  
2.0  
–0.3  
–10  
–10  
V
+ 0.3  
2.0  
–0.3  
–10  
–10  
V
V
CC  
0.8  
+10  
+10  
10  
0.8  
+10  
+10  
10  
V
I
V = V or GND  
µA  
µA  
pF  
mA  
IN  
OZ  
I
CC  
I
3-State Output Leakage  
V = V or GND  
O CC  
3, 4  
C
I/O Capacitance  
IO  
I
I
Standby V Supply Current V = V or GND, I = 0 mA  
2
20  
CC(S)  
CC(D)  
CC  
I
CC  
O
Dynamic V Supply Current See “Power Dissipation” Section  
CC  
Notes:  
1. Actel devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is required.  
2. Tested one output at a time, V = min.  
CC  
3. Not tested; for information only.  
4.  
V
= 0V, f = 1 MHz  
OUT  
G e n e r a l P o w e r E q u a t i o n  
P = [ICCstandby + ICCactive] * V + IOL * V * N +  
The power due to standby current is typically a small  
component of the overall power. Standby power is calculated  
below for commercial, worst-case conditions.  
CC  
OL  
I
OH * (V – V ) * M  
CC OH  
Family  
ICC  
V
Power  
CC  
Where:  
RP1280A, RP14100A,  
A1280A, A14100A  
ICCstandby is the current flowing when no inputs or  
outputs are changing.  
2 mA  
5.25V 10.5 mW  
The static power dissipated by TTL loads depends on the  
number of outputs driving HIGH or LOW and on the DC load  
current. Again, this value is typically small. For instance, a  
32-bit bus sinking 4 mA at 0.33V will generate 42 mW with all  
outputs driving LOW, and 140 mW with all outputs driving  
HIGH.  
ICCactive is the current flowing due to CMOS switching.  
IOL, IOH are TTL sink/source currents.  
V , VOH are TTL level output voltages.  
OL  
N equals the number of outputs driving TTL loads to V .  
OL  
M equals the number of outputs driving TTL loads to V .  
OH  
Ac t iv e P o w e r C o m p o n e n t  
An accurate determination of N and M is problematical  
because their values depend on the family type, on design  
details, and on the system I/O. The power can be divided into  
two components: static and active.  
Power dissipation in CMOS devices is usually dominated by  
the active (dynamic) power dissipation. This component is  
frequency-dependent, a function of the logic and the external  
I/O. Active power dissipation results from charging internal  
chip capacitances of the interconnect, unprogrammed  
antifuses, module inputs, and module outputs, plus external  
capacitance due to PC board traces and load device inputs.  
An additional component of the active power dissipation is  
the totem pole current in CMOS transistor pairs. The net  
effect can be associated with an equivalent capacitance that  
can be combined with frequency and voltage to represent  
active power dissipation.  
S t a t ic P o w e r C o m p o n e n t  
Actel FPGAs have small static power components that result  
in power dissipation lower than that of PALs or PLDs. By  
integrating multiple PALs or PLDs into one FPGA, an even  
greater reduction in board-level power dissipation can be  
achieved.  
1 2  
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
E q u iv a le n t C a p a c it a n c e  
where:  
The power dissipated by a CMOS circuit can be expressed by  
Equation 1  
m
n
= Number of logic modules switching at fm  
= Number of input buffers switching at fn  
= Number of output buffers switching at fp  
Power (uW) = CEQ * V 2 * F  
(1)  
CC  
p
where:  
CEQ is the equivalent capacitance expressed in pF.  
q1  
= Number of clock loads on the first routed  
array clock  
q2  
r1  
r2  
s1  
s2  
= Number of clock loads on the second routed  
array clock  
V is the power supply in volts (V).  
CC  
F is the switching frequency in MHz.  
= Fixed capacitance due to first routed array  
clock  
Equivalent capacitance is calculated by measuring ICCactive  
at a specified frequency and voltage for each circuit  
component of interest. Measurements are made over a range  
= Fixed capacitance due to second routed array  
clock  
of frequencies at a fixed value of V . Equivalent capacitance  
CC  
is frequency-independent, so the results can be used over a  
wide range of operating conditions. Equivalent capacitance  
values are shown below.  
= Fixed number of clock loads on the dedicated  
array clock (RP14100A, A14100A only)  
= Fixed number of clock loads on the dedicated  
I/O clock (RP14100A, A14100A only)  
C E Q Va lu e s fo r Ac t e l F P G As  
RP1280A RP14100A  
A1280A A14100A  
CEQM  
CEQI  
= Equivalent capacitance of logic modules in pF  
= Equivalent capacitance of input buffers in pF  
Modules (CEQM  
Input Buffers (CEQI  
Output Buffers (CEQO  
Routed Array Clock Buffer Loads  
(CEQCR  
Dedicated Clock Buffer Loads  
(CEQCD  
I/O Clock Buffer Loads (CEQCI  
)
5.8  
12.9  
23.8  
6.7  
7.2  
CEQO  
= Equivalent capacitance of output buffers  
in pF  
)
)
10.4  
CEQCR = Equivalent capacitance of routed array clock  
in pF  
)
3.9  
1.6  
CEQCD = Equivalent capacitance of dedicated array  
clock in pF  
)
n/a  
n/a  
0.7  
0.9  
CEQCI  
= Equivalent capacitance of dedicated I/O clock  
in pF  
)
CL  
fm  
fn  
= Output lead capacitance in pF  
To calculate the active power dissipated from the complete  
design, the switching frequency of each part of the logic must  
be known. Equation 2 shows a piece-wise linear summation  
over all components. Since the RP1280A and A1280A have  
two routed array clocks, the dedicated_Clk and IO_Clk terms  
do not apply. For RP14100A and A14100A devices, all terms  
will apply.  
= Average logic module switching rate in MHz  
= Average input buffer switching rate in MHz  
= Average output buffer switching rate in MHz  
= Average first routed array clock rate in MHz  
fp  
fq1  
fq2  
= Average second routed array clock rate in  
MHz  
Power = V 2 * [(m * CEQM* fm)modules + (n * CEQI* fn)inputs  
+
CC  
fs1  
fs2  
= Average dedicated array clock rate in MHz  
(RP14100A, A14100A only)  
(p * (CEQO+ CL) * fp)outputs + 0.5 * (q1 * CEQCR * fq1)routed_Clk1  
+ (r1 * fq1)routed_Clk1 + 0.5 * (q2 * CEQCR * fq2)routed_Clk2  
(r2 * fq2)routed_Clk2 + 0.5 * (s1 * CEQCD * fs1)dedicated_Clk  
(s2 * CEQCI * fs2)IO_Clk (2)  
+
+
= Average dedicated I/O clock rate in MHz  
(RP14100A, A14100A only)  
]
1 3  
F ix e d C a p a c it a n c e Va lu e s fo r  
Ac t e l F P G As (p F )  
RP14100A, A14100A  
Logic Modules (m)  
=
80%ofCombinatorial  
Modules  
r1  
r2  
Device Type  
routed_Clk1 routed_Clk2  
Input Switching (n)  
=
=
# Inputs/4  
RP1280A, A1280A  
RP14100A, A14100A  
168  
195  
168  
195  
Outputs Switching (p)  
# Outputs/4  
First Routed Array Clock Loads (q1)= 40% of Sequential  
Modules  
F ix e d C lo c k Lo a d s (s /s —AC T 3 O n ly )  
1
2
s1  
s2  
Second Routed Array Clock Loads = 40% of Sequential  
Clock Loads on Clock Loads on  
(q2)  
Modules  
Dedicated  
Array Clock  
Dedicated  
I/O Clock  
Load Capacitance (CL)  
=
=
35 pF  
Device Type  
Average Logic Module Switching  
Rate (fm)  
F/10  
RP14100A, A14100A  
697  
228  
De t e r m in in g Av e r a g e S w it c h in g F r e q u e n c y  
Average Input Switching Rate (fn) = F/5  
Average Output Switching Rate (fp) = F/10  
To determine the switching frequency for a design, you must  
have a detailed understanding of the data input values to the  
circuit. The guidelines in the table below are meant to  
represent worst-case scenarios; they can be generally used to  
predict the upper limits of power dissipation.  
Average First Routed Array Clock  
Rate (fq1)  
= F/2  
Average Second Routed Array Clock = F/2  
Rate (fq2)  
RP1280A, A1280A  
Average Dedicated Array Clock Rate =  
(fs1)  
F
Logic Modules (m)  
=
80%ofCombinatorial  
Modules  
Average Dedicated I/O Clock Rate =  
(fs2)  
F
Input Switching (n)  
=
=
# Inputs/4  
Outputs Switching (p)  
# Outputs/4  
First Routed Array Clock Loads (q1)= 40% of Sequential  
Modules  
Second Routed Array Clock Loads = 40% of Sequential  
(q2)  
Modules  
Load Capacitance (CL)  
=
=
35 pF  
Average Logic Module Switching  
Rate (fm)  
F/10  
Average Input Switching Rate (fn) = F/5  
Average Output Switching Rate (fp) = F/10  
Average First Routed Array Clock  
Rate (fq1)  
= F  
Average Second Routed Array Clock = F/2  
Rate (fq2)  
Average Dedicated Array Clock Rate = n/a  
(fs1)  
Average Dedicated I/O Clock Rate = n/a  
(fs2)  
1 4  
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
R P 1 2 8 0 A , A 1 2 8 0 A T i m i n g M o d e l *  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
I/O Module  
Combinatorial  
Logic Module  
I/O Module  
t
= 4.3 ns  
INYL  
t
= 8.4 ns†  
IRD2  
t
= 16.5 ns  
DLH  
t
= 2.8 ns  
= 4.0 ns  
= 6.0 ns  
= 10.8 ns  
RD1  
RD2  
D
Q
t
= 6.1 ns  
PD1  
t
t
t
RD4  
RD8  
I/O Module  
G
t
= 16.5 ns  
DLH  
Sequential  
Logic Module  
t
= 2.5 ns  
= 3.5 ns  
= 7.7 ns  
INH  
t
t
INSU  
INGL  
Combin-  
atorial  
D
D
Q
Q
Logic  
included  
t
= 2.8 ns  
t
= 11.5 ns  
RD1  
ENHZ  
G
in t  
SUD  
t
= 0.0 ns  
= 0.5 ns  
= 14.6 ns  
OUTH  
t
OUTSU  
t
= 6.1 ns  
t
= 0.5 ns  
= 0.0 ns  
CO  
SUD  
HD  
Array  
Clocks  
t
GLH  
t
t
= 15.7 ns  
FO = 32  
CKH  
F
= 62 MHz  
MAX  
*Values shown for RP1280A at worst-case military conditions.  
† Input module predicted routing delay  
1 5  
R P 1 4 1 0 0 A , A 1 4 1 0 0 A T i m i n g M o d e l *  
Input Delays  
I/O Module  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
I/O Module  
Combinatorial  
Logic Module  
t
= 4.9 ns  
INY  
t
= 2.1 ns  
IRD2  
t
= 10.8 ns  
DHS  
t
t
t
= 1.5 ns  
= 2.9 ns  
= 4.9 ns  
RD1  
RD4  
RD8  
D
Q
t
= 3.5 ns  
PD  
I/O Module  
t
= 10.8 ns  
DHS  
Sequential  
Logic Module  
t
= 0.0 ns  
= 2.4 ns  
= 8.2 ns  
INH  
t
t
INSU  
ICKY  
Combin-  
atorial  
D
D
Q
Q
Logic  
included  
t
= 1.5 ns  
RD1  
t
= 9.1 ns  
ENZHS  
in t  
SUD  
t
= 1.2 ns  
= 1.2 ns  
= 16.0 ns  
OUTH  
t
OUTSU  
t
t
= 3.5 ns  
t
= 1.0 ns  
= 0.6 ns  
CO  
SUD  
HD  
Array  
Clock  
CKHS  
t
t
= 6.4 ns  
HCKH  
F
F
= 85 MHz  
HMAX  
t
= 4.1 ns  
IOCKH  
I/O Clock  
(pad-to-pad)  
= 85 MHz  
IOMAX  
*Values shown for RP14100A at worst-case military conditions.  
1 6  
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
P a r a m e t e r M e a s u r e m e n t  
O u t p u t B u ffe r De la y s  
E
D
PAD  
PAD To AC test loads (shown below)  
TRIBUFF  
V
V
V
CC  
CC  
CC  
In  
GND  
1.5V  
50%  
E
GND  
E
50%  
GND  
90%  
50%  
50%  
CC  
50%  
50%  
V
V
V
OH  
OH  
1.5V  
PAD  
PAD  
PAD  
1.5V  
10%  
1.5V  
V
V
GND  
OL  
OL  
t
t
t
t
t
t
ENHZ  
DLH  
DHL  
ENZL  
ENLZ  
ENZH  
AC T e s t Lo a d  
Load 1  
Load 2  
(Used to measure propagation delay)  
(Used to measure rising/falling edges)  
V
GND  
CC  
To the output under test  
50 pF  
R to V for t /t  
CC  
PLZ PZL  
R to GND for t  
/t  
PHZ PZH  
R = 1 kΩ  
To the output under test  
50 pF  
In p u t B u ffe r De la y s  
C o m b in a t o r ia l Ma c r o De la y s  
S
A
B
Y
Y
PAD  
PAD  
INBUF  
V
CC  
GND  
S, A, or B  
50% 50%  
V
3V  
CC  
50%  
Y
50%  
PAD  
0V  
1.5V  
1.5V  
GND  
V
CC  
t
t
PHL  
PLH  
50%  
Y
GND  
50%  
V
CC  
Y
GND  
t
50%  
50%  
t
t
INYL  
t
INYH  
PHL  
PLH  
1 7  
S e q u e n t i a l T i m i n g C h a r a c t e r i s t i c s  
F lip -F lo p s a n d La t c h e s (R P 1 2 8 0 A, A1 2 8 0 A)  
D
E
CLK  
Y
PRE  
CLR  
(Positive Edge-Triggered)  
t
HD  
1
D
t
t
t
A
WCLKA  
SUD  
G, CLK  
t
SUENA  
t
HENA  
E
t
CO  
Q
t
RS  
PRE, CLR  
t
WASYN  
Note:  
1. D represents all data functions involving A, B, and S for multiplexed flip-flops.  
1 8  
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
S e q u e n t i a l T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
F lip -F lo p s a n d La t c h e s (R P 1 4 1 0 0 A, A1 4 1 0 0 A)  
D
E
Y
CLK  
CLR  
(Positive Edge-Triggered)  
t
HD  
1
D
t
t
t
A
WCLKA  
SUD  
G, CLK  
t
SUENA  
t
HENA  
E
t
CO  
Q
t
CLR  
CLR  
t
WASYN  
Note:  
1. D represents all data functions involving A, B, and S for multiplexed flip-flops.  
1 9  
S e q u e n t i a l T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
In p u t B u ffe r La t c h e s (R P 1 2 8 0 A, A1 2 8 0 A)  
PAD  
IBDL  
G
PAD  
CLK  
CLKBUF  
PAD  
G
t
INH  
t
INSU  
t
HEXT  
CLK  
t
SUEXT  
O u t p u t B u ffe r La t c h e s (R P 1 2 8 0 A, A1 2 8 0 A)  
D
G
PAD  
OBDLHS  
D
t
OUTSU  
G
t
OUTH  
2 0  
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
R P 1 2 8 0 A , A 1 2 8 0 A T i m i n g C h a r a c t e r i s t i c s  
(Wo r s t -C a s e Milit a r y C o n d it io n s )  
1
Logic Module Propagation Delays  
‘–1 Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
t
t
t
t
Single Module  
5.2  
5.2  
5.2  
5.2  
6.1  
6.1  
6.1  
6.1  
ns  
ns  
ns  
ns  
PD1  
CO  
GO  
RS  
Sequential Clock-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
2
Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.4  
3.4  
4.2  
5.1  
9.2  
2.8  
4.0  
ns  
ns  
ns  
ns  
ns  
RD1  
RD2  
RD3  
RD4  
RD8  
4.9  
6.0  
10.8  
3, 4  
Sequential Timing Characteristics  
t
t
t
t
t
t
t
t
t
t
t
f
Flip-Flop (Latch) Data Input Set-Up  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Asynchronous Pulse Width  
Flip-Flop Clock Input Period  
0.5  
0.0  
1.3  
0.0  
7.4  
7.4  
16.4  
2.5  
3.5  
0.0  
0.5  
0.5  
0.0  
1.3  
0.0  
8.6  
8.6  
22.1  
2.5  
3.5  
0.0  
0.5  
ns  
ns  
SUD  
HD  
ns  
SUENA  
HENA  
WCLKA  
WASYN  
A
ns  
ns  
ns  
ns  
Input Buffer Latch Hold  
ns  
INH  
Input Buffer Latch Set-Up  
ns  
INSU  
OUTH  
OUTSU  
MAX  
Output Buffer Latch Hold  
ns  
Output Buffer Latch Set-Up  
ns  
Flip-Flop (Latch) Clock Frequency  
60  
41  
MHz  
Notes:  
1. For dual-module macros, use t + t  
+ t  
, t + t  
+ t  
, or t + t  
+ t  
, whichever is appropriate.  
SUD  
PD1  
RD1  
PDn CO RD1  
PDn  
PD1  
RD1  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based  
on actual routing delay measurements performed on the device prior to shipment.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from  
the DirectTime Analyzer utility.  
4. Set-Up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold  
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input  
subtracts (adds) to the internal set-up (hold) time.  
2 1  
R P 1 2 8 0 A , A 1 2 8 0 A T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e Milit a r y C o n d it io n s )  
Input Module Propagation Delays  
‘–1’ Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
t
t
t
t
Pad-to-Y HIGH  
Pad-to-Y LOW  
G-to-Y HIGH  
G-to-Y LOW  
4.0  
3.6  
6.9  
6.6  
4.7  
4.3  
8.1  
7.7  
ns  
ns  
ns  
ns  
INYH  
INYL  
INGH  
INGL  
1
Input Module Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
6.2  
7.2  
7.3  
8.4  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD8  
7.7  
9.1  
8.9  
10.5  
15.2  
12.9  
Global Clock Network  
t
t
t
t
t
t
t
t
f
Input LOW to HIGH  
FO = 32  
FO = 384  
13.3  
17.9  
15.7  
21.1  
CKH  
ns  
ns  
Input HIGH to LOW  
FO = 32  
FO = 384  
13.3  
18.2  
15.7  
21.4  
CKL  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
FO = 32  
FO = 384  
6.9  
7.9  
8.1  
9.3  
PWH  
PWL  
CKSW  
SUEXT  
HEXT  
P
ns  
FO = 32  
FO = 384  
6.9  
7.9  
8.1  
9.3  
ns  
FO = 32  
FO = 384  
0.6  
3.1  
0.6  
3.1  
ns  
Input Latch External Set-Up  
Input Latch External Hold  
Minimum Period  
FO = 32  
FO = 384  
0.0  
0.0  
0.0  
0.0  
ns  
FO = 32  
FO = 384  
8.6  
13.8  
8.6  
13.8  
ns  
FO = 32  
FO = 384  
13.7  
16.0  
16.2  
18.9  
ns  
Maximum Frequency  
FO = 32  
FO = 384  
73  
63  
62  
53  
MAX  
MHz  
Note:  
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns.  
Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to  
determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior  
to shipment.  
2 2  
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
R P 1 2 8 0 A , A 1 2 8 0 A T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e Milit a r y C o n d it io n s )  
Output Module Timing  
‘–1 Speed  
Min. Max.  
‘Std’ Speed  
Min. Max.  
Parameter  
Description  
Units  
1
TTL Output Module Timing  
t
t
t
t
t
t
t
t
Data-to-Pad HIGH  
11.0  
13.9  
12.3  
16.1  
9.8  
13.0  
16.4  
14.4  
19.0  
11.5  
13.6  
14.6  
18.2  
0.11  
0.20  
ns  
ns  
DLH  
Data-to-Pad LOW  
DHL  
Enable-to-Pad Z to HIGH  
Enable-to-Pad Z to LOW  
Enable-to-Pad HIGH to Z  
Enable-to-Pad LOW to Z  
G-to-Pad HIGH  
ns  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
ns  
ns  
11.5  
12.4  
15.5  
0.09  
0.17  
ns  
ns  
G-to-Pad LOW  
ns  
GHL  
d
d
Delta LOW to HIGH  
ns/pF  
ns/pF  
TLH  
THL  
Delta HIGH to LOW  
1
CMOS Output Module Timing  
t
t
t
t
t
t
t
t
Data-to-Pad HIGH  
14.0  
11.7  
12.3  
16.1  
9.8  
16.5  
13.7  
14.4  
19.0  
11.5  
13.6  
14.6  
18.2  
0.20  
0.15  
ns  
ns  
DLH  
Data-to-Pad LOW  
DHL  
Enable-to-Pad Z to HIGH  
Enable-to-Pad Z to LOW  
Enable-to-Pad HIGH to Z  
Enable-to-Pad LOW to Z  
G-to-Pad HIGH  
ns  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
ns  
ns  
11.5  
12.4  
15.5  
0.17  
0.12  
ns  
ns  
G-to-Pad LOW  
ns  
GHL  
d
d
Delta LOW to HIGH  
Delta HIGH to LOW  
ns/pF  
ns/pF  
TLH  
THL  
Notes:  
1. Delays based on 50 pF loading.  
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs” application note.  
2 3  
R P 1 4 1 0 0 A , A 1 4 1 0 0 A T i m i n g C h a r a c t e r i s t i c s  
(Wo r s t -C a s e Milit a r y C o n d it io n s )  
1
Logic Module Propagation Delays  
‘–1’ Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
t
t
t
Internal Array Module  
Sequential Clock-to-Q  
3.0  
3.0  
3.0  
3.5  
3.5  
3.5  
ns  
ns  
ns  
PD  
CO  
CLR  
Asynchronous Clear-to-Q  
2
Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.3  
1.9  
2.1  
2.6  
4.2  
1.5  
2.1  
2.5  
2.9  
4.9  
ns  
ns  
ns  
ns  
ns  
RD1  
RD2  
RD3  
RD4  
RD8  
Logic Module Sequential Timing  
t
t
t
t
t
t
t
f
Flip-Flop (Latch) Data Input Set-Up  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
Asynchronous Pulse Width  
1.0  
0.6  
1.0  
0.6  
4.8  
4.8  
9.9  
1.0  
0.6  
1.0  
0.6  
5.6  
5.6  
11.6  
ns  
ns  
SUD  
HD  
ns  
SUENA  
HENA  
WASYN  
WCLKA  
A
ns  
ns  
Flip-Flop Clock Pulse Width  
Flip-Flop Clock Input Period  
Flip-Flop Clock Frequency  
ns  
ns  
100  
85  
MHz  
MAX  
Notes:  
1. For dual-module macros, use t + t  
+ t  
, t + t  
+ t  
, or t + t  
+ t  
, whichever is appropriate.  
SUD  
PD  
RD1  
PDn CO RD1  
PDn  
PD1  
RD1  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based  
on actual routing delay measurements performed on the device prior to shipment.  
2 4  
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
R P 1 4 1 0 0 A , A 1 4 1 0 0 A T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e Milit a r y C o n d it io n s )  
I/O Module Input Propagation Delays  
‘–1 Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
t
t
t
t
t
Input Data Pad-to-Y  
4.2  
7.0  
7.0  
7.0  
7.0  
4.9  
8.2  
8.2  
8.2  
8.2  
ns  
ns  
ns  
ns  
ns  
INY  
Input Reg IOCLK Pad-to-Y  
Output Reg IOCLK Pad-to-Y  
Input Asynchronous Clear-to-Y  
ICKY  
OCKY  
ICLRY  
OCLRY  
Output Asynchronous Clear-to-Y  
1
Predicted Input Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.3  
1.9  
2.1  
2.6  
4.2  
1.5  
2.1  
2.5  
2.9  
4.9  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD8  
I/O Module Sequential Timing  
t
t
t
t
t
t
t
t
Input Flip-Flop Data Hold  
Input Flip-Flop Data Set-Up  
Input Data Enable Hold  
0.0  
2.1  
0.0  
8.7  
1.2  
1.2  
0.6  
2.4  
0.0  
2.4  
0.0  
10.0  
1.2  
1.2  
0.6  
2.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
INH  
INSU  
IDEH  
Input Data Enable Set-Up  
Output Flip-Flop Data Hold  
Output Flip-Flop Data Set-Up  
Output Data Enable Hold  
Output Data Enable Set-Up  
IDESU  
OUTH  
OUTSU  
ODEH  
ODESU  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based  
on actual routing delay measurements performed on the device prior to shipment.  
2 5  
R P 1 4 1 0 0 A , A 1 4 1 0 0 A T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e Milit a r y C o n d it io n s )  
1
I/O Module – TTL Output Timing  
‘–1 Speed  
Min. Max.  
‘Std’ Speed  
Min. Max.  
Parameter  
Description  
Units  
t
t
t
t
t
t
t
t
Data-to-Pad, High Slew  
7.5  
8.9  
ns  
ns  
DHS  
Data-to-Pad, Low Slew  
11.9  
6.0  
14.0  
7.0  
DLS  
Enable-to-Pad, Z to H/L, High Slew  
Enable-to-Pad, Z to H/L, Low Slew  
Enable-to-Pad, H/L to Z, High Slew  
Enable-to-Pad, H/L to Z, Low Slew  
IOCLK Pad-to-Pad H/L, High Slew  
IOCLK Pad-to-Pad H/L, Low Slew  
Delta LOW to HIGH, High Slew  
Delta LOW to HIGH, Low Slew  
Delta HIGH to LOW, High Slew  
ns  
ENZHS  
ENZLS  
ENHSZ  
ENLSZ  
CKHS  
CKLS  
10.9  
11.9  
10.9  
12.2  
17.8  
0.04  
0.07  
0.05  
0.07  
12.8  
14.0  
12.8  
14.0  
17.8  
0.04  
0.08  
0.06  
0.08  
ns  
ns  
ns  
ns  
ns  
d
d
d
d
ns/pF  
ns/pF  
ns/pF  
ns/pF  
TLHHS  
TLHLS  
THLHS  
THLLS  
Delta HIGH to LOW, Low Slew  
1
I/O Module – CMOS Output Timing  
t
t
t
t
t
t
t
t
Data-to-Pad, High Slew  
9.2  
10.8  
20.3  
9.1  
ns  
ns  
DHS  
Data-to-Pad, Low Slew  
17.3  
7.7  
DLS  
Enable-to-Pad, Z to H/L, High Slew  
Enable-to-Pad, Z to H/L, Low Slew  
Enable-to-Pad, H/L to Z, High Slew  
Enable-to-Pad, H/L to Z, Low Slew  
IOCLK Pad-to-Pad H/L, High Slew  
IOCLK Pad-to-Pad H/L, Low Slew  
Delta LOW to HIGH, High Slew  
Delta LOW to HIGH, Low Slew  
Delta HIGH to LOW, High Slew  
Delta HIGH to LOW, Low Slew  
ns  
ENZHS  
ENZLS  
ENHSZ  
ENLSZ  
CKHS  
CKLS  
13.1  
11.6  
10.9  
14.4  
20.2  
0.06  
0.11  
0.04  
0.05  
15.5  
14.0  
12.8  
16.0  
22.4  
0.07  
0.13  
0.05  
0.06  
ns  
ns  
ns  
ns  
ns  
d
d
d
d
ns/pF  
ns/pF  
ns/pF  
ns/pF  
TLHHS  
TLHLS  
THLHS  
THLLS  
Notes:  
1. Delays based on 35 pF loading.  
2. SSO information can be found in the Simultaneously Switching Output Limits for Actel FPGAs” application note.  
2 6  
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
R P 1 4 1 0 0 A , A 1 4 1 0 0 A T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e Milit a r y C o n d it io n s )  
Dedicated (Hard-Wired) I/O Clock Network  
‘–1’ Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
t
Input LOW to HIGH  
IOCKH  
(Pad to I/O Module Input)  
3.5  
4.1  
ns  
ns  
t
t
t
t
t
f
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Minimum Asynchronous Pulse Width  
Maximum Skew  
4.8  
4.8  
3.9  
5.7  
5.7  
4.4  
IOPWH  
IOPWL  
IOSAPW  
IOCKSW  
IOP  
ns  
ns  
0.9  
1.0  
85  
ns  
Minimum Period  
9.9  
11.6  
ns  
Maximum Frequency  
100  
MHz  
IOMAX  
Dedicated (Hard-Wired) Array Clock Network  
t
Input LOW to HIGH  
HCKH  
(Pad to S-Module Input)  
5.5  
5.5  
6.4  
6.4  
ns  
t
Input HIGH to LOW  
HCKL  
(Pad to S-Module Input)  
ns  
ns  
t
t
t
t
f
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
4.8  
4.8  
5.7  
5.7  
HPWH  
HPWL  
HCKSW  
HP  
ns  
0.9  
1.0  
85  
ns  
Minimum Period  
9.9  
11.6  
ns  
Maximum Frequency  
100  
MHz  
HMAX  
Routed Array Clock Networks  
t
t
t
t
t
t
f
Input LOW to HIGH (FO=256)  
Input HIGH to LOW (FO=256)  
Min. Pulse Width HIGH (FO=256)  
Min. Pulse Width LOW (FO=256)  
Maximum Skew (FO=128)  
9.0  
9.0  
10.5  
10.5  
ns  
ns  
RCKH  
RCKL  
RPWH  
RPWL  
RCKSW  
RP  
6.3  
6.3  
7.1  
7.1  
ns  
ns  
1.9  
75  
2.1  
65  
ns  
Minimum Period (FO=256)  
12.9  
14.5  
ns  
Maximum Frequency (FO=256)  
MHz  
RMAX  
Clock-to-Clock Skews  
t
t
t
I/O Clock to H-Clock Skew  
I/O Clock to R-Clock Skew  
0.0  
0.0  
3.5  
5.0  
0.0  
0.0  
3.5  
5.0  
ns  
ns  
IOHCKSW  
IORCKSW  
HRCKSW  
H-Clock to R-Clock Skew  
(FO = 64)  
(FO = 50% max.)  
0.0  
0.0  
1.0  
3.0  
0.0  
0.0  
1.0  
3.0  
ns  
Note:  
1. Delays based on 35 pF loading.  
2 7  
P a c k a g e P i n A s s i g n m e n t s  
1 7 2 -P in C Q F P (T o p Vie w )  
172 171 170 169 168 167 166 165 164  
137 136 135 134 133 132 131 130  
Pin #1  
Index  
1
2
3
4
5
6
7
8
129  
128  
127  
126  
125  
124  
123  
122  
172-Pin  
CQFP  
35  
36  
37  
38  
39  
40  
41  
42  
43  
95  
94  
93  
92  
91  
90  
89  
88  
87  
44 45 46 47 48 49 50 51 52  
79 80 81 82 83 84 85 86  
Function  
RP1280A, A1280A Pin Number  
CLKA or I/O  
CLKB or I/O  
DCLK or I/O  
GND  
150  
154  
171  
7, 17, 22, 32, 37, 55, 65, 75, 98, 103, 106, 108, 118, 123, 141, 152, 161  
MODE  
1
PRA or I/O  
PRB or I/O  
SDI or I/O  
148  
156  
131  
V
12, 23, 24, 27, 66, 80, 107, 109, 110, 113, 136, 151, 166  
CC  
Notes:  
1. Unused I/O pins are designated as outputs by Designer and are driven LOW.  
2. All unassigned pins are available for use as I/Os.  
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise, it can be terminated directly to GND.  
2 8  
®
R a d T o l e r a n t R A D -P A K F i e l d P r o g r a m m a b l e G a t e A r r a y s  
P a c k a g e P i n A s s i g n m e n t s (c o n t in u e d )  
2 5 6 -P in C Q F P (T o p Vie w )  
256 255 254 253 252 251 250 249 248  
200 199 198 197 196 195 194 193  
Pin #1  
Index  
1
2
3
4
5
6
7
8
192  
191  
190  
189  
188  
187  
186  
185  
256-Pin  
CQFP  
56  
57  
58  
59  
60  
61  
62  
63  
64  
137  
136  
135  
134  
133  
132  
131  
130  
129  
65 66 67 68 69 70 71 72 73  
121 122 123 124 125 126 127 128  
Function  
RP14100A, A14100A Pin Number  
CLKA or I/O  
CLKB or I/O  
DCLK or I/O  
GND  
219  
220  
256  
1, 29, 31, 59, 91, 93, 110, 128, 158, 160, 175, 176, 189, 222, 224, 240  
HCLK or I/O  
IOCLK or I/O  
IOPCL or I/O  
MODE  
96  
188  
127  
11  
PRA or I/O  
PRB or I/O  
SDI or I/O  
225  
90  
2
V
28, 30, 46, 92, 94, 141, 159, 161, 174, 221, 223  
CC  
Notes:  
1. Unused I/O pins are designated as outputs by Designer and are driven LOW.  
2. All unassigned pins are available for use as I/Os.  
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise, it can be terminated directly to GND.  
2 9  
P a c k a g e M e c h a n i c a l D r a w i n g s  
C e r a m ic Q u a d F la t p a c k (C Q F P —C a v it y U p )  
H
D1  
D2  
No. 1  
Ceramic  
Tie Bar  
L1  
K
E2 E1  
F
e
b
A
Lid  
C
Lead Kovar  
A1  
Notes:  
1. All dimensions are in inches except CQ208 and CQ256 which are in millimeters.  
2. Outside leadframe holes (from dimension H) are circular for the CQ208 and CQ256.  
3. Seal ring and lid are connected to Ground.  
4. Lead material is Kovar with minimum 60 miconiches gold over nickel.  
5. Packages are shipped unformed with the ceramic tie bar.  
6. 32200DX – CQ208 has heat sink on the backside.  
3 0  
®
RadTolerant RAD-PAK Field Programmable Gate Arrays  
P a c k a g e M e c h a n i c a l D r a w i n g s (c o n t in u e d )  
®
®
R AD-P AK C e r a m ic Q u a d F la t p a c k (1 7 2 -P in C Q F P R AD-P AK  
)
2.300" ± 0.010"  
D1 (sq)  
D2 (sq)  
4x  
0.08" ± 0.005"  
4x  
0.06" ± 0.002"  
No. 1  
L2  
2.14" ± 0.005"  
0.90" ± 0.002  
0.13" ± 0.005  
e
b
ø 0.10" ± 0.002"  
2 pls  
2.140" ± 0.005"  
L1 (sq)  
A
F1  
F4  
c
A1  
Notes:  
1. All dimensions are in inches.  
2. Seal ring and lid are connected to Ground.  
3. Lead material is Kovar with gold over nickel.  
4. Packages are shipped unformed with the ceramic tie bar.  
3 1  
C e r a m ic Q u a d F la t p a c k (C Q F P )  
CQ256  
Symbol  
Min  
Nom.  
Max  
A
2.28  
1.93  
0.18  
0.11  
35.64  
2.67  
2.29  
3.06  
2.65  
0.22  
0.18  
36.36  
A1  
b
c
0.20  
0.15  
D1/E1  
D2/E2  
e
36.00  
31.5 BSC  
0.50 BSC  
7.75  
F
7.05  
8.45  
H
70.00 BSC  
65.90 BSC  
75.00  
K
L1  
74.60  
75.40  
Note:  
1. All dimensions are in inches.  
2. BSC equals Basic Spacing between Centers. This is a theoretical true position dimension and so has no tolerance.  
®
®
R AD-P AK C e r a m ic Q u a d F la t p a c k (R AD-P AK C Q F P )  
®
RAD-PAK  
CQ172  
Symbol  
Min  
Nom.  
Max  
A
b
0.116  
0.007  
0.004  
1.137  
0.133  
0.008  
0.146  
0.130  
0.009  
1.162  
c
0.006  
D11  
D2  
e
1.150  
1.050 BSC  
0.025 BSC  
0.895  
F1  
F4  
L1  
0.890  
0.881  
2.485  
1.690  
0.079  
0.900  
0.899  
0.890  
2.500 2.5095  
L2  
1.700  
0.091  
1.710  
0.103  
A1  
Note:  
1. All dimensions are in inches.  
2. BSC equals Basic Spacing between Centers. This is a theoretical true position dimension and so has no tolerance.  
3 2  
®
RadTolerant RAD-PAK Field Programmable Gate Arrays  
3 3  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Europe Ltd.  
Actel Corporation  
955 East Arques Avenue  
Sunnyvale, California 94086  
USA  
Actel Asia-Pacific  
Daneshill House, Lutyens Close  
Basingstoke, Hampshire RG24 8AG  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Tel: +44.(0)1256.305600  
Fax: +44.(0)1256.355420  
Tel: 408.739.1010  
Fax: 408.739.1540  
Tel: +81.(0)3.3445.7671  
Fax: +81.(0)3.3445.7668  
5172138-1/1.99  

相关型号:

RP1280A-CQ172E

Field Programmable Gate Array, 41MHz, 1232-Cell, CMOS, CQFP172
MICROSEMI

RP1280A-CQG172C

Field Programmable Gate Array, 1232 CLBs, 8000 Gates, CQFP172, CERAMIC, RAD-PAK, QFP-172
ACTEL

RP1285

Analog IC
ETC

RP1286

906.0 MHz SAW Resonator
RFM

RP1295

Analog IC
ETC

RP1298

423.22 MHz SAW Resonator
RFM

RP1298-2

423.22 MHz SAW Resonator
MURATA

RP1298-2_15

423.22 MHz SAW Resonator
MURATA

RP1298_15

423.22 MHz SAW Resonator
MURATA

RP12C

Optoelectronic
ETC

RP13-PC-112

Plastic Push-Pull Lock Connectors
HRS

RP13-PC-122

Plastic Push-Pull Lock Connectors
HRS