VSC8658HJ [MICROSEMI]

Octal 10/100/1000BASE-T PHY and 100BASEFX/1000BASE-X SerDes;
VSC8658HJ
型号: VSC8658HJ
厂家: Microsemi    Microsemi
描述:

Octal 10/100/1000BASE-T PHY and 100BASEFX/1000BASE-X SerDes

局域网(LAN)标准
文件: 总95页 (文件大小:703K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VSC8658 Datasheet  
Octal 10/100/1000BASE-T PHY and 100BASE-  
FX/1000BASE-X SerDes  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of  
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the  
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have  
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any  
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all  
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not  
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to  
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi  
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely  
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP  
rights, whether with regard to such information itself or anything described by such information. Information provided in this  
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this  
document or to any products and services at any time without notice.  
Microsemi Headquarters  
One Enterprise, Aliso Viejo,  
CA 92656 USA  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
Fax: +1 (949) 215-4996  
Email: sales.support@microsemi.com  
www.microsemi.com  
About Microsemi  
©2018 Microsemi, a wholly owned  
subsidiary of Microchip Technology Inc. All  
rights reserved. Microsemi and the  
Microsemi logo are registered trademarks of  
Microsemi Corporation. All other trademarks  
and service marks are the property of their  
respective owners.  
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of  
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.  
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and  
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's  
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication  
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and  
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.  
VMDS-10242. 4.1 11/18  
Contents  
1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
1.2  
1.3  
Revision 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2.1  
Register and Bit Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3 Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.1  
Features and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1.1  
4.1.2  
4.1.3  
SerDes MAC-to-Cat5 Mode MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SGMII MAC-to-Cat5 Mode MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
All Modes Cat5 Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.2  
SerDes Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SGMII MAC-to-100BASE-FX Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Automatic Media-Sense (AMS) Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Cat5 Auto-Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Manual MDI/MDI-X Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Automatic Crossover and Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Link Speed Downshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Transformerless Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Ethernet Inline Powered Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
IEEE 802.3af PoE Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
4.11  
4.12  
ActiPHY Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.12.1 Low Power State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.12.2 Link Partner Wake-up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.12.3 Normal Operating State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.13  
4.14  
Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.13.1 SMI Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.13.2 SMI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.14.1 LED Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.14.2 LED Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.14.3 Serial LED Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.15  
4.16  
GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Testing Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.16.1 Ethernet Packet Generator (EPG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.16.2 CRC Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.16.3 Far-End Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.16.4 Near-End Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.16.5 Connector Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.16.6 VeriPHY Cable Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.16.7 IEEE 1149.1 JTAG Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.16.8 JTAG Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.16.9 Boundary Scan Register Cell Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
iii  
4.17  
IEEE 1149.6 AC-JTAG Boundary Scan Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.1  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.1.1  
5.1.2  
Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Reserved Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.2  
IEEE Standard and Main Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
5.2.9  
Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Auto-Negotiation Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Link Partner Auto-Negotiation Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Auto-Negotiation Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Transmit Auto-Negotiation Next Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Auto-Negotiation Link Partner Next Page Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
1000BASE-T Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.2.10 1000BASE-T Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.2.11 Main Registers Reserved Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.2.12 1000BASE-T Status Extension 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.2.13 100BASE-TX Status Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.2.14 1000BASE-T Status Extension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.2.15 Bypass Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.2.16 Reserved Main Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.2.17 Extended Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.2.18 Extended PHY Control Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
5.2.19 Extended PHY Control Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.2.20 Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.2.21 Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5.2.22 MAC Interface Auto-Negotiation Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
5.2.23 Device Auxiliary Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
5.2.24 LED Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
5.2.25 LED Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
5.3  
Extended Page Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
Extended Page Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
SerDes Media Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
SerDes MAC/Media Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
CRC Good Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SIGDET Polarity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
ActiPHY Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
EEPROM Interface Status and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
EEPROM Data Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
PoE and Miscellaneous Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.3.10 VeriPHY Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
5.3.11 VeriPHY Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
5.3.12 VeriPHY Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.3.13 Reserved Extended Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.3.14 Ethernet Packet Generator Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.3.15 Ethernet Packet Generator Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
5.4  
5.5  
General-Purpose I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
Reserved GPIO Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
SIGDET vs GPIO Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
GPIO Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GPIO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GPIO Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
100BASE-FX Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
CMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.5.1  
5.5.2  
CMODE Pins and Related Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Functions and Related CMODE Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
iv  
5.5.3  
CMODE Resistor Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
5.6  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
5.6.1  
5.6.2  
EEPROM Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Read/Write Access to the EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
6 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6.1  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
6.1.8  
VDDIO at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
VDDIO at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
VDDIO at 1.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
VDD at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
MAC and SerDes Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
MAC and SerDes Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
LED Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
6.2  
6.3  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
Reference Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
SMI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Serial LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.4  
6.5  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
7 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
7.1  
Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
7.2  
Pin Identifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.2.8  
SerDes MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
SerDes Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
GPIO and SIGDET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Twisted Pair Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
8.1  
8.2  
8.3  
Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Thermal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Moisture Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
9 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
9.1  
9.2  
9.3  
9.4  
9.5  
PHY Address ID (Register 23E, Bits 15 to 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
JTAG Input High Voltage at 2.1 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
First SMI Write Fails After Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
LED3 Port 7 Coupling Issue into XTAL Clock Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
100BASE-FX Clock Data Recovery Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
10 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
v
Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
High-level Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
SerDes MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SGMII MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Cat5 Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Automatic Media Sense Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Inline Powered Ethernet Switch Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
ActiPHY State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
SMI Read Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SMI Write Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MDINT_n Configured as an Open-Drain (Active-Low) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MDINT_n Configured as an Open-Source (Active-High) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Far-End Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Near-End Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Connector Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Test Access Port and Boundary Scan Architecture Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Register Space Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
EEPROM Read and Write Register Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
SMI Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Serial LED Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Pin Diagram, Left Side, Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Pin Diagram, Right Side, Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
vi  
Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Features and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Operating Mode vs. Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
AMS Media Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Supported MDI Pair Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
LED Mode and Function Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
LED Serial Stream Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
JTAG Device Identification Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
JTAG Interface Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
IEEE 802.3 Standard Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Main Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Mode Control, Address 0 (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode Status, Address 1 (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Identifier 1, Address 2 (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Identifier 2, Address 3 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Device Auto-Negotiation Advertisement, Address 4 (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Auto-Negotiation Link Partner Ability, Address 5 (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Auto-Negotiation Expansion, Address 6 (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Auto-Negotiation Next Page Transmit, Address 7 (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Auto-Negotiation LP Next Page Receive, Address 8 (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
1000BASE-T Control, Address 9 (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
1000BASE-T Status, Address 10 (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
1000BASE-T Status Extension 1, Address 15 (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
100BASE-TX Status Extension, Address 16 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
1000BASE-T Status Extension 2, Address 17 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Bypass Control, Address 18 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Extended Control and Status, Address 22 (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Extended PHY Control 1, Address 23 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Extended PHY Control 2, Address 24 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Interrupt Mask, Address 25 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Interrupt Status, Address 26 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
MAC Auto-Negotiation Control and Status, Address 27 (0x1B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Auxiliary Control and Status, Address 28 (0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
LED Mode Select, Address 29 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Available LED Mode Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
LED Behavior, Address 30 (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Extended Registers Page Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Extended Page Access, Address 31 (0x1F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
SerDes Media Auto-Negotiation Control/Status, Address 16E (0x10) . . . . . . . . . . . . . . . . . . . . . . 46  
SerDes MAC Control, Address 17E (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
CRC Good Counter, Address 18E (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SIGDET Polarity Control, Address 19E (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Extended PHY Control 3, Address 20E (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
EEPROM Interface Status and Control, Address 21E (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
EEPROM Read or Write, Address 22E (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Extended PHY Control 4, Address 23E (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
VeriPHY Control Register 1, Address 24E (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
VeriPHY Control Register 2, Address 25E (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
VeriPHY Control Register 3, Address 26E (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
VeriPHY Control Register 3 Fault Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
EPG Control Register 1, Address 29E (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
EPG Control Register 2, Address 30E (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
General-Purpose Registers Page Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
SIGDET vs GPIO Control, Address 13G (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
GPIO Input, Address 15G (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
Table 39  
Table 40  
Table 41  
Table 42  
Table 43  
Table 44  
Table 45  
Table 46  
Table 47  
Table 48  
Table 49  
Table 50  
Table 51  
Table 52  
Table 53  
Table 54  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
vii  
Table 55  
Table 56  
Table 57  
Table 58  
Table 59  
Table 60  
Table 61  
Table 62  
Table 63  
Table 64  
Table 65  
Table 66  
Table 67  
Table 68  
Table 69  
Table 70  
Table 71  
Table 72  
Table 73  
Table 74  
Table 75  
Table 76  
Table 77  
Table 78  
Table 79  
Table 80  
Table 81  
Table 82  
Table 83  
Table 84  
Table 85  
Table 86  
Table 87  
Table 88  
Table 89  
Table 90  
Table 91  
Table 92  
GPIO Output, Address 16G (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GPIO Input/Output Configuration, Address 17G (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
100BASE-FX Control, Address 18G (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
CMODE Configuration Pins and Device Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Device Functions and Associated CMODE Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
CMODE Resistor Values and Resultant Bit Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
EEPROM Configuration Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
DC Characteristics for Pins Referenced to VDDIO at 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
DC Characteristics for Pins Referenced to VDDIO at 2.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
DC Characteristics for Pins Referenced to VDDIO at 1.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DC Characteristics for Pins Referenced to VDD33 at 3.30 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DC Characteristics for MAC_RDP/N_n and SER_DOP/N_n Pins . . . . . . . . . . . . . . . . . . . . . . . . . 63  
DC Characteristics for MAC_TDP/N_n and SER_DIP/N_n Pins . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
DC Characteristics for LED[3:0]_n Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
DC Characteristics for JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Typical Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Current Consumption in SerDes/SGMII to 1000BASE-X Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Consumption in SerDes/SGMII to 100BASE-FX or SerDes Pass-Through Mode . . . . . . . . . . . . . 65  
AC Characteristics for REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
AC Characteristics for REFCLK Input with 25 MHz Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
AC Characteristics for the CLKOUT Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
AC Characteristics for the JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
AC Characteristics for the SMI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
AC Characteristics for Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
AC Characteristics for Serial LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
SerDes MAC Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
SerDes Media Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
GPIO and SIGDET Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Twisted Pair Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
SMI Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Power Supply and Associated Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Thermal Resistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
viii  
Revision History  
1
Revision History  
This section describes the changes that were implemented in this document. The changes are listed by  
revision, starting with the most current publication.  
1.1  
1.2  
Revision 4.1  
Revision 4.1 of this datasheet was published in June 2007. In revision 4.1, design consideration issues  
were added. For more information, see LED3 Port 7 Coupling Issue into XTAL Clock Pin, page 85 and  
100BASE-FX Clock Data Recovery Improvement, page 85.  
Revision 4.0  
Revision 4.0 of this datasheet was published in March 2007. The following is a summary of the changes  
implemented in the datasheet:  
In register 0, the definitions for bits 13 and 6 (forced speed selection) were combined, because they  
are correlated.  
Throughout the electrical specifications, all references to VDD33A were corrected to VDD33 and all  
references to VDDIG were corrected to VDD12  
.
In the DC characteristics for VDDIO at 1.8 V, the condition for the output low voltage parameter  
(VOL) was corrected from a negative value (IOL = –0.5 mA) to a positive value (IOL = 0.5 mA).  
In the DC characteristics for VDD33 at 3.30 V, the output leakage (IOLEAK) was changed to match  
the same values as the input leakage (IILEAK) with the same condition (internal resistor included).  
Specifically, the values were changed from –10 µA minimum and 10 µA maximum to –42 µA  
minimum and 42 µA maximum.  
In the DC characteristics for MAC_RDP/N_n and SER_DOP/N_n pins, the total jitter parameter (TJ)  
was updated from 160 ps typical to 185 ps typical and from 180 ps maximum to 260 ps maximum.  
In the DC characteristics for MAC_TDP/N_n and SER_DIP/N_n pins, the input differential voltage  
parameter (VIDIFF) was updated from 1400 mV maximum to 2400 mV maximum.  
For better organization, the total receive jitter tolerance parameter (JRXTotal) was moved from the  
MAC_RDP/N_n and SER_DOP/N_n pin characteristics to the MAC_TDP/N_n and SER_DIP/N_n  
pin characteristics. The values were also updated to account for differences between 1000BASE-X  
and 100BASE-FX modes.  
In the DC characteristics for LED pins, a qualifier in the introductory paragraph was removed stating  
that these specifications are valid only when a voltage range of 1.3 V to 2.3 V is applied to the LED  
pins. For the low voltage parameter (VOL), the condition was corrected from a negative value (IOL  
–4.0 mA) to a positive value (IOL = 4.0 mA). The output low current drive strength parameter (IOL  
=
)
was updated from 4.0 mA maximum to 8.0 mA maximum. The maximum value for the output high  
current drive strength parameter (IOH) was removed.  
The current consumption specifications previously named 1000BASE-X/100BASE-FX mode are  
now named 1000BASE-X mode. The current consumption specifications previously named  
1000BASE-X mode are now named 100BASE-FX or SerDes pass-through mode.  
The current consumption specifications were updated for 100BASE-FX or SerDes pass-through  
mode (previously named 1000BASE-X mode). All of the parameters were updated, except for the  
IVDDIO parameters, which remain the same.  
In the stress ratings, for the DC input voltage on both the VDD12 and VDD12A supply pins, the  
maximum was updated from 1.5 V to 1.4 V. The electrostatic discharge voltage values were added.  
For charged device model, it was specified ±250 V. For human body model, it was specified as  
meeting a Class 2 rating.  
For the serial management interface (SMI) pins, it was clarified that EECLK and EEDAT are  
referenced to VDD33, not VDDIO.  
The moisture sensitivity was specified as level 3 for the VSC8658HJ package. For the lead(Pb)-free  
package, VSC8658XHJ, it was specified as level 4.  
Design consideration issues were added.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
1
Revision History  
1.3  
Revision 2.0  
Revision 2.0 of this datasheet was published in November 2006. This was the first publication of the  
document.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
2
Introduction  
2
Introduction  
This document consists of descriptions and specifications for both functional and physical aspects of the  
Octal 10/100/1000BASE-T PHY and 100BASE-FX/1000BASE-X SerDes.  
In addition to datasheets, the Microsemi website offers an extensive library of documentation, support  
files, and application materials specific to each device. The address of the Microsemi website is  
www.microsemi.com.  
2.1  
Register and Bit Conventions  
This document refers to registers by their address and bit number in decimal notation. A range of bits is  
indicated with a colon. For example, a reference to address 26, bits 15 through 14 is shown as 26.15:14.  
Bit numbering follows the IEEE standard with bit 15 being the most significant bit and bit 0 being the least  
significant bit.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
3
Product Overview  
3
Product Overview  
The VSC8658 device is a low-power, octal Gigabit Ethernet transceiver with dual, fully integrated  
1.25 Gbps SerDes interfaces. It is designed for use in applications, such as multiport switches and  
routers, where its compact ball grid array (BGA) packaging, low electromagnetic interference (EMI) line  
driver, and integrated line side termination resistors conserve both power and PC board space. Using the  
VSC8658 device in your design makes it possible to lower the component count of your PC board, sub-  
assembly, or device without sacrificing chip-centric capabilities or utility. This feature can make it less  
expensive to produce and more cost-effective to deploy.  
Microsemi’s mixed signal and digital signal processing (DSP) architecture—a key operational feature of  
the VSC8658 device—assures robust performance even under less-than-favorable environmental  
conditions. It supports both half-duplex and full-duplex 10BASE-T, 100BASE-TX, and 1000BASE-T  
communication speeds over Category 5 (Cat5) unshielded twisted pair (UTP) cable at distances greater  
than 140 m, displaying excellent tolerance to NEXT, FEXT, echo, and other types of ambient  
environment and system electronic noise. This device also supports 100BASE-FX and 1000BASE-X to  
connect to fiber modules, such as GBICs and SFPs.  
The following illustration shows a high-level, generic view of a VSC8658 application.  
Figure 1 • Typical Application  
SGMII, SerDes  
1.2 V  
3.3 V  
SerDes  
SerDes  
Optics / SFP  
RJ-45 and Magnetics  
Optics / SFP  
10/100/1000 Mbps Ethernet MAC  
10/100/1000 Mbps Ethernet MAC  
VSC8658  
Octal  
10/100/1000BASE-T  
100BASE-FX/1000BASE-X  
Gigabit Ethernet  
RJ-45 and Magnetics  
Transceiver PHY  
SerDes  
Optics / SFP  
10/100/1000 Mbps Ethernet MAC  
RJ-45 and Magnetics  
3.1  
Features and Benefits  
This section lists key aspects of the VSC8658 device functionality and design that distinguish it from  
similar products.  
Table 1 •  
Features and Benefits  
Feature  
Benefit  
650 mW per port power consumption (when configured  
for 1000BASE-T operation)  
Lowers system cost by eliminating the need for extra  
heat-dissipating and power-processing components;  
simplifies system design  
27 mm x 27 mm, 444-pin BGA packaging  
Facilitates single row, high port density switch designs  
Patented, low EMI line driver with integrated line side  
termination resistors  
Eliminates the need for as many as 384 passive  
components in 48-port switch applications  
Auto-Media Sense™ capability configurable per-port  
Detects and automatically configures a port for operation  
with copper or fiber media; auto-enables  
10/100/1000BASE-T fixed media ports, 100BASE-FX  
SFPs, 1000BASE-X SFPs, 1000BASE-T SFPs, triple-  
speed SFPs, or backplanes  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
4
Product Overview  
Table 1 •  
Features and Benefits (continued)  
Feature  
Benefit  
Dual, high-performance, 1.25 Gbps SerDes  
Maximizes receive jitter tolerance and minimizes transmit  
jitter (in comparison to single SerDes architectures)  
Compliance with IEEE standard 802.3 (10BASE-T,  
Ensures seamless deployment in devices throughout  
100BASE-TX, 1000BASE-T, 1000BASE-X, 100BASE-FX) existing copper networks while maintaining excellent  
tolerance to ambient electronic noise and any  
substandard cabling  
Support for frame sizes greater than 16 kilobytes at all  
device throughput settings and programmable  
synchronization FIFO buffers  
Provides for maximum Jumbo frame sizes on custom  
SANs and LANs  
Four integrated and programmable LED direct drivers per Eliminates the need for external components, lowers EMI  
port, on-chip filtering and support for bi-color LEDs generation, and lowers design cost  
Multiple built-in testing facilities, including near-end, far- Lowers system or device development, lowers  
end, and connector loopback; Ethernet packet generator deployment costs, and decreases time-to-market  
with CRC error counter  
Serial LED interface option  
Enables design flexibility  
Support for the CISCO specification for serial gigabit  
media-independent interface version 1.7 (SGMII (v1.7),  
for 1000BASE-X MACs, for IEEE standard 1149.1-1999  
JTAG boundary scan, and for IEEE standard 1149.6  
AC-JTAG scan.  
Saves manufacturing and quality assurance costs  
VeriPHY™ cable diagnostics  
Enables system managers to simplify deployment and  
improve Gigabit Ethernet network performance  
3.2  
Block Diagram  
The following illustration shows the primary functional blocks of the VSC8658 device.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
5
Product Overview  
Figure 2 • High-level Block Diagram  
TX VP_A _n  
TX VN _A_ n  
TX VP_B _ n  
TX VN _B _n  
TX VP_C _n  
TX VN _C _n  
TX VP_D _n  
TX VN _D _n  
10 /100 /  
1000 BA SE -T  
P C S  
10 /100 /  
1000 BA SE -T  
P M A  
M D I  
Tw isted P a ir  
In terfa ce  
M A C_ T DP_ n  
M A C_TD N _ n  
10 00BASE -X  
PC S  
1000BASE -X  
PM A  
SER _D O P _ n  
SER _D O N _n  
M A C_ R DP_ n  
M A C_R D N _ n  
M D I  
SerD es  
In terfa ce  
SER _D IP _n  
SER _D IN _n  
100BASE -FX  
PC S  
100BASE -FX  
PM A  
SIG DET_n /  
G P IO[7 :0]  
1 0/100/100 0BASE -T SFP D ata Path  
CM O D E [7 :0]  
N R ESET  
M DC  
M DIO  
M D IN T _n  
EEDAT  
EEC LK  
G PIO [15 :8]  
X T A L1/R E FC LK  
X T A L2  
R EF_FILT _A  
R E F_R E X T _A  
R EF_FILT _B  
R E F_R E X T _B  
C LK O U T  
M a n a g em en t  
a n d  
P LL  
JTA G  
Co n tro l In terfa ce  
(M IIM )  
LED In terfa ce  
LED[3 :0]_n  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
6
Functional Descriptions  
4
Functional Descriptions  
This section provides detailed information about how the VSC8658 device works, what configurations  
and operational features are available, and how to test its function. It includes descriptions of the various  
device interfaces and how to set them up.  
With the information in this section, you can better determine which device setup parameters you must  
access to configure the VSC8658 device to work in your application. There are three ways to configure  
the VSC8658 device. You can access and set its internal memory registers, use a combination of the  
device CMODE pins and its registers, or configure and connect an external EEPROM to execute a  
configuration sequence upon system startup.  
For information about VSC8658 device registers, see Configuration, page 26.  
For information about the device CMODE pins, see CMODE, page 55.  
For information about using an EEPROM with the VSC8658 device, see EEPROM, page 58.  
4.1  
Operating Modes  
With respect to its function in your design, the VSC8658 device can act as the interface between a media  
access controller (MAC) and either Category 5 (Cat5) media, 100BASE-FX fiber media, or 1000BASE-X  
fiber media. Or, the VSC8658 device can act as a MAC-to-MAC pass-through device to take advantage  
of the auto-negotiation feature.  
Depending upon the speed of data throughput required in your application, the MAC may be either a  
SerDes or an SGMII device, and can also be configured to support twisted pair Cat5 cabling, 100BASE-  
FX/1000BASE-X fiber optic cabling, or copper small form factor pluggable (SFP) devices.  
As shown in the following table, the operating mode you choose when setting up the VSC8658 device is  
a function of which type of MAC is to be connected, which data throughput speeds are required in the  
application, and the type of Cat5 media support required.  
Table 2 •  
Operating Mode vs. Speed  
10/100/  
1000BASE-X  
1000BASE-T  
10/100/1000BAS Fiber Optic  
100BASE-FX Copper SFP  
VSC8658 Mode  
E-T Support  
Support  
Support  
Support  
SerDes MAC-to-Cat5 Link Partner  
1000BASE-T  
only  
SGMII MAC-to-Cat5 Link Partner  
Yes  
SerDes MAC-to-SerDes with Auto-Negotiation  
Yes  
1000BASE-T  
only  
SGMII MAC-to-SerDes with Auto-Negotiation  
SerDes MAC-to-SerDes with Pass-Through  
Yes  
1000BASE-T  
only  
Yes(1)  
Yes(1)  
1000BASE-T  
only(1)  
SGMII MAC-to-SGMII with Pass-Through  
SGMII MAC-to-100BASE-FX  
Yes(1)  
Yes  
Yes  
SerDes MAC with Automatic Media Sensing  
(AMS) and Auto Negotiation  
1000BASE-T  
Only  
Yes  
Yes  
SGMII MAC with AMS  
Yes  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
7
Functional Descriptions  
Table 2 •  
Operating Mode vs. Speed (continued)  
10/100/  
1000BASE-T  
1000BASE-X  
10/100/1000BAS Fiber Optic  
100BASE-FX Copper SFP  
VSC8658 Mode  
E-T Support  
Support  
Support  
Support  
SerDes MAC with AMS and Pass-Through  
1000BASE-T  
Only  
Yes(1)  
1000BASE-T  
only(1)  
SGMII MAC with AMS and Pass-Through  
Yes  
Yes(1)  
Yes(1)  
1. The MAC used must be capable of supporting this media.  
4.1.1  
SerDes MAC-to-Cat5 Mode MAC Interface  
When connected to a SerDes MAC, the VSC8658 device provides data throughput at a rate of  
1000 Mbps only; 10 Mbps and 100 Mbps rates are not supported. To configure the device for operation in  
this mode, select the 1000BASE-T-only setting in the registers, using the CMODE pin, or in the external  
EEPROM startup sequence.  
For information about using the device registers to configure the VSC8658 device for operation in  
SerDes MAC-to-Cat5 mode, see Mode Control, page 28.  
For information about the device CMODE pins, see CMODE, page 55.  
For information about using an EEPROM with the VSC8658 device, see EEPROM, page 58.  
The following illustration shows a typical connection of the VSC8658 device to a SerDes MAC.  
Figure 3 • SerDes MAC Interface  
TDP  
MAC_TDP  
100  
or  
150 Ω  
TDN  
MAC_TDN  
VSC8658  
PHY Port_n  
SerDes MAC  
0.1 µF  
0.1 µF  
RDP  
MAC_RDP  
100 Ω  
or  
150 Ω  
100 Ω  
or  
150 Ω  
RDN  
MAC_RDN  
4.1.2  
SGMII MAC-to-Cat5 Mode MAC Interface  
When configured to detect and switch between 10BASE-T, 100BASE-T, and 1000BASE-T data rates, the  
VSC8658 device can be connected to an SGMII-compatible MAC.  
For information about using the device registers to configure the VSC8658 device for operation in  
SerDes MAC-to-Cat5 Mode, see Mode Control, page 28.  
For information about the device CMODE pins, see CMODE, page 55.  
For information about using an EEPROM with the VSC8658 device, see EEPROM, page 58.  
The following illustration shows a typical connection of the VSC8658 device to an SGMII-compatible  
MAC.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
8
Functional Descriptions  
Figure 4 • SGMII MAC Interface  
TDP  
MAC_TDP  
100  
or  
150 Ω  
TDN  
MAC_TDN  
TCP  
TCN  
VSC8658  
PHY Port_n  
SGMII MAC  
0.1 µF  
0.1 µF  
RDP  
RDN  
MAC_RDP  
100 Ω  
100 Ω  
or  
150 Ω  
or  
150 Ω  
MAC_RDN  
4.1.3  
All Modes Cat5 Media Interface  
The VSC8658 device twisted pair interface is compliant with the IEEE standard 802.3-2000. Unlike many  
other gigabit PHYs, the VSC8658 device uses fully integrated, passive components (required to connect  
the PHY’s Cat5 interface to an external 1:1 transformer). The following illustration shows the  
connections.  
Figure 5 • Cat5 Media Interface  
TXVP_A_n  
1
2
A+  
A–  
0.1 µF  
0.1 µF  
TXVN_A_n  
B+  
B–  
3
6
TXVP_B_n  
Transformer  
TXVN_B_n  
VSC8658  
RJ-45  
PHY Port_n  
4
5
C+  
C–  
TXVP_C_n  
0.1 µF  
0.1 µF  
TXVN_C_n  
7
8
D+  
D–  
TXVP_D_n  
TXVN_D_n  
75  
75 Ω  
75 Ω  
75 Ω  
1000 pF, 2 kV  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
9
Functional Descriptions  
4.2  
SerDes Media Interface  
The VSC8658 device SerDes Media Interface performs data serialization and deserialization functions  
using an integrated SerDes block. The interface operates at 1.25 Gbps speed, providing full-duplex and  
half-duplex 1000 Mbps bandwidth that can connect directly to 100BASE-FX/1000BASE-X-compliant  
optical devices as well as to 10/100/1000BASE-T copper SFP devices. The interface can be operated in  
two SerDes modes:  
SerDes with Media Interface PCS Auto-Negotiation mode  
SerDes with Pass-Through mode  
The SerDes with Media Interface PCS Auto-Negotiation mode supports IEEE standard 802.3, clauses 36  
and 37, which describe fiber auto-negotiation. In this mode, control and status of the SerDes media is  
displayed in the VSC8658 device registers 0 through 15 in a manner similar to what is described in the  
IEEE standard 802.3, clause 28. In this mode, connected copper SFPs can only operate at 1000BASE-T  
speed. A link in this mode is established using auto-negotiation (enabled or disabled) between the PHY  
and the link partner.  
For information about how the VSC8658 LEDs operate in this mode, see LED Behavior, page 19.  
SerDes with Pass-Through mode is a feature that links a fiber module or copper SFP directly to the  
SerDes interface of the MAC through the VSC8658 device. For example, to support 10/100/1000 copper  
SFPs, the MAC must be able to operate in SGMII mode. Because the MAC controls the establishment of  
the link, PHY registers 0 through 15 and the PHY LEDs do not indicate link information when in SerDes  
Pass-Through Mode. In this case, the only supported LED operation is the force on and force off modes.  
A pass-through link is established when the SIGDET pin is asserted.  
4.3  
4.4  
SGMII MAC-to-100BASE-FX Mode  
The VSC8658 can support the 100BASE-FX communication speed to connect to fiber modules, such as  
GBICs and SFPs.  
This capability is facilitated by using the connections on the SerDes pins when connected to a MAC  
through SGMII. Ethernet Package Generator (EPG), cyclical redundancy checking (CRC) counters, and  
loopback modes are supported in the 100BASE-FX over SerDes mode. For information about how the  
VSC8658 LEDs operate in this mode, see LED Behavior, page 19.  
For information about how to configure the VSC8658 in 100BASE-FX mode using the twisted pair  
interface, see 100BASE-FX Control, page 54.  
Automatic Media-Sense (AMS) Interface Mode  
This mode can automatically set the media interface to Cat5 or to SerDes interface modes automatically.  
The active media mode chosen is based on the automatic media-sense (AMS) preferences set in the  
device register 23, bit 11.  
The following illustration shows a block diagram of the AMS functionality in the VSC8658 device.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
10  
 
Functional Descriptions  
Figure 6 • Automatic Media Sense Block Diagram  
VSC8658 port_n  
Cat5  
MAC  
SGMII /  
Serial MAC  
Auto Sense  
Logic  
TD  
RD  
SerDes  
SIGDET  
Fiber Optic  
Module  
When both SerDes and Cat5 media interfaces attempt to establish a link, the preferred media interface  
overrides a link-up of the non-preferred media interface. For example, if the preference is set for SerDes  
mode and Cat5 media establishes a link, then Cat5 becomes the active media interface. However, after  
the SerDes media interface establishes a link, the Cat5 interface drops its link because the preference  
was set for SerDes mode. In this scenario, the SerDes preference determines the active media source  
until the SerDes link is lost. Also, Cat5 media cannot link up unless there is no SerDes media link  
established.  
The following table lists the available AMS preferences.  
Table 3 •  
AMS Media Preferences  
Cat5 Linked,  
SerDes Linked,  
Both Cat5 and  
Preference Cat5 Linked,  
SerDes Linked,  
SerDes Attempts Cat5 Attempts to SerDes Attempt  
Setting  
SerDes  
Cat5  
Fiber Not Linked Cat5 Not Linked to Link  
Link  
to Link  
SerDes  
Cat5  
Cat5  
Cat5  
SerDes  
SerDes  
SerDes  
Cat5  
SerDes  
Cat5  
The status of the media mode selected by the AMS can be read from device register 20E, bits 7:6. It  
indicates whether copper media, SerDes media, or no media is selected.  
Each PHY has two auto-media sense modes. The difference between the modes is based on the SerDes  
media modes:  
SerDes with Auto-Negotiation  
SerDes with Pass-Through  
For more information about SerDes media mode functionality with AMS enabled, see SerDes Media  
Interface, page 10.  
For AMS with SerDes auto-negotiation, the status and control of both the Cat5 and the SerDes media  
can be made using registers 0 through 15. For AMS with SerDes pass-through, only the Cat5 interface  
can have its interface control and status monitored. The SerDes media must then be controlled and  
monitored within the MAC.  
4.5  
Cat5 Auto-Negotiation  
The VSC8658 device supports twisted pair auto-negotiation as defined by clause 28 of the IEEE  
standard 802.3-2000.  
The auto-negotiation process consists of the evaluation of the advertised capabilities of the PHY and its  
link partner to determine the best possible operating mode, throughput speed, duplex configuration, and  
master or slave operating modes in the case of 1000BASE-T setups. Auto-negotiation also allows a  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
11  
Functional Descriptions  
connected MAC to communicate with its link partner MAC through the VSC8658 device using optional  
“next pages,” which set attributes that may not otherwise be defined by the IEEE standard.  
In installations where the Cat5 link partner does not support auto-negotiation, the VSC8658 automatically  
switches to use parallel detection to select the appropriate link speed.  
Clearing VSC8658 device register 0, bit 12 disables clause 28 twisted-pair auto-negotiation. If auto-  
negotiation is disabled, the state of register bits 0.6, 0.13, and 0.8 determine the device operating speed  
and duplex mode. For more information about configuring auto-negotiation, see IEEE Standard and Main  
Registers, page 27.  
4.6  
Manual MDI/MDI-X Setting  
As an alternative to Auto MDI/MDI-X detection, you can force the PHY to be MDI or MDI-X using the  
following scripts.  
Format:  
Phywrite ( register(dec), data(hex) )  
Phywritemask ( register(dec), data(hex), mask(hex) )  
To force MDI:  
Phywrite ( 31, 0x2A30 )  
Phywritemask ( 5, 0x0010, 0x0018 )  
Phywrite ( 31, 0x0000 )  
To force MDI-X:  
Phywrite ( 31, 0x2A30 )  
Phywritemask ( 5, 0x0018, 0x0018 )  
Phywrite ( 31, 0x0000 )  
To resume MDI/MDI-X setting based on register 18, bits 7 and 5:  
Phywrite ( 31, 0x2A30 )  
Phywritemask ( 5, 0x0000, 0x0018 )  
Phywrite ( 31, 0x0000 )  
4.7  
Automatic Crossover and Polarity Detection  
For trouble-free configuration and management of Ethernet links, the VSC8658 device includes a robust,  
automatic, media-dependent and crossed media-dependent detection feature, Auto MDI/MDI-X, in all of  
its three available speeds (10BASE-T, 100BASE-T, and 1000BASE-T). The function is fully compliant  
with clause 40 of the IEEE standard 802.3-2002.  
Additionally, the device detects and corrects polarity errors on all MDI pairs—a useful capability that  
exceeds the requirements of the standard.  
Both auto MDI/MDI-X detection and polarity correction are enabled in the device by default. You can  
change the default settings using device register bits 18.5:4. Status bits for each of these functions are  
located in register 28.  
The VSC8658 device’s automatic MDI/MDI-X algorithm successfully detects, corrects, and operates with  
any of the MDI wiring pair combinations listed in the following table.  
Table 4 •  
Supported MDI Pair Combinations  
RJ-45 Pin Pairings  
1, 2  
A
3, 6  
B
4, 5  
C
7, 8  
D
Mode  
Normal MDI  
B
A
D
C
Normal MDI-X  
A
B
D
C
Normal MDI with pair swap on C and D pair  
Normal MDI-X with pair swap on C and D pair  
B
A
C
D
VMDS-10242 VSC8658 Datasheet Revision 4.1  
12  
Functional Descriptions  
Note: The VSC8658 device can be configured to perform Auto MDI/MDI-X even when its Auto-negotiation  
feature is disabled (setting register 0.12 to 0) and the link is forced into 10/100 speeds. To enable this  
feature, set register 18.7 to 0.  
4.8  
Link Speed Downshift  
For operation in cabling environments that are incompatible with 1000BASE-T, the VSC8658 device  
provides an automatic link speed “downshift” option. When enabled, the device automatically changes its  
1000BASE-T auto-negotiation advertisement to the next slower speed after a set number of failed  
attempts at 1000BASE-T.  
This is useful in setting up in networks using older cable installations that may include only pairs A and B  
and not pairs C and D.  
You can configure and monitor link speed downshifting using register bits 20E.4:1. For more information,  
see Extended PHY Control Set 1, page 37.  
4.9  
Transformerless Ethernet  
The Cat5 media interface supports 10/100/1000BT Ethernet for backplane applications such as those  
specified by the PICMG™ 2.16 and ATCA™ 3.0 specifications for eight-pin channels. With proper AC  
coupling, the typical Cat5 transformer can be removed and replaced with capacitors.  
4.10 Ethernet Inline Powered Devices  
The VSC8658 device can detect legacy inline powered devices in Ethernet network applications. Its  
inline powered detection capability can be part of a system that allows for IP-phone and other devices  
such as wireless access points to receive power directly from their Ethernet cable, similar to office digital  
phones receiving power from a Private Branch Exchange (PBX) office switch over the telephone cabling.  
This can eliminate the need for an IP-phone to have an external power supply. It also enables the inline  
powered device to remain active during a power outage (assuming the Ethernet switch is connected to  
an uninterrupted power supply, battery, back-up power generator, or some other uninterruptable power  
source).  
For more information about legacy inline powered device detection, visit the Cisco Web site at  
www.cisco.com.  
The following illustration shows an example of this type of application.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
13  
Functional Descriptions  
Figure 7 • Inline Powered Ethernet Switch Diagram  
Gigabit Switch  
Processor  
Control  
SMI  
SGMII  
Interface  
Inline,  
Power-Over-Ethernet  
(PoE)  
VSC8658_0  
VSC8658_1  
VSC8658_n  
Power Supply  
Transformer  
Transformer  
Transformer  
RJ-45  
I/F  
RJ-45  
I/F  
RJ-45  
I/F  
Cat5  
Link  
Partner  
Link  
Partner  
Link  
Partner  
The following procedure describes the process that an Ethernet switch must perform in order to process  
inline power requests made by a link partner (LP) that is, in turn, capable of receiving inline power.  
1. Enable the inline powered device detection mode on each VSC8658 PHY using its serial  
management interface. Set register bit 23E.10 to 1.  
2. Ensure that the VSC8658 device Auto-Negotiation Enable bit (register 0.12) is also set to 1. In the  
application, the device sends a special Fast Link Pulse (FLP) signal to the LP. Reading register bit  
23E.9:8 returns 00 during the search for devices that require Power-over-Ethernet (PoE).  
3. The VSC8658 PHY monitors its inputs for the FLP signal looped back by the LP. An LP capable of  
receiving PoE loops back the FLP pulses when the LP is in a powered-down state. This is reported  
when VSC8658 device register bit 23E.9:8 reads back 01. It can also be verified as an inline power  
detection interrupt by reading VSC8658 device register bit 26.9, which should be a 1, and which is  
subsequently cleared and the interrupt de-asserted after the read. If an LP device does not loop  
back the FLP after a specific time, VSC8658 device register bit 23E.9:8 automatically resets to 10.  
4. If the VSC8658 PHY reports that the LP needs PoE, the Ethernet switch must enable inline power  
on this port, externally of the PHY.  
5. The PHY automatically disables inline powered device detection if the VSC8658 device register bit  
23E.9:8 automatically resets to 10, and then automatically changes to its normal auto-negotiation  
process. A link is then auto-negotiated and established when the link status bit is set (register bit 1.2  
is set to 1).  
6. In the event of a link failure (indicated when VSC8658 device register bit 1.2 reads 0), the inline  
power should be disabled to the inline powered device external to the PHY. The VSC8658 PHY  
disables its normal auto-negotiation process and re-enables its inline powered device detection  
mode.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
14  
Functional Descriptions  
4.11  
IEEE 802.3af PoE Support  
The VSC8658 device is also compatible with switch designs that are intended for use in systems that  
supply power to Data Terminal Equipment (DTE) by means of the MDI or twisted pair cable, as described  
in clause 33 of the IEEE standard 802.3af.  
4.12 ActiPHY Power Management  
In addition to the IEEE-specified power-down control bit (device register bit 0.11), the device also  
includes an ActiPHY™ power management mode for each PHY. This mode enables support for power-  
sensitive applications such as laptop computers with Wake-on-LAN™ capability. It utilizes a signal-detect  
function that monitors the media interface for the presence of a link to determine when to automatically  
power-down the PHY. The PHY “wakes up” at a programmable interval and attempts to “wake-up” the  
link partner PHY by sending a burst of FLP over copper media.  
The ActiPHY™ power management mode in the VSC8658 device is enabled on a per-port basis during  
normal operation at any time by setting register bit 28.6 to 1.  
There are three operating states possible when ActiPHY™ mode is enabled:  
Low power state  
LP wake-up state  
Normal operating state (link up state)  
The VSC8658 device switches between the low power state and LP wake-up state at a programmable  
rate (the default is two seconds) until signal energy has been detected on the media interface pins. When  
signal energy is detected, the PHY enters the normal operating state. If the PHY is in its normal operating  
state and the link fails, the PHY returns to the low power state after the expiration of the link status time-  
out timer. After reset, the PHY enters the low power state.  
When auto-negotiation is enabled in the PHY, the ActiPHY state machine operates as described. If auto-  
negotiation is disabled and the link is forced to use 10BT or 100BTX modes while the PHY is in its low  
power state, the PHY continues to transition between the low power and LP wake-up states until signal  
energy is detected on the media pins. At that time, the PHY transitions to the normal operating state and  
stays in that state even when the link is dropped. If auto-negotiation is disabled while the PHY is in the  
normal operation state, the PHY stays in that state when the link is dropped and does not transition back  
to the low power state.  
The following illustration shows the relationship between ActiPHY states and timers.  
Figure 8 • ActiPHY State Diagram  
Low Power State  
Signal Energy  
Detected on the  
Connected Media  
Sleep Timer  
Expires  
FLP Burst or  
Clause 37 Restart  
Signal Sent  
Timeout Timer Expires;  
Auto-negotiation Enabled  
Link Partner  
Wake-up State  
Normal  
Operation  
4.12.1 Low Power State  
In the low power state, all major digital blocks are powered down. However, the following functionality is  
provided:  
SMI interface (MDC, MDIO, MDINT_n)  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
15  
Functional Descriptions  
CLKOUT  
In this state, the PHY monitors the media interface pins for signal energy. The PHY comes out of low  
power state and transitions to the normal operating state when signal energy is detected on the media.  
This happens when the PHY is connected to one of the following:  
Auto-negotiation capable link partner  
Another PHY in enhanced ActiPHY LP wake-up state  
In the absence of signal energy on the media pins, the PHY transitions from the low power state to the  
LP wake-up state periodically based on the programmable sleep timer (register bits 20E.14:13). The  
actual sleep time duration is randomized from –80 milliseconds (ms) to +60 ms to avoid two linked PHYs  
in ActiPHY mode entering a lock-up state during operation.  
4.12.2 Link Partner Wake-up State  
In this state, the PHY attempts to wake up the link partner. Up to three complete FLP bursts are sent on  
alternating pairs A and B of the Cat5 media for a duration based on the wake-up timer, which is set using  
register bits 20E.12:11.  
In this state, the following functionality is provided:  
SMI interface (MDC, MDIO, MDINT_n)  
CLKOUT  
After sending signal energy on the relevant media, the PHY returns to the low power state.  
4.12.3 Normal Operating State  
In this state, the PHY establishes a link with a link partner. When the media is unplugged or the link  
partner is powered down, the PHY waits for the duration of the programmable link status time-out timer,  
which is set using register bit 28.7 and bit 28.2. It then enters the low power state.  
4.13 Serial Management Interface  
The VSC8658 device includes an IEEE 802.3-compliant serial management interface (SMI) that is  
affected by use of its MDC and MDIO pins. The SMI provides access to device control and status  
registers. The register set that controls the SMI consists of 32 16-bit registers, including all required  
IEEE-specified registers. Also, there are additional pages of registers accessible using device register  
31.  
For more information, see Extended Page Registers, page 45.  
The SMI is a synchronous serial interface with bidirectional data on the MDIO pin that is clocked on the  
rising edge of the MDC pin. The interface can be clocked at a rate from 0 MHz to 12.5 MHz, depending  
on the total load on MDIO. An external, 2 kpull-up resistor is required on the MDIO pin.  
4.13.1 SMI Frames  
Data is transferred over the SMI using 32-bit frames with an optional and arbitrary length preamble. The  
following illustrations show the SMI frame format for the read operation and write operation.  
Figure 9 • SMI Read Frame  
Station Manager Drives MDIO  
PHY Drives MDIO  
MDC  
MDIO  
Z
Z
1
0
1
1
0
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
Z
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Register Data from PHY  
Z
Z
Idle Preamble SFD  
(optional)  
Read  
PHY Address  
Register Address  
to PHY  
TA  
Idle  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
16  
 
Functional Descriptions  
Figure 10 • SMI Write Frame  
Station Manager Drives MDIO (PHY tristates MDIO during entire sequence)  
MDC  
MDIO  
Z
Z
1
0
1
0
1
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
1
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Register Data from PHY  
Z
Z
Preamble  
(optional )  
Idle  
SFD  
Write  
PHY Address  
Register Address  
to PHY  
TA  
Idle  
The following provides additional information about the terms used in Figure 9 and Figure 10.  
Idle During idle, the MDIO node goes to a high-impedance state. This allows an external pull-up resistor  
to pull the MDIO node up to a logical 1 state. Because the idle mode should not contain any transitions  
on MDIO, the number of bits is undefined during idle.  
Preamble By default, preambles are not expected or required. The preamble is a string of ones. If it  
exists, the preamble must be at least one bit; otherwise, it may be of an arbitrary length.  
Start of Frame (SFD) A pattern of 01 indicates the start of frame. If the pattern is not 01, all following  
bits are ignored until the next preamble pattern is detected.  
Read or Write Opcode A pattern of 10 indicates a read. A 01 pattern indicates a write. If the bits are  
not either 01 or 10, all following bits are ignored until the next preamble pattern is detected.  
PHY Address The particular VSC8658 responds to a message frame only when the received PHY  
address matches its physical address. The physical address is five bits long (4:0). Bits 4:3 are set by the  
CMODE pins. Bits 2:0 represent the PHY of the device being addressed.  
Register Address The next five bits are the register address.  
Turnaround The two bits used to avoid signal contention when a read operation is performed on the  
MDIO are called the turnaround (TA) bits. During read operations, the VSC8658 device drives the  
second TA bit, a logical 0.  
Data The 16-bits read from or written to the device are considered the data or data stream. When data  
is read from a PHY, it is valid at the output from one rising edge of MDC to the next rising edge of MDC.  
When data is written to the PHY, it must be valid around the rising edge of MDC.  
Idle The sequence is repeated.  
4.13.2 SMI Interrupts  
The SMI also includes an output interrupt signal, MDINT_n, for signaling the station manager when  
certain events occur in the PHY. A separate MDINT_n pin is included for each VSC8658 device PHY.  
Each MDINT_n pin can be configured for open-drain (active-low) by tying the pin to a pull-up resistor and  
to VDDIO. The following illustration shows this configuration.  
Figure 11 • MDINT_n Configured as an Open-Drain (Active-Low) Pin  
External Pull-up  
Resistor at the  
VDDIO  
Station Managerfor  
Open-drain  
(Active-low Mode)  
PHY_n  
Interrupt Pin Enable  
(Register 25.15)  
MDINT_n  
(to the Station  
Manager)  
MDINT_n  
Interrupt Pin Status  
(Register 26.15)  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
17  
 
Functional Descriptions  
Alternatively, each MDINT_n pin can be configured for open-source (active-high) by tying the pin to a  
pull-down resistor and to VSS. The following illustration shows this configuration.  
Figure 12 • MDINT_n Configured as an Open-Source (Active-High) Pin  
VDDIO  
Interrupt Pin Enable  
(Register 25.15)  
MDINT_n  
(to the Station  
Manager)  
MDINT_n  
Interrupt Pin Status  
External Pull-down at  
the Station Manager  
For Open-source  
(Register 26.15)  
PHY_n  
(Active-high Mode)  
If only one interrupt pin is required, each MDINT_n pin can be tied together to a single pull-up or pull-  
down resistor in a wired-OR configuration.  
When a PHY generates an interrupt, the MDINT_n pin is asserted (driven high or low, depending on  
resistor connection) if the interrupt pin enable bit (MII register 25.15) is set.  
4.14 LED Interface  
The VSC8658 device drives up to four LEDs directly for each PHY port. All LED outputs are active-low  
and are driven using 3.3 V from the VDD33 power supply. The pins, mainly used to sink the current of the  
cathode side of an LED when active, can also supply power to the anode portion of LEDs when not in the  
active state. This allows for two LED pins to be used to drive a multi-status, bi-colored LED.  
4.14.1 LED Modes  
Each LED pin can be configured to display different status information. Set the LED mode either by using  
register 29 or the CMODE pin setting. For additional operating flexibility, LED output functions can be set  
on a per-port basis.  
The modes in the following table are equivalent to the setting used in register 29 to configure each LED  
pin. For all LED states, 1 = pin held high (de-asserted), 0 = pin held low (asserted), and the blink/pulse-  
stretch is dependent on the LED behavior setting in register 30.  
Table 5 •  
LED Mode and Function Summary  
Mode  
Function Name  
LED State and Description  
0
Link/Activity(1)  
1 = No link in any speed on any media interface.  
0 = Valid link at any speed on any media interface.  
Blink or pulse-stretch = Valid link at any speed on any media interface with  
activity present.  
1
2
3
Link1000/Activity  
Link100/Activity  
Link10/Activity  
1 = No link in 1000BASE-T.  
0 = Valid 1000BASE-T link.  
Blink or pulse-stretch = Valid 1000BASE-T link with activity present.  
1 = No link in 100BASE-TX.  
0 = Valid 100BASE-TX link.  
Blink or pulse-stretch = Valid 100BASE-TX link with activity present.  
1 = No link in 10BASE-T.  
0 = Valid 10BASE-T link.  
Blink or pulse-stretch = Valid 10BASE-T link with activity present.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
18  
Functional Descriptions  
Table 5 •  
LED Mode and Function Summary (continued)  
Mode  
Function Name  
LED State and Description  
4
Link100/1000/Activity  
1 = No link in 100BASE-TX or 1000BASE-T.  
0 = Valid 100BASE-TX or 1000BASE-T link.  
Blink or pulse-stretch = Valid 100BASE-TX or 1000BASE-T link with activity  
present.  
5
6
7
8
Link10/1000/Activity  
Link10/100/Activity  
1 = No link in 10BASE-T or 1000BASE-T.  
0 = Valid 10BASE-T or 1000BASET-T link.  
Blink or pulse-stretch = Valid 10BASE-T or 1000BASE-T link with activity  
present.  
1 = No link in 10BASE-T or 100BASE-TX.  
0 = Valid 10BASE-T or 100BASE-TX link.  
Blink or pulse-stretch = Valid 10BASE-T or 100BASE-TX link with activity  
present.  
Link100BASE-FX/  
1000BASE-X/Activity  
1 = No link in 100BASE-FX or 1000BASE-X.  
0 = Valid 100BASE-FX or 1000BASE-X link.  
Blink or pulse-stretch = Valid 100BASE-FX or 1000BASE-X link with activity  
present.  
Duplex/Collision  
1 = Link established in half-duplex mode, or no link established.  
0 = Link established in full-duplex mode.  
Blink or pulse-stretch = Link established in half-duplex mode but collisions are  
present.  
9
Collision  
Activity  
1 = No collision detected.  
Blink or pulse-stretch = Collision detected.  
10  
1 = No activity present.  
Blink or pulse-stretch = Activity present (becomes TX activity present if register  
bit 30.14 is set to 1).  
11  
100BASE-FX/  
1000BASE-X Fiber  
Activity  
1 = No 100BASE-FX or 1000BASE-X activity present.  
Blink or pulse-stretch = 100BASE-FX or 1000BASE-X activity present (becomes  
RX activity present if register bit 30.14 is set to 1).  
12  
13  
Auto-Negotiation Fault 1 = No auto-negotiation fault present.  
0 = Auto-negotiation fault occurred.  
Serial Mode  
Serial stream = See Serial LED Mode, page 20. Only relevant on PHY port 0 and  
reserved in others.  
14  
15  
Force LED Off  
Force LED On  
1 = De-asserts the LED.  
0 = Asserts the LED.  
1. Link/Activity can be configured to only display copper link and disable fiber link status by setting register bits 30.15 to 1.  
4.14.2 LED Behavior  
Several LED behaviors can be programmed into the VSC8658 device. Use the settings in register 30 to  
program LED behavior, which includes the following:  
LED Combine Enables an LED to display the status for a combination of primary and secondary  
modes. This can be enabled or disabled for each LED pin. For example, a copper link running in  
1000BASE-T mode and activity present can be displayed with one LED by configuring an LED pin to  
Link1000/Activity mode. The LED asserts when linked to a 1000BASE-T partner and also blinks or  
performs pulse-stretch when activity is either transmitted by the PHY or received by the Link Partner.  
When disabled, the combine feature only provides status of the selected primary function. In this  
example, only Link1000 asserts the LED, and the secondary mode, activity, does not display if the  
combine feature is disabled.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
19  
Functional Descriptions  
LED Blink or Pulse-Stretch This behavior is used for activity and collision indication. This can be  
uniquely configured for each LED pin. Activity and collision events can occur randomly and intermittently  
throughout the link-up period. Blink is a 50% duty cycle oscillation of asserting and de-asserting an LED  
pin. Pulse-stretch guarantees that an LED is asserted and de-asserted for a specific period of time when  
activity is either present or not present. These rates can also be configured using a register setting.  
Rate of LED Blink or Pulse-Stretch This behavior controls the LED blink rate or pulse-stretch length  
when blink/pulse-stretch is enabled on an LED pin. The blink rate, which alternates between a high and  
low voltage level at a 50% duty cycle, can be set to 2.5 Hz, 5 Hz, 10 Hz, or 20 Hz. For pulse-stretch, the  
rate can be set to 50 ms, 100 ms, 200 ms, or 400 ms.  
LED Pulsing Enable To provide additional power savings, the LEDs (when asserted) can be pulsed at  
5 kHz, 20% duty cycle.  
Fiber LED Disable This bit controls whether the LEDs indicate the Fiber and Copper status (default) or  
the Copper status only.  
4.14.3 Serial LED Mode  
Optionally, the VSC8658 device can be configured so that access to all its LED signals is available  
through two pins. This option is enabled by setting LED0 on PHY0 to Serial LED mode. When the mode  
is enabled on PHY0, the device LED[0] pin becomes the serial data pin and the LED[1] pin becomes the  
serial clock pin. All other LED pins can still be configured normally. The Serial LED mode clocks the 96  
LED status bits on the rising edge of the serial clock.  
The LED behavior settings (in device register 30) can also be used in Serial LED Mode. The controls are  
used on a per-PHY basis, where the LED combine and LED blink or pulse-stretch setting of LED0_n for  
each PHY is used to control the behavior of each bit of the serial LED stream for each corresponding  
PHY.  
The serial bitstream outputs, 1 through 96, of each LED signal are shown in the following table beginning  
with PHY port 0 and ending with PHY port 7. The individual signals can be clocked in the order shown.  
Table 6 •  
LED Serial Stream Order  
PHY0  
PHY1  
PHY2  
PHY3  
PHY4  
PHY5  
PHY6  
PHY7  
Bit 1.  
Bit 13.  
Bit 25.  
Bit 37.  
Bit 49.  
Bit 61.  
Bit 73.  
Bit 85.  
Link/Activity Link/Activity Link/Activity Link/Activity Link/Activity Link/Activity Link/Activity Link/Activity  
Bit 2.  
Bit 14.  
Bit 26.  
Bit 38.  
Bit 50.  
Bit 62.  
Bit 74.  
Bit 86.  
Link1000/  
Activity  
Link1000/  
Activity  
Link1000/  
Activity  
Link1000/  
Activity  
Link1000/  
Activity  
Link1000/  
Activity  
Link1000/  
Activity  
Link1000/  
Activity  
Bit 3.  
Bit 15.  
Bit 27.  
Bit 39.  
Bit 51.  
Bit 63.  
Bit 75.  
Bit 87.  
Link100/  
Activity  
Link100/  
Activity  
Link100/  
Activity  
Link100/  
Activity  
Link100/  
Activity  
Link100/  
Activity  
Link100/  
Activity  
Link100/  
Activity  
Bit 4. Link10/ Bit 16.  
Bit 28.  
Link10/  
Activity  
Bit 40.  
Link10/  
Activity  
Bit 52.  
Link10/  
Activity  
Bit 64.  
Link10/  
Activity  
Bit 76.  
Link10/  
Activity  
Bit 88.  
Link10/  
Activity  
Activity  
Link10/  
Activity  
Bit 5.  
Bit 17.  
Bit 29.  
Bit 41.  
Bit 53.  
Bit 65.  
Bit 77.  
Bit 89.  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit 6. Duplex/ Bit 18.  
Bit 30.  
Bit 42.  
Bit 54.  
Bit 66.  
Bit 78.  
Bit 90.  
Collision  
Duplex/  
Collision  
Duplex/  
Collision  
Duplex/  
Collision  
Duplex/  
Collision  
Duplex/  
Collision  
Duplex/  
Collision  
Duplex/  
Collision  
Bit 7.  
Bit 19.  
Bit 31.  
Bit 43.  
Bit 55.  
Bit 67.  
Bit 79.  
Bit 91.  
Collision  
Collision  
Collision  
Collision  
Collision  
Collision  
Collision  
Collision  
Bit 8. Activity Bit 20.  
Activity  
Bit 32.  
Activity  
Bit 44.  
Activity  
Bit 56.  
Activity  
Bit 68.  
Activity  
Bit 80.  
Activity  
Bit 92.  
Activity  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
20  
Functional Descriptions  
Table 6 •  
LED Serial Stream Order (continued)  
PHY0  
PHY1  
PHY2  
PHY3  
PHY4  
PHY5  
PHY6  
PHY7  
Bit 9.  
Bit 21.  
Bit 33.  
Bit 45.  
Bit 57.  
Bit 69.  
Bit 81.  
Bit 93.  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Bit 10. TX  
Activity  
Bit 22. TX  
Activity  
Bit 34. TX  
Activity  
Bit 46. TX  
Activity  
Bit 58. TX  
Activity  
Bit 70. TX  
Activity  
Bit 82. TX  
Activity  
Bit 94. TX  
Activity  
Bit 11. RX  
Activity  
Bit 23. RX  
Activity  
Bit 35. RX  
Activity  
Bit 47. RX  
Activity  
Bit 59. RX  
Activity  
Bit 71. RX  
Activity  
Bit 83. RX  
Activity  
Bit 95. RX  
Activity  
Bit 12. Auto- Bit 24. Auto- Bit 36. Auto- Bit 48. Auto- Bit 60. Auto- Bit 72. Auto- Bit 84. Auto- Bit 96. Auto-  
Negotiation Negotiation Negotiation Negotiation Negotiation Negotiation Negotiation Negotiation  
Fault  
Fault  
Fault  
Fault  
Fault  
Fault  
Fault  
Fault  
4.15 GPIO Pins  
The VSC8658 provides up to 8 dedicated general-purpose input/output (GPIO) pins. In addition, the  
eight device SIGDET pins can also be configured as eight GPIO pins, resulting in a total of 16 GPIO pins.  
All device GPIO pins and their behavior are controlled using registers. For more information, see  
General-Purpose I/O Registers, page 52.  
4.16 Testing Features  
The VSC8658 device includes several testing features designed to make it easier to perform system-  
level debugging and in-system production testing. This section describes the available features.  
4.16.1 Ethernet Packet Generator (EPG)  
The device EPG can be used at each of the 10/100/1000BASE-T speed settings for Copper Cat5 media  
to isolate problems between the MAC and the VSC8658 device, or between a locally connected PHY  
and its remote link partner. Enabling the EPG feature effectively disables all MAC interface transmit pins  
and selects the EPG as the source for all data transmitted onto the twisted pair interface.  
Important The EPG is intended for use with laboratory or in-system testing equipment only. Do not use  
the EPG testing feature when the VSC8658 device is connected to a live network.  
To enable the VSC8658 device EPG feature, set the device register bit 29E.15 to 1.  
When the EPG is enabled, packet loss occurs during transmission of packets from the MAC to the PHY.  
However, the PHY receive output pins to the MAC are still active when the EPG is enabled. If it is  
necessary to disable the MAC receive pins as well, set the register bit 0.10 to 1.  
When the device register bit 29E.14 is set to 1, the PHY begins transmitting Ethernet packets based on  
the settings in registers 29E and 30E. These registers set:  
Source and destination addresses for each packet  
Packet size  
Inter-packet gap  
FCS state  
Transmit duration  
Payload pattern  
If register bit 29E.13 is set to 0, register bit 29E.14 is cleared automatically after 30,000,000 packets are  
transmitted.  
4.16.2 CRC Counters  
Two separate cyclical redundancy checking (CRC) counters are available on all PHYs in the VSC8658  
device. There is a 14-bit good CRC counter available in register bits 18E.13:0 and a separate 8-bit  
counter available in register bits 23E.7:0.  
The device CRC counters operate in the 100BASE-FX/1000BASE-X over SerDes mode as well as in the  
10/100/1000BASE-T mode testing as follows:  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
21  
Functional Descriptions  
After receiving a packet on the media interface, register bit 18E.15 is set and cleared after being  
read. The packet then is counted by either the good CRC counter or the bad CRC counter. Both  
CRC counters are also automatically cleared when read.  
The good CRC counter’s highest value is 10,000 packets. After it reaches this value, the counter  
clears and continues to count additional packets beyond that value. The bad CRC counter stops  
counting when it reaches its maximum counter limit of 255 packets.  
4.16.3 Far-End Loopback  
The far-end loopback testing feature is enabled by setting register bit 23.3 to 1. When enabled, it forces  
incoming data from a link partner on the current media interface to be retransmitted back to the link  
partner on the media interface as shown in the following illustration. In addition, the incoming data also  
appears on the receive data pins of the MAC interface. Data present on the transmit data pins of the  
MAC interface is ignored when using this testing feature.  
Figure 13 • Far-End Loopback Diagram  
Link Partner  
PHY_Port_n  
MAC  
RX  
RXD  
TXD  
TX  
Cat5  
4.16.4 Near-End Loopback  
When the near-end loopback testing feature is enabled (by setting the device register bit 0.14 to 1), data  
on the transmit data pins (TXD) is looped back onto the device receive data pins (RXD), as shown in the  
following figure. When using this testing feature, no data is transmitted over the network.  
Figure 14 • Near-End Loopback Diagram  
Link Partner  
PHY Port_n  
MAC  
RX  
RXD  
TXD  
TX  
Cat5  
4.16.5 Connector Loopback  
The connector loopback testing feature allows the twisted pair interface to be looped back externally.  
When using this feature, the PHY must be connected to a loopback connector or a loopback cable. Pair  
A should be connected to pair B, and pair C to pair D, as shown in the following figure. The connector  
loopback feature functions at all available interface speeds.  
Figure 15 • Connector Loopback Diagram  
A
RXD  
TXD  
B
C
Cat5  
PHY Port_n  
MAC  
D
VMDS-10242 VSC8658 Datasheet Revision 4.1  
22  
Functional Descriptions  
When using the connector loopback testing feature, the device auto-negotiation, speed, and duplex  
configuration is set using device registers 0, 4, and 9. For 1000BASE-T connector loopback, only the  
following additional writes are required. Execute the additional writes in the following order:  
1. Enable the 1000BASE-T connector loopback. Set register bit 24.0 to 1.  
2. Disable pair swap correction. Set register bit 18.5 to 1.  
4.16.6 VeriPHY Cable Diagnostics  
The VSC8658 device includes a comprehensive suite of cable diagnostic functions that are available  
using SMI reads and writes. These functions enable a variety of cable operating conditions and status to  
be accessed and checked. The VeriPHY® suite has the ability to identify the cable length and operating  
conditions and to isolate a variety of common faults that can occur on the Cat5 twisted pair cabling.  
Note: If a link is established on the twisted pair interface in the 1000BASE-T mode, VeriPHY can run without  
disrupting the link or disrupting any data transfer. However, if a link is established in 100BASE-TX or  
10BASE-T, VeriPHY causes the link to drop while the diagnostics are running. After the diagnostics are  
finished, the link is re-established.  
The following diagnostic functions are part of the VeriPHY suite:  
Detecting coupling between cable pairs  
Detecting cable pair termination  
Determining cable length  
Coupling Between Cable Pairs Shorted wires, improper termination, or high crosstalk resulting from  
an incorrect wire map can cause error conditions, such as anomalous coupling between cable pairs. All  
these conditions can prevent the device from establishing a link in any speed.  
Cable Pair Termination Proper termination of Cat5 cable requires a 100 differential impedance  
between the positive and negative cable terminals. The IEEE standard 802.3 allows for a termination of  
as high as 115 or as low as 85 . If the termination falls outside of this range, it is reported by the  
VeriPHY diagnostics as an anomalous termination. The diagnostics can also determine the presence of  
an open or shorted cable pair.  
Cable Length When the Cat5 cable in an installation is properly terminated, VeriPHY reports the  
approximate cable length in meters.  
4.16.7 IEEE 1149.1 JTAG Boundary Scan  
The VSC8658 device supports the Test Access Port (TAP) and Boundary Scan Architecture described in  
the IEEE standard 1149.1. The device includes an IEEE 1149.1-compliant test interface, often referred to  
as a “JTAG TAP Interface.”  
The JTAG boundary scan logic on the VSC8658 device, accessed using its TAP interface, consists of a  
boundary scan register and other logic control blocks. The TAP controller includes all IEEE-required  
signals (TMS, TCK, TDI, and TDO), in addition to the optional asynchronous reset signal NTRST.  
The following illustration shows the TAP and Boundary Scan Architecture.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
23  
Functional Descriptions  
Figure 16 • Test Access Port and Boundary Scan Architecture Diagram  
Boundary-Scan Register  
Device Identification  
Register  
Bypass Register  
TDO  
Mux,  
DFF  
Control  
Instruction Register,  
Instruction Decode,  
Control  
TDI  
Control  
TMS  
Select  
Test Access Port  
Controller  
NTRST  
TDO Enable  
TCK  
After a TAP reset, the device identification register is serially connected between TDI and TDO by  
default. The TAP instruction register is loaded either from a shift register (when a new instruction is  
shifted in) or, if there is no new instruction in the shift register, a default value of 0110 (IDCODE) is  
loaded. Using this method, there is always a valid code in the instruction register, and the problem of  
toggling instruction bits during a shift is avoided. Unused codes are mapped to the BYPASS instruction.  
4.16.8 JTAG Instruction Codes  
The VSC8658 device supports the following instruction codes:  
EXTEST Allows tests of the off-chip circuitry and board-level interconnections by sampling input pins  
and loading data onto output pins. Outputs are driven by the contents of the boundary-scan cells, which  
have to be updated with valid values (with the PRELOAD instruction) prior to the EXTEST instruction.  
SAMPLE/PRELOAD Allows a snapshot of inputs and outputs during normal system operation to be  
taken and examined. It also allows data values to be loaded into the boundary-scan cells prior to the  
selection of other boundary-scan test instructions.  
IDCODE Provides the version number (bits 31:28), part number (bits 27:12), and the manufacturer  
identity (bits 11:1) to be serially read from the device.  
The following table provides information about the meaning of IDCODE binary values stored in the  
device JTAG registers.  
Table 7 •  
JTAG Device Identification Register Description  
Device Version  
Manufacturing  
Identity  
Description  
Bit field  
Number  
31 through 28  
0000  
Model Number  
LSB  
27 through 12  
11 through 1  
0
1
Binary value  
1000 0110 0101 1000 001 1001 1000  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
24  
Functional Descriptions  
CLAMP Allows the state of the signals driven from the component pins to be determined from the  
boundary scan register while the bypass register is selected as the serial path between TDI and TDO.  
While the CLAMP instruction is selected, the signals driven from the component pins do not change.  
HIGHZ Places the component in a state in which all of its system logic outputs are placed in a high-  
impedance state. In this state, an in-circuit test system may drive signals onto the connections normally  
driven by a component output without incurring a risk of damage to the component. This makes it  
possible to use a board where not all of the components are compatible with the IEEE 1149.1 standard.  
BYPASS The bypass register contains a single shift-register stage and is used to provide a minimum-  
length serial path (one TCK clock period) between TDI and TDO to bypass the device when no test  
operation is required.  
The following table provides more information about the location and IEEE compliance of the JTAG  
instruction codes used in the VSC8658. For more information about these IEEE specifications, visit the  
IEEE Web site at www.IEEE.org.  
Table 8 •  
JTAG Interface Instruction Codes  
Register IEEE 1149.1  
IEEE 1149.6  
Instruction  
Code  
Selected Register  
Boundary-Scan  
Boundary-Scan  
Width  
Specification  
Specification  
EXTEST  
0000  
244  
Mandatory  
SAMPLE/PRELOA 0001  
D
244  
Mandatory  
IDCODE  
0110  
0010  
0011  
1111  
0100  
0101  
Device Identification  
Bypass Register  
32  
1
Optional  
Optional  
Optional  
Mandatory  
CLAMP  
HIGHZ  
Bypass Register  
1
BYPASS  
Bypass Register  
1
EXTEST_PULSE  
EXTEST_TRAIN  
RESERVED  
Boundary-Scan Register  
Boundary-Scan Register  
244  
244  
Mandatory  
Mandatory  
0111,  
1000 through  
1110  
4.16.9 Boundary Scan Register Cell Order  
All inputs and outputs are observed in the boundary scan register cells. All outputs are additionally driven  
by the contents of boundary scan register cells. Bidirectional pins have all three related boundary scan  
register cells: input, output, and control.  
The complete boundary scan cell order is available as a BSDL file format on the Microsemi Web site at  
www.microsemi.com.  
4.17 IEEE 1149.6 AC-JTAG Boundary Scan Interface  
The IEEE 1149.6 AC-JTAG solution integrated on all SerDes ports of the VSC8658 device extends the  
capability of IEEE 1149.1 boundary scan for robust board-level testing. This interface is backward-  
compatible to the IEEE 1149.1 standard.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
25  
Configuration  
5
Configuration  
The VSC8658 device can be configured using three different methods:  
Setting internal memory registers using the management interface  
Setting a combination of CMODE pins and registers  
Loading a configuration into an external EEPROM and connecting that device so that it writes  
configuration information at system startup  
5.1  
Registers  
This section provides information about how to configure the VSC8658 device using its internal memory  
registers and the management interface. For information about configuring the device using the CMODE  
pins, see CMODE, page 55. For information about setting up an external EEPROM to perform startup  
configuration, see EEPROM, page 58.  
The VSC8658 device uses three types of registers:  
IEEE standard and main device registers with addresses from 0 to 31  
Extended registers with addresses from 16E through 30E  
General-purpose input and output (GPIO) registers with addresses from 0G to 30G  
The following illustration shows the relationship between the device registers and their address spaces.  
Figure 17 • Register Space Diagram  
0
1
2
3
.
0G  
1G  
2G  
3G  
.
.
.
.
.
.
.
.
.
IEEE 802.3  
.
Standard Registers  
.
.
.
.
.
15  
15G  
16G  
.
.
.
.
.
.
.
.
.
.
.
16  
17  
18  
19  
.
.
.
.
.
.
.
.
16E  
17E  
18E  
19E  
.
.
.
.
.
.
.
.
GPIO Registers  
Main Registers  
Extended Registers  
30  
30E  
30G  
0x0000  
0x0001  
0x0010  
31  
5.1.1  
Reserved Registers  
For main registers 16 through 31, extended registers 16E through 30E, and GPIO registers 0G through  
30G, any bits marked as “Reserved” should be processed as read only and their states as undefined.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
26  
 
Configuration  
5.1.2  
Reserved Bits  
In writing to registers with reserved bits, use a “read-modify-then-write” technique, where the entire  
register is read but only the intended bits to be changed are modified. Reserved bits cannot be changed  
and their read state cannot be considered static or unchanging.  
5.2  
IEEE Standard and Main Registers  
In the VSC8658 device, the page space of the standard registers consists of the IEEE standard registers  
and the Microsemi standard registers. The following table lists the names of the registers associated with  
the addresses as dictated by the IEEE standard.  
Table 9 •  
IEEE 802.3 Standard Registers  
Register Address Register Name  
0
Mode control  
1
Mode status  
2
PHY identifier 1  
3
PHY identifier 2  
4
Auto-negotiation advertisement  
Auto-negotiation link partner ability  
Auto-negotiation expansion  
Auto-negotiation next-page transmit  
Auto-negotiation link partner next-page receive  
1000BASE-T control  
1000BASE-T status  
Reserved  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Reserved  
Reserved  
Reserved  
1000BASE-T status extension 1  
The following table lists the names of the registers in the main page space of the device. These registers  
are accessible only when register address 31 is set to 0x0000.  
Table 10 • Main Registers  
Register Address Register Name  
16  
17  
18  
19  
20  
21  
22  
23  
24  
100BASE-TX status extension  
1000BASE-T status extension 2  
Bypass control  
Reserved  
Reserved  
Reserved  
Extended control and status  
Extended PHY control 1  
Extended PHY control 2  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
27  
Configuration  
Table 10 • Main Registers (continued)  
Register Address Register Name  
25  
26  
27  
28  
29  
30  
31  
Interrupt mask  
Interrupt status  
MAC interface auto-negotiation control and status  
Auxiliary control and status  
LED mode select  
LED behavior  
Extended register page access  
5.2.1  
Mode Control  
The device register at memory address 0 controls several aspects of VSC8658 functionality. The  
following table shows the available bit settings in this register and what they control.  
Table 11 • Mode Control, Address 0 (0x00)  
Bit  
Name  
Access Description  
R/W This is a self-clearing bit that restores all  
Default  
15  
Software reset  
0
serial management interface (SMI) registers  
to their default state, except for sticky and  
super sticky bits.  
1 = Reset asserted.  
0 = Reset de-asserted.  
You must wait 4 µs after setting this bit to  
initiate another SMI register access.  
14  
Loopback  
R/W  
1 = Loopback enabled.  
0
0 = Loopback disabled.  
When loop back is enabled, the device  
functions at the current speed setting and  
with the current duplex mode setting (bit 8 of  
this register).  
13  
12  
LSB for speed  
selection  
R/W  
R/W  
See bit 6 below.  
0
1
0
Auto-negotiation  
enable  
1 = Auto-negotiation enabled.  
0 = Auto-negotiation disabled.  
11  
10  
Power-down  
Isolate  
R/W  
R/W  
1 = Power-down enabled.  
1 = Disable MAC interface outputs and ignore 0  
MAC interface inputs.  
9
8
Restart auto-  
negotiation  
R/W  
R/W  
This is a self-clearing bit.  
1 = Restart auto-negotiation on media  
interface.  
0
Duplex  
1 = Full-duplex.  
0 = Half-duplex.  
0
7
Collision test enable R/W  
1 = Collision test enabled.  
0
6, 13  
Forced speed  
selection  
R/W  
MSB = bit 6, LSB = bit 13.  
00 = 10 Mbps.  
10  
01 = 100 Mbps.  
10 = 1000 Mbps.  
11 = Reserved.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
28  
Configuration  
Table 11 • Mode Control, Address 0 (0x00) (continued)  
Bit  
Name  
Access Description  
Default  
5:0  
Reserved  
000000  
5.2.2  
Mode Status  
The register at address 1 in the device main registers space allows you to read the currently enabled  
mode setting. The following table shows possible readouts of this register.  
Table 12 • Mode Status, Address 1 (0x01)  
Bit  
Name  
Access Description  
Default  
15  
100BASE-T4  
capability  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
1 = 100BASE-T4 capable.  
0
14  
13  
12  
11  
10  
9
100BASE-TX FDX  
capability  
1 = 100BASE-TX FDX capable.  
1 = 100BASE-TX HDX capable.  
1 = 10BASE-T FDX capable.  
1 = 10BASE-T HDX capable.  
1 = 100BASE-T2 FDX capable.  
1 = 100BASE-T2 HDX capable.  
1
1
1
1
0
0
1
100BASE-TX HDX  
capability  
10BASE-T FDX  
capability  
10BASE-T HDX  
capability  
100BASE-T2 FDX  
capability  
100BASE-T2 HDX  
capability  
8
Extended status  
enable  
1 = Extended status information present in  
register 15.  
7
6
Reserved  
RO  
RO  
0
1
Preamble  
suppression  
capability  
1 = MF preamble may be suppressed.  
0 = MF always required.  
5
4
3
2
1
0
Auto-negotiation  
complete  
RO  
RO  
RO  
RO  
RO  
RO  
1 = Auto-negotiation complete.  
0
0
1
0
0
1
Remote fault  
This bit latches high.  
1 = Far-end fault detected.  
Auto-negotiation  
capability  
1 = Auto-negotiation capable.  
Link status  
This bit latches low.  
1 = Link is up.  
Jabber detect  
Extended capability  
This bit latches high.  
1 = Jabber condition detected.  
1 = Extended register capable.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
29  
Configuration  
5.2.3  
Device Identification  
All 16 bits in both register 2 and register 3 in the VSC8658 device are used to provide information  
associated with aspects of the device identification. The following tables list the readouts you can expect.  
Table 13 • Identifier 1, Address 2 (0x02)  
Bit  
Name  
Access Description  
Default  
15:0  
Organizationally unique RO  
identifier (OUI)  
OUI most significant bits (3:18)  
0x0007  
Table 14 • Identifier 2, Address 3 (0x03)  
Bit  
Name  
Access Description  
Default  
0x0001  
110101  
15:10 OUI  
RO  
RO  
OUI least significant bits (19:24)  
VSC8658  
9:4  
3:0  
Microsemi model  
number  
Device revision number RO  
0000  
5.2.4  
Auto-Negotiation Advertisement  
The bits in address 4 in the main registers space control the VSC8658 device ability to notify other  
devices of the status of its auto-negotiation feature. The following table shows the available settings and  
readouts.  
Table 15 • Device Auto-Negotiation Advertisement, Address 4 (0x04)  
Bit  
Name  
Access Description  
Default  
15  
Next page transmission  
request  
R/W  
1 = Request enabled  
0
14  
13  
12  
11  
Reserved  
RO  
0
Transmit remote fault  
Reserved technologies  
R/W  
R/W  
R/W  
1 = Enabled  
0
0
Advertise asymmetric  
pause  
1 = Advertises asymmetric pause  
1 = Advertises symmetric pause  
1 = Advertises 100BASE-T4  
CMODE  
10  
9
Advertise symmetric  
pause  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CMODE  
0
Advertise  
100BASE-T4  
8
Advertise  
100BASE-TX FDX  
1 = Advertise 100BASE-TX FDX  
1 = Advertises 100BASE-TX HDX  
1 = Advertises 10BASE-T FDX  
1 = Advertises 10BASE-T HDX  
CMODE  
CMODE  
CMODE  
CMODE  
00001  
7
Advertise  
100BASE-TX HDX  
6
Advertise  
10BASE-T FDX  
5
Advertise  
10BASE-T HDX  
4:0  
Advertise selector  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
30  
Configuration  
5.2.5  
Link Partner Auto-Negotiation Capability  
The bits in main register 5 enable you to determine if the Cat5 link partner (LP) used with the VSC8658  
device is compatible with the auto-negotiation functionality.  
Table 16 • Auto-Negotiation Link Partner Ability, Address 5 (0x05)  
Bit  
Name  
Access Description  
Default  
15  
LP next page  
RO  
1 = Requested  
0
transmission request  
14  
13  
12  
11  
LP acknowledge  
LP remote fault  
Reserved  
RO  
RO  
RO  
RO  
1 = Acknowledge  
1 = Remote fault  
0
0
0
0
LP advertise  
asymmetric pause  
1 = Capable of asymmetric pause  
1 = Capable of symmetric pause  
1 = Capable of 100BASE-T4  
10  
9
LP advertise  
symmetric pause  
RO  
RO  
RO  
RO  
RO  
RO  
0
LP advertise  
100BASE-T4  
0
8
LP advertise  
100BASE-TX FDX  
1 = Capable of 100BASE-TX FDX  
1 = Capable of 100BASE-TX HDX  
1 = Capable of 10BASE-T FDX  
1 = Capable of 10BASE-T HDX  
0
7
LP advertise  
100BASE-TX HDX  
0
6
LP advertise  
10BASE-T FDX  
0
5
LP advertise  
0
10BASE-T HDX  
4:0  
LP advertise selector RO  
00000  
5.2.6  
Auto-Negotiation Expansion  
The bits in main register 6 work together with those in register 5 to indicate the status of the LP auto-  
negotiation functioning. The following table shows the available settings and readouts.  
Table 17 • Auto-Negotiation Expansion, Address 6 (0x06)  
Bit  
Name  
Access Description  
Default  
15:5 Reserved  
RO  
00000000000  
0
4
Parallel detection  
fault  
RO  
This bit latches high.  
1 = Parallel detection fault.  
3
2
LP next page capable RO  
1 = LP is next page capable.  
1 = Local PHY is next page capable.  
0
1
Local PHY next page RO  
capable  
1
0
Page received  
RO  
This bit latches low.  
1 = New page is received.  
0
0
LP is auto-negotiation RO  
capable  
1 = LP is capable of auto-negotiation.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
31  
Configuration  
5.2.7  
Transmit Auto-Negotiation Next Page  
The settings in register 7 in the main registers space provide information about the number of pages in  
an auto-negotiation sequence. The following table shows the settings available.  
Table 18 • Auto-Negotiation Next Page Transmit, Address 7 (0x07)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
Next page  
Reserved  
Message page  
R/W  
RO  
1 = More pages follow  
0
0
1
R/W  
1 = Message page  
0 = Unformatted page  
12  
11  
Acknowledge 2  
Toggle  
R/W  
RO  
1 = Complies with request  
0 = Cannot comply with request  
0
0
1 = Previous transmitted LCW = 0  
0 = Previous transmitted LCW = 1  
10:0 Message  
/unformatted code  
R/W  
00000000  
001  
5.2.8  
Auto-Negotiation Link Partner Next Page Receive  
The bits in register 8 of the main register space work together with register 7 to determine certain aspects  
of the LP auto-negotiation. The following table shows the possible readouts.  
Table 19 • Auto-Negotiation LP Next Page Receive, Address 8 (0x08)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
LP next page  
Acknowledge  
LP message page  
RO  
RO  
RO  
1 = More pages follow  
0
0
0
1 = LP acknowledge  
1 = Message page  
0 = Unformatted page  
12  
11  
LP Acknowledge 2  
LP toggle  
RO  
RO  
1 = LP complies with request  
0
0
1 = Previous transmitted LCW = 0  
0 = Previous transmitted LCW = 1  
10:0 LP message  
/unformatted code  
RO  
00000000000  
5.2.9  
1000BASE-T Control  
The VSC8658 device’s 1000BASE-T functionality is controlled by the bits in register 9 of the main  
register space. The following table shows the settings and readouts available.  
Table 20 • 1000BASE-T Control, Address 9 (0x09)  
Bit  
Name  
Access Description  
Default  
15:13 Transmitter test R/W  
mode  
000 = Normal.  
000  
001 = Mode 1: Transmit waveform test.  
010 = Mode 2: Transmit jitter test as master.  
011 = Mode 3: Transmit jitter test as slave.  
100 = Mode 4: Transmitter distortion test.  
101 to 111 = Reserved: Operation not defined.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
32  
Configuration  
Table 20 • 1000BASE-T Control, Address 9 (0x09) (continued)  
Bit  
Name  
Access Description  
Default  
12  
Master/slave  
manual  
configuration  
R/W  
R/W  
1 = Master/slave manual configuration enabled.  
0
11  
Master/slave  
value  
This register is only valid when bit 9.12 is set to 1.  
1 = Configure PHY as master during negotiation.  
0 = Configure PHY as slave during negotiation.  
0
10  
9
Port type  
R/W  
R/W  
R/W  
R/W  
1 = Multi-port device.  
0 = Single-port device.  
1
1000BASE-T  
FDX capability  
1 = PHY is 1000BASE-T FDX capable.  
CMODE  
CMODE  
0x00  
8
1000BASE-T  
HDX capability  
1 = PHY is 1000BASE-T HDX capable.  
7:0  
Reserved  
Note Transmitter Test mode (bits 15:13) operates in the manner described in IEEE standard 802.3,  
section 40.6.1.1.2. When using any of the Transmitter Test modes, the Auto-Media Sense functionality  
must be disabled. For more information, see Extended PHY Control Set 1, page 37.  
5.2.10 1000BASE-T Status  
The bits in register 10 of the main register space allow you to read the status of the 1000BASE-T  
communications enabled in the device. The following table shows the readouts.  
Table 21 • 1000BASE-T Status, Address 10 (0x0A)  
Bit  
Name  
Access Description  
Default  
15  
Master/slave  
RO  
This bit latches high.  
0
configuration fault  
1 = Master/slave configuration fault detected.  
0 = No master/slave configuration fault  
detected.  
14  
Master/slave  
configuration  
resolution  
RO  
1 = Local PHY configuration resolved to  
master.  
0 = Local PHY configuration resolved to slave.  
1
13  
12  
Local receiver status RO  
1 = Local receiver is operating normally.  
1 = Remote receiver OK.  
0
0
Remote receiver  
status  
RO  
11  
10  
LP 1000BASE-T FDX RO  
capability  
1 = LP 1000BASE-T FDX capable.  
1 = LP 1000BASE-T HDX capable.  
0
0
LP 1000BASE-T HDX RO  
capability  
9:8  
7:0  
Reserved  
RO  
RO  
00  
Idle error count  
This is a self-clearing bit.  
0x00  
5.2.11 Main Registers Reserved Addresses  
In the VSC8658 device main registers page space, registers 11 through 15 (0x0B through 0x0E) are  
reserved.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
33  
Configuration  
5.2.12 1000BASE-T Status Extension 1  
Register 15 provides additional information about the operation of the device 1000BASE-T  
communications. The following table shows the readouts available.  
Table 22 • 1000BASE-T Status Extension 1, Address 15 (0x0F)  
Bit  
Name  
Access Description  
Default  
15  
1000BASE-X FDX  
capability  
RO  
RO  
RO  
RO  
RO  
1 = PHY is 1000BASE-X FDX capable  
0
14  
13  
12  
1000BASE-X HDX  
capability  
1 = PHY is 1000BASE-X HDX capable  
1 = PHY is 1000BASE-T FDX capable  
1 = PHY is 1000BASE-T HDX capable  
0
1000BASE-T FDX  
capability  
1
1000BASE-T HDX  
capability  
1
11:0 Reserved  
0x000  
5.2.13 100BASE-TX Status Extension  
Register 16 in the main registers page space of the VSC8658 device provides additional information  
about the status of the device’s 100BASE-TX operation.  
Table 23 • 100BASE-TX Status Extension, Address 16 (0x10)  
Bit  
Name  
Access Description  
Default  
15  
100BASE-TX  
Descrambler  
RO  
RO  
RO  
1 = Descrambler locked.  
0
14  
13  
100BASE-TX lock  
error  
This is a self-clearing bit.  
1 = Lock error detected.  
0
0
100BASE-TX  
disconnect state  
This is a self-clearing bit.  
1 = PHY 100BASE-TX link disconnect  
detected.  
12  
11  
10  
9
100BASE-TX current RO  
link status  
1 = PHY 100BASE-TX link active.  
0
0
0
0
0
100BASE-TX receive RO  
error  
This is a self-clearing bit.  
1 = Receive error detected.  
100BASE-TX  
transmit error  
RO  
RO  
RO  
RO  
This is a self-clearing bit.  
1 = Transmit error detected.  
100BASE-TX SSD  
error  
This is a self-clearing bit.  
1 = Start-of-stream delimiter error detected.  
8
100BASE-TX ESD  
error  
This is a self-clearing bit.  
1 = End-of-stream delimiter error detected.  
7:0  
Reserved  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
34  
 
Configuration  
5.2.14 1000BASE-T Status Extension 2  
The second status extension register is at address 17 in the device main registers space. It provides  
information about another set of parameters associated with 1000BASE-T communications. For  
information about the first status extension register, see Table 23, page 34.  
Table 24 • 1000BASE-T Status Extension 2, Address 17 (0x11)  
Bit  
Name  
Access Description  
Default  
15  
1000BASE-T  
descrambler  
RO  
RO  
RO  
1 = Descrambler locked.  
0
14  
13  
1000BASE-T lock  
error  
This is a self-clearing bit.  
1 = Lock error detected.  
0
0
1000BASE-T  
disconnect state  
This is a self-clearing bit.  
1 = PHY 1000BASE-T link disconnect  
detected.  
12  
11  
10  
9
1000BASE-T current RO  
link status  
1 = PHY 1000BASE-T link active.  
0
0
0
0
0
0
1000BASE-T receive RO  
error  
This is a self-clearing bit.  
1 = Receive error detected.  
1000BASE-Ttransmit RO  
error  
This is a self-clearing bit.  
1 = Transmit error detected.  
1000BASE-T SSD  
error  
RO  
This is a self-clearing bit.  
1 = Start-of-stream delimiter error detected.  
8
1000BASE-T ESD  
error  
RO  
This is a self-clearing bit.  
1 = End-of-stream delimiter error detected.  
7
1000BASE-T carrier RO  
extension error  
This is a self-clearing bit.  
1 = Carrier extension error detected.  
6:0  
Reserved  
RO  
5.2.15 Bypass Control  
The bits in the Bypass Control register in the VSC8658 device control aspects of functionality in effect  
when the device is disabled so that traffic can bypass it in your design. The following table shows the  
settings available.  
Table 25 • Bypass Control, Address 18 (0x12)  
Bit  
Name  
Access Description  
Default  
15  
Transmit disable  
R/W  
RO  
1 = PHY transmitter disabled.  
0
14:9 Reserved  
8
1000BASE-T  
transmitter test clock  
R/W  
1 = Enabled.  
0
1
7
Auto MDI-X at forced R/W  
10/100  
This is a sticky bit.  
1 = Disable Auto MDI-X at forced 10/100  
speeds.  
6
5
Reserved  
RO  
Disable pair swap  
correction  
R/W  
This is a sticky bit.  
1 = Disable the automatic pair swap correction.  
0
VMDS-10242 VSC8658 Datasheet Revision 4.1  
35  
Configuration  
Table 25 • Bypass Control, Address 18 (0x12) (continued)  
Bit  
Name  
Access Description  
R/W This is a sticky bit.  
Default  
4
Disable polarity  
correction  
0
1 = Disable polarity inversion correction on  
each subchannel.  
3
Parallel detect control R/W  
This is a sticky bit.  
1
1 = Do not ignore advertised ability.  
0 = Ignore advertised ability.  
2
1
Reserved  
RO  
Disable automatic  
1000BASE-T next  
page exchange  
R/W  
This is a sticky bit.  
1 = Disable automatic 1000BASE-T next page  
exchanges.  
0
0
CLKOUT output  
enable  
R/W  
This is a sticky bit.  
1 = Enable clock output pin.  
CMODE  
Note If bit 18.1 is set to 1 in this register, automatic exchange of next pages is disabled, and control is  
returned to the user through the SMI after the base page is exchanged. The user then must send the  
correct sequence of next pages to the link partner, determine the common capabilities, and force the  
device into the correct configuration following the successful exchange of pages.  
5.2.16 Reserved Main Address Space  
The bits in register 19, register 20, and register 21 (0x13, 0x14, and 0x15, respectively) are reserved.  
5.2.17 Extended Control and Status  
The bits in register 22 provide additional device control and readouts. The following table shows the  
settings available.  
Table 26 • Extended Control and Status, Address 22 (0x16)  
Bit  
Name  
Access Description  
Default  
15  
Force 10BASE-T  
link high  
R/W  
R/W  
This is a sticky bit.  
1 = Bypass link integrity test.  
0 = Enable link integrity test.  
0
14  
13  
Jabber detect  
disable  
This is a sticky bit.  
1 = Disable jabber detect.  
0
1
Disable 10BASE-T R/W  
echo  
This is a sticky bit.  
1 = Disable 10BASE-T echo.  
12  
Reserved  
RO  
11:10  
10BASE-T squelch R/W  
control  
This is a sticky bit.  
00 = Normal squelch.  
01 = Low squelch.  
10 = High squelch.  
11 = Reserved.  
00  
9
8
7
Sticky reset enable R/W  
This is a super-sticky bit.  
1 = Enabled.  
1
0
0
EOF Error  
RO  
RO  
This bit is self-clearing.  
1 = EOF error detected.  
10BASE-T  
This bit is self-clearing.  
disconnect state  
1 = 10BASE-T link disconnect detected.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
36  
Configuration  
Table 26 • Extended Control and Status, Address 22 (0x16) (continued)  
Bit  
Name  
Access Description  
Default  
6
10BASE-T link  
status  
RO  
1 = 10BASE-T link active.  
0
5:1  
0
Reserved  
RO  
SMI broadcast  
write  
R/W  
This is a sticky bit.  
1 = Enabled.  
0
The following information applies to the extended control and status bits:  
When bit 22.15 is set, the link integrity state machine is bypassed and the PHY is forced into a link  
pass status.  
When bits 22.11:0 are set to 00, the squelch threshold levels are based on the IEEE standard for  
10BASE-T. When set to 01, the squelch level is decreased, which may improve the bit error rate  
performance on long loops. When set to 10, the squelch level is increased and may improve the bit  
error rate in high-noise environments.  
When bit 22.9 is set, all sticky register bits retain their values during a software reset. Clearing this  
bit causes all sticky register bits to change to their default values upon software reset. Super-sticky  
bits retain their values upon software reset regardless of the setting of bit 22.9.  
When bit 22.0 is set, if a write to any PHY register (registers 0 through 31, including extended  
registers), the same write is broadcast to all PHYs. For example, if bit 22.0 is set to 1 and a write to  
PHY_0 is executed (register 0 is set to 0x1040), all PHYs’ register 0s are set to 0x1040. Disabling  
this bit restores normal PHY write operation. Reads are still possible when this bit is set, but the  
value that is read corresponds only to the particular PHY being addressed.  
5.2.18 Extended PHY Control Set 1  
The bits in the extended control set control the MAC auto-negotiation function, the 100BASE-FX SerDes  
function, and report SGMII alignment errors and EEPROM status. The following table shows the settings  
available.  
Table 27 • Extended PHY Control 1, Address 23 (0x17)  
Bit  
Name  
Access Description  
Default  
15:14 Reserved  
RO  
13  
12  
MAC interface  
auto-negotiation  
R/W  
This is a super-sticky bit.  
1 = Enabled.  
CMODE  
0
MAC interface mode R/W  
This is a super-sticky bit.  
1 = 1000BASE-X.  
0 = SGMII.  
11  
AMS preference  
R/W  
This is a super-sticky bit.  
0
1 = Cat5 copper preferred.  
0 = SerDes fiber/SFP preferred.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
37  
Configuration  
Table 27 • Extended PHY Control 1, Address 23 (0x17) (continued)  
Bit  
Name  
Access Description  
R/W This is a super-sticky bit.  
Default  
10:8  
Media operating  
mode  
CMODE  
000 = Cat5 copper only.  
001 = SerDes fiber/SFP pass-through mode  
only. No auto-negotiation performed in the  
PHY.  
010 = 1000BASE-X fiber/SFP media only with  
auto-negotiation performed by the PHY.  
011 = 100BASE-X fiber/SFP on the fiber  
media pins only  
101 = Auto-Media Sense with Cat5 media or  
SerDes fiber/SFP pass-through mode.  
110 = Auto-Media Sense with Cat5 media or  
1000BASE-X fiber/SFP media with auto-  
negotiation performed by PHY.  
111 = Auto-Media Sense with Cat5 media or  
100BASE-FX fiber/SFP media.  
100 = Reserved.  
7:6  
Force AMS override R/W  
00 = Normal auto-media selection (AMS).  
01 = Force AMS to select SerDes media only.  
10 = Force AMS to select copper media only.  
11 = Reserved.  
00  
5:4  
3
Reserved  
RO  
Far-end loopback  
mode  
R/W  
1 = Enabled.  
0
0
2
1
Reserved  
RO  
RO  
SGMII alignment  
error status  
This is a self-clearing bit.  
1 = Alignment error detected since last read.  
0
EEPROM status  
RO  
1 = EEPROM present on EECLK and EEDAT 0  
pins.  
Note After configuring bits 13:8 of the extended PHY control register set 1, a software reset (register 0,  
bit 15) must be written to change the device operating mode.  
5.2.19 Extended PHY Control Set 2  
The second set of extended controls is located in register 24 in the main register space for the device.  
The following table shows the settings and readouts available.  
Table 28 • Extended PHY Control 2, Address 24 (0x18)  
Bit  
Name  
Access Description  
R/W This is a sticky bit.  
Default  
15:13  
100BASE-TX edge  
rate control  
110  
011 = +5 Edge rate (slowest).  
010 = +4 Edge rate.  
001 = +3 Edge rate.  
000 = +2 Edge rate.  
111 = +1 Edge rate.  
110 = Default edge rate.  
101 = –1 Edge rate.  
100 = –2 Edge rate (fastest).  
12  
PICMG 2.16 reduced R/W  
power mode  
This is a sticky bit.  
1 = Enabled.  
0
VMDS-10242 VSC8658 Datasheet Revision 4.1  
38  
Configuration  
Table 28 • Extended PHY Control 2, Address 24 (0x18) (continued)  
Bit  
Name  
Access Description  
Default  
11:9  
8:7  
Reserved  
RO  
SGMII input preamble R/W  
This is a sticky bit.  
00  
00 = No SGMII preamble required.  
01 = One-byte SGMII preamble required.  
10 = Two-byte SGMII preamble required.  
11 = Reserved.  
6
SGMII output  
preamble  
R/W  
This is a sticky bit.  
0 = No SGMII preamble.  
1 = Two-byte SGMII preamble.  
1
5:4  
Jumbo packet mode R/W  
This is a sticky bit.  
00  
00 = Normal IEEE 1.5 kB packet length.  
01 = 9 kB jumbo packet length (12 kB with  
60 ppm or better reference clock).  
10 = 12 kB jumbo packet length (16 kB with  
70 ppm or better reference clock).  
11 = Reserved.  
3:1  
100BASE-TX  
transmitter amplitude  
control  
R/W  
011 = +3 Amplitude setting (largest).  
010 = +2 Amplitude setting.  
001 = +1 Amplitude setting.  
000 = Default amplitude.  
000  
111 = –1 Amplitude setting.  
110 = –2 Amplitude setting.  
101 = –3 Amplitude setting.  
100 = –4 Amplitude setting (smallest).  
0
1000BASE-T  
R/W  
1 = Enabled.  
0
connector loopback  
Note When bits 5:4 are set to Jumbo Packet mode, the default maximum packet values are based on  
100 ppm driven reference clock to the device. Controlling the ppm offset between the MAC and the PHY  
as specified in the bit description results in a higher Jumbo packet length.  
5.2.20 Interrupt Mask  
The bits in register 25 control the device interrupt mask. The following table shows the settings available.  
Table 29 • Interrupt Mask, Address 25 (0x19)  
Bit  
Name  
Access Description  
Default  
15  
MDINT interrupt status enable  
R/W  
R/W  
R/W  
R/W  
This is a sticky bit.  
1 = Enabled.  
0
14  
13  
12  
Speed state change mask  
Link state change mask  
FDX state change mask  
This is a sticky bit.  
1 = Enabled.  
0
0
0
This is a sticky bit.  
1 = Enabled.  
This is a sticky bit.  
1 = Enabled.  
11  
10  
Auto-negotiation error mask  
R/W  
R/W  
1 = Enabled.  
0
0
Auto-negotiation complete mask  
This is a sticky bit.  
1 = Enabled.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
39  
Configuration  
Table 29 • Interrupt Mask, Address 25 (0x19) (continued)  
Bit  
Name  
Access Description  
Default  
9
Inline powered device (PoE) detect mask  
R/W  
This is a sticky bit.  
0
1 = Enabled.  
8:5  
4
Reserved  
RO  
AMS media changed mask  
R/W  
This is a sticky bit.  
1 = Enabled.  
0
3
2
Reserved  
RO  
Link speed downshift detect mask  
R/W  
This is a sticky bit.  
1 = Enabled.  
0
0
1
0
Master/Slave resolution error mask  
Reserved  
R/W  
RO  
This is a sticky bit.  
1 = Enabled.  
Note When bit 25.15 is set, the MDINT pin is enabled. When enabled, the state of this pin reflects the  
state of bit 26.15. Clearing this bit only inhibits the MDINT pin from being asserted.  
5.2.21 Interrupt Status  
The status of interrupts already written to the device are available for reading from register 26 in the main  
registers space. The following table shows the readouts you can expect.  
Table 30 • Interrupt Status, Address 26 (0x1A)  
Bit  
Name  
Access Description  
Default  
15  
Interrupt status  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
This is a self-clearing bit.  
1 = Interrupt pending.  
0
14  
13  
12  
11  
10  
9
Speed state change status  
Link state change status  
This is a self-clearing bit.  
1 = Interrupt pending.  
0
0
0
This is a self-clearing bit.  
1 = Interrupt pending.  
FDX state change status  
This is a self-clearing bit.  
1 = Interrupt pending.  
Auto-negotiation error status  
Auto-negotiation complete status  
Inline powered device detect status  
This is a self-clearing bit.  
1 = Interrupt pending.  
This is a self-clearing bit.  
1 = Interrupt pending.  
0
0
This is a self-clearing bit.  
1 = Interrupt pending.  
8:5  
4
Reserved  
RO  
RO  
AMS media changed status  
This is a self-clearing bit.  
1 = Interrupt pending.  
0
3
2
Reserved  
RO  
RO  
Link speed downshift detect status  
This is a self-clearing bit.  
1 = Interrupt pending.  
0
0
1
0
Master/Slave resolution error status RO  
Reserved RO  
This is a self-clearing bit.  
1 = Interrupt pending.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
40  
Configuration  
The following information applies to the interrupt status bits:  
All set bits in this register are cleared after being read (self-clearing). If bit 26.15 is set, the cause of  
the interrupt can be read by reading bits 26.14:0.  
For bits 26.14 and 26.12, bit 0.12 must be set for this interrupt to assert.  
For bit 26.2, bits 4.8:5 must be set for this interrupt to assert.  
5.2.22 MAC Interface Auto-Negotiation Control and Status  
Device auto-negotiation for the MAC interface is controlled in register 27. The same register is used to  
check the status of those parameters. The following table shows the settings available.  
Table 31 • MAC Auto-Negotiation Control and Status, Address 27 (0x1B)  
Bit  
Name  
Access Description  
Default  
15  
MAC or media  
interlock  
R/W  
R/W  
R/W  
This is a sticky bit.  
1 = MAC interface disabled when media link  
down.  
0 = MAC interface not suppressed by media  
link status.  
0
14  
13  
MAC or media  
restart  
auto-negotiation  
interlock  
This is a sticky bit.  
1 = MAC interface restarts its auto-negotiation  
if the media link changes.  
0 = MAC interface does not automatically  
change if media link changes.  
0
0
MAC interface  
auto-negotiation  
auto-sense  
This is a sticky bit.  
1 = If MAC auto-negotiation is enabled, this  
allows the MAC interface to be able to link to  
MACs with auto-negotiation enabled and  
disabled.  
0 = Normal MAC auto-negotiation behavior.  
12  
MAC interface  
auto-negotiation  
restart  
R/W  
This is a self-clearing bit.  
1 = Restart auto-negotiation.  
0
11:10 Reserved  
RO  
RO  
9:8  
Remote fault  
Corresponds to the remote fault bits sent by  
the MAC during auto-negotiation.  
00  
detected from MAC  
7
Asymmetric pause RO  
advertised by the  
MAC  
Corresponds to the asymmetric pause bit sent 0  
by the MAC during auto-negotiation.  
6
5
4
3
2
Symmetric pause  
advertised by the  
MAC  
RO  
RO  
RO  
RO  
Corresponds to the symmetric pause bit sent  
by the MAC during auto-negotiation.  
0
0
Full-duplex  
advertised by the  
MAC  
Corresponds to the full-duplex bit sent by the  
MAC during auto-negotiation.  
Half-duplex  
advertised by the  
MAC  
Corresponds to the half-duplex bit sent by the 0  
MAC during auto-negotiation.  
MAC  
auto-negotiation  
capable  
1 = MAC is auto-negotiation capable.  
1 = The MAC interface is actively linked.  
0
0
MAC interface link RO  
status  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
41  
Configuration  
Table 31 • MAC Auto-Negotiation Control and Status, Address 27 (0x1B) (continued)  
Bit  
Name  
Access Description  
Default  
1
MAC interface  
auto-negotiation  
complete  
RO  
1 = The MAC interface auto-negotiation is  
complete.  
0
0
Reserved  
RO  
5.2.23 Device Auxiliary Control and Status  
Register 28 provides control and status information for several device functions not controlled or  
monitored by other device registers. The following table shows the settings available and the readouts  
you can expect.  
Table 32 • Auxiliary Control and Status, Address 28 (0x1C)  
Bit  
Name  
Access Description  
Default  
15  
Auto-negotiation  
complete  
RO  
Duplicate of bit 1.5.  
0
14  
13  
Auto-negotiation  
disabled  
RO  
Inverted duplicate of bit 0.12.  
0
0
MDI/MDI-X crossover RO  
indication  
1 = MDI/MDI-X crossover performed  
internally.  
12  
11  
10  
9
CD pair swap  
RO  
RO  
RO  
RO  
RO  
R/W  
1 = CD pairs are swapped.  
1 = Polarity swap on pair A.  
1 = Polarity swap on pair B.  
1 = Polarity swap on pair C.  
1 = Polarity swap on pair D.  
0
A polarity inversion  
B polarity inversion  
C polarity inversion  
D polarity inversion  
0
0
0
8
0
7
ActiPHY link status  
time-out control [1]  
This is a sticky bit.  
Bits 7 and 2 are part of the ActiPHY Link  
Status time-out control.  
Bit 7 is the MSB.  
CMODE  
00 = 1 second.  
01 = 2 seconds.  
10 = 3 seconds.  
11 = 4 seconds.  
6
ActiPHY mode enable R/W  
This is a sticky bit.  
1 = Enabled.  
0
5
FDX status  
RO  
RO  
1 = Full-duplex.  
0 = Half-duplex.  
00  
0
4:3  
Speed status  
00 = Speed is 10BASE-T.  
01 = Speed is 100BASE-TX or 100BASE-FX.  
10 = Speed is 1000BASE-T or 1000BASE-X.  
11 = Reserved.  
2
ActiPHY link status  
time-out control [0]  
R/W  
This is a sticky bit.  
Bits 7 and 2 are part of the ActiPHY Link  
Status time-out control.  
Bit 7 is the MSB.  
0
00 = 1 second.  
01 = 2 seconds.  
10 = 3 seconds.  
11 = 4 seconds.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
42  
Configuration  
Table 32 • Auxiliary Control and Status, Address 28 (0x1C) (continued)  
Bit  
Name  
Access Description  
Default  
1:0  
Reserved  
RO  
5.2.24 LED Mode Select  
The device LED outputs are controlled using the bits in register 29 of the main register space. The  
following table shows the information you need to access the functionality of each of the outputs. For  
information about the LED modes referenced in the table, see Table 34, page 43.  
Table 33 • LED Mode Select, Address 29 (0x1D)  
Bit  
Name  
Access Description  
Default  
15:12 LED3 mode select  
R/W  
R/W  
R/W  
R/W  
This is a sticky bit.  
Select from LED modes 0 through 15.  
CMODE  
11:8  
7:4  
LED2 mode select  
LED1 mode select  
LED0 mode select  
This is a sticky bit.  
Select from LED modes 0 through 15.  
CMODE  
CMODE  
CMODE  
This is a sticky bit.  
Select from LED modes 0 through 15.  
3:0  
This is a sticky bit.  
Select from LED modes 0 through 15.  
The following table shows the LED functional modes that can be programmed into any of the device’s  
LED outputs. For more information about accessing or reading the status of the outputs, see Table 33,  
page 43.  
Table 34 • Available LED Mode Settings  
Bit Setting  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
LED Indicates  
Link/activity, Mode 0  
Link1000/activity, Mode 1  
Link100/activity, Mode 2  
Link10/activity, Mode 3  
Link100/1000/activity, Mode 4  
Link10/1000/activity, Mode 5  
Link10/100/activity, Mode 6  
Link100BASE-FX/1000BASE-X/activity, Mode 7  
Duplex/collision, Mode 8  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
Collision, Mode 9  
Activity, Mode 10  
100BASE-FX/1000BASE-X/fiber activity, Mode 11  
Auto-negotiation fault, Mode 12  
Serial mode (on LED0 and LED1 on PHY0 only), Mode 13  
Force LED off, Mode 14  
1111  
Force LED on, Mode 15  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
43  
 
 
 
Configuration  
5.2.25 LED Behavior  
The bits in register 30 control and enable you to read the status of the pulse or blink rate of the device  
LEDs. The following table shows the settings you can write to the register or read from the register.  
Table 35 • LED Behavior, Address 30 (0x1E)  
Bit  
Name  
Access Description  
Default  
15  
Copper and fiber LED R/W  
combine disable  
This is a sticky bit.  
0 = Combine enabled  
(Copper/Fiber on  
0
Link/LinkXXXX/Activity LED).  
1 = Disable combination  
(Link/LinkXXXX/Activity LED  
indicates copper only).  
14  
Activity output select R/W  
This is a sticky bit.  
0
1 = Activity LED becomes  
TX_Activity and fiber activity LED  
becomes RX_Activity.  
0 = TX and RX activity both  
displayed on activity LEDs.  
13  
12  
Reserved  
RO  
LED pulsing enable  
R/W  
This is a sticky bit.  
0
0 = Normal operation.  
1 = LEDs pulse with a 5-kHz, 20%  
duty cycle when active.  
11:10  
LED blink/  
R/W  
This is a sticky bit.  
CMODE  
pulse-stretch rate  
00 = 2.5-Hz blink rate / 400 ms  
pulse-stretch.  
01 = 5-Hz blink rate / 200 ms pulse-  
stretch.  
10 = 10-Hz blink rate / 100 ms  
pulse-stretch.  
11 = 20-Hz blink rate / 50 ms pulse-  
stretch.  
9
8
Reserved  
RO  
LED3 pulse-stretch/ R/W  
blink select  
This is a sticky bit.  
1 = Pulse-stretch.  
0 = Blink.  
CMODE  
CMODE  
CMODE  
CMODE  
7
6
5
4
LED2 pulse-stretch/ R/W  
blink select  
This is a sticky bit.  
1 = Pulse-stretch.  
0 = Blink.  
LED1 pulse-stretch/ R/W  
blink select  
This is a sticky bit.  
1 = Pulse-stretch.  
0 = Blink.  
LED0 pulse-stretch/ R/W  
blink select  
This is a sticky bit.  
1 = Pulse-stretch.  
0 = Blink.  
Reserved  
RO  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
44  
Configuration  
Table 35 • LED Behavior, Address 30 (0x1E) (continued)  
Bit  
Name  
Access Description  
Default  
3
LED3 combine  
feature disable  
R/W  
R/W  
R/W  
R/W  
This is a sticky bit.  
0 = Combine enabled (link/activity,  
duplex/collision).  
1 = Disable combination (link only,  
duplex only).  
CMODE  
2
1
0
LED2 combine  
feature disable  
This is a sticky bit.  
0 = Combine enabled (link/activity,  
duplex/collision).  
1 = Disable combination (link only,  
duplex only).  
CMODE  
CMODE  
CMODE  
LED1 combine  
feature disable  
This is a sticky bit.  
0 = Combine enabled (link/activity,  
duplex/collision).  
1 = Disable combination (link only,  
duplex only).  
LED0 combine  
feature disable  
This is a sticky bit.  
0 = Combine enabled (link/activity,  
duplex/collision).  
1 = Disable combination (link only,  
duplex only).  
Note: Bits 29.11:10 are controlled only by port 0 and affect the behavior of all ports.  
5.3  
Extended Page Registers  
To provide functionality beyond the IEEE802.3-specified 32 registers and main device registers, the  
VSC8658 device includes an extended set of registers that provide an additional 15 register spaces.  
To access the extended page registers (16E through 30E), enable extended register access by writing  
0x0001 to register 31. For more information, see Table 37, page 46.  
When extended page register access is enabled, reads and writes to registers 16 through 30 affect the  
extended registers 16E through 30E instead of those same registers in the IEEE-specified register  
space. Registers 0 through 15 are not affected by the state of the extended page register access.  
Writing 0x0000 to register 31 restores the main register access.  
The following table lists the addresses and register names in the extended register page space. These  
registers are accessible only when the device register 31 is set to 0x0001.  
Table 36 • Extended Registers Page Space  
Register Address Register Name  
16E  
17E  
18E  
19E  
20E  
21E  
22E  
23E  
24E  
SerDes Media control  
SerDes MAC/Media control  
CRC good counter  
SIGDET polarity control  
Extended PHY control 3 (ActiPHY)  
EEPROM interface status and control  
EEPROM data read or write  
Extended PHY control 4 (PoE and CRC error counter)  
VeriPHY 1  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
45  
Configuration  
Table 36 • Extended Registers Page Space (continued)  
Register Address Register Name  
25E  
26E  
27E  
28E  
29E  
30E  
VeriPHY 2  
VeriPHY 3  
Reserved  
Reserved  
Ethernet packet generator (EPG) 1  
EPG 2  
5.3.1  
Extended Page Access  
The register at address 31 controls the access to both the extended and GPIO registers for the VSC8658  
device. Accessing the GPIO page register space is similar to accessing the extended page registers. The  
following table shows the settings available.  
Table 37 • Extended Page Access, Address 31 (0x1F)  
Bit Name Access Description  
Default  
15:0 Extended/GPIO page R/W  
register access  
0x0000 = Register 16 through 30 accesses  
main register space  
0x0000  
0x0001 = Register 16 through 30 accesses  
extended register space  
0x0010 = Register 0 through 30 accesses  
GPIO register space  
5.3.2  
SerDes Media Control  
Register 16E, which is accessible only when extended register access is enabled, controls the SerDes  
media interface. The following table shows the settings available.  
Table 38 • SerDes Media Auto-Negotiation Control/Status, Address 16E (0x10)  
Bit  
Name  
Access Description  
Default  
15:14 Transmit remote fault R/W  
Remote fault indication sent to link partner  
(LP).  
00  
13:12 Link partner (LP)  
remote fault  
RO  
Remote fault bits sent by LP during auto-  
negotiation.  
00  
0
11  
Parallel detect  
R/W  
1 = Enables parallel detect of auto-  
negotiation enabled and disabled devices.  
10  
9:0  
SerDes media signal RO  
detect  
Signal detect indication on media interface.  
0
Reserved  
RO  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
46  
Configuration  
5.3.3  
SerDes MAC/Media Control  
Register 17E, which is accessible only when extended register access is enabled, controls the  
transmitter and receiver of the VSC8658 device SerDes MAC/Media. The following table shows the  
settings available.  
Table 39 • SerDes MAC Control, Address 17E (0x11)  
Bit  
Name  
Access Description  
Default  
15:8  
7:5  
Reserved  
RO  
SerDes media output R/W  
swing control  
This is a sticky bit.  
100  
000 = 400 mV (peak-to-peak).  
001 = 600 mV (peak-to-peak).  
010 = 800 mV (peak-to-peak).  
011 = 1000 mV (peak-to-peak).  
100 = 1200 mV (peak-to-peak).  
101 = 1400 mV (peak-to-peak).  
110 and 111 = Reserved.  
4:2  
SerDes MAC output R/W  
swing control  
This is a sticky bit.  
100  
000 = 400 mV (peak-to-peak).  
001 = 600 mV (peak-to-peak).  
010 = 800 mV (peak-to-peak).  
011 = 1000 mV (peak-to-peak).  
100 = 1200 mV (peak-to-peak).  
101 = 1400 mV (peak-to-peak).  
110 and 111 = Reserved.  
1:0  
Reserved  
RO  
5.3.4  
CRC Good Counter  
Register 18E makes it possible to read the contents of the CRC good counter; the number of CRC  
routines that have executed successfully. The following table shows the readouts you can expect.  
Table 40 • CRC Good Counter, Address 18E (0x12)  
Bit  
Name  
Access Description  
Default  
15  
Packet since last read RO  
This is a self-clearing bit.  
0
1 = Packet received since last read.  
14  
Reserved  
RO  
RO  
13:0 CRC good counter  
contents  
This is a self-clearing bit.  
0x000  
Counter containing the number of packets  
with valid CRCs; this counter does not  
saturate and will roll over.  
5.3.5  
SIGDET Polarity Control  
Register 19E controls the SIGDET pin polarity. The following table shows the settings available.  
Table 41 • SIGDET Polarity Control, Address 19E (0x13)  
Bit  
15:1  
0
Name  
Access Description  
Default  
Reserved  
RO  
SIGDET pin polarity R/W  
1 = Active low.  
0 = Active high.  
CMODE  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
47  
Configuration  
5.3.6  
ActiPHY Control  
Register 20E controls the device ActiPHY sleep timer, its wake-up timer, the frequency of the CLKOUT  
signal, and its link speed downshifting feature. The following table shows the settings available.  
Table 42 • Extended PHY Control 3, Address 20E (0x14)  
Bit  
Name  
Access Description  
Default  
15  
Disable carrier  
extension  
R/W  
1 = Disable.  
0
14:13 ActiPHY sleep timer  
R/W  
This is a sticky bit.  
00 = 1 second.  
01 = 2 seconds.  
10 = 3 seconds.  
11 = 4 seconds.  
01  
12:11 ActiPHY wake-up timer R/W  
This is a sticky bit.  
00 = 160 ms.  
11  
01 = 400 ms.  
10 = 800 ms.  
11 = 2 seconds.  
10:9  
8
Reserved  
RO  
CLKOUT frequency (1) R/W  
This is a sticky bit.  
1 = 156.25 MHz.  
0 = 125 MHz.  
CMODE  
00  
7:6  
Media mode status  
Reserved  
RO  
RO  
00 = No media selected.  
01 = Copper media selected.  
10 = SerDes media selected.  
11 = Reserved.  
5
4
Enable link speed auto- R/W  
downshift feature  
This is a sticky bit.  
1 = Enable auto link speed downshift from  
1000BASE-T.  
CMODE  
01  
3:2  
Link speed  
R/W  
This is a sticky bit.  
auto-downshift control  
00 = Downshift after 2 failed 1000BASE-T  
auto-negotiation attempts.  
01 = Downshift after 3 failed 1000BASE-T  
auto-negotiation attempts.  
10 = Downshift after 4 failed 1000BASE-T  
auto-negotiation attempts.  
11 = Downshift after 5 failed 1000BASE-T  
auto-negotiation attempts.  
1
0
Link speed  
auto-downshift status  
RO  
RO  
0 = No downshift.  
1 = Downshift is required or has occurred.  
0
Reserved  
1. Bit 8 is valid only on PHY_0.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
48  
Configuration  
5.3.7  
EEPROM Interface Status and Control  
Register 21E is used to affect control over device function when you have incorporated a startup  
EEPROM into your design.  
Table 43 • EEPROM Interface Status and Control, Address 21E (0x15)  
Bit  
15  
14  
Name  
Access Description  
Default  
Reserved  
RO  
Re-read EEPROM  
after software reset  
R/W  
R/W  
This is a super-sticky bit.  
1 = Contents of EEPROM to be re-read  
after software reset.  
0
13  
Enable EEPROM  
access  
This is a self-clearing bit.  
1 = Execute read or write EEPROM  
based on the settings of register bit  
21E.12.  
0
1
12  
11  
EEPROM read or  
write  
R/W  
1 = Read from EEPROM.  
0 = Write to EEPROM.  
EEPROM ready  
RO  
1 = EEPROM is ready for read or write. 1  
10:0 EEPROM address  
R/W  
Sets the address of the EEPROM to  
00000000000  
which the read or write is to be directed.  
5.3.8  
5.3.9  
EEPROM Data Read/Write  
Register 22E in the extended register space enables access to the contents of the external EEPROM in  
your design. The following table shows the writes needed to obtain the data from the external device.  
Table 44 • EEPROM Read or Write, Address 22E (0x16)  
Bit  
Name  
Access Description  
Default  
15:8 EEPROM read data RO  
Eight-bit data read from EEPROM;  
requires setting register 21E, bit 13.  
0x00  
7:0  
EEPROM write data R/W  
Eight-bit data to be written to EEPROM. 0x00  
PoE and Miscellaneous Functionality  
The register at address 23E controls various aspects of inline powering and the CRC error counter in the  
VSC8658.  
Table 45 • Extended PHY Control 4, Address 23E (0x17)  
Bit  
Name  
Access Description  
RO PHY address; latched on reset.  
Default  
CMODE  
0
15:11  
10  
PHY address  
Inline powered device R/W  
detection  
This is a sticky bit.  
1 = Enabled.  
9:8  
Inline powered device RO  
detection status  
00 = Searching for devices.  
01 = Device found; requires inline power.  
10 = Device found; does not require inline  
power.  
00  
11 = Reserved.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
49  
Configuration  
Table 45 • Extended PHY Control 4, Address 23E (0x17) (continued)  
Bit  
Name  
Access Description  
RO This is a self-clearing bit.  
Default  
7:0  
CRC error counter  
0x00  
CRC error counter for the Ethernet packet  
generator. The value saturates at 0xFF and  
subsequently clears when read and restarts  
count.  
Note: Bits 9:8 are only valid if bit 10 is set.  
5.3.10 VeriPHY Control 1  
Register 24E in the extended register space provides control over the device VeriPHY diagnostics  
features. There are three separate VeriPHY control registers. The following table shows the settings  
available and describes the readouts you can expect.  
Table 46 • VeriPHY Control Register 1, Address 24E (0x18)  
Bit  
Name  
Access Description  
Default  
15  
VeriPHY trigger  
R/W  
RO  
This is a self-clearing bit.  
0
1 = Triggers the VeriPHY algorithm and clears  
when VeriPHY has completed. Settings in  
registers 24E through 26E become valid after  
this bit clears.  
14  
VeriPHY valid  
1 = VeriPHY results in registers 24E through  
26E are valid.  
0
13:8 Pair A (1-2) distance RO  
Loop length or distance to anomaly for pair A 0x00  
(1-2).  
7:6  
5:0  
Reserved  
RO  
Pair B (3-6) distance RO  
Loop length or distance to anomaly for pair B 0x00  
(3-6).  
Note: The resolution of the 6-bit length field is 3 meters.  
5.3.11 VeriPHY Control 2  
The register at address 25E consists of the second of the three device registers that provide control over  
VeriPHY diagnostics features. The following table shows the readouts you can expect.  
Table 47 • VeriPHY Control Register 2, Address 25E (0x19)  
Bit  
Name  
Access Description  
Default  
15:14 Reserved  
RO  
13:8  
Pair C (4-5) distance RO  
Loop length or distance to anomaly for  
0x00  
pair C (4 and 5)  
7:6  
5:0  
Reserved  
RO  
Pair D (7-8) distance RO  
Loop length or distance to anomaly for  
pair D (7 and 8)  
0x00  
Note: The resolution of the 6-bit length field is 3 meters.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
50  
Configuration  
5.3.12 VeriPHY Control 3  
The register at address 26E consists of the third of the three device registers that provide control over  
VeriPHY diagnostics features. Specifically, this register provides information about the termination status  
(fault condition) for all four link partner pairs. The following table shows the readouts you can expect.  
Table 48 • VeriPHY Control Register 3, Address 26E (0x1A)  
Bit  
Name  
Access Description  
Default  
15:12  
Pair A (1 and 2)  
termination status  
RO  
RO  
RO  
RO  
Termination fault for pair A (1 and 2)  
0x00  
11:8  
7:4  
Pair B (3 and 6)  
termination status  
Termination fault for pair B (3 and 4)  
Termination fault for pair C (4 and 5)  
Termination fault for pair D (7 and 8)  
0x00  
0x00  
0x00  
Pair C (4 and 5)  
termination status  
3:0  
Pair D (7 and 8)  
termination status  
The following table shows the meanings for the various fault codes.  
Table 49 • VeriPHY Control Register 3 Fault Codes  
Code  
0000  
0001  
0010  
0100  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Denotes  
Correctly terminated pair  
Open pair  
Shorted pair  
Abnormal termination  
Cross-pair short to pair A  
Cross-pair short to pair B  
Cross-pair short to pair C  
Cross-pair short to pair D  
Abnormal cross-pair coupling with pair A  
Abnormal cross-pair coupling with pair B  
Abnormal cross-pair coupling with pair C  
Abnormal cross-pair coupling with pair D  
5.3.13 Reserved Extended Address Space  
The bits in the extended register page space at address 27E (0x1B) and 28E (0x1C) are reserved.  
5.3.14 Ethernet Packet Generator Control 1  
The EPG control register provides access to and control of various aspects of the EPG testing feature.  
There are two, separate EPG control registers. The following table shows the setting available in the first  
register.  
Table 50 • EPG Control Register 1, Address 29E (0x1D)  
Bit  
15  
14  
Name  
Access Description  
Default  
EPG enable  
EPG run or stop  
R/W  
R/W  
1 = Enable EPG  
1 = Run EPG  
0
0
VMDS-10242 VSC8658 Datasheet Revision 4.1  
51  
 
Configuration  
Table 50 • EPG Control Register 1, Address 29E (0x1D) (continued)  
Bit  
Name  
Access Description  
Default  
13  
Transmission  
duration  
R/W  
R/W  
1 = Continuous (sends in 10,000-packet  
increments)  
0 = Send 30,000,000 packets and stop  
0
12:11  
Packet length  
00 = 125 bytes  
0
01 = 64 bytes  
10 = 1518 bytes  
11 = 10,000 bytes (Jumbo packet)  
10  
9:6  
5:2  
1
Inter-packet gap  
R/W  
1 = 8,192 ns  
0 = 96 ns  
0
Destination address R/W  
Lowest nibble of the 6-byte destination  
address  
0001  
0000  
0
Source address  
Payload type  
R/W  
R/W  
R/W  
Lowest nibble of the 6-byte destination  
address  
1 = Randomly generated payload pattern  
0 = Fixed based on payload pattern  
0
Bad frame check  
sequence (FCS)  
generation  
1 = Generate packets with bad FCS  
0 = Generate packets with good FCS  
0
The following information applies to the EPG control number 1:  
Do not run the EPG when the VSC8658 device is connected to a live network.  
Bit 29E.13 (Continuous EPG mode control): When enabled, this mode causes the device to send  
continuous packets. When disabled, the device continues to send packets only until it reaches the  
next 10,000-packet increment mark. It then ceases to send packets.  
The six-byte destination address in bits 9:6 is assigned one of 16 addresses in the range of 0xFF FF  
FF FF FF F0 through 0xFF FF FF FF FF FF.  
The six-byte source address in bits 5:2 is assigned one of 16 addresses in the range of 0xFF FF FF  
FF FF F0 through 0xFF FF FF FF FF FF.  
If any of bits 13:0 are changed while the EPG is running (bit 14 is set to 1), bit 14 must be cleared  
and then set back to 1 for the change to take effect and to restart the EPG.  
5.3.15 Ethernet Packet Generator Control 2  
The register at address 30E consists of the second of bits that provide access to and control over various  
aspects of the EPG testing feature. For information about the first set of EPG control bits, see Table 50,  
page 51. The following table shows the settings available.  
Table 51 • EPG Control Register 2, Address 30E (0x1E)  
Bit  
Name  
Access Description  
Default  
15:0 EPG packet payload R/W  
Data pattern repeated in the payload of  
packets generated by the EPG  
0x00  
Note: If any of bits 15:0 in this register are changed while the EPG is running (bit 14 of register 29E is set to 1),  
that bit (29E.14) must first be cleared and then set back to 1 for the change to take effect and to restart  
the EPG.  
5.4  
General-Purpose I/O Registers  
Accessing the GPIO page register space is similar to accessing the extended page registers. Set register  
31 to 0x0010. This sets all 32 registers to the GPIO page register space.  
To restore main register page access, write 0x0000 to register 31.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
52  
Configuration  
The following table lists the addresses and register names in the GPIO register page space. These  
registers are accessible only when the device register 31 is set to 0x0010.  
Table 52 • General-Purpose Registers Page Space  
Register Address Register Name  
0G through 12G  
Reserved  
13G  
SIGDET vs GPIO control  
Reserved  
14G  
15G  
GPIO input  
16G  
GPIO output  
17G  
GPIO output enable  
100BASE-FX control  
Reserved  
18G  
19G through 30G  
5.4.1  
5.4.2  
Reserved GPIO Address Space  
The bits in registers 0G to 12G, and 14G of the GPIO register page space are reserved.  
SIGDET vs GPIO Control  
The SIGDET control register configures GPIO pins 7:0 to be either SIGDET pins for each port or to be  
GPIO pins. The following table shows the values that can be written.  
Table 53 • SIGDET vs GPIO Control, Address 13G (0x0D)  
Bit  
Name  
Access Description  
00 = Normal SIGDET operation  
Default  
15:14 SIGDET7 control  
13:12 SIGDET6 control  
11:10 SIGDET5 control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00  
01, 10 = Reserved  
11 = Controlled by MII registers 15G to 17G  
00 = Normal SIGDET operation  
01, 10 = Reserved  
11 = Controlled by MII registers 15G to 17G  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
00 = Normal SIGDET operation  
01, 10 = Reserved  
11 = Controlled by MII registers 15G to 17G  
9:8  
7:6  
5:4  
3:2  
1:0  
SIGDET4 control  
SIGDET3 control  
SIGDET2 control  
SIGDET1 control  
SIGDET0 control  
00 = Normal SIGDET operation  
01, 10 = Reserved  
11 = Controlled by MII registers 15G to 17G  
00 = Normal SIGDET operation  
01, 10 = Reserved  
11 = Controlled by MII registers 15G to 17G  
00 = Normal SIGDET operation  
01, 10 = Reserved  
11 = Controlled by MII registers 15G to 17G  
00 = Normal SIGDET operation  
01, 10 = Reserved  
11 = Controlled by MII registers 15G to 17G  
00 = Normal SIGDET operation  
01, 10 = Reserved  
11 = Controlled by MII registers 15G to 17G  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
53  
Configuration  
5.4.3  
GPIO Input  
The input register contains information about the input to the device GPIO pins. Read from this register to  
access the data on the device GPIO pins. The following table shows the readout you can expect.  
Table 54 • GPIO Input, Address 15G (0x0F)  
Bit  
Name  
Access Description  
RO Data read from the GPIO pins  
Default  
15:0 GPIO [15:0] input  
0x00  
5.4.4  
5.4.5  
GPIO Output  
The output register allows you to access and control the output from the device GPIO pins. The following  
table shows the values you can write.  
Table 55 • GPIO Output, Address 16G (0x10)  
Bit  
Name  
Access Description  
R/W Data written to the GPIO pins  
Default  
15:0 GPIO [15:0] output  
0x00  
GPIO Pin Configuration  
Register 17G in the GPIO register space controls whether a particular GPIO pin functions as an input or  
an output. The following table shows the settings available.  
Table 56 • GPIO Input/Output Configuration, Address 17G (0x11)  
Bit  
Name  
Access Description  
Default  
15:0 GPIO [15:0] input or R/W  
output enable  
1 = Pin is configured as an output.  
0 = Pin is configured as an input.  
0x00  
5.4.6  
100BASE-FX Control  
The 100BASE-FX control register can configure each PHY within the device to be in 100BASE-FX mode.  
The following table shows the values that can be written.  
Table 57 • 100BASE-FX Control, Address 18G (0x12)  
Bit  
Name  
Access Description  
Default  
15  
Activate 100BASE-FX R/W  
0 = No action  
0
1 = Activate 100BASE-FX based on bits  
11:0  
14:12 Reserved  
RO  
000  
0
11  
100BASE-FX on all  
PHYs  
R/W  
0 = No 100BASE-FX on all PHYs  
1 = Configure 100BASE-FX on all PHYs  
10:8  
7:0  
Individual 100BASE-FX R/W  
setting  
PHY number to be configured for  
100BASE-FX mode  
000  
100BASE-FX mode  
R/W  
0x00 = No 100BASE-FX  
0x01 = 100BASE-FX mode  
0x02 to 0xFF = Reserved  
0x00  
Example 1 To configure all PHYs to 100BASE-FX mode, first ensure bit 15 = 0, then set bit 11 = 1 and  
bits 7:0 = 0x01, and then reset bit 15 = 1.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
54  
Configuration  
Example 2 To configure an individual PHY to 100BASE-FX mode, first ensure that bit 15 = 0, then set  
bits 10:8 to the correct PHY number to be configured for 100BASE-FX, then set bits 7:0 = 0x01, and  
finally reset bit 15 = 1. Repeat these steps for each individual PHY.  
5.5  
CMODE  
The information in this section provides a detailed description of the methods you can use to configure  
the VSC8658 device using its CMODE pins. It includes descriptions of the registers that work together  
with the CMODE pins to control the device function.  
There are eight configuration mode (CMODE) pins on the VSC8658 device. For more information about  
the physical location of the CMODE pins, see Pin Descriptions, page 72. Each of the CMODE pins maps  
to four configuration bits, which means that each pin controls 16 possible settings for the device.  
5.5.1  
CMODE Pins and Related Functions  
The following table lists the pin numbers and device functionality that are controlled by each  
configuration bit.  
Table 58 • CMODE Configuration Pins and Device Functions  
CMODE Pin Bit 3 (MSB) Control  
Bit 2 Controls  
Bit 1 Controls  
Bit 0 (LSB) Controls  
7
6
5
4
3
2
1
0
Reserved  
Always set to logic 0  
Link speed downshift  
Speed and duplex [1]  
Speed and duplex [0]  
MAC auto-negotiation ActiPHY  
Advertise asymmetric  
pause  
Advertise symmetric  
pause  
Media interface [2]  
Media interface [1]  
Media interface [0]  
SIGDET polarity  
Clock speed 125 MHz CLKOUT enable  
or 156 MHz selection  
LED fiber/copper  
combine  
LED blink or pulse  
stretch [1]  
LED blink or pulse  
stretch [0]  
LED3 combine or  
separate  
LED3 [1]  
LED2 [1]  
LED1 [1]  
LED0 [1]  
LED3 [0]  
LED2 [0]  
LED1 [0]  
LED0 [0]  
PHY address reversal LED2 combine or  
separate  
PHY address [4]  
LED1 combine or  
separate  
PHY address [3]  
LED0 combine or  
separate  
5.5.2  
Functions and Related CMODE Pins  
The following table lists the pin and bit settings according to the device function and CMODE pin used to  
configure them.  
Table 59 • Device Functions and Associated CMODE Pins  
Sets MII  
Register  
CMODE  
Pin  
Function  
Bit  
Description  
Link speed  
downshift  
Register 20E, 7  
bit 4  
2
0 = Link only according to the auto-negotiation resolution.  
1 = Enable link speed downshift feature.  
Speed and duplex  
Register 4,  
bits 8:5 and  
register 9,  
bits 9:8  
7
1 and 0 00 = 10/100/1000BASE-T FDX/HDX. 1000BASE-X  
FDX/HDX.  
01 = 10/100/1000BASE-T FDX; 10/100BASE-T HDX.  
1000BASE-X FDX.  
10 = 1000BASE-T FDX only.  
11 = 10/100BASE-T FDX/HDX.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
55  
 
 
 
Configuration  
Table 59 • Device Functions and Associated CMODE Pins (continued)  
Sets MII  
Register  
CMODE  
Pin  
Function  
Bit  
Description  
MAC  
auto-negotiation  
Register 23,  
bit 13  
6
3
0 = Disabled.  
1 = Enabled.  
ActiPHY  
Register 28,  
bit 6  
6
2
1
0
3
0 = Disabled.  
1 = Enabled.  
Advertise  
asymmetric pause bit 11  
Register 4,  
6
0 = Not advertised.  
1 = Advertised.  
Advertise symmetric Register 4,  
pause  
6
0 = Not advertised.  
1 = Advertised.  
bit 10  
Media interface [2:0] Register 23,  
bits 10:8  
5, 4, 3  
000 = Cat5 copper only.  
001 = SerDes Fiber/SFP Pass-Through mode only. No  
auto-negotiation performed in the PHY.  
010 = 1000BASE-X Fiber/SFP mode only with auto-  
negotiation performed by the PHY.  
011 = 100BASE-X Fiber/SFP mode on the fiber media pins  
only.  
101 = Auto-media sense with Cat5 media or SerDes  
Fiber/SFP Pass-Through mode.  
110 = Auto-media sense with Cat5 media or 1000BASE-X  
Fiber/SFP mode with auto-negotiation performed by PHY.  
111 = Auto-media sense with Cat5 media or 100BASE-FX  
Fiber/SFP mode.  
100 = Reserved.  
SIGDET polarity  
Clock speed  
Register 19E, 5  
bit 0  
2
1
0
2
0 = Active high.  
1 = Active low.  
Register 20E, 5  
bit 8  
0 = 125 MHz.  
1 = 156.2 MHz.  
CLKOUT enable  
Register 18,  
bit 0  
5
0 = Disabled.  
1 = Enabled.  
LED fiber/copper  
combine  
Register 30,  
bit 15  
4
0 = Combine enabled (Copper/Fiber on  
Link/LinkXXXX/Activity LED).  
1 = Disable combination (Link/LinkXXXX/Activity LED  
indicates copper only).  
LED blink/pulse  
stretch rate  
Register 30,  
bits 11:10  
4
1 and 0 00 = 2.5 Hz blink rate, 400 ms pulse stretch.  
01 = 5.0 Hz blink rate, 200 ms pulse stretch.  
10 = 10.0 Hz blink rate, 100 ms pulse stretch.  
11 = 20.0 Hz blink rate, 50 ms pulse stretch.  
LED_3, LED_2,  
LED_1, and LED_0 bits 3:0  
combine or separate  
Register 30,  
3, 2, 1,  
and 0  
2
0 = Link, Link10, Link100, Link1000, Link10/100,  
Link10/1000, Link100/1000.  
LEDs blink or flash when activity is present.  
Also, a duplex LED blinks or flashes when collision is  
present.  
1 = Link, Link10, Link100, Link1000, Link10/100,  
Link10/1000, Link100/1000.  
LEDs indicate status only.  
Also, a duplex LED indicates a duplex status only.  
LED_3 indication  
function  
Register 29,  
bits 15:12  
3
1 and 0 00 = Duplex or collision.  
01 = Link100 or activity.  
10 = Activity.  
11 = Fiber_Link/Fiber_Activity.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
56  
Configuration  
Table 59 • Device Functions and Associated CMODE Pins (continued)  
Sets MII  
Register  
CMODE  
Pin  
Function  
Bit  
Description  
Address reversal  
2
2
3
0 = Normal functioning.  
PHY address 0:7 = Port 0:7.  
1 = Reversed functioning.  
PHY address 7:0 = Port 0:7.  
LED_2 indication  
function  
Register 29,  
bits 11:8  
1 and 0 00 = Link or activity.  
01 = Duplex or collision.  
10 = Fiber_Activity.  
11 = Link10 or activity.  
PHY address [4:3]  
1 and 0  
1
3
Sets the two MSBs of the PHY address.  
LED_1 indication  
function  
Register 29,  
bits 7:4  
1 and 0 00 = Link100 or activity.  
01 = Link100/1000 or activity.  
10 = Link 10/100 or activity.  
11 = Fiber_Link/Fiber_Activity.  
LED_0 indication  
function  
Register 29,  
bits 3:0  
0
1 and 0 00 = Link1000 or activity.  
01 = Link100/1000 or activity.  
10 = Activity.  
11 = Link or activity.  
Note: The MAC auto-negotiation, LED_0, LED_1, LED_2, and LED_3 settings available using the CMODE  
pins and configuration bits is limited. For full functionality, use the registers. For more information about  
using the registers for these and other functions, see Registers, page 26.  
5.5.3  
CMODE Resistor Values  
To affect an aspect of the VSC8658 device configuration, find the parameter in Table 58, page 55 or in  
Table 59, page 55, and connect the associated pin to the resistor specified in the following table. This  
sets the bits as shown.  
Table 60 • CMODE Resistor Values and Resultant Bit Settings  
With CMODE  
Pin Tied To  
With 1%  
Set  
Set  
Set  
Bit 1 to:  
Set  
Resistor Value Bit 3 (MSB) to: Bit 2 to:  
Bit 0 (LSB) to:  
VSS  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VSS  
2.26 kΩ  
4.02 kΩ  
5.90 kΩ  
8.25 kΩ  
12.1 kΩ  
16.9 kΩ  
22.6 kΩ  
0
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
2.26 kΩ  
4.02 kΩ  
5.90 kΩ  
8.25 kΩ  
12.1 kΩ  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
57  
Configuration  
Table 60 • CMODE Resistor Values and Resultant Bit Settings (continued)  
With CMODE  
With 1%  
Set  
Set  
Set  
Set  
Pin Tied To  
Resistor Value Bit 3 (MSB) to: Bit 2 to:  
Bit 1 to:  
Bit 0 (LSB) to:  
VDD33  
16.9 kΩ  
22.6 kΩ  
1
1
1
1
1
1
0
1
VDD33  
Using resistors with the CMODE pins can be optional in designs that access the device’s MDC/MDIO  
pins. In designs that do this, all configurations otherwise affected on the device by using the CMODE  
pins can be changed using the regular device register settings, and all the CMODE pins can be pulled to  
VSS (ground). However, in this case, the PHYADDR [4:3] and the PHYADD_REVERSAL settings still  
require CMODE configuration. This configuration can be set by connecting these pins to either the  
VDD33 or VSS pins.  
5.6  
EEPROM  
The VSC8658 device EEPROM interface makes it possible for you to set up the device to self-configure  
its internal registers based on the information programmed into and stored in an external device. To  
accomplish this, the EEPROM is read on power-up or de-assertion of the NRESET bit. For field  
configurability, the EEPROM can also be accessed using VSC8658 device registers 21E and 22E.  
The EEPROM you use to interface to the VSC8658 device must have a two-wire interface. A device such  
as the Atmel part AT24CXXX is suggested.  
As defined by the interface, data is clocked from the VSC8658 device on the falling edge of EECLK. The  
device determines that an external EEPROM is present if EEDAT is connected to a 4.7-kexternal pull-  
up resistor. The EEDAT pin can be left floating or grounded to indicate that no EEPROM is present.  
5.6.1  
EEPROM Contents Description  
When an EEPROM is present, the VSC8658 device looks for the command header, 0xBDBD at address  
0 and 1 of the EEPROM. The address is incremented by 256 until the header is found. If the header is  
not found or no EEPROM is connected, the VSC8658 device bypasses the EEPROM read step.  
When an EEPROM is present, the VSC8658 device waits for an acknowledgement for approximately  
three seconds (in accordance with the ATMEL EEPROM protocol). If there is no acknowledgement for  
three seconds, the VSC8658 device aborts its attempt to connect to the EEPROM and reverts to its  
otherwise normal operating mode.  
After the header value is found, the two-byte address value shown in the following table indicates the  
EEPROM word address where the configuration contents for the device are located. At the base address  
location, the next set of bytes indicates where the configuration data contents to be programmed into the  
VSC8658 device are located. The first address points to the data common to all PHYs. Each subsequent  
address location points to each individual PHY’s configuration contents. At each programming location,  
the two bytes represent the total number of bytes (11 bits, with MSB first) where the  
Total_Number_Bytes[10:0] is equal to the number of SMI writes multiplied by 3 (one byte for SMI port  
and register address and two bytes for data). Data is read from the EEPROM sequentially until all SMI  
write commands are completed.  
Table 61 • EEPROM Configuration Contents  
10-bit Address  
Content (Bits 7:0)  
0
1
2
3
0xBD  
0xBD  
PHY_ADDR[4:2], 00, Base_Address_Location[10:8]  
Base_Address_Location[7:0] (K)  
Address length not specified  
00000, Common_Config_Base_Address[10:8]  
K
VMDS-10242 VSC8658 Datasheet Revision 4.1  
58  
Configuration  
Table 61 • EEPROM Configuration Contents (continued)  
10-bit Address  
Content (Bits 7:0)  
K+1  
K+2  
K+3  
K+4  
K+5  
K+6  
K+7  
Common_Config_Base_Address[7:0] (X)  
00000, PHY0_Specific_Config_Base_Address[10:8]  
PHY0_Specific_Config_Base_Address[7:0] (Y)  
00000, PHY1_Specific_Config_Base_Address[10:8]  
PHY1_Specific_Config_Base_Address[7:0]  
00000, PHY2_Specific_Config_Base_Address[10:8]  
PHY2_Specific_Config_Base_Address[7:0]  
Address length not specified  
K+16  
K+17  
00000, PHY7_Specific_Config_Base_Address[10:8]  
PHY7_Specific_Config_Base_Address[7:0]  
Address length not specified  
X
00000, Total_Number_Bytes[10:8]  
Total_Number_Bytes [7:0] (M)  
X+1  
X+2  
X+3  
X+4  
X+5  
X+6  
X+7  
Register address a  
Data[15:8] to be written to register address a  
Data[7:0] to be written to register address a  
Register address b  
Data[15:8] to be written to register Address b  
Data[7:0] to be written to register address b  
Address length not specified  
X+(M-2)  
X+(M-1)  
X+M  
Register address x  
Data[15:8] to be written to register address x  
Data[7:0] to be written to register address x  
Address length not specified  
Y
00000, Total_Number_Bytes[10:8]  
Total_Number_Bytes [7:0] (N)  
Y+1  
Y+2  
Y+3  
Y+4  
Register address a  
Data[15:8] to be written to register address a  
Data[7:0] to be written to register address a  
Address length not specified  
Y+(N-2)  
Y+(N-1)  
Y+N  
Register address x  
Data[15:8] to be written to register address x  
Data[7:0] to be written to register address x  
Address length not specified  
Max Address  
5.6.2  
Read/Write Access to the EEPROM  
The VSC8658 device also has the ability to read from and write to an EEPROM such as an ATMEL  
AT24CXXX that is directly connected to its EECLK and EEDAT pins. If it is required to be able to write to  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
59  
Configuration  
the EEPROM, refer to the EEPROM’s specific datasheet to ensure that write protection on the EEPROM  
is not set.  
The following illustration shows the interaction of the VSC8658 device and the EEPROM.  
Figure 18 • EEPROM Read and Write Register Flow  
Start  
21E.11 = 0  
Wait for Ready  
Read Data = 22E.15:8  
21E.11 = 1  
21E.11 = 1  
Write EEPROM  
Data  
Read or Write  
21E.13 = 1  
Wait for Ready  
21E.13 = 1  
Read EEPROM  
Data  
21E.11 = 0  
21E.10:0 = Write Address  
21E.12 = 0  
22E.7:0 = Data to Write  
21E.10:0 = Address to Read  
21E.12 = 1  
To read a value from a specific address of the EEPROM:  
1. Read the VSC8658 device register bit 21E.11, and ensure that it is set.  
2. Write the EEPROM address to be read to register bits 21E.10:0.  
3. Set both register bits 21E.12 and 21E.13 to 1.  
4. When register bit 21E.11 changes to 1, read the 8-bit data value found at register bits 22E.15:8. This  
is the contents of the address just read by the PHY.  
To write a value to a specific address of the EEPROM:  
1. Read the VSC8658 device register bit 21E.11 and ensure that it is set.  
2. Write the address to be written to register bits 21E.10:0.  
3. Set register bit 21E.12 to 0.  
4. Set register bits 22E.7:0 with the 8-bit value to be written to the EEPROM.  
5. Set register bit 21E.13 to 1.  
To avoid collisions during read and write transactions, always wait until register bit 21E.11 changes to 1  
before performing another EEPROM read or write operation.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
60  
Electrical Specifications  
6
Electrical Specifications  
This section provides the DC characteristics, AC characteristics, recommended operating conditions,  
and stress ratings for the VSC8658 device. It includes information on the various timing functions of the  
device.  
6.1  
DC Characteristics  
In addition to any parameter-specific conditions, the specifications listed in the following tables may be  
considered valid only in the environment characterized by the specifications listed as recommended  
operating conditions for the VSC8658 device. For more information about the recommended operating  
conditions, see Operating Conditions, page 70.  
6.1.1  
VDDIO at 3.3 V  
In addition to any parameter-specific conditions, the specifications listed in the following table may be  
considered valid only when:  
VDDIO is 3.3 V  
VDD33 is 3.3 V  
VDD12 is 1.2 V  
VDD12A is 1.2 V  
Table 62 • DC Characteristics for Pins Referenced to VDDIO at 3.3 V  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output high voltage VOH  
2.4  
0
3.6  
0.5  
3.6  
0.9  
42  
V
IOH = –4 mA  
IOL = 4 mA  
Output low voltage  
Input high voltage  
Input low voltage  
VOL  
VIH  
VIL  
V
2.1  
–0.3  
–42  
–42  
V
V
Input leakage current IILEAK  
µA  
µA  
Internal resistor included  
Internal resistor included  
Output leakage  
current  
IOLEAK  
42  
Output low current  
drive strength  
IOL  
8
mA  
mA  
Output high current  
drive strength  
IOH  
–8  
6.1.2  
VDDIO at 2.5 V  
In addition to any parameter-specific conditions, the specifications listed in the following table may be  
considered valid only when:  
VDDIO is 2.5 V  
VDD33 is 3.3 V  
VDD12 is 1.2 V  
VDD12A is 1.2 V  
Table 63 • DC Characteristics for Pins Referenced to VDDIO at 2.5 V  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output high voltage  
Output low voltage  
VOH  
VOL  
2.0  
2.8  
0.4  
V
V
IOH = –1.0 mA  
IOL = 1.0 mA  
–0.3  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
61  
Electrical Specifications  
Table 63 • DC Characteristics for Pins Referenced to VDDIO at 2.5 V (continued)  
Parameter  
Symbol Minimum Maximum Unit Condition  
Input high voltage  
Input low voltage  
VIH  
VIL  
1.7  
3.0  
0.7  
32  
32  
6
V
–0.3  
–32  
–32  
V
Input leakage current IILEAK  
Output leakage current IOLEAK  
µA  
µA  
mA  
Internal resistor included  
Internal resistor included  
Output low current  
drive strength  
IOL  
Output high current  
drive strength  
IOH  
–6  
mA  
6.1.3  
VDDIO at 1.8 V  
In addition to any parameter-specific conditions, the specifications listed in the following table may be  
considered valid only when:  
VDDIO is 1.8 V  
VDD33 is 3.3 V  
VDD12 is 1.2 V  
VDD12A is 1.2 V  
Table 64 • DC Characteristics for Pins Referenced to VDDIO at 1.8 V  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
VOH  
VOL  
VIH  
VIL  
1.4  
2.1  
0.3  
2.1  
0.6  
23  
V
IOH = –0.5 mA  
IOL = 0.5 mA  
V
1.2  
V
V
Input leakage current IILEAK  
–23  
–23  
µA  
µA  
Internal resistor included  
Internal resistor included  
Output leakage  
current  
IOLEAK  
23  
Output low current  
drive strength  
IOL  
4.0  
mA  
mA  
Output high current  
drive strength  
IOH  
–4.0  
6.1.4  
VDD at 3.3 V  
In addition to any parameter-specific conditions, the specifications listed in the following table may be  
considered valid only when:  
VDDIO is 3.3 V  
VDD33 is 3.3 V  
VDD12 is 1.2 V  
VDD12A is 1.2 V  
Table 65 • DC Characteristics for Pins Referenced to VDD33 at 3.30 V  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output high voltage  
Output low voltage  
VOH  
VOL  
2.4  
0
3.6  
0.5  
V
V
IOH = –4 mA  
IOL = 4 mA  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
62  
Electrical Specifications  
Table 65 • DC Characteristics for Pins Referenced to VDD33 at 3.30 V (continued)  
Parameter  
Symbol Minimum Maximum Unit Condition  
Input high voltage  
Input low voltage  
VIH  
VIL  
2.1  
3.6  
0.9  
42  
42  
8
V
–0.3  
–42  
–42  
V
Input leakage current IILEAK  
Output leakage current IOLEAK  
µA  
µA  
mA  
Internal resistor included  
Internal resistor included  
Output low current  
drive strength  
IOL  
Output high current  
drive strength  
IOH  
–8  
mA  
6.1.5  
MAC and SerDes Outputs  
For more information about the number and physical location of the MAC and SerDes output pins on the  
VSC8658 device, see Pin Descriptions, page 72.  
Table 66 • DC Characteristics for MAC_RDP/N_n and SER_DOP/N_n Pins  
Parameter  
Symbol Minimum Typical Maximum Unit Condition  
Frequency lock time TLOCK  
500  
µs  
Output differential  
voltage  
VODIFF  
700  
480  
1000  
1200  
mV  
Measured peak-to-  
peak. Based on  
100 differential  
load.  
Output common-  
mode voltage  
VOCM  
540  
185  
610  
300  
mV  
ps  
VDD12A = 1.20 V.  
Output rise time and tr , f  
fall time (20% to  
80%)  
t
Total jitter  
TJ  
260  
8
ps  
Measured peak-to-  
peak. Uses K28.5  
test pattern. Bit error  
rate (BER) = 10–12  
.
Output low current  
drive strength  
IOL  
mA  
mA  
Output high current IOH  
drive strength  
–8  
Output driver  
impedance per pin  
ZO  
50  
6.1.6  
MAC and SerDes Inputs  
For more information about the number and physical location of the MAC and SerDes input pins on the  
VSC8658 device, see Pin Descriptions, page 72.  
Table 67 • DC Characteristics for MAC_TDP/N_n and SER_DIP/N_n Pins  
Parameter  
Symbol Minimum Maximum Unit  
120 2400 mV  
Condition  
Input differential voltage VIDIFF  
Measured peak-to-peak.  
Based on 100 Ω  
differential load.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
63  
Electrical Specifications  
Table 67 • DC Characteristics for MAC_TDP/N_n and SER_DIP/N_n Pins (continued)  
Parameter  
Symbol Minimum Maximum Unit  
Condition  
Input common mode  
voltage  
VICM  
0.4  
1.3  
V
VDD12A = 1.20 V.  
Total receive jitter  
tolerance  
JRXTotal 450  
JRXTotal 5870  
550  
6500  
ps  
ps  
Measured peak-to-peak.  
1000BASE-X mode.  
Measured peak-to-peak.  
100BASE-FX mode.  
6.1.7  
LED Pins  
In addition to any parameter-specific conditions, the specifications listed in the following table may be  
considered valid only when:  
VDDIO is 3.30 V  
VDD33 is 3.30 V  
VDD12 is 1.20 V  
VDD12A is 1.20 V  
Table 68 • DC Characteristics for LED[3:0]_n Pins  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output high voltage  
VOH  
VOL  
IOLEAK  
IOL  
2.4  
0
3.6  
0.5  
10  
V
IOH = –4.0 mA  
IOL = 4.0 mA  
Output low voltage  
V
Output leakage current  
Output low current drive strength  
Output high current drive strength  
–10  
µA  
mA  
mA  
8.0  
IOH  
–8.0  
6.1.8  
JTAG Pins  
In addition to any parameter-specific conditions, the specifications listed in the following table may be  
considered valid only when:  
VDDIO is 3.30 V  
VDD33 is 3.30 V  
VDD12 is 1.20 V  
VDD12A is 1.20 V  
Table 69 • DC Characteristics for JTAG Pins  
Parameter  
Symbol Minimum Maximum Unit  
Condition  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input leakage current  
VOH  
VOL  
VIH  
2.4  
0
3.6  
0.5  
3.6  
0.9  
42  
42  
8
V
IOH = –1.5 mA  
IOL = 1.5 mA  
V
2.1  
–0.3  
–42  
–42  
V
VIL  
V
IILEAK  
µA  
µA  
mA  
Internal resistor included  
Internal resistor included  
Output leakage current IOLEAK  
Output low current drive IOL  
strength  
Output high current  
drive strength  
IOH  
–8  
mA  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
64  
Electrical Specifications  
6.2  
Current Consumption  
There are three sets of current consumption values:  
Typical current consumption  
Current consumption in SerDes/SGMII to 1000BASE-X mode  
Current consumption in SerDes/SGMII to 100BASE-FX mode or SerDes pass-through mode  
The typical current consumption values are based on nominal voltages with all ports operating at  
1000BASE-T speeds with full-duplex enabled and a 64-bit random data pattern at 100% utilization.  
Table 70 • Typical Current Consumption  
Parameter  
Symbol Typical  
Maximum Unit  
Worst-case power consumption  
Current with VDDIO at 1.8 V  
Current with VDDIO at 2.5 V  
Current with VDDIO at 3.3 V  
Current with VDD33 at 3.3 V  
Current with VDD12 at 1.2 V  
Current with VDD12A at 1.2 V  
PD  
5.91  
W
IVDDIO  
IVDDIO  
IVDDIO  
IVDD33  
IVDD12  
1
mA  
mA  
mA  
mA  
mA  
mA  
1
1
852  
1488  
IVDD12A 490  
If all eight ports are running in SerDes/SGMII to 1000BASE-X mode, the current consumption values are  
shown in the following table.  
Table 71 • Current Consumption in SerDes/SGMII to 1000BASE-X Mode  
Parameter  
Symbol Typical  
Maximum Unit  
Worst-case power consumption  
Current with VDDIO at 1.8 V  
Current with VDDIO at 2.5 V  
Current with VDDIO at 3.3 V  
Current with VDD33 at 3.3 V  
Current with VDD12 at 1.2 V  
Current with VDD12A at 1.2V  
PD  
1.05  
W
IVDDIO  
IVDDIO  
IVDDIO  
IVDD33  
IVDD12  
1
mA  
mA  
mA  
mA  
mA  
mA  
1
1
68.6  
134.2  
IVDD12A 448.6  
If all eight ports are running in SerDes/SGMII to 100BASE-FX mode or SerDes pass-through mode, the  
current consumption values are as shown in the following table.  
Table 72 • Consumption in SerDes/SGMII to 100BASE-FX or SerDes Pass-Through Mode  
Parameter  
Symbol Typical  
Maximum  
Unit  
W
Worst-case power consumption  
Current with VDDIO at 1.8 V  
Current with VDDIO at 2.5 V  
Current with VDDIO at 3.3 V  
Current with VDD33  
PD  
1.09  
IVDDIO  
IVDDIO  
IVDDIO  
IVDD33  
IVDD12  
1
mA  
mA  
mA  
mA  
mA  
mA  
1
1
64  
146  
Current with VDD12  
Current with VDD12A  
IVDD12A 444  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
65  
Electrical Specifications  
6.3  
AC Characteristics  
The AC specifications are grouped according to specific device pins and associated timing  
characteristics.  
6.3.1  
Reference Clock Input  
The following table shows the specifications for the reference clock input frequency including various  
frequencies, duty cycle, and accuracy.  
Table 73 • AC Characteristics for REFCLK Input  
Parameter  
Symbol Minimum Typical Maximum Unit  
Frequency with 25 MHz input  
Frequency with 125 MHz input  
Frequency accuracy  
fCLK25  
fCLK125  
fTOL  
25  
MHz  
MHz  
ppm  
%
125  
100  
60  
4
Duty cycle  
%
40  
DUTY  
Rise time with 25 MHz input (20% to 80%)  
tR25  
ns  
Rise time with 125 MHz input (20% to 80%) tR125  
Fall time with 25 MHz input (20% to 80%) tR25  
Fall time with 125 MHz input (20% to 80%) tF125  
1
ns  
4
ns  
1
ns  
If using the 25 MHz crystal clock input option, the additional specifications in the following table are  
required.  
Table 74 • AC Characteristics for REFCLK Input with 25 MHz Clock Input  
Parameter  
Minimum Typical  
Maximum Unit  
Crystal parallel load capacitance  
Crystal equivalent series resistance  
Crystal accuracy  
18  
20  
30  
50  
pF  
10  
ppm  
6.3.2  
Clock Output  
The specifications in the following table show the AC characteristics for the clock output of the VSC8658  
device when used in your design.  
Table 75 • AC Characteristics for the CLKOUT Pin  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit Condition  
CLKOUT frequency  
fCLK125  
125.00  
156.25  
MHz 125 MHz output clock  
156.25 MHz output clock  
CLKOUT cycle time  
tCYC  
8.0  
6.4  
ns  
125 MHz output clock  
156.25 MHz output clock  
Frequency stability  
Duty cycle  
fSTABILITY  
100  
60  
1
ppm  
%
%
40  
50  
DUTY  
Clock rise and fall times tR and tF  
(20% to 80%)  
ns  
Total jitter  
JCLK  
217  
491  
ps  
Measured peak-to-peak  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
66  
Electrical Specifications  
6.3.3  
JTAG Interface  
The following table lists the characteristics for the JTAG testing feature. The illustration provides a  
diagram of the timing.  
Table 76 • AC Characteristics for the JTAG Interface  
Parameter  
Symbol Minimum Maximum Unit  
TCK frequency  
fCLK  
tCYC  
tWH  
tWL  
tSU  
tH  
10  
MHz  
ns  
TCK cycle time  
100  
45  
45  
10  
10  
TCK time high  
ns  
TCK time low  
ns  
Setup time to TCK rising  
Hold time from TCK rising  
TCK to TDO valid  
ns  
ns  
tCO  
15  
ns  
Figure 19 • JTAG Interface Timing  
tCYC  
TCK  
tWL  
tWH  
tSU  
tH  
TDI  
TMS  
TDO  
tCO  
6.3.4  
SMI Interface  
Use the information in the following table when incorporating the VSC8658 device SMI interface into your  
own design. The illustration provides information about SMI interface timing.  
Table 77 • AC Characteristics for the SMI Interface  
Parameter  
Symbol Minimum  
Typical  
2.5  
Maximum Unit Condition  
MDC frequency(1)  
MDC cycle time  
MDC time high  
MDC time low  
fCLK  
12.5  
MHz  
ns  
tCYC  
tWH  
tWL  
80  
20  
20  
10  
10  
400  
50  
ns  
50  
ns  
Setup to MDC rising tSU  
ns  
Hold from MDC  
rising  
tH  
ns  
MDC rise time  
tR  
100  
ns  
For MDC = 0 – 1 MHz  
For MDC = 1 MHz – fCLK(MAX)  
tCYC × 10%(1)  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
67  
Electrical Specifications  
Table 77 • AC Characteristics for the SMI Interface (continued)  
Parameter  
Symbol Minimum  
tF 100  
CYC × 10%(1)  
Typical  
Maximum Unit Condition  
MDC fall time  
t
MDC to MDIO valid tCO  
10  
300  
ns  
Time-dependant on the value of  
the external pull-up resistor on  
the MDIO pin  
1. For fCLK above 1 MHz, the minimum rise time and fall time is in relation to the frequency of the MDC clock period. For example,  
if fCLK is 2 MHz, the minimum clock rise time and fall time is 50 ns.  
Figure 20 • SMI Interface Timing  
tWH  
tWL  
MDC  
tCYC  
tSU  
tH  
MDIO  
(write)  
Data  
tCO  
MDIO  
(read)  
Data  
6.3.5  
Device Reset  
The following specifications apply to the device reset functionality. The illustration shows the reset timing.  
Table 78 • AC Characteristics for Device Reset  
Parameter  
Symbol  
tRESET  
tWAIT  
Minimum Maximum Unit Condition  
NRESET assertion time  
100  
ns  
Wait time between  
NRESET de-assert and  
access of the SMI  
interface  
20  
220  
ms  
ms  
Register 21E.14 = 0  
Register 21E.14 = 1  
Soft reset (pin) assertion tSRESET_ASSERT  
4
4
ms  
ms  
Soft reset (pin) de-  
assertion  
tSRESET_DEASSERT  
Wait time between soft  
reset pin de-assert and  
access of the SMI  
interface  
tSWAIT  
4
µs  
µs  
ms  
ms  
Registers 22.9 = 1, 21E.14 = 0  
Registers 22.9 = 0, 21E.14 = 0  
Registers 22.9 = 0, 21E.14 = 1  
Registers 22.9 = 1, 21E.14 = 1  
300  
200  
200  
Soft reset MII register 0.15 tSREG_RESET  
assertion  
100  
ns  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
68  
Electrical Specifications  
Table 78 • AC Characteristics for Device Reset (continued)  
Parameter  
Symbol  
Minimum Maximum Unit Condition  
Wait time between Soft  
Reset (MII Register 0.15)  
de-assert and access to  
the SMI interface  
tSREG_WAIT  
4
µs  
µs  
ms  
ms  
Registers 22.9 = 1, 21E.14 = 0  
Registers 22.9 = 0, 21E.14 = 0  
Registers 22.9 = 0, 21E.14 = 1  
Registers 22.9 = 1, 21E.14 = 1  
300  
200  
200  
Figure 21 • Reset Timing  
REFCLK  
tWAIT  
tRESET  
NRESET  
tSWAIT  
tSRESET_ASSERT  
tSRESET_DEASSERT  
NSRESET  
tSREG_WAIT  
tSREG_RESET  
Soft Reset  
(MII Register 0.15)  
Undefined State  
MDC  
MDIO  
6.3.6  
Serial LEDs  
The following table provides specifications for the device serial LEDs. The illustration shows the LED  
timing.  
Table 79 • AC Characteristics for Serial LEDs  
Parameter  
Symbol Minimum Maximum Unit  
LED_CLK cycle time  
tCYC  
tPAUSE  
tCO  
1
µs  
ms  
ns  
Pause between LED bit sequences  
LED_CLK to LED_DATA  
25  
1
VMDS-10242 VSC8658 Datasheet Revision 4.1  
69  
Electrical Specifications  
Figure 22 • Serial LED Timing  
tCYC  
tPAUSE  
LED_CLK  
tCO  
Bit 1  
Bit 2  
Bit 96  
LED_DATA  
Bit 1  
6.4  
Operating Conditions  
The following table shows the recommended operating conditions for the VSC8658 device.  
Table 80 • Recommended Operating Conditions  
Parameter  
Symbol Minimum Typical  
Maximum Unit  
Power supply voltage for VDDIO at 1.8 V VDDIO  
Power supply voltage for VDDIO at 2.5 V VDDIO  
Power supply voltage for VDDIO at 3.3 V VDDIO  
1.70  
2.37  
3.13  
3.13  
1.14  
1.80  
2.50  
3.30  
3.30  
1.20  
1.20  
1.90  
2.63  
3.47  
3.47  
1.26  
1.26  
90  
V
V
V
V
V
V
°C  
Power supply voltage for VDD33  
Power supply voltage for VDD12  
Power supply voltage for VDD12A  
Operating temperature(1)  
VDD33  
VDD12  
VDD12A 1.14  
T
0
1. Lower limit of specification is ambient temperature, and upper limit is case temperature.  
6.5  
Stress Ratings  
This section contains the stress ratings for the VSC8658 device.  
Warning Stresses listed in the following table may be applied to devices one at a time without causing  
permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these  
values for extended periods may affect device reliability.  
Table 81 • Stress Ratings  
Parameter  
Symbol  
VDDIO  
Minimum  
–0.5  
Maximum Unit  
DC input voltage on VDDIO supply pin  
DC input voltage on VDD33 supply pin  
DC input voltage on VDD12 supply pin  
DC input voltage on VDD12A supply pin  
DC input voltage on JTAG 5 V-tolerant pins  
DC input voltage on any non-supply pin  
Storage temperature  
4.0  
V
V
V
V
V
V
oC  
V
VDD33  
–0.5  
4.0  
VDD12  
–0.5  
1.4  
VDD12A  
–0.5  
1.4  
V
DD(5 V)  
–0.5  
5.5  
VDD(PIN)  
TS  
–0.5  
VDD + 0.5  
150  
250  
–65  
Electrostatic discharge voltage, charged device  
model  
VESD_CDM –250  
Electrostatic discharge voltage, human body model VESD_HBM See note(1)  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
V
70  
Electrical Specifications  
1. This device has completed all required testing as specified in the JEDEC standard JESD22-A114,  
Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM), and complies with a Class 2  
rating. The definition of Class 2 is any part that passes an ESD pulse of 2000 V, but fails an ESD pulse of  
4000 V.  
Warning This device can be damaged by electrostatic discharge (ESD) voltage. Microsemi  
recommends that all integrated circuits be handled with appropriate precautions. Failure to observe  
proper handling and installation procedures may adversely affect reliability of the device.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
71  
Pin Descriptions  
7
Pin Descriptions  
The VSC8658 device has 444 pins, which are described in this section.  
7.1  
Pin Diagram  
The following illustrations show the pin diagram for the VSC8658 device. For clarity, the device is shown  
in two halves in Figure 23, page 72 and Figure 24, page 73.  
Figure 23 • Pin Diagram, Left Side, Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
VSS  
VSS  
TXVPB_6 TXVPC_6 TXVPD_6 TXVPA_5 TXVPB_5 TXVPC_5 TXVPD_5 TXVPA_4 TXVPB_4 TXVPC_4 TXVPD_4  
TXVNB_6 TXVNC_6 TXVND_6 TXVNA_5 TXVNB_5 TXVNC_5 TXVND_5 TXVNA_4 TXVNB_4 TXVNC_4 TXVND_4  
A
B
VSS  
TXVPA_6 TXVNA_6 VDD33  
TXVPD_7 TXVND_7 VDD33  
TXVPC_7 TXVNC_7 VDD12A  
VDD33  
VDD33  
VDD12A  
VSS  
VSS  
NC  
VDD12A  
VDD12A  
VSS  
VSS  
VSS  
VSS  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD12A  
VDD12 A  
C
VDD12A  
D
E
TXVPB_7 TXVNB_7  
TXVPA_7 TXVNA_7  
VSS  
NC  
F
REF_REXT_B  
REF_FILT_B  
VSS  
G
VSS  
XTAL1/REFCLK  
VSS  
VSS  
XTAL2  
VSS  
VSS  
H
LED3_7  
LED1_7  
LED3_5  
LED1_5  
VDD33  
LED3_4  
LED1_4  
NTRST  
M DC  
LED2_7  
LED0_7  
LED2_5  
LED0_5  
VDD33  
LED2_4  
LED0_4  
TDO  
J
VDD12  
VDD12  
VDD12  
VDD12  
VDD12  
VDD12  
VDD12  
VDD12  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
LED3_6  
LED1_6  
VDD33  
EECLK  
LED2_6  
LED0_6  
VDD33  
EEDAT  
L
VSS  
VSS  
VSS  
VSS  
VSS  
M
VSS  
VSS  
VSS  
VSS  
VSS  
N
VSS  
VSS  
VSS  
VSS  
VSS  
P
PLLM ODE OSCEN  
VSS  
VSS  
VSS  
VSS  
VSS  
R
TM S  
TDI  
TCK  
VSS  
VSS  
VSS  
VSS  
VSS  
T
VDDIO  
VDDIO  
VDD33  
VSS  
VDD12  
VDD12  
VDD12  
VDD12  
VDD12  
U
CLKOUT  
M DIO  
V
M DINT_0 M DINT_1 MDINT_2 M DINT_3  
M DINT_4 M DINT_5 MDINT_6 M DINT_7  
W
Y
NRESET  
VSS  
VSS  
VDDIO  
VDD12A  
VSS  
AA  
AB  
AC  
AD  
AE  
AF  
SER_DON_7 SER_DOP_7  
SER_DIN_7 SER_DIP_7  
MAC_RDN_7 MAC_RDP_7  
MAC_TDN_7 MAC_TDP_7  
VSS  
VSS  
VDD12A  
VDD33  
VSS  
VSS  
VDD12A  
VDD33  
VDD12A  
VDD12A  
VSS  
VSS  
VSS  
VSS  
VDD12A  
VDD33  
VDD12A  
VDD33  
VDD12A  
VSS  
VDD33  
SER_DoP_6 SER_DIP_6 MAC_RDP_6 MAC_TDP_6 SER_DoP_5 SER_DiP_5 MAC_RDP_5 MAC_TDP_5 SER_DoP_4 SER_DiP_4 MAC_RDP_4 MAC_TDP_4  
SER_DoN_6 SER_DIN_6 MAC_RDN_6 MAC_TDN_6 SER_DoN_5 SER_DiN_5 MAC_RDN_5 MAC_TDN_5 SER_ DoN_4 SER_DiN_4 MAC_RDN_4 MAC_TDN_4  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
72  
 
Pin Descriptions  
Figure 24 • Pin Diagram, Right Side, Top View  
14  
15  
16  
17  
18  
19  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
TXVPA_3 TXVPB_3 TXVPC_3 TXVPD_3 TXVPA_2 TXVPB_2 TXVPC_2 TXVPD_2 TXVPA_1 TXVPB_1 TXVPC_1 TXVPD_1  
TXVNA_3 TXVNB_3 TXVNC_3 TXVND_3 TXVNA_2 TXVNB_2 TXVNC_2 TXVND_2 TXVNA_1 TXVNB_1 TXVNC_1 TXVND_1  
A
B
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD33  
VDD33  
VDD33  
VDD33  
VSS  
VSS  
VDD12A  
VDD12A  
VDD12A  
VDD12A  
VDD33  
VDD33  
NC  
VDD33  
VSS  
VSS  
VDD33  
C
VDD33  
VDD12A  
TXVNA_0 TXVPA_0  
D
VDD12A TXVNB_0 TXVPB_0  
E
REF_FILT_A  
REF_REXT_A  
VDD33  
VDD33  
VDD33  
VSS  
VDD33  
NC  
TXVNC_0 TXVPC_0  
TXVND_0 TXVPD_0  
F
G
VDD33  
CM ODE7  
VSS  
H
CM ODE6 CM ODE5 CM ODE4  
CM ODE3 CM ODE2 CM ODE1  
J
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD12  
VDD12  
VDD12  
VDD12  
VDD12  
VDD12  
VDD12  
VDD12  
K
VSS  
CM ODE0  
VDD33  
LED0_2  
LED2_2  
LED0_3  
LED2_3  
GPIO11  
LED1_0  
LED3_0  
LED1_1  
LED3_1  
VDD33  
GPIO14  
GPIO12  
GPIO8  
LED0_0  
LED2_0  
LED0_1  
LED2_1  
VDD33  
GPIO15  
GPIO13  
GPIO9  
L
VSS  
VSS  
VSS  
VSS  
VSS  
VDD33  
LED1_2  
LED3_2  
LED1_3  
LED3_3  
GPIO10  
M
VSS  
VSS  
VSS  
VSS  
VSS  
N
VSS  
VSS  
VSS  
VSS  
VSS  
P
VSS  
VSS  
VSS  
VSS  
VSS  
R
VSS  
VSS  
VSS  
VSS  
VSS  
T
VDD12  
VDD12  
VDD12  
VDD12  
VDD12  
U
GPIO6  
GPIO2  
GPIO0  
/
/
/
SIGDET_6 GPIO7  
/
/
/
SIGDET_7  
SIGDET_3  
SIGDET_1  
V
SIGDET_2  
SIGDET_0  
GPIO3  
GPIO1  
GPIO4  
/
SIGDET_4  
GPIO5 / SIGDET_5  
W
Y
VSS  
VSS  
VDD33  
VDD33  
VSS  
VSS  
AA  
AB  
AC  
AD  
AE  
AF  
MAC_TDP _0 MAC_TDN_0  
MAC_RDP_0 MAC_RDN_0  
VDD12A  
VSS  
VDD12A  
VSS  
VDD12A  
VSS  
VSS  
VDD12A  
VSS  
VDD12A  
VDD12A  
VDD12A  
VDD33  
VSS  
VSS  
VSS  
VDD12A SER_DIP_0  
VSS  
SER_DIN_0  
VDD33  
VDD33  
VDD33  
VSS  
SER_DOP_0 SER_DON_0  
VSS  
SER_DOP_3 SER_DIP_3 MAC_RDP_3 MAC_TDP_3 SER_DOP_2 SER_DIP_2 MAC_RDP_2 MAC_TDP_2 SER_DOP_1 SER_DIP_1 MAC_RDP_1 MAC_TDP_1  
SER_DON_3 SER_DIN_3 MAC_RDN_3 MAC_TDN_3 SER_DON_2 SER_DIN_2 MAC_RDN_2 MAC_TDN_2 SER_DON_1 SER_DIN_1 MAC_RDN_1 MAC_TDN_1  
14  
15  
16  
17  
18  
19  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
7.2  
Pin Identifications  
This section contains the functional pin descriptions for the VSC8658 device.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
73  
Pin Descriptions  
7.2.1  
SerDes MAC Interface  
The following table shows the pins associated with the device SerDes MAC interface.  
Table 82 • SerDes MAC Interface Pins  
Pin  
Name  
Type  
Description  
AD2  
AE5  
AE9  
AE13  
AE17  
AE21  
AE25  
AA25  
AD1  
MAC_TDP_7  
MAC_TDP_6  
MAC_TDP_5  
MAC_TDP_4  
MAC_TDP_3  
MAC_TDP_2  
MAC_TDP_1  
MAC_TDP_0  
MAC_TDN_7  
MAC_TDN_6  
MAC_TDN_5  
MAC_TDN_4  
MAC_TDN_3  
MAC_TDN_2  
MAC_TDN_1  
MAC_TDN_0  
IDIFF  
SerDes MAC transmitter input pair.  
AF5  
AF9  
AF13  
AF17  
AF21  
AF25  
AA26  
AC2  
AE4  
AE8  
AE12  
AE16  
AE20  
AE24  
AB25  
AC1  
MAC_RDP_7  
MAC_RDP_6  
MAC_RDP_5  
MAC_RDP_4  
MAC_RDP_3  
MAC_RDP_2  
MAC_RDP_1  
MAC_RDP_0  
MAC_RDN_7  
MAC_RDN_6  
MAC_RDN_5  
MAC_RDN_4  
MAC_RDN_3  
MAC_RDN_2  
MAC_RDN_1  
MAC_RDN_0  
ODIFF  
SerDes MAC receiver output pair.  
AF4  
AF8  
AF12  
AF16  
AF20  
AF24  
AB26  
7.2.2  
SerDes Media Interface  
The following table shows the pins associated with the device SerDes media interface.  
Table 83 • SerDes Media Interface Pins  
Pin  
Signal Name  
Type  
Description  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
74  
Pin Descriptions  
Table 83 • SerDes Media Interface Pins (continued)  
AA2  
AE2  
AE6  
AE10  
AE14  
AE18  
AE22  
AD25  
AA1  
SER_DOP_7  
SER_DOP_6  
SER_DOP_5  
SER_DOP_4  
SER_DOP_3  
SER_DOP_2  
SER_DOP_1  
SER_DOP_0  
SER_DON_7  
SER_DON_6  
SER_DON_5  
SER_DON_4  
SER_DON_3  
SER_DON_2  
SER_DON_1  
SER_DON_0  
ODIFF  
SerDes media transmitter output pair.  
AF2  
AF6  
AF10  
AF14  
AF18  
AF22  
AD26  
AB2  
AE3  
AE7  
AE11  
AE15  
AE19  
AE23  
AC25  
AB1  
SER_DIP_7  
SER_DIP_6  
SER_DIP_5  
SER_DIP_4  
SER_DIP_3  
SER_DIP_2  
SER_DIP_1  
SER_DIP_0  
SER_DIN_7  
SER_DIN_6  
SER_DIN_5  
SER_DIN_4  
SER_DIN_3  
SER_DIN_2  
SER_DIN_1  
SER_DIN_0  
IDIFF  
SerDes media receiver input pair.  
AF3  
AF7  
AF11  
AF15  
AF19  
AF23  
AC26  
7.2.3  
GPIO and SIGDET  
The following table shows the pins associated with the device GPIO and SIGDET.  
Table 84 • GPIO and SIGDET Pins  
Pin  
Name  
Type  
Description  
T26  
T25  
U26  
U25  
U24  
U23  
V26  
V25  
V24  
V23  
W26  
W25  
W24  
W23  
Y24  
Y23  
GPIO15  
GPIO14  
GPIO13  
GPIO12  
GPIO11  
GPIO10  
GPIO9  
GPIO8  
GPIO7 / SIGDET_7  
GPIO6 / SIGDET_6  
GPIO5 / SIGDET_5  
GPIO4 / SIGDET_4  
GPIO3 / SIGDET_3  
GPIO2 / SIGDET_2  
GPIO1 / SIGDET_1  
GPIO0 / SIGDET_0  
IPD/O  
General purpose input/output (GPIO). Eight  
dedicated GPIO pins are provided. Additionally, the  
eight SIGDET pins can be configured to become  
GPIO pins if not used.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
75  
Pin Descriptions  
7.2.4  
Twisted Pair Interface  
The following table lists the device pins associated with the device two-wire, twisted pair interface.  
Table 85 • Twisted Pair Interface Pins  
Pin  
Name  
Type  
Description  
G1  
C1  
A6  
A10  
A14  
A18  
A22  
D26  
TXVPA_7  
TXVPA_6  
TXVPA_5  
TXVPA_4  
TXVPA_3  
TXVPA_2  
TXVPA_1  
TXVPA_0  
ADIFF  
TX/RX channel A positive signal  
G2  
C2  
B6  
B10  
B14  
B18  
B22  
D25  
TXVNA_7  
TXVNA_6  
TXVNA_5  
TXVNA_4  
TXVNA_3  
TXVNA_2  
TXVNA_1  
TXVNA_0  
ADIFF  
ADIFF  
ADIFF  
ADIFF  
ADIFF  
TX/RX channel A negative signal  
TX/RX channel B positive signal  
TX/RX channel B negative signal  
TX/RX channel C positive signal  
TX/RX channel C negative signal  
F1  
A3  
A7  
A11  
A15  
A19  
A23  
E26  
TXVPB_7  
TXVPB_6  
TXVPB_5  
TXVPB_4  
TXVPB_3  
TXVPB_2  
TXVPB_1  
TXVPB_0  
F2  
B3  
B7  
B11  
B15  
B19  
B23  
E25  
TXVNB_7  
TXVNB_6  
TXVNB_5  
TXVNB_4  
TXVNB_3  
TXVNB_2  
TXVNB_1  
TXVNB_0  
E1  
A4  
A8  
A12  
A16  
A20  
A24  
F26  
TXVPC_7  
TXVPC_6  
TXVPC_5  
TXVPC_4  
TXVPC_3  
TXVPC_2  
TXVPC_1  
TXVPC_0  
E2  
B4  
B8  
B12  
B16  
B20  
B24  
F25  
TXVNC_7  
TXVNC_6  
TXVNC_5  
TXVNC_4  
TXVNC_3  
TXVNC_2  
TXVNC_1  
TXVNC_0  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
76  
Pin Descriptions  
Table 85 • Twisted Pair Interface Pins (continued)  
Pin  
Name  
Type  
Description  
D1  
A5  
A9  
A13  
A17  
A21  
A25  
G26  
TXVPD_7  
TXVPD_6  
TXVPD_5  
TXVPD_4  
TXVPD_3  
TXVPD_2  
TXVPD_1  
TXVPD_0  
ADIFF  
TX/RX channel D positive signal  
D2  
B5  
B9  
B13  
B17  
B21  
B25  
G25  
TXVND_7  
TXVND_6  
TXVND_5  
TXVND_4  
TXVND_3  
TXVND_2  
TXVND_1  
TXVND_0  
ADIFF  
TX/RX channel D negative signal  
7.2.5  
Serial Management Interface  
The following table lists the device pins associated with the device serial management interface (SMI).  
Note that the pins in this table, except for EECLK and EEDAT, are referenced to VDDIO and can be set to  
a 1.8 V, 2.5 V, or 3.3 V power supply. The EECLK and EEDAT pins are instead referenced to VDD33.  
Table 86 • SMI Pins  
Pin  
Name  
Type  
Description  
U3  
MDC  
I
Management data clock. A 0 MHz to 12.5 MHz reference  
input is used to clock serial MDIO data into and out of the  
PHY.  
V3  
MDIO  
OD  
Management data input/output pin. Serial data is written  
or read from this pin bidirectionally between the PHY and  
Station Manager, synchronously on the positive edge of  
MDC. One external pull-up resistor is required at the  
Station Manager, and its value depends on the MDC clock  
frequency and the total sum of the capacitive loads from  
the MDIO pins.  
Y4  
Y3  
Y2  
Y1  
W4  
W3  
W2  
W1  
MDINT_7  
MDINT_6  
MDINT_5  
MDINT_4  
MDINT_3  
MDINT_2  
MDINT_1  
MDINT_0  
OS/OD Management interrupt signal. Upon reset the device will  
configure these pins as active-low (open drain) or active-  
high (open source) based on the polarity of an external  
10 kresistor connection. These pins can be tied  
together in a wired-OR configuration with only a single  
pull-up or pull-down resistor.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
77  
Pin Descriptions  
Table 86 • SMI Pins (continued)  
Pin  
Name  
Type  
Description  
P2  
EEDAT  
IPD/O  
(Optional) EEPROM serial I/O data. Used to configure  
PHYs in a system without a Station Manager. Connect to  
the SDA pin of the ATMEL “AT24CXXX” serial EEPROM  
device family.  
The VSC8658 device determines that an external  
EEPROM is present by monitoring the EEDAT pin at  
power-up or when NRESET is de-asserted. If EEDAT has  
a 4.7 kexternal pull-up resistor, the VSC8658 assumes  
an EEPROM is present. The EEDAT pin can be left  
floating or grounded to indicate no EEPROM.  
P1  
EECLK  
O
(Optional) EEPROM serial output clock. Used to configure  
PHYs in a system without a station manager. Connect to  
the SCL pin of the ATMEL “AT24CXXX” serial EEPROM  
device family.  
AA3  
V1  
NRESET  
CLKOUT  
IPU  
O
Device reset. Active low input that powers down the  
device and sets the register bits to their default state.  
Clock output can be enabled or disabled and also output  
a reference clock frequency of 125 MHz or 156.25 MHz  
using CMODE or register setting. This pin is not active  
when NRESET is asserted. When disabled, the pin is held  
low.  
7.2.6  
JTAG  
The following table lists the pins associated with the device JTAG testing facility.  
Table 87 • JTAG Pins  
Pin  
U1  
T4  
T1  
T2  
T3  
Name  
TDI  
Type  
IPU5V  
O
Description  
JTAG test serial data input.  
JTAG test serial data output.  
JTAG test mode select.  
JTAG test clock input.  
TDO  
TMS  
TCK  
IPU5V  
IPU5V  
IPU5V  
NTRST  
JTAG reset. If JTAG is not used, then tie this pin to VSS  
(ground) with a pull-down resistor.  
7.2.7  
Power Supply  
The following table lists the device power supply pins.  
Table 88 • Power Supply Pins  
Pin  
Name  
Type  
Description  
C3 C4 C10 C11 C12 C16 C17 C21 C23 VDD33  
C25 D3 D4 D10 D11 D12 D16 D17 D21  
D22 F24 G23 H23 H24 J23 M23 M24  
N1 N2 N3 N4 R25 R26 U4 AA23 AB23  
AD3 AD5 AD7 AD11 AD12 AD14 AD17  
AD20 AD21  
3.3 V  
General 3.3 V power supply  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
78  
Pin Descriptions  
Table 88 • Power Supply Pins (continued)  
Pin  
Name  
Type  
Description  
U2 V2 AB4  
VDDIO  
3.3 V  
2.5 V  
1.8 V  
I/O power supply  
K8 K19 L8 L19 M8 M19 N8 N19 P8  
P19 R8 R19 T8 T19 U8 U9 U10 U11  
U12 U13 U14 U15 U16 U17 U18 U19  
VDD12  
1.2 V  
Internal digital core voltage  
C7 C13 C19 C20 D6 D7 D13 D19 D20 VDD12A  
D23 E3 E4 E24 AB24 AC4 AC5 AC7  
AC8 AC11 AC12 AC13 AC15 AC16  
1.2 V  
1.2 V analog power requiring additional PCB power  
supply filtering  
AC18 AC19 AC20 AC24 AD8 AD19  
A2 B1 B2 B26 C5 C8 C9 C14 C15 C18 VSS  
C24 C26 D5 D8 D9 D14 D15 D18 D24  
F3 H1 H2 H3 H4 H26 K1 K2 K9 K10  
K11 K12 K13 K14 K15 K16 K17 K18  
K23 L9 L10 L11 L12 L13 L14 L15 L16  
L17 L18 L23 M9 M10 M11 M12 M13  
M14 M15 M16 M17 M18 N9 N10 N11  
N12 N13 N14 N15 N16 N17 N18 P9  
P10 P11 P12 P13 P14 P15 P16 P17  
P18 R9 R10 R11 R12 R13 R14 R15  
R16 R17 R18 T9 T10 T11 T12 T13 T14  
T15 T16 T17 T18 V4 Y25 Y26 AA4  
AA24 AB3 AC3 AC6 AC9 AC10 AC14  
AC17 AC21 AC22 AC23 AD4 AD6 AD9  
AD10 AD13 AD15 AD16 AD18 AD22  
AD23 AD24 AE1 AE26  
0 V  
General device ground  
Although certain function pins may not be used for a specific application, all power supply pins must be  
connected to their respective voltage input.  
Table 89 • Power Supply and Associated Function Pins  
Nominal  
Pin  
Voltage  
Associated Functional Pins  
VDD33  
3.3 V  
LED[3:0]_n, GPIO[15:0], EECLK, EEDAT, JTAG (5), XTAL1,  
XTAL2, CMODE, TXVP_n, TXVN_n, REF_FILT, REF_REXT  
VDDIO  
1.8 V, 2.5 V,  
3.3 V  
MDC, MDIO, MDINT_n, nRESET, CLKOUT  
VDD12A  
VDD12  
1.2 V  
1.2 V  
MAC_RDP/N_n, MAC_TDP/N_n  
N/A (Internal Core Voltage)  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
79  
Pin Descriptions  
7.2.8  
Miscellaneous  
The following table lists pins not associated with a particular interface or facility on the device.  
Table 90 • Miscellaneous Pins  
Pin  
Name  
Type  
Description  
H25  
J24  
J25  
J26  
K24  
K25  
K26  
L24  
CMODE7  
CMODE6  
CMODE5  
CMODE4  
CMODE3  
CMODE2  
CMODE1  
CMODE0  
IA  
Configuration mode (CMODE) pins. For more  
information, see CMODE, page 55.  
J1  
XTAL1/REFCLK I  
Crystal oscillator input. If OSCEN=high then a  
25 MHz parallel resonant crystal with +/–50 ppm  
frequency tolerance should be connected across  
XTAL1 and XTAL2. A 33 pF capacitor should also  
tie the XTAL1 pin to ground.  
Reference clock input. If OSCEN=low, the clock  
input frequency can either be 25 MHz  
(PLLMODE=0) or 125 MHZ (PLLMODE is high).  
J2  
XTAL2  
OCRYST Crystal oscillator output. The crystal should be  
connected across XTAL1 and XTAL2. A 33 pF  
capacitor should also tie the XTAL2 pin to ground.  
If not using a crystal oscillator, this output pin can  
be left floating if driving XTAL1/REFCLK with a  
reference clock.  
R2  
R1  
OSCEN  
IPD  
Oscillator enable. This pin is sampled on the rising  
edge of NRESET. If HIGH, then the on-chip  
oscillator circuit is enabled. If low (or left floating),  
the oscillator circuit is disabled and the device  
must be supplied with a 25 MHz or 125 MHz  
reference clock to the REFCLK pin  
PLLMODE  
IPD  
PLL mode input select. Sampled on power-up or  
reset. If PLLMODE is low, then REFCLK must be  
25 MHz. If PLLMODE is high, then REFCLK must  
be 125 MHz.  
J3 J4 K3 K4  
L1 L2 M1 M2  
L3 L4 M3 M4  
P3 P4 R3 R4  
T23 T24 R23 R24  
P23 P24 N23 N24  
P25 P26 N25 N26  
M25 M26 L25 L26  
LED[3:0]_7  
LED[3:0]_6  
LED[3:0]_5  
LED[3:0]_4  
LED[3:0]_3  
LED[3:0]_2  
LED[3:0]_1  
LED[3:0]_0  
O
LED direct-drive outputs. All LEDs pins are active-  
low. A serial LED stream can also be  
implemented. For more information about LED  
operation, see LED Mode Select, page 43.  
F23  
E23  
F4  
REF_REXT_A ABIAS  
REF_FILT_A ABIAS  
REF_REXT_B ABIAS  
Reference external connects to an external 2 KΩ  
(1%) resistor to analog ground.  
Reference filter connects to an external 1 µF  
capacitor to analog ground.  
Reference external connects to an external 2 KΩ  
(1%) resistor to analog ground.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
80  
Pin Descriptions  
Table 90 • Miscellaneous Pins (continued)  
Pin  
Name  
Type  
Description  
G4  
REF_FILT_B  
ABIAS  
Reference filter connects to an external 1 µF  
capacitor to analog ground.  
G3 C6 C22 G24  
NC  
NC  
These pins are no connects. Do not connect them  
together or to ground. Leave these pins  
unconnected (floating).  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
81  
Package Information  
8
Package Information  
The VSC8658 device is available in two package types. VSC8658HJ is a 444-pin, thermally enhanced,  
plastic ball grid array (BGA) with a 27 mm × 27 mm body size, 1 mm pin pitch, and a 2.36 mm maximum  
height. The device is also available in a lead(Pb)-free package, VSC8658XHJ.  
Lead(Pb)-free products from Microsemi comply with the temperatures and profiles defined in the joint  
IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC  
standard.  
This section provides the package drawing, thermal specifications, and moisture sensitivity rating for the  
VSC8658 device.  
8.1  
Package Drawing  
The following illustration shows the package drawing for the VSC8658 device. The drawing contains the  
top view, bottom view, side view, dimensions, tolerances, and notes.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
82  
Package Information  
Figure 25 • Package Drawing  
Top View  
Bottom View  
0.10 M  
0.25 M  
C
C
A
B
Pin #1 corner  
0.50~ 0.70 ( 44 )  
2
4
6
8
10 12 14 16 18 20 22 24 26  
9 11 13 15 17 19 21 23 25  
26 24 22 20 18 16 14 12 10  
25 23 21 19 17 15 13 11  
8
6
4
2
1
3
5
7
9
7
5
3
1
A
C
A
C
B
D
F
B
D
F
E
E
G
J
G
J
H
K
M
P
H
K
M
P
L
L
N
R
N
R
T
T
U
W
AA  
AB  
AC  
AD  
AE  
AF  
U
V
Y
V
Y
W
AA  
AB  
AC  
AD  
AE  
AF  
E
1.00  
4.00 * 45 (4 )  
24.00 Ref.  
B
Heat slug  
19.0~20.0  
25.00  
D
A
27.00 +/-0.20  
0.06  
0.30 S C A S B S  
0.50 S C D S E S  
0.20 (4 )  
Side View  
30 Typ.  
C
Seating plane  
Note:  
All dimensions are in millimeters (mm).  
8.2  
Thermal Specifications  
Thermal specifications for this device are based on the JEDEC standard EIA/JESD51-2 and have been  
modeled using a four-layer test board with two signal layers, a power plane, and a ground plane (2s2p  
PCB). For more information, see the JEDEC standard.  
Table 91 • Thermal Resistances  
θJA (°C/W) vs. Airflow (ft/min)  
Part Order Number  
VSC8658HJ  
θJC  
4.1  
4.1  
θJB  
7.3  
7.3  
0
100  
200  
13  
13.4  
13.4  
13.2  
13.2  
VSC8658XHJ  
13  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
83  
Package Information  
To achieve results similar to the modeled thermal resistance measurements, the guidelines for board  
design described in the JEDEC standard EIA/JESD51 series must be applied. For information about  
specific applications, see the following:  
EIA/JESD51-5, Extension of Thermal Test Board Standards for Packages with Direct Thermal  
Attachment Mechanisms  
EIA/JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
EIA/JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
EIA/JESD51-10, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements  
EIA/JESD51-11, Test Boards for Through-Hole Area Array Leaded Package Thermal Measurements  
8.3  
Moisture Sensitivity  
Moisture sensitivity level ratings for Microsemi products comply with the joint IPC and JEDEC standard  
IPC/JEDEC J-STD-020.  
VSC8658HJ is rated moisture sensitivity level 3 or better.  
VSC8658XHJ is rated moisture sensitivity level 4.  
For more information, see the IPC and JEDEC standard.  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
84  
Design Considerations  
9
Design Considerations  
This section provides information about design issues for the VSC8658 device.  
9.1  
PHY Address ID (Register 23E, Bits 15 to 11)  
Issue: The PHY Address ID in Register 23E does not function as intended. It can only indicate the  
physical PHY port numbers 0 through 7 instead of those set through the CMODE pins.  
Implications: A user needs to be aware that this address only represents the physical port number as  
opposed to the actually PHY address on the MDC/MDIO bus.  
Workaround: Software needing this feature must detect which specific device it is communicating to and  
add a necessary offset to the address value to process the correct address.  
9.2  
9.3  
JTAG Input High Voltage at 2.1 V  
Issue: The JTAG pins do not meet the VIH(min) requirements of the CMOS and LVTTL standards. At  
certain PVT corners, the minimum is 2.1 V.  
Implications: None.  
Workaround: None.  
First SMI Write Fails After Software Reset  
Issue: After applying software reset (using either register 0, bit 15 or the NSRESET pin), the first  
subsequent SMI write operation into register 4 (auto-negotiation advertisement) or register 9  
(1000BASE-T control) does not work. This issue only occurs if the first SMI write after software reset is  
into register 4 or 9. This issue does not occur if any kind of SMI transaction (either read or write) is  
applied to any register between the time of the software reset and the SMI write into register 4 or 9.  
Implications: The PHY may operate unexpectedly, because settings for registers 4 and 9 remain at the  
reset value. There are no such implications after either hardware reset or power-down events.  
Workaround: Writing “0x0000” into register 31 after every software reset avoids this issue, and  
subsequent SMI writes into register 4 or 9 succeed.  
9.4  
9.5  
LED3 Port 7 Coupling Issue into XTAL Clock Pin  
Issue: Whenever LED3 Port 7 blinks, the resulting noise couples into the XTAL clock input pin. This  
causes additional noise on the transmit SerDes interface in the form of transmit jitter. In this case,  
transmit jitter increases to a value in the range of 360 ps to 380 ps. This behavior is not seen with other  
LED pins.  
Implications: Using both the LED3 Port 7 and XTAL pins causes a higher level of transmit jitter on the  
SerDes interface of the device.  
Workaround: For better performance, avoid using the LED3 Port 7 pin as an LED indication.  
100BASE-FX Clock Data Recovery Improvement  
Issue: It is possible to improve the overall receive data performance in 100BASE-FX media by changing  
the standard settings for the Clock Data Recovery (CDR) block.  
Implications: While there is a low chance of seeing an issue in 100BASE-FX, it is recommended to  
implement this script.  
Workaround: There is a software workaround for this problem that can improve the 100BASE-FX CDR.  
Change the CDR settings using the following script at PHY initialization time:  
PhyWrite( PortNo, Register (dec), 16_bit_unsigned_data(hex) );  
16_bit_unsigned_data = PhyRead( PortNo, Register (dec) );  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
85  
Design Considerations  
PhyWrite( PortNo, 31, 0x52b5 ); // Switch to internal block  
PhyWrite( PortNo, 16, 0xae0e ); // Read CDR internal register  
Reg18 = PhyRead( PortNo, 18 );  
Reg17 = PhyRead( PortNo, 17 );  
Reg17 = Reg17 & 0xffef;  
// Clear bit 4 of this register  
PhyWrite( PortNo, 18, Reg18 );  
PhyWrite( PortNo, 17, Reg17 );  
PhyWrite( PortNo, 16, 0x8e0e ); // Write CDR internal register  
PhyWrite( PortNo, 31, 0x0000 ); // Goto Normal Page  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
86  
Ordering Information  
10 Ordering Information  
The VSC8658 device is available in two package types. VSC8658HJ is a 444-pin, thermally enhanced,  
plastic ball grid array (BGA) with a 27 mm × 27 mm body size, 1 mm pin pitch, and a 2.36 mm maximum  
height. The device is also available in a lead(Pb)-free package, VSC8658XHJ.  
Lead(Pb)-free products from Microsemi comply with the temperatures and profiles defined in the joint  
IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC  
standard.  
The following table lists the ordering information for the VSC8658 device.  
Table 92 • Ordering Information  
Part Order Number Description  
VSC8658HJ  
444-pin, thermally enhanced, plastic BGA with a 27 mm × 27 mm body size,  
1 mm pin pitch, and a 2.36 mm maximum height  
VSC8658XHJ  
Lead(Pb)-free, 444-pin, thermally enhanced, plastic BGA with a 27 mm ×  
27 mm body size, 1 mm pin pitch, and a 2.36 mm maximum height  
VMDS-10242 VSC8658 Datasheet Revision 4.1  
87  

相关型号:

VSC8658XHJ

Octal 10/100/1000BASE-T PHY and 100BASEFX/1000BASE-X SerDes
MICROSEMI

VSC8664XIC-03

Ethernet Transceiver, PBGA256, BGA-256
MICROSEMI

VSC870

High Performance Serial Backplane Transceiver
VITESSE

VSC870TX

High Performance Serial Backplane Transceiver
VITESSE

VSC872

80 Gb/s Intelligent Switch Fabric
VITESSE

VSC874

10 Gbps Queue Manager with Integrated SPI4.2 Interface
VITESSE

VSC880

High Performance 16x16 Serial Crosspoint Switch
VITESSE

VSC880TY

High Performance 16x16 Serial Crosspoint Switch
VITESSE

VSC882

80 Gb/s Intelligent Switch Fabric
VITESSE

VSC9110

Target Specification
VITESSE

VSC9110SA

ATM Network Interface, 1-Func, CMOS, PBGA256, THERMALLY ENHANCED, BGA-256
VITESSE

VSC9111SB

Transceiver, 1-Func, CMOS, PBGA352, BGA-352
VITESSE