MT42C4256DCJ-8/883C [MICROSS]

Video DRAM, 256KX4, 80ns, CMOS, CDSO28, CERAMIC, SOJ-28;
MT42C4256DCJ-8/883C
型号: MT42C4256DCJ-8/883C
厂家: MICROSS COMPONENTS    MICROSS COMPONENTS
描述:

Video DRAM, 256KX4, 80ns, CMOS, CDSO28, CERAMIC, SOJ-28

动态存储器 CD 内存集成电路
文件: 总38页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
256K x 4 DRAM  
VRAM  
WITH 512 x 4 SAM  
AVAILABLE AS MILITARY  
SPECIFICATION  
PIN ASSIGNMENT (Top View)  
SMD 5962-89497  
MIL-STD-883  
28-Pin DIP  
(400 MIL)  
28-Pin SOJ  
28-Pin LCC  
FEATURES  
SC  
SDQ1  
SDQ2  
TR/OE  
DQ1  
1
2
3
4
5
6
7
8
9
28 Vss  
SC  
SDQ1  
SDQ2  
TR/OE  
DQ1  
1
2
3
4
5
6
7
8
9
28 Vss  
27 SDQ4  
26 SDQ3  
25 SE  
Industry standard pinout, timing and functions  
High-performance, CMOS silicon-gate process  
Single +5V ±10% power supply  
Inputs and outputs are fully TTL compatible  
Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR)  
and HIDDEN  
27 SDQ4  
26 SDQ3  
25 SE  
24 DQ4  
23 DQ3  
22 DSF  
21 CAS  
20 QSF  
24 DQ4  
23 DQ3  
22 DSF  
21 CAS  
20 QSF  
19 A0  
DQ2  
DQ2  
ME/WE  
NC  
ME/WE  
NC  
RAS  
RAS  
A0  
A8 10  
A6 11  
A5 12  
A4 13  
Vcc 14  
A8 10  
A6 11  
A5 12  
A4 13  
Vcc 14  
19  
512-cycle refresh within 8ms  
18 A1  
18 A1  
17 A2  
16 A3  
15 A7  
Optional FAST PAGE MODE access cycles  
Dual port organization: 256K x 4 DRAM port  
512 x 4 SAM port  
17 A2  
16 A3  
15 A7  
No refresh required for serial access memory  
Low power: 15mW standby; 275mW active, typical  
28-Pin FP  
(F-12)  
SPECIAL FUNCTIONS  
JEDEC Standard Function set  
PERSISTENT MASKED WRITE  
SPLIT READ TRANSFER  
WRITE TRANSFER/ SERIAL INPUT  
ALTERNATE WRITE TRANSFER  
BLOCK WRITE  
SC  
SDQ1  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
Vss  
SDQ4  
SDQ3  
SE  
DQ4  
DQ3  
DSF  
CAS  
QSF  
A0  
SDQ2  
TR/OE  
DQ1  
DQ2  
ME/WE  
NC  
RAS  
A8  
A6  
9
10  
11  
12  
13  
14  
OPTIONS  
MARKING  
Timing [DRAM, SAM (cycle/ access)]  
A1  
A2  
A3  
A7  
A5  
A4  
Vcc  
80ns, 30ns/ 25ns  
100ns, 30ns/ 27ns  
120ns, 35ns/ 35ns  
- 8  
-10  
-12  
Packages  
Ceramic SOJ  
DCJ No. 500  
Ceramic DIP (400 mil)  
Ceramic LCC  
Ceramic Flat Pack  
C
No. 109  
EC No. 203  
No. 302  
The DRAM portion ofthe VRAM is functionally identical  
to the MT4C4256 (256K x 4 DRAM). Four 512-bit data  
registers make up the SAM portion of the VRAM. Data I/ O  
and internal data transfer are accomplished using three  
separate bidirectional data paths; the 4-bit random access  
I/ O port, the four internal 512 bit wide paths between the  
DRAM and the SAM, and the 4-bit serial I/ O port for the  
SAM. The rest of the circuitry consists of the control, timing  
and address decoding logic.  
F
GENERAL DESCRIPTION  
The MT42C4256 883C is a high-speed, dual port CMOS  
dynamic random access memory or video RAM (VRAM)  
containing 1,048,576 bits. These bits may be accessed by a  
4-bit wide DRAM port or a 512 x 4-bit serial access memory  
(SAM) port. Data may be transferred bidirectionally be-  
tween the DRAM and the SAM.  
Each port may be operated asynchronously and indepen-  
dently of the other except when data is being transferred  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-27  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
internally. As with all DRAMs, the VRAM must be re-  
freshed to maintain data. Refresh cycles must be timed so  
that all 512 combinations of RAS addresses are executed at  
least every 8ms, (regardless of sequence). Micron recom-  
mends evenly spaced refresh cycles for maximum data  
integrity. An internal transfer between the DRAM and the  
SAM counts as a refresh cycle. The SAM portion of the  
VRAM is fully static and does not require any refresh.  
The operation and control of the MT42C4256 are opti-  
mized for high performance graphics and communication  
designs. The dual port architecture is well suited to buffer-  
ing the sequential data used in raster graphics display,  
serial and parallel networking and data communications.  
Special features, such as SPLIT READ TRANSFER and  
BLOCK WRITE allow further enhancements to system  
performance.  
FUNCTIONAL BLOCK DIAGRAM  
COLUMN  
MASK  
4
4
DRAM  
OUTPUT  
BUFFERS  
4
9
COLUMN DECODER  
8
DQ1  
DQ4  
512  
SENSE AMPLIFIERS  
512  
4
4
4
M
A
S
K
WRITE  
CONTROL  
LOGIC  
MUX  
4
DRAM  
INPUT  
BUFFERS  
4
4
4
4
512 x 512 x 4  
DRAM ARRAY  
A0-A8  
512  
9
9
RAS  
BLOCK  
WRITE  
CONTROL  
LOGIC  
TIMING  
GENERATOR  
&
CONTROL  
LOGIC  
CAS  
TR/OE  
ME/WE  
DSF  
SC  
SE  
MASKED WRITE  
CONTROL  
LOGIC  
MASK DATA  
REGISTER  
4
9
256  
256  
REFRESH  
COUNTER  
TRANSFER  
CONTROL  
TRANSFER  
GATE  
TRANSFER  
GATE  
LOWER  
SAM  
UPPER  
SAM  
SAM  
OUTPUT  
BUFFERS  
256  
256  
SDQ1  
SDQ4  
SAM LOCATION  
4
4
4
DECODER  
SAM  
INPUT  
BUFFERS  
9
9
SPLIT SAM  
STATUS & CONTROL  
QSF  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-28  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
PIN DESCRIPTIONS  
PIN  
NUMBERS  
SYMBOL  
TYPE  
DESCRIPTION  
1
SC  
Input  
Serial Clock: Clock input to the serial address counter for the SAM  
registers.  
4
TR/OE  
Input  
Transfer Enable: Enables an internal TRANSFER operation at RAS  
(H > L), or  
Output Enable: Enables the DRAM output buffers when taken LOW  
after RAS goes LOW (CAS must also be LOW), otherwise the  
output buffers are in a High-Z state.  
7
ME/WE  
Input  
Mask Enable: If ME/WE is LOW at the falling edge of RAS a  
MASKED WRITE cycle is performed, or  
Write Enable: ME/WE is also used to select a READ (ME/WE = H)  
or WRITE (ME/WE = L) cycle when accessing the DRAM. This  
includes a READ TRANSFER (ME/WE = H) or  
WRITE TRANSFER (ME/WE = L).  
25  
S
E
Input  
Serial Port Enable: SE enables the serial I/O buffers and allows a  
serial READ or WRITE operation to occur, otherwise the output  
buffers are in a High-Z state. SE is also used during a WRITE  
TRANSFER operation to indicate whether a WRITE TRANSFER or  
a SERIAL INPUT MODE ENABLE cycle is performed.  
22  
9
DSF  
RAS  
Input  
Input  
Special Function Select: DSF is used to indicate which special  
functions (BLOCK WRITE, MASKED WRITE vs. PERSISTENT  
MASKED WRITE, etc.) are used on a particular access cycle.  
Row Address Strobe: RAS is used to clock-in the 9 row-address bits  
and strobe the ME/WE, TR/OE, DSF, SE, CAS and DQ inputs. It  
also acts as the master chip enable and must fall for initiation of any  
DRAM or TRANSFER cycle.  
21  
/
A
S
Input  
Input  
Column Address Strobe: CAS is used to clock-in the 9 column-  
address bits, enable the DRAM output buffers (along with TR/OE),  
and strobe the DSF input.  
19, 18, 17,  
Address Inputs: For the DRAM operation, these inputs are multi-  
plexed and clocked by RAS and CAS to select one 4-bit word out of  
the 256K available. During TRANSFER operations, A0 to A8  
indicate the DRAM row being accessed (when RAS goes LOW) and  
the SAM start address (when CAS goes LOW).  
5, 6, 23, 24  
DQ1-DQ4  
Input/  
Output  
DRAM Data I/O: Data input/output for DRAM cycles; inputs for  
Mask Data Register and Color Register load cycles, and DQ and  
Column Mask inputs for BLOCK WRITE.  
2, 3, 26, 27  
SDQ1-SDQ4  
QSF  
Input/  
Output  
Serial Data I/O: Input, output, or High-Z.  
20  
8
Output  
Split SAM Status: QSF indicates which half of the SAM is being  
accessed. LOW if address is 0-255, HIGH if address is 256-511.  
NC  
No Connect: This pin should be left either unconnected or tied to  
ground.  
14  
28  
VCC  
VSS  
Supply  
Supply  
Power Supply: +5V ±10%  
Ground  
MT42C4256 883C  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
REV. 3/97  
DS000016  
3-29  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
FUNCTIONAL DESCRIPTION  
The MT42C4256 may be divided into three functional  
blocks (see Figure 1): the DRAM, the transfer circuitry, and  
the SAM. All of the operations described below are shown  
in the AC Timing Diagrams section of this data sheet and  
summarized in the Truth Table.  
The 18 address bits that are used to select a 4-bit word  
from the 262,144 available are latched into the chip using  
the A0-A8, RAS and CAS inputs. First, the 9 row-address  
bits are set up on the address inputs and clocked into the  
part when RAS transitions from HIGH-to-LOW. Next, the  
9 column address bits are set up on the address inputs and  
clocked-in when CAS goes from HIGH-to-LOW.  
Note:  
For dual-function pins, the function not being  
discussed will be surrounded by parentheses. For  
example, the TR/OE pin will be shown as TR/(OE) in  
references to transfer operations.  
Note:  
RAS also acts as a “master” chip enable for the  
VRAM. If RAS is inactive, HIGH, all other DRAM  
control pins (CAS, TR/OE, ME/WE, etc.) are “don’t  
care” andmaychangestatewithout effect. NoDRAM  
or TRANSFER cycles will be initiated without RAS  
falling.  
DRAM OPERATION  
DRAM REFRESH  
Like any DRAM based memory, the MT42C4256 VRAM  
must be refreshed to retain data. All 512 row address  
combinationsmust beaccessed within 8ms.TheMT42C4256  
supports CAS-BEFORE-RAS, RAS-ONLY and HIDDEN  
types of refresh cycles.  
For the CAS-BEFORE-RAS REFRESH cycle, the row ad-  
dresses are generated and stored in an internal address  
counter. The user need not supply any address data, and  
simply must perform 512 CAS-BEFORE-RAS cycles within  
the 8ms time period.  
The refresh address must be generated externally and  
applied to A0-A8 inputs for RAS-ONLY refresh cycles. The  
DQ pins remain in a High-Z state for both the RAS-ONLY  
and CAS-BEFORE-RAS refresh cycles.  
HIDDEN REFRESH cycles are performed by toggling  
RAS (and keeping CAS LOW) after a READ or WRITE  
cycle.This performs CAS-BEFORE-RAScycles but does not  
disturb the DQ lines.  
For single port DRAMS,the OEpin is a “dont care” when  
RAS goes LOW. However, for the VRAM, when RAS goes  
LOW, TR/ (OE) selects between DRAM access or TRANS-  
FER cycles. TR/ (OE) must be HIGH at the RAS HIGH-to-  
LOW transition for all DRAM operations (except CAS-  
BEFORE-RAS).  
If (ME)/ WE is HIGH when CAS goes LOW, a DRAM  
READ operation isperformed and thedata from thememory  
cells selected will appear at the DQ1-DQ4 port. The (TR)/  
OE input must transition from HIGH-to-LOW some time  
after RAS falls to enable the DRAM output port.  
For single port normal DRAMs, WE is a “dont care”  
when RAS goes LOW. For the VRAM, ME/ (WE) is used,  
when RASgoes LOW, to select between a MASKED WRITE  
cycle and a normal WRITE cycle. If ME/ (WE) is LOW at the  
RAS HIGH-to-LOW transition, a MASKED WRITE opera-  
tion is selected. For any DRAM access cycle (READ or  
WRITE), ME/ (WE) must be HIGH at the RAS HIGH-to-  
LOW transition. If (ME)/ WE is LOW before CAS goes  
LOW,a DRAM EARLY-WRITEoperation is performed and  
the data present on the DQ1-DQ4 data port will be written  
into the selected memory cells. If (ME)/ WE goes LOW after  
CAS goes LOW, a DRAM LATE-WRITE operation is per-  
formed. Refer to the AC timing diagrams.  
The VRAM can perform all the normal DRAM cycles  
inclu d ing READ, EARLY-WRITE, LATE-WRITE,  
READ-MODIFY-WRITE, FAST-PAGE-MODE READ,  
FAST-PAGE-MODE WRITE (Late or Early), and FAST-  
PAGE-MODE READ-MODIFY-WRITE. Refer to the AC  
timing parameters and diagrams in the data sheet for more  
details on these operations.  
Any DRAM READ, WRITE, or TRANSFER cycle also  
refreshes the DRAM row being accessed. The SAM portion  
of the MT42C4256 is fully static and does not require any  
refreshing.  
DRAM READ AND WRITE CYCLES  
The DRAM portion of the VRAM is nearly identical to  
standard 256Kx 4DRAMs.However,because severalofthe  
DRAM control pins are used for additional functions on  
this part, several conditions that were undefined or in  
“dont care” states for the DRAM are specified for the  
VRAM. These conditions are highlighted in the following  
discussion. In addition, the VRAM has several special func-  
tions that can be used when writing to the DRAM.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-30  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
NONPERSISTENT MASKED WRITE  
The MASKED WRITE feature eliminates the need for a  
READ-MODIFY-WRITEcycle when changing only specific  
bits within a 4-bit word. The MT42C4256 supports two  
types of MASKED WRITE cycles, NONPERSISTENT  
MASKED WRITE and PERSISTENT MASKED WRITE.  
If ME/ (WE) and DSF are LOW at the RAS HIGH-to-  
LOW transition, a NONPERSISTENT MASKED WRITE is  
performed and the data (mask data) present on the DQ1-  
DQ4 inputs will be written into the mask data register. The  
mask data acts as an individual write enable for each of the  
four DQ1-DQ4 pins. If a LOW (logic “0”) is written to a  
mask data register bit, the input port for that bit is disabled  
during the subsequent WRITE operation and no new data  
will be written to that DRAM cell location. A HIGH (logic  
“1”) on a mask data register bit enables the input port and  
allows normal WRITE operation to proceed. Note that CAS  
is still HIGH. When CAS goes LOW, the bits present on the  
DQ1-DQ4 inputs will be either written to the DRAM (if the  
mask data bit is HIGH) or ignored (if the mask data bit is  
LOW). The DRAM contents that correspond to masked  
input bits will not be changed during the WRITE cycle. The  
MASKED WRITE is nonpersistent (must be re-entered at  
every RAS cycle) if DSF is LOW when RAS goes LOW. The  
mask data register is cleared at the end of every NONPER-  
SISTENT MASKED WRITE. FAST PAGE MODE can be  
used with NONPERSISTENT MASKED WRITE to write  
several column locations in an addressed row. The same  
mask is used during the entire FAST-PAGE-MODE RAS  
cycle. An example NONPERSISTENT MASKED WRITE  
cycle is shown in Figure 1.  
NONPERSISTENT MASKED WRITE  
NONPERSISTENT MASKED WRITE  
RAS  
CAS  
ME/WE  
DSF  
STORED  
MASK  
INPUT  
STORED STORED  
MASK  
STORED  
STORED  
DATA  
DATA  
DATA (RE-WRITE)  
DATA  
1
0
1
0
1
X
0
X
1
1
0
0
1
0
0
0
0
0
1
0
1
X
1
X
1
0
1
1
0
0
0
1
BEFORE  
AFTER BEFORE  
AFTER  
ADDRESS 0  
X = NOT EFFECTIVE (DON’T CARE)  
ADDRESS 1  
DON’T CARE  
Figure 1  
NONPERSISTENT MASKED WRITE EXAMPLE  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-31  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
PERSISTENT MASKED WRITE  
The PERSISTENT MASKED WRITE feature eliminates  
the need to rewrite the mask data before each MASKED  
WRITE cycle if the same mask data is being used repeat-  
edly. To initiate a PERSISTENT MASKED WRITE, a LOAD  
MASK REGISTER cycle is performed by taking ME/ (WE)  
and DSF HIGH when RAS goes LOW. The mask data is  
loaded into the internal register when CAS goes LOW.  
PERSISTENT MASKED WRITE cycles may then be per-  
formed by taking ME/ (WE) LOW and DSF HIGH when  
RAS goes LOW. The contents of the mask data register will  
then be used as the mask data for the DRAM inputs. Unlike  
the NONPERSISTENT MASKED WRITE cycle, the data  
present on the DQ inputs is not loaded into the mask  
register when RAS falls, and the mask data register will not  
be cleared at the end of the cycle. Any number of PERSIS-  
TENT MASKED WRITE cycles, to any address, may be  
performed without having to reload the mask data register.  
Figure 2 shows the LOAD MASK REGISTER and two  
PERSISTENT MASKED WRITE cycles in operation. The  
LOAD MASK REGISTER and PERSISTENT MASKED  
WRITE cycles allow controllers that cannot provide mask  
data to the DQ pins at RAS time to perform MASKED  
WRITE operations. PERSISTENT MASKED WRITE opera-  
tions may be performed during FAST PAGE MODE cycles  
and the same mask will apply to all addressed columns in  
the addressed row.  
LOAD MASK REGISTER  
PERSISTENT MASKED WRITE  
PERSISTENT MASKED WRITE  
RAS  
CAS  
ME/WE  
DSF  
MASK  
STORED  
INPUT  
STORED STORED  
INPUT  
STORED  
DATA  
DATA  
DATA  
DATA  
0
1
X
0
X
1
1
0
X
1
X
1
0
APPLY  
MASK  
REG.  
APPLY  
MASK  
REG.  
1
0
1
0
0
1
0
0
0
1
0
0
0
1
1
(Stored in  
Mask Data  
Register)  
BEFORE  
AFTER  
BEFORE  
AFTER  
ADDRESS 0  
ADDRESS 1  
X = NOT EFFECTIVE (DON’T CARE)  
Figure 2  
PERSISTENT MASKED WRITE EXAMPLE  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-32  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
COLUMN  
(A2-A8 at CAS)  
ROW  
(A0-A8 at RAS)  
DQ1  
COLUMN MASK (A0,A1)  
DQ2  
ON THE DQ INPUTS AT CAS  
DQ3  
DQ4  
CAS  
(DQ1)  
(DQ2)  
(DQ3)  
(DQ4)  
D1  
MASK  
DATA  
REGISTER  
D2  
D3  
D4  
4
4
DQ1  
DQ2  
DQ3  
DQ4  
RAS * DSF  
LOAD  
COLOR  
REGISTER  
RAS  
COLOR REGISTER  
(must be previously loaded)  
Figure 3  
BLOCK WRITE EXAMPLE  
BLOCK WRITE  
If DSF is HIGH when CAS goes LOW, the MT42C4256  
will perform a BLOCK WRITE cycle instead of a normal  
WRITE cycle. In BLOCK WRITE cycles, the contents of the  
color register are directly written to four adjacent column  
locations (see Figure 3). The color register must be loaded  
prior to beginning BLOCK WRITE cycles (see LOAD  
COLOR REGISTER). Each DQ location of the color register  
is written to the four column locations (or any of the four  
that are enabled) in the corresponding DQ bit plane.  
The row is addressed as in a normal DRAM WRITEcycle.  
However, when CAS goes LOW only the A2-A8 inputs are  
used. A2-A8 specify the “block” of four adjacent column  
locations that will be accessed. The DQ inputs are then used  
to determine what combination of the four column loca-  
tions will be changed. DQ1acts as a write enable for column  
location A0 = 0, A1 = 0; DQ2 controls column location  
A0= 1,A1= 0;DQ3controls A0= 0,A1= 1;and DQ4controls  
A0 = 1, A1 = 1. The write enable controls are active HIGH;  
the WRITE function is enabled by a logic 1 and disabled by  
a logic 0.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-33  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
NONPERSISTENT MASKED BLOCK WRITE  
The MASKED WRITE functions can also be used during  
BLOCK WRITE cycles. NONPERSISTENT MASKED  
BLOCK WRITE operates exactly like the normal NONPER-  
SISTENT MASKED WRITE, except that the mask is now  
applied to four column locations instead of just one.  
Like NONPERSISTENT MASKED WRITE, the combina-  
tion ofME/ (WE)LOW and DSFLOW when RASgoes LOW  
initiates a NONPERSISTENT MASKED cycle. The DSF pin  
must be driven HIGH when CAS goes LOW, to perform the  
NONPERSISTENT MASKED BLOCK WRITE. By using  
both the column mask input and the MASKED WRITE  
function, any combination of the four bit planes or column  
locations may be masked.  
TER cycle. DSF is used when CAS goes LOW to select the  
register to be loaded and must be LOW for a LOAD MASK  
REGISTER cycle. The data present on the DQ lines will then  
be written to the mask data register.  
Note:  
For a normal DRAM WRITE cycle, the mask data  
register is disabled but not modified. The contents of  
mask data register will not be changed unless a NON-  
PERSISTENT MASKED WRITE cycle or a LOAD  
MASK REGISTER cycle is performed.  
The row address supplied will be refreshed, but it is not  
necessary to provide any particular row address. The col-  
umn address inputs are ignored during a LOAD MASK  
REGISTER cycle.  
PERSISTENT MASKED BLOCK WRITE  
This cycle is also performed exactly like the normal  
PERSISTENT MASKED WRITE except that DSF is HIGH  
when CAS goes LOW to indicate the BLOCK WRITE func-  
tion. Both the mask data register and the color register must  
be loaded with the appropriate data prior to starting a  
PERSISTENT MASKED BLOCK WRITE.  
The mask data register contents are used during PERSIS-  
TENT MASKED WRITE and PERSISTENT MASKED  
BLOCK WRITE cycles to selectively enable writes to the  
four DQ planes.  
LOAD COLOR REGISTER  
A LOAD COLOR REGISTER cycle is identical to the  
LOAD MASK REGISTER cycle except DSF is HIGH when  
CAS goes LOW. The contents of the color register are  
retained until changed by another LOAD COLOR REGIS-  
TER cycle (or the part loses power) and are used as data  
inputs during BLOCK WRITE cycles.  
LOAD MASK DATA REGISTER  
The LOAD MASK REGISTER operation and timing are  
identical to a normal WRITE cycle except that DSF is HIGH  
when RAS goes LOW. As shown in the Truth Table, the  
combination of TR/ (OE), ME/ (WE), and DSF being HIGH  
when RAS goes LOW indicates the cycle is a LOAD REGIS-  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-34  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
TRANSFER OPERATIONS  
TRANSFER operations are initiated when TR/ (OE) is  
LOW then RAS goes LOW. The state of (ME)/ WE when  
RAS goes LOW indicates the direction of the TRANSFER  
(to or from the DRAM), and DSF is used to select between  
NORMAL TRANSFER, SPLIT READ TRANSFER, and AL-  
TERNATE WRITE TRANSFER cycles. Each of the TRANS-  
FER cycles available is described below.  
with SC (REAL-TIME READ TRANSFER), T/ /R/ (?OE/ ) is  
taken HIGH after CAS goes LOW. If the transfer does not  
have to be synchronized with SC (READ TRANSFER), TR/  
(OE) may go HIGH before CAS goes LOW (refer to the AC  
Timing Diagrams). The 2,048bits ofDRAM data are written  
into the SAM data registers and the serial shift start  
address is stored in an internal 9-bit register. QSF will be  
LOW if access is from the lower half (addresses 0 through  
255), and HIGH ifaccess is from the upper half(256through  
511). If SE is LOW, the first bits of the new row data will  
appear at the serial outputs with the first SC clock pulse.  
SE enables the serial outputs and may be either HIGH or  
LOW during this operation. The SAM address pointer will  
increment with the SC LOW-to-HIGH transition, regard-  
less ofthe state ofSE. Performing a READ TRANSFERcycle  
sets the direction of the SAM I/ O buffers to the output  
mode.  
READ TRANSFER (DRAM-TO-SAM TRANSFER)  
If (ME)/ WE is HIGH and DSF is LOW when RAS goes  
LOW, a READ TRANSFER cycle is selected. The row ad-  
dress bits indicate the four 512-bit DRAM row planes that  
are to be transferred to the four SAM data register planes.  
The column address bits indicate the start address (or Tap  
address) of the serial output cycle from the SAM data  
registers. CAS must fall for every TRANSFER in order to  
load a valid Tap address. A read transfer may be accom-  
plished in two ways. If the transfer is to be synchronized  
RAS  
CAS  
A0-A7 = TAP  
A8 = X  
A0-A7 = TAP  
A0-A8  
ROW 0  
A0-A8 = 0  
ROW 0  
ROW 1  
A8 = X  
ME/WE  
TR/OE  
DSF  
SC  
SDQ  
0
1
7
8
9
255  
ROW 0  
260  
319  
320  
321  
Output  
ROW 0  
ROW 0  
ROW 0  
QSF  
(NORMAL) READ TRANSFER  
SPLIT READ TRANSFER  
(OPTIONAL)  
SPLIT READ TRANSFER  
FROM: ROW 0  
FROM: ROW 0  
SERIAL OUTPUT  
FROM: ROW 1  
TO:  
FULL SAM,  
TO:  
UPPER SAM,  
SWITCHES FROM  
LOWER SAM TO  
UPPER SAM (QSF  
GOES HIGH)  
TO:  
LOWER SAM,  
SAM I/O IS SET TO OUTPUT  
MODE AND SERIAL OUTPUT  
FROM LOWER SAM BEGINS  
(QSF GOES LOW)  
TAP ADDRESS = 4  
SERIAL OUTPUT FROM  
LOWER SAM CONTINUES  
TAP ADDRESS = 0 TO 255  
SERIAL OUTPUT FROM  
UPPER SAM CONTINUES  
(QSF REMAINS HIGH)  
DON’T CARE  
UNDEFINED  
Figure 4  
TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-35  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM  
TRANSFER)  
The SPLIT READ TRANSFER (SRT) cycle eliminates the  
critical transfer timing required to maintain a continuous  
serial output data stream. When using normal TRANSFER  
cycles, the REAL-TIME READ TRANSFER cycle has to  
occur immediately after the last bit of “old data” was  
clocked out of the SAM port.  
When using the SPLIT TRANSFER mode, the SAM is  
divided into an upper half and a lower half. While data is  
being serially read from one half of the SAM, new DRAM  
data may be transferred to the other half. The transfer may  
occur at any time while the other half is sending data and  
need not be synchronized with the SC clock.  
Figure 4 shows a typical SPLIT READ TRANSFER initia-  
tion sequence. The normal READ TRANSFER is first per-  
formed,followed by a SPLITREAD TRANSFERofthe same  
row to the upper half of the SAM. The SRT to the upper half  
is optional and need only be done if the Tap for the upper  
half is 0. Serial access continues, and when the SAM  
address counter reaches 255 (“A8” = 0, A0-A7 = 1), the new  
Tap address is loaded for the next half (“A8” = 1, A0-A7 =  
Tap) and the QSF output goes HIGH. Once the serial access  
has switched to the upper SAM, new data may be trans-  
ferred to the lower SAM. The controller must wait for the  
state of QSF to change and then the new data may be  
transferred to the SAM half not being accessed. For  
example, the next step in Figure 4 would be to wait until  
QSFwent LOW (indicating that row-1data is shifting out of  
the lower SAM) and then transfer the upper half of row 1 to  
the upper SAM. If the half boundary is reached before an  
SRT is done for the next half a Tap address of “0” will be  
used. Access will start at 0 if going to the lower half, or 256  
if going to the upper half. See Figure 5.  
The /T/R/ (?O/E) tim ing is also relaxed for SPLIT  
TRANSFER cycles. The rising edge of TR/ (OE) is not used  
to complete the TRANSFER cycle and therefore is inde-  
pendent of the rising edges of RAS or CAS. The transfer  
timing is generated internally for SPLIT TRANSFER cycles.  
A SPLIT READ TRANSFER does not change the direction  
of the SAM port.  
A normal, non-split READ TRANSFER cycle must pre-  
cede any sequence of SPLIT READ TRANSFER cycles to set  
SAM I/ O direction and provide a reference to which half of  
the SAM the access will begin. Then SPLIT READ TRANS-  
FERS may be initiated by taking DSF HIGH when RAS  
goes LOW during the TRANSFER cycle. As in nonsplit  
transfers, the row address is used to specify the DRAM row  
to be transferred. The column address, A0-A7, is used to  
input theSAM Tap address.Addresspin A8isa “dont care”  
when the Tap address is loaded at the HIGH-to-LOW  
transition of CAS. It is internally generated so that the  
SPLIT TRANSFER will be to the SAM half not currently  
being accessed.  
WRITE TRANSFER (SAM-TO-DRAM TRANSFER)  
The operation ofthe WRITETRANSFERisidenticalto the  
READ TRANSFER described previously except (ME)/ WE  
and SE must be LOW when RAS goes LOW. The row  
address indicates the DRAM row to which the SAM data  
registers will be written. The column address (Tap) indi-  
cates the starting address of the next SERIAL INPUT cycle  
for the SAM data registers. A WRITE TRANSFER changes  
the direction ofthe SAM I/ O buffers to the input mode.QFS  
is LOW if access is to the lower half of the SAM, and HIGH  
if access is to the upper half.  
LOWER HALF  
NO SRT  
UPPER HALF  
NO SRT  
0
TAP  
255  
256  
511  
Start Split  
Figure 5  
SPLIT SAM TRANSFER  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-36  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE  
ENABLE)  
The PSEUDO WRITE TRANSFER cycle is used to change  
the direction of SAM port from output to input without  
performing a WRITETRANSFERcycle.A PSEUDO WRITE  
TRANSFER cycle is a WRITE TRANSFER cycle with SE  
held HIGH instead of LOW. The DRAM data will not be  
disturbed and the SAM will be ready to accept input data.  
and will wrap around (after count 255 or 511) to the Tap  
address of the next half for split modes. If an SRT was not  
performed before the half boundary is reached the count  
will progress as illustrated in Figure 5. Address count will  
wrap around (after count 511) to Tap address 0 if in the  
“full” SAM modes.  
SC is also used to clock-in data when the device is in the  
serial input mode. As in the serial output operation, the  
contents of the SAM address counter (loaded when the  
serial input mode was enabled) will determine the serial  
address of the first 4-bit word written. SE acts as a write  
enable for serial input data and must be LOW for valid  
serial input. If SE = HIGH, the data inputs are disabled and  
the SAM contents will not be modified. The serial address  
counter is incremented with every LOW-to-HIGH transi-  
tion of SC, regardless of the logic level on the SE input.  
ALTERNATE WRITE TRANSFER (SAM-TO-DRAM  
TRANSFER)  
The operation ofthe ALTERNATEWRITETRANSFERis  
identical to the WRITE TRANSFER except that the DSF pin  
is HIGH and (ME)/ WE is LOW when RAS goes LOW,  
allowing SE to be a “dont care.” This allows the outputs to  
be disabled using SE during a WRITE TRANSFER cycle.  
ALTERNATE WRITE TRANSFER will change the SAM I/  
O direction to an input condition.  
SERIAL INPUT AND SERIAL OUTPUT  
POWER-UP AND INITIALIZATION  
The control inputs for SERIALINPUTand SERIALOUT-  
PUT are SC and SE. The rising edge of SC increments the  
serial address counter and provides access to the next SAM  
location. SE enables or disables the serial input/ output  
buffers.  
Serial output of the SAM contents will start at the serial  
start address that was loaded in the SAM address counter  
during a READ or SPLIT READ TRANSFER cycle. The SC  
input increments the address counter and presents the  
contents ofthe next SAM location to the 4-bit port.SEis used  
as an output enable during the SAM output operation. The  
serial address is automatically incremented with every SC  
After Vcc is at specified operating conditions, for 100µs  
minimum, eight RAS cycles must be executed to initialize  
the dynamic memory array. Micron recommends that  
/RA? /S = (TR)/ OE VIH during power up to ensure that the  
DRAM I/ O pins (DQs) are in a High-Z state. The DRAM  
array will contain random data.  
The SAM portion of the MT42C4256 is completely static  
in operation and does not require refresh or initialization.  
The SAM port will power-up in the serial input mode  
(WRITE TRANSFER) and the I/ O pins (SDQs) will be  
High-Z, regardless of the state of SE. The mask and color  
register will contain random data after power-up. QSF  
initializes in the LOW state.  
LOW-to-HIGH transition, regardless of whether /S/E is  
HIGH or LOW. The address progresses through the SAM  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-37  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
CODE  
FUNCTION  
RAS FALLING EDGE  
CAS FALL  
DSDF  
A0 - A81  
DQ1 - DQ42  
S3  
REGISTERS  
CAS  
T/  
R/OE ME/  
W
E
DSF  
SE  
R
A
S
CA  
S
R
A
S
C
A
/
MASK COLOR  
WE  
DRAM OPERATIONS  
CBR CAS-BEFORE-RAS REFRESH  
ROR RAS-ONLY REFRESH  
0
1
1
1
X
1
1
X
1
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ROW  
X
X
RW NORMAL DRAM READ OR WRITE  
1
0
ROW COLUMN  
DATA  
RWNM NONPERSISTANT (LOAD AND USE) MASKED  
WRITE TO DRAM  
1
0
0
0
ROW COLUMN WRITE DATA LOAD &  
MASK  
USE  
RWOM PERSISTENT (USE REGISTER) MASKED  
WRITE TO DRAM  
1
1
1
1
1
1
1
1
0
1
0
0
1
0
0
1
X
X
X
X
0
1
1
1
ROW COLUMN  
X
DATA  
USE  
X
BW BLOCK WRITE TO DRAM (NO DATA MASK)  
ROW COLUMN  
(A2 - A8)  
X
COLUMN  
MASK  
X
USE  
BWMN NO PERSISTENT (LOAD & USE) MASKED  
BLOCK WRITE TO DRAM  
ROW COLUMN WRITE COLUMN LOAD & USE  
MASK MASK USE  
BWOM PERSISTENT (USE MASKED REGISTER) MASKED BLOCK  
WRITE TO DRAM  
ROW COLUMN  
(A2 - A8)  
X
COLUMN USE  
MASK  
USE  
REGISTER OPERATIONS  
4
LMR LOAD MASK REGISTER  
1
1
1
1
1
1
1
1
X
X
0
1
ROW  
X
X
X
X
WRITE  
MASK  
LOAD  
X
X
4
LCR LOAD COLOR REGISTER  
ROW  
COLOR  
DATA  
LOAD  
TRANSFER OPERATIONS  
RT  
READ TRANSFER (DRAM-TO-SAM TRANSFER  
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
1
0
0
1
X
X
0
X
X
X
X
X
ROW  
ROW  
ROW  
TAP5  
TAP5  
TAP5  
TAP5  
TAP5  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SRT SPLIT READ TRANSFER (SPILT DRAM-TO-SAM TRANSFER)  
WT WRITE TRANSFER (SAM-TO-DRAM TRANSFER)  
4
PWT PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)  
1
ROW  
AWT ALTERNATE WRITE TRANSFER  
(SAM-TO-DRAM TRANSFER)  
X
ROW  
NOTE:  
1. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.  
2. These columns show what must be present on the DQ1-DQ4 inputs when RAS falls and when CAS falls.  
3. On WRITE cycles (except BLOCK WRITE), the input data is latched at the falling edge of CAS or ME/WE, whichever is later.  
Similarly, on READ cycles, the output data is activated at the falling edge of CAS or  
TR/OE, whichever is later.  
4. The ROW that is addressed will be refreshed, but no particular ROW address is required.  
5. This is the SAM location that the first SC cycle will access. For split SAM transfers, the Tap will be the first address location  
accessed of the “new” SAM half after the boundary of the current half is reached (255 for lower half, 511 for upper half).  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-38  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
*Stresses greater than those listed under “Absolute Maxi-  
mum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the  
device at these or any other conditions above those indi-  
cated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions  
for extended periods may affect reliability.  
ABSOLUTE MAXIMUM RATINGS*  
Voltage on Vcc Supply Relative to Vss .............. -1V to +7V  
Operating Temperature, T (Ambient) ..... 55°C to +125°C  
A
Storage Temperature (Plastic).................... -65°C to +150°C  
Power Dissipation ............................................................. 1W  
Short Circuit Output Current ..................................... 50mA  
Lead Temperature (soldering 10 seconds) .............. +300°C  
Junction Temperature ............................................... +165°C  
RECOMMENDED DC OPERATING CONDITIONS  
(-55°C T 125°C)  
A
PARAMETER/CONDITION  
SYMBOL MIN  
MAX UNITS NOTES  
Supply Voltage  
VCC  
VIH  
VIL  
4.5  
2.4  
-.5  
5.5  
VCC+.5  
0.8  
V
V
V
1
1
1
Input High (Logic 1) Voltage, All Inputs  
Input Low (Logic 0) Voltage, All Inputs  
DC ELECTRICAL CHARACTERISTICS  
(-55°C T 125°C; VCC = 5V ±10%)  
A
PARAMETER/CONDITION  
SYMBOL MIN  
MAX UNITS NOTES  
INPUT LEAKAGE CURRENT  
IL  
-5  
5
µA  
Any input (0V VIN VCC); all other pins not under test = 0V  
OUTPUT LEAKAGE CURRENT  
IOZ  
-5  
5
µA  
(DQ, SDQ disabled, 0V VOUT VCC)  
OUTPUT LEVELS  
Output High Voltage (IOUT = -2.5mA)  
Output Low Voltage (IOUT = 2.5mA)  
VOH  
2.4  
V
V
1
VOL  
0.5  
CAPACITANCE  
PARAMETER  
SYMBOL MIN  
MAX UNITS NOTES  
Input Capacitance: A0-A8  
CI1  
CI2  
7
7
7
9
pF  
pF  
pF  
pF  
2
2
2
2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF  
Input/Output Capacitance: DQ, SDQ  
Output Capacitance: QSF  
CI/O  
CO  
MT42C4256 883C  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
REV. 3/97  
DS000016  
3-39  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
CURRENT DRAIN, SAM IN STANDBY  
(-55°C T 125°C; VCC = 5V ±10%)  
A
MAX  
PARAMETER/CONDITION  
SYMBOL -8  
-10  
-12 UNITS NOTES  
OPERATING CURRENT  
(/R/A/  
ICC1  
95  
90  
80  
mA  
3, 4  
26  
t
t
ICC2  
85  
75  
65  
mA  
3, 4  
27  
t
t
(/R/A/S = VIL; CAS = Cycling: PC = PC (MIN))  
STANDBY CURRENT: TTL INPUT LEVELS  
Power supply standby current  
(/R/A/S = CAS = VIH after 8 R/ A/ S/ cycles (MIN), other inputs VIH or VIL)  
ICC3  
ICC4  
ICC5  
ICC6  
8
8
8
mA  
4
REFRESH CURRENT: RAS-ONLY  
(RAS = Cycling; CAS = VIH)  
95  
90  
90  
95  
80  
80  
95  
mA 3, 26  
REFRESH CURRENT:  
?C/A/  
95  
mA  
mA  
3, 5  
3
105  
t
CURRENT DRAIN, SAM ACTIVE ( SC = MIN)  
(-55°C T 125°C; VCC = 5V ±10%)  
A
MAX  
-10  
PARAMETER/CONDITION  
SYMBOL -8  
150  
-12 UNITS NOTES  
OPERATING CURRENT  
(RAS and CAS = Cycling: RC = RC (MIN))  
ICC7  
130 120  
mA 3, 4,  
26  
t
t
OPERATING CURRENT: FAST PAGE MODE  
(RAS = VIL; CAS = Cycling: PC = PC (MIN))  
ICC8  
140  
120 110  
mA 3, 4,  
27  
t
t
STANDBY CURRENT: TTL INPUT LEVELS  
Power supply standby current  
(/R/A/S = CAS = VIH after 8 R/ A/ S/ cycles (MIN), other inputs VIH or VIL)  
ICC9  
ICC10  
ICC11  
ICC12  
35  
30  
25  
mA  
3, 4  
REFRESH CURRENT: RAS-ONLY  
(RAS = Cycling; CAS = VIH)  
150  
150  
160  
130 120  
130 120  
130 125  
mA 3, 4,  
26  
REFRESH CURRENT: CAS-BEFORE-RAS  
(RAS and CAS = Cycling)  
mA 3, 4, 5  
SAM/DRAM DATA TRANSFER  
mA  
3, 4  
MT42C4256 883C  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
REV. 3/97  
DS000016  
3-40  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM TIMING PARAMETERS  
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS  
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (-55°C T +125°C; VCC = 5V ±10%)  
A
AC CHARACTERISTICS  
-8  
-10  
-12  
PARAMETER  
SYM  
tRC  
tRWC  
tPC  
MIN  
150  
195  
45  
MAX  
MIN  
180  
235  
55  
MAX  
MIN  
210  
275  
65  
MAX  
UNITS NOTES  
Random READ or WRITE cycle time  
READ-MODIFY-WRITE cycle time  
ns  
ns  
ns  
FAST-PAGE-MODE READ or WRITE  
cycle time  
FAST-PAGE-MODE READ-MODIFY-WRITE  
cycle time  
tPRWC  
90  
110  
130  
ns  
Access time from RAS  
tRAC  
tCAC  
tOE  
80  
20  
100  
25  
120  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
14  
15  
Access time from CAS  
Access time from (TR)/OE  
Access time from column address  
Access time from CAS precharge  
20  
25  
30  
tAA  
40  
50  
60  
tCPA  
tRAS  
tRASP  
tRSH  
tRP  
tCAS  
tCSH  
tCP  
tRCD  
tCRP  
tASR  
tRAH  
tRAD  
45  
50  
50  
RAS pulse width  
80  
80  
20  
60  
20  
80  
10  
20  
5
20,000  
100  
100  
25  
70  
25  
100  
12  
25  
5
20,000  
100  
100  
30  
80  
30  
120  
15  
25  
10  
0
20,000  
RAS pulse width (FAST PAGE MODE)  
RAS hold time  
100,000  
10,000  
60  
100,000  
10,000  
75  
100,000  
10,000  
90  
/R/A/  
C
A
/
CAS hold time  
CAS precharge time  
R
A
/
17  
18  
/C/A/  
Row address setup time  
Row address hold time  
0
0
10  
15  
15  
20  
15  
20  
RAS to column  
40  
50  
60  
address delay time  
Column address setup time  
Column address hold time  
tASC  
tCAH  
tAR  
0
0
0
ns  
ns  
ns  
15  
60  
20  
70  
20  
80  
Column address hold time  
(referenced to RAS)  
Column address to  
tRAL  
40  
50  
60  
ns  
/R/A/S lead time  
Read command setup time  
tRCS  
tRCH  
0
0
0
0
0
0
ns  
ns  
Read command hold time  
(referenced to CAS)  
19  
19  
Read command hold time  
(referenced to RAS)  
tRRH  
0
0
0
ns  
CAS to output in Low-Z  
tCLZ  
tOFF  
0
0
0
0
0
0
ns  
ns  
Output buffer  
turn-off delay  
20  
20  
20  
20  
20  
25  
20, 23  
Output disable  
tOD  
tOEH  
tROH  
0
20  
0
0
20  
0
0
25  
0
ns  
ns  
ns  
20, 23  
25  
Output disable hold time from start of WRITE  
?O/E LOW to RAS HIGH delay time  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-41  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM TIMING PARAMETERS (continued)  
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS  
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (-55°C T +125°C; VCC = 5V ±10%)  
A
AC CHARACTERISTICS  
PARAMETER  
-8  
-10  
-12  
SYM  
tWCS  
tWCH  
tWCR  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX UNITS NOTES  
Write command setup time  
Write command hold time  
ns  
ns  
ns  
21  
15  
60  
20  
70  
25  
80  
Write command hold time  
(referenced to RAS)  
Write command pulse width  
Write command to RAS lead time  
Write command to CAS lead time  
Data-in setup time  
tWP  
tRWL  
tCWL  
tDS  
tDH  
tDHR  
15  
20  
20  
0
20  
25  
25  
0
25  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
22  
22  
Data-in hold time  
15  
60  
20  
70  
25  
80  
Data-in hold time  
(referenced to RAS)  
RAS to WE delay time  
tRWD  
tAWD  
105  
65  
125  
75  
150  
90  
ns  
ns  
21  
21  
Column address  
to WE delay time  
CAS to WE delay time  
tCWD  
tT  
tREF  
tRPC  
tCSR  
45  
3
50  
3
60  
3
ns  
ns  
ms  
ns  
ns  
21  
Transition time (rise or fall)  
Refresh period (512 cycles)  
50  
8
50  
8
50  
8
9, 10  
R
A
/
0
0
0
C
A
/
10  
10  
10  
5
5
(/C/A/  
tCHR  
15  
20  
25  
ns  
(/C/A/  
tWSR  
tRWH  
tMS  
0
15  
0
0
15  
0
0
15  
0
ns  
ns  
ns  
ns  
?M/  
Mask Data to RAS setup time  
Mask Data to RAS hold time  
tMH  
15  
15  
15  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-42  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
TRANSFER AND MODE CONTROL TIMING PARAMETERS  
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS  
(Notes 6, 7, 8, 9, 10) (-55° C T +125°C; VCC = 5V ±10%)  
A
AC CHARACTERISTICS  
PARAMETER  
-8  
-10  
-12  
SYM  
tTLS  
tTLH  
tRTH  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
UNITS NOTES  
T
R/(OE) LOW to RAS setup time  
ns  
ns  
ns  
TR/(OE) LOW to RAS hold time  
10  
75  
10,000  
10,000  
15  
80  
10,000  
10,000  
15  
90  
10,000  
10,000  
TR/(OE) LOW to RAS hold time  
(REAL-TIME READ TRANSFER only)  
TR/(OE) LOW to CAS hold time  
tCTH  
25  
25  
30  
ns  
(REAL-TIME READ TRANSFER only)  
TR/(OE) HIGH to SC lead time  
tTSL  
tTRP  
tTRW  
tTSD  
5
5
5
ns  
ns  
ns  
ns  
TR/(OE) HIGH to RAS precharge time  
60  
20  
15  
70  
30  
15  
80  
35  
15  
/T/R/(OE) precharge time  
First SC edge to TR/(OE) HIGH  
delay time  
Serial output buffer turn-off  
delay from RAS  
tSDZ  
7
40  
7
40  
7
40  
ns  
SC to RAS setup time  
tSRS  
tSZE  
tSDD  
tSZS  
tESR  
30  
0
35  
0
40  
0
ns  
ns  
ns  
ns  
ns  
Serial data input to SE delay time  
Serial data input delay from RAS  
Serial data input to RAS delay time  
50  
0
50  
0
55  
0
Serial-input-mode enable  
(SE) to RAS setup time  
0
0
0
Serial-input-mode enable  
tREH  
10  
15  
15  
ns  
(/S/  
tYS  
tYH  
0
10  
0
0
15  
0
0
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
T
/
DSF to RAS setup time  
DSF to RAS hold time  
SC to QSF delay time  
tFSR  
tRFH  
tSQD  
tSTS  
tSTH  
tRQD  
tFHR  
tFSC  
tCFH  
tTQD  
tCQD  
tRSD  
tCSD  
10  
15  
15  
30  
75  
30  
75  
30  
75  
SPLIT TRANSFER setup time  
SPLIT TRANSFER hold time  
RAS to QSF delay time  
DSF to RAS hold time  
DSF to CAS setup time  
DSF to CAS hold time  
30  
0
30  
0
30  
0
60  
0
70  
0
80  
0
15  
20  
25  
T
R/OE to QSF delay time  
30  
40  
30  
40  
30  
40  
/C/A/  
R
A
/
85  
30  
100  
40  
115  
45  
CAS to first SC delay  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-43  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
SAM TIMING PARAMETERS  
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS  
(Notes 6, 7, 8, 9, 10) (-55° C T +125°C; VCC = 5V ±10%)  
A
AC CHARACTERISTICS  
-8  
-10  
-12  
PARAMETER  
SYM  
tSC  
tSAC  
tSP  
tSAS  
tSEA  
tSEP  
tSE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS NOTES  
Serial clock-cycle time  
Access time from SC  
25  
30  
35  
ns  
25  
30  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
24, 28  
24  
SC precharge time (SC LOW time)  
SC pulse width (SC HIGH time)  
Access time from SE  
10  
10  
10  
10  
10  
10  
20  
15  
25  
15  
30  
15  
SE precharge time  
7
10  
0
10  
15  
0
15  
15  
0
SE pulse width  
Serial data-out hold time after  
SC high  
tSOH  
24, 28  
20, 24  
Serial output buffer turn-off  
delay from SE  
tSEZ  
0
0
0
ns  
Serial data-in setup time  
Serial data-in hold time  
tSDS  
tSDH  
tSWS  
0
10  
0
0
15  
0
0
20  
0
ns  
ns  
ns  
Serial input (Write) Enable  
setup time  
Serial input (Write) Enable  
hold time  
tSWH  
tSWIS  
tSWIH  
15  
0
20  
0
25  
0
ns  
ns  
ns  
Serial input (Write) disable  
setup time  
Serial input (Write) disable  
hold time  
15  
20  
25  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-44  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
NOTES  
t
t
1. All voltages referenced to VSS.  
19. Either RCH or RRH must be satisfied for a READ  
cycle.  
2. This parameter is sampled. VCC = 5V ±10%, f = 1 MHz.  
3. ICC is dependent on cycle rates.  
4. ICC is dependent on I/ O loading. Specified values are  
obtained with minimum cycle time and the I/ Os  
open.  
t
t
t
20. OD, OFF and SEZ define the time when the output  
achieves open circuit (VOH -200mV, VOL +200mV).  
This parameter is sampled and not 100 percent tested.  
t
t
t
t
21. WCS, RWD, AWD and CWD are restrictive  
5. Enables on-chip refresh and address counters.  
6. The minimum specifications are used only to indicate  
cycle time at which proper operation over the full  
operating parameters in LATE-WRITE, READ-WRITE  
t
and READ-MODIFY-WRITE cycles only. If WCS ≥  
t
WCS (MIN), the cycle is an EARLY-WRITE cycle and  
temperature range (-55°C T +125°C) is assured.  
the data output will remain an open circuit through-  
A
t
7. An initial pause of 100µs is required after power-up  
followed by any eight RAS cycles before proper  
device operation is assured. The eight RAS cycle  
out the entire cycle, regardless of TR/ OE. If WCS ≤  
t
WCS (MIN), the cycle is a LATE-WRITE and  
TR/ OE must control the output buffers during the  
t
t
t
wake-up should be repeated any time the REF  
WRITE to avoid data contention. If RWD RWD  
t
t
t
t
refresh requirement is exceeded.  
(MIN), AWD AWD (MIN) and CWD CWD  
(MIN), the cycle is a READ-WRITE and the data  
output will contain data read from the selected cell. If  
neither of the above conditions is met, the state of the  
output buffers (at access time and until CAS goes  
back to VIH) is indeterminate but the WRITE will be  
t
8. AC characteristics assume T = 5ns.  
9. VIH (MIN) and VIL (MAX) are reference levels for  
measuring timing of input signals. Transition times  
are measured between VIH and VIL (or between VIL  
and VIH). Input signals transition between 0V and 3V  
for AC testing.  
10. In addition to meeting the transition rate specifica-  
tion, all input signals must transit between VIH and  
VIL (or between VIL and VIH) in a monotonic manner.  
11. If CAS = VIH, DRAM data output (DQ1-DQ4) is  
High-Z.  
12. If CAS = VIL, DRAM data output (DQ1-DQ4) may  
contain data from the last valid READ cycle.  
13. DRAM output timing measured with a load equiva-  
lent to 2 TTL gates and 100pF. Output reference  
levels: VOH = 2.0V; VOL = 0.8V.  
t
t
valid, if OD and OEH are met. See the LATE-WRITE  
AC Timing diagram.  
22. These parameters are referenced to CAS leading edge  
in EARLY-WRITE cycles and ME/ WE leading edge in  
LATE-WRITE or READ-WRITE cycles.  
23. During a READ cycle, if TR/ OE is LOW then taken  
HIGH, DQ goes open. The DQs will go open with OE  
or CAS, whichever goes HIGH first.  
24. SAM output timing is measured with a load  
equivalent to 1 TTL gate and 30pF. Output reference  
levels: VOH = 2.0V; VOL = 0.8V.  
t
t
t
t
t
14. Assumes that RCD < RCD (MAX). If RCD is greater  
than the maximum recommended value shown in this  
25. OD and OEH must be met in LATE-WRITE and  
READ-MODIFY-WRITE cycles (OE HIGH during  
WRITE cycle) in order to ensure that the output  
buffers will be open during the WRITE cycle. The  
DQs will provide previously read data if CAS  
t
t
table, RAC will increase by the amount that RCD  
exceeds the value shown.  
t
t
15. Assumes that RCD RCD (MAX).  
t
16. If CAS is LOW at the falling edge of RAS, DQ will be  
maintained from the previous cycle. To initiate a new  
cycle and clear the data out buffer, CAS must be  
remains LOW and OE is taken LOW after OEH is  
met. If CAS goes HIGH prior to OE going back LOW,  
the DQs will remain open.  
t
pulsed HIGH for CPN.  
26. Address (A0-A8) may be changed two times or less  
while RAS = VIL.  
t
17. Operation within the RCD (MAX) limit ensures that  
t
t
RAC (MAX) can be met. RCD (MAX) is specified as  
27. Address (A0-A8) may be changed once or less while  
CAS = VIH and RAS = VIL.  
t
a reference point only; if RCD is greater than the  
specified RCD (MAX) limit, then access time is  
controlled exclusively by CAC.  
t
t
t
28. SAC is MAX at +125°C and 4.5V Vcc; SOH is MIN at  
-55°C and 5.5V Vcc. These limits will not occur  
t
t
18. Operation within the RAD (MAX) limit ensures that  
simultaneously at any given voltage or temperature.  
t
t
t
t
RCD (MAX) can be met. RAD (MAX) is specified as  
SOH = SAC - output transition time; this is guaran-  
teed by design.  
t
a reference point only; if RAD is greater than the  
specified RAD (MAX) limit, then access time is  
controlled exclusively by AA.  
t
t
MT42C4256 883C  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
REV. 3/97  
DS000016  
3-45  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM READ CYCLE  
t
RC  
t
t
RP  
RAS  
V
V
IH  
IL  
RAS  
t
CSH  
t
t
RRH  
RSH  
t
t
t
CAS  
CRP  
RCD  
V
V
IH  
IL  
CAS  
t
t
AR  
t
t
RAD  
RAL  
t
t
t
ASR  
RAH  
ASC  
CAH  
V
V
IH  
IL  
ADDR  
ROW  
ROW  
COLUMN  
t
t
RCH  
RCS  
V
V
IH  
IL  
ME/WE  
DSF  
t
FHR  
t
t
CFH  
t
t
RFH  
FSC  
FSR  
V
V
IH  
IL  
t
AA  
t
RAC  
t
OFF  
t
CAC  
t
ROH  
V
V
IOH  
IOL  
DQ  
OPEN  
OPEN  
VALID DATA  
t
t
YH  
YS  
t
t
OE  
OD  
V
V
IH  
IL  
TR/OE  
DON’T CARE  
UNDEFINED  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-46  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM FAST-PAGE-MODE READ CYCLE  
t
t
RASP  
RP  
V
V
IH  
IL  
RAS  
CAS  
t
t
t
PC  
RSH  
CSH  
t
t
t
t
t
t
t
t
CP  
CRP  
RCD  
CAS  
CP  
CAS  
CP  
CAS  
V
V
IH  
IL  
t
t
AR  
t
t
RAD  
RAL  
t
t
t
t
t
t
t
CAH  
ASR  
RAH  
ASC  
CAH  
ASC  
CAH  
ASC  
V
V
IH  
IL  
ADDR  
ROW  
COLUMN  
COLUMN  
t
ROW  
COLUMN  
t
t
RRH  
RCS  
t
RCH  
RCS  
t
RCS  
t
t
RCH  
RCH  
V
V
IH  
IL  
ME/WE  
t
t
FHR  
FSC  
t
t
t
t
t
t
t
FSR  
RFH  
CFH  
FSC  
CFH  
FSC  
CFH  
V
V
IH  
IL  
DSF  
t
t
t
AA  
AA  
AA  
t
t
t
t
CPA  
RAC  
CPA  
t
t
OFF  
t
t
CAC  
OFF  
CAC  
CAC  
t
OFF  
t
t
CLZ  
CLZ  
V
V
IOH  
IOL  
VALID  
DATA  
VALID  
DATA  
VALID  
DATA  
DQ  
OPEN  
t
t
YH  
t
t
t
t
t
t
YS  
OE  
OD  
OE  
OD  
OE  
OD  
V
V
IH  
IL  
TR/OE  
DON’T CARE  
UNDEFINED  
NOTE: WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST PAGE MODE.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-47  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
WRITE CYCLE FUNCTION TABLE 1  
LOGIC STATES  
RAS Falling Edge  
CAS Falling Edge  
2
FUNCTION  
A
B
C
D
E
ME/WE DSF  
DQ (Input)  
DSF  
DQ (Input)  
Normal DRAM WRITE  
1
0
0
0
X
0
0
DRAM Data  
NONPERSISTENT (Load and Use)  
MASKED WRITE to DRAM  
Write  
Mask  
DRAM  
Data (Masked)  
PERSISTENT (Use Register)  
MASKED WRITE to DRAM  
0
1
X
0
DRAM  
Data (Masked)  
3
BLOCK WRITE to DRAM (No Data Mask)  
1
0
0
0
X
1
1
Column Mask  
NONPERSISTENT (Load and Use)  
MASKED BLOCK WRITE to DRAM  
Write  
Mask  
Column  
3
Mask  
PERSISTENT (Use Register)  
MASKED BLOCK WRITE to DRAM  
0
1
X
1
Column  
Mask  
3
Load Mask Register  
Load Color Register  
1
1
1
1
X
X
0
1
Write Mask  
Color Data  
NOTE: 1. Refer to this function table to determine the logic states of “A”, “B”, “C”, “D” and “E” for the WRITE cycle  
timing diagrams on the following pages.  
2. CAS or ME/WE, whichever occurs later (Except BLOCK WRITE).  
3. WE = “don’t care” for BLOCK WRITE. The DQ column-mask data will be latched at the falling edge of CAS,  
regardless of the state of ME/WE.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-48  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM EARLY-WRITE CYCLE 1  
t
RC  
t
t
RAS  
RP  
V
V
IH  
IL  
RAS  
t
CSH  
t
RSH  
t
t
t
CAS  
CRP  
RCD  
V
V
IH  
IL  
CAS  
t
AR  
t
t
RAD  
RAL  
t
t
t
ASC  
t
ASR  
RAH  
CAH  
V
V
IH  
IL  
ADDR  
ROW  
ROW  
COLUMN  
t
CWL  
t
RWL  
t
WCR  
t
t
WCH  
WCS  
t
t
t
WSR  
RWH  
t
WP  
V
V
IH  
IL  
ME/WE  
A
B
NOTE 2  
t
FHR  
t
FSR  
RFH  
t
t
CFH  
FSC  
V
V
IH  
IL  
DSF  
D
t
DHR  
t
t
DH  
DS  
t
t
MS  
MH  
V
V
IOH  
IOL  
DQ  
E
C
t
t
YS  
YH  
V
V
IH  
IL  
TR/OE  
DON’T CARE  
UNDEFINED  
NOTE: 1. The logic states of “A”, “B”, “C”, “D” and “E” determine the type of WRITE operation performed. See the Write  
Cycle Function Table for a detailed description.  
2. For BLOCK WRITE, ME/WE = “don’t care.” For all other EARLY-WRITE cycles, ME/WE = LOW.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-49  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM LATE-WRITE CYCLE 1  
t
RC  
t
t
RP  
RAS  
V
V
IH  
IL  
RAS  
t
CSH  
t
RSH  
t
t
t
CAS  
CRP  
RCD  
V
V
IH  
IL  
CAS  
t
AR  
t
t
RAD  
RAL  
t
t
t
t
RAH  
ASC  
CAH  
ASR  
V
V
IH  
IL  
ADDR  
ROW  
COLUMN  
t
CWL  
t
RWL  
t
t
RWH  
t
WSR  
WP  
V
V
IH  
IL  
ME/WE  
A
t
t
FHR  
FSC  
t
t
t
FSR  
RFH  
CFH  
V
V
IH  
IL  
DSF  
B
C
t
DHR  
t
t
DH  
t
t
t
DS  
MS  
YS  
MH  
V
V
IOH  
IOL  
DQ  
E
t
t
t
OEH  
YH  
OD  
V
V
IH  
IL  
TR/OE  
DON’T CARE  
UNDEFINED  
NOTE: 1. The logic states of “A”, “B”, “C” and “E” determine the type of WRITE operation performed. See the Write  
Cycle Function Table for a detailed description.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-50  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM READ-WRITE CYCLE  
(READ-MODIFY-WRITE CYCLE)  
t
RWC  
t
t
RAS  
RP  
V
V
IH  
IL  
RAS  
CAS  
t
CSH  
t
RSH  
t
t
t
RCD  
CAS  
CRP  
V
V
IH  
IL  
t
AR  
t
t
RAD  
RAL  
t
t
t
ASC  
t
ASR  
RAH  
CAH  
V
V
IH  
IL  
ADDR  
ROW  
ROW  
COLUMN  
t
t
RWD  
CWL  
t
t
CWD  
t
RCS  
RWL  
t
t
t
t
WSR  
RWH  
AWD  
WP  
V
V
IH  
IL  
ME/WE  
A
B
t
FHR  
t
t
t
t
FSR  
RFH  
FSC  
CFH  
V
V
IH  
IL  
DSF  
t
AA  
t
RAC  
t
CAC  
t
t
t
t
MS  
YS  
MH  
DS  
DH  
V
V
IOH  
IOL  
DQ  
VALID D  
OPEN  
C
E
OUT  
t
t
t
t
OE  
OD  
YH  
V
V
IH  
IL  
TR/OE  
DON’T CARE  
UNDEFINED  
NOTE: The logic states of “A”, “B”, “C” and “E” determine the type of WRITE operation performed. See the Write Cycle  
Function Table for a detailed description.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-51  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE  
t
RASP  
t
RP  
V
V
IH  
IL  
RAS  
CAS  
t
t
t
PC  
CSH  
RSH  
t
CRP  
t
t
t
t
t
t
CAS  
RCD  
CAS  
CP  
CAS  
CP  
t
CP  
V
V
IH  
IL  
t
AR  
t
t
RAD  
RAL  
t
CAH  
t
t
t
t
t
t
ASC  
t
ASR  
RAH  
ASC  
CAH  
ASC  
CAH  
V
V
IH  
IL  
ADDR  
COLUMN  
COLUMN  
t
COLUMN  
t
ROW  
ROW  
t
CWL  
CWL  
CWL  
t
t
t
t
WCS  
t
t
WCH  
WCS  
WCH  
WCS  
WCH  
t
t
t
WP  
t
t
RWH  
WP  
WP  
WSR  
V
V
IH  
IL  
ME/WE  
A
B
A
B
t
FHR  
t
t
t
t
t
t
CFH  
t
t
FSC  
FSR  
RFH  
CFH  
FSC  
CFH  
FSC  
V
V
IH  
IL  
DSF  
D
E
D
E
D
E
t
t
WCR  
RWL  
t
DHR  
t
t
t
t
t
t
DH  
t
t
MH  
DS  
DH  
DS  
DH  
DS  
MS  
V
V
IOH  
IOL  
DQ  
C
t
t
YH  
YS  
V
V
IH  
IL  
TR/OE  
DON’T CARE  
UNDEFINED  
NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE  
MODE.  
2. The logic states of “A”, “B”, “C”, “D” and “E” determine the type of WRITE operation performed. See the Write  
Cycle Function Table for a detailed description.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-52  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM FAST-PAGE-MODE READ-WRITE CYCLE  
(READ-MODIFY-WRITE OR LATE-WRITE CYCLES)  
t
RASP  
t
RP  
V
V
IH  
IL  
RAS  
CAS  
t
t
t
PRWC  
t
RSH  
CSH  
t
t
t
t
t
t
t
CP  
CRP  
RCD  
CAS  
CP  
CAS  
CP  
CAS  
V
V
IH  
IL  
t
t
AR  
t
t
RAD  
RAL  
t
CAH  
t
t
t
t
t
t
ASC  
ASR  
RAH  
ASC  
CAH  
ASC  
CAH  
V
V
IH  
IL  
ROW  
ADDR  
COLUMN  
COLUMN  
ROW  
COLUMN  
t
RWD  
t
t
t
RWL  
CWL  
WP  
t
RCS  
t
t
t
CWL  
CWL  
WP  
t
WP  
t
t
t
AWD  
AWD  
AWD  
t
t
WSR  
FSR  
RWH  
RFH  
t
t
t
CWD  
CWD  
CWD  
V
V
IH  
IL  
ME/WE  
DSF  
A
B
t
t
t
t
t
t
CFH  
FSC  
CFH  
FSC  
CFH  
FSC  
t
t
V
V
IH  
IL  
t
t
t
AA  
AA  
AA  
t
RAC  
t
t
t
DH  
DH  
DH  
DS  
t
t
CPA  
CPA  
t
t
t
DS  
DS  
t
t
t
t
CAC  
CAC  
CLZ  
CAC  
CLZ  
t
t
MS  
MH  
t
V
V
VALID  
OUT  
VALID  
IN  
VALID  
OUT  
VALID  
IN  
VALID  
OUT  
VALID  
IN  
IOH  
IOL  
DQ  
OPEN  
D
D
D
D
D
D
C
t
OEH  
t
t
OD  
OD  
t
t
t
OD  
YS  
YH  
t
t
t
OE  
OE  
OE  
V
V
IH  
IL  
TR/OE  
DON’T CARE  
UNDEFINED  
NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use  
the Write Function Table to determine the proper DSF state for the desired WRITE operation.  
2. The logic states of “A”, “B” and “C” determine the type of WRITE operation performed. See the Write Cycle  
Function Table for a detailed description.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-53  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM RAS-ONLY REFRESH CYCLE  
(ADDR = A0-A8)  
t
RC  
t
t
RP  
RAS  
V
V
IH  
IL  
RAS  
t
CRP  
t
RPC  
V
V
IH  
IL  
CAS  
t
t
RAH  
ASR  
V
V
IH  
IL  
ADDR  
ROW  
ROW  
V
V
IH  
IL  
ME/WE  
V
V
IH  
IL  
DSF  
DQ  
V
V
IOH  
IOL  
OPEN  
OPEN  
t
t
YH  
YS  
V
V
IH  
IL  
TR/OE  
DRAM CAS-BEFORE-RAS REFRESH CYCLE  
t
t
t
RAS  
t
RAS  
RP  
RP  
V
V
IH  
IL  
RAS  
t
RPC  
t
t
t
t
t
t
CSR  
CHR  
RPC  
CSR  
CHR  
CP  
V
V
IH  
IL  
CAS  
V
V
IH  
IL  
ADDR  
V
V
IH  
IL  
ME/WE  
DSF  
V
V
IH  
IL  
V
V
IOH  
IOL  
DQ  
OPEN  
OPEN  
V
V
IH  
IL  
TR/OE  
DON’T CARE  
UNDEFINED  
MT42C4256 883C  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
REV. 3/97  
DS000016  
3-54  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
DRAM HIDDEN-REFRESH CYCLE  
(READ)  
(REFRESH)  
t
t
t
RAS  
RP  
RAS  
V
V
IH  
IL  
RAS  
CAS  
t
t
t
t
CRP  
RCD  
RSH  
CHR  
V
V
IH  
IL  
t
AR  
t
t
RAD  
RAL  
t
t
t
RAH  
t
ASR  
ASC  
CAH  
V
V
IH  
IL  
ADDR  
ROW  
COLUMN  
RCS  
t
t
RRH  
V
V
IH  
IL  
ME/WE  
t
FHR  
t
t
FSC  
CFH  
t
t
RFH  
FSR  
V
V
IH  
IL  
DSF  
t
AA  
t
RAC  
t
CAC  
t
OFF  
V
V
IOH  
IOL  
DQ  
VALID D  
OPEN  
OPEN  
OUT  
t
t
YH  
t
YS  
OE  
t
OD  
t
ROH  
V
V
IH  
IL  
TR/OE  
DON’T CARE  
UNDEFINED  
NOTE: A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case,  
ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH and the DQ pins stay High-Z. In the TRANSFER  
case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless  
of TR/OE.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-55  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
READ TRANSFER 3  
(DRAM-TO-SAM TRANSFER)  
(When part was previously in the SERIAL INPUT mode or SC idle)  
t
RC  
t
t
t
RAS  
CSH  
RP  
V
V
IH  
IL  
RAS  
t
RSH  
t
t
t
RCD  
CRP  
CAS  
V
V
IH  
IL  
CAS  
t
AR  
t
t
RAL  
RAD  
t
t
t
t
CAH  
ASR  
RAH  
ASC  
V
V
IH  
IL  
ADDR  
ME/WE  
DSF  
ROW  
SAM START (TAP)  
t
t
RWH  
WSR  
V
V
IH  
IL  
t
t
FSR  
OFF  
RFH  
V
V
IH  
IL  
t
V
V
IOH  
IOL  
DQ  
OPEN  
OPEN  
t
CSD  
t
RSD  
t
t
t
TRP  
TLS  
TLH  
V
V
IH  
IL  
TR/OE  
t
TRW  
t
t
t
SC  
RTH  
SRS  
t
t
t
t
SP  
SAS  
TSD  
SAS  
V
V
IH  
IL  
SC  
NOTE 1  
t
SDH  
SDS  
t
t
t
t
SAC  
SAC  
SOH  
t
SZS  
V
V
IOH  
IOL  
SDQ  
VALID D  
VALID D  
VALID D  
VALID D  
OUT  
IN  
OUT  
OUT  
t
SEA  
t
t
TQD  
SWH  
V
V
IH  
IL  
SE  
t
CQD  
t
RQD  
V
V
OH  
OL  
QSF  
NOTE 2  
NOTE 2  
DON’T CARE  
UNDEFINED  
NOTE: 1. There must be no rising edges on the SC input during this time period.  
2. QSF = 0 when the Lower SAM (bits 0–255) is being accessed.  
QSF = 1 when the Upper SAM (bits 256–511) is being accessed.  
t
t
t
3. If TLH is timing for the TR/(OE) rising edge, the transfer is self-timed and the CSD and RSD times must be  
t
met. If RTH is timing for the TR/(OE) rising edge, the transfer is done off of the TR/(OE) rising edge and  
t
TSD must be met.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-56  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
REAL-TIME READ-TRANSFER  
(DRAM-TO-SAM TRANSFER)  
(When part was previously in the SERIAL OUTPUT mode)  
t
RC  
t
t
RP  
RAS  
V
V
IH  
IL  
RAS  
t
CSH  
t
RSH  
t
t
t
CRP  
RCD  
CAS  
V
V
IH  
IL  
CAS  
t
AR  
t
t
t
RAL  
RAD  
t
t
RAH  
t
ASR  
ASC  
CAH  
V
V
IH  
IL  
ADDR  
SAM START  
ROW  
t
t
WSR  
FSR  
RWH  
V
V
IH  
IL  
ME/WE  
DSF  
t
t
RFH  
V
V
IH  
IL  
t
OFF  
V
V
IOH  
IOL  
DQ  
OPEN  
OPEN  
t
t
TRP  
CTH  
t
t
t
TRW  
TLS  
RTH  
V
V
IH  
IL  
TR/OE  
t
t
TSD  
t
TSL  
SC  
t
t
t
SP  
SP  
SAS  
V
V
IH  
IL  
SC  
t
SAC  
PREVIOUS ROW DATA  
NEW ROW DATA  
V
V
VALID  
D
IOH  
IOL  
SDQ  
VALID D  
VALID D  
t
VALID D  
OUT  
VALID D  
OUT  
VALID D  
OUT  
OUT  
OUT  
OUT  
t
t
TQD  
SEA  
SEA  
t
SEZ  
t
t
SE  
SEP  
V
V
IH  
IL  
SE  
NOTE 1  
V
V
OH  
OL  
QSF  
NOTE 2  
NOTE 2  
DON’T CARE  
UNDEFINED  
NOTE: 1. The SE pulse is shown to illustrate the SERIAL OUTPUT  
ENABLE and DISABLE timing. It is not required.  
2. QSF = 0 when the Lower SAM (bits 0–255) is being accessed.  
QSF = 1 when the Upper SAM (bits 256–511) is being accessed.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-57  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
SPLIT READ TRANSFER  
(SPLIT DRAM-TO-SAM TRANSFER)  
t
RC  
t
t
RAS  
RP  
V
V
IH  
IL  
RAS  
t
CSH  
t
RSH  
t
t
RCD  
t
CRP  
CAS  
V
V
IH  
IL  
CAS  
t
AR  
t
t
RAL  
RAD  
t
t
t
t
RAH  
ASC  
ASR  
t
CAH  
V
V
IH  
IL  
ADDR  
ROW  
SAM START (B)  
t
WSR  
RWH  
V
V
IH  
IL  
ME/WE  
DSF  
t
t
FSR  
RFH  
V
V
IH  
IL  
t
OFF  
V
V
IOH  
IOL  
DQ  
OPEN  
OPEN  
t
t
TLH  
TLS  
V
V
IH  
IL  
TR/OE  
t
STH  
t
STS  
t
SC  
t
t
t
SP  
SP  
SAS  
V
V
IH  
IL  
SC  
t
t
SAC  
SAC  
SOH  
t
t
SOH  
V
V
IOH  
IOL  
SDQ  
SE  
511 (255)  
A (256 + A)  
253 (509)  
254 (510)  
255 (511)  
256 + B(B)  
V
IH  
V
IL  
t
SQD  
t
SQD  
V
V
OH  
OL  
QSF  
SAM MSB  
(NOTE 1)  
NEW MSB  
DON’T CARE  
UNDEFINED  
NOTE: 1. QSF = 0 when the Lower SAM (bits 0–255) is being accessed.  
QSF = 1 when the Upper SAM (bits 256–511) is being accessed.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-58  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
WRITE TRANSFER and PSEUDO WRITE TRANSFER  
(SAM-TO-DRAM TRANSFER)  
(When part was previously in the SERIAL OUTPUT mode)  
t
RC  
t
t
RP  
RAS  
V
V
IH  
IL  
RAS  
t
CSH  
t
RSH  
t
t
RCD  
t
CRP  
CAS  
V
V
IH  
IL  
CAS  
t
AR  
t
t
RAD  
t
RAL  
RAH  
t
t
CAH  
t
ASC  
ASR  
V
V
IH  
IL  
ADDR  
ROW  
SAM START  
t
t
WSR  
RWH  
RFH  
V
V
IH  
IL  
ME/WE  
t
t
FSR  
V
V
IH  
IL  
DSF  
DQ  
t
OFF  
V
V
IOH  
IOL  
OPEN  
OPEN  
t
CSD  
t
t
t
TLH  
TLS  
V
V
IH  
IL  
TR/OE  
t
t
SC  
RSD  
SRS  
t
t
SP  
t
t
SAS  
SAS  
SP  
V
V
IH  
IL  
SC  
NOTE 3  
t
SDD  
t
t
t
t
t
t
SOH  
SDZ  
SDS  
SDH  
SDS  
SDH  
IN  
V
V
IOH  
IOL  
SQD  
VALID D  
VALID D  
VALID D  
VALID D  
HIGH Z  
IN  
OUT  
t
OUT  
t
t
SWS  
SWIS  
t
ESR  
REH  
V
V
IH  
IL  
SE  
NOTE 1  
NOTE 2  
t
CQD  
t
RQD  
V
V
OH  
OL  
QSF  
NOTE 4  
NOTE 4  
DON’T CARE  
UNDEFINED  
NOTE: 1. If SE is LOW, the SAM data will be transferred to the DRAM.  
If SE is HIGH, the SAM data will not be transferred to the DRAM (SERIAL-INPUT-MODE ENABLE cycle).  
2. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless  
of SE.  
3. There must be no rising edges on the SC input during this time period.  
4. QSF = 0 when the Lower SAM (bits 0–255) is being accessed.  
QSF = 1 when the Upper SAM (bits 256–511) is being accessed.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-59  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
WRITE TRANSFER  
(SAM-TO-DRAM TRANSFER)  
(When part was previously in the SERIAL INPUT mode)  
t
RC  
t
t
RP  
RAS  
CSH  
V
V
IH  
IL  
RAS  
t
t
RSH  
t
t
RCD  
t
CRP  
CAS  
V
V
IH  
IL  
CAS  
t
t
AR  
t
t
RAD  
t
RAL  
RAH  
t
t
CAH  
ASC  
ASR  
V
V
IH  
IL  
ADDR  
ROW  
SAM START  
t
t
t
WSR  
RWH  
RFH  
V
V
IH  
IL  
ME/WE  
t
FSR  
OFF  
V
V
IH  
IL  
DSF  
DQ  
t
V
V
IOH  
IOL  
OPEN  
OPEN  
t
t
TLH  
TLS  
t
CSD  
V
V
IH  
IL  
TR/OE  
t
t
t
SC  
SRS  
RSD  
t
t
t
t
SAS  
SAS  
SP  
SP  
V
V
IH  
IL  
SC  
NOTE 2  
t
t
SDH  
SDS  
t
t
SDH  
t
SDS  
SDS  
V
V
IOH  
IOL  
VALID D  
VALID D  
VALID D  
SDQ  
IN  
IN  
IN  
t
t
SWS  
t
t
ESR  
REH  
SWIS  
V
V
IH  
IL  
SE  
NOTE 1  
t
CQD  
t
RQD  
V
V
OH  
OL  
QSF  
NOTE 3  
NOTE 3  
DON’T CARE  
UNDEFINED  
NOTE: 1. SE must be LOW to input new serial data, but the serial address  
register is incremented by SC regardless of SE.  
2. There must be no rising edges on the SC input during this time period.  
3. QSF = 0 when the Lower SAM (bits 0–255) is being accessed.  
QSF = 1 when the Upper SAM (bits 256–511) is being accessed.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-60  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
ALTERNATE WRITE TRANSFER  
(SAM-TO-DRAM TRANSFER)  
t
RC  
t
t
RAS  
RP  
V
V
IH  
IL  
RAS  
t
CSH  
t
RSH  
t
t
RCD  
t
CRP  
CAS  
V
V
IH  
IL  
CAS  
t
AR  
t
t
RAD  
t
RAL  
RAH  
t
t
CAH  
t
ASC  
ASR  
V
V
IH  
IL  
ADDR  
ROW  
SAM START  
t
t
WSR  
RWH  
V
V
IH  
IL  
ME/WE  
t
t
RFH  
FSR  
V
V
IH  
IL  
DSF  
DQ  
t
OFF  
V
V
IOH  
IOL  
OPEN  
OPEN  
t
t
TLH  
TLS  
t
CSD  
V
V
IH  
IL  
TR/OE  
t
t
t
SRS  
SAS  
RSD  
SC  
t
t
SP  
t
t
SAS  
SP  
V
V
IH  
IL  
SC  
NOTE 2  
t
SDD  
t
t
t
t
t
t
SOH  
SDZ  
SDS  
SDH  
SDS  
SDH  
IN  
V
V
IOH  
IOL  
VALID D  
VALID D  
SDQ  
VALID D  
VALID D  
HIGH-Z  
IN  
OUT  
OUT  
t
t
SWS  
SWIS  
V
V
IH  
IL  
SE  
NOTE 1  
t
CQD  
t
RQD  
V
V
OH  
OL  
QSF  
NOTE 3  
NOTE 3  
DON’T CARE  
UNDEFINED  
NOTE: 1. SE must be LOW to input new serial data, but the serial address register  
is incremented by SC regardless of SE.  
2. There must be no rising edges on the SC input during this time period.  
3. QSF = 0 when the Lower SAM (bits 0–255) is being accessed.  
QSF = 1 when the Upper SAM (bits 256–511) is being accessed.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-61  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
SAM SERIAL INPUT  
t
t
t
t
t
SWH  
SWIS  
SWIH  
SWS  
V
V
IH  
IL  
SE  
t
t
t
SC  
SC  
SC  
t
t
t
t
t
t
SAS  
SP  
SAS  
SP  
SAS  
SP  
SAS  
V
V
IH  
IL  
SC  
t
t
t
t
t
t
SDH  
SDS  
SDH  
SZE  
SDS  
SDH  
V
V
IH  
IL  
A - 1  
A
A + 2  
A + 3  
SDQ  
SAM SERIAL OUTPUT  
t
SEP  
V
V
IH  
IL  
SE  
t
t
t
SC  
SC  
SC  
t
t
t
t
t
t
SP  
SAS  
SP  
SAS  
SP  
SAS  
V
V
IH  
IL  
SC  
t
t
t
t
SAC  
SAC  
SAC  
t
SAC  
t
t
t
t
SOH  
SOH  
SEZ  
SOH  
SEA  
V
V
OH  
OL  
A - 1  
A
A + 1  
A + 2  
A + 3  
SDQ  
DON’T CARE  
UNDEFINED  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-62  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
ELECTRICAL TEST REQUIREMENTS  
SUBGROUPS  
MIL-STD-883 TEST REQUIREMENTS  
(per Method 5005, Table I)  
INTERIM ELECTRICAL (PRE-BURN-IN) TEST PARAMETERS  
(Method 5004)  
2, 8A, 10  
FINAL ELECTRICAL TEST PARAMETERS  
(Method 5004)  
1*, 2, 3, 7*, 8, 9, 10, 11  
1, 2, 3, 4**, 7, 8, 9, 10, 11  
1, 2, 3, 7, 8, 9, 10, 11  
GROUP A TEST REQUIREMENTS  
(Method 5005)  
GROUP C AND D END-POINT ELECTRICAL PARAMETERS  
(Method 5005)  
*
PDA applies to subgroups 1 and 7.  
** Subgroup 4 shall be measured only for initial qualification and after process or design changes, which may affect input  
or output capacitance.  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-63  
MT42C4256 883C  
256K x 4 VRAM  
AUSTIN SEMICONDUCTOR, INC.  
Limited Supply - Consult Factory  
MT42C4256 883C  
REV. 3/97  
DS000016  
Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.  
3-64  

相关型号:

MT42C4256EC-10/883C

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

MT42C4256EC-10/IT

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

MT42C4256EC-10/XT

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

MT42C4256EC-12/883C

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

MT42C4256EC-12/IT

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

MT42C4256EC-12/XT

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

MT42C4256F-10/883C

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

MT42C4256F-10/IT

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

MT42C4256F-10/XT

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN
MICROSS

MT42C4256F-12/883C

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

MT42C4256F-12/IT

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN