MT48LC32M16A2TG-75L:C [MICROSS]

Synchronous DRAM, 32MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54;
MT48LC32M16A2TG-75L:C
型号: MT48LC32M16A2TG-75L:C
厂家: MICROSS COMPONENTS    MICROSS COMPONENTS
描述:

Synchronous DRAM, 32MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, PLASTIC, TSOP2-54

动态存储器 光电二极管
文件: 总77页 (文件大小:3584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
512Mb: x4, x8, x16 SDRAM  
Features  
SDR SDRAM  
MT48LC128M4A2 – 32 Meg x 4 x 4 banks  
MT48LC64M8A2 – 16 Meg x 8 x 4 banks  
MT48LC32M16A2 – 8 Meg x 16 x 4 banks  
Options  
Marking  
Features  
• PC100- and PC133-compliant  
• Fully synchronous; all signals registered on positive  
edge of system clock  
• Internal, pipelined operation; column address can  
be changed every clock cycle  
• Internal banks for hiding row access/precharge  
• Programmable burst lengths: 1, 2, 4, 8, or full page  
• Auto precharge, includes concurrent auto precharge  
and auto refresh modes  
• Self refresh mode  
• Auto refresh  
• Configurations  
– 128 Meg x 4 (32 Meg x 4 x 4 banks)  
– 64 Meg x 8 (16 Meg x 8 x 4 banks)  
– 32 Meg x 16 (8 Meg x 16 x 4 banks)  
• Write recovery (tWR)  
128M4  
64M8  
32M16  
tWR = 2 CLK1  
A2  
• Plastic package – OCPL2  
– 54-pin TSOP II (400 mil) (standard)  
– 54-pin TSOP II (400 mil) Pb-free  
• Timing – cycle time  
TG  
P
– 7.5ns @ CL = 3 (PC133)  
– 7.5ns @ CL = 2 (PC133)  
• Self refresh  
– Standard  
– Low power  
• Operating temperature range  
– Commercial (0˚C to +70˚C)  
– Industrial (–40˚C to +85˚C)  
• Revision  
-75  
-7E3  
– 64ms, 8192-cycle refresh (commercial and  
industrial)  
LVTTL-compatible inputs and outputs  
• Single 3.3V ±0.3V power supply  
None  
L4  
None  
IT  
:C  
1. See technical note TN-48-05 on  
Micron's Web site.  
Notes:  
2. Off-center parting line.  
3. Available on x4 and x8 only.  
4. Contact Micron for availability.  
Table 1: Key Timing Parameters  
CL = CAS (READ) latency  
Access Time  
CL = 2  
Clock  
Speed Grade  
Frequency  
143 MHz  
133 MHz  
133 MHz  
100 MHz  
CL = 3  
5.4ns  
5.4ns  
Setup Time  
1.5ns  
Hold Time  
0.8ns  
-7E  
-75  
-7E  
-75  
1.5ns  
0.8ns  
5.4ns  
6ns  
1.5ns  
0.8ns  
1.5ns  
0.8ns  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
1
© 2000 Micron Technology, Inc. All rights reserved.  
Products and specifications discussed herein are subject to change by Micron without notice.  
512Mb: x4, x8, x16 SDRAM  
Features  
Table 2: Address Table  
32 Meg  
Parameter  
32 Meg x 4  
32 Meg x 4 x 4 banks  
8K  
32 Meg x 8  
x 16  
8 Meg x 16 x 4 banks  
8K  
Configuration  
Refresh count  
Row addressing  
Bank addressing  
16 Meg x 8 x 4 banks  
8K  
8K A[12:0]  
8K A[12:0]  
8K A[12:0]  
4 BA[1:0]  
4 BA[1:0]  
4 BA[1:0]  
Column  
4K A[9:0], A11, A12  
2K A[9:0], A11  
1K A[9:0]  
addressing  
Table 3: 512Mb SDR Part Numbering  
Part Numbers  
MT48LC128M4A2P  
MT48LC128M4A2TG  
MT48LC64M8A2P  
MT48LC64M8A2TG  
MT48LC32M16A2P  
MT48LC32M16A2TG  
Architecture  
Package  
128 Meg x 4  
128 Meg x 4  
64 Meg x 8  
64 Meg x 8  
32 Meg x 16  
32 Meg x 16  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
2
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Features  
Contents  
General Description ......................................................................................................................................... 6  
Functional Block Diagrams ............................................................................................................................... 7  
Pin and Ball Assignments and Descriptions ..................................................................................................... 10  
Package Dimensions ....................................................................................................................................... 12  
Temperature and Thermal Impedance ............................................................................................................ 13  
Electrical Specifications .................................................................................................................................. 15  
Electrical Specifications – IDD Parameters ........................................................................................................ 17  
Electrical Specifications – AC Operating Conditions ......................................................................................... 18  
Functional Description ................................................................................................................................... 21  
Commands .................................................................................................................................................... 22  
COMMAND INHIBIT .................................................................................................................................. 22  
NO OPERATION (NOP) ............................................................................................................................... 23  
LOAD MODE REGISTER (LMR) ................................................................................................................... 23  
ACTIVE ...................................................................................................................................................... 23  
READ ......................................................................................................................................................... 24  
WRITE ....................................................................................................................................................... 25  
PRECHARGE .............................................................................................................................................. 26  
BURST TERMINATE ................................................................................................................................... 26  
REFRESH ................................................................................................................................................... 27  
AUTO REFRESH ..................................................................................................................................... 27  
SELF REFRESH ....................................................................................................................................... 27  
Truth Tables ................................................................................................................................................... 28  
Initialization .................................................................................................................................................. 33  
Mode Register ................................................................................................................................................ 35  
Burst Length .............................................................................................................................................. 37  
Burst Type .................................................................................................................................................. 37  
CAS Latency ............................................................................................................................................... 39  
Operating Mode ......................................................................................................................................... 39  
Write Burst Mode ....................................................................................................................................... 39  
Bank/Row Activation ...................................................................................................................................... 40  
READ Operation ............................................................................................................................................. 41  
WRITE Operation ........................................................................................................................................... 50  
Burst Read/Single Write .............................................................................................................................. 57  
PRECHARGE Operation .................................................................................................................................. 58  
Auto Precharge ........................................................................................................................................... 58  
AUTO REFRESH Operation ............................................................................................................................. 70  
SELF REFRESH Operation ............................................................................................................................... 72  
Power-Down .................................................................................................................................................. 74  
Clock Suspend ............................................................................................................................................... 75  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
3
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Features  
List of Figures  
Figure 1: 128 Meg x 4 Functional Block Diagram ............................................................................................... 7  
Figure 2: 64 Meg x 8 Functional Block Diagram ................................................................................................. 8  
Figure 3: 32 Meg x 16 Functional Block Diagram ............................................................................................... 9  
Figure 4: 54-Pin TSOP (Top View) .................................................................................................................. 10  
Figure 5: 54-Pin Plastic TSOP (400 mil) – Package Codes TG/P ......................................................................... 12  
Figure 6: Example: Temperature Test Point Location, 54-Pin TSOP (Top View) ................................................. 14  
Figure 7: ACTIVE Command .......................................................................................................................... 23  
Figure 8: READ Command ............................................................................................................................. 24  
Figure 9: WRITE Command ........................................................................................................................... 25  
Figure 10: PRECHARGE Command ................................................................................................................ 26  
Figure 11: Initialize and Load Mode Register .................................................................................................. 34  
Figure 12: Mode Register Definition ............................................................................................................... 36  
Figure 13: CAS Latency .................................................................................................................................. 39  
t
Figure 14: Example: Meeting tRCD (MIN) When 2 < RCD (MIN)/tCK < 3 .......................................................... 40  
Figure 15: Consecutive READ Bursts .............................................................................................................. 42  
Figure 16: Random READ Accesses ................................................................................................................ 43  
Figure 17: READ-to-WRITE ............................................................................................................................ 44  
Figure 18: READ-to-WRITE With Extra Clock Cycle ......................................................................................... 45  
Figure 19: READ-to-PRECHARGE .................................................................................................................. 45  
Figure 20: Terminating a READ Burst ............................................................................................................. 46  
Figure 21: Alternating Bank Read Accesses ..................................................................................................... 47  
Figure 22: READ Continuous Page Burst ......................................................................................................... 48  
Figure 23: READ – DQM Operation ................................................................................................................ 49  
Figure 24: WRITE Burst ................................................................................................................................. 50  
Figure 25: WRITE-to-WRITE .......................................................................................................................... 51  
Figure 26: Random WRITE Cycles .................................................................................................................. 52  
Figure 27: WRITE-to-READ ............................................................................................................................ 52  
Figure 28: WRITE-to-PRECHARGE ................................................................................................................. 53  
Figure 29: Terminating a WRITE Burst ............................................................................................................ 54  
Figure 30: Alternating Bank Write Accesses ..................................................................................................... 55  
Figure 31: WRITE – Continuous Page Burst ..................................................................................................... 56  
Figure 32: WRITE – DQM Operation ............................................................................................................... 57  
Figure 33: READ With Auto Precharge Interrupted by a READ ......................................................................... 59  
Figure 34: READ With Auto Precharge Interrupted by a WRITE ........................................................................ 60  
Figure 35: READ With Auto Precharge ............................................................................................................ 61  
Figure 36: READ Without Auto Precharge ....................................................................................................... 62  
Figure 37: Single READ With Auto Precharge .................................................................................................. 63  
Figure 38: Single READ Without Auto Precharge ............................................................................................. 64  
Figure 39: WRITE With Auto Precharge Interrupted by a READ ........................................................................ 65  
Figure 40: WRITE With Auto Precharge Interrupted by a WRITE ...................................................................... 65  
Figure 41: WRITE With Auto Precharge ........................................................................................................... 66  
Figure 42: WRITE Without Auto Precharge ..................................................................................................... 67  
Figure 43: Single WRITE With Auto Precharge ................................................................................................. 68  
Figure 44: Single WRITE Without Auto Precharge ............................................................................................ 69  
Figure 45: Auto Refresh Mode ........................................................................................................................ 71  
Figure 46: Self Refresh Mode .......................................................................................................................... 73  
Figure 47: Power-Down Mode ........................................................................................................................ 74  
Figure 48: Clock Suspend During WRITE Burst ............................................................................................... 75  
Figure 49: Clock Suspend During READ Burst ................................................................................................. 76  
Figure 50: Clock Suspend Mode ..................................................................................................................... 77  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
4
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Features  
List of Tables  
Table 1: Key Timing Parameters ....................................................................................................................... 1  
Table 2: Address Table ..................................................................................................................................... 2  
Table 3: 512Mb SDR Part Numbering ............................................................................................................... 2  
Table 4: Pin and Ball Descriptions .................................................................................................................. 11  
Table 5: Temperature Limits .......................................................................................................................... 13  
Table 6: Thermal Impedance Simulated Values ............................................................................................... 14  
Table 7: Absolute Maximum Ratings .............................................................................................................. 15  
Table 8: DC Electrical Characteristics and Operating Conditions ..................................................................... 15  
Table 9: Capacitance ..................................................................................................................................... 16  
Table 10: IDD Specifications and Conditions (-7E, -75) ..................................................................................... 17  
Table 11: Electrical Characteristics and Recommended AC Operating Conditions (-7E, -75) ............................. 18  
Table 12: AC Functional Characteristics (-7E, -75) ........................................................................................... 19  
Table 13: Truth Table – Commands and DQM Operation ................................................................................. 22  
Table 14: Truth Table – Current State Bank n, Command to Bank n .................................................................. 28  
Table 15: Truth Table – Current State Bank n, Command to Bank m ................................................................. 30  
Table 16: Truth Table – CKE ........................................................................................................................... 32  
Table 17: Burst Definition Table ..................................................................................................................... 38  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
5
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
General Description  
General Description  
The 512Mb SDRAM is a high-speed CMOS, dynamic random-access memory contain-  
ing 536,870,912 bits. It is internally configured as a quad-bank DRAM with a synchro-  
nous interface (all signals are registered on the positive edge of the clock signal, CLK).  
Each of the x4’s 134,217,728-bit banks is organized as 8192 rows by 4096 columns by 4  
bits. Each of the x8’s 134,217,728-bit banks is organized as 8192 rows by 2048 columns  
by 8 bits. Each of the x16’s 134,217,728-bit banks is organized as 8192 rows by 1024 col-  
umns by 16 bits.  
Read and write accesses to the SDRAM are burst-oriented; accesses start at a selected  
location and continue for a programmed number of locations in a programmed se-  
quence. Accesses begin with the registration of an ACTIVE command, which is then fol-  
lowed by a READ or WRITE command. The address bits registered coincident with the  
ACTIVE command are used to select the bank and row to be accessed (BA[1:0] select the  
bank; A[12:0] select the row). The address bits registered coincident with the READ or  
WRITE command are used to select the starting column location for the burst access.  
The SDRAM provides for programmable read or write burst lengths (BL) of 1, 2, 4, or 8  
locations, or the full page, with a burst terminate option. An auto precharge function  
may be enabled to provide a self-timed row precharge that is initiated at the end of the  
burst sequence.  
The 512Mb SDRAM uses an internal pipelined architecture to achieve high-speed oper-  
ation. This architecture is compatible with the 2n rule of prefetch architectures, but it  
also allows the column address to be changed on every clock cycle to achieve a high-  
speed, fully random access. Precharging one bank while accessing one of the other  
three banks will hide the PRECHARGE cycles and provide seamless, high-speed, ran-  
dom-access operation.  
The 512Mb SDRAM is designed to operate in 3.3V memory systems. An auto refresh  
mode is provided, along with a power-saving, power-down mode. All inputs and out-  
puts are LVTTL-compatible.  
SDRAMs offer substantial advances in DRAM operating performance, including the  
ability to synchronously burst data at a high data rate with automatic column-address  
generation, the ability to interleave between internal banks to hide precharge time, and  
the capability to randomly change column addresses on each clock cycle during a burst  
access.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
6
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Functional Block Diagrams  
Functional Block Diagrams  
Figure 1: 128 Meg x 4 Functional Block Diagram  
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
CAS#  
RAS#  
BANK2  
BANK1  
REFRESH  
COUNTER  
13  
MODE REGISTER  
12  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
13  
BANK0  
MEMORY  
ARRAY  
1
1
8192  
DQM  
13  
(8192 x 4096 x 4)  
DECODER  
DATA  
SENSE AMPLIFIERS  
OUTPUT  
REGISTER  
4
16384  
I/O GATING  
2
4
DQ[3:0]  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A[12:0]  
BA[1:0]  
ADDRESS  
REGISTER  
15  
DATA  
INPUT  
REGISTER  
2
4
4096  
(x4)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
12  
12  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
7
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Functional Block Diagrams  
Figure 2: 64 Meg x 8 Functional Block Diagram  
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
CAS#  
RAS#  
BANK2  
BANK1  
REFRESH  
COUNTER  
13  
MODE REGISTER  
12  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
13  
BANK0  
MEMORY  
ARRAY  
1
1
8192  
DQM  
13  
(8192 x 2048 x 8)  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
16384  
8
I/O GATING  
2
8
DQ[7:0]  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A[12:0]  
BA[1:0]  
ADDRESS  
REGISTER  
15  
DATA  
INPUT  
REGISTER  
2
8
2048  
(x8)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
11  
11  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
8
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Functional Block Diagrams  
Figure 3: 32 Meg x 16 Functional Block Diagram  
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
CAS#  
RAS#  
BANK2  
BANK1  
REFRESH  
COUNTER  
13  
MODE REGISTER  
12  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
13  
BANK0  
MEMORY  
ARRAY  
2
2
8192  
DQML,  
DQMH  
13  
(8192 x 1024 x 16)  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
16384  
16  
I/O GATING  
2
16  
DQ[15:0]  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A[12:0]  
BA[1:0]  
ADDRESS  
REGISTER  
15  
DATA  
INPUT  
REGISTER  
2
16  
1024  
(x16)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
10  
10  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
9
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Pin and Ball Assignments and Descriptions  
Pin and Ball Assignments and Descriptions  
Figure 4: 54-Pin TSOP (Top View)  
x4  
x8  
x16  
x16  
x8  
x4  
-
NC  
-
DQ0  
-
NC  
DQ1  
-
NC  
DQ2  
-
NC  
DQ3  
-
VDD  
DQ0  
VDDQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
DQ6  
VSSQ  
DQ7  
VDD  
VSS  
DQ15 DQ7  
VSSQ  
DQ14 NC  
DQ13 DQ6  
VDDQ  
DQ12 NC  
DQ11 DQ5  
VSSQ  
-
-
NC  
-
NC  
DQ3  
-
NC  
NC  
-
NC  
DQ2  
-
NC  
-
1
2
3
4
5
6
7
8
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
-
NC  
DQ0  
-
NC  
NC  
-
NC  
DQ1  
-
NC  
-
NC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9
DQ10 NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
DQ9  
VDDQ  
DQ8  
VSS  
DQ4  
-
NC  
-
-
NC  
-
NC DQML  
NC  
-
-
-
-
-
-
-
-
-
-
-
-
-
WE#  
CAS#  
RAS#  
CS#  
BA0  
BA1  
A10  
A0  
A1  
A2  
A3  
VDD  
DQMH DQM DQM  
CLK  
CKE  
A12  
A11  
A9  
A8  
A7  
A6  
A5  
A4  
VSS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1. The # symbol indicates that the signal is active LOW. A dash (-) indicates that the x8 and  
x4 pin function is the same as the x16 pin function.  
Notes:  
2. Package may or may not be assembled with a location notch.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
10  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Pin and Ball Assignments and Descriptions  
Table 4: Pin and Ball Descriptions  
Symbol  
Type Description  
CLK  
Input Clock: CLK is driven by the system clock. All SDRAM input signals are sampled on the positive  
edge of CLK. CLK also increments the internal burst counter and controls the output registers.  
CKE  
Input Clock enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal. Deactivating the  
clock provides precharge power-down and SELF REFRESH operation (all banks idle), active  
power-down (row active in any bank), or CLOCK SUSPEND operation (burst/access in pro-  
gress). CKE is synchronous except after the device enters power-down and self refresh modes,  
where CKE becomes asynchronous until after exiting the same mode. The input buffers, in-  
cluding CLK, are disabled during power-down and self refresh modes, providing low standby  
power. CKE may be tied HIGH.  
CS#  
Input Chip select: CS# enables (registered LOW) and disables (registered HIGH) the command decod-  
er. All commands are masked when CS# is registered HIGH, but READ/WRITE bursts already in  
progress will continue, and DQM operation will retain its DQ mask capability while CS# is  
HIGH. CS# provides for external bank selection on systems with multiple banks. CS# is consid-  
ered part of the command code.  
CAS#, RAS#,  
WE#  
Input Command inputs: RAS#, CAS#, and WE# (along with CS#) define the command being entered.  
x4, x8:  
DQM  
Input Input/output mask: DQM is an input mask signal for write accesses and an output enable sig-  
nal for read accesses. Input data is masked when DQM is sampled HIGH during a WRITE cycle.  
The output buffers are placed in a High-Z state (two-clock latency) when DQM is sampled  
HIGH during a READ cycle. On the x4 and x8, DQML (pin 15) is a NC and DQMH is DQM. On  
the x16, DQML corresponds to DQ[7:0], and DQMH corresponds to DQ[15:8]. DQML and  
DQMH are considered same state when referenced as DQM.  
x16:  
DQML, DQMH  
LDQM, UDQM  
(54-ball)  
BA[1:0]  
Input Bank address input(s): BA[1:0] define to which bank the ACTIVE, READ, WRITE, or PRECHARGE  
command is being applied.  
A[12:0]  
Input Address inputs: A[12:0] are sampled during the ACTIVE command (row address A[12:0]) and  
READ or WRITE command (column address A[9:0], A11, and A12 for x4; A[9:0] and A11 for x8;  
A[9:0] for x16; with A10 defining auto precharge) to select one location out of the memory  
array in the respective bank. A10 is sampled during a PRECHARGE command to determine if  
all banks are to be precharged (A10 HIGH) or bank selected by A10 (LOW). The address inputs  
also provide the op-code during a LOAD MODE REGISTER command.  
x16:  
DQ[15:0]  
I/O  
I/O  
I/O  
Data input/output: Data bus for x16 (pins 4, 7, 10, 13, 15, 42, 45, 48, and 51 are NC for x8; and  
pins 2, 4, 7, 8, 10, 13, 15, 42, 45, 47, 48, 51, and 53 are NC for x4).  
x8:  
DQ[7:0]  
Data input/output: Data bus for x8 (pins 2, 8, 47, 53 are NC for x4).  
x4:  
Data input/output: Data bus for x4.  
DQ[3:0]  
VDDQ  
VSSQ  
VDD  
VSS  
Supply DQ power: DQ power to the die for improved noise immunity.  
Supply DQ ground: DQ ground to the die for improved noise immunity.  
Supply Power supply: +3.3V ±0.3V.  
Supply Ground.  
NC  
These should be left unconnected.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
11  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Package Dimensions  
Package Dimensions  
Figure 5: 54-Pin Plastic TSOP (400 mil) – Package Codes TG/P  
0.10  
1.2 MAX  
0.375 ±0.075 TYP  
Pin #1 ID  
0.80 TYP  
(for reference only)  
22.22 ±0.08  
2X R 0.75  
2X R 1.00  
2X 0.71  
Plated lead finish: 90% Sn, 10% Pb or 100% Sn  
Plastic package material: Epoxy novolac  
Package width and length do not include  
mold protrusion. Allowable protrusion is  
0.25 per side.  
2X 0.10  
2.80  
Gage plane  
0.25  
10.16 ±0.08  
+0.10  
-0.05  
11.76 ±0.20  
0.10  
See Detail A  
+0.03  
-0.02  
0.15  
0.50 ±0.10  
0.80  
Detail A  
1. All dimensions are in millimeters.  
Notes:  
2. Package width and length do not include mold protrusion; allowable mold protrusion is  
0.25mm per side.  
3. 2X means the notch is present in two locations (both ends of the device).  
4. Package may or may not be assembled with a location notch.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
12  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Temperature and Thermal Impedance  
Temperature and Thermal Impedance  
It is imperative that the SDRAM device’s temperature specifications, shown in Table 6  
(page 14), be maintained to ensure the junction temperature is in the proper operat-  
ing range to meet data sheet specifications. An important step in maintaining the prop-  
er junction temperature is using the device’s thermal impedances correctly. The ther-  
mal impedances are listed in Table 6 (page 14) for the applicable die revision and  
packages being made available. These thermal impedance values vary according to the  
density, package, and particular design used for each device.  
Incorrectly using thermal impedances can produce significant errors. Read Micron  
technical note TN-00-08, “Thermal Applications” prior to using the thermal impedan-  
ces listed in Table 6 (page 14). To ensure the compatibility of current and future de-  
signs, contact Micron Applications Engineering to confirm thermal impedance values.  
The SDRAM device’s safe junction temperature range can be maintained when the TC  
specification is not exceeded. In applications where the device’s ambient temperature  
is too high, use of forced air and/or heat sinks may be required to satisfy the case tem-  
perature specifications.  
Table 5: Temperature Limits  
Parameter  
Symbol  
Min  
0
Max  
80  
Unit  
Notes  
Operating case temperature  
Commercial  
Industrial  
TC  
°C  
1, 2, 3, 4  
–40  
0
90  
Junction temperature  
Ambient temperature  
Commercial  
Industrial  
TJ  
TA  
85  
°C  
°C  
°C  
3
–40  
0
95  
Commercial  
Industrial  
70  
3, 5  
–40  
85  
Peak reflow temperature  
Notes:  
TPEAK  
260  
1. MAX operating case temperature, TC, is measured in the center of the package on the  
top side of the device, as shown in Figure 6 (page 14).  
2. Device functionality is not guaranteed if the device exceeds maximum TC during opera-  
tion.  
3. All temperature specifications must be satisfied.  
4. The case temperature should be measured by gluing a thermocouple to the top-center  
of the component. This should be done with a 1mm bead of conductive epoxy, as de-  
fined by the JEDEC EIA/JESD51 standards. Take care to ensure that the thermocouple  
bead is touching the case.  
5. Operating ambient temperature surrounding the package.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
13  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Temperature and Thermal Impedance  
Table 6: Thermal Impedance Simulated Values  
Θ JA (°C/W)  
Airflow =  
Θ JA (°C/W)  
Airflow =  
Θ JA (°C/W)  
Airflow =  
2m/s  
Die  
Revision  
Package  
Substrate  
2-layer  
0m/s  
1m/s  
Θ JB (°C/W) Θ JC (°C/W)  
D
54-pin TSOP  
62.6  
39.2  
48.4  
32.3  
44.2  
30.6  
19.2  
19.3  
6.7  
4-layer  
1. For designs expected to last beyond the die revision listed, contact Micron Applications  
Engineering to confirm thermal impedance values.  
Notes:  
2. Thermal resistance data is sampled from multiple lots, and the values should be viewed  
as typical.  
3. These are estimates; actual results may vary.  
Figure 6: Example: Temperature Test Point Location, 54-Pin TSOP (Top View)  
22.22mm  
11.11mm  
Test point  
10.16mm  
5.08mm  
1. Package may or may not be assembled with a location notch.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
14  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Electrical Specifications  
Electrical Specifications  
Stresses greater than those listed may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at these or any other condi-  
tions above those indicated in the operational sections of this specification is not im-  
plied. Exposure to absolute maximum rating conditions for extended periods may affect  
reliability.  
Table 7: Absolute Maximum Ratings  
Voltage/Temperature  
Symbol  
VDD/VDDQ  
VIN  
Min Max Unit  
Notes  
Voltage on VDD/VDDQ supply relative to VSS  
Voltage on inputs, NC, or I/O balls relative to VSS  
Storage temperature (plastic)  
Power dissipation  
–1  
–1  
+4.6  
+4.6  
V
1
TSTG  
–55 +155  
°C  
W
1
1. VDD and VDDQ must be within 300mV of each other at all times. VDDQ must not exceed  
VDD  
Note:  
.
Table 8: DC Electrical Characteristics and Operating Conditions  
Notes 1–3 apply to all parameters and conditions; VDD/VDDQ = +3.3V ±0.3V  
Parameter/Condition  
Symbol  
VDD, VDDQ  
VIH  
Min  
3
Max  
Unit Notes  
Supply voltage  
3.6  
V
Input high voltage: Logic 1; All inputs  
Input low voltage: Logic 0; All inputs  
Output high voltage: IOUT = –4mA  
Output low voltage: IOUT = 4mA  
Input leakage current:  
2
VDD + 0.3  
V
V
4
4
VIL  
–0.3  
2.4  
+0.8  
VOH  
V
VOL  
0.4  
5
V
IL  
–5  
μA  
Any input 0V VIN VDD (All other balls not under test = 0V)  
Output leakage current: DQ are disabled; 0V VOUT VDDQ  
IOZ  
TA  
TA  
–5  
0
–5  
μA  
˚C  
Operating temperature:  
Commercial  
Industrial  
+70  
+85  
–40  
˚C  
1. All voltages referenced to VSS.  
Notes:  
2. The minimum specifications are used only to indicate cycle time at which proper opera-  
tion over the full temperature range is ensured; (0°C TA +70°C (commercial), –40°C ≤  
TA +85°C (industrial), and –40°C TA +105°C (automotive)).  
3. An initial pause of 100μs is required after power-up, followed by two AUTO REFRESH  
commands, before proper device operation is ensured. (VDD and VDDQ must be powered  
up simultaneously. VSS and VSSQ must be at same potential.) The two AUTO REFRESH  
command wake-ups should be repeated any time the tREF refresh requirement is excee-  
ded.  
4. VIH overshoot: VIH,max = VDDQ + 2V for a pulse width 3ns, and the pulse width cannot  
be greater than one-third of the cycle rate. VIL undershoot: VIL,min = –2V for a pulse  
width 3ns.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
15  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Electrical Specifications  
Table 9: Capacitance  
Note 1 applies to all parameters and conditions  
Package  
Parameter  
Symbol  
CL1  
Min  
2.5  
Max  
3.5  
Unit  
pF  
Notes  
TSOP "TG" package  
Input capacitance: CLK  
2
3
Input capacitance: All other input-only  
balls  
CL2  
2.5  
3.8  
pF  
Input/output capacitance: DQ  
CL0  
4
6
pF  
4
1. This parameter is sampled. VDD, VDDQ = +3.3V; f = 1 MHz, TA = 25°C; pin under test  
biased at 1.4V.  
Notes:  
2. PC100 specifies a maximum of 4pF.  
3. PC100 specifies a maximum of 5pF.  
4. PC100 specifies a maximum of 6.5pF.  
5. PC133 specifies a minimum of 2.5pF.  
6. PC133 specifies a minimum of 2.5pF.  
7. PC133 specifies a minimum of 3.0pF.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
16  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Electrical Specifications – IDD Parameters  
Electrical Specifications – IDD Parameters  
Table 10: IDD Specifications and Conditions (-7E, -75)  
Notes 1–5 apply to all parameters and conditions; VDD/VDDQ = +3.3V ±0.3V  
Max  
Parameter/Condition  
Symbol  
-7E  
-75  
Unit  
Notes  
Operating current: Active mode; Burst = 2; READ or WRITE; tRC = tRC  
(MIN)  
IDD1  
120  
110  
mA  
6, 9, 10,  
13  
Standby current: Power-down mode; All banks idle; CKE = LOW  
IDD2  
IDD3  
3.5  
45  
3.5  
45  
mA  
mA  
13  
Standby current: Active mode; CKE = HIGH; CS# = HIGH; All banks active  
after tRCD met; No accesses in progress  
6, 8, 10,  
13  
Operating current: Burst mode; Page burst; READ or WRITE; All banks ac-  
tive  
IDD4  
125  
115  
mA  
6, 9, 10,  
13  
Auto refresh current: CKE = HIGH; CS# = HIGH  
tRFC = tRFC (MIN)  
tRFC = 7.813μs  
Standard  
IDD5  
IDD6  
IDD7  
IDD7  
255  
6
255  
6
mA 6, 8, 9, 10,  
13, 14  
mA  
Self refresh current: CKE 0.2V  
6
6
mA  
Low power (L)  
3
3
mA  
7
1. All voltages referenced to VSS.  
Notes:  
2. The minimum specifications are used only to indicate cycle time at which proper opera-  
tion over the full temperature range is ensured; (0°C TA +70°C (commercial), –40°C ≤  
TA +85°C (industrial), and –40°C TA +105°C (automotive)).  
3. An initial pause of 100μs is required after power-up, followed by two AUTO REFRESH  
commands, before proper device operation is ensured. (VDD and VDDQ must be powered  
up simultaneously. VSS and VSSQ must be at same potential.) The two AUTO REFRESH  
command wake-ups should be repeated any time the tREF refresh requirement is excee-  
ded.  
4. AC operating and IDD test conditions have VIL = 0V and VIH = 3.0V using a measurement  
reference level of 1.5V. If the input transition time is longer than 1ns, then the timing is  
measured from VIL, max and VIH,min and no longer from the 1.5V midpoint. CLK should  
always be 1.5V referenced to crossover. Refer to Micron technical note TN-48-09.  
5. IDD specifications are tested after the device is properly initialized.  
6. IDD is dependent on output loading and cycle rates. Specified values are obtained with  
minimum cycle time and the outputs open.  
7. Enables on-chip refresh and address counters.  
8. Other input signals are allowed to transition no more than once every two clocks and  
are otherwise at valid VIH or VIL levels.  
9. The IDD current will increase or decrease proportionally according to the amount of fre-  
quency alteration for the test condition.  
10. Address transitions average one transition every two clocks.  
11. PC100 specifies a maximum of 4pF.  
12. PC100 specifies a maximum of 5pF.  
13. For -75, CL = 3 and tCK = 7.5ns; for -7E, CL = 2 and tCK = 7.5ns.  
14. CKE is HIGH during REFRESH command period tRFC (MIN) else CKE is LOW. The IDD6 limit  
is actually a nominal value and does not result in a fail value.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
17  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Electrical Specifications – AC Operating Conditions  
Electrical Specifications – AC Operating Conditions  
Table 11: Electrical Characteristics and Recommended AC Operating Conditions (-7E, -75)  
Notes 1, 2, 4, 5, 7, and 20 apply to all parameters and conditions  
-7E  
-75  
Parameter  
Symbol  
tAC(3)  
tAC(2)  
tAH  
Min  
Max  
5.4  
5.4  
Min  
Max  
5.4  
6
Unit  
Notes  
Access time from CLK (positive edge)  
CL = 3  
CL = 2  
ns  
18  
Address hold time  
Address setup time  
CLK high-level width  
CLK low-level width  
Clock cycle time  
0.8  
1.5  
2.5  
2.5  
7
0.8  
1.5  
2.5  
2.5  
7.5  
10  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
ns  
ns  
ns  
ns  
ns  
tAS  
tCH  
tCL  
tCK(3)  
tCK(2)  
tCKH  
tCKS  
tCMH  
tCMS  
tDH  
CL = 3  
CL = 2  
14  
21  
7.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
CKE hold time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
tCK  
ns  
ns  
CKE setup time  
CS#, RAS#, CAS#, WE#, DQM hold time  
CS#, RAS#, CAS#, WE#, DQM setup time  
Data-in hold time  
Data-in setup time  
tDS  
Data-out High-Z time  
CL = 3  
CL = 2  
tHZ(3)  
tHZ(2)  
tLZ  
5.4  
5.4  
5.4  
6
6
Data-out Low-Z time  
1
1
Data-out hold time (load)  
Data-out hold time (no load)  
ACTIVE-to-PRECHARGE command  
ACTIVE-to-ACTIVE command period  
ACTIVE-to-READ or WRITE delay  
Refresh period (8192 rows)  
AUTO REFRESH period  
tOH  
2.7  
1.8  
37  
60  
15  
2.7  
1.8  
44  
66  
20  
tOHn  
tRAS  
tRC  
tRCD  
tREF  
tRFC  
tRP  
tRRD  
tT  
tWR  
19  
23  
120,000  
120,000  
64  
64  
66  
15  
14  
0.3  
66  
20  
15  
0.3  
PRECHARGE command period  
ACTIVE bank a to ACTIVE bank b command  
Transition time  
1.2  
1.2  
3
WRITE recovery time  
1 CLK +  
7ns  
1 CLK +  
7.5ns  
15  
14  
67  
15  
75  
16  
12  
Exit SELF REFRESH-to-ACTIVE command  
tXSR  
ns  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
18  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Electrical Specifications – AC Operating Conditions  
Table 12: AC Functional Characteristics (-7E, -75)  
Notes 1–5 and note 7 apply to all parameters and conditions  
Parameter  
Symbol  
tBDL  
tCCD  
tCDL  
tCKED  
tDAL  
-7E  
1
-75  
1
Unit  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
Notes  
11  
Last data-in to burst STOP command  
READ/WRITE command to READ/WRITE command  
Last data-in to new READ/WRITE command  
CKE to clock disable or power-down entry mode  
Data-in to ACTIVE command  
1
1
11  
1
1
11  
1
1
8
4
5
9, 13  
10, 13  
11  
Data-in to PRECHARGE command  
tDPL  
2
2
DQM to input data delay  
tDQD  
tDQM  
tDQZ  
tDWD  
tMRD  
tPED  
tRDL  
tROH(3)  
tROH(2)  
0
0
DQM to data mask during WRITEs  
0
0
11  
DQM to data High-Z during READs  
2
2
11  
WRITE command to input data delay  
0
0
11  
LOAD MODE REGISTER command to ACTIVE or REFRESH command  
CKE to clock enable or power-down exit setup mode  
Last data-in to PRECHARGE command  
2
2
17  
1
1
8
2
2
10, 13  
11  
Data-out High-Z from PRECHARGE command  
CL = 3  
CL = 2  
3
3
2
2
11  
1. The minimum specifications are used only to indicate cycle time at which proper opera-  
tion over the full temperature range (0˚C TA +70˚C commercial temperature, -40˚C ≤  
TA +85˚C industrial temperature, and -40˚C TA +105˚C automotive temperature) is  
ensured.  
Notes:  
2. An initial pause of 100μs is required after power-up, followed by two AUTO REFRESH  
commands, before proper device operation is ensured. (VDD and VDDQ must be powered  
up simultaneously. VSS and VSSQ must be at same potential.) The two AUTO REFRESH  
command wake-ups should be repeated any time the tREF refresh requirement is excee-  
ded.  
3. AC characteristics assume tT = 1ns.  
4. In addition to meeting the transition rate specification, the clock and CKE must transit  
between VIH and VIL (or between VIL and VIH) in a monotonic manner.  
5. Outputs measured at 1.5V with equivalent load:  
Q
50pF  
6. tHZ defines the time at which the output achieves the open circuit condition; it is not a  
reference to VOH or VOL. The last valid data element will meet tOH before going High-Z.  
7. AC operating and IDD test conditions have VIL = 0V and VIH = 3.0V using a measurement  
reference level of 1.5V. If the input transition time is longer than 1ns, then the timing is  
measured from VIL,max and VIH,min and no longer from the 1.5V midpoint. CLK should al-  
ways be 1.5V referenced to crossover. Refer to Micron technical note TN-48-09.  
8. Timing is specified by tCKS. Clock(s) specified as a reference only at minimum cycle rate.  
9. Timing is specified by tWR plus tRP. Clock(s) specified as a reference only at minimum cy-  
cle rate.  
10. Timing is specified by tWR.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
19  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Electrical Specifications – AC Operating Conditions  
11. Required clocks are specified by JEDEC functionality and are not dependent on any tim-  
ing parameter.  
12. CLK must be toggled a minimum of two times during this period.  
13. Based on tCK = 7.5ns for -75 and -7E, 6ns for -6A.  
14. The clock frequency must remain constant (stable clock is defined as a signal cycling  
within timing constraints specified for the clock pin) during access or precharge states  
(READ, WRITE, including tWR, and PRECHARGE commands). CKE may be used to reduce  
the data rate.  
15. Auto precharge mode only. The precharge timing budget (tRP) begins at 7ns for -7E and  
7.5ns for -75 after the first clock delay and after the last WRITE is executed.  
16. Precharge mode only.  
17. JEDEC and PC100 specify three clocks.  
18. tAC for -75/-7E at CL = 3 with no load is 4.6ns and is guaranteed by design.  
19. Parameter guaranteed by design.  
20. PC100 specifies a maximum of 6.5pF.  
21. For operating frequencies 45 MHz, tCKS = 3.0ns.  
22. Auto precharge mode only. The precharge timing budget (tRP) begins 6ns for -6A after  
the first clock delay, after the last WRITE is executed. May not exceed limit set for pre-  
charge mode.  
23. DRAM devices should be evenly addressed when being accessed. Disproportionate ac-  
cesses to a particular row address may result in reduction of the product lifetime.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
20  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Functional Description  
Functional Description  
In general, 512Mb SDRAM devices (32 Meg x 4 x 4 banks, 16 Meg x 8 x 4 banks, and 16  
Meg x 16 x 4 banks) are quad-bank DRAM that operate at 3.3V and include a synchro-  
nous interface. All signals are registered on the positive edge of the clock signal, CLK.  
Each of the x8’s 134,217,728-bit banks is organized as 8192 rows by 4096 columns by 4  
bits. Each of the x8’s 134,217,728-bit banks is organized as 8192 rows by 2048 columns  
by 8 bits. Each of the x16’s 134,217,728-bit banks is organized as 8192 rows by 1024 col-  
umns by 16 bits.  
Read and write accesses to the SDRAM are burst-oriented; accesses start at a selected  
location and continue for a programmed number of locations in a programmed se-  
quence. Accesses begin with the registration of an ACTIVE command, followed by a  
READ or WRITE command. The address bits registered coincident with the ACTIVE  
command are used to select the bank and row to be accessed (BA0 and BA1 select the  
bank, A[12:0] select the row). The address bits (x4: A[9:0], A11, A12; x8: A[9:0], A11; x16:  
A[9:0]) registered coincident with the READ or WRITE command are used to select the  
starting column location for the burst access.  
Prior to normal operation, the SDRAM must be initialized. The following sections pro-  
vide detailed information covering device initialization, register definition, command  
descriptions, and device operation.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
21  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Commands  
Commands  
The following table provides a quick reference of available commands, followed by a  
written description of each command. Additional Truth Tables (Table 14 (page 28), Ta-  
ble 15 (page 30), and Table 16 (page 32)) provide current state/next state informa-  
tion.  
Table 13: Truth Table – Commands and DQM Operation  
Note 1 applies to all parameters and conditions  
Name (Function)  
CS# RAS# CAS# WE# DQM ADDR  
DQ Notes  
COMMAND INHIBIT (NOP)  
H
L
X
H
L
X
H
H
L
X
H
H
H
L
X
X
X
X
X
NO OPERATION (NOP)  
X
ACTIVE (select bank and activate row)  
READ (select bank and column, and start READ burst)  
WRITE (select bank and column, and start WRITE burst)  
BURST TERMINATE  
L
X
Bank/row  
Bank/col  
X
X
2
3
L
H
H
H
L
L/H  
L/H  
X
L
L
Bank/col Valid  
3
L
H
H
L
L
X
Active  
X
4
PRECHARGE (Deactivate row in bank or banks)  
AUTO REFRESH or SELF REFRESH (enter self refresh mode)  
LOAD MODE REGISTER  
L
L
X
Code  
5
L
L
H
L
X
X
X
6, 7  
8
L
L
L
X
Op-code  
X
Write enable/output enable  
X
X
X
X
X
X
X
X
L
X
X
Active  
High-Z  
9
Write inhibit/output High-Z  
H
9
1. CKE is HIGH for all commands shown except SELF REFRESH.  
Notes:  
2. A[0:n] provide row address (where An is the most significant address bit), BA0 and BA1  
determine which bank is made active.  
3. A[0:i] provide column address (where i = the most significant column address for a given  
device configuration). A10 HIGH enables the auto precharge feature (nonpersistent),  
while A10 LOW disables the auto precharge feature. BA0 and BA1 determine which  
bank is being read from or written to.  
4. The purpose of the BURST TERMINATE command is to stop a data burst, thus the com-  
mand could coincide with data on the bus. However, the DQ column reads a “Don’t  
Care” state to illustrate that the BURST TERMINATE command can occur when there is  
no data present.  
5. A10 LOW: BA0, BA1 determine the bank being precharged. A10 HIGH: all banks pre-  
charged and BA0, BA1 are “Don’t Care.”  
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.  
7. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” ex-  
cept for CKE.  
8. A[11:0] define the op-code written to the mode register.  
9. Activates or deactivates the DQ during WRITEs (zero-clock delay) and READs (two-clock  
delay).  
COMMAND INHIBIT  
The COMMAND INHIBIT function prevents new commands from being executed by  
the device, regardless of whether the CLK signal is enabled. The device is effectively de-  
selected. Operations already in progress are not affected.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
22  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Commands  
NO OPERATION (NOP)  
The NO OPERATION (NOP) command is used to perform a NOP to the selected device  
(CS# is LOW). This prevents unwanted commands from being registered during idle or  
wait states. Operations already in progress are not affected.  
LOAD MODE REGISTER (LMR)  
The mode registers are loaded via inputs A[n:0] (where An is the most significant ad-  
dress term), BA0, and BA1(see Mode Register (page 35)). The LOAD MODE REGISTER  
command can only be issued when all banks are idle and a subsequent executable com-  
mand cannot be issued until tMRD is met.  
ACTIVE  
The ACTIVE command is used to activate a row in a particular bank for a subsequent  
access. The value on the BA0, BA1 inputs selects the bank, and the address provided se-  
lects the row. This row remains active for accesses until a PRECHARGE command is is-  
sued to that bank. A PRECHARGE command must be issued before opening a different  
row in the same bank.  
Figure 7: ACTIVE Command  
CLK  
CKE HIGH  
CS#  
RAS#  
CAS#  
WE#  
Row address  
Bank address  
Address  
BA0, BA1  
Don’t Care  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2000 Micron Technology, Inc. All rights reserved.  
23  
512Mb: x4, x8, x16 SDRAM  
Commands  
READ  
The READ command is used to initiate a burst read access to an active row. The values  
on the BA0 and BA1 inputs select the bank; the address provided selects the starting col-  
umn location. The value on input A10 determines whether auto precharge is used. If au-  
to precharge is selected, the row being accessed is precharged at the end of the READ  
burst; if auto precharge is not selected, the row remains open for subsequent accesses.  
Read data appears on the DQ subject to the logic level on the DQM inputs two clocks  
earlier. If a given DQM signal was registered HIGH, the corresponding DQ will be High-  
Z two clocks later; if the DQM signal was registered LOW, the DQ will provide valid data.  
Figure 8: READ Command  
CLK  
CKE  
HIGH  
CS#  
RAS#  
CAS#  
WE#  
Column address  
EN AP  
Address  
1
A10  
DIS AP  
BA0, BA1  
Bank address  
Don’t Care  
1. EN AP = enable auto precharge, DIS AP = disable auto precharge.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2000 Micron Technology, Inc. All rights reserved.  
24  
512Mb: x4, x8, x16 SDRAM  
Commands  
WRITE  
The WRITE command is used to initiate a burst write access to an active row. The values  
on the BA0 and BA1 inputs select the bank; the address provided selects the starting col-  
umn location. The value on input A10 determines whether auto precharge is used. If au-  
to precharge is selected, the row being accessed is precharged at the end of the write  
burst; if auto precharge is not selected, the row remains open for subsequent accesses.  
Input data appearing on the DQ is written to the memory array, subject to the DQM in-  
put logic level appearing coincident with the data. If a given DQM signal is registered  
LOW, the corresponding data is written to memory; if the DQM signal is registered  
HIGH, the corresponding data inputs are ignored and a WRITE is not executed to that  
byte/column location.  
Figure 9: WRITE Command  
CLK  
CKE HIGH  
CS#  
RAS#  
CAS#  
WE#  
Column address  
EN AP  
Address  
1
A10  
DIS AP  
Bank address  
BA0, BA1  
Valid address  
1. EN AP = enable auto precharge, DIS AP = disable auto precharge.  
Don’t Care  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2000 Micron Technology, Inc. All rights reserved.  
25  
512Mb: x4, x8, x16 SDRAM  
Commands  
PRECHARGE  
The PRECHARGE command is used to deactivate the open row in a particular bank or  
the open row in all banks. The bank(s) will be available for a subsequent row access a  
specified time (tRP) after the PRECHARGE command is issued. Input A10 determines  
whether one or all banks are to be precharged, and in the case where only one bank is  
precharged, inputs BA0 and BA1 select the bank. Otherwise BA0 and BA1 are treated as  
“Don’t Care.” After a bank has been precharged, it is in the idle state and must be acti-  
vated prior to any READ or WRITE commands are issued to that bank.  
Figure 10: PRECHARGE Command  
CLK  
CKE HIGH  
CS#  
RAS#  
CAS#  
WE#  
Address  
A10  
All banks  
Bank selected  
Bank address  
BA0, BA1  
Valid address  
Don’t Care  
BURST TERMINATE  
The BURST TERMINATE command is used to truncate either fixed-length or continu-  
ous page bursts. The most recently registered READ or WRITE command prior to the  
BURST TERMINATE command is truncated.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
26  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Commands  
REFRESH  
AUTO REFRESH  
AUTO REFRESH is used during normal operation of the SDRAM and is analogous to  
CAS#-BEFORE-RAS# (CBR) refresh in conventional DRAMs. This command is nonper-  
sistent, so it must be issued each time a refresh is required. All active banks must be pre-  
charged prior to issuing an AUTO REFRESH command. The AUTO REFRESH command  
should not be issued until the minimum tRP has been met after the PRECHARGE com-  
mand, as shown in Bank/Row Activation (page 40).  
The addressing is generated by the internal refresh controller. This makes the address  
bits a “Don’t Care” during an AUTO REFRESH command. Regardless of device width,  
the 512Mb SDRAM requires 8192 AUTO REFRESH cycles every 64ms (commercial and  
industrial). Providing a distributed AUTO REFRESH command every 7.813μs (commer-  
cial and industrial) will meet the refresh requirement and ensure that each row is re-  
freshed. Alternatively, 8192 AUTO REFRESH commands can be issued in a burst at the  
minimum cycle rate (tRFC), once every 64ms (commercial and industrial).  
SELF REFRESH  
The SELF REFRESH command can be used to retain data in the SDRAM, even if the rest  
of the system is powered-down. When in the self refresh mode, the SDRAM retains data  
without external clocking.  
The SELF REFRESH command is initiated like an AUTO REFRESH command except  
CKE is disabled (LOW). After the SELF REFRESH command is registered, all the inputs  
to the SDRAM become a “Don’t Care” with the exception of CKE, which must remain  
LOW.  
After self refresh mode is engaged, the SDRAM provides its own internal clocking, caus-  
ing it to perform its own AUTO REFRESH cycles. The SDRAM must remain in self re-  
fresh mode for a minimum period equal to tRAS and may remain in self refresh mode  
for an indefinite period beyond that.  
The procedure for exiting self refresh requires a sequence of commands. First, CLK  
must be stable (stable clock is defined as a signal cycling within timing constraints  
specified for the clock pin) prior to CKE going back HIGH. After CKE is HIGH, the  
SDRAM must have NOP commands issued (a minimum of two clocks) for tXSR because  
time is required for the completion of any internal refresh in progress.  
Upon exiting the self refresh mode, AUTO REFRESH commands must be issued at the  
specified intervals, as both SELF REFRESH and AUTO REFRESH utilize the row refresh  
counter.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
27  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Truth Tables  
Truth Tables  
Table 14: Truth Table – Current State Bank n, Command to Bank n  
Notes 1–6 apply to all parameters and conditions  
Current State  
CS# RAS# CAS# WE# Command/Action  
Notes  
Any  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
COMMAND INHIBIT (NOP/continue previous operation)  
NO OPERATION (NOP/continue previous operation)  
ACTIVE (select and activate row)  
Idle  
L
AUTO REFRESH  
7
7
L
L
LOAD MODE REGISTER  
L
H
L
L
PRECHARGE  
8
Row active  
H
H
L
H
L
READ (select column and start READ burst)  
WRITE (select column and start WRITE burst)  
PRECHARGE (deactivate row in bank or banks)  
READ (select column and start new READ burst)  
WRITE (select column and start WRITE burst)  
PRECHARGE (truncate READ burst, start PRECHARGE)  
BURST TERMINATE  
9
L
9
H
L
L
10  
9
Read  
H
H
L
H
L
(auto precharge disabled)  
L
9
H
H
L
L
10  
11  
9
H
H
H
L
L
Write  
H
L
READ (select column and start READ burst)  
WRITE (select column and start new WRITE burst)  
PRECHARGE (truncate WRITE burst, start PRECHARGE)  
BURST TERMINATE  
(auto precharge disabled)  
L
9
H
H
L
10  
11  
H
L
1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Table 16 (page 32))  
and after tXSR has been met (if the previous state was self refresh).  
Notes:  
2. This table is bank-specific, except where noted (for example, the current state is for a  
specific bank and the commands shown can be issued to that bank when in that state).  
Exceptions are covered below.  
3. Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
Row active: A row in the bank has been activated, and tRCD has been met. No data  
bursts/accesses and no register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet  
terminated or been terminated.  
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet  
terminated or been terminated.  
4. The following states must not be interrupted by a command issued to the same bank.  
COMMAND INHIBIT or NOP commands, or supported commands to the other bank  
should be issued on any clock edge occurring during these states. Supported commands  
to any other bank are determined by the bank’s current state and the conditions descri-  
bed in this and the following table.  
Precharging: Starts with registration of a PRECHARGE command and ends when tRP is  
met. After tRP is met, the bank will be in the idle state.  
Row activating: Starts with registration of an ACTIVE command and ends when tRCD is  
met. After tRCD is met, the bank will be in the row active state.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
28  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Truth Tables  
Read with auto precharge enabled: Starts with registration of a READ command  
with auto precharge enabled and ends when tRP has been met. After tRP is met, the  
bank will be in the idle state.  
Write with auto precharge enabled: Starts with registration of a WRITE command  
with auto precharge enabled and ends when tRP has been met. After tRP is met, the  
bank will be in the idle state.  
5. The following states must not be interrupted by any executable command; COMMAND  
INHIBIT or NOP commands must be applied on each positive clock edge during these  
states.  
Refreshing: Starts with registration of an AUTO REFRESH command and ends when  
tRFC is met. After tRFC is met, the device will be in the all banks idle state.  
Accessing mode register: Starts with registration of a LOAD MODE REGISTER com-  
mand and ends when tMRD has been met. After tMRD is met, the device will be in the  
all banks idle state.  
Precharging all: Starts with registration of a PRECHARGE ALL command and ends  
when tRP is met. After tRP is met, all banks will be in the idle state.  
6. All states and sequences not shown are illegal or reserved.  
7. Not bank specific; requires that all banks are idle.  
8. Does not affect the state of the bank and acts as a NOP to that bank.  
9. READs or WRITEs listed in the Command/Action column include READs or WRITEs with  
auto precharge enabled and READs or WRITEs with auto precharge disabled.  
10. May or may not be bank specific; if all banks need to be precharged, each must be in a  
valid state for precharging.  
11. Not bank-specific; BURST TERMINATE affects the most recent READ or WRITE burst, re-  
gardless of bank.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
29  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Truth Tables  
Table 15: Truth Table – Current State Bank n, Command to Bank m  
Notes 1–6 apply to all parameters and conditions  
Current State  
CS# RAS# CAS# WE# Command/Action  
Notes  
Any  
H
L
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
X
L
X
H
X
H
L
X
H
X
H
H
L
COMMAND INHIBIT (NOP/continue previous operation)  
NO OPERATION (NOP/continue previous operation)  
Any command otherwise supported for bank m  
ACTIVE (select and activate row)  
READ (select column and start READ burst)  
WRITE (select column and start WRITE burst)  
PRECHARGE  
Idle  
Row activating, active, or  
precharging  
H
H
L
7
7
L
H
H
L
L
Read  
L
H
H
L
ACTIVE (select and activate row)  
READ (select column and start new READ burst)  
WRITE (select column and start WRITE burst)  
PRECHARGE  
(auto precharge disabled)  
H
H
L
7, 10  
7, 11  
9
L
H
H
L
L
Write  
L
H
H
L
ACTIVE (select and activate row)  
READ (select column and start READ burst)  
WRITE (select column and start new WRITE burst)  
PRECHARGE  
(auto precharge disabled)  
H
H
L
7, 12  
7, 13  
9
L
H
H
L
L
Read  
L
H
H
L
ACTIVE (select and activate row)  
READ (select column and start new READ burst)  
WRITE (select column and start WRITE burst)  
PRECHARGE  
(with auto precharge)  
H
H
L
7, 8, 14  
7, 8, 15  
9
L
H
H
L
L
Write  
(with auto precharge)  
L
H
H
L
ACTIVE (select and activate row)  
READ (select column and start READ burst)  
WRITE (select column and start new WRITE burst)  
PRECHARGE  
H
H
L
7, 8, 16  
7, 8, 17  
9
L
H
L
1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (Table 16 (page 32)), and  
after tXSR has been met (if the previous state was self refresh).  
Notes:  
2. This table describes alternate bank operation, except where noted; for example, the cur-  
rent state is for bank n and the commands shown can be issued to bank m, assuming  
that bank m is in such a state that the given command is supported. Exceptions are cov-  
ered below.  
3. Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
Row active: A row in the bank has been activated, and tRCD has been met. No data  
bursts/accesses and no register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet  
terminated or been terminated.  
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet  
terminated or been terminated.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
30  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Truth Tables  
Read with auto precharge enabled: Starts with registration of a READ command  
with auto precharge enabled and ends when tRP has been met. After tRP is met, the  
bank will be in the idle state.  
Write with auto precharge enabled: Starts with registration of a WRITE command  
with auto precharge enabled and ends when tRP has been met. After tRP is met, the  
bank will be in the idle state.  
4. AUTO REFRESH, SELF REFRESH, and LOAD MODE REGISTER commands can only be is-  
sued when all banks are idle.  
5. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank  
represented by the current state only.  
6. All states and sequences not shown are illegal or reserved.  
7. READs or WRITEs to bank m listed in the Command/Action column include READs or  
WRITEs with auto precharge enabled and READs or WRITEs with auto precharge disa-  
bled.  
8. Concurrent auto precharge: Bank n will initiate the auto precharge command when its  
burst has been interrupted by bank m burst.  
9. The burst in bank n continues as initiated.  
10. For a READ without auto precharge interrupted by a READ (with or without auto pre-  
charge), the READ to bank m will interrupt the READ on bank n, CAS latency (CL) later.  
11. For a READ without auto precharge interrupted by a WRITE (with or without auto pre-  
charge), the WRITE to bank m will interrupt the READ on bank n when registered. DQM  
should be used one clock prior to the WRITE command to prevent bus contention.  
12. For a WRITE without auto precharge interrupted by a READ (with or without auto pre-  
charge), the READ to bank m will interrupt the WRITE on bank n when registered, with  
the data-out appearing CL later. The last valid WRITE to bank n will be data-in regis-  
tered one clock prior to the READ to bank m.  
13. For a WRITE without auto precharge interrupted by a WRITE (with or without auto pre-  
charge), the WRITE to bank m will interrupt the WRITE on bank n when registered. The  
last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank  
m.  
14. For a READ with auto precharge interrupted by a READ (with or without auto pre-  
charge), the READ to bank m will interrupt the READ on bank n, CL later. The PRE-  
CHARGE to bank n will begin when the READ to bank m is registered.  
15. For a READ with auto precharge interrupted by a WRITE (with or without auto pre-  
charge), the WRITE to bank m will interrupt the READ on bank n when registered. DQM  
should be used two clocks prior to the WRITE command to prevent bus contention. The  
PRECHARGE to bank n will begin when the WRITE to bank m is registered.  
16. For a WRITE with auto precharge interrupted by a READ (with or without auto pre-  
charge), the READ to bank m will interrupt the WRITE on bank n when registered, with  
the data-out appearing CL later. The PRECHARGE to bank n will begin after tWR is met,  
where tWR begins when the READ to bank m is registered. The last valid WRITE bank n  
will be data-in registered one clock prior to the READ to bank m.  
17. For a WRITE with auto precharge interrupted by a WRITE (with or without auto pre-  
charge), the WRITE to bank m will interrupt the WRITE on bank n when registered. The  
PRECHARGE to bank n will begin after tWR is met, where tWR begins when the WRITE  
to bank m is registered. The last valid WRITE to bank n will be data registered one clock  
to the WRITE to bank m.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
31  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Truth Tables  
Table 16: Truth Table – CKE  
Notes 1–4 apply to all parameters and conditions  
Current State  
Power-down  
Self refresh  
CKEn-1  
CKEn  
Commandn  
Actionn  
Notes  
L
L
X
Maintain power-down  
Maintain self refresh  
Maintain clock suspend  
Exit power-down  
X
Clock suspend  
Power-down  
Self refresh  
X
L
H
L
COMMAND INHIBIT or NOP  
COMMAND INHIBIT or NOP  
X
5
6
7
Exit self refresh  
Clock suspend  
All banks idle  
All banks idle  
Reading or writing  
Exit clock suspend  
Power-down entry  
Self refresh entry  
Clock suspend entry  
H
COMMAND INHIBIT or NOP  
AUTO REFRESH  
VALID  
H
H
See Table 15 (page 30).  
1. CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previ-  
ous clock edge.  
Notes:  
2. Current state is the state of the SDRAM immediately prior to clock edge n.  
3. COMMANDn is the command registered at clock edge n, and ACTIONn is a result of  
COMMANDn.  
4. All states and sequences not shown are illegal or reserved.  
5. Exiting power-down at clock edge n will put the device in the all banks idle state in time  
for clock edge n + 1 (provided that tCKS is met).  
6. Exiting self refresh at clock edge n will put the device in the all banks idle state after  
tXSR is met. COMMAND INHIBIT or NOP commands should be issued on any clock edges  
occurring during the tXSR period. A minimum of two NOP commands must be provided  
during the tXSR period.  
7. After exiting clock suspend at clock edge n, the device will resume operation and recog-  
nize the next command at clock edge n + 1.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
32  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Initialization  
Initialization  
SDRAM must be powered up and initialized in a predefined manner. Operational proce-  
dures other than those specified may result in undefined operation. After power is ap-  
plied to VDD and VDDQ (simultaneously) and the clock is stable (stable clock is defined  
as a signal cycling within timing constraints specified for the clock pin), the SDRAM re-  
quires a 100μs delay prior to issuing any command other than a COMMAND INHIBIT or  
NOP. Starting at some point during this 100μs period and continuing at least through  
the end of this period, COMMAND INHIBIT or NOP commands must be applied.  
After the 100μs delay has been satisfied with at least one COMMAND INHIBIT or NOP  
command having been applied, a PRECHARGE command should be applied. All banks  
must then be precharged, thereby placing the device in the all banks idle state.  
Once in the idle state, at least two AUTO REFRESH cycles must be performed. After the  
AUTO REFRESH cycles are complete, the SDRAM is ready for mode register program-  
ming. Because the mode register will power up in an unknown state, it must be loaded  
prior to applying any operational command. If desired, the two AUTO REFRESH com-  
mands can be issued after the LMR command.  
The recommended power-up sequence for SDRAM:  
1. Simultaneously apply power to VDD and VDDQ  
.
2. Assert and hold CKE at a LVTTL logic LOW since all inputs and outputs are LVTTL-  
compatible.  
3. Provide stable CLOCK signal. Stable clock is defined as a signal cycling within tim-  
ing constraints specified for the clock pin.  
4. Wait at least 100μs prior to issuing any command other than a COMMAND INHIB-  
IT or NOP.  
5. Starting at some point during this 100μs period, bring CKE HIGH. Continuing at  
least through the end of this period, 1 or more COMMAND INHIBIT or NOP com-  
mands must be applied.  
6. Perform a PRECHARGE ALL command.  
7. Wait at least tRP time; during this time NOPs or DESELECT commands must be  
given. All banks will complete their precharge, thereby placing the device in the all  
banks idle state.  
8. Issue an AUTO REFRESH command.  
9. Wait at least tRFC time, during which only NOPs or COMMAND INHIBIT com-  
mands are allowed.  
10. Issue an AUTO REFRESH command.  
11. Wait at least tRFC time, during which only NOPs or COMMAND INHIBIT com-  
mands are allowed.  
12. The SDRAM is now ready for mode register programming. Because the mode reg-  
ister will power up in an unknown state, it should be loaded with desired bit values  
prior to applying any operational command. Using the LMR command, program  
the mode register. The mode register is programmed via the MODE REGISTER SET  
command with BA1 = 0, BA0 = 0 and retains the stored information until it is pro-  
grammed again or the device loses power. Not programming the mode register  
upon initialization will result in default settings which may not be desired. Out-  
puts are guaranteed High-Z after the LMR command is issued. Outputs should be  
High-Z already before the LMR command is issued.  
13. Wait at least tMRD time, during which only NOP or DESELECT commands are al-  
lowed.  
At this point the DRAM is ready for any valid command.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
33  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Initialization  
Note:  
More than two AUTO REFRESH commands can be issued in the sequence. After steps 9  
and 10 are complete, repeat them until the desired number of AUTO REFRESH + tRFC  
loops is achieved.  
Figure 11: Initialize and Load Mode Register  
T0  
T1  
Tn + 1  
t
To + 1  
CL  
Tp + 1  
Tp + 2  
Tp + 3  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CK  
CK  
((  
))  
CH  
t
t
CKS CKH  
((  
))  
((  
))  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CKE  
t
t
CMS CMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
LOAD MODE  
REGISTER  
2
2
2
2
COMMAND  
NOP  
PRECHARGE  
NOP  
NOP  
NOP  
ACTIVE  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
DQM/DQML,  
DQMU  
t
t
t
5
AS AH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A[9:0],  
A[12:11]  
CODE  
ROW  
ROW  
BANK  
t
AS AH  
CODE  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A10  
SINGLE BANK  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
ALL  
BANKS  
BA[1:0]  
DQ  
High-Z  
((  
))  
((  
))  
T = 100µs  
MIN  
t
t
t
t
RP  
RFC  
RFC  
MRD  
Power-up:  
1,3,4  
Program Mode Register  
AUTO REFRESH  
AUTO REFRESH  
V
and  
Precharge  
all banks  
DD  
CLK stable  
DON’T CARE  
UNDEFINED  
1. The mode register may be loaded prior to the AUTO REFRESH cycles if desired.  
2. If CS is HIGH at clock HIGH time, all commands applied are NOP.  
3. JEDEC and PC100 specify three clocks.  
Notes:  
4. Outputs are guaranteed High-Z after command is issued.  
5. A12 should be a LOW at tP + 1.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
34  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Mode Register  
Mode Register  
The mode register defines the specific mode of operation, including burst length (BL),  
burst type, CAS latency (CL), operating mode, and write burst mode. The mode register  
is programmed via the LOAD MODE REGISTER command and retains the stored infor-  
mation until it is programmed again or the device loses power.  
Mode register bits M[2:0] specify the BL; M3 specifies the type of burst; M[6:4] specify  
the CL; M7 and M8 specify the operating mode; M9 specifies the write burst mode; and  
M10–Mn should be set to zero to ensure compatibility with future revisions. Mn + 1 and  
Mn + 2 should be set to zero to select the mode register.  
The mode registers must be loaded when all banks are idle, and the controller must wait  
tMRD before initiating the subsequent operation. Violating either of these requirements  
will result in unspecified operation.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
35  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Mode Register  
Figure 12: Mode Register Definition  
A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address Bus  
Mode Register (Mx)  
Burst Length  
11 10  
3
1
0
12  
8
6
5
2
9
4
7
Op Mode  
WB  
CASLatency  
BT  
Burst Length  
Reserved  
Program  
BA1, BA0 = “0, 0”  
to ensure compatibility  
with future devices.  
M2 M1 M0  
M3 = 0  
M3 = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
2
2
Write Burst Mode  
M9  
0
4
4
Programmed Burst Length  
Single Location Access  
8
8
1
Reserved  
Reserved  
Reserved  
Full Page  
Reserved  
Reserved  
Reserved  
Reserved  
M8  
M7  
0
M6-M0  
Defined  
Operating Mode  
0
Standard Operation  
All other states reserved  
Burst Type  
M3  
0
Sequential  
Interleaved  
1
CAS Latency  
Reserved  
1
M6 M5 M4  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
3
Reserved  
Reserved  
Reserved  
Reserved  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
36  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Mode Register  
Burst Length  
Read and write accesses to the device are burst oriented, and the burst length (BL) is  
programmable. The burst length determines the maximum number of column loca-  
tions that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2,  
4, 8, or continuous locations are available for both the sequential and the interleaved  
burst types, and a continuous page burst is available for the sequential type. The con-  
tinuous page burst is used in conjunction with the BURST TERMINATE command to  
generate arbitrary burst lengths.  
Reserved states should not be used, as unknown operation or incompatibility with fu-  
ture versions may result.  
When a READ or WRITE command is issued, a block of columns equal to the burst  
length is effectively selected. All accesses for that burst take place within this block,  
meaning that the burst wraps within the block when a boundary is reached. The block  
is uniquely selected by A[8:1] when BL = 2, A[8:2] when BL = 4, and A[8:3] when BL = 8.  
The remaining (least significant) address bit(s) is (are) used to select the starting loca-  
tion within the block. Continuous page bursts wrap within the page when the boundary  
is reached.  
Burst Type  
Accesses within a given burst can be programmed to be either sequential or interleaved;  
this is referred to as the burst type and is selected via bit M3.  
The ordering of accesses within a burst is determined by the burst length, the burst  
type, and the starting column address.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
37  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Mode Register  
Table 17: Burst Definition Table  
Order of Accesses Within a Burst  
Burst Length  
Starting Column Address  
Type = Sequential  
Type = Interleaved  
2
A0  
0
0-1  
1-0  
0-1  
1-0  
1
4
8
A1  
0
A0  
0
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
0
1
1
0
1
1
A2  
0
A1  
0
A0  
0
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Continuous  
n = A0–An/9/8 (location 0–y)  
Cn, Cn + 1, Cn + 2, Cn + 3...Cn - 1,  
Cn...  
Not supported  
1. For full-page accesses: y = 2048 (x4); y = 1024 (x8); y = 512 (x16).  
Notes:  
2. For BL = 2, A1–A9, A11 (x4); A1–A9 (x8); or A1–A8 (x16) select the block-of-two burst; A0  
selects the starting column within the block.  
3. For BL = 4, A2–A9, A11 (x4); A2–A9 (x8); or A2–A8 (x16) select the block-of-four burst;  
A0–A1 select the starting column within the block.  
4. For BL = 8, A3–A9, A11 (x4); A3–A9 (x8); or A3–A8 (x16) select the block-of-eight burst;  
A0–A2 select the starting column within the block.  
5. For a full-page burst, the full row is selected and A0–A9, A11 (x4); A0–A9 (x8); or A0–A8  
(x16) select the starting column.  
6. Whenever a boundary of the block is reached within a given sequence above, the fol-  
lowing access wraps within the block.  
7. For BL = 1, A0–A9, A11 (x4); A0–A9 (x8); or A0–A8 (x16) select the unique column to be  
accessed, and mode register bit M3 is ignored.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
38  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Mode Register  
CAS Latency  
The CAS latency (CL) is the delay, in clock cycles, between the registration of a READ  
command and the availability of the output data. The latency can be set to two or three  
clocks.  
If a READ command is registered at clock edge n, and the latency is m clocks, the data  
will be available by clock edge n + m. The DQ start driving as a result of the clock edge  
one cycle earlier (n + m - 1), and provided that the relevant access times are met, the  
data is valid by clock edge n + m. For example, assuming that the clock cycle time is  
such that all relevant access times are met, if a READ command is registered at T0 and  
the latency is programmed to two clocks, the DQ start driving after T1 and the data is  
valid by T2.  
Reserved states should not be used as unknown operation or incompatibility with fu-  
ture versions may result.  
Figure 13: CAS Latency  
T0  
T1  
T2  
T3  
CLK  
Command  
READ  
NOP  
NOP  
t
t
OH  
LZ  
D
DQ  
OUT  
t
AC  
CL = 2  
T0  
T1  
T2  
T3  
T4  
CLK  
Command  
READ  
NOP  
NOP  
NOP  
t
t
OH  
LZ  
D
DQ  
OUT  
t
AC  
CL = 3  
Don’t Care  
Undefined  
Operating Mode  
Write Burst Mode  
The normal operating mode is selected by setting M7 and M8 to zero; the other combi-  
nations of values for M7 and M8 are reserved for future use. Reserved states should not  
be used because unknown operation or incompatibility with future versions may result.  
When M9 = 0, the burst length programmed via M[2:0] applies to both READ and  
WRITE bursts; when M9 = 1, the programmed burst length applies to READ bursts, but  
write accesses are single-location (nonburst) accesses.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
39  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Bank/Row Activation  
Bank/Row Activation  
Before any READ or WRITE commands can be issued to a bank within the SDRAM, a  
row in that bank must be opened. This is accomplished via the ACTIVE command,  
which selects both the bank and the row to be activated.  
After a row is opened with the ACTIVE command, a READ or WRITE command can be  
issued to that row, subject to the tRCD specification. tRCD (MIN) should be divided by  
the clock period and rounded up to the next whole number to determine the earliest  
clock edge after the ACTIVE command on which a READ or WRITE command can be  
entered. For example, a tRCD specification of 20ns with a 125 MHz clock (8ns period)  
results in 2.5 clocks, rounded to 3. This is reflected in Figure 14 (page 40), which covers  
any case where 2 < tRCD (MIN)/tCK 3. (The same procedure is used to convert other  
specification limits from time units to clock cycles.)  
A subsequent ACTIVE command to a different row in the same bank can only be issued  
after the previous active row has been precharged. The minimum time interval between  
successive ACTIVE commands to the same bank is defined by tRC.  
A subsequent ACTIVE command to another bank can be issued while the first bank is  
being accessed, which results in a reduction of total row-access overhead. The mini-  
mum time interval between successive ACTIVE commands to different banks is defined  
by tRRD.  
Figure 14: Example: Meeting tRCD (MIN) When 2 < tRCD (MIN)/tCK < 3  
T0  
T1  
T2  
T3  
CLK  
t
t
t
CK  
CK  
CK  
READ or  
WRITE  
Command  
ACTIVE  
NOP  
NOP  
t
RCD(MIN)  
Don’t Care  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
40  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
READ Operation  
READ Operation  
READ bursts are initiated with a READ command, as shown in Figure 8 (page 24). The  
starting column and bank addresses are provided with the READ command, and auto  
precharge is either enabled or disabled for that burst access. If auto precharge is ena-  
bled, the row being accessed is precharged at the completion of the burst. In the follow-  
ing figures, auto precharge is disabled.  
During READ bursts, the valid data-out element from the starting column address is  
available following the CAS latency after the READ command. Each subsequent data-  
out element will be valid by the next positive clock edge. Figure 16 (page 43) shows  
general timing for each possible CAS latency setting.  
Upon completion of a burst, assuming no other commands have been initiated, the DQ  
signals will go to High-Z. A continuous page burst continues until terminated. At the  
end of the page, it wraps to column 0 and continues.  
Data from any READ burst can be truncated with a subsequent READ command, and  
data from a fixed-length READ burst can be followed immediately by data from a READ  
command. In either case, a continuous flow of data can be maintained. The first data  
element from the new burst either follows the last element of a completed burst or the  
last desired data element of a longer burst that is being truncated. The new READ com-  
mand should be issued x cycles before the clock edge at which the last desired data ele-  
ment is valid, where x = CL - 1. This is shown in Figure 16 (page 43) for CL2 and CL3.  
SDRAM devices use a pipelined architecture and therefore do not require the 2n rule as-  
sociated with a prefetch architecture. A READ command can be initiated on any clock  
cycle following a READ command. Full-speed random read accesses can be performed  
to the same bank, or each subsequent READ can be performed to a different bank.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
41  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
READ Operation  
Figure 15: Consecutive READ Bursts  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
Command  
X = 1 cycle  
Bank,  
Col n  
Bank,  
Col b  
Address  
DQ  
DOUT  
n
DOUT  
n + 1  
DOUT  
n + 2  
DOUT  
n + 3  
DOUT  
b
CL = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
Command  
X = 2 cycles  
Bank,  
Col n  
Bank,  
Col b  
Address  
DQ  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
CL = 3  
Transitioning data  
Don’t Care  
1. Each READ command can be issued to any bank. DQM is LOW.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
42  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
READ Operation  
Figure 16: Random READ Accesses  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
Command  
Address  
DQ  
READ  
READ  
READ  
READ  
NOP  
NOP  
Bank,  
Col n  
Bank,  
Col a  
Bank,  
Col x  
Bank,  
Col m  
DOUT  
DOUT  
DOUT  
DOUT  
CL = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
READ  
READ  
READ  
NOP  
NOP  
NOP  
Command  
Address  
DQ  
Bank,  
Col n  
Bank,  
Col a  
Bank,  
Col x  
Bank,  
Col m  
DOUT  
DOUT  
DOUT  
DOUT  
CL = 3  
Transitioning data  
Don’t Care  
1. Each READ command can be issued to any bank. DQM is LOW.  
Note:  
Data from any READ burst can be truncated with a subsequent WRITE command, and  
data from a fixed-length READ burst can be followed immediately by data from a  
WRITE command (subject to bus turnaround limitations). The WRITE burst can be ini-  
tiated on the clock edge immediately following the last (or last desired) data element  
from the READ burst, provided that I/O contention can be avoided. In a given system  
design, there is a possibility that the device driving the input data will go Low-Z before  
the DQ go High-Z. In this case, at least a single-cycle delay should occur between the  
last read data and the WRITE command.  
The DQM input is used to avoid I/O contention, as shown in Figure 17 (page 44) and  
Figure 18 (page 45). The DQM signal must be asserted (HIGH) at least two clocks prior  
to the WRITE command (DQM latency is two clocks for output buffers) to suppress da-  
ta-out from the READ. After the WRITE command is registered, the DQ will go to High-Z  
(or remain High-Z), regardless of the state of the DQM signal, provided the DQM was  
active on the clock just prior to the WRITE command that truncated the READ com-  
mand. If not, the second WRITE will be an invalid WRITE. For example, if DQM was  
LOW during T4, then the WRITEs at T5 and T7 would be valid, and the WRITE at T6  
would be invalid.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
43  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
READ Operation  
The DQM signal must be de-asserted prior to the WRITE command (DQM latency is  
zero clocks for input buffers) to ensure that the written data is not masked. Figure 17  
(page 44) shows where, due to the clock cycle frequency, bus contention is avoided  
without having to add a NOP cycle, while Figure 18 (page 45) shows the case where an  
additional NOP cycle is required.  
A fixed-length READ burst may be followed by or truncated with a PRECHARGE com-  
mand to the same bank, provided that auto precharge was not activated. The PRE-  
CHARGE command should be issued x cycles before the clock edge at which the last de-  
sired data element is valid, where x = CL - 1. This is shown in Figure 19 (page 45) for  
each possible CL; data element n + 3 is either the last of a burst of four or the last de-  
sired data element of a longer burst. Following the PRECHARGE command, a subse-  
quent command to the same bank cannot be issued until tRP is met. Note that part of  
the row precharge time is hidden during the access of the last data element(s).  
In the case of a fixed-length burst being executed to completion, a PRECHARGE com-  
mand issued at the optimum time (as described above) provides the same operation  
that would result from the same fixed-length burst with auto precharge. The disadvant-  
age of the PRECHARGE command is that it requires that the command and address  
buses be available at the appropriate time to issue the command. The advantage of the  
PRECHARGE command is that it can be used to truncate fixed-length or continuous  
page bursts.  
Figure 17: READ-to-WRITE  
T0  
T1  
T2  
T3  
T4  
CLK  
DQM  
READ  
NOP  
NOP  
NOP  
Command  
Address  
WRITE  
Bank,  
Col n  
Bank,  
Col b  
t
CK  
t
HZ  
DOUT  
DIN  
DQ  
t
DS  
Transitioning data  
Don’t Care  
1. CL = 3. The READ command can be issued to any bank, and the WRITE command can be  
to any bank. If a burst of one is used, DQM is not required.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
44  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
READ Operation  
Figure 18: READ-to-WRITE With Extra Clock Cycle  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
DQM  
READ  
NOP  
NOP  
NOP  
NOP  
WRITE  
Command  
Address  
Bank,  
Col n  
Bank,  
Col b  
t
HZ  
D
D
OUT  
IN  
DQ  
t
DS  
Transitioning data  
Don’t Care  
1. CL = 3. The READ command can be issued to any bank, and the WRITE command can be  
to any bank.  
Note:  
Figure 19: READ-to-PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
PRECHARGE  
Command  
Address  
DQ  
X = 1 cycle  
Bank  
a or all)  
Bank  
Col  
a
n
,
Bank  
a,  
(
Row  
DOUT  
DOUT  
DOUT  
DOUT  
CL = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
Bank  
NOP  
X = 2 cycles  
NOP  
ACTIVE  
Command  
Address  
DQ  
Bank  
Col  
a,  
Bank  
a,  
(a or all)  
Row  
DOUT  
DOUT  
DOUT  
DOUT  
CL = 3  
Transitioning data  
Don’t Care  
1. DQM is LOW.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
45  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
READ Operation  
Continuous-page READ bursts can be truncated with a BURST TERMINATE command  
and fixed-length READ bursts can be truncated with a BURST TERMINATE command,  
provided that auto precharge was not activated. The BURST TERMINATE command  
should be issued x cycles before the clock edge at which the last desired data element is  
valid, where x = CL - 1. This is shown in Figure 20 (page 46) for each possible CAS la-  
tency; data element n + 3 is the last desired data element of a longer burst.  
Figure 20: Terminating a READ Burst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
DQ  
TERMINATE  
X = 1 cycle  
Bank,  
Col n  
DOUT  
DOUT  
DOUT  
DOUT  
CL = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
Command  
Address  
DQ  
BURST  
READ  
NOP  
NOP  
NOP  
NOP  
X = 2 cycles  
NOP  
NOP  
TERMINATE  
Bank,  
Col n  
DOUT  
DOUT  
DOUT  
DOUT  
CL = 3  
Transitioning data  
Don’t Care  
1. DQM is LOW.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
46  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
READ Operation  
Figure 21: Alternating Bank Read Accesses  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
CK  
t
CL  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
Command  
DQM  
ACTIVE  
NOP  
READ  
t
NOP  
ACTIVE  
NOP  
READ  
NOP  
ACTIVE  
t
CMS  
CMH  
t
AS  
t
AH  
Row  
Row  
Row  
Row  
Column m  
Column b1  
Address  
t
t
AH  
AS  
Enable auto precharge  
Enable auto precharge  
Row  
Row  
A10  
t
AS  
t
AH  
Bank 0  
Bank 0  
Bank 3  
Bank 3  
BA0, BA1  
Bank 0  
t
AC  
t
t
t
t
AC  
OH  
AC  
OH  
AC  
OH  
AC  
OH  
t
t
t
t
t
t
OH  
AC  
D
D
D
D
D
OUT  
DQ  
OUT  
OUT  
OUT  
OUT  
t
LZ  
t
t
t
t
t
t
RP - bank 0  
CL - bank 0  
RCD - bank 0  
Undefined  
RCD - bank 0  
RAS - bank 0  
RC - bank 0  
RRD  
t
CL - bank 3  
Don’t Care  
RCD - bank 3  
1. For this example, BL = 4 and CL = 2.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
47  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
READ Operation  
Figure 22: READ Continuous Page Burst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Tn + 1  
Tn + 2  
Tn + 3  
Tn + 4  
( (  
) )  
( (  
) )  
t
t
CK  
CL  
CLK  
t
CH  
t
t
CKS CKH  
( (  
) )  
CKE  
( (  
) )  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
Command  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
BURST TERM  
NOP  
NOP  
t
CMS  
CMH  
( (  
) )  
DQM  
( (  
) )  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
Address  
Row  
Column m  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
Row  
A10  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BA0, BA1  
Bank  
Bank  
t
AC  
t
t
t
t
t
AC  
AC  
AC  
AC  
AC  
( (  
) )  
t
t
t
t
t
t
OH  
OH  
OH  
OH  
OH  
OH  
( (  
) )  
( (  
) )  
D
D
D
D
D
OUT  
D
OUT  
OUT  
OUT  
OUT  
DQ  
OUT  
t
LZ  
t
HZ  
t
All locations within same row  
Full page completed  
RCD  
CAS latency  
Don’t Care  
Undefined  
Full-page burst does not self-terminate.  
Can use BURST TERMINATE command.  
1. For this example, CL = 2.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
48  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
READ Operation  
Figure 23: READ – DQM Operation  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
Command  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
t
CMH  
CMS  
DQM  
t
AS  
t
AH  
Row  
Column m  
Address  
t
t
AS  
AH  
Enable auto precharge  
Row  
A10  
Disable auto precharge  
Bank  
t
AS  
t
AH  
BA0, BA1  
Bank  
t
AC  
t
t
t
t
t
AC  
OH  
DOUT  
t
AC  
OH  
OH  
DQ  
DOUT  
DOUT  
t
t
LZ  
LZ  
t
HZ  
HZ  
t
RCD  
CL = 2  
Don’t Care  
Undefined  
1. For this example, BL = 4 and CL = 2.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
49  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
WRITE Operation  
WRITE Operation  
WRITE bursts are initiated with a WRITE command, as shown in Figure 9 (page 25). The  
starting column and bank addresses are provided with the WRITE command and auto  
precharge is either enabled or disabled for that access. If auto precharge is enabled, the  
row being accessed is precharged at the completion of the burst. For the generic WRITE  
commands used in the following figures, auto precharge is disabled.  
During WRITE bursts, the first valid data-in element is registered coincident with the  
WRITE command. Subsequent data elements are registered on each successive positive  
clock edge. Upon completion of a fixed-length burst, assuming no other commands  
have been initiated, the DQ will remain at High-Z and any additional input data will be  
ignored (see Figure 24 (page 50)). A continuous page burst continues until terminated;  
at the end of the page, it wraps to column 0 and continues.  
Data for any WRITE burst can be truncated with a subsequent WRITE command, and  
data for a fixed-length WRITE burst can be followed immediately by data for a WRITE  
command. The new WRITE command can be issued on any clock following the previ-  
ous WRITE command, and the data provided coincident with the new command ap-  
plies to the new command (see Figure 25 (page 51)). Data n + 1 is either the last of a  
burst of two or the last desired data element of a longer burst.  
SDRAM devices use a pipelined architecture and therefore do not require the 2n rule as-  
sociated with a prefetch architecture. A WRITE command can be initiated on any clock  
cycle following a previous WRITE command. Full-speed random write accesses within a  
page can be performed to the same bank, as shown in Figure 26 (page 52), or each  
subsequent WRITE can be performed to a different bank.  
Figure 24: WRITE Burst  
T0  
T1  
T2  
T3  
CLK  
WRITE  
NOP  
NOP  
NOP  
Command  
Address  
DQ  
Bank,  
Col n  
DIN  
DIN  
Transitioning data  
1. BL = 2. DQM is LOW.  
Don’t Care  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
50  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
WRITE Operation  
Figure 25: WRITE-to-WRITE  
T0  
T1  
T2  
CLK  
WRITE  
NOP  
WRITE  
Command  
Address  
DQ  
Bank,  
Col n  
Bank,  
Col b  
DIN  
DIN  
DIN  
Transitioning data  
Don’t Care  
1. DQM is LOW. Each WRITE command may be issued to any bank.  
Note:  
Data for any WRITE burst can be truncated with a subsequent READ command, and  
data for a fixed-length WRITE burst can be followed immediately by a READ command.  
After the READ command is registered, data input is ignored and WRITEs will not be  
executed (see Figure 27 (page 52)). Data n + 1 is either the last of a burst of two or the  
last desired data element of a longer burst.  
Data for a fixed-length WRITE burst can be followed by or truncated with a PRE-  
CHARGE command to the same bank, provided that auto precharge was not activated.  
A continuous-page WRITE burst can be truncated with a PRECHARGE command to the  
same bank. The PRECHARGE command should be issued tWR after the clock edge at  
which the last desired input data element is registered. The auto precharge mode re-  
quires a tWR of at least one clock with time to complete, regardless of frequency.  
In addition, when truncating a WRITE burst at high clock frequencies (tCK < 15ns), the  
DQM signal must be used to mask input data for the clock edge prior to and the clock  
edge coincident with the PRECHARGE command (see Figure 28 (page 53)). Data n + 1  
is either the last of a burst of two or the last desired data element of a longer burst. Fol-  
lowing the PRECHARGE command, a subsequent command to the same bank cannot  
be issued until tRP is met.  
In the case of a fixed-length burst being executed to completion, a PRECHARGE com-  
mand issued at the optimum time (as described above) provides the same operation  
that would result from the same fixed-length burst with auto precharge. The disadvant-  
age of the PRECHARGE command is that it requires that the command and address  
buses be available at the appropriate time to issue the command. The advantage of the  
PRECHARGE command is that it can be used to truncate fixed-length bursts or continu-  
ous page bursts.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
51  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
WRITE Operation  
Figure 26: Random WRITE Cycles  
T0  
T1  
T2  
T3  
CLK  
WRITE  
WRITE  
WRITE  
WRITE  
Command  
Address  
DQ  
Bank,  
Col n  
Bank,  
Col a  
Bank,  
Col x  
Bank,  
Col m  
D
D
D
D
IN  
IN  
IN  
IN  
Transitioning data  
Don’t Care  
1. Each WRITE command can be issued to any bank. DQM is LOW.  
Note:  
Figure 27: WRITE-to-READ  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
WRITE  
NOP  
READ  
NOP  
NOP  
NOP  
Command  
Address  
DQ  
Bank,  
Col n  
Bank,  
Col b  
DIN  
DIN  
DOUT  
DOUT  
Don’t Care  
Transitioning data  
1. The WRITE command can be issued to any bank, and the READ command can be to any  
bank. DQM is LOW. CL = 2 for illustration.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
52  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
WRITE Operation  
Figure 28: WRITE-to-PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
t
t
WR @ CK 15ns  
DQM  
t
RP  
NOP  
NOP  
NOP  
WRITE  
NOP  
PRECHARGE  
ACTIVE  
Command  
Address  
Bank  
(a or all)  
Bank a,  
Col n  
Bank a,  
Row  
t
WR  
D
D
IN  
IN  
DQ  
t
t
WR @ CK < 15ns  
DQM  
t
RP  
NOP  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
ACTIVE  
Command  
Address  
Bank  
(a or all)  
Bank a,  
Col n  
Bank a,  
Row  
t
WR  
D
D
IN  
IN  
DQ  
Transitioning data  
Don’t Care  
1. In this example DQM could remain LOW if the WRITE burst is a fixed length of two.  
Note:  
Fixed-length WRITE bursts can be truncated with the BURST TERMINATE command.  
When truncating a WRITE burst, the input data applied coincident with the BURST  
TERMINATE command is ignored. The last data written (provided that DQM is LOW at  
that time) will be the input data applied one clock previous to the BURST TERMINATE  
command. This is shown in Figure 29 (page 54), where data n is the last desired data  
element of a longer burst.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
53  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
WRITE Operation  
Figure 29: Terminating a WRITE Burst  
T0  
T1  
T2  
CLK  
BURST  
TERMINATE  
NEXT  
COMMAND  
WRITE  
Command  
Address  
DQ  
Bank,  
Col n  
Address  
Data  
DIN  
Transitioning data  
1. DQM is LOW.  
Don’t Care  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
54  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
WRITE Operation  
Figure 30: Alternating Bank Write Accesses  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
Command  
DQM  
ACTIVE  
NOP  
WRITE  
NOP  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
t
t
AH  
AS  
Row  
Row  
Row  
Row  
Row  
Column m  
Column b  
Address  
t
t
AH  
AS  
Enable auto precharge  
Enable auto precharge  
Row  
A10  
t
t
AH  
AS  
BA0, BA1  
Bank 0  
Bank 0  
Bank 1  
t
Bank 1  
Bank 0  
t
t
DS  
t
t
t
t
t
t
t
t
DS  
t
t
t
t
t
DS DH  
DS  
DS  
DS  
DS  
DS  
DH  
DIN  
WR - bank 0  
DH  
DH  
DH  
DH  
DH  
DH  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
RP - bank 0  
DIN  
DQ  
t
t
RCD - bank 0  
t
t
RCD - bank 0  
t
t
t
RAS - bank 0  
RC - bank 0  
RRD  
t
WR - bank 1  
t
RCD - bank 1  
Don’t Care  
1. For this example, BL = 4.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
55  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
WRITE Operation  
Figure 31: WRITE – Continuous Page Burst  
T0  
T1  
T2  
T3  
T4  
T5  
Tn + 1  
Tn + 2  
Tn + 3  
( (  
) )  
( (  
) )  
t
t
CK  
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
( (  
) )  
CKE  
( (  
) )  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
Command  
ACTIVE  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
BURST TERM  
NOP  
t
CMH  
CMS  
( (  
) )  
( (  
) )  
DQM  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
Column  
m
Address  
Row  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
Row  
A10  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
BA0, BA1  
Bank  
Bank  
t
t
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
( (  
) )  
( (  
) )  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ  
t
RCD  
Full-page burst  
All locations within same row  
does not self-terminate.  
Use BURST TERMINATE  
command to stop.  
1, 2  
Full page completed  
Don’t Care  
1. tWR must be satisfied prior to issuing a PRECHARGE command.  
2. Page left open; no tRP.  
Notes:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
56  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
WRITE Operation  
Figure 32: WRITE – DQM Operation  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
Command  
DQM  
ACTIVE  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
NOP  
t
CMS CMH  
t
t
t
t
AH  
AS  
Address  
Row  
t
Column m  
AS  
AH  
Enable auto precharge  
Row  
t
A10  
Disable auto precharge  
Bank  
AS  
AH  
BA0, BA1  
Bank  
t
t
t
t
t
t
DS  
DH  
DIN  
DS  
DH  
DS  
DH  
DIN  
DIN  
DQ  
t
Don’t Care  
RCD  
1. For this example, BL = 4.  
Note:  
Burst Read/Single Write  
The burst read/single write mode is entered by programming the write burst mode bit  
(M9) in the mode register to a 1. In this mode, all WRITE commands result in the access  
of a single column location (burst of one), regardless of the programmed burst length.  
READ commands access columns according to the programmed burst length and se-  
quence, just as in the normal mode of operation (M9 = 0).  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
57  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
PRECHARGE Operation  
The PRECHARGE command (see Figure 10 (page 26)) is used to deactivate the open row  
in a particular bank or the open row in all banks. The bank(s) will be available for a sub-  
sequent row access some specified time (tRP) after the PRECHARGE command is is-  
sued. Input A10 determines whether one or all banks are to be precharged, and in the  
case where only one bank is to be precharged (A10 = LOW), inputs BA0 and BA1 select  
the bank. When all banks are to be precharged (A10 = HIGH), inputs BA0 and BA1 are  
treated as “Don’t Care.” After a bank has been precharged, it is in the idle state and  
must be activated prior to any READ or WRITE commands being issued to that bank.  
Auto Precharge  
Auto precharge is a feature that performs the same individual-bank PRECHARGE func-  
tion described previously, without requiring an explicit command. This is accomplished  
by using A10 to enable auto precharge in conjunction with a specific READ or WRITE  
command. A precharge of the bank/row that is addressed with the READ or WRITE  
command is automatically performed upon completion of the READ or WRITE burst,  
except in the continuous page burst mode where auto precharge does not apply. In the  
specific case of write burst mode set to single location access with burst length set to  
continuous, the burst length setting is the overriding setting and auto precharge does  
not apply. Auto precharge is nonpersistent in that it is either enabled or disabled for  
each individual READ or WRITE command.  
Auto precharge ensures that the precharge is initiated at the earliest valid stage within a  
burst. Another command cannot be issued to the same bank until the precharge time  
(tRP) is completed. This is determined as if an explicit PRECHARGE command was is-  
sued at the earliest possible time, as described for each burst type in the Burst Type  
(page 37) section.  
Micron SDRAM supports concurrent auto precharge; cases of concurrent auto pre-  
charge for READs and WRITEs are defined below.  
READ with auto precharge interrupted by a READ (with or without auto precharge)  
A READ to bank m will interrupt a READ on bank n following the programmed CAS la-  
tency. The precharge to bank n begins when the READ to bank m is registered (see Fig-  
ure 33 (page 59)).  
READ with auto precharge interrupted by a WRITE (with or without auto precharge)  
A WRITE to bank m will interrupt a READ on bank n when registered. DQM should be  
used two clocks prior to the WRITE command to prevent bus contention. The pre-  
charge to bank n begins when the WRITE to bank m is registered (see Figure 34  
(page 60)).  
WRITE with auto precharge interrupted by a READ (with or without auto precharge)  
A READ to bank m will interrupt a WRITE on bank n when registered, with the data-out  
appearing CL later. The precharge to bank n will begin after tWR is met, where tWR be-  
gins when the READ to bank m is registered. The last valid WRITE to bank n will be da-  
ta-in registered one clock prior to the READ to bank m (see Figure 39 (page 65)).  
WRITE with auto precharge interrupted by a WRITE (with or without auto precharge)  
A WRITE to bank m will interrupt a WRITE on bank n when registered. The precharge to  
bank n will begin after tWR is met, where tWR begins when the WRITE to bank m is reg-  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
58  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
istered. The last valid data WRITE to bank n will be data registered one clock prior to a  
WRITE to bank m (see Figure 40 (page 65)).  
Figure 33: READ With Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
Bank n  
READ - AP  
Bank m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Bank n  
Page active  
READ with burst of 4  
Interrupt burst, precharge  
Idle  
t
t
RP - bank m  
RP - bank n  
Internal  
states  
Precharge  
Page active  
READ with burst of 4  
Bank m  
Bank n,  
Col a  
Bank m,  
Col d  
Address  
DQ  
D
D
D
D
OUT  
OUT  
OUT  
OUT  
CL = 3 (bank n)  
CL = 3 (bank m)  
Don’t Care  
1. DQM is LOW.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
59  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
Figure 34: READ With Auto Precharge Interrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
Bank n  
WRITE - AP  
Bank m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Bank n  
Page  
active  
READ with burst of 4  
Page active  
Interrupt burst, precharge  
t
Idle  
Internal  
States  
t
RP - bank  
n
WR - bankm  
Write-back  
WRITE with burst of 4  
Bank m  
Address  
Bank n,  
Col a  
Bank m,  
Col d  
1
DQM  
D
D
D
D
D
IN  
OUT  
IN  
IN  
IN  
DQ  
CL = 3 (bank n)  
Transitioning data  
Don’t Care  
1. DQM is HIGH at T2 to prevent DOUTa + 1 from contending with DINd at T4.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2000 Micron Technology, Inc. All rights reserved.  
60  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
Figure 35: READ With Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
Command  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
t
CMH  
CMS  
DQM  
t
t
AH  
AS  
Row  
Row  
Column m  
Address  
t
t
AH  
AS  
Enable auto precharge  
Row  
Row  
A10  
t
t
AH  
AS  
BA0, BA1  
Bank  
Bank  
Bank  
t
t
t
AC  
AC  
AC  
OH  
t
AC  
t
t
t
t
OH  
OH  
OH  
DOUT  
DOUT  
DOUT  
DQ  
DOUT m  
t
m + 1  
m + 2  
m + 3  
LZ  
t
HZ  
t
t
RCD  
CL = 2  
RP  
t
RAS  
t
RC  
Don’t Care  
Undefined  
1. For this example, BL = 4 and CL = 2.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
61  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
Figure 36: READ Without Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
Command  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMS CMH  
DQM  
t
AS  
t
AH  
Row  
Row  
Column m  
Address  
t
AS  
t
AH  
All banks  
Row  
Row  
A10  
Single bank  
Disable auto precharge  
Bank  
t
t
AS  
AH  
BA0, BA1  
Bank(s)  
t
Bank  
Bank  
t
t
AC  
AC  
AC  
t
t
OH  
t
OH  
t
OH  
t
OH  
AC  
DOUT  
DOUT  
DOUT  
DOUT  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CL = 2  
RP  
t
RAS  
t
RC  
Don’t Care  
Undefined  
1. For this example, BL = 4, CL = 2, and the READ burst is followed by a manual PRE-  
CHARGE.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
62  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
Figure 37: Single READ With Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
Command  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
t
CMS CMH  
DQM  
t
AS  
t
AH  
Row  
Column m  
Row  
Address  
t
AS  
t
AH  
Enable auto precharge  
Row  
Row  
A10  
t
AS  
t
AH  
BA0, BA1  
Bank  
Bank  
Bank  
t
t
OH  
AC  
DOUT  
DQ  
t
LZ  
t
t
RCD  
CL = 2  
RP  
t
RAS  
t
RC  
Don’t Care  
Undefined  
1. For this example, BL = 1 and CL = 2.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
63  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
Figure 38: Single READ Without Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
Command  
ACTIVE  
NOP  
READ  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
NOP  
t
t
CMS CMH  
DQM  
t
t
AS  
AH  
Row  
Column m  
Row  
Address  
t
t
AS  
AH  
All banks  
Row  
Row  
A10  
Single bank  
Bank(s)  
Disable auto precharge  
Bank  
t
t
AS  
AH  
BA0, BA1  
Bank  
Bank  
t
AC  
t
OH  
DOUT  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CL = 2  
RP  
Don’t Care  
Undefined  
t
RAS  
t
RC  
1. For this example, BL = 1, CL = 2, and the READ burst is followed by a manual PRE-  
CHARGE.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
64  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
Figure 39: WRITE With Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
Bank n  
READ - AP  
Bank m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Bank n  
Interrupt burst, write-back Precharge  
t
Page active  
WRITE with burst of 4  
Internal  
States  
RP - bank n  
t
WR - bank n  
t
RP - bank m  
Page active  
READ with burst of 4  
Bank m  
Bank n,  
Col a  
Bank m,  
Col d  
Address  
DQ  
DIN  
DIN  
DOUT  
DOUT  
CL = 3 (bank m)  
Don’t Care  
1. DQM is LOW.  
Note:  
Figure 40: WRITE With Auto Precharge Interrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
Bank n  
WRITE - AP  
Bank m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Bank n  
Page active  
WRITE with burst of 4  
Interrupt burst, write-back Precharge  
t
RP - bank n  
t
Internal  
States  
WR - bank n  
t
WR - bank m  
Write-back  
Page active  
WRITE with burst of 4  
Bank m  
Bank n,  
Col a  
Bank m,  
Col d  
Address  
DQ  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
Don’t Care  
1. DQM is LOW.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
65  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
Figure 41: WRITE With Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
Command  
DQM  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
t
t
t
t
AH  
AS  
Address  
Row  
Row  
Bank  
Row  
Column m  
t
AS  
AH  
Enable auto precharge  
Row  
A10  
t
AS  
AH  
BA0, BA1  
Bank  
Bank  
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DIN  
DIN  
DIN  
DIN  
DQ  
t
t
RP  
t
RCD  
WR  
t
RAS  
t
RC  
Don’t Care  
1. For this example, BL = 4.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
66  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
Figure 42: WRITE Without Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
Command  
DQM  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMS  
CMH  
t
t
t
t
AH  
AS  
Address  
Row  
Column m  
Row  
Row  
Bank  
t
AS  
AH  
All banks  
Row  
A10  
Disable auto precharge  
Bank  
Single bank  
Bank  
t
AS  
Bank  
AH  
BA0, BA1  
t
t
t
t
t
t
t
t
DS DH  
DS DH  
DS DH  
DS  
DH  
DIN  
DIN  
DIN  
DIN  
DQ  
t
t
RP  
t
RCD  
WR  
t
RAS  
t
RC  
Don’t Care  
1. For this example, BL = 4 and the WRITE burst is followed by a manual PRECHARGE.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
67  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
Figure 43: Single WRITE With Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
Command  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
NOP  
t
t
CMS  
CMH  
DQM  
t
t
t
t
AH  
AS  
Address  
Row  
Row  
Row  
Bank  
Column m  
t
AS  
AH  
Enable auto precharge  
Row  
A10  
t
AS  
Bank  
AH  
Bank  
BA0, BA1  
t
t
DS  
DH  
DIN  
DQ  
t
t
RP  
t
RCD  
WR  
t
RAS  
t
RC  
Don’t Care  
1. For this example, BL = 1.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
68  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
PRECHARGE Operation  
Figure 44: Single WRITE Without Auto Precharge  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
CK  
t
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
Command  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
NOP  
t
t
CMS CMH  
DQM  
t
t
AS  
AH  
Row  
Column m  
Address  
t
t
AS  
AH  
All banks  
Row  
Row  
A10  
Single bank  
Bank  
Disable auto precharge  
Bank  
t
t
AH  
AS  
BA0, BA1  
Bank  
Bank  
t
t
DS DH  
DIN  
DQ  
t
t
t
RCD  
WR  
RP  
t
RAS  
t
RC  
Don’t Care  
1. For this example, BL = 1 and the WRITE burst is followed by a manual PRECHARGE.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
69  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
AUTO REFRESH Operation  
AUTO REFRESH Operation  
The AUTO REFRESH command is used during normal operation of the device to refresh  
the contents of the array. This command is nonpersistent, so it must be issued each  
time a refresh is required. All active banks must be precharged prior to issuing an AUTO  
REFRESH command. The AUTO REFRESH command should not be issued until the  
minimum tRP is met following the PRECHARGE command. Addressing is generated by  
the internal refresh controller. This makes the address bits “Don’t Care” during an AU-  
TO REFRESH command.  
After the AUTO REFRESH command is initiated, it must not be interrupted by any exe-  
cutable command until tRFC has been met. During tRFC time, COMMAND INHIBIT or  
NOP commands must be issued on each positive edge of the clock. The SDRAM re-  
quires that every row be refreshed each tREF period. Providing a distributed AUTO RE-  
FRESH command—calculated by dividing the refresh period (tREF) by the number of  
rows to be refreshed—meets the timing requirement and ensures that each row is re-  
freshed. Alternatively, to satisfy the refresh requirement a burst refresh can be employed  
after every tREF period by issuing consecutive AUTO REFRESH commands for the num-  
ber of rows to be refreshed at the minimum cycle rate (tRFC).  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
70  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
AUTO REFRESH Operation  
Figure 45: Auto Refresh Mode  
T0  
T1  
T2  
Tn + 1  
CL  
To + 1  
( (  
) )  
( (  
) )  
t
CLK  
CKE  
t
t
( (  
( (  
CK  
CH  
) )  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
Command  
DQM  
PRECHARGE  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
) )  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
Row  
Row  
Address  
A10  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
All banks  
Single bank  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
Bank(s)  
Bank  
( (  
( (  
) )  
) )  
High-Z  
( (  
) )  
( (  
) )  
t
t
t
RFC  
RP  
RFC  
Precharge all  
active banks  
Don’t Care  
1. Back-to-back AUTO REFRESH commands are not required.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
71  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
SELF REFRESH Operation  
SELF REFRESH Operation  
The self refresh mode can be used to retain data in the device, even when the rest of the  
system is powered down. When in self refresh mode, the device retains data without ex-  
ternal clocking. The SELF REFRESH command is initiated like an AUTO REFRESH com-  
mand, except CKE is disabled (LOW). After the SELF REFRESH command is registered,  
all the inputs to the device become “Don’t Care” with the exception of CKE, which must  
remain LOW.  
After self refresh mode is engaged, the device provides its own internal clocking, ena-  
bling it to perform its own AUTO REFRESH cycles. The device must remain in self re-  
fresh mode for a minimum period equal to tRAS and remains in self refresh mode for an  
indefinite period beyond that.  
The procedure for exiting self refresh requires a sequence of commands. First, CLK  
must be stable prior to CKE going back HIGH. (Stable clock is defined as a signal cycling  
within timing constraints specified for the clock ball.) After CKE is HIGH, the device  
must have NOP commands issued for a minimum of two clocks for tXSR because time is  
required for the completion of any internal refresh in progress.  
Upon exiting the self refresh mode, AUTO REFRESH commands must be issued accord-  
ing to the distributed refresh rate (tREF/refresh row count) as both SELF REFRESH and  
AUTO REFRESH utilize the row refresh counter.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
72  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
SELF REFRESH Operation  
Figure 46: Self Refresh Mode  
T0  
T1  
T2  
Tn + 1  
To + 1  
To + 2  
( (  
) )  
( (  
) )  
t
CL  
CLK  
CKE  
t
( (  
) )  
( (  
) )  
t
CK  
CH  
t
CKS  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
Command  
DQM  
PRECHARGE  
NOP  
NOP  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
Address  
A10  
All banks  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
Single bank  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
Bank(s)  
BA0, BA1  
DQ  
High-Z  
( (  
) )  
( (  
) )  
t
t
RP  
XSR  
Precharge all  
active banks  
Enter self refresh mode  
Exit self refresh mode  
(Restart refresh time base)  
CLK stable prior to exiting  
self refresh mode  
Don’t Care  
1. Each AUTO REFRESH command performs a REFRESH cycle. Back-to-back commands are  
not required.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
73  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Power-Down  
Power-Down  
Power-down occurs if CKE is registered LOW coincident with a NOP or COMMAND IN-  
HIBIT when no accesses are in progress. If power-down occurs when all banks are idle,  
this mode is referred to as precharge power-down; if power-down occurs when there is a  
row active in any bank, this mode is referred to as active power-down. Entering power-  
down deactivates the input and output buffers, excluding CKE, for maximum power  
savings while in standby. The device cannot remain in the power-down state longer  
than the refresh period (64ms) because no REFRESH operations are performed in this  
mode.  
The power-down state is exited by registering a NOP or COMMAND INHIBIT with CKE  
HIGH at the desired clock edge (meeting tCKS).  
Figure 47: Power-Down Mode  
T0  
T1  
T2  
Tn + 1  
Tn + 2  
( (  
) )  
( (  
) )  
t
t
CK  
CL  
CLK  
CKE  
t
CH  
t
t
CKS  
CKS  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS CMH  
PRECHARGE  
( (  
) )  
( (  
) )  
Command  
DQM  
NOP  
NOP  
NOP  
ACTIVE  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
Address  
A10  
Row  
Row  
All banks  
( (  
) )  
( (  
) )  
Single bank  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
Bank(s)  
Bank  
High-Z  
( (  
) )  
Input buffers gated off  
while in power-down mode  
Two clock cycles  
All banks idle  
Precharge all  
active banks  
All banks idle, enter  
power-down mode  
Exit power-down mode  
Don’t Care  
1. Violating refresh requirements during power-down may result in a loss of data.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
74  
© 2000 Micron Technology, Inc. All rights reserved.  
512Mb: x4, x8, x16 SDRAM  
Clock Suspend  
Clock Suspend  
The clock suspend mode occurs when a column access/burst is in progress and CKE is  
registered LOW. In the clock suspend mode, the internal clock is deactivated, freezing  
the synchronous logic.  
For each positive clock edge on which CKE is sampled LOW, the next internal positive  
clock edge is suspended. Any command or data present on the input balls when an in-  
ternal clock edge is suspended will be ignored; any data present on the DQ balls re-  
mains driven; and burst counters are not incremented, as long as the clock is suspen-  
ded.  
Exit clock suspend mode by registering CKE HIGH; the internal clock and related opera-  
tion will resume on the subsequent positive clock edge.  
Figure 48: Clock Suspend During WRITE Burst  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
CKE  
Internal  
clock  
NOP  
WRITE  
NOP  
NOP  
Command  
Address  
DIN  
Bank,  
Col n  
D
D
D
IN  
IN  
IN  
Don’t Care  
1. For this example, BL = 4 or greater, and DQM is LOW.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2000 Micron Technology, Inc. All rights reserved.  
75  
512Mb: x4, x8, x16 SDRAM  
Clock Suspend  
Figure 49: Clock Suspend During READ Burst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
CKE  
Internal  
clock  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
DQ  
Bank,  
Col n  
DOUT  
DOUT  
DOUT  
DOUT  
Don’t Care  
1. For this example, CL = 2, BL = 4 or greater, and DQM is LOW.  
Note:  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2000 Micron Technology, Inc. All rights reserved.  
76  
512Mb: x4, x8, x16 SDRAM  
Clock Suspend  
Figure 50: Clock Suspend Mode  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS CKH  
t
t
CKS CKH  
t
t
CMS  
CMH  
Command  
DQM  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
t
t
CMS  
CMH  
t
t
AH  
AS  
Column e  
Column m  
Address  
t
t
AH  
AS  
A10  
t
t
AS  
AH  
BA0, BA1  
Bank  
Bank  
t
AC  
t
t
t
t
t
DH  
OH  
HZ  
DS  
AC  
D
D
D
D
DQ  
OUT  
OUT  
IN  
IN  
t
LZ  
Don’t Care  
Undefined  
1. For this example, BL = 2, CL = 3, and auto precharge is disabled.  
Note:  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
www.micron.com/productsupport Customer Comment Line: 800-932-4992  
Micron and the Micron logo are trademarks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.  
Although considered final, these specifications are subject to change, as further product development and data characterization some-  
times occur.  
PDF: 09005aef809bf8f3  
512Mb_sdr.pdf - Rev. Q 12/12 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
77  
© 2000 Micron Technology, Inc. All rights reserved.  

相关型号:

MT48LC32M4A1

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A1TG

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A2

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A2-1

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A2FB-75

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A2FB-75IT

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A2FB-75L

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A2FB-75LIT

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A2FB-7E

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A2FB-7EIT

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A2FB-7EL

SYNCHRONOUS DRAM
MICRON

MT48LC32M4A2FB-7ELIT

SYNCHRONOUS DRAM
MICRON