SG1842L/DESC-TR [MICROSEMI]

Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, BIPolar, CQCC20;
SG1842L/DESC-TR
型号: SG1842L/DESC-TR
厂家: Microsemi    Microsemi
描述:

Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, BIPolar, CQCC20

文件: 总24页 (文件大小:716K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SG1842/SG1843  
Current Mode PWM Controller  
Features  
Description  
.
.
.
.
.
.
.
Optimized For Off-Line Control  
The SG1842/43 family of control IC's provides all the  
necessary features to implement off-line fixed  
frequency, current-mode switching power supplies  
with a minimum number of external components.  
Low Start-Up Current (<1mA)  
Automatic Feed Forward Compensation  
Trimmed Oscillator Discharge Current  
Pulse-By-Pulse Current Limiting  
Current-mode architecture demonstrates improved  
line regulation, improved load regulation, pulse-by-  
pulse current limiting and inherent protection of the  
power supply output switch. The bandgap reference  
is trimmed to ±1% over temperature.  
Enhanced Load Response Characteristics  
Under-Voltage Lockout with 6V Hysteresis (SG1842  
only)  
.
.
.
.
.
Double-Pulse Suppression  
Oscillator discharge current is trimmed to less than  
±10%. The SG1842/43 has under-voltage lockout,  
current limiting circuitry and start-up current of less  
than 1mA. The totem-pole output is optimized to drive  
the gate of a power MOSFET. The output is low in  
the off state to provide direct interface to an  
N-channel device. The SG1842/43 is specified for  
operation over the full military ambient temperature  
range of -55°C to 125°C. The SG2842/43 is specified  
for the industrial range of -25°C to 85°C, and the  
SG3842/43 is designed for the commercial range of  
0°C to 70°C.  
High-Current Totem-Pole Output (1A Peak)  
Internally Trimmed Bandgap Reference  
500kHz Operation  
Undervoltage Lockout  
SG1842 - 16 volts  
SG1843 - 8.4 volts  
.
Low Shoot-Through Current <75mA Over  
Temperature  
Application  
.
.
Available To MIL-STD – 883, ¶ 1.2.1  
Available to DSCC  
- Standard Microcircuit Drawing (SMD)  
Product Highlight  
RST  
IST  
AC  
INPUT  
Vcc  
SG3842/43  
Figure 1 · Product Highlight  
October 2014 Rev. 1.7  
www.microsemi.com  
1
© 2014 Microsemi Corporation  
Current Mode PWM Controller  
Connection Diagrams and Ordering Information  
Ambient  
Temperature  
Type  
Packaging  
Type  
Package  
Part Number  
Connection Diagram  
VREF  
COM  
VFB  
SG3842M  
SG3843M  
SG2842M  
VCC  
0°C to 70°C  
OUTPUT  
GND  
ISENSE  
RT/CT  
8-PIN PLASTIC  
DUAL INLINE  
PACKAGE  
M
Plastic DIP  
M PACKAGE  
(Top View)  
-25°C to 85°C  
M Package: RoHS / Pb-free 100% Matte Tin Lead Finish  
SG2843M  
SG3842Y  
SG3843Y  
SG2842Y  
SG2843Y  
0°C to 70°C  
VREF  
COM  
VFB  
-25°C to 85°C  
VCC  
OUTPUT  
GND  
ISENSE  
RT/CT  
8-PIN  
SG1842Y  
SG1843Y  
-55°C to  
125°C  
CERAMIC  
DUAL INLINE  
PACKAGE  
Y
CERDIP  
Y PACKAGE  
(Top View)  
SG1842Y-883B  
SG1843Y-883B  
MIL-STD/883  
DESC  
PbSn Tin Lead Finish  
SG1842Y-DESC  
SG1843Y-DESC  
COM  
VREF  
SG3842DM  
SG3843DM  
SG2842DM  
SG2843DM  
VFB  
ISENSE  
RT/CT  
0°C to 70°C  
VCC  
8-PIN SMALL  
OUTLINE  
INTEGRATED  
CIRCUIT  
OUTPUT  
GND  
DM  
SOIC  
DM PACKAGE  
(Top View)  
-25°C to 85°C  
RoHS / Pb-free 100% Matte Tin Lead Finish  
VREF  
N.C.  
COM  
N.C.  
SG3842D  
SG3843D  
SG2842D  
0°C to 70°C  
VCC  
VC  
VFB  
14-PIN SMALL  
OUTLINE  
INTEGRATED  
CIRCUIT  
N.C.  
ISENSE  
N.C.  
OUTPUT  
GND  
D
SOIC  
PWR GND  
RT/CT  
-25°C to 85°C  
0°C to 70°C  
D PACKAGE  
(Top View)  
SG2843D  
SG3842N  
SG3843N  
SG2842N  
RoHS / Pb-free 100% Matte Tin Lead Finish  
COM  
N.C.  
VREF  
N.C.  
VCC  
VC  
VFB  
N.C.  
14-PIN DUAL  
INLINE  
PLASTIC  
PACKAGE  
OUTPUT  
GND  
PLASTIC  
DIP  
ISENSE  
N.C.  
N
POWER GND  
RT/CT  
-25°C to 85°C  
N PACKAGE  
(Top View)  
SG2843N  
N Package: RoHS / Pb-free 100% Matte Tin Lead Finish  
2
Connection Diagrams and Ordering Information (continued)  
Connection Diagrams and Ordering Information (continued)  
Ambient  
Temperature  
Type  
Packaging  
Type  
Package  
Part Number  
Connection Diagram  
SG1842J  
SG1843J  
COM  
-55°C to  
125°C  
VREF  
N.C.  
N.C.  
VCC  
VC  
VFB  
N.C.  
14-PIN  
CERAMIC  
DUAL INLINE  
PACKAGE  
SG1842J-883B  
ISENSE  
N.C.  
OUTPUT  
GND  
MIL-STD/883  
DESC  
J
CERDIP  
SG1843J-883B  
SG1842J-DESC  
SG1843J-DESC  
RT/CT  
PWR GND  
J PACKAGE  
(Top View)  
PbSn Lead Finish  
SG1842F  
SG1843F  
-55°C to  
125°C  
COM  
VFB  
ISENSE  
VREF  
VCC  
VC  
OUTPUT  
GND  
10-PIN  
RT/CT  
SG1842F-883B  
CERAMIC  
FLAT PACK  
PACKAGE  
FLAT  
PACK  
MIL-STD/883  
DESC  
PWR  
GND  
F
SG1843F-883B  
SG1842F-DESC  
F PACKAGE  
(Top View)  
PbSn Lead Finish  
SG1843F-DESC  
3
19  
1 20  
2
1. N.C.  
11. N.C.  
SG1842L  
SG1843L  
-55°C to  
125°C  
2. COMP 12.  
.
13. N.C.  
GROUND  
18  
17  
16  
15  
14  
3. N.C.  
4. N.C.  
4
5
6
7
8
14. N.C.  
15. OUTPUT  
16.  
VFB  
5.  
6. N.C.  
7. ISENSE 17. Vcc  
Ceramic  
Leadless  
Chip  
Carrier  
(LCC)  
N.C.  
SG1842L-883B  
8.  
N.C.  
9. N.C.  
18. N.C.  
MIL-STD/883  
19.  
N.C.  
20-PIN  
CERAMIC  
L
20.  
VREF  
R /C  
T
10.  
T
SG1843L-883B  
SG1842L-DESC  
SG1843L-DESC  
9
13  
10 11 12  
L PACKAGE  
(Top View)  
DESC  
PbSn Lead Finish  
Notes:  
1. Contact factory for JAN and DESC part availability.  
2. All parts are viewed from the top.  
3. Available in Tape & Reel. Append the letters “TR” to the part number (SG3842N-TR).  
3
Current Mode PWM Controller  
Absolute Maximum Ratings1 - 2  
Parameter  
Value  
Units  
V
Supply Voltage (ICC < 30mA)  
Self-limiting  
Supply Voltage (Low Impedance Source)  
Output Current (Peak)  
30  
V
±1  
A
350  
mA  
µJ  
V
Output Current (Continuous)  
Output Energy (Capacitive Load)  
5
Analog Inputs (VFB, ISENSE  
)
-0.3 to +6.3  
10  
1
mA  
W
Error Amplifier Output Sink Current  
Power Dissipation at TA = 25°C (DIL-8)  
Operating Junction Temperature  
Hermetic (J, Y, F, L Packages)  
150  
150  
°C  
°C  
°C  
°C  
Plastic (N, M, D, DM Packages)  
Storage Temperature Range  
-65 to +150  
300  
Lead Temperature (Soldering, 10 Seconds)  
RoHS / Pb-free Peak Package Solder Reflow Temp. (40 second  
max. exposure)  
260 (+0, -5)  
°C  
Notes:  
1. Exceeding these ratings could cause damage to the device.  
2. All voltages are with respect to Pin 5. All currents are positive into the specified terminal.  
Thermal Data  
Parameter  
Value  
Units  
M Package:  
Thermal Resistance-Junction to Ambient, θJA  
N Package:  
95  
°C/W  
°C/W  
°C/W  
65  
Thermal Resistance-Junction to Ambient, θJA  
DM Package:  
165  
120  
130  
80  
Thermal Resistance-Junction to Ambient, θJA  
D Package:  
°C/W  
°C/W  
°C/W  
Thermal Resistance-Junction to Ambient, θJA  
Y Package:  
Thermal Resistance-Junction to Ambient, θJA  
J Package  
Thermal Resistance-Junction to Ambient, θJA  
F Package  
°C/W  
°C/W  
80  
Thermal Resistance-Junction to Case, θJC  
Thermal Resistance-Junction to Ambient, θJA  
L Package  
145  
°C/W  
°C/W  
Thermal Resistance-Junction to Case, θJC  
35  
120  
Thermal Resistance-Junction to Ambient, θJA  
Notes:  
1. Junction Temperature Calculation: TJ = TA + (PD × θJA).  
2. The θJA numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no  
ambient airflow.  
4
 
 
Recommended Operating Conditions  
Recommended Operating Conditions  
Recommended Operating Conditions  
Symbol  
Parameter  
Units  
Min  
Typ  
30  
Max  
VS  
Supply Voltage Range  
V
A
IPK  
Output Current (Peak)  
±1  
IOUT  
Output Current (Continuous)  
200  
mA  
V
Analog Inputs (VFB, ISENSE  
)
0
2.6  
EASINK  
OSCFR  
RT  
Error Amp Output Sink Current  
Oscillator Frequency Range  
Oscillator Timing Resistor  
Oscillator Timing Capacitor  
5
mA  
kHz  
kΩ  
µF  
0.1  
0.52  
0.001  
500  
150  
1.0  
CT  
Operating Ambient Temperature Range  
SG1842/43  
SG2842/43  
-55  
-25  
0
125  
85  
°C  
°C  
°C  
SG3842/43  
70  
Note: Range over which the device is functional.  
5
Current Mode PWM Controller  
Electrical Characteristics  
Unless otherwise specified, these specifications apply over the operating ambient temperatures for  
SG1842/SG1843 with -55°C TA 125°C, SG2842/SG2843 with -25°C TA 85°C, SG3842/SG3843 with  
0°C TA 70°C, VCC = 15V, RT = 10k, and CT = 3.3nF. Low duty cycle pulse testing techniques  
are used which maintains junction and case temperatures equal to the ambient temperature.  
SG1842/43  
SG2842/43  
SG3842/43  
Symbol  
Parameter  
Test Conditions  
Units  
Min Typ Max Min Typ Max Min Typ Max  
Reference Section  
VREF  
VREG  
IREG  
Output Voltage  
TJ = 25°C, IO = 1mA  
12V VIN 25V  
1 IO 20mA  
4.95 5.00 5.05 4.95 5.00 5.05 4.90 5.00 5.10  
V
Line Regulation  
6
6
20  
6
6
20  
6
6
20  
25  
mV  
mV  
Load Regulation  
Temperature Stability1  
Total Output Variation1 Line, Load, Temperature 4.90  
25  
25  
0.2  
0.4  
0.2  
0.4  
0.2  
0.4 mV/°C  
5.10 4.90  
5.10 4.82  
5.18  
V
10Hz f 10kHz, TJ  
25°C  
=
VN  
Output Noise Voltage1  
50  
5
50  
5
50  
5
µV  
mV  
Long Term Stability1  
TA = 125°C, 1000hrs  
25  
25  
25  
VREFOSC  
Output Short Circuit  
-30  
47  
-100 -180 -30 -100 -180 -30 -100 -180 mA  
Oscillator Section3  
f
Initial Accuracy5  
TJ = 25°C  
52  
0.2  
5
57  
1
47  
52  
0.2  
5
57  
1
47  
52  
0.2  
5
57  
1
kHz  
%
fREG  
Voltage Stability  
12V VCC 25V  
Temperature Stability1 TMIN TA TMAX  
OSCPP Amplitude VRT/CT (Peak to Peak)  
%
1.7  
8.3  
1.7  
8.4  
1.7  
8.4  
V
TJ = 25°C  
7.8  
7.0  
8.8  
9.0  
7.5  
7.2  
9.3  
9.5  
7.5  
7.2  
9.3  
9.5  
mA  
mA  
IDSG  
Discharge Current  
TMIN T A TMAX  
Error Amp Section  
EAIN  
EAIB  
AVOL  
EABW  
Input Voltage  
VCOMP = 2.5V  
2.45 2.50 2.55 2.45 2.50 2.55 2.42 2.50 2.58  
V
µA  
Input Bias Current  
-0.3  
90  
1
-1  
-0.3  
90  
1
1
-0.3  
90  
1
-2  
Open Loop Gain  
Unity Gain Bandwidth1 TJ = 25°C  
2V VO 4V  
65  
65  
65  
dB  
0.7  
0.7  
0.7  
MHz  
Power Supply Rejection  
Ratio  
PSRR  
12V VCC 25V  
60  
70  
60  
2
70  
6
60  
2
70  
6
dB  
VVFB = 2.7V,  
VCOMP = 1.1V  
EASINK Output Sink Current  
2
-0.5  
5
6
-0.8  
6
mA  
mA  
V
EASRC Output Source Current VVFB = 2.3V, VCOMP = 5V  
-0.5 -0.8  
-0.5 -0.8  
VVFB = 2.3V,  
EAVOH VOUT High  
5
6
5
6
RL = 15k to GND  
VVFB = 2.7V,  
EAVOL VOUT Low  
0.7  
1.1  
0.7  
1.1  
0.7  
1.1  
V
RL = 15k to VREF  
6
Electrical Characteristics (continued)  
Electrical Characteristics (continued)  
SG1842/43  
SG2842/43  
SG3842/43  
Typ Max  
Symbol  
Parameter  
Test Conditions  
Units  
Min  
Typ Max Min Typ Max Min  
Current Sense Section  
CSAVOL Gain 2, 3  
2.85  
0.9  
3
1
3.15 2.85  
3
1
3.15 2.85  
3
1
3.15 V/V  
Maximum Input Signal2 VCOMP = 5V  
1.1  
0.9  
1.1  
0.9  
1.1  
V
Power Supply Rejection  
Ratio2  
PSRR  
CSIB  
12V VCC 25V  
70  
70  
-2  
70  
-2  
dB  
Input Bias Current  
-2  
-10  
-10  
-10  
µA  
ns  
CSDELAY Delay to Output1  
150  
300  
150 300  
150 300  
Output Section  
VOL  
Output Low Level  
ISINK = 20mA  
0.1  
1.5  
0.4  
2.2  
0.1  
1.5  
0.4  
2.2  
0.1  
1.5  
0.4  
2.2  
V
V
ISINK = 200mA  
VOH  
Output High Level  
ISOURCE = 20mA  
ISOURCE = 200mA  
TJ = 25°C, CL = 1nF  
TJ = 25°C, CL = 1nF  
13  
12  
13.5  
13.5  
50  
13 13.5  
12 13.5  
50  
13  
12  
13.5  
13.5  
50  
V
V
RS  
FT  
Rise Time  
Fall Time  
150  
150  
150  
150  
150  
150  
ns  
ns  
50  
50  
50  
Under-Voltage Lockout Section  
1842/2842/3842  
1843/2843/3843  
1842/2842/3842  
1843/2843/3843  
15  
7.8  
9
16  
8.4  
10  
17  
9.0  
11  
15  
7.8  
9
16  
8.4  
10  
17  
9.0  
11  
14.5  
7.8  
16 17.5  
8.4 9.0  
10 11.5  
V
V
V
V
UVLO Start Threshold  
8.5  
Min. Operation Voltage  
VSMIN  
After Turn-On  
7.0  
7.6  
8.3  
7.0  
7.6  
8.2  
7.0  
7.6  
8.2  
PWM Section  
DCMAX Maximum Duty Cycle  
DCMIN Minimum Duty Cycle  
Power Consumption Section  
93  
95  
100  
0
90  
95  
100  
0
90  
95  
100  
0
%
%
IS  
Start-Up Current  
0.5  
11  
34  
1
0.5  
11  
34  
1
0.5  
11  
34  
1
mA  
mA  
V
Operating Supply  
Current  
I
VFB = VISENSE = 0V  
ICC = 25mA  
17  
17  
17  
Z
VCC Zener Voltage  
Notes:  
1. These parameters, although guaranteed, are not 100% tested in production.  
2. Parameter measured at trip point of latch with VVFB = 0.  
3. Gain defined as: A = ∆VCOMP / ∆VISENSE ; 0 ≤ VISENSE ≤ 0.8V  
4. Adjust VCC above the start threshold before setting at 15V.  
7
Current Mode PWM Controller  
Block Diagram  
VCC  
*
34V  
VREF  
5.0V  
50mA  
5V  
REF  
S/R  
GROUND**  
6V (1842)  
0.8V (1843)  
16V (1842)  
8.4V (1843)  
INTERNAL BIAS  
VREF  
GOOD LOGIC  
VC*  
RT/CT  
OSCILLATOR  
ERROR AMP  
OUTPUT  
S
R
2R  
R
+
POWER  
GROUND**  
PWM  
LATCH  
_
VFB  
COMP  
1V  
CURRENT SENSE  
COMPARATOR  
CURRENT SENSE  
* - VCC and VC are internally connected for 8-pin packages.  
** - POWER GROUND and GROUND are internally connected for 8-pin packages.  
Figure 2 · Block Diagram  
8
Characteristic Curves  
Characteristic Curves  
2
0
VIN = 15V  
Duty Cycle = 50%  
10.0  
SG1842  
-2  
-4  
-6  
9.6  
9.2  
8.8  
8.4  
-8  
8.0  
SG1843  
0
-10  
-75 -50 -25  
25  
50  
75  
100 125  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature - (°C)  
Junction Temperature - (°C)  
Figure 3 · Dropout Voltage vs. Temperature  
Figure 4 · Oscillator Temperature Stability  
200kHz  
50  
220  
49  
200  
180  
100kHz  
50kHz  
50kHz  
48  
VPIN3  
=
1.1V  
160  
100kHz  
200kHz  
46  
45  
44  
140  
120  
-75  
-50 -25  
0
25  
50  
75  
100 125  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature - (°C)  
Junction Temperature - (°C)  
Figure 5 · Current Sense to Output Delay vs.  
Temperature  
Figure 6 · Output Duty Cycle vs. Temperature  
5.02  
0.7  
5.01  
SG1842  
V
CC = 15V  
0.6  
0.5  
0.4  
5.00  
4.99  
4.98  
0.3  
SG1843  
0.2  
75  
Junction Temperature - (°C)  
100  
125  
-75  
-25  
0
25  
50  
-50  
125  
-25  
0
25  
50  
75  
100  
-50  
-75  
Junction Temperature - (°C)  
Figure 7 · Start-Up Current vs. Temperature  
Figure 8 · Reference Voltage vs. Temperature  
9
Current Mode PWM Controller  
16.08  
16.06  
16.04  
16.02  
8.32  
SG1843  
8.30  
SG1842  
8.28  
8.26  
8.24  
8.22  
8.20  
8.18  
16.00  
15.98  
-75 -50 -25  
0
25  
50  
75 100 125  
-75 -50 -25  
0
25  
50  
75 100 125  
Junction Temperature - (°C)  
Junction Temperature - (°C)  
Figure 9 · Start-Up Voltage Threshold vs. Temperature  
Figure 10 · Start-Up Voltage Threshold vs. Temperature  
8.2  
2.5  
8.0  
7.8  
7.6  
2.0  
-55°C  
+25°C  
1.5  
+125°C  
1.0  
VIN = 15 V  
Duty Cycle < 5%  
7.4  
7.2  
0.5  
0
-75  
25  
50  
75  
100  
0
125  
-50  
-25  
100  
200  
300  
400  
500  
Junction Temperature - (°C)  
Output Current - (mA)  
Figure 12 · Output Saturation Voltage vs. Output Current  
Figure 11 · Oscillator Discharge Current vs.  
and Temperature (Sink Transistor)  
Temperature  
1.0  
0.9  
0.8  
0.7  
VIN = 15 V  
UTY YCLE < 5%  
4.0  
D
C
125°C  
25°C  
+125°C  
3.0  
2.0  
-55°C  
0.6  
-55°C  
0.5  
0.4  
0.3  
0.2  
+125°C  
1.0  
0
0.1  
0
100  
200  
300  
400  
500  
1.0  
2.0  
3.0  
4.0  
5.0  
Error Amp Output Voltage - (V)  
Output Current - (mA)  
Figure 14 · Output Saturation Voltage vs. Output Current  
Figure 13 · Current Sense Threshold vs. Error Amplifier  
and Temperature  
Output  
10  
Application Information  
Application Information  
The oscillator of the 1842/43 family of PWM's is designed such that many values of RT and CT will give the  
same oscillator frequency, but only one combination will yield a specific duty cycle at a given frequency.  
Given:  
Frequency ≡ f  
Maximum Duty Cycle ≡ Dm  
/D  
m
(1.76)  
−1  
Calculate: RT = 267 (1.76)  
−1()  
m
( ꢀꢁD )/D  
m
where 0.3 < Dm < 0.95  
1.86 Dꢃ  
(µF)  
CT =  
f RT  
For Duty-Cycles above 95% use:  
VREF  
RT  
CT  
/CT  
RT  
GND  
1.86  
F
Where RT 5kΩ  
RTCT  
Figure 15 · Oscillator Timing Circuit  
11  
Current Mode PWM Controller  
A set of formulas are given to determine the values of RT and CT for a given frequency and maximum duty  
cycle. (Note: These formulas are less accurate for smaller duty cycles or higher frequencies. This will require  
trimming of RT or CT to correct for this error.)  
Example:  
A Flyback power supply requires a maximum of 45% duty cycle at a switching frequency of 50 kHz. What  
are the values of RT and CT?  
Given:  
f = 50kHz  
Dm = 0.45  
.45  
Calculate: RT = 267 (1.76 − 1= 674 Ω  
)
.55  
.45  
(
)
1.76  
− 1  
1.86 0.45  
CT =  
= .025 (µF)  
50000 674  
1000  
100  
10  
1
.001  
.01  
.05  
0.1  
.002  
.005  
CT Value - (µF)  
Figure 16 · Oscillator Frequency Vs. RT For Various CT  
12  
Typical Application Circuits  
Typical Application Circuits  
Pin numbers referenced are for 8-pin package and pin numbers in parenthesis are for 14-pin package.  
VCC VIN  
7 (12)  
7 (11)  
Q1  
6 (10)  
SG1842/43  
IPK  
5 (8)  
R
1.0V  
RS  
3 (5)  
=
IPK(MAX)  
RS  
C
Figure 17 · Current Sense Spike Suppression  
The RC low-pass filter eliminates the leading edge current spike caused by parasitic of Power MOSFET.  
VCC  
VIN  
7 (12)  
7 (11)  
6 (10)  
Q1  
R1  
SG1842/43  
5 (8)  
RS  
3 (5)  
Figure 18 · MOSFET Parasitic Oscillations  
A resistor (R1) in series with the MOSFET gate reduce overshoot and ringing caused by the MOSFET input  
capacitance and any inductance in series with the gate drive. (Note: It is very important to have a low  
inductance ground path to insure correct operation of the I.C. This can be done by making the ground paths  
as short and as wide as possible.)  
13  
Current Mode PWM Controller  
IB  
VC  
R2  
+
VIN  
VC1  
R1 II R2  
_
VC1  
C1  
VC  
7 (11)  
6 (10)  
R2  
Q1  
SG1842/43  
R1  
5 (8)  
3 (5)  
RS  
Figure 19 · Bipolar Transistor Drive  
The 1842/43 output stage can provide negative base current to remove base charge of power transistor (Q1)  
for faster turn off. This is accomplished by adding a capacitor (C1) in parallel with a resistor (R1). The resistor  
(R1) is to limit the base current during turn on.  
VCC  
VIN  
Isolation  
Boundary  
7 (12)  
7 (11)  
6 (10)  
Q1  
VGS Waveforms  
50% DC  
+
0
SG1842/43  
_
5 (8)  
3 (5)  
+
R
0
_
25% DC  
RS  
NS  
NP  
C
V (PIN 1) – 1.4  
3RS  
NP  
NS  
IPK  
=
( )  
Figure 20 · Isolated MOSFET Drive  
Current transformers can be used where isolation is required between PWM and Primary ground. A drive  
transformer is then necessary to interface the PWM output with the MOSFET.  
14  
Typical Application Circuits  
VIN  
VCC  
7 (12)  
8 (14)  
4 (7)  
2 (3)  
7 (11)  
6 (10)  
Q1  
I
SG1842/43  
5 (8)  
3 (5)  
R2  
R1  
1 (1)  
2N2907  
5 (9)  
C
RS  
Figure 21 · Adjustable Buffered Reduction of Clamp Level with Softstart  
VCS  
=
IPK  
RS  
R
1
Where, VCS=1.67 ꢄ  
and VC.S.MAX = 1V (Typ.)  
R +R  
1
2
VEAO 1.3  
R1R2  
tSOꢆTSTART = ln 1 ꢇ  
ꢋ ꢄ  
C  
R1  
R1 + R2  
5 ꢉ  
R1 + R2  
Where, VEAO voltage at the Error Amp Output under minimum line and maximum load conditions  
Softstart and adjustable peak current can be done with the external circuitry shown above.  
8 (14)  
RA  
8
4
6
2
SG1842/43  
4 (7)  
3
555  
TIMER  
RB  
C
1
5 (9)  
To other  
SG1842/43  
1.44  
(RA + 2RB) C  
f =  
RB  
RA + 2RB  
f =  
Figure 22 · External Duty Cycle Clamp and Multi-Unit Synchronization  
Precision duty cycle limiting as well as synchronizing several 1842/1843's is possible with the above  
circuitry.  
15  
Current Mode PWM Controller  
5V  
8 (14)  
2.8V  
1.1V  
RT  
_
+
4 (7)  
CT  
SG1842/43  
Discharge  
Current  
Id = 8.2 mA  
Figure 23 · Oscillator Connection  
The oscillator is programmed by the values selected for the timing components RT and CT. Refer to  
application information for calculation of the component values.  
2.5V  
SG1842/43  
0.5 mA  
2 (3)  
R1  
1 (1)  
RF  
RF 10k  
Figure 24 · Error Amplifier Connection  
Error amplifier is capable of sourcing and sinking current up to 0.5mA.  
16  
Typical Application Circuits  
VCC  
VIN  
SG1842/43  
7 (12)  
VO  
5V  
8 (14)  
+
5V  
UVLO  
5V  
REF  
S
R
+
RT  
INTERNAL  
BIAS  
2.5V  
2N222A  
VREF  
GOOD LOGIC  
7 (11)  
6 (10)  
R
SLOPE  
4 (7)  
OSCILLATOR  
Q1  
From VO  
CT  
CS  
COMP  
2 R  
+
Ri  
2 (3)  
ERROR  
AMP  
5 (8)  
3 (5)  
R
1V  
PWM  
LATCH  
Rd  
CF  
RF  
R
1 (1)  
C
RS  
5(9)  
Figure 25 · Slope Compensation  
Due to inherent instability of current mode converters running above 50% duty cycle, slope  
compensation should be added to either current sense pin or the error amplifier. Figure 25 shows a  
typical slope compensation technique.  
17  
 
Current Mode PWM Controller  
VREF  
RT  
A
VCC  
SG1842/43  
2N 2222  
4.7k  
1k  
8
7
6
1
2
3
4
COMP  
VREF  
100k  
VFB  
VCC  
0.1µF  
0.1µF  
1k  
ERROR AMP  
ADJUST  
4.7k  
5k  
OUTPUT  
OUTPUT  
GROUND  
ISENSE  
ISENSE  
ADJUST  
GROUND  
RTCT  
5
CT  
Figure 26 · Open Loop Laboratory Fixture  
High-peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and  
bypass capacitors should be connected to pin 5 in a single point ground.  
The transistor and 5kpotentiometer are used to sample the oscillator waveform and apply an adjustable  
ramp to pin 3.  
18  
Typical Application Circuits  
USD735  
T1  
4.71W  
+
+
220µF  
250V  
0.01pF  
400V  
+
4700µF  
5V  
673-3  
56kΩ  
1 W  
10V  
2 – 5A  
AC  
1N3613  
INPUT  
-
1N3613  
16V  
SG1842  
20kΩ  
+
10µF  
20V  
0.01 µF  
820pF  
T1: Coilcraft E - 4140 – b  
Primary - 97 turns  
single AWG 24  
V
CC  
VFB  
27Ω  
Secondary - 4 turns  
4 parallel AWG 22  
Control - 9 turns  
150kΩ  
COMP  
2.5k  
OUT  
3.6kΩ  
100 pF  
20kΩ  
3 parallel AWG 28  
VREF  
1kΩ  
CUR  
SEN  
10kΩ  
470 pF  
RT /CT  
0.85Ω  
GND  
0.01 µF  
0.0047µF  
ISOLATION  
BOUNDARY  
Figure 27 · Off-line Flyback Regulator  
SPECIFICATIONS  
Input line voltage:  
Input frequency:  
90VAC to 130VAC  
50 or 60Hz  
40kHz ±10%  
25W maximum  
5V +5%  
Switching frequency:  
Output power:  
Output voltage:  
Output current:  
2 to 5A  
Line regulation:  
0.01%/V  
Load regulation:  
Efficiency @ 25 Watt:  
VIN = 90VAC: 70%  
VIN = 130VAC: 65%  
8%/A*  
Output short-circuit current: 2.5 A average  
*This circuit uses a low-cost feedback scheme in which the DC voltage developed from the primary-side  
control winding is sensed by the SG1842 error amplifier. Load regulation is therefore dependent on the  
coupling between secondary and control windings, and on transformer leakage inductance.  
19  
Current Mode PWM Controller  
Package Outline Dimensions  
Controlling dimensions are in inches, metric equivalents are shown for general information.  
MILLIMETERS  
INCHES  
D
Dim  
MIN  
MAX  
MIN  
MAX  
A
A2  
b
-
5.08  
-
0.200  
3.30 Typ.  
1.30 Typ.  
E1  
0.38  
0.76  
0.20  
-
0.51  
1.65  
0.145  
0.030  
0.008  
-
0.020  
0.065  
0.015  
0.400  
b2  
c
0.38  
D
E
10.16  
b2  
7.62 BSC  
2.54 BSC  
0.300 BSC  
0.100 BSC  
E
e
E1  
L
θ
6.10  
6.86  
-
15°  
0.240  
0.270  
-
15°  
A2  
A
L
3.05  
0°  
0.120  
0°  
c
Note:  
Dimensions do not include mold flash or protrusions; these  
shall not exceed 0.155mm (.006”) on any side. Lead  
dimension shall not include solder coverage.  
H
e
θ
b
Figure 1 · M 8-Pin PDIP Package Dimensions  
MILLIMETERS  
INCHES  
MIN  
Dim  
MIN  
4.32  
0.38  
1.04  
0.20  
9.52  
5.59  
MAX  
5.08  
0.51  
1.65  
0.38  
10.29  
7.11  
MAX  
0.200  
0.020  
0.065  
0.015  
0.405  
0.280  
D
A
b
0.170  
0.015  
0.045  
0.008  
0.375  
0.220  
5
4
8
b2  
c
E
D
E
1
e
2.54 BSC  
0.100 BSC  
eA  
b2  
eA  
H
L
7.37  
0.63  
3.18  
-
7.87  
1.78  
4.06  
15°  
0.290  
0.025  
0.125  
-
0.310  
0.070  
0.160  
15°  
A
α
Q
0.51  
1.02  
0.020  
0.040  
c
Q
L
Note:  
SEATING  
PLANE  
H
e
α
Dimensions do not include protrusions; these shall not  
exceed 0.155mm (.006”) on any side. Lead dimension shall  
not include solder coverage.  
b
Figure 2 · Y 8-Pin CERDIP Package Dimensions  
20  
Package Outline Dimensions  
Package Outline Dimensions  
MILLIMETERS  
INCHES  
MIN  
Dim  
MIN  
1.35  
0.10  
1.25  
0.33  
0.19  
4.83  
5.79  
MAX  
1.75  
0.25  
1.52  
0.51  
0.25  
5.21  
6.20  
MAX  
0.069  
0.010  
0.060  
0.020  
0.010  
0.205  
0.244  
A
A1  
A2  
b
0.053  
0.004  
0.049  
0.013  
0.007  
0.189  
0.228  
c
D
E
e
1.27 BSC  
0.050 BSC  
H
3.81  
0.40  
0°  
4.01  
1.27  
8°  
0.150  
0.016  
0°  
0.158  
0.050  
8°  
L
θ
*LC  
-
.010  
-
0.004  
*Lead Co-planarity  
Note:  
Dimensions do not include mold flash or protrusions; these  
shall not exceed 0.155mm (.006”) on any side. Lead  
dimension shall not include solder coverage  
Figure 3 · DM 8-Pin SOIC Package Dimensions  
MILLIMETERS  
INCHES  
MIN  
Dim  
MIN  
1.35  
0.10  
1.25  
0.33  
0.19  
8.54  
5.79  
MAX  
1.75  
0.25  
1.52  
0.51  
0.25  
8.74  
6.20  
MAX  
0.069  
0.010  
0.060  
0.020  
0.010  
0.344  
0.244  
A
A1  
A2  
b
0.053  
0.004  
0.049  
0.013  
0.007  
0.336  
0.228  
c
D
E
e
1.27 BSC  
0.050 BSC  
H
3.81  
0.40  
0°  
4.01  
1.27  
8°  
0.150  
0.016  
0°  
0.158  
0.050  
8°  
L
θ
*LC  
-
.010  
-
0.004  
*Lead Co-planarity  
Note:  
Dimensions do not include mold flash or protrusions; these  
shall not exceed 0.155mm (.006”) on any side. Lead  
dimension shall not include solder coverage  
Figure 4 · D 14-Pin SOIC Package Dimensions  
21  
Current Mode PWM Controller  
Package Outline Dimensions  
MILLIMETERS  
INCHES  
Dim  
MIN  
-
MAX  
5.33  
-
MIN  
MAX  
0.210  
-
D
A
-
A1  
A2  
b
0.38  
0.015  
3.30 Typ.  
0.130 Typ.  
E1  
0.36  
1.14  
0.56  
1.78  
0.014  
0.045  
0.008  
0.730  
0.022  
0.070  
0.014  
0.810  
b1  
c
1
0.20  
0.36  
b1  
D
18.54  
20.57  
E
e
2.54 BSC  
0.100 BSC  
E
7.62  
6.10  
2.92  
0°  
8.26  
7.11  
3.81  
15°  
0.300  
0.240  
0.115  
0°  
0.325  
0.280  
0.150  
15°  
A2  
A
E1  
L
θ
c
A1  
L
e
Note:  
S
EATING PLANE  
θ
b
Dimensions do not include mold flash or protrusions;  
these shall not exceed 0.155mm (.006”) on any side.  
Lead dimension shall not include solder coverage.  
Figure 5 · N 14-Pin PDIP Package Dimensions  
MILLIMETERS  
INCHES  
MIN  
Dim  
MIN  
4.32  
0.38  
1.04  
0.20  
19.30  
5.59  
MAX  
5.08  
0.51  
1.65  
0.38  
19.94  
7.11  
MAX  
0.200  
0.020  
0.065  
0.015  
0.785  
0.280  
D
A
b
0.170  
0.015  
0.045  
0.008  
0.760  
0.220  
8
14  
b2  
c
E
1
D
E
7
e
2.54 BSC  
0.100 BSC  
eA  
eA  
H
L
7.37  
0.63  
3.18  
-
7.87  
1.78  
4.06  
15°  
0.290  
0.025  
0.125  
-
0.310  
0.070  
0.160  
15°  
A
Q
b2  
α
c
L
Q
0.51  
1.02  
0.020  
0.040  
H
e
b
Note:  
θ
Dimensions do not include protrusions; these shall not  
exceed 0.155mm (.006”) on any side. Lead dimension  
shall not include solder coverage.  
Figure 6 · J 14-Pin CERDIP Package Dimensions  
22  
Package Outline Dimensions  
Package Outline Dimensions  
MILLIMETERS  
INCHES  
MIN  
Dim  
MIN  
1.45  
0.25  
0.102  
-
MAX  
1.70  
MAX  
0.067  
0.019  
0.006  
0.290  
0.252  
0.272  
0.057  
0.010  
0.004  
-
A
b
0.483  
0.152  
7.37  
b
c
6
7
5
4
3
2
D
8
D
E
6.04  
-
6.40  
0.238  
-
9
E1  
6.91  
10  
1
e
1.27 BSC  
0.050 BSC  
e
E
E1  
L
Q
6.35  
0.51  
0.20  
9.40  
1.02  
0.38  
0.250  
0.020  
0.008  
0.370  
0.040  
0.015  
S1  
L
L
S1  
Notes:  
Q
c
A
1. Lead No. 1 is identified by tab on lead or dot on cover.  
2. Leads are within 0.13mm (.0005”) radius of the true  
position (TP) at maximum material condition.  
3. Dimension “e” determines a zone within which all body  
and lead irregularities lie.  
Figure 7 · F 10-Pin Ceramic Flatpack Package Dimensions  
E3  
D
MILLIMETERS  
INCHES  
Dim  
MIN  
8.64  
-
MAX  
9.14  
MIN  
MAX  
0.360  
0.320  
D/E  
E3  
e
0.340  
-
8.128  
E
1.270 BSC  
0.635 TYP  
0.050 BSC  
0.025 TYP  
B1  
L
1.02  
1.52  
0.040  
0.060  
0.090  
A
1.626  
2.286  
0.064  
h
1.016 TYP  
0.040 TYP  
A
L2  
L
8
A1  
A1  
A2  
1.372  
-
1.68  
1.168  
2.41  
0.054  
-
0.066  
0.046  
0.95  
3
1
L2  
1.91  
0.075  
B3  
Note:  
0.203R  
0.008R  
All exposed metalized area shall be gold plated 60 micro-  
inch minimum thickness over nickel plated unless otherwise  
specified in purchase order.  
13  
h
18  
A2  
B3  
e
B1  
Figure 8 · L 20-Pin Leadless Chip Carrier Package Dimensions  
23  
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor  
and system solutions for communications, defense and security, aerospace, and industrial  
markets. Products include high-performance and radiation-hardened analog mixed-signal  
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and  
synchronization devices and precise time solutions, setting the world's standard for time; voice  
processing devices; RF solutions; discrete components; security technologies and scalable  
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design  
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has  
approximately 3,400 employees globally. Learn more at www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo CA 92656 USA  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
Fax: +1 (949) 215-4996  
E-mail: sales.support@microsemi.com  
© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
SG1842/43-1/10.14  

相关型号:

SG1842LT

Switching Regulator/Controller, Current-mode, 0.2A, 500kHz Switching Freq-Max, BIPolar, CQCC20
MICROSEMI

SG1842Y

CURRENT MODE PWM CONTROLLER
MICROSEMI

SG1842Y/883B

CURRENT MODE PWM CONTROLLER
MICROSEMI

SG1842Y/DESC

CURRENT MODE PWM CONTROLLER
MICROSEMI

SG1842_1

CURRENT MODE PWM CONTROLLER
MICROSEMI

SG1843

CURRENT MODE PWM CONTROLLER
MICROSEMI

SG1843F

CURRENT MODE PWM CONTROLLER
MICROSEMI

SG1843F-DESC-TR

Switching Controller, Current-mode, 0.2A, 500kHz Switching Freq-Max, BIPolar, CDFP10
MICROSEMI

SG1843F/883B

CURRENT MODE PWM CONTROLLER
MICROSEMI

SG1843F/DESC

CURRENT MODE PWM CONTROLLER
MICROSEMI

SG1843J

CURRENT MODE PWM CONTROLLER
MICROSEMI

SG1843J/883

Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, BIPolar, CDIP14, HERMETIC SEALED, CERAMIC, DIP-14
MICROSEMI