SL1935D/KG/NP4P [MICROSEMI]

Consumer Circuit, PDSO36, 7.50 MM, LEAD FREE, SSOP-36;
SL1935D/KG/NP4P
型号: SL1935D/KG/NP4P
厂家: Microsemi    Microsemi
描述:

Consumer Circuit, PDSO36, 7.50 MM, LEAD FREE, SSOP-36

光电二极管 商用集成电路
文件: 总23页 (文件大小:620K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL1935  
Single Chip Synthesized Zero IF Tuner  
February 2005  
Features  
Ordering Information  
SP1935D/KG/NP3Q  
SL1935D/KG/NP2Q  
SL1935D/KG/NP1P  
SL1935C/KG/NP1P  
SL1935D/KG/NP3P  
SL1935D/KG/NP4P  
SL1935C/KG/NP1Q  
SL1935D/KG/NP2P  
SL1935D/KG/NP1Q  
SL1935D/KG/NP4Q  
36 Pin SSOP  
36 Pin SSOP*  
36 Pin SSOP  
36 Pin SSOP  
36 Pin SSOP  
36 Pin SSOP*  
36 Pin SSOP*  
36 Pin SSOP*  
36 Pin SSOP  
36 Pin SSOP*  
Tape & Reel  
Tape & Reel  
Tubes  
Singlechipsynthesisedtunersolutionforquadrature  
down conversion, L-band to Zero IF.  
DVB compliant, operating dynamic range -70 to  
-20dBm.  
Compatible with DSS and DVB variable symbol rate  
applications.  
Tubes  
Tubes  
Tape & Reel  
Tape & Reel  
Tubes  
Tape & Reel  
Tape & Reel  
Selectable baseband path, programmable through  
2
*Pb Free Matte Tin  
I C bus.  
Excellent quadrature balance up to 30MHz  
baseband  
Excellent immunity to spurious second harmonic  
(RF and LO) mixing effects.  
Description  
2
Low oscillator phase noise and reradiation.  
High output referred linearity for low distortion and  
multi channel application.  
The SL1935 is a complete single chip  
bus controlled  
I C  
Zero IF tuner and operates from 950 to 2150MHz. It  
includes an on-board low phase noise PLL frequency  
synthesiser and low noise LNA/AGC. The SL1935 is  
intendedprimarilyforapplicationindigitalsatellite Network  
Interface Modules and performs the complete tuner  
function.  
2
Integral fast mode compliant I C bus controlled PLL  
frequencysynthesiser, designedforhighcomparison  
frequencies and low phase noise performance.  
Buffered crystal output for clocking QPSK  
demodulator.  
ESD protection (Normal ESD handling procedures  
should be observed).  
Applications  
Satellite receiver systems.  
Data communications systems.  
1
36  
XTALC AP  
P UMP  
DR IVE  
P ORT P 0  
VE E  
XTAL  
S DA  
S C L  
BUFR E F  
VC C D  
VC C  
TANKS  
TANKS B  
VE E  
R F  
TANKV  
TANKVB  
VE E  
R FB  
VC C  
IFIA  
IFQA  
IFIB  
IFQB  
VC C  
VC C  
OFIA  
OFIB  
VE E  
OFQA  
OFQB  
VE E  
IOUT  
ADD  
QOUT  
AG C C ONT  
18  
19  
Figure1. Pin connections  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003 - 2005, Zarlink Semiconductor Inc. All Rights Reserved.  
SL1935  
The device contains all elements necessary, with the  
exception of local oscillator tuning network and crystal  
reference, to produce a high performance I(n-phase) &  
Q(uadrature) downconversion tuner function. Due to the  
high signal handling design the device does not require  
any front end tracking filters.  
The S L1935 includes selectable baseband signal paths,  
allowing application with two externally definable filter  
bandwidths, facilitating application in variable symbol  
rate and simulcast systems. The S L1935 is optimised to  
interface with the VP 310 (ADC /QP S K/FE C ) S atellite  
C hannel Decoder, available from Zarlink S emiconductor  
and offers a full front end solution.  
RF  
RFB  
AGCCONT  
19  
8
9
23 OFQA  
22 OFQB  
26 IFQA  
25 IFQB  
20 QOUT  
RF Section  
VCC  
RF section  
AGC  
Sender  
7,10,13,24  
VCCD  
6
VEE  
16,21,27,30,33  
PLL section  
BS  
90deg  
17 IOUT  
11 IFIA  
TANKV 29  
TANKVB 28  
Frequency  
Agile  
VCOV  
Phase  
12 IFIB  
Splitter  
TANKS 32  
TANKSB 31  
Divide  
by 2  
0deg  
14 OFIA  
15 OFIB  
VCOS  
36 PUMP  
35 DRIVE  
Fpd  
15 bit  
Charge  
Pump  
Programmable  
Divider  
PLL Section  
VS  
BS  
SDA 3  
SCL 4  
I2C Bus Interface  
34 PORT P0  
5 BUFREF  
ADD 18  
Fpd/2  
REF  
OSC  
XTAL 2  
XTALCAP 1  
Reference  
Divider  
Fcomp  
Figure 2. Block diagram  
2
SL1935  
Table 1. QuickReferenceData  
Characteristic  
Value  
Units  
MHz  
dBm  
dB  
950 to 2150  
-75 to -15  
10  
Operating range  
Input dynamic range  
VSWR with input match  
Input NF  
dB  
dB  
dBm  
dBm  
dBm  
V
dB  
deg  
dB  
10  
15  
+5  
+20  
-5  
2.0  
0.2  
0.7  
1
@ -70dBm operating sensitivity  
@ -60dBm operating sensitivity  
IPIP3 @ -20dBm operating sensitivity  
IPIP2@ -20dBm operating sensitivity  
IPP1dB@ -20dBm operating sensitivity  
Baseband output limit voltage  
Gain match up to 22MHz  
Phase match up to 22MHz  
Gain flatness up to 30MHz  
Local oscillator phase noise  
SSB at 10kHz offset  
In band LO reradiation from RF input  
LO second harmonic interference level at input level of  
-20dBm per carrier  
dBc/Hz  
dBm  
dBc  
-80  
<-70  
-55  
dBc  
-35  
LNA second harmonic interference level at input level  
of -25dBm per carrier  
MHz  
dBc/Hz  
4
-152  
PLL maximum comparison frequency  
PLL phase noise at phase detector  
Note: `6dB interstage filter loss assumed in external base band paths.  
dBm assumes 75characteristic impedance.  
`
Quadrature Downconverter Section  
FunctionalDescription  
In normal application the tuner IF frequency of typically  
950 to 2150MHz is fed direct to the SL1935 RF input  
through an appropriate impedance match (Fig.16) and  
LNB switching. The input stage is optimised for both NF  
and signal handling.  
General  
The SL1935 is a complete wideband direct conversion  
tuner incorporating an on board frequency synthesiser  
andLNA/AGC, optimisedforapplicationindigitalsatellite  
receiver systems. The device offers a highly integrated  
2
The signal handling of the front end is designed to offer  
immunity to input composite overload without the  
requirement of a tracking filter. RF input impedance is  
shown in Fig.3.  
solutiontoasatellitetunerfunction, incorporatinganI C  
businterfacecontroller, alowphasenoisePLLfrequency  
synthesiser and all tuner analogue functionality. The  
analogue blocks include the reference oscillator,  
consistingoftwoindependentoscillators,aphasesplitter,  
RF preamplifier with AGC facility, channel mixers and  
baseband amplifiers incorporating two selectable  
baseband paths, allowing for two externally definable  
bandwidths. In this application two varactor tuned tanks,  
a reference crystal and baseband filtering components  
are required to complete the tuner system.  
The RF input amplifier feeds an AGC stage and provides  
system gain control. The system AGC gain range will  
guarantee anoperating dynamicrange of-70to-20dBm.  
TheAGCiscontrolledbytheAGCsenderandisoptimised  
for S/N and S/I performance across the full dynamic  
range. Details of the AGC characteristics, variations in  
IIP3, IIP2, P1dB and NF are illustrated in Figs.4, 5, 6, 7,  
and 8 respectively.  
A buffered crystal frequency output is available to clock  
the QPSK demodulator and powers up in the active  
state.  
The required I and Q local oscillator frequencies for  
quadrature downconversion are generated by the on-  
board reference oscillators designated VCOSand  
VCOV. VCOSoperatesnominallyfrom1900to3000MHz  
and is then divided by two to provide 950 to 1500MHz.  
VCOV operates nominally from 1400 to 2200MHz. Only  
2
TheI C businterfacecontrolsthefrequencysynthesiser,  
the local oscillator, the baseband path selection, the  
buffered reference frequency output and an external  
switching port.  
2
the oscillator selected via bit VS in the I C data  
transmission is powered.  
Figure 2 shows the device block diagram and pin  
allocations are shown in Figure 1.  
3
SL1935  
Quadrature DownconverterSection - continued  
The oscillators share a common varactor line drive and  
both require an external varactor tuned resonator  
optimised for low phase noise performance. The  
recommended application circuit for the local oscillators  
is detailed in Fig.9 and the typical phase noise  
performance is detailed in Fig.10. The local oscillator  
frequency is coupled internally to the PLL frequency  
synthesiser programmable divider input.  
The output of the phase detector feeds a charge pump  
and a loop amplifier. When used with an external loop  
filterandahighvoltage transistoritintegrates thecurrent  
pulses into the varactor line voltage used to control the  
selected oscillator.  
The programmable divider output Fpd divided by two  
and the reference divider output Fcomp are switched to  
port P0 by programming the device into test mode. Test  
modes are detailed in Table 4.  
The mixer outputs are coupled to the baseband buffer  
amplifiers, providing for one of two selectable baseband  
outputs in each channel. The required output is selected  
The crystal reference frequency can be switched to the  
BUFREF output by bit RE as detailed in Table 7.  
2
by bit BS in the I C bus transmission (Table 6). These  
outputs are fed off chip via ports OPIAand OPIB’  
(OPQAand OPQB), then back on chip through ports  
IPIAand IPIB(IPQAand IPQB), allowing for the  
insertion of two independent user definable filter  
bandwidths. Each output provides a low impedance  
drive(Fig.11) andeachinputprovides ahighimpedance  
load . An example filter for 30MS/s is detailed in Fig.13.  
Both path gains are nominally equal. NB 6dB insertion  
loss is assumed in each channel, however a different pot  
down ratio may be applied.  
Programming  
2
The SL1935 is controlled by an I C data bus and is  
compatible with both standard and fast mode formats.  
Data and Clock are fed on the SDA and SCL lines  
2
respectively as defined by the I C bus format. The  
device can either accept data (write mode) or send data  
(readmode). TheLSBoftheaddressbyte (R/W)setsthe  
device into write mode if it is low and read mode if it is  
high. Tables 9a and 9b detail the format of the data. The  
SL1935 may be programmed to respond to several  
addresses and enables the use of more than one device  
Each baseband path is then multiplexed to the final  
baseband amplifier stage, providing further gain and a  
low impedance output drive. The nominal output load  
test condition is detailed in Fig.14.  
2
in an I C bus system. Table 9c details the how the  
address is selected by applying a voltage to the ADD’  
input. When the device receives a valid address byte, it  
pulls the SDA line low during the acknowledge period  
and during following acknowledge periods after further  
data bytes are received. When the device is  
programmed into read mode, the controller accepting  
the data must pull the SDA line low during all status byte  
acknowledge periods to read another status byte. If the  
controller fails to pull the SDA line low during this period,  
the device generates an internalSTOPcondition which  
inhibits further reading.  
PLL Frequency Synthesiser Section  
The PLL frequency synthesiser section contains all the  
elements necessary, with the exception of a reference  
frequency source and a loop filter to control the selected  
oscillator to produce a complete PLL frequency  
synthesised source. The device, produced using high  
speed logic, allows for operation with a high comparison  
frequency and enables the generation of a loop with  
excellent phase noise performance.  
Write mode  
14  
0
TheLOsignalfromtheselectedoscillatordrivesfromthe  
phasesplitterintoaninternalpreamplifier, providinggain  
andreverse isolationfromthedividersignals. Theoutput  
of the preamplifier interfaces directly with the 15-bit fully  
programmable divider. The programmable divider has  
MN+Aarchitecture, thedualmodulusprescaleris16/17,  
the A counter is 4-bits and the M counter is 11-bits.  
Bytes2and3containfrequencyinformationbits2 to2  
inclusive (Table 9). Byte 4 controls the synthesiser  
reference divider ratio (Table 3) and the charge pump  
setting (Table 5). Byte 5 controls test modes (Table 4),  
baseband filter path select BS (Table 6), local oscillator  
select VS (Table 8), buffered crystal reference output  
select RE (Table 7) and the output port P0.  
After reception and acknowledgment of a correct  
address (byte 1), the first bit of the following byte  
determines whether the byte is interpreted as byte 2 or  
4, alogic0indicatesbyte 2andalogic1indicatesbyte  
4. Having interpreted this byte as either byte 2 or 4, the  
following byte will be interpreted as byte 3 or 5  
respectively. After receiving two complete data bytes,  
additional data bytes may be entered and byte  
interpretation follows the same procedure without re-  
addressing the device. The procedure continues until a  
The output of the programmable divider is fed to the  
phase comparator and compared in both phase and  
frequency domains to the comparison frequency. This  
frequency is derived from either the on board crystal  
controlledoscillatororfromanexternalreferencesource.  
In both cases the reference frequency is divided down to  
the comparison frequency by the reference divider,  
programmable into 1 of 29 ratios and detailed in Table 3.  
The typical application for the crystal oscillator is shown  
in Fig.15.  
condition is received.  
STOP’  
4
SL1935  
Bit1(POR)isthepower-on resetindicator, andthisisset  
The STOP condition can be generated after any data  
byte, if however it occurs during a byte transmission, the  
previous byte data is retained. To facilitate smooth fine  
tuning, the frequency data bytes are only accepted by  
the device after all 15 bits of frequency data have been  
received, or after the generation of a STOP condition.  
to a logic 1if the Vccd supply to the device has dropped  
o
below3V(at25 C),e.g. whenthedevice isinitiallyturned  
ON. The POR is reset to 0when the read sequence is  
terminatedby a STOP command. When POR is set high  
this indicates that the programmed information may  
have been corrupted and the device reset to the power  
up condition.  
Read mode  
Bit 2 (FL) indicates whether the synthesiser is phase  
locked, a logic 1is present if the device is locked, and  
a logic 0if the device is unlocked.  
When the device is in read mode, the status byte read  
from the device takes the form shown in Table 9b.  
Table 2. Programmable Features  
Programmable features  
Function  
Function as described above  
Function as described above.  
Function as described above.  
Synthesiser programmable divider  
Reference programmable divider  
Baseband filter path select  
Local oscillator select  
Function as described above.  
The charge pump current can be programmed by bits C1 & C0 (Table 5).  
The test modes are defined by bits T2 - T0 as described in Table 4.  
The general purpose port can be programmed by bit P0;  
Logic 1= on  
Charge pump current  
Test mode  
General purpose port, P0  
Logic 0= off (high impedance)  
The buffered crystal reference frequency can be switched to the BUFREF  
output by bit RE as described in Table 7. The BUFREF output defaults to  
the ONcondition at device power up.  
Buffered crystal reference output,  
BUFREF  
o
The typical key performance data at Vcc = 5V and +25 C ambient are detailed in Table 1.  
Table 3. Reference division ratios  
R2  
R1  
R0  
Ratio  
R4  
R3  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
4
8
16  
32  
64  
128  
256  
Illegal state  
5
10  
20  
40  
80  
160  
320  
Illegal state  
6
12  
24  
48  
96  
192  
384  
Illegal state  
7
14  
28  
56  
112  
224  
448  
5
SL1935  
Table 4. Test modes  
T0  
0
Test mode description  
Normal operation  
T2  
0
T1  
0
1
0
1
0
Charge pump sink* (status byte FL set to logic '0')  
Charge pump source* (status byte FL set to logic '0')  
Charge pump disabled* (status byte FL set to logic '1')  
Normal operation and port P0 = Fpd/2  
0
0
0
1
0
1
1
0
1
0
1
Charge pump sink* (status byte FL set to logic '0'. Port P0 = Fcomp)  
Charge pump source* (status byte FL set to logic '0'. Port P0 = Fcomp)  
Charge pump disabled* (status byte FL set to logic '1'. Port P0 = Fcomp)  
1
1
1
0
1
1
Note: * Clocks need to be present on crystal and RF inputs to enable charge pump test modes and to  
toggle status byte bit FL.  
Table 5. Charge pump current  
Current in µA  
C1  
C0  
min  
typ  
max  
+-194  
+-412  
+-862  
+-116  
+-247  
+-517  
+-155  
+-330  
+-690  
0
0
1
1
0
1
0
1
+-1087 +-1450 +-1812  
Table 6. Baseband path select  
Path Selected  
I Channel Q Channel  
Baseband Filter drive Baseband  
BS  
Filter drive  
output  
amp input output amp input  
IFIB  
IFIA  
OFQB  
OFQA  
IFQB  
IFQA  
0
1
OFIB  
OFIA  
Table 7. Buffered crystal  
reference output select  
RE  
0
1
BUFREF output  
Disabled, high impedance  
Enabled  
Table 8. Local oscillator select  
VS  
0
Local oscillator selected  
VCOV  
1
VCOS  
6
SL1935  
Table 9a. Write data format (MSB is transmitted first)  
MSB  
LSB  
Address  
1
0
1
2
0
2
0
2
0
2
MA1  
2
MA0  
2
A
A
Byte 1  
Byte 2  
0
2
14  
13  
12  
11  
10  
9
8
Programmable  
divider  
7
6
5
4
3
2
1
0
Programmable  
divider  
2
2
2
2
2
2
2
A
Byte 3  
2
Control data  
Control data  
1
T2  
C1  
T1  
C0  
T0  
R4  
VS  
R3  
BS  
R2  
0
R1  
RE  
A
A
Byte 4  
Byte 5  
R0  
P0  
Table 9b. Read data format (MSB is transmitted first)  
MSB  
LSB  
Address  
Status Byte  
1
POR  
1
FL  
0
0
0
0
MA1  
0
MA0  
0
A
A
Byte 1  
Byte 2  
1
0
0
0
Table 9c. Address selection  
Address input voltage level  
0 - 0.1 Vcc  
MA1  
MA0  
0
0
1
1
0
1
0
1
Open circuit  
0.4 Vcc - 0.6 Vcc*  
0.9 Vcc - Vcc  
Note:  
Programmed by connecting a 30kresistor between pin and Vcc  
*
Key to Tables 9a to 9c  
A .........................................Acknowledge bit  
MA1, MA0 ........................... Variable address bits (Table 9c)  
214 to 20................................ Programmable division ratio control bits  
C1 to C0 .............................. Charge pump current select (Table 5)  
R4 to R0 .............................. Reference division ratio select (Table 3)  
T2 to T0 .............................. Test modes control bits (Table 4)  
BS .......................................Baseband path select (Table 6)  
VS .......................................Local oscillator select (Table 8)  
RE .......................................Buffered crystal reference output enable (Table 7)  
P0 .......................................P0 port output state  
POR .................................... Power on reset indicator  
FL........................................Phase lock flag  
+j1  
+j2  
+j0.5  
+j0.2  
0
+j5  
Marker Freq (MHz)  
Z real Z imag Ω  
1
2
3
4
950  
64  
40  
32  
23  
-100  
-75  
-65  
-45  
1400  
1600  
2150  
0.2  
0.5  
2
1
5
X
j5  
j0.2  
X
X
4
1
X
2
X
3
j2  
j0.5  
START 950MHz  
Normalised to 75  
j1  
STOP 2150MHz  
Figure 3. RF input impedance (typical)  
7
SL1935  
90  
80  
70  
70dB minimum, AGC < 0.75V  
60  
50  
40  
30  
20  
10  
0
20dB maximum, AGC > 4.25V  
0
0.5  
1
1.5  
2
2.5  
AGCCONT Voltage (V)  
3
3.5  
4
4.5  
5
Figure 4. AGC characteristic (typical)  
120  
110  
100  
90  
80  
70  
60  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
System gain (dB) assuming 6dB interstage filter loss  
Figure 5. Variation in IIP3 with system gain (typical)  
170  
160  
150  
140  
130  
120  
110  
100  
Baseband dominated IP2  
LNA dominated IP2  
20  
25  
30  
35 55  
System gain (dB) assuming 6dB interstage filter loss  
40  
45  
50  
60  
65  
70  
Figure 6. Variation in IIP2 with system gain (typical)  
8
SL1935  
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
-10  
10 25  
Converter gain seting (dB) from RF inputs OFIA/OFQA or OFIB/OFQB outputs  
-5  
0
5
15  
20  
30  
35  
40  
45  
Figure 7. Variation in P1dB with converter gain (typical)  
60  
50  
40  
30  
20  
10  
0
20  
25  
30  
35  
40  
45  
50  
55  
60  
System gain (dB) assuming 6dB interstage filter loss  
65  
70  
75  
80  
Figure 8. Variation in NF with system gain (typical)  
BB837  
4mm STRIPLINE  
6
7
9
Tanks  
1k  
"vcos"  
2kΩ  
BB837  
4mm STRIPLINE  
10mm STRIPLINE  
Tanksb  
Vcnt  
BB831  
BB831  
Tankv  
"vcov"  
2kΩ  
10mm STRIPLINE  
NOTE:  
Stripline width = 0.44mm  
(dimensions are approximate)  
1kΩ  
10  
Tankvb  
Figure 9. Local oscillator application circuit  
9
SL1935  
LO Frequency (MHz)  
1500 1600  
900  
-70  
1000  
1100  
1200  
1300  
1400  
1700  
1800  
1900  
2000  
2100  
-72  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
-88  
-90  
vcos enabled  
cov enabled  
Conditions:  
Loop filter as per standard application shown in Figure 21  
Charge pump = 130uA  
Fcomp = 65.5kHz or 125kHz  
Figure 10. Local oscillator phase noise variation with frequency (typical)  
+j1  
+j0.5  
+j2  
4
3
x
x
+j0.2  
0
+j5  
2
x
Marker Freq (MHz)  
Z real  
Z imag Ω  
1
2
3
4
1
17  
18  
22  
33  
0
1
2
5
x0.5  
0.2  
1
10  
20  
30  
19  
38  
60  
j5  
j0.2  
j2  
j0.5  
STOP 30MHz  
START 1MHz  
Normalised to 50  
j1  
Figure 11. Converter output impedance; OFIA, OFIB, OFQA, OFQB (typical)  
+j1  
+j0.5  
+j2  
+j0.2  
0
+j5  
Freq (MHz)  
Z real  
9.5  
10.0  
10.6  
12.6  
Z imag Ω  
Marker  
X
4
1
2
3
4
0.1  
10  
20  
30  
-2.0  
1.3  
3.3  
5.5  
X
2
5
0.2  
3
0.5  
1
X
2
X
X
1
j5  
j0.2  
j2  
j0.5  
START 100kHz  
Normalised to 50  
STOP 30MHz  
j1  
Figure 12. Baseband output impedance; IOUT, QOUT (typical)  
10  
SL1935  
100nF  
3.9pF  
100nF  
1k  
OFIA/OFIB  
OFQA/OFQB  
IFIA/IFIB  
IFQA/IFQB  
1k Ω  
Figure 13. Example baseband interstage filter for 30MS/s  
220nF  
100  
15pF  
1k Ω  
Figure 14. Nominal baseband output load test condition  
1 XTALCAP  
150pF  
2 XTAL  
82pF  
4MHz  
Figure 15. Crystal oscillator application (typical)  
11  
SL1935  
1pF  
100pF  
100pF  
33  
8
9
RF  
RFIN  
RFB  
2.2pF  
Figure 16. Input matching network  
Table 10. ElectricalCharacteristics  
o
o
Test conditions (unless otherwise stated); Tamb = -20 to +80 C, Vee= 0V, Vcc =Vccd = 5V+-5%.  
These characteristics are guaranteed by either production test or design. They apply within the specified ambient  
temperature and supply voltage unless otherwise stated.  
Value  
Conditions  
Units  
Pin  
Characteristic  
Supply current  
Typ  
Min  
Max  
mA  
6,7,10  
13,24  
8,9  
130  
175  
VCCD (PLL) and VCC  
RF input operating frequency  
MHz  
950  
2150  
SYSTEM  
All system specification items should  
be read in conjunction with Note 2  
At -70dBm operating sensitivity  
At -60dBm operating sensitivity  
Above 60dBm operating sensitivity,  
(Fig.7)  
System noise figure DSB  
dB  
dB  
dB/dB  
10  
15  
12  
17  
-1  
Variation in system NF with gain  
adjust  
System input referred IP2  
dBµV  
dBµV  
121  
112  
140  
At 20dBm operating sensitivity, see  
Notes 3 and 4  
(Fig.6)  
Variation in system input referred  
IP2 with operating sensitivity  
System input referred IP3  
At -20dBm operating sensitivity,  
see Note 5  
Variation in system input referred  
IP3 with operating sensitivity  
(Fig.5)  
Continued  
12  
SL1935  
(Continued)  
Table 10. ElectricalCharacteristics  
Value  
Units  
Conditions  
Pin  
Characteristic  
Typ  
Min  
Max  
System dynamic range  
Note 6  
AGCCONT = 0.75V  
dBm  
-70  
-20  
dBm AGCCONT = 4.25V  
System gain roll off  
System gain variation with  
temperature  
3
2
dB  
dB  
Within RF band 950-2150MHz  
-20˚C to +80˚C  
dB  
deg  
dB  
System I Q gain match  
System I Q phase balance  
System I and Q channel in band 17,20  
ripple  
17,20  
17,20  
-1  
-3  
+1  
+3  
1
Interstage filter (Fig.13)  
Interstage filter (Fig.13)  
Interstage filter (Fig.13)  
dB  
dBc  
System baseband path gain  
match  
LO second harmonic interference  
level  
LNA second harmonic  
interference level  
-1  
+1  
Note 8.  
Note 9.  
-50  
-35  
dBc  
dBµV  
Synthesiser and other spurii on I 17,20  
and Q outputs  
76  
Within 0-100MHz band under all gain  
settings, RF input set to deliver  
108dBµV on output  
Within RF band 950-2150MHz.  
Note 11.  
dBm  
In band leakage to RF input  
8,9  
-60  
75  
CONVERTER  
dB  
dBµV  
Converter input impedance  
Converter input return loss  
System input referred P1dB  
8,9  
8,9  
8
102  
With input matching (Fig.16)  
Converter gain =-5dBm (to OFIA/  
OPQA, OFIB/OPQB outputs. Fig.7)  
0.1 to 30MHz (Fig.11)  
Converteroutputimpedance,OFIA, 14,15  
50  
25  
OFIB, OPQA and OPQB.  
22,23  
dBc  
Converter output leakage to  
unselected output, OFIA, OFIB,  
OPQA and OPQB.  
Relative to selected output  
-26  
MHz  
Oscillator VCOS operating range 31,32 1900  
3000  
2150  
Giving LO = 950 to 1500MHz  
(Application as in Fig.9)  
(Application as in Fig.9)  
@10kHz offset, PLL loop bw < 1kHz  
Applicationismeasuredatbaseband  
output frequency of 10MHz (Fig.10).  
MHz  
dBc/Hz  
Oscillator VCOV operating range 28,29 1450  
Local oscillator SSB phase noise  
-78  
AGCONT input current  
19  
-150  
150  
µA  
BASEBANDAMPLIFIERS  
The baseband inputs must be  
externally ac coupled  
Baseband input impedance, IFIA, 11,12  
0.1- 30MHz bandwidth  
IFIB, IFQA And IFQB.  
Resistance  
Capacitance  
25,26  
kΩ  
pF  
10  
5
dBc  
Baseband unselected input 17,20  
leakage to output  
-40  
Relative to selected input.  
Baseband amplifier output 17,20  
impedance  
20  
Vp-p  
MHz  
dB/oct  
Baseband output limiting  
Baseband bandwidth 1dB  
Baseband output roll-off  
17,20  
17,20  
2.0  
Level athardclipping(loadasFig.14)  
(Load as Fig.14)  
Above 3dB point, no load  
40  
6
Continued  
13  
SL1935  
Table 10. ElectricalCharacteristics (Continued)  
Value  
Units  
Conditions  
Pin  
Characteristic  
Typ  
Min  
Max  
SYNTHESISER  
SDA,SCL  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
3,4  
I2C 'fast mode' compliant  
3
0
V
V
µA  
µA  
5.5  
1.5  
10  
Input voltage = Vcc  
Input voltage = Vee  
-10  
Leakage current  
Hysterysis  
SDA output voltage  
10  
µA Vcc = Vee = 0V  
0.4  
+-3  
V
V
V
0.4  
0.6  
400  
Isink = 3mA  
Isink = 6mA  
3
SCL clock rate  
kHz  
4
Charge pump output current  
Charge pump output leakage  
Charge pump drive output current  
Crystal frequency  
Vpin36 = 2V. (Table 5)  
nA Vpin36 = 2V  
mA Vpin35 = 0.7V  
MHz (Fig.15 for application)  
36  
36  
35  
1,2  
+-10  
0.5  
2
20  
Recommended crystal series  
resistance  
200  
4MHz parallel resonant crystal  
10  
Externalreferenceinputfrequency  
20  
0.5  
4
MHz Sinewave coupled via 10nF blocking  
2
2
2
capacitor  
External reference drive level  
Vpp Sinewave coupled via 10nF blocking  
capacitor  
MHz  
0.2  
Phase detector comparison  
frequency  
Equivalent phase noise at phase  
detector  
-152  
dBc/Hz SSB within loop bandwidth, all  
comparison frequencies  
Local oscillator programmable  
divider division ratio  
Reference division ratio  
Output port P0  
Sink current  
Leakage current  
32767  
240  
2
(Table 3)  
(Note 7)  
mA Vport = 0.7  
µA Vport = Vcc  
AC coupled. (Note 10.)  
Vpp Enabled by bit RE = 1 and default  
34  
5
10  
BUFREF output  
0.45  
Output amplitude  
Output impedance  
Address select  
0.25 0.35  
250  
state on power-up.  
(Table 9c)  
18  
Input high curent  
Input low current  
1
-0.5  
mA Vin = Vcc  
mA Vin = Vee  
Notes to Table 10  
1.  
2.  
All power levels are referred to 75, and 0dBm = 109dBµV.  
System specifications refer to total cascaded system of converter/AGC stage and baseband amplifier stagewith nominal  
6dB pad as interstage filter and load impedance as detailed in Figure 14.  
3.  
4.  
5.  
6.  
Baseband dominated IP2. AGC set for 20dB system gain with two tones for intermodulation test at fc+146and  
fc+155MHz at 100dBµV generating output intermodulation spur at 9MHz. 30MHz 3dB bandwidthinterstage filter included.  
LNA dominated IP2. AGC set for 20dB system gain with two tones for intermodulation test at fc+146 and2*fc+155 MHz at  
100dBµV generating output intermodulation spur at 9MHz. 30MHz 3dB bandwidthinterstage filter included.  
AGC set for 20dB system gain with two tones for intermodulation test at fc+110 and fc+211MHz at 100dBµVgenerating  
output intermodulation spur at 9MHz. 30MHz 3dB bandwidth interstage filter included.  
Dynamic range assuming termination as detailed in Figure 14, and including 6 dB interstage filter insertion loss,  
delivering 700mVp-p at baseband outputs (pins 17,20). AGC monotonic from Vee to Vcc (Fig.4).  
Port powers up in high impedance state.  
7.  
8.  
The level of 2.01GHz downconverted to baseband relative to 1.01GHz with the oscillator tuned to 1GHz,measured with  
no input pre-filtering.  
9.  
The level of second harmonic of 1.01GHz input at 25dBm downconverted to baseband relative to 2.01GHz at40 dBm  
with the oscillator tuned to 2GHz, measured with no input pre-filtering.  
10.  
11.  
If the BUFREF output is not used it should be left open circuit or connected to Vccd, and disabled by settingRE = 0.  
This parameter is very application dependant. With good RF isolation <-60dBm can be achieved.  
14  
SL1935  
V
CC  
V
REF  
8
9
RF  
5K  
30K  
19  
AGCCONT  
RFB  
RF inputs  
AGC input  
V
REF2  
1K  
1K  
TANK  
OFIA  
OFIB  
OFQA  
OFQB  
TANKB  
Converter outputs (pins 14, 15, 22 and 23)  
Oscillator inputs (pins 28, 29 and 31, 32)  
IFIA  
IFIB  
IFQA  
IFQB  
IOUT  
and  
QOUT  
BIAS  
Baseband amplifier inputs  
(pins 11, 12, 25 and 23)  
Baseband outputs (pins 17 and 20)  
Figure 17. Input and output interface circuits (RF section)  
15  
SL1935  
V
ccd  
V
ccd  
36  
PUMP  
2
XTAL  
1
XTALCAP  
300  
35  
DRIVE  
Loop amplifier  
Reference oscillator  
V
V
ccd  
ccd  
60K  
18  
3K  
47K  
ADD  
SCL/SDA  
]
20K  
ACK  
]On SDA only  
ADD input  
SDA/SCL (pins 3 and 4)  
V
ccd  
P0  
34  
5
BUFREF  
ENABLE/  
DISABLE  
BUFREF output  
Output port  
Figure 18. Input and output interface circuits (PLL section)  
16  
SL1935  
Table 11. Absolute Maximum Ratings(All voltages referred to Vee at 0V and Vcc = Vccd)  
Characteristic  
Min  
Max  
Units  
Conditions  
7
6
Supply voltage  
-0.3  
-0.3  
-0.3  
V
V
V
SDA, SCL DC offsets  
All I/O port DC offsets  
Port P0 current  
Vcc = Vee to 5.25V  
Vcc+0.3  
10  
150  
150  
20  
mA  
o
Storage temperature  
-55  
C
C
o
Junction temperature  
o
Package thermal resistance,  
chip to case  
Package thermal resistance,  
chip to ambient  
C/W  
o
77  
C/W  
919  
Power consumption at 5.25V  
ESD protection  
mW  
kV  
3.5  
Mil-std 883 method 3015 cat1  
SL1935 Demo Board  
The demo board contains an SL1935 I2C bus controlled VCOS oscillates at twice the LO frequency (lower band)  
Zero IF tuner IC, plus all components necessary to and is then divided by two to provide the required LO  
demonstrate operation of the SL1935. The schematic frequency in the range 950MHz to 1500MHz  
and PCB layout of the board are shown in Figures 19, 20 (approximately).  
and 21.  
VCOV oscillates at the LO frequency (upper band) in the  
range 1500MHz to 2150MHz (approximately).  
Supplies  
The board must be provided with the following supplies:  
3. Baseband path select.  
5V for the synthesiser section (5VD)  
5V for the converter and baseband sections (5V)  
30V for the varactor line (30V)  
TheSL1935hastwofilterpathsselectedby programming  
bit BS of the I2Cdata (see Tables 6 and 9a to 9c). The  
value of BS is changed by toggling the switch position to  
theleftofFilterAandFilterBonthemainsoftware block  
diagram.  
The supply connector is a 5 pin 0.1pin header.  
The order of connections is 5V GND 30V GND 5V.  
4. AGC control.  
I2C busconnections  
The conversion gain of the SL1935 is set by the voltage  
applied to the AGCCONT input. On the demo board this  
is controlled by the potential divider labelled AGC ADJ’  
which varies the AGCCONT input from 0V to Vcc.  
The board is provided with a RJ11 I2C bus connector  
which feeds directly to the synthesiser. This connects to  
a standard 4 way cable.  
Operating instructions  
1. Software.  
CAUTION: Care should be taken to ensure the chip is  
powered ON if the board is modified to accept an external  
AGC inputvoltage. Damagetothedevice may resultifthis  
is not complied with as a result of the IC powering itself up  
via the AGCCONT input ESD protection diode. It is  
recommended that a low current limit is set on any  
external AGC voltage source used.  
Use the Zarlink Semiconductor synthesiser software. Pull  
down the Devicemenu, then select the SL1935. It is  
suggested that the charge pump is set to 130uA with a  
reference divider ratio of 32. These settings give a small  
loop bandwidth (i.e. 100s Hz), which allows detailed  
phase noise measurements of the oscillators to be taken  
if desired.  
5. Free running the VCOs.  
SelecttherequiredVCOasdetailedin(2)above. Program  
an LO frequency which is above the maximum capability  
of the oscillator. 3GHz is suggested. Under this condition  
the varactor control voltage is pumped to its maximum  
value, ie to the top of the band. The oscillator frequency  
can now be manually tuned by varying the 30V supply.  
2. VCO control.  
The two VCOs are selected by toggling the oscillator  
switch below the two oscillators on the main software  
block diagram. Thisswitch programs bitVSoftheI2C data  
(see Tables 8 and 9a to 9c).  
17  
SL1935  
19.  
View  
Figure 19. Top view  
18  
SL1935  
Figure 20. Bottom view  
19  
30V  
CN8  
5VD  
+
DC POWER  
R20  
22K  
5
4
3
2
1
R18  
13K  
R19  
13K  
C30  
C28  
100nF  
C29  
100pF  
22uF  
C2  
82pF  
C27  
15nF  
C26  
TP6  
68pF  
C25  
2n2  
30V  
IC1  
XTALCAP  
XL1  
4MHz  
1
2
36  
CN7  
I2C  
PUMP  
C3  
150pF  
TP5  
P0  
TR1  
BCW31  
R16  
1K  
R17  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
5VD  
XTAL  
SDA  
SCL  
BUFref  
VccD  
Vcc  
DRIVE  
PORT P0  
Ve e  
TP1  
C31  
100nF  
C32  
100pF  
1K  
3
4
5
6
3
SDA  
5V0  
GND  
D1 BB837  
5V  
TP2  
4
L1  
L2  
SCL  
SK1  
RF IN  
R23  
2K  
5
RFinA  
TP3  
TANKSa  
TANKSb  
Ve e  
5VD  
6
C40  
100pF  
C39  
100pF  
C38  
22uF  
BB831  
5V  
C5  
+
D3  
7
C33  
100pF  
C34  
100pF  
C35  
100pF  
C36  
100nF  
C37  
100pF  
D2 BB837  
L3  
L4  
1nF  
RFinA  
8
R24  
2K  
RFin  
RFinB  
Vcc  
TANKVa  
TANKVb  
Ve e  
R7  
75R  
9
5V  
1nF  
C6  
GND  
C24  
5V  
10  
11  
12  
13  
14  
15  
16  
17  
18  
5VD  
D4  
BB831  
C7  
C8  
100nF  
100nF  
100nF  
IFIa  
IFQA  
IFQB  
R21  
Q OUT  
C23  
5V  
100nF  
5V  
SK2  
I OUT  
620R  
IOUT  
IFIb  
R15  
2K7  
TP8  
AGC  
Vcc  
Vcc  
1K  
R14  
R1 1K  
C22  
C21  
C9  
C10  
100nF  
100nF  
100nF  
100nF  
RV1  
5K  
AGC  
OFIa  
OFIb  
Ve e  
OFQA  
OFQB  
Ve e  
D5  
PORT 0  
R13 1K  
OFQB  
R2 1K  
R22  
R3  
1K  
R4  
1K  
R11  
1K  
R12  
1K  
620R  
QOUT  
C11  
3p9  
SK3  
Iout  
Qout  
C12  
3p9  
C19  
3p9  
JP1  
C20  
3p9  
1
2
ADD  
AGC cont  
C18  
C13  
220nF  
220nF  
SL1935  
AGC  
TP4  
R5  
100R  
TP7  
C16  
10nF  
R10  
100R  
P0  
1K  
R9  
QOUT  
IOUT  
C14  
15pF  
R6  
1K  
C17  
15pF  
Figure 21.  
SL1935  
Purchase of Zarlink Semiconductor I2C components conveys a licence under the Phillips I2C Patent rights to use  
these components in an I2C system,provided that the system conforms to the I2C Standard Specification as  
defined by Phillips.  
21  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

SL1935D/KG/NP4Q

Consumer Circuit, PDSO36, 7.50 MM, LEAD FREE, SSOP-36
INTEL

SL1935D/KG/NP4Q

Consumer Circuit, PDSO36, 7.50 MM, LEAD FREE, SSOP-36
MICROSEMI

SL1935KG

Single Chip Synthesized Zero IF Tuner
ZARLINK

SL1935NP1Q

Single Chip Synthesized Zero IF Tuner
ZARLINK

SL19A

Surface Mount Schottky Barrier Rectifier
GOOD-ARK

SL19N0

Telecom and Datacom Connector, 19 Contact(s), Male, Solder Terminal
MOLEX

SL19N1

Telecom and Datacom Connector, 19 Contact(s), Male, Solder Terminal
MOLEX

SL19N2

Telecom and Datacom Connector, 19 Contact(s), Male, Solder Terminal
MOLEX

SL19N3

Telecom and Datacom Connector, 19 Contact(s), Male, Solder Terminal
MOLEX

SL19N4

Telecom and Datacom Connector, 19 Contact(s), Male, Solder Terminal
MOLEX

SL19N5

Telecom and Datacom Connector, 19 Contact(s), Male, Solder Terminal
MOLEX

SL19P0

Telecom and Datacom Connector, 19 Contact(s), Male, Crimp Terminal
MOLEX