SMJ44C251B-10HM [MICROSS]

Memory IC;
SMJ44C251B-10HM
型号: SMJ44C251B-10HM
厂家: MICROSS COMPONENTS    MICROSS COMPONENTS
描述:

Memory IC

文件: 总53页 (文件大小:945K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
Military Operating Temperature Range  
Enhanced Page-Mode Operation for Faster  
Access  
– 55°C to 125°C  
Performance Ranges:  
CAS-Before-RAS (CBR) and Hidden  
Refresh Modes  
ACCESS  
TIME  
ACCESS ACCESS ACCESS  
TIME  
TIME  
TIME  
SERIAL  
ENABLE  
(MAX)  
All Inputs/Outputs and Clocks Are TTL  
Compatible  
ROW  
COLUMN SERIAL  
ADDRESS ENABLE DATA  
(MAX) (MAX) (MAX)  
Long Refresh Period  
Every 8 ms (Max)  
t
t
t
t
a(SE)  
20 ns  
a(R)  
a(C)  
a(SQ)  
Up to 33-MHz Uninterrupted Serial-Data  
Streams  
’44C251B-10 100 ns  
’44C251B-12 120 ns  
25 ns  
30 ns  
30 ns  
35 ns  
25 ns  
3-State Serial I/Os Allow Easy Multiplexing  
of Video-Data Streams  
Class B High-Reliability Processing  
DRAM: 262144 Words × 4 Bits  
SAM: 512 Words × 4 Bits  
512 Selectable Serial-Register Starting  
Locations  
Single 5-V Power Supply (±10% Tolerance)  
Packaging:  
– 28-Pin J-Leaded Ceramic Chip Carrier  
Package (HJ Suffix)  
– 28-Pin Leadless Ceramic Chip Carrier  
Package (HM Suffix)  
– 28-Pin Ceramic Sidebrazed DIP  
(JD Suffix)  
Dual Port AccessibilitySimultaneous and  
Asynchronous Access From the DRAM and  
SAM Ports  
Bidirectional-Data-Transfer Function  
Between the DRAM and the Serial-Data  
Register  
4 × 4 Block-Write Feature for Fast Area Fill  
Operations; As Many as Four Memory  
Address Locations Written per Cycle From  
an On-Chip Color Register  
– 28-Pin Zig-Zag In-Line (ZIP), Ceramic  
Package (SV Suffix)  
Split Serial-Data Register for Simplified  
Real-Time Register Reload  
Write-Per-Bit Feature for Selective Write to  
Each RAM I/O; Two Write-Per-Bit Modes to  
Simplify System Design  
description  
PIN NOMENCLATURE  
A0A8  
CAS  
DQ0DQ3  
SE  
RAS  
SC  
SDQ0SDQ3 Serial Data In-Out  
TRG  
W
DSF  
QSF  
Address Inputs  
Column Enable  
DRAM Data In-Out/Write-Mask Bit  
Serial Enable  
Row Enable  
The SMJ44C251B multiport video RAM is a  
high-speed, dual-ported memory device. It  
consists of a dynamic random-access memory  
(DRAM) organized as 262144 words of 4 bits  
each interfaced to a serial-data register or  
serial-access memory (SAM) organized as 512  
words of 4 bits each. The SMJ44C251B supports  
three types of operation: random access to and  
from the DRAM, serial access to and from the  
serial register, and bidirectional transfer of data  
between any row in the DRAM and the serial  
register. Except during transfer operations, the  
SMJ44C251B can be accessed simultaneously  
and asynchronously from the DRAM and SAM  
ports.  
Serial Data Clock  
Transfer Register/Q Output Enable  
Write-Mask Select/Write Enable  
Special Function Select  
Split-Register Activity Status  
5-V Supply  
V
V
SS  
GND  
CC  
Ground  
Ground (Important: Not connected  
to internal V  
)
SS  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1995, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
pinouts  
HJ PACKAGE  
(TOP VIEW)  
HM PACKAGE  
(TOP VIEW)  
JD PACKAGE  
(TOP VIEW)  
SV PACKAGE  
(TOP VIEW)  
V
V
1
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DSF  
DQ3  
SDQ2  
SC  
SDQ0  
SC  
SDQ0  
SS  
SS  
SC  
SDQ0  
SDQ1  
TRG  
DQ0  
DQ1  
W
V
SS  
1
28  
27  
2
4
6
8
DQ2  
SE  
SDQ3  
SC  
SDQ1  
DQ0  
W
RAS  
A8  
A4  
A7  
A2  
A0  
3
5
7
9
2
2
SDQ3  
SDQ2  
SE  
SDQ3  
SDQ2  
SE  
SDQ3  
SDQ2  
SE  
2
3
3
SDQ1  
TRG  
DQ0  
DQ1  
W
SDQ1  
TRG  
DQ0  
DQ1  
W
3
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
SS  
4
4
4
SDQ0  
TRG  
DQ1  
GND  
A8  
5
5
DQ3  
DQ2  
DSF  
CAS  
DQ3  
DQ2  
DSF  
CAS  
DQ3  
DQ2  
DSF  
CAS  
QSF  
A0  
5
10  
11  
6
6
6
12  
13  
7
7
14  
15  
7
8
8
GND  
RAS  
A8  
A6  
A5  
GND  
RAS  
A8  
A6  
A5  
16  
17  
GND  
RAS  
A8  
8
9
9
QSF  
A0  
A1  
QSF  
A0  
A1  
18  
19  
9
A5  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
20  
21  
10  
11  
12  
13  
14  
V
CC  
A3  
22  
23  
A6  
A1  
A2  
A3  
A7  
A2  
A3  
A7  
24  
25  
A5  
A2  
A1  
QSF  
A4  
A4  
26  
27  
A4  
A3  
V
V
CC  
CC  
28  
CAS  
V
A7  
CC  
description (continued)  
During a transfer operation, the 512 columns of the DRAM are connected to the 512 positions in the serial data  
register. The 512 × 4-bit serial-data register can be loaded from the memory row (transfer read), or the contents  
of the 512 × 4-bit serial-data register can be written to the memory row (transfer write).  
The SMJ44C251B is equipped with several features designed to provide higher system-level bandwidth and  
to simplify design integration on both the DRAM and SAM ports. On the DRAM port, greater pixel draw rates  
can be achieved by the device’s 4 × 4 block-write mode. The block-write mode allows four bits of data (present  
in an on-chip color-data register) to be written to any combination of four adjacent column-address locations.  
As many as 16 bits of data can be written to memory during each CAS cycle time. Also on the DRAM port, a  
writemaskorawrite-per-bitfeatureallowsmaskinganycombinationofthefourinput/outputsonanywritecycle.  
The persistent write-per-bit feature uses a mask register that, once loaded, can be used on subsequent write  
cycles. The mask register eliminates having to provide mask data on every mask-write cycle.  
The SMJ44C251B offers a split-register transfer read (DRAM to SAM) feature for the serial tester (SAM port).  
This feature enables real-time register reload implementation for truly continuous serial data streams without  
critical timing requirements. The register is divided into a high half and a low half. While one half is being read  
out of the SAM port, the other half can be loaded from the memory array. For applications not requiring real-time  
register reload (for example, reloads done during CRT retrace periods), the single-register mode of operation  
is retained to simplify design. The SAM can also be configured in input mode, accepting serial data from an  
external device. Once the serial register within the SAM is loaded, its contents can be transferred to the  
corresponding column positions in any row in memory in a single memory cycle.  
The SAM port is designed for maximum performance. Data can be input to or accessed from the SAM at serial  
rates up to 33 MHz. During the split-register mode of operation, internal circuitry detects when the last bit  
position is accessed from the active half of the register and immediately transfers control to the opposite half.  
A separate output, QSF, is included to indicate which half of the serial register is active at any given time in the  
split-register mode.  
All inputs, outputs, and clock signals on the SMJ44C251B are compatible with Series 54 TTL devices. All  
address lines and data-in lines are latched on-chip to simplify system design. All data-out lines are unlatched  
to allow greater system flexibility.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
description (continued)  
Enhancedpage-modeoperationallowsfastermemoryaccessbykeepingthesamerowaddresswhileselecting  
random column addresses. The time for row-address setup, row-address hold, and address multiplex is  
eliminated, and a memory cycle time reduction of up to 3× can be achieved, compared to minimum RAS cycle  
times. The maximum number of columns that can be accessed is determined by the maximum RAS low time  
and page-mode cycle time used. The SMJ44C251B allows a full page (512 cycles) of information to be  
accessed in read, write, or read-modify-write mode during a single RAS-low period using relatively conservative  
page-mode cycle times.  
The SMJ44C251B employs state-of-the-art technology for very high performance combined with improved  
reliability. For surface mount technology, the SMJ44C251B is offered in a 28-pin J-leaded chip carrier package  
(HJ suffix) or a 28-pin leadless ceramic chip carrier package (HM suffix). The SMJ44C251B is offered in a 28-pin  
400-mil dual-in-line ceramic sidebrazed package (JD suffix) or a 28-pin ZIP ceramic package (SV suffix) for  
through-hole insertion. The L suffix device is rated for operation from 0°C to 70°C. The M suffix device is rated  
for operation from – 55°C to 125°C.  
The SMJ44C251B and other multiport video RAMs are supported by a broad line of video/graphic processors  
from Texas Instruments, including the SMJ34010 and the SMJ34020 graphics processors.  
functional block diagram  
O B  
u u  
t
f
f
p
R
e
g
i
s
t
u e  
t
r
V
V
C
o
l
o
r
CC  
SS  
DQ0  
DQ1  
DQ2  
DQ3  
F
u
n
c
t
S
p
e
c
i
a
l
C B  
o u  
L
o
g
i
Write-  
Per-Bit  
Control  
e
r
MUX  
l
f
f
B
u
f
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
I
Column Decoder  
Sense Amplifier  
u
m e  
n r  
n
p
u
t
i
c
o
n
f
e
r
D
e
c
o
d
e
r
B
u
B
u
f
f
e
r
R
W/B  
Unlatch  
W/B  
Latch  
Address  
Mask  
R
o
w
I
f
o
n
p
u
t
f
e
r
w
DSF  
Data Transfer  
Gate  
R C  
e o  
f
u
S O B  
Serial Data  
Register  
r n  
e
r
i
a
l
u u  
A C  
d o  
d u  
e
t
S
t
f
f
s e  
h r  
e
r
i
p
u e  
r
n
t
Serial Data  
Pointer  
t
r
e
SDQ0  
SDQ1  
SDQ2  
SDQ3  
RAS  
a
l
G
e
s e  
s
r
CAS  
TRG  
W
T
n
i
e
m
r
QSF  
Split Register  
S
e
r
B
u
f
i
n
g
o
a
t
I
n
p
u
t
SC  
i
f
r
SE  
a
l
e
r
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
Function Table  
CAS  
RAS FALL  
ADDRESS  
DQ0DQ3  
FALL  
DSF  
X
FUNCTION  
TYPE  
§
CAS  
W
W
CAS TRG  
DSF  
X
SE  
X
RAS  
CAS  
RAS  
CBR refresh  
L
X
L
X
L
X
X
X
X
X
R
T
Register-to-memory transfer  
(transfer write)  
Row  
Addr  
Tap  
Point  
H
X
L
X
X
X
X
X
X
Alternate transfer write  
(independent of SE)  
Row  
Addr  
Tap  
Point  
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
H
L
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
T
T
Serial-write-mode enable  
(pseudo-transfer write)  
Refresh  
Addr  
Tap  
Point  
Memory-to-register transfer  
(transfer read)  
Row  
Addr  
Tap  
Point  
L
H
H
L
L
T
Split-register-transfer read  
(must reload tap)  
Row  
Addr  
Tap  
Point  
L
H
L
T
Load and use write mask,  
Write data to DRAM  
Row  
Addr  
Col  
Addr  
DQ  
Mask  
Valid  
Data  
H
H
H
H
H
H
H
H
R
R
R
R
R
R
R
R
Load and use write mask,  
Block write to DRAM  
Row  
Addr  
Blk Addr  
A2A8  
DQ  
Col  
L
L
H
L
Mask  
Mask  
Persistent write-per-bit,  
Write data to DRAM  
Row  
Addr  
Col  
Addr  
Valid  
Data  
L
H
H
L
X
X
X
X
X
X
Persistent write-per-bit,  
Block write to DRAM  
Row  
Addr  
Blk Addr  
A2A8  
Col  
Mask  
L
H
L
Normal DRAM read/write  
(nonmasked)  
Row  
Addr  
Col  
Addr  
Valid  
Data  
H
H
H
H
Block write to DRAM  
(nonmasked)  
Row  
Addr  
Blk Addr  
A2A8  
Col  
Mask  
L
H
L
Refresh  
Addr  
DQ  
Mask  
Load write mask  
H
H
X
X
Refresh  
Addr  
Color  
Data  
Load color register  
H
Legend:  
H = High  
L = Low  
X = Don’t care  
§
R = random access operation; T = transfer operation  
In persistent write-per-bit function, W must be high during the refresh cycle.  
DQ0DQ3 are latched on the later of W or CAS falling edge.  
Col Mask = H: Write to address/column location enabled  
DQ Mask = H: Write to I/O enabled  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
operation  
Depending on the type of operation chosen, the signals of the SMJ44C251B perform different functions.  
Table 1 summarizes the signal descriptions and the operational modes they control.  
Table 1. Detailed Signal Description Versus Operational Mode  
PIN  
A0A8  
CAS  
DRAM  
TRANSFER  
Row, tap address  
SAM  
Row, column address  
Column enable, output enable  
DRAM data I/O, write mask bits  
Tap-address strobe  
DQi  
DSF  
Block-write enable  
Split-register enable  
Persistent write-per-bit enable  
Color-register load enable  
Alternate write-transfer enable  
RAS  
SE  
Row enable  
Row enable  
Serial-in mode enable  
Serial enable  
Serial clock  
SC  
SDQ  
TRG  
W
Serial-data I/O  
Q output enable  
Transfer enable  
Write enable, write-per-bit select  
Transfer-write enable  
Split register  
Active status  
QSF  
NC/GND  
Make no external connection or tie to system V  
.
SS  
V
V
5-V supply (typical)  
CC  
Device ground  
SS  
The SMJ44C251B has three kinds of operations: random-access operations typical of a DRAM, transfer  
operations from memory arrays to the SAM, and serial-access operations through the SAM port. The signals  
used to control these operations are described here, followed by discussions of the operations themselves.  
address (A0A8)  
For DRAM operation, 18 address bits are required to decode one of the 262144 storage cell locations. Nine  
row-address bits are set up on A0A8 and latched onto the chip on the falling edge of RAS. Nine  
column-address bits are set up on A0A8 and latched onto the chip on the falling edge of CAS. All addresses  
must be stable on or before the falling edges of RAS and CAS.  
During the transfer operation, the states of A0A8 are latched on the falling edge of RAS to select one of the  
512 rows where the transfer occurs. To select one of 512 tap points (starting positions) for the serial-data input  
or output, the appropriate 9-bit column address (A0A8) must be valid when CAS falls.  
row-address strobe (RAS)  
RAS is similar to a chip enable because all DRAM cycles and transfer cycles are initiated by the falling edge  
of RAS. RAS is a control input that latches the states of row address, W, TRG, SE, CAS, and DSF onto the chip  
to invoke DRAM and transfer functions.  
column-address strobe (CAS)  
CASisacontrolinputthatlatchesthestatesofcolumnaddressandDSFtocontrolDRAMandtransferfunctions.  
When CAS is brought low during a transfer cycle, it latches the new tap point for the serial-data input or output.  
CAS also acts as an output enable for the DRAM outputs DQ0DQ3.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
output enable/transfer select (TRG)  
TRG selects either DRAM or transfer operation as RAS falls. For DRAM operation, TRG must be held high as  
RAS falls. During DRAM operation, TRG functions as an output enable for the DRAM outputs DQ0DQ3. For  
transfer operation, TRG must be brought low before RAS falls.  
write-mask select, write enable (W)  
In DRAM operation, W enables data to be written to the DRAM. W is also used to select the DRAM write-per-bit  
mode. HoldingWlow on the falling edge of RAS invokes the write-per-bit operation. The SMJ44C251B supports  
both the normal write-per-bit mode and the persistent write-per-bit mode.  
For transfer operation, W selects either a read-transfer operation (DRAM to SAM) or a write-transfer operation  
(SAM to DRAM). During a transfer cycle, if W is high when RAS falls, a read transfer occurs; if W is low, a write  
transfer occurs.  
special function select (DSF)  
DSF is latched on the falling edge of RAS or CAS, similar to an address. DSF determines which of the following  
functions are invoked on a particular cycle:  
Persistent write-per-bit  
Block write  
Split-register transfer read  
Mask-register load for the persistent write-per-bit mode  
Color-register load for the block-write mode  
DRAM data I/O, write-mask data (DQ0DQ3)  
DRAM data is written via DQ terminals during a write or read-modify-write cycle. In an early-write cycle, W is  
brought low prior to CAS and the data is strobed in by CAS with data setup and hold times referenced to this  
signal. In a delayed-write or read-modify-write cycle, W is brought low after CAS and the data is strobed in by  
W with data setup and hold times referenced to this signal.  
The 3-state DQ output buffers provide direct TTL compatibility (no pullup resistors) with a fanout of two Series  
54 TTL loads. Data out is the same polarity as data in. The outputs are in the high-impedance (floating) state  
aslongasCASand TRG are held high. Data does not appear at the outputs until both CAS and TRG arebrought  
low. Once the outputs are valid, they remain valid while CAS and TRG are low. CAS or TRG going high returns  
the outputs to the high-impedance state. In a register-transfer operation, the DQ outputs remain in the  
high-impedance state for the entire cycle.  
The write-per-bit mask is latched into the device via the random DQ terminals by the falling edge of RAS. This  
mask selects which of the four random I/Os are written.  
serial data I/O (SDQ0SDQ3)  
Serial inputs and serial outputs share common I/O terminals. Serial-input or serial-output mode is determined  
by the previous transfer cycle. If the previous transfer cycle was a read transfer, the data register is in  
serial-output mode. While in serial-output mode, data in SAM is accessed from the least significant bit to the  
most significant bit. The data registers operate modulo 512; so after bit 511 is accessed, the next bits to be  
accessed are 00, 01, 02, etc. If the previous transfer cycle was either a write transfer or a pseudo transfer, the  
data register is in serial-input mode and signal data can be input to the register.  
serial clock (SC)  
Serial data is accessed in or out of the data register on the rising edge of SC. The SMJ44C251B is designed  
to work with a wide range of clock-duty cycles to simplify system design. There is no refresh requirement  
because the data registers that comprise the SAM are static. There is also no minimum SC clock operating  
frequency.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
serial enable (SE)  
During serial-access operations SE is used as an enable/disable for SDQ in both the input and output modes.  
IfSEisheldasRASfallsduringawrite-transfercycle, apseudo-transferwriteoccurs. Thereisnoactualtransfer,  
but the data register switches from the output mode to the input mode.  
no connect/ground (NC/GND)  
NC/GND is reserved for the manufacturer’s test operation. It is an input and should be tied to system ground  
or left floating for proper device operation.  
special function output (QSF)  
During split-register operation the QSF output indicates which half of the SAM is being accessed. When QSF  
is low, the serial-address pointer is accessing the lower (least significant) 256 bits of SAM. When QSF is high,  
the serial-address pointer is accessing the higher (most significant) 256 bits of SAM. QSF changes state upon  
crossing the boundary between the two SAM halves in the split-register mode.  
DuringnormaltransferoperationsQSFchangesstateuponcompletingatransfercycle. Thisstateisdetermined  
by the tap point being loaded during the transfer cycle.  
power up  
To achieve proper device operation, an initial pause of 200 µs is required after power-up, followed by a minimum  
of eight RAS cycles or eight CBR cycles, a memory-to-register transfer cycle, and two SC cycles.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
random-access operation  
The random-access operation functions are summarized in Table 2 and described in the following sections.  
Table 2. Random-Access-Operation Functions  
CAS  
FALL  
RAS FALL  
ADDRESS  
DQ0DQ3  
FUNCTION  
CAS  
W
CAS  
L
TRG  
X
W
DSF  
X
SE  
X
DSF  
X
RAS  
CAS  
RAS  
CBR refresh  
X
L
X
X
X
X
Load and use write mask,  
Write data to DRAM  
Row  
Addr  
Col  
Addr  
DQ  
Mask  
Valid  
Data  
H
H
L
X
L
Load and use write mask,  
Block write to DRAM  
Row  
Addr  
Blk Addr  
A2A8  
DQ  
Mask  
Col  
Mask  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
L
X
X
X
X
X
X
X
H
L
Persistent write-per-bit,  
Write data to DRAM  
Row  
Addr  
Col  
Addr  
Valid  
Data  
X
X
X
X
X
X
Persistent write-per-bit,  
Block write to DRAM  
Row  
Addr  
Blk Addr  
A2A8  
Col  
Mask  
L
H
L
Normal DRAM read/write  
(nonmasked)  
Row  
Addr  
Col  
Addr  
Valid  
Data  
H
H
H
H
Block write to DRAM  
(nonmasked)  
Row  
Addr  
Blk Addr  
A2A8  
Col  
Mask  
L
H
L
Refresh  
Addr  
DQ  
Mask  
Load write mask  
H
H
X
X
Refresh  
Addr  
Color  
Data  
Load color register  
H
Legend:  
H = High  
L = Low  
X = Don’t care  
In persistent write-per-bit function, W must be high during the refresh cycle.  
DQ0DQ3 are latched on the later of W or CAS falling edge.  
Col Mask = H: Write to address/column location enabled  
DQ Mask = H: Write to I/O enabled  
enhanced page mode  
Enhancedpage-modeoperationallowsfastermemoryaccessbykeepingthesamerowaddresswhileselecting  
random column addresses. This mode eliminates the time required for row address setup-and-hold and  
address multiplex. The maximum RAS low time and the CAS page cycle time used determine the number of  
columns that can be accessed.  
Unlike conventional page-mode operation, the enhanced page mode allows the SMJ44C251B to operate at a  
higher data bandwidth. Data retrieval begins as soon as the column address is valid rather than when CAS  
transitions low. A valid column address can be presented immediately after row-address hold time has been  
satisfied, usually well in advance of the falling edge of CAS. In this case, data can be obtained after t  
max  
a(C)  
(access time from CAS low), if t  
max (access time from column address) has been satisfied.  
a(CA)  
refresh  
There are three types of refresh available on the SMJ44C251B: RAS-only refresh, CBR refresh, and hidden  
refresh.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
RAS-only refresh  
A refresh operation must be performed to each row at least once every 8 ms to retain data. Unless CAS is  
applied, the output buffers are in the high-impedance state, so the RAS-only refresh sequence avoids any  
outputduringrefresh. ExternallygeneratedaddressesmustbesuppliedduringRAS-onlyrefresh. Strobingeach  
of the 512 row addresses with RAS causes all bits in each row to be refreshed. CAS can remain high (inactive)  
for this refresh sequence to conserve power.  
CAS-before-RAS (CBR) refresh  
CBR refresh is accomplished by bringing CAS low earlier than RAS. The external row address is ignored and  
the refresh row address is generated internally when using CBR refresh. Other cycles can be performed in  
between CBR cycles without disturbing the internal address generation.  
hidden refresh  
A hidden refresh is accomplished by holding CAS low in the DRAM-read cycle andcyclingRAS. The output data  
of the DRAM-read cycle remains valid while the refresh is being carried out. Like the CBR refresh, the refreshed  
row addresses are generated internally during the hidden refresh.  
write-per-bit  
The write-per-bit feature allows masking of any combination of the four DQs on any write cycle (see Figure 1).  
The write-per-bit operation is invoked only when W is held low on the falling edge of RAS. If W is held high on  
the falling edge of RAS, write-per-bit is not enabled and the write operation is performed to all four DQs. The  
SMJ44C251B offers two write-per-bit modes: the nonpersistent write-per-bit mode and the persistent  
write-per-bit mode.  
nonpersistent write-per-bit  
When DSF is low on the falling edge of RAS, the write mask is reloaded. A 4-bit code (the write-per-bit mask)  
is input to the device via the random DQ terminals and latched on the falling edge of RAS. The write-per-bit mask  
selects which of the four random I/Os are written and which are not. After RAS has latched the on-chip  
write-per-bit mask, input data is driven onto the DQ terminals and is latched on the later falling edge of CAS or  
W. When a data low is strobed into a particular I/O on the falling edge of RAS, data is not written to that I/O. When  
a data high is strobed into a particular I/O on the falling edge of RAS, data is written to that I/O.  
persistent write-per-bit  
When DSF is high on the falling edge of RAS, the write-per-bit mask is not reloaded: it retains the value stored  
during the last write-per-bit mask reload. This mode of operation is known as persistent write-per-bit because  
the write-per-bit mask is persistent over an arbitrary number of write cycles. The write-per-bit mask reload can  
be done during the nonpersistent write-per-bit cycle or by the mask-register-load cycle.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
persistent write-per-bit (continued)  
Nonpersistant Write-Per-Bit  
Write-Mask-Register Load  
Persistent Write-Per-Bit  
RAS  
CAS  
A0A8  
DSF  
W
DQ0–  
DQ3  
DQ Mask  
Write Data  
DQ Mask  
Write Data  
DQ Mask = H: Write to I/O enabled  
=
L: Write to I/O disabled  
Figure 1. Example of Write-Per-Bit Operations  
block write  
The block-write mode allows data (present in an on-chip color register) to be written into four consecutive  
column-address locations. The 4-bit color register is loaded by the color-register-load cycle. Both write-per-bit  
modes can be applied in the block-write cycle. The block-write mode also offers the 4 × 4 column-mask  
capability.  
load color register  
The load-color-register cycle is performed using normal DRAM write-cycle timing except that DSF is held high  
on the falling edges of RAS and CAS. A 4-bit code is input to the color register via the random I/O terminals and  
latched on the later of the falling edge of CAS or W. After the color register is loaded, it retains data until power  
is lost or until another load-color-register cycle is executed.  
block write cycle  
After the color register is loaded, the block-write cycle can begin as a normal DRAM write cycle with DSF held  
high on the falling edge of CAS (see Figures 2, 3, and 4). When the block-write cycle is invoked, each data bit  
in the 4-bit color register is written to selected bits of the four adjacent columns of the corresponding random  
I/O.  
During block-write cycles, only the seven most significant column addresses (A2A8) are latched on the falling  
edge of CAS. The two least significant addresses (A0A1) are replaced by four DQ bits (DQ0DQ3), which  
are also latched on the later of the falling edge of CAS or W. These four bits are used as a column mask, and  
they indicate which of the four column-address locations addressed by A2A8 are written with the contents of  
the color register during the block-write cycle. DQ0 enables a write to column-address A1 = 0 (low), A0 = 0 (low);  
DQ1 enables a write to column-address A1 = 0 (low), A0 = 1 (high); DQ2 enables a write to column-address  
A1 = 1 (high), A0 = 0 (low); DQ3 enables a write to column-address A1 = 1 (high), A0 = 1 (high). A high logic  
level enables a write, and a low logic level disables the write. A maximum of 16 bits (4 × 4) can be written to  
memory during each CAS cycle in the block-write mode.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
block write cycle (continued)  
Load-Color-Register Cycle  
Block-Write Cycle  
(no DQ mask)  
Block-Write Cycle  
(load and use DQ mask)  
Block-Write Cycle  
(use previously  
loaded DQ mask)  
RAS  
CAS  
A0A8  
1
2
3
2
3
2
3
W
TRG  
DSF  
DQ0DQ3  
4
5
6
5
5
W must be low during the block-write cycle.  
NOTE: DQ0DQ3 are latched on the later of W or CAS falling edge except in block 6 (see legend).  
Legend:  
1. Refresh address  
2. Row address  
3. Block address (A2 A8)  
4. Color-register data  
5. Column-mask data  
6. DQ-mask data. DQ0DQ3 are latched on the falling edge of RAS.  
= don’t care  
Figure 2. Example Block-Write Diagram Operations  
N + 1  
N
N + 2  
N + 3  
I/O3  
I/O2  
Block-Write  
Enable  
A2A8  
A0A1  
1-of-4  
I/O1  
Load Write  
Mask  
4-of-512  
Decode  
I/O0  
Decode  
Write-Mask  
Register  
Write  
MUX  
MUX  
MUX  
MUX  
Select  
DQ0  
DQ1  
DQ2  
DQ  
Write  
Enable  
Write  
Select  
Load  
Color  
Register  
Data  
Write  
Select  
In  
Color  
MUX  
Register  
Write  
Select  
DQ3  
Block-Write  
Enable  
Figure 3. Block-Write Circuit Block Diagram  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
block write cycle (continued)  
COLOR  
REGISTER  
DATA  
COLUMN  
MASK  
DQ MASK  
COLUMN 1 COLUMN 2  
COLUMN 3 COLUMN 4  
DQ0  
DQ1  
DQ2  
DQ3  
1
1
0
1
0
1
1
1
0
0
1
1
DQ0  
DQ1  
DQ2  
DQ3  
Masked  
Masked  
Masked  
Masked  
0
0
0
Block Write  
0
Masked  
1
0
Masked  
1
0
Masked  
1
Figure 4. Example of Block Write Operation With DQ Mask and Address Mask  
transfer operation  
Transfer operations between the memory arrays (DRAM) and the data registers (SAM) are invoked by bringing  
TRG low before RAS falls. The states of W, SE, and DSF, which are also latched on the falling edge of RAS,  
determine which transfer operation is invoked. Figure 5 shows an overview of data flow between the random  
and the serial interfaces.  
Random-Access Port  
Col  
0
Col  
255  
Col  
256  
Col  
511  
Row  
0
4
Memory Array  
262 144 Bits  
DQ0DQ3  
Row  
511  
256  
256  
TRG  
A8  
Transfer-  
Pass  
Gate  
Transfer-  
Transfer-  
Control  
Logic  
Pass  
Gate  
DSF  
W
256  
256-Bit Data Register  
256  
256-Bit Data Register  
SE  
SC  
A0A8  
A8  
Serial  
Counter  
MUX  
4
SDQ0SDQ3  
SE  
TRG  
W
Serial-  
I/O  
Control  
Figure 5. Block Diagram Showing One Random and One Serial-I/O Interface  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
transfer operation (continued)  
As shown in Table 3, the SMJ44C251B supports five basic modes of transfer operation:  
Register-to-memory transfer (normal write transfer, SAM to DRAM)  
Alternate-write transfer (independent of the state of SE)  
Memory-to-register transfer (pseudo-transfer write). Switches serial port from serial-out mode to serial-in  
mode. No actual data transfer takes place between the DRAM and the SAM.  
Memory-to-register transfer (normal-read transfer, transfer entire contents of DRAM row to SAM)  
Split-register-read transfer (divides the SAM into a low and a high half. Only one half is transferred to the  
SAM while the other half is read from the serial I/O port.)  
Table 3. Transfer-Operation Functions  
CAS  
FALL  
RAS FALL  
W
ADDRESS  
DQ0DQ3  
CAS  
FUNCTION  
CAS  
TRG  
DSF  
SE  
DSF  
RAS  
CAS  
RAS  
W
Register-to-memory transfer  
(normal write transfer)  
Row  
Addr  
Tap  
Point  
H
H
H
H
H
L
L
L
L
L
L
L
X
H
L
L
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
Alternate-write transfer  
(independent of SE)  
Row  
Addr  
Tap  
Point  
X
X
X
X
Serial-write-mode enable  
(pseudo-transfer write)  
Refresh  
Addr  
Tap  
Point  
L
Memory-to-register transfer  
(normal read transfer)  
Row  
Addr  
Tap  
Point  
H
H
L
Split-register-read transfer  
(must reload tap)  
Row  
Addr  
Tap  
Point  
H
Legend:  
H = High  
L = Low  
X = Don’t care  
write transfer  
All write-transfer cycles (except the pseudo write transfer) transfer the entire content of SAM to the selected row  
in the DRAM. To invoke a write-transfer cycle, W must be low when RAS falls. There are three possible  
write-transfer operations: normal-write transfer, alternate-write transfer, and pseudo-write transfer.  
All write-transfer cycles switch the serial port to the serial-in mode.  
normal-write transfer (SAM-to-DRAM transfer)  
A normal-write transfer cycle loads the contents of the serial-data register to a selected row in the memory array.  
TRG, W, and SE are brought low and latched at the falling edge of RAS. Nine row-address bits (A0A8) are  
also latched at the falling edge of RAS to select one of the 512 rows available as the destination of the data  
transfer. The nine column-address bits (A0A8) are latched at the falling edge of CAS to select one of the 512  
tap points in SAM that are available for the next serial input.  
During a write-transfer operation before RAS falls, the serial-input operation must be suspended after a  
minimum delay of t  
(see Figure 6).  
but can be resumed after a minimum delay of t  
after RAS goes high  
d(SCRL)  
d(RHSC)  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
normal-write transfer (SAM-to-DRAM transfer) (continued)  
RAS  
CAS  
Row  
Tap Point  
A0A8  
TRG  
W
SE  
t
d(SCRL)  
t
d(RHSC)  
SC  
Figure 6. Normal-Write-Transfer-Cycle Timing  
alternate-write transfer (refer to Figure 30)  
When DSF is brought high and latched at the falling edge of RAS in the normal-write-transfer cycle, the  
alternate-write transfer occurs.  
pseudo-write transfer (write-mode control) (refer to Figure 28)  
To invoke the pseudo-write transfer (write-mode control cycle), SEis brought high and latched at the falling edge  
of RAS. The pseudo-write transfer does not actually invoke any data transfer but switches the mode of the serial  
port from the serial-out (read) mode to the serial-in (write) mode.  
Before serial data can be clocked into the serial port via the SDQ terminals and the SC input, the SDQ terminals  
must be switched into input mode. Because the transfer does not occur during the pseudo-transfer write, the  
row address (A0A8) is in the don’t care state and the column address (A0A8), which is latched on the falling  
edge of CAS, selects one of the 512 tap points in the SAM that are available for the next serial input.  
read transfer (DRAM-to-SAM transfer) (refer to Figure 7)  
During a read-transfer cycle, data from the selected row in DRAM is transferred to SAM. There are two  
read-transfer operations: normal-read transfer and split-register-read transfer.  
normal-read transfer (refer to Figure 7)  
The normal-read-transfer operation loads data from a selected row in DRAM into SAM. TRG is brought low and  
latched at the falling edge of RAS. Nine row-address bits (A0A8) are also latched at the falling edge of RAS  
to select one of the 512 rows available for transfer. The nine column-address bits (A0A8) are latched at the  
falling edge of CAS to select one of the SAM’s 512 available tap points where the serial data is read out.  
A normal-read transfer can be performed in three ways: early-load read transfer, real-time or midline-load read  
transfer, and late-load read transfer. Each of these offers the flexibility of controlling the TRG trailing edge in  
the read-transfer cycle (see Figure 7).  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
normal-read transfer (continued)  
Early-Load Read Transfer  
RAS  
Real-Time-Reload Read Transfer  
Late-Load Read Transfer  
CAS  
A0A8  
Row  
Tap Point  
Row  
Tap Point  
Row  
Tap Point  
TRG  
SC  
Bit  
512  
Tap  
Bit  
Bit  
510  
Bit  
511  
Tap  
Bit  
Bit  
510  
Bit  
511  
Tap  
Bit  
Figure 7. Normal-Read-Transfer Timings  
split-register-read transfer  
In split-register-read-transfer operation, the serial-data register is split into halves. The low half contains bits  
0–255, and the high half contains 256511. While one half is being read out of the SAM port, the other half can  
be loaded from the memory array.  
To invoke a split-register read-transfer cycle, DSF is brought high, TRG is brought low, and both are latched at  
the falling edge of RAS. Nine row-address bits (A0A8) are also latched at the falling edge of RAS to select  
one of the 512 rows available for the transfer. The nine column-address bits (A0A8) are latched at the falling  
edge of CAS, where address bits A0 A7 select one of the 255 tap points in the specified half of SAM and  
address bit A8 selects which half is to be transferred. If A8 is a logic low, the low half is transferred. If A8 is a  
logic high, the high half is transferred. SAM locations 255 and 511 cannot be used as tap points.  
A normal-read transfer must precede the split-register-read transfer to ensure proper operation. After the  
normal-read-transfer cycle, the first split-register read transfer can follow immediately without any minimum SC  
requirement. However, there is a minimum requirement of a rising edge of SC between split-register  
read-transfer cycles.  
QSF indicates which half of the SAM is being accessed during serial-access operation. When QSF is low, the  
serial-address pointer is accessing the lower (least significant) 256 bits of the SAM. When QSF is high, the  
pointer is accessing the higher (most significant) 256 bits of the SAM. QSF changes state upon completing a  
normal-read-transfer cycle. The tap point loaded during the current transfer cycle determines the state of QSF.  
In split-register read-transfer mode, QSF changes state when a boundary between the two register halves is  
reached (see Figure 8 and Figure 9).  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
split-register-read transfer (continued)  
Read Transfer  
With Tap Point N  
Split-Register  
Read Transfer  
RAS  
CAS  
TRG  
DSF  
SC  
Tap  
Point N  
t
d(GHQSF)  
t
d(CLQSF)  
QSF  
Figure 8. Example of a Split-Register Read-Transfer Cycle After a Normal Read-Transfer Cycle  
Split-Register  
Read Transfer  
With Tap Point N  
Split-Register  
Read Transfer  
RAS  
CAS  
TRG  
DSF  
t
d(MSRL)  
t
d(RHMS)  
SC  
255  
Tap  
or 511  
Point N  
t
a(SCQSF)  
QSF  
Figure 9. A Split-Register Read-Transfer Cycle After a Split-Register Read-Transfer Cycle  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
serial-access operation  
The serial-read and serial-write operations can be performed through the SAM port simultaneously and  
asynchronously with DRAM operations except during transfer operations. The preceding transfer operation  
determines the input or output state of the SAM port. If the preceding transfer operation is a read-transfer  
operation, the SAM port is in the output mode. If the preceding transfer operation is a write- or  
pseudo-write-transfer operation, the SAM port is in the input mode.  
Serial data can be read out of or written into SAM by clocking SC starting at the tap point loaded by the preceding  
transfer cycle, proceeding sequentially to the most significant bit (bit 511), then wrapping around to the least  
significant bit (bit 0) (see Figure 10).  
0
1
2
Tap  
510  
511  
Figure 10. Serial Pointer Direction for Serial Read/Write  
For split-register read-transfer operation, serial data can be read out from the active half of SAM by clocking  
SC starting at the tap point loaded by the preceding split-register-transfer cycle, then proceeding sequentially  
to the most significant bit of the half, bit 255 or bit 511. If there is a split-register-read transfer to the inactive half  
during this period, the serial pointer points next to the tap-point location loaded by that split register (see  
Figure 11, Case I). If there is no split-register read transfer to the inactive half during this period, the serial pointer  
points next to bit 256 or bit 0, respectively (see Figure 11, Case II).  
Case I  
0
0
Tap  
Tap  
254  
255  
256  
Tap  
510  
510  
511  
511  
Case I I  
254  
255  
256  
Tap  
Figure 11. Serial Pointer for Split-Register Read  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V to 7 V  
CC  
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V to 7 V  
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
Operating free-air temperature range, T : L suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
V
V
V
Supply voltage  
4.5  
5
0
5.5  
V
V
V
V
CC  
SS  
IH  
Supply voltage  
High-level input voltage  
Low-level input voltage (see Note Note 2)  
2.9  
–1  
6.5  
0.6  
70  
IL  
L suffix  
M suffix  
L suffix  
M suffix  
0
T
A
Operating free-air temperature  
Operating case temperature  
°C  
°C  
– 55  
125  
70  
T
C
125  
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
= 5 mA  
MIN  
MAX  
UNIT  
V
V
V
I
I
2.4  
OH  
OH  
Low-level output voltage (see Note 3)  
= 4.2 mA  
= 5 V,  
0.4  
±10  
±10  
V
OL  
OL  
V
V = 0 V to 5.8 V,  
I
CC  
All others open  
I
I
Input leakage current  
µA  
I
O
Output leakage current (see Note 4)  
V
= 5.5 V,  
V = 0 V to V  
O CC  
µA  
CC  
NOTES: 3. The SMJ44C251B may exhibit simultaneous switching noise as described in the Texas Instruments Advanced CMOS Logic  
Designer’s Handbook. This phenomenon is exhibited on the DQ terminals when the SDQ terminals are switched and on the SDQ  
terminalswhentheDQterminalsareswitched. ThismaycauseV  
and V  
toexceedthedata-booklimitforashortperiodoftime,  
OL  
OH  
depending upon output loading and temperature. Care should be taken to provide proper termination, decoupling, and layout of the  
device to minimize simultaneous switching effects.  
4. SE is disabled for SDQ output leakage tests.  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
’44C251B-10 ’44C251B-12  
SAM  
PORT  
PARAMETER (SEE NOTE 5)  
UNIT  
TEST CONDITIONS  
MIN  
MAX  
100  
110  
15  
MIN  
MAX  
90  
I
I
I
I
I
I
I
I
I
I
I
I
Operating current  
t
t
and t  
c(W)  
= MIN  
Standby  
Active  
CC1  
c(rd)  
Operating current  
= MIN  
100  
15  
CC1A  
CC2  
c(SC)  
Standby current  
All clocks = V  
CC  
Standby  
Active  
Standby current  
t
t
t
t
t
t
t
t
t
= MIN  
35  
35  
CC2A  
CC3  
c(SC)  
RAS-only refresh current  
RAS-only refresh current  
Page-mode current  
Page-mode current  
CAS-before-RAS current  
CAS-before-RAS current  
Data-transfer current  
Data-transfer current  
and t  
c(W)  
= MIN  
Standby  
Active  
100  
110  
65  
90  
c(rd)  
= MIN  
100  
60  
CC3A  
CC4  
c(SC)  
mA  
= MIN  
Standby  
Active  
c(P)  
= MIN  
70  
65  
CC4A  
CC5  
c(SC)  
and t  
c(W)  
= MIN  
= MIN  
Standby  
Active  
90  
80  
c(rd)  
= MIN  
110  
100  
110  
100  
90  
CC5A  
CC6  
c(SC)  
and t  
c(W)  
Standby  
Active  
c(rd)  
= MIN  
100  
CC6A  
c(SC)  
For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.  
NOTE 5:  
I
I
I
(standby) denotes that the SAM port is inactive (standby) and the DRAM port is active (except for I  
).  
CC2  
CC  
(active) denotes that the SAM port is active and the DRAM port is active (except for I  
).  
CC2  
CCA  
is measured with no load on DQ or SDQ.  
CC  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
capacitance over recommended ranges of supply voltage and operating free-air temperature,  
f = 1 MHz (see Note 6)  
PARAMETER  
MIN  
MAX  
UNIT  
pF  
C
C
C
C
Input capacitance, A0A8  
7
7
9
9
i(A)  
Input capacitance, CAS and RAS  
Output capacitance, SDQs and DQs  
Output capacitance, QSF  
pF  
i(RC)  
o(O)  
pF  
pF  
o(QSF)  
NOTE 6: Capacitance is sampled only at initial design and after any major change. Samples are tested at 0 V and 25°C with a 1-MHz signal  
applied to the terminal under test. All other terminals are open.  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (see Note 7)  
’44C251B-10 ’44C251B-12  
TEST  
CONDITIONS  
ALT.  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX  
25  
MIN  
MAX  
30  
t
t
t
t
t
t
t
Access time from CAS  
t
t
t
t
= MAX  
= MAX  
= MAX  
= MAX  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
a(C)  
d(RLCL)  
d(RLCL)  
d(RLCL)  
d(RLCL)  
CAC  
Access time from column address  
Access time from CAS high  
t
50  
60  
a(CA)  
a(CP)  
a(R)  
AA  
t
55  
65  
CPA  
RAC  
OEA  
Access time from RAS  
t
t
100  
25  
120  
30  
Access time of DQ0DQ3 from TRG low  
Access time of SDQ0SDQ3 from SC high  
Access time of SDQ0SDQ3 from SE low  
a(G)  
C
C
= 30 pF  
t
SCA  
30  
35  
a(SQ)  
a(SE)  
L
L
= 30 pF  
t
20  
25  
SEA  
Disable time, random output from CAS high  
(see Note 8)  
t
t
t
C
C
C
= 100 pF  
t
0
0
0
20  
20  
20  
0
0
0
20  
20  
20  
ns  
ns  
ns  
dis(CH)  
dis(G)  
L
L
L
OFF  
Disable time, random output from TRG high  
(see Note 8)  
= 100 pF  
= 30 pF  
t
OEZ  
Disable time, serial output from SE high  
(see Note 8)  
t
dis(SE)  
SEZ  
For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.  
NOTES: 7. Switching times assume C = 100 pF unless otherwise noted (see Figure 12).  
L
8.  
t
, t  
, and t  
are specified when the output is no longer driven.  
dis(CH) dis(G)  
dis(SE)  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature  
’44C251B-10  
MAX  
ALT.  
SYMBOL  
UNIT  
MIN  
190  
190  
250  
60  
105  
190  
190  
30  
20  
25  
80  
100  
25  
25  
10  
10  
35  
35  
30  
100  
0
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Cycle time, read (see Note 9)  
t
t
t
t
t
t
t
t
t
t
t
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(rd)  
RC  
Cycle time, write (see Note 9)  
c(W)  
WC  
Cycle time, read-modify-write (see Note 9)  
Cycle time, page-mode read or write (see Note 9)  
Cycle time, page-mode read-modify-write (see Note 9)  
Cycle time, read transfer (see Note 9)  
Cycle time, write transfer (see Note 9)  
Cycle time, serial clock (see Notes 9 and 10)  
Pulse duration, CAS high  
c(rdW)  
c(P)  
RMW  
PC  
c(rdWP)  
c(TRD)  
c(TW)  
c(SC)  
PRMW  
RC  
WC  
SCC  
CPN  
CAS  
RP  
w(CH)  
Pulse duration, CAS low (see Note 11)  
Pulse duration, RAS high  
75000  
75000  
w(CL)  
w(RH)  
Pulse duration, RAS low (see Note 12)  
Pulse duration, W low  
w(RL)  
RAS  
WP  
w(WL)  
w(TRG)  
w(SCH)  
w(SCL)  
w(SEL)  
w(SEH)  
w(GH)  
Pulse duration, TRG low  
Pulse duration, SC high  
t
t
t
t
t
SC  
Pulse duration, SC low  
SCP  
SE  
Pulse duration, SE low  
Pulse duration, SE high  
SEP  
TP  
Pulse duration, TRG high  
Pulse duration, RAS low (page mode)  
Setup time, column address  
75000  
w(RL)P  
su(CA)  
su(SFC)  
su(RA)  
su(WMR)  
su(DQR)  
su(TRG)  
su(SE)  
su(SESC)  
su(SFR)  
su(DCL)  
su(DWL)  
su(rd)  
t
t
t
t
t
t
t
t
t
t
t
t
t
ASC  
FSC  
ASR  
WSR  
MS  
Setup time, DSF before CAS low  
Setup time, row address  
0
0
Setup time, W before RAS low  
Setup time, DQ before RAS low  
Setup time, TRG before RAS low  
Setup time, SE before RAS low (see Note 13)  
Setup time, serial write disable  
Setup time, DSF before RAS low  
Setup time, data before CAS low  
Setup time, data before W low  
Setup time, read command  
0
0
0
THS  
ESR  
SWIS  
FSR  
DSC  
DSW  
RCS  
WCS  
0
10  
0
0
0
0
Setup time, early write command before CAS low  
0
su(WCL)  
Timing measurements are referenced to V max and V min.  
IL IH  
NOTES: 9. All cycle times assume t = 5 ns.  
t
10. When the odd tap is used (tap address can be 0511, and odd taps are 1, 3, 5, etc.), the cycle time for SC in the first serial data  
out cycle needs to be 70 ns minimum.  
11. In a read-modify-write cycle, t  
and t  
must be observed. Depending on the user’s transition times, this may require  
d(CLWL)  
su(WCH)  
additional CAS low time [t  
12. In a read-modify-write cycle, t  
].  
w(CL)  
d(RLWL)  
w(RL)  
and t  
must be observed. Depending on the user’s transition times, this may require  
su(WRH)  
additional RAS low time [t  
].  
13. Register-to-memory (write) transfer cycles only  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (continued)  
’44C251B-10  
’44C251B-12  
ALT.  
SYMBOL  
UNIT  
MIN  
25  
25  
0
MAX  
MIN  
30  
30  
0
MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Setup time, write before CAS high  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(WCH)  
su(WRH)  
su(SDS)  
h(CLCA)  
h(SFC)  
CWL  
Setup time, write before RAS high with TRG = W = low  
Setup time, SDQ before SC high  
t
RWL  
t
SDS  
CAH  
Hold time, column address after CAS low  
Hold time, DSF after CAS low  
t
20  
20  
15  
15  
15  
15  
15  
15  
45  
20  
45  
20  
0
20  
20  
15  
15  
15  
15  
15  
15  
45  
25  
50  
25  
0
t
CFH  
Hold time, row address after RAS low  
Hold time, TRG after RAS low  
t
t
h(RA)  
RAH  
t
h(TRG)  
h(SE)  
TLH  
Hold time, SE after RAS low with TRG = W = low (see Note 13)  
Hold time, write mask, transfer enable after RAS low  
Hold time, DQ after RAS low (write-mask operation)  
Hold time, DSF after RAS low  
REH  
t
h(RWM)  
h(RDQ)  
h(SFR)  
RWH  
t
MH  
t
RFH  
Hold time, column address after RAS low (see Note 14)  
Hold time, data after CAS low  
t
h(RLCA)  
h(CLD)  
AR  
t
DH  
Hold time, data after RAS low (see Note 14)  
Hold time, data after W low  
t
DHR  
h(RLD)  
t
h(WLD)  
h(CHrd)  
h(RHrd)  
h(CLW)  
h(RLW)  
h(WLG)  
h(SDS)  
DH  
Hold time, read after CAS high (see Note 15)  
Hold time, read after RAS high (see Note 15)  
Hold time, write after CAS low  
t
t
RCH  
RRH  
10  
30  
50  
25  
5
10  
35  
55  
30  
5
t
WCH  
WCR  
Hold time, write after RAS low (see Note 14)  
Hold time, TRG after W low (see Note 16)  
Hold time, SDQ after SC high  
t
t
OEH  
t
SDH  
Hold time, SDQ after SC high  
t
5
5
h(SHSQ)  
h(RSF)  
SOH  
Hold time, DSF after RAS low  
t
45  
20  
100  
0
45  
20  
120  
0
FHR  
Hold time, serial-write disable  
t
SWIH  
h(SCSE)  
d(RLCH)  
d(CHRL)  
d(CLRH)  
d(CLWL)  
d(RLCL)  
d(CARH)  
d(RLWL)  
d(CAWL)  
Delay time, RAS low to CAS high  
t
t
t
CSH  
CRP  
RSH  
Delay time, CAS high to RAS low  
Delay time, CAS low to RAS high  
25  
55  
25  
50  
130  
85  
30  
65  
25  
60  
155  
100  
Delay time, CAS low to W low (see Notes 17 and 18)  
Delay time, RAS low to CAS low (see Note 19)  
Delay time, column address to RAS high  
Delay time, RAS low to W low (see Note 17)  
Delay time, column address to W low (see Note 17)  
t
CWD  
t
75  
90  
RCD  
t
RAL  
t
RWD  
t
AWD  
Timing measurements are referenced to V max and V min.  
IL IH  
NOTES: 13. Register-to-memory (write) transfer cycles only  
14. The minimum value is measured when t  
is set to t  
d(RLCL)  
min as a reference.  
d(RLCL)  
must be satisfied for a read cycle.  
15. Either t  
or t  
h(RHrd)  
(CHrd)  
16. Output-enable-controlled write. Output remains in the high-impedance state for the entire cycle.  
17. Read-modify-write operation only  
18. TRG must disable the output buffers prior to applying data to the DQ terminals.  
19. The maximum value is specified only to assure RAS access time.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (continued)  
’44C251B-10 ’44C251B-12  
ALT.  
SYMBOL  
UNIT  
MIN  
25  
MAX  
MIN  
25  
MAX  
t
t
t
t
t
Delay time, RAS low to CAS high (see Note 20)  
Delay time, CAS low to RAS low (see Note 20)  
Delay time, RAS high to CAS low (see Note 20)  
Delay time, CAS low to TRG high for DRAM read cycles  
Delay time, TRG high before data applied at DQ  
t
ns  
ns  
ns  
ns  
ns  
d(RLCH)RF  
d(CLRL)RF  
d(RHCL)RF  
d(CLGH)  
CHR  
t
10  
10  
CSR  
RPC  
t
10  
10  
25  
30  
t
25  
30  
d(GHD)  
OED  
Delay time, RAS low to TRG high (real-time-reload read-transfer cycle  
only)  
t
t
90  
95  
ns  
d(RLTH)  
RTH  
t
t
t
t
Delay time, RAS low to first SC high after TRG high (see Note 21)  
Delay time, CAS low to first SC high after TRG high (see Note 21)  
Delay time, SC high to TRG high (see Notes 21, 22, and 23)  
Delay time, TRG high to RAS high (see Notes 22 and 23)  
t
t
130  
40  
140  
45  
ns  
ns  
ns  
ns  
d(RLSH)  
d(CLSH)  
d(SCTR)  
d(THRH)  
RSD  
CSD  
t
15  
20  
TSL  
t
10  
10  
TRD  
Delay time, SC high to RAS low with TRG = W = low  
(see Notes 13, 24, and 25)  
t
t
10  
20  
ns  
d(SCRL)  
SRS  
t
t
t
t
t
Delay time, SC high to SE high in serial-input mode  
Delay time, RAS high to SC high (see Note 13)  
Delay time, TRG high to RAS low (see Note 26)  
Delay time, TRG high to SC high (see Notes 22 and 23)  
Delay time, SE low to SC high (see Note 27)  
20  
25  
20  
30  
ns  
ns  
ns  
ns  
ns  
d(SCSE)  
d(RHSC)  
d(THRL)  
d(THSC)  
d(SESC)  
t
SRD  
t
t
t
TRP  
TSD  
w(RH)  
35  
w(RH)  
40  
t
t
10  
15  
SWS  
Delay time, RAS high to last (most significant) rising edge of SC before  
boundary switch during split-register read-transfer cycles  
t
15  
20  
ns  
d(RHMS)  
t
t
Delay time, CAS low to TRG high in real-time read-transfer cycles  
Delaytime, columnaddresstofirstSCinearly-loadread-transfercycles  
t
5
5
ns  
ns  
d(CLGH)  
CTH  
t
45  
50  
d(CASH)  
ASD  
Delay time, column address to TRG high in real-time read-transfer  
cycles  
t
t
10  
10  
ns  
d(CAGH)  
ATH  
t
t
t
t
t
Delay time, RAS low to column address (see Note 19)  
Delay time, data to CAS low  
t
15  
0
50  
15  
0
60  
ns  
ns  
ns  
ns  
ns  
d(RLCA)  
RAD  
t
d(DCL)  
DZC  
DZO  
SDD  
ROH  
Delay time, data to TRG low  
t
t
0
0
d(DGL)  
Delay time, RAS low to serial-input data  
Delay time, TRG low to RAS high  
50  
25  
50  
30  
d(RLSD)  
d(GLRH)  
t
Timing measurements are referenced to V max and V min.  
IL IH  
NOTES: 13. Register-to-memory (write) transfer cycles only  
19. The maximum value is specified only to assure RAS access time.  
20. CAS-before-RAS refresh operation only  
21. Early-load read-transfer cycle only  
22. Real-time-reload read-transfer cycle only  
23. Late-load read-transfer cycle only  
24. Inaread-transfercycle, thestateofSCwhenRASfallsisadon’tcarecondition.However,toassurepropersequencingoftheinternal  
clock circuitry, there can be no positive transitions of SC for at least 10 ns prior to when RAS goes low.  
25. In a memory-to-register (read) transfer cycle, t  
applies only when the SAM was previously in serial-input mode.  
d(SCRL)  
26. Memory-to-register (read) and register-to-memory (write) transfer cycles only  
27. Serial data-in cycles only  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (concluded)  
’44C251B-10 ’44C251B-12  
ALT.  
SYMBOL  
UNIT  
MIN  
MAX  
MIN  
MAX  
Delay time, last (most significant) rising edge of SC to RAS low before  
boundary switch during split-register read-transfer cycles  
t
t
t
t
t
25  
25  
ns  
ns  
ns  
ns  
ns  
d(MSRL)  
Delay time, last (255 or 511) rising edge of SC to QSF switching at the  
boundary during split-register read-transfer cycles (see Note 7)  
t
40  
35  
30  
75  
40  
35  
30  
75  
d(SCQSF)  
d(CLQSF)  
d(GHQSF)  
d(RLQSF)  
SQD  
Delay time, CAS low to QSF switching in read-transfer or write-transfer  
cycles (see Note 7)  
t
CQD  
Delay time, TRG high to QSFswitchinginread-transferorwrite-transfer  
cycles (see Note 7)  
t
TQD  
Delay time, RAS low to QSF switching in read-transfer or write-transfer  
cycles (see Note 7)  
t
RQD  
t
t
Refresh time interval, memory  
Transition time  
t
8
8
ms  
ns  
rf  
REF  
t
T
3
50  
3
50  
t
Timing measurements are referenced to V max and V min.  
IL IH  
NOTE 7: Switching times assume C = 100 pF unless otherwise noted (see Figure 12).  
L
PARAMETER MEASUREMENT INFORMATION  
1.31 V  
218 Ω  
Output  
Pin  
C
L
V
SS  
Figure 12. Load Circuit  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
d(RLCH)  
t
RAS  
CAS  
t
w(RH)  
t
d(CHRL)  
t
d(CLRH)  
t
t
t
d(RLCL)  
t
w(CL)  
t
t
w(CH)  
h(RA)  
t
d(CLGH)  
t
h(RLCA)  
t
t
h(CLCA)  
su(RA)  
t
su(CA)  
Row  
Column  
A0A8  
DSF  
Don’t Care  
t
su(TRG)  
t
d(GLRH)  
t
h(TRG)  
t
w(TRG)  
TRG  
t
h(RHrd)  
t
su(rd)  
t
h(CHrd)  
W
t
t
dis(CH)  
t
d(DGL)  
t
a(G)  
dis(G)  
Data  
In  
DQ0DQ3  
Valid Output  
t
a(C)  
a(CA)  
t
t
a(R)  
Figure 13. Read-Cycle Timing  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
t
t
d(RLCH)  
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
t
w(CL)  
su(RA)  
CAS  
t
h(RA)  
t
t
w(CH)  
h(RLCA)  
t
h(CLCA)  
t
su(CA)  
A0A8  
Row  
Column  
t
t
t
h(SFC)  
su(SFR)  
t
h(SFR)  
t
su(SFC)  
DSF  
TRG  
1
2
su(TRG)  
t
h(TRG)  
t
su(WMR)  
t
su(WCH)  
t
su(WRH)  
t
h(RLW)  
t
h(RWM)  
t
su(WCL)  
t
h(CLW)  
W
3
t
t
su(DQR)  
w(WL)  
t
su(DCL)  
t
h(CLD)  
t
h(RDQ)  
t
h(RLD)  
DQ0DQ3  
4
5
Figure 14. Early-Write-Cycle Timing  
Table 4. Write-Cycle State Table  
STATE  
CYCLE  
1
L
2
L
L
L
L
3
H
L
4
5
Write operation  
Don’t care  
Write mask  
Don’t care  
Don’t care  
Valid data  
Valid data  
Valid data  
Write mask  
Write-mask load/use, write DQs to I/Os  
Use previous write mask, write DQs to I/Os  
Load write mask on later of W fall and CAS fall  
L
H
H
L
H
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
d(CHRL)  
t
t
d(CHRL)  
d(RLCL)  
t
w(CL)  
t
h(RA)  
t
w(CH)  
t
d(RLCA)  
t
d(CARH)  
t
h(RLCA)  
t
su(CA)  
t
t
h(CLCA)  
su(RA)  
A0A8  
Row  
Column  
h(RSF)  
t
t
t
h(SFC)  
su(SFR)  
t
su(SFC)  
t
h(SFR)  
DSF  
1
2
t
su(TRG)  
t
su(WRH)  
TRG  
t
h(RWM)  
t
h(WLG)  
t
su(WCH)  
t
d(GHD)  
t
h(RLW)  
t
t
h(CLW)  
su(WMR)  
W
3
t
su(DWL)  
t
t
su(DQR)  
w(WL)  
t
h(WLD)  
t
h(RDQ)  
t
h(RLD)  
DQ0DQ3  
4
5
Figure 15. Delayed-Write-Cycle Timing (Output-Enable-Controlled Write)  
Table 5. Write-Cycle State Table  
STATE  
CYCLE  
1
L
2
L
L
L
L
3
H
L
4
5
Write operation  
Don’t care  
Write mask  
Don’t care  
Don’t care  
Valid data  
Valid data  
Valid data  
Write mask  
Write-mask load/use, write DQs to I/Os  
Use previous write mask, write DQs to I/Os  
Load write mask on later of W fall and CAS fall  
L
H
H
L
H
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rdW)  
w(RL)  
d(RLCH)  
t
RAS  
t
t
t
t
d(CLRH)  
d(CHRL)  
w(RH)  
t
d(RLCL)  
t
d(CHRL)  
t
w(CL)  
CAS  
t
t
h(RA)  
t
w(CH)  
t
su(CA)  
t
h(CLCA)  
su(RA)  
t
d(RLCA)  
t
d(CARH)  
t
h(RLCA)  
A0A8  
Row  
Column  
t
Don’t Care  
Don’t Care  
t
h(RSF)  
t
su(SFC)  
t
h(SFR)  
su(SFR)  
t
h(SFC)  
DSF  
1
2
t
t
su(WCH)  
su(rd)  
t
h(TRG)  
t
su(WRH)  
t
d(CAWL)  
t
w(TRG)  
TRG  
t
h(WLG)  
t
su(TRG)  
t
h(RLW)  
t
d(DCL)  
t
h(CLW)  
t
h(RWM)  
t
d(CLWL)  
t
su(WMR)  
t
d(CLGH)  
t
w(WL)  
W
3
4
t
a(CA)  
t
d(RLWL)  
t
h(WLD)  
t
d(DGL)  
t
t
d(GHD)  
a(R)  
t
su(DQR)  
t
t
su(DWL)  
a(C)  
t
h(RDQ)  
Q0–  
Q3  
Valid  
Output  
5
t
dis(G)  
t
a(G)  
Figure 16. Read-Write/Read-Modify-Write-Cycle Timing  
Table 6. Write-Cycle State Table  
STATE  
CYCLE  
1
L
2
L
L
L
L
3
H
L
4
5
Write operation  
Don’t care  
Write mask  
Don’t care  
Don’t care  
Valid data  
Valid data  
Valid data  
Write mask  
Write-mask load/use, write DQs to I/Os  
Use previous write mask, write DQs to I/Os  
Load write mask on later of W fall and CAS fall  
L
H
H
L
H
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
d(CLRH)  
t
c(rdWP)  
t
t
d(RLCL)  
t
w(CH)  
t
d(CHRL)  
d(CHRL)  
t
w(CL)  
t
d(RLCA)  
t
su(CA)  
t
t
a(CP)  
su(RA)  
t
d(RLCH)  
t
h(RA)  
t
h(CLCA)  
t
d(CARH)  
t
h(RLCA)  
A0A8  
Row  
Column  
Column  
t
d(CLGH)  
DSF  
TRG  
W
Don’t Care  
t
h(TRG)  
t
d(GLRH)  
t
su(TRG)  
t
t
w(TRG)  
t
w(TRG)  
t
h(RHrd)  
t
su(WMR)  
t
t
dis(G)  
su(rd)  
t
t
h(CHrd)  
d(CLGH)  
t
a(C)  
a(G)  
t
a(CA)  
a(G)  
t
t
d(DGL)  
a(CA)  
t
dis(G)  
t
t
dis(CH)  
t
t
dis(CH)  
a(R)  
t
a(CP)  
Valid  
Output  
DQ0–  
DQ3  
Data In  
Valid Output  
t
d(DCL)  
Access time is t  
or t  
a(CA)  
dependent.  
a(CP)  
Output can go from the high-impedance state to an invalid data state prior to the specified access time.  
NOTE A: A write cycle or a read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing  
specifications are not violated and the proper polarity of DSF is selected on the falling edges of RAS and CAS to select the desired write  
mode (normal, block write, etc.)  
Figure 17. Enhanced-Page-Mode Read-Cycle Timing  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
CAS  
t
t
w(RH)  
d(CLRH)  
d(RLCH)  
t
t
t
c(P)  
d(RLCL)  
t
w(CH)  
t
t
t
w(CL)  
d(CHRL)  
d(CHRL)  
t
su(CA)  
t
h(RA)  
t
d(RLCA)  
t
h(CLCA)  
t
su(RA)  
t
t
d(CARH)  
h(RLCA)  
A0A8  
Row  
t
Column  
t
Column  
t
t
su(SFC)  
h(RSF)  
t
su(SFC)  
t
su(SFR)  
t
h(SFR)  
1
h(SFC)  
h(SFC)  
DSF  
TRG  
W
2
2
t
su(WCH)  
t
h(TRG)  
t
su(TRG)  
See Note A  
su(WCH)  
t
su(WMR)  
t
t
t
su(WRH)  
su(RWM)  
t
w(WL)  
3
t
su(DWL)  
t
h(CLD)  
t
su(DQR)  
t
su(DCL)  
t
h(WLD)  
t
h(RDQ)  
t
h(RLD)  
DQ0DQ3  
4
5
5
Referenced to CAS or W, whichever occurs last  
NOTE B: A read cycle or a read-modify-write cycle can be intermixed with write cycles, observing read and read-modify-write timing  
specifications. TRG must remain high throughout the entire page-mode operation to assure page-mode cycle time if the late-write  
feature is used. If the early-write-cycle timing is used, the state of TRG is a don’t care after the minimum period t  
edge of RAS.  
from the falling  
h(TRG)  
Figure 18. Enhanced-Page-Mode Write-Cycle Timing  
Table 7. Write-Cycle State Table  
STATE  
CYCLE  
1
L
2
L
L
L
L
3
H
L
4
5
Write operation  
Don’t care  
Write mask  
Don’t care  
Don’t care  
Valid data  
Valid data  
Valid data  
Write mask  
Write-mask load/use, write DQs to I/Os  
Use previous write mask, write DQs to I/Os  
Load write mask on later of W fall and CAS fall  
L
H
H
L
H
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
t
t
d(RLCH)  
d(CLRH)  
t
t
w(RH)  
d(CHRL)  
t
c(rdWP)  
t
d(CHRL)  
t
t
d(RLCL)  
w(CH)  
t
w(CL)  
CAS  
t
t
d(RLCA)  
d(CARH)  
t
su(RA)  
t
t
su(CA)  
h(RA)  
t
h(CLCA)  
t
h(RLCA)  
A0A8  
t
Row  
Column  
Column  
t
h(SFR)  
t
h(SFC)  
t
h(SFC)  
t
su(SFR)  
t
su(SFC)  
su(SFC)  
DSF  
1
2
2
t
su(rd)  
t
t
su(WCH)  
t
t
d(CLWL)  
su(WRH)  
h(TRG)  
t
d(CAWL)  
d(RLWL)  
t
su(TRG)  
t
t
t
t
d(DCL)  
d(CLGH)  
t
w(TPG)  
d(CLGH)  
t
TRG  
t
w(WL)  
t
su(WMR)  
t
w(TRG)  
t
a(C)  
t
d(GHD)  
h(RWM)  
t
W
3
a(CA)  
t
t
t
su(DWL)  
d(DCL)  
h(WLD)  
t
su(DQR)  
t
su(DWL)  
t
t
h(WLD)  
a(CP)  
t
h(RDQ)  
Valid  
Out  
Valid  
Out  
DQ0DQ3  
4
5
t
5
t
a(G)  
d(DGL)  
t
dis(G)  
t
d(DGL)  
t
d(GHD)  
t
a(C)  
t
a(R)  
Output can go from the high-impedance state to an invalid data state prior to the specified access time.  
NOTE A: Areadorawritecyclecanbeintermixedwithread-modify-writecyclesaslongasthereadandwritetimingspecificationsarenotviolated.  
Figure 19. Enhanced-Page-Mode Read-Modify-Write-Cycle Timing  
Table 8. Write-Cycle State Table  
STATE  
CYCLE  
1
L
2
L
L
L
L
3
H
L
4
5
Write operation  
Don’t care  
Write mask  
Don’t care  
Don’t care  
Valid data  
Valid data  
Valid data  
Write mask  
Write-mask load/use, write DQs to I/Os  
Use previous write mask, write DQs to I/Os  
Load write mask on later of W fall and CAS fall  
L
H
H
L
H
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CHRL)  
t
t
d(CLRH)  
d(CHRL)  
t
d(RLCL)  
t
w(CL)  
CAS  
t
w(CH)  
t
h(RA)  
t
h(RSF)  
t
su(RA)  
Refresh  
Row  
Don’t Care  
A0A8  
t
t
h(SFC)  
su(SFR)  
t
su(SFC)  
t
h(SFR)  
t
h(RSF)  
h(TRG)  
DSF  
TRG  
t
t
su(TRG)  
t
su(WCH)  
t
su(WRH)  
t
su(WMR)  
t
h(RLW)  
t
h(RWM)  
t
su(WCL)  
t
h(CLW)  
W
t
w(WL)  
t
su(DCL)  
t
h(CLD)  
t
h(RLD)  
Valid Color Data Input  
DQ0DQ3  
Figure 20. Load-Color-Register-Cycle Timing (Early-Write Load)  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CHRL)  
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
w(CL)  
CAS  
t
h(RSF)  
t
w(CH)  
t
su(RA)  
t
h(RA)  
Refresh  
Row  
Don’t Care  
h(SFC)  
A0A8  
t
t
h(SFR)  
t
su(SFC)  
t
su(SFR)  
DSF  
t
su(WCH)  
t
su(TRG)  
t
su(WRH)  
t
TRG  
d(GHD)  
t
h(RWL)  
t
h(CLW)  
t
su(WMR)  
t
h(WLG)  
t
w(WL)  
W
t
su(DWL)  
t
h(WLD)  
t
h(RLD)  
DQ0DQ3  
Valid Color Data Input  
Figure 21. Load-Color-Register-Cycle Timing (Delayed-Write Load)  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
t
t
d(RLCH)  
t
d(RLCL)  
d(CHRL)  
t
t
d(CHRL)  
t
t
d(CLRH)  
w(CL)  
t
t
CAS  
t
w(CH)  
t
h(RLCA)  
t
d(RLCA)  
t
h(CLCA)  
t
h(RA)  
su(RA)  
t
d(CARH)  
t
t
su(CA)  
t
Row  
A0A8  
t
h(RSF)  
Block Address  
A2A8  
t
h(SFR)  
t
h(SFC)  
t
su(SFC)  
su(SFR)  
1
DSF  
t
h(TRG)  
t
su(TRG)  
TRG  
t
su(WCH)  
t
su(WRH)  
t
su(WCL)  
t
h(CLW)  
t
h(RWM)  
t
h(RLW)  
t
su(WMR)  
t
w(WL)  
2
W
t
h(RLD)  
t
su(DCL)  
t
h(RDQ)  
t
h(CLD)  
t
su(DQR)  
DQ0DQ3  
3
4
Figure 22. Block-Write-Cycle Timing (Early Write)  
Table 9. Block-Write-Cycle State Table  
STATE  
CYCLE  
1
L
2
L
3
4
Write-mask load/use, block write  
Write mask  
Don’t care  
Don’t care  
Column mask  
Column mask  
Column mask  
Use previous write mask, block write  
H
L
L
Write mask disabled, block write to all I/Os  
H
Write mask data 0: I/O write disable  
1: I/O write enable  
DQ0 — column 0 (address A1 = 0, A0 = 0)  
DQ1 — column 1 (address A1 = 0, A0 = 1)  
DQ2 — column 2 (address A1 = 1, A0 = 0)  
DQ3 — column 3 (address A1 = 1, A0 = 1)  
Column mask data DQn =  
(n = 0, 1, 2, 3)  
0 column write disable  
1 column write enable  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CAS  
t
d(RLCA)  
t
w(CH)  
t
h(RLCA)  
t
d(CARH)  
t
h(RA)  
t
su(CA)  
t
t
su(RA)  
h(CLCA)  
Row  
A0A8  
t
t
h(RSF)  
Block Address  
su(SFR)  
t
t
su(SFC)  
A2A8  
t
h(SFC)  
h(SFR)  
1
DSF  
TRG  
t
su(TRG)  
t
su(WRH)  
t
t
su(WCH)  
d(GHD)  
t
h(RLW)  
t
h(CLW)  
t
su(WMR)  
t
h(WLG)  
t
h(RWM)  
t
w(WL)  
W
2
3
t
su(DQR)  
t
su(DWL)  
t
h(RDQ)  
t
h(WLD)  
t
h(RLD)  
4
DQ0DQ3  
Figure 23. Block-Write-Cycle Timing (Delayed-Write)  
Table 10. Block-Write-Cycle State Table  
STATE  
CYCLE  
1
L
2
L
3
4
Write-mask load/use, block write  
Write mask  
Don’t care  
Don’t care  
Column mask  
Column mask  
Column mask  
Use previous write mask, block write  
H
L
L
Write mask disabled, block write to all I/Os  
H
Write mask data 0: I/O write disable  
1: I/O write enable  
DQ0 — column 0 (address A1 = 0, A0 = 0)  
DQ1 — column 1 (address A1 = 0, A0 = 1)  
DQ2 — column 2 (address A1 = 1, A0 = 0)  
DQ3 — column 3 (address A1 = 1, A0 = 1)  
Column mask data DQn =  
0 column write disable  
(n = 0, 1, 2, 3) 1 column write enable  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
CAS  
t
t
t
d(RLCH)  
d(RLCL)  
d(CHRL)  
c(P)  
w(RH)  
t
t
d(CLRH)  
t
w(CH)  
t
t
t
d(CHRL)  
w(CL)  
t
d(RLCA)  
t
su(CA)  
t
h(CLCA)  
t
h(RA)  
t
h(RLCA)  
t
d(CARH)  
t
su(RA)  
Block Address  
A2A8  
Block Address  
A2A8  
Row  
A0A8  
t
h(SFR)  
t
t
h(SFC)  
h(SFC)  
t
su(SFC)  
t
t
su(SFC)  
su(SFR)  
1
DSF  
TRG  
t
h(TRG)  
su(TRG)  
t
See Note A  
t
t
su(WMR)  
su(WCH)  
t
su(WCH)  
t
w(WL)  
t
t
su(WRH)  
h(RWM)  
2
W
t
su(DWL)  
t
h(CLD)  
t
su(DQR)  
t
h(WLD)  
t
t
h(RDQ)  
su(DCL)  
t
h(RLD)  
3
4
4
DQ0DQ3  
Referenced to CAS or W, whichever occurs last  
NOTE A: TRG must remain high throughout the entire page-mode operation to assure page-mode cycle time if the late write feature is used. If  
the early-write-cycle timing is used, the state of TRG is a don’t care after the minimum period t from the falling edge of RAS.  
h(TRG)  
Figure 24. Enhanced-Page-Mode Block-Write-Cycle Timing  
Table 11. Enhanced-Page-Mode Block-Write-Cycle Table  
STATE  
CYCLE  
1
L
2
L
3
4
Write-mask load/use, block write  
Write mask  
Don’t care  
Don’t care  
Column mask  
Column mask  
Column mask  
Use previous write mask, block write  
H
L
L
Write mask disabled, block write to all I/Os  
H
Write mask data 0: I/O write disable  
1: I/O write enable  
DQ0 — column 0 (address A1 = 0, A0 = 0)  
DQ1 — column 1 (address A1 = 0, A0 = 1)  
DQ2 — column 2 (address A1 = 1, A0 = 0)  
DQ3 — column 3 (address A1 = 1, A0 = 1)  
Column mask data DQn =  
0 column write disable  
(n = 0, 1, 2, 3) 1 column write enable  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
RAS  
t
w(RH)  
t
t
t
d(CHRL)  
t
d(RHCL)  
t
t
t
d(CHRL)  
CAS  
A0A8  
DSF  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
t
t
t
h(RA)  
t
su(RA)  
Row  
Row  
h(SFR)  
h(TRG)  
t
su(SFR)  
t
su(TRG)  
TRG  
W
Don’t Care  
Don’t Care  
DQ0DQ3  
NOTE A: In persistent write-per-bit function, W must be high at the falling edge of RAS during the refresh cycle.  
Figure 25. RAS-Only Refresh-Cycle Timing  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RH)  
t
w(RL)  
RAS  
t
d(RHCL)RF  
t
d(CLRL)RF  
t
d(RLCH)RF  
CAS  
t
d(CHRL)  
A0A8  
Don’t Care  
Don’t Care  
Don’t Care  
Don’t Care  
DSF  
TRG  
W
t
dis(CH)  
DQ0DQ3 Valid Out  
Hi-Z  
NOTE A: In persistent write-per-bit operation, W must be high at the falling edge of RAS during the refresh cycle.  
Figure 26. CBR-Refresh-Cycle Timing  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
Refresh Cycle  
Refresh Cycle  
Memory Read Cycle  
t
c(rd)  
t
c(rd)  
t
w(RH)  
t
t
c(rd)  
w(RH)  
t
t
w(RL)  
w(RL)  
RAS  
CAS  
t
d(CARH)  
t
d(RLCH)  
t
d(CHRL)  
t
w(CL)  
t
d(RLCA)  
t
h(CLCA)  
t
su(CA)  
t
h(RA)  
t
su(RA)  
Row  
Col  
Don’t Care  
A0A8  
DSF  
t
h(RHrd)  
Don’t Care  
t
d(GLRH)  
t
su(TRG)  
t
a(G)  
t
dis(G)  
t
h(TRG)  
TRG  
t
su(RD)  
W
Don’t Care  
t
a(C)  
t
dis(CH)  
t
a(R)  
DQ0DQ3  
Valid Data  
Figure 27. Hidden-Refresh-Cycle Timing  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(TW)  
t
w(RL)  
t
d(RLCL)  
RAS  
t
d(RLCH)  
t
d(CARH)  
t
d(CHRL)  
t
w(RH)  
t
w(CL)  
CAS  
t
su(CA)  
d(RLCA)  
t
w(CH)  
t
t
h(CLCA)  
t
h(RA)  
t
h(RLCA)  
t
su(RA)  
Tap Point  
A0A8  
Row  
Don’t Care  
A0A8  
DSF  
t
h(SFR)  
t
su(SFR)  
t
h(TRG)  
t
su(TRG)  
Don’t Care  
TRG  
t
t
d(RHSC)  
su(WMR)  
t
h(RWM)  
W
DQ0DQ3  
Hi-Z  
t
w(SCH)  
t
w(SCH)  
t
d(SCRL)  
SC  
t
t
w(SCL)  
d(RLSD)  
t
h(SDS)  
t
t
su(SDS)  
Don’t Care  
h(RLSQ)  
Valid Data  
Input  
SDQ0SDQ3  
Valid Data Output  
dis(SE)  
t
t
t
h(SE)  
d(SESC)  
t
su(SE)  
Don’t Care  
SE  
t
d(CLQSF)  
Tap Point  
Bit A7  
QSF  
t
d(GHQSF)  
d(RLQSF)  
t
NOTE: The write-mode-control cycle is used to change the SDQs from the output mode to the input mode. This allows serial data to be written  
into the data register. This figure assumes that the device was originally in the serial-read mode.  
Figure 28. Write-Mode-Control Pseudo-Transfer Timing  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(TW)  
t
w(RL)  
t
d(RLCL)  
RAS  
t
d(RLCH)  
t
d(CARH)  
t
d(CHRL)  
t
w(RH)  
t
w(CL)  
t
CAS  
su(CA)  
t
w(CH)  
t
d(RLCA)  
t
h(CLCA)  
t
h(RA)  
t
d(CARH)  
t
h(RLCA)  
t
su(RA)  
Tap Point  
A0A8  
Row  
Don’t Care  
A0A8  
DSF  
Don’t Care  
t
h(TRG)  
t
su(TRG)  
Don’t Care  
TRG  
t
t
su(WMR)  
t
d(RHSC)  
h(RWM)  
W
Don’t Care  
DQ0DQ3  
Hi-Z  
t
w(SCH)  
t
w(SCH)  
t
d(SCRL)  
SC  
t
w(SCL)  
t
su(SDS)  
t
h(SDS)  
t
h(SDS)  
t
su(SDS)  
SDQ0SDQ3  
Data In  
Data In  
t
h(SE)  
t
su(SE)  
t
d(SESC)  
SE  
t
d(CLQSF)  
Tap Point  
Bit A7  
QSF  
t
d(GHQSF)  
d(RLQSF)  
t
Figure 29. Data-Register-to-Memory Transfer Timing, Serial Input Enabled  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(TW)  
t
w(RL)  
t
d(RLCL)  
RAS  
t
t
d(RLCH)  
t
d(CARH)  
t
d(CHRL)  
w(RH)  
t
w(CL)  
CAS  
t
su(CA)  
d(RLCA)  
t
w(CH)  
t
t
h(CLCA)  
t
h(RA)  
t
h(RLCA)  
t
su(RA)  
Tap Point  
A0A8  
Don’t Care  
A0A8  
DSF  
Row  
t
h(SFR)  
t
su(SRF)  
Don’t Care  
t
h(TRG)  
t
su(TRG)  
TRG  
t
su(WMR)  
t
d(RHSC)  
t
h(RWM)  
W
Don’t Care  
DQ0DQ3  
Hi-Z  
t
w(SCH)  
t
w(SCH)  
t
d(SCRL)  
SC  
t
t
w(SCL)  
su(SDS)  
t
h(SDS)  
t
h(SDS)  
t
su(SDS)  
SDQ0SDQ3  
Data In  
Don’t Care  
Data In  
t
d(SCSE)  
t
d(SESC)  
Don’t Care  
SE  
t
d(CLQSF)  
Tap Point  
Bit A7  
QSF  
t
d(GHQSF)  
d(RLQSF)  
t
Figure 30. Alternate Data-Register-to-Memory Transfer-Cycle Timing  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
d(RLCL)  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
t
d(CHRL)  
w(CL)  
t
d(CARH)  
t
d(RLCA)  
t
h(RA)  
t
h(CLCA)  
t
su(CA)  
t
su(RA)  
t
h(RLCA)  
Tap Point  
A0A8  
Don’t Care  
A0A8  
DSF  
Row  
t
su(SFR)  
t
h(SFR)  
t
su(TRG)  
t
h(TRG)  
TRG  
t
t
w(GH)  
h(RWM)  
t
t
su(WMR)  
d(CASH)  
Don’t Care  
W
Hi-Z  
DQ0DQ3  
t
d(SCTR)  
t
d(CLSH)  
t
d(RLSH)  
t
w(SCL)  
t
w(SCH)  
SC  
t
w(SCH)  
t
c(SC)  
t
a(SQ)  
t
a(SQ)  
t
t
h(SHSQ)  
h(SHSQ)  
Old Data  
Old Data  
New Data  
SDQ0SDQ3  
t
d(GHQSF)  
Tap Point bit A7  
QSF  
SE  
t
d(CLQSF)  
H
L
t
d(RLQSF)  
NOTES: A. Early-load operation is defined as t  
min < t  
< t min.  
h(TRG) d(RLTH)  
h(TRG)  
B. DQoutputsremaininthehigh-impedancestatefortheentirememory-to-data-registertransfercycle. Thememory-to-data-register  
transfercycle is used to load the data registersinparallelfromthememoryarray. The512locationsineachdataregisterarewritten  
from the 512 corresponding columns of the selected row. The data that is transferred into the data registers can be either shifted  
out or transferred back into another row.  
C. Once data is transferred into the data registers, the SAM is in the serial-read mode (i.e., SQ is enabled), allowing data to be shifted  
out of the registers. Also, the first bit to be read from the data register after TRG has gone high must be activated by a positive  
transition of SC.  
Figure 31. Memory-to-Data-Register Transfer-Cycle Timing, Early-Load Operation  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
d(RLCL)  
RAS  
CAS  
t
w(RH)  
t
d(CHRL)  
t
d(RLCH)  
t
w(CL)  
t
d(RLCA)  
t
h(RLCA)  
t
su(RA)  
t
su(CA)  
t
t
h(RA)  
h(CLCA)  
Don’t Care  
A0A8  
DSF  
TRG  
W
Row  
Tap Point  
A0A8  
t
t
su(SFR)  
h(SFR)  
Don’t Care  
t
t
d(THRL)  
d(THRH)  
d(CLGH)  
t
su(TRG)  
t
t
d(CAGH)  
t
d(RLTH)  
t
t
w(GH)  
h(RWM)  
t
su(WMR)  
Don’t Care  
t
d(SCTR)  
t
d(THSC)  
DQ0DQ3  
SC  
Hi-Z  
t
w(SCH)  
t
a(SQ)  
t
t
a(SQ)  
c(SC)  
t
w(SCL)  
t
t
h(SHSQ)  
h(SHSQ)  
Old Data  
SDQ0SDQ3  
Old Data  
Old Data  
New Data  
t
d(GHQSF)  
QSF  
SE  
Tap Point Bit A7  
t
H
L
d(CLQSF)  
t
d(RLQSF)  
NOTES: A. Late-load operation is defined as t  
d(THRH)  
< 0 ns.  
B. DQ outputs remain in the high-impedance state for the entire memory-to-data-register transfer cycle. The memory-to-data-register  
transfer cycle is used to load the data registers in parallel from the memory array. The 512 locations in each data register are written  
from the 512 corresponding columns of the selected row. The data that is transferred into the data registers can be either shifted  
out or transferred back into another row.  
C. Once data is transferred into the data registers, the SAM is in the serial read mode (i.e., SQ is enabled), allowing data to be shifted  
out of the registers. Also, the first bit to be read from the data register after TRG has gone high must be activated by a positive  
transition of SC.  
Figure 32. Memory-to-Data-Register Transfer-Cycle Timing,  
Real-Time-Reload Operation/Late-Load Operation  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
d(RLCL)  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
d(CHRL)  
t
d(CARH)  
t
w(CL)  
t
d(RLCA)  
t
h(RLCA)  
t
su(RA)  
t
h(CLCA)  
t
t
h(RA)  
su(CA)  
Tap Point  
A0A8  
Row  
Don’t Care  
A0A8  
DSF  
t
t
d(CAGH)  
h(SFR)  
t
Don’t Care  
su(SFR)  
t
d(THRH)  
t
su(TR
t
t
d(CLGH)  
t
d(THRL)  
t
h(TRG)  
Don’t Care  
TRG  
t
w(GH)  
t
h(RWM)  
d(RLTH)  
t
su(WMR)  
Don’t Care  
W
Hi-Z  
DQ0DQ3  
t
d(THSC)  
t
d(SCRL)  
t
d(CLSH)  
t
d(RLSH)  
SC  
t
t
t
c(SC)  
d(SDRL)  
su(SDS)  
t
t
h(SDS)  
a(SQ)  
Valid In  
Invalid Out  
Valid Out  
SDQ0SDQ3  
t
d(GHQSF)  
Tap Point bit A7  
QSF  
SE  
t
d(CLQSF)  
H
L
t
d(RLQSF)  
NOTES: A. Late-load operation is defined as t  
d(THRH)  
< 0 ns.  
B. DQ outputs remain in the high-impedance state for the entire memory-to-data-register transfer cycle. The memory-to-data-register  
transfer cycle is used to load the data registers in parallel from the memory array. The 512 locations in each data register are written  
from the 512 corresponding columns of the selected row. The data that is transferred into the data registers may be either shifted  
out or transferred back into another row.  
C. Once data is transferred into the data registers, the SAM is in the serial read mode (i.e., SQ is enabled), allowing data to be shifted  
out of the registers. Also, the first bit to be read from the data register after TRG has gone high must be activated by a positive  
transition of SC.  
Figure 33. Memory-to-Data-Register Transfer-Cycle Timing, SDQ Ports Previously in Serial-Input Mode  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
w(RH)  
t
d(RLCL)  
RAS  
CAS  
t
t
d(CHRL)  
t
t
w(CH)  
d(RLCH)  
t
d(RLCA)  
t
w(CL)  
t
su(CA)  
t
h(RA)  
t
d(CARH)  
su(RA)  
t
h(CLCA)  
A0A8  
Row  
Tap Point A0A8  
Don’t Care  
t
t
su(TRG)  
d(THRH)  
t
t
h(TRG)  
w(GH)  
TRG  
DSF  
t
h(SFR)  
t
su(SFR)  
Don’t Care  
Don’t Care  
t
h(RWM)  
t
su(WMR)  
W
Hi-Z  
DQ0DQ3  
t
d(MSRL)  
t
d(RHMS)  
t
c(SC)  
t
t
c(SC)  
w(SCH)  
t
w(SCL)  
Bit 255  
or 511  
Bit 255  
or 511  
Tap  
Point M  
Tap  
Point N  
SC  
t
a(SQ)  
t
t
a(SQ)  
t
a(SQ)  
w(SCL)  
t
h(SHSQ)  
Bit 254 or  
Bit 510  
Bit 255 or  
Bit 511  
Bit 255 or  
Bit 511  
Tap  
Point N  
Tap Point M  
SDQ0SDQ3  
t
t
a(SQ)  
d(SCQSF)  
t
d(SCQSF)  
QSF  
SE  
Old MSB  
New MSB  
H
L
Figure 34. Split-Register-Mode Read-Transfer-Cycle Timing  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
RAS  
CAS  
A0A8  
Row Tap1  
(low)  
Row Tap1  
(high)  
Row Tap2  
(low)  
Row Tap2  
(high)  
TRG  
DSF  
CASE I  
SC  
Tap1  
(low)  
Bit Tap1  
255 (high)  
Bit  
511  
Tap2  
(low)  
Bit  
255  
QSF  
CASE II  
SC  
Tap1  
(high)  
Tap1  
(low)  
Bit  
255  
Bit  
511  
Tap2  
(low)  
Bit  
255  
QSF  
CASE III  
SC  
Tap1  
(low)  
Bit Tap1  
255 (high)  
Bit  
511  
Tap2  
(low)  
Bit  
255  
QSF  
Split Register to the  
High Half of the  
Data Register  
Split Register to the  
Split Register to the  
High Half of the  
Data Register  
Normal Read Transfer  
Low Half of the  
Data Register  
NOTES: A. In order to achieve proper split-register operation, a normal read transfer should be performed before the first split-register transfer  
cycle. This is necessary to initialize the data register and the starting tap location. First serial access can then begin either after the  
normal read-transfer cycle (CASE I), during the first split-register cycle (CASE II), or even after the first split-register transfer cycle  
(CASE III). There is no minimum requirement of SC clock between the normal read-transfer cycle and the first split-register cycle.  
B. Asplitregistertransferintotheinactivehalfisnotalloweduntilt  
ismet.t  
istheminimumdelaytimebetweentherising  
d(MSRL)  
d(MSRL)  
edge of the serial clock of the last bit (bit 255 or 511) and the falling edge of RAS of the split-register transfer cycle into the inactive  
half.Aftert ismet,thesplit-registertransferintotheinactivehalfmustalsosatisfythet requirement.t isthe  
d(MSRL)  
d(RHMS)  
d(RHMS)  
minimum delay time between the rising edge of RAS of the split-register transfer cycle into the inactive half and the rising edge of  
theserialclockofthelastbit(bit255or511).ThereisaminimumrequirementofonerisingedgeofSCclockbetweentwosplit-register  
transfer cycles.  
Figure 35. Split-Register-Transfer Operating Sequence  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
RAS  
TRG  
t
su(TRG)  
t
h(TRG)  
t
c(SC)  
t
c(SC)  
t
t
w(SCH)  
w(SCH)  
t
w(SCH)  
t
t
w(SCL)  
w(SCL)  
SC  
t
su(SDS)  
t
t
su(SDS)  
su(SDS)  
t
h(SDS)  
t
t
h(SDS)  
h(SDS)  
SDQ0SDQ3  
Valid In  
Valid In  
Valid In  
NOTES: A. The serial data-in cycle is used to input serial data into the data registers. Before data can be written into the data registers via the  
SDQ terminals, the device must be put into the write mode by performing a write-mode-control (pseudo-transfer) cycle or any other  
write-transfer cycle. A read-transfer cycle is the only cycle that takes the serial port (SAM) out of the write mode and puts it into the  
read mode, disabling the input data. Data is written starting at the location specified by the input address loaded on the previous  
transfer cycle.  
B. While accessing data in the serial-data registers, the state of TRG is a don’t care as long as TRG is held high when RAS goes low  
to prevent data transfers between memory and data registers.  
Figure 36. Serial-Write-Cycle Timing (SE = V )  
IL  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
RAS  
TRG  
t
su(TRG)  
t
h(TRG)  
t
c(SC)  
t
c(SC)  
t
t
w(SCH)  
w(SCH)  
t
w(SCH)  
t
t
w(SCL)  
w(SCL)  
SC  
t
su(SDS)  
t
su(SDS)  
t
h(SDS)  
t
h(SDS)  
SDQ0SDQ3  
t
Valid In  
Valid In  
t
h(SCSE)  
d(SESC)  
t
su(SESC)  
t
w(SEH)  
t
d(SCSE)  
t
d(SESC)  
t
w(SEL)  
SE  
NOTES: A. The serial data-in cycle is used to input serial data into the data registers. Before data can be written into the data registers via the  
SDQ terminals, the device must be put into the write mode by performing a write-mode-control (pseudo-transfer) cycle or any other  
write-transfer cycle. A read-transfer cycle is the only cycle that takes the serial port (SAM) out of the write mode and puts it into the  
read mode, disabling the input data. Data is written starting at the location specified by the input address loaded on the previous  
transfer cycle.  
B. While accessing data in the serial-data registers, the state of TRG is a don’t care as long as TRG is held high when RAS goes low  
to prevent data transfers between memory and data registers.  
Figure 37. Serial-Write-Cycle Timing (SE-Controlled Write)  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
RAS  
TRG  
t
su(TRG)  
t
h(TRG)  
t
c(SC)  
t
c(SC)  
t
t
w(SCH)  
w(SCH)  
t
w(SCH)  
t
t
w(SCL)  
w(SCL)  
SC  
t
t
t
a(SQ)  
a(SQ)  
a(SQ)  
t
t
t
h(SHSQ)  
h(SHSQ)  
h(SHSQ)  
SDQ0SDQ3  
Valid Out  
Valid Out  
Valid Out  
Valid Out  
NOTES: A. While reading data through the serial-data register, the state of TRG is a don’t care as long as TRG is held high when RAS goes  
low. This is to avoid the initiation of a register-to-memory-to-register data-transfer operation.  
B. The serial data-out cycle is used to read data out of the data registers. Before data can be read via SDQ, the device must be put  
into the read mode by performing a transfer-read cycle. Any transfer-write cycles occurring between the transfer-read cycle and the  
subsequent shifting out of data take the device out of the read mode and put it in the write mode, not allowing the reading of data.  
Figure 38. Serial-Read-Cycle Timing (SE = V )  
IL  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
RAS  
TRG  
t
su(TRG)  
t
h(TRG)  
t
c(SC)  
t
c(SC)  
t
t
w(SCH)  
w(SCH)  
t
w(SCH)  
t
t
w(SCL)  
w(SCL)  
SC  
t
t
t
a(SQ)  
a(SQ)  
a(SQ)  
t
t
h(SHSQ)  
h(SHSQ)  
t
a(SE)  
Data  
In  
SDQ0SDQ3  
Valid Out  
Valid Out  
Valid Out  
Valid Out  
t
dis(SE)  
t
d(SDSE)  
SE  
NOTES: A. While reading data through the serial-data register, the state of TRG is a don’t care as long as TRG is held high when RAS goes  
low. This is to avoid the initiation of a register-to-memory-to-register data-transfer operation.  
B. The serial data-out cycle is used to read data out of the data registers. Before data can be read via SDQ, the device must be put  
into the read mode by performing a transfer-read cycle. Any transfer-write cycles occurring between the transfer-read cycle and the  
subsequent shifting out of data take the device out of the read mode and put it in the write mode, not allowing the reading of data.  
Figure 39. Serial-Read-Cycle Timing (SE-Controlled Read)  
device symbolization  
TI  
-SS  
Speed (-10, -12)  
SMJ44C251B  
JD  
Package Code  
JD = ZIP  
F
R
A
XXX LLL  
Lot Traceability Code  
Date Code  
Assembly Site Code  
Die Revision Code  
Wafer Fab Code  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C251B  
262144 BY 4-BIT  
MULTIPORT VIDEO RAM  
SGMS058A – MARCH 1995 – REVISED JUNE 1995  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SMJ44C251B-10HMM

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

SMJ44C251B-10HMMT

256KX4 VIDEO DRAM, 100ns, CDSO28, CERAMIC, LCC-28
TI

SMJ44C251B-10JDL

256KX4 VIDEO DRAM, 100ns, CDIP28, 0.400 INCH, SIDE BRAZED, CERAMIC, DIP-28
TI

SMJ44C251B-10JDM

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

SMJ44C251B-10JDM883C

Video DRAM, 256KX4, 100ns, CMOS, CDIP28, 0.400 INCH, CERAMIC, DIP-28
MICROSS
MICROSS

SMJ44C251B-10SVM

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

SMJ44C251B-10SVM883C

Video DRAM, 256KX4, 100ns, CMOS, CZIP28, CERAMIC, ZIP-28
MICROSS

SMJ44C251B-12HJM

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

SMJ44C251B-12HJM883C

Video DRAM, 256KX4, 120ns, CMOS, CDSO28, CERAMIC, LCC-28
MICROSS

SMJ44C251B-12HMM

256K X 4 VRAM 256K x 4 DRAM with 512K x 4 SAM
AUSTIN

SMJ44C251B-12HMM883C

Video DRAM, 256KX4, 120ns, CMOS, CDSO28, CERAMIC, LCC-28
MICROSS