SMJ626162-15HKD [MICROSS]

Synchronous DRAM, 1MX16, 9ns, CMOS, CDFP50, 0.650 INCH, CERAMIC, DFP-50;
SMJ626162-15HKD
型号: SMJ626162-15HKD
厂家: MICROSS COMPONENTS    MICROSS COMPONENTS
描述:

Synchronous DRAM, 1MX16, 9ns, CMOS, CDFP50, 0.650 INCH, CERAMIC, DFP-50

时钟 动态存储器 CD 内存集成电路
文件: 总42页 (文件大小:631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
HKD PACKAGE  
(TOP VIEW)  
Organization  
512K × 16 Bits × 2 Banks  
3.3-V Power Supply (±5% Tolerance)  
1
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
V
V
SS  
DQ15  
DQ14  
CC  
Two Banks for On-Chip Interleaving  
(Gapless Accesses)  
2
DQ0  
DQ1  
3
High Bandwidth – Up to 83-MHz Data Rates  
4
V
V
SSQ  
DQ13  
DQ12  
SSQ  
DQ2  
Read Latency Programmable to  
2 or 3 Cycles From Column-Address Entry  
5
6
DQ3  
7
Burst Sequence Programmable to Serial or  
Interleave  
V
V
CCQ  
DQ11  
DQ10  
CCQ  
DQ4  
8
9
DQ5  
Burst Length Programmable to 1, 2, 4, 8, or  
256 (Full Page)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
V
V
SSQ  
DQ9  
DQ8  
SSQ  
DQ6  
Chip Select and Clock Enable for Enhanced  
System Interfacing  
DQ7  
V
V
CCQ  
CCQ  
DQML  
Cycle-by-Cycle DQ-Bus Mask Capability  
With Upper- and Lower-Byte Control  
NC  
DQMU  
CLK  
CKE  
NC  
A9  
W
CAS  
RAS  
CS  
Autorefresh Capability  
4K Refresh (Total for Both Banks)  
High-Speed, Low-Noise, Low-Voltage TTL  
(LVTTL) Interface  
A11  
A10  
A0  
Power-Down Mode  
A8  
Pipeline Architecture  
A7  
Temperature Ranges:  
A1  
A6  
Operating, – 55°C to 125°C  
Storage, – 65°C to 150°C  
A2  
A5  
A3  
A4  
Performance Ranges:  
V
V
SS  
CC  
SYNCHRONOUS ACCESS TIME REFRESH  
CLOCK CYCLE  
TIME  
CLOCK TO  
OUTPUT  
TIME  
INTERVAL  
PIN NOMENCLATURE  
t
t
t
REF  
CK  
AC  
(MIN)  
(MIN)  
8ns  
9ns  
10ns  
(MAX)  
32ms  
32ms  
32ms  
A[0:10]  
Address Inputs  
’626162-12  
’626162-15  
12 ns  
15 ns  
20 ns  
A0–A10 Row Addresses  
A0–A7 Column Addresses  
A10 Automatic-Precharge Select  
Bank Select  
’626162-20  
Read latency = 3  
A11  
CAS  
CKE  
Column-Address Strobe  
Clock Enable  
description  
CLK  
System Clock  
CS  
Chip Select  
The SMJ626162 series of devices are  
16777216-bit synchronous dynamic random-  
access memory (SDRAM) devices organized as  
two banks of 524288 words with 16 bits per word.  
DQ[0:15]  
DQML, DQMU  
NC  
SDRAM Data Input/Data Output  
Data-Input/Data-Output Mask Enable  
No Connect  
Row-Address Strobe  
Power Supply (3.3-V Typical)  
Power Supply for Output Drivers  
(3.3-V Typical)  
RAS  
V
V
CC  
CCQ  
All inputs and outputs of the SMJ626162 series  
are compatible with the LVTTL interface.  
V
V
W
Ground  
Ground for Output Drivers  
Write Enable  
SS  
SSQ  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
On products compliant to MIL-PRF-38535, all parameters are tested  
unless otherwise noted. On all other products, production  
processing does not necessarily include testing of all parameters.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
description (continued)  
The SDRAM employs state-of-the-art technology for high performance, reliability, and low power requirements.  
All inputs and outputs are synchronized with the CLK input to simplify system design and enhance use with  
high-speed microprocessors and caches.  
The SMJ626162 SDRAM is available in a 50-lead, 650-mil-wide ceramic dual flatpack (HKD suffix).  
functional block diagram  
CLK  
CKE  
AND  
Array Bank T  
CS  
DQMx  
RAS  
CAS  
W
DQ  
Buffer  
Control  
DQ0–DQ15  
16  
Array Bank B  
A0–A11  
12  
Mode Register  
operation  
All inputs to the ’626162 SDRAM are latched on the rising edge of the system (synchronous) clock. The outputs,  
DQ0–DQ15, are also referenced to the rising edge of CLK. The ’626162 has two banks that are accessed  
independently; however, a bank must be activated before it can be accessed (read from or written to). Refresh  
cycles refresh both banks alternately.  
Five basic commands or functions control most operations of the ’626162:  
Bank-activate/row-address entry  
Column-address entry/write operation  
Column-address entry/read operation  
Bank-deactivate  
Autorefresh  
Additionally, operations can be controlled by three methods: using chip select (CS) to select/deselect the  
devices, using DQMx to enable/mask the DQ signals on a cycle-by-cycle basis, or using CKE to suspend (or  
gate) the CLK input. The device contains a mode register that must be programmed for proper operation.  
Table 1, Table 2, and Table 3 show the various operations that are available on the ’626162. These truth tables  
identify the command and/or operations and their respective mnemonics. Each truth table is followed by a  
legend that explains the abbreviated symbols. An access operation refers to any read or write command in  
progress at cycle n. Access operations include the cycle upon which the read or write command is entered and  
all subsequent cycles through the completion of the access burst.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
operation (continued)  
Table 1. Basic Command Truth Table  
STATE OF  
BANK(S)  
COMMAND  
CS  
RAS  
CAS  
W
A11  
A10  
A9A0  
MNEMONIC  
A9=V  
A8 A7 = 0  
A6A0 = V  
T = deac  
B = deac  
Mode register set  
L
L
L
L
X
X
MRS  
Bank deactivate (precharge)  
Deactivate all banks  
X
L
L
L
L
L
L
H
H
H
L
L
L
BS  
X
L
H
V
L
X
X
V
V
DEAC  
DCAB  
ACTV  
WRT  
X
Bank activate/row-address entry  
Column-address entry/write operation  
SB = deac  
SB = actv  
L
H
L
BS  
BS  
H
Column-address entry/write operation  
with auto-deactivate  
SB = actv  
SB = actv  
SB = actv  
L
L
L
H
H
H
L
L
L
L
H
H
BS  
BS  
BS  
H
L
V
V
V
WRT-P  
READ  
Column-address entry/read operation  
Column-address entry/read operation  
with auto-deactivate  
H
READ-P  
No operation  
X
X
L
H
X
H
X
H
X
X
X
X
X
X
X
NOOP  
DESL  
Control-input inhibit/no operation  
H
T = deac  
B = deac  
Autorefresh  
L
L
L
H
X
X
X
REFR  
For execution of these commands on cycle n, one of the following must be true:  
– CKE (n–1) must be high  
– t  
– t  
must be satisfied for power-down exit  
CESP  
and n  
must be satisfied for clock-suspend exit. DQMx (n) is irrelevant.  
CLE  
CES  
Autorefresh entry requires that all banks be deactivated or be in an idle state prior to the command entry.  
Legend:  
n
L
H
X
V
T
B
actv  
deac  
BS  
SB  
=
=
=
=
=
=
=
=
=
=
=
CLK cycle number  
Logic low  
Logic high  
Don’t care, either logic low or logic high  
Valid  
Bank T  
Bank B  
Activated  
Deactivated  
Logic high to select bank T; logic low to select bank B  
Bank selected by A11 at cycle n  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
operation (continued)  
Table 2. Clock-Enable (CKE) Command Truth Table  
CKE  
(n1)  
CKE  
(n)  
CS  
(n)  
RAS  
(n)  
CAS  
(n)  
W
(n)  
COMMAND  
STATE OF BANK(S)  
MNEMONIC  
§
§
T = no access operation  
B = no access operation  
Power-down entry on cycle (n + 1)  
H
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
PDE  
T = power down  
B = power down  
Power-down exit  
X
X
X
§
§
T = access operation  
B = access operation  
CLK suspend on cycle (n + 1)  
H
L
HOLD  
§
§
T = access operation  
B = access operation  
CLK suspend exit on cycle (n + 1)  
H
§
For execution of these commands, A0A11 (n) and DQMx (n) are don’t care entries.  
On cycle n, the device executes the respective command (listed in Table 1). On cycle (n + 1), the device enters power-down mode.  
A bank is no longer in an access operation one cycle after the last data-out cycle of a read operation and two cycles after the last data-in cycle  
of a write operation. Neither the PDE nor the HOLD command is allowed on the cycle immediately following the last data-in cycle of a write  
operation.  
If setup time from CKE high to the next CLK high satisfies t  
, the device executes the respective command (listed in Table 1). Otherwise,  
CESP  
either a DESL or a NOOP command must be applied before any other command.  
Legend:  
n
L
H
X
T
B
=
=
=
=
=
=
CLK cycle number  
Logic low  
Logic high  
Don’t care, either logic low or logic high  
Bank T  
Bank B  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
operation (continued)  
Table 3. Data Mask (DQM) Command Truth Table  
DQML  
DQMU  
(n)  
STATE OF  
BANK(S)  
DATA IN  
(n)  
DATA OUT  
(n + 2)  
COMMAND  
MNEMONIC  
T = deac  
and  
B = deac  
X
X
N/A  
N/A  
Hi-Z  
Hi-Z  
T = actv  
and  
B = actv  
§
(no access operation)  
T = write  
or  
B = write  
Data-in enable  
Data-in mask  
L
H
L
V
N/A  
N/A  
V
ENBL  
MASK  
ENBL  
MASK  
T = write  
or  
B = write  
M
T = read  
or  
B = read  
Data-out enable  
Data-out mask  
N/A  
N/A  
T = read  
or  
H
Hi-Z  
B = read  
For execution of these commands on cycle n, one of the following must be true:  
– CKE (n) must be high  
– t  
– t  
must be satisfied for power-down exit  
CESP  
and n  
must be satisfied for clock-suspend exit.  
CES  
CLE  
CS(n), RAS(n), CAS(n), W(n), and A0A11 are irrelevant.  
DQML controls DQ0 DQ7.  
§
DQMU controls DQ8 DQ15.  
A bank is no longer in an access operation one cycle after the last data-out cycle of a read operation and two cycles after the last data-in cycle  
of a write operation. Neither the PDE nor the HOLD command is allowed on the cycle immediately following the last data-in cycle of a write  
operation.  
Legend:  
n
=
=
=
=
=
=
=
=
=
=
=
=
=
=
CLK cycle number  
Logic low  
Logic high  
Don’t care, either logic low or logic high  
Valid  
Masked input data  
Not applicable  
Bank T  
L
H
X
V
M
N/A  
T
B
Bank B  
Activated  
Deactivated  
actv  
deac  
write  
read  
Hi-Z  
Activated and accepting data in on cycle n  
Activated and delivering data out on cycle (n + 2)  
High-impedance state  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
burst sequence  
All data for the ’626162 is written or read in a burst fashion—that is, a single starting address is entered into the  
device and then the ’626162 internally accesses a sequence of locations based on that starting address. Some  
of the subsequent accesses after the first access can be at preceding, as well as succeeding, column  
addresses, depending on the starting address entered. This sequence can be programmed to follow either a  
serialburstoraninterleaveburst(seeTable 4, Table 5, and Table 6). The length of the burst can be programmed  
to be either 1, 2, 4, 8, or full-page (256) accesses (see the section on setting the mode register). After a read  
burstiscompleted(asdeterminedbytheprogrammedburstlength), theoutputsareinthehigh-impedancestate  
until the next read access is initiated.  
Table 4. 2-Bit Burst Sequences  
INTERNAL COLUMN ADDRESS A0  
DECIMAL  
BINARY  
START  
2ND  
START  
2ND  
0
1
0
1
1
0
1
0
0
1
0
1
1
0
1
0
Serial  
Interleave  
Table 5. 4-Bit Burst Sequences  
INTERNAL COLUMN ADDRESS A1–A0  
DECIMAL BINARY  
START  
2ND  
3RD  
2
4TH  
3
START  
00  
2ND  
3RD  
10  
11  
4TH  
11  
0
1
2
3
0
1
2
3
1
2
3
0
1
0
3
2
01  
10  
11  
00  
01  
00  
11  
10  
3
0
01  
00  
01  
10  
11  
Serial  
0
1
10  
00  
01  
10  
11  
1
2
11  
2
3
00  
3
2
01  
10  
01  
00  
Interleave  
0
1
10  
00  
01  
1
0
11  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
burst sequence (continued)  
Table 6. 8-Bit Burst Sequences  
INTERNAL COLUMN ADDRESS A2–A0  
DECIMAL  
BINARY  
START 2ND 3RD 4TH 5TH 6TH 7TH 8TH START 2ND 3RD 4TH 5TH 6TH 7TH 8TH  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
1
0
3
2
5
4
7
6
2
3
4
5
6
7
0
1
2
3
0
1
6
7
4
5
3
4
5
6
7
0
1
2
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
5
4
7
6
1
0
3
2
6
7
0
1
2
3
4
5
6
7
4
5
2
3
0
1
7
0
1
2
3
4
5
6
7
6
5
4
3
2
1
0
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
001  
010  
011  
100  
101  
110  
111  
000  
001  
000  
011  
010  
101  
100  
111  
110  
010 011 100 101 110 111  
011 100 101 110 111 000  
100 101 110 111 000 001  
101 110 111 000 001 010  
Serial  
110  
111  
111 000 001 010 011  
000 001 010 011 100  
000 001 010 011 100 101  
001 010 011 100 101 110  
010 011 100 101 110 111  
011 010 101 100 111 110  
000 001 110 111 100 101  
001 000 111 110 101 100  
Interleave  
110  
111  
111 000 001 010 011  
110 001 000 011 010  
100 101 010 011 000 001  
101 100 011 010 001 000  
latency  
The beginning data-out cycle of a read burst can be programmed to occur 2 or 3 CLK cycles after the read  
command (see the section on setting the mode register). This feature allows the adjustment of the ’626162 to  
operate in accordance with the system’s capability to latch the data output from the ’626162. The delay between  
the READ command and the beginning of the output burst is known as read latency (also known as CAS  
latency). After the initial output cycle begins, the data burst occurs at the CLK frequency without any intervening  
gaps. Use of minimum read latencies is restricted, based on the particular maximum frequency rating of the  
’626162.  
There is no latency for data-in cycles (write latency). The first data-in cycle of a write burst is entered at the same  
rising edge of CLK on which the WRT command is entered. The write latency is fixed and is not determined by  
the contents of the mode register.  
two-bank operation  
The ’626162 contains two independent banks that can be accessed individually or in an interleaved fashion.  
Each bank must be activated with a row address before it can be accessed. Then, each bank must be  
deactivated before it can be activated again with a new row address. The bank-activate/row-address-entry  
command (ACTV) is entered by holding RAS low, CAS high, W high, and A11 valid on the rising edge of CLK.  
A bank can be deactivated either automatically during a READ-P or a WRT-P command or by use of the  
deactivate-bank command (DEAC). Both banks can be deactivated at once by use of the DCAB command (see  
Table 1 and the section on bank deactivation).  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
two-bank row-access operation  
The two-bank feature allows access of information on random rows at a higher rate of operation than is possible  
with a standard DRAM. This is accomplished by activating one bank with a row address and, while the data  
stream is being accessed to/from that bank, activating the second bank with another row address. When the  
data stream to/from the first bank is complete, the data stream to/from the second bank can begin without  
interruption. After the second bank is activated, the first bank can be deactivated to allow the entry of a new row  
address for the next round of accesses. In this manner, operation can continue in an interleaved fashion.  
Figure 25 is an example of two-bank, row-interleaving, read bursts with automatic deactivate for a read latency  
of 3 and a burst length of 8.  
two-bank column-access operation  
The availability of two banks allows the access of data from random starting columns between banks at a higher  
rate of operation. After activating each bank with a row address (ACTV command), A11 can be used to alternate  
read or write commands between the banks to provide gapless accesses at the CLK frequency, provided all  
specified timing requirements are met. Figure 26 is an example of two-bank, column-interleaving, read bursts  
for a read latency of 3 and a burst length of 2.  
bank deactivation (precharge)  
Both banks can be deactivated (placed in precharge) simultaneously by using the DCAB command. A single  
bank can be deactivated by using the DEAC command. The DEAC command is entered identically to the DCAB  
command except that A10 must be low and A11 is used to select the bank to be precharged as shown in Table 1.  
A bank can also be deactivated automatically by using A10 during a read or write command. If A10 is held high  
during the entry of a read or write command, the accessed bank (selected by A11) is deactivated automatically  
upon completion of the access burst. If A10 is held low during the entry of a read or write command, that bank  
remains active following the burst. The read and write commands with automatic deactivation are denoted as  
READ-P and WRT-P.  
chip select (CS)  
CS can be used to select or deselect the ’626162 for command entry, which might be required for  
multiple-memory-device decoding. If CS is held high on the rising edge of CLK (DESL command), the device  
does not respond to RAS, CAS, or W until the device is selected again. Device select is accomplished by holding  
CS low on the rising edge of CLK. Any other valid command can be entered simultaneously on the same rising  
CLKedge of the select operation. The device can be selected/deselected on a cycle-by-cycle basis (see Table 1  
and Table 2). The use of CS does not affect an access burst that is in progress; the DESL command can restrict  
only RAS, CAS, and W input to the ’626162.  
data mask  
The mask command, or its opposite, the data-in enable (ENBL) command (see Table 3), is performed on a  
cycle-by-cycle basis to gate any individual data cycle within a read burst or a write burst. DQML controls  
DQ0–DQ7, and DQMU controls DQ8–DQ15. The application of DQMx to a write burst has no latency  
(n  
= 0 cycle), but the application of DQMx to a read burst has a latency of n  
= 2 cycles. During a write  
DID  
DOD  
burst, if DQMx is held high on the rising edge of CLK, the data-input is ignored on that cycle. During a read burst,  
if DQMx is held high on the rising edge of CLK, then n cycles after the rising edge of CLK, the data-output  
DOD  
will be in the high-impedance state. Figure 16, Figure 29, Figure 30, Figure 31, and Figure 32 show examples  
of data-mask operations.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
setting the mode register  
The ’626162 contains a mode register that must be programmed with the read latency, the burst type, and the  
burst length. This is accomplished by executing a mode-register set (MRS) command with the information  
entered on address lines A0–A9. A logic 0 must be entered on A7 and A8. A10 and A11 are don’t care entries  
for the ’626162. When A9 = 1, the write-burst length is always 1. When A9 = 0, the write-burst length is defined  
by A0–A2. Figure 1 shows the valid combinations for a successful MRS command. Only valid addresses allow  
the mode register to be changed. If the addresses are not valid, the previous contents of the mode register  
remain unaffected. The MRS command is executed by holding RAS, CAS, and W low and the input-mode word  
valid on A0–A9 on the rising edge of CLK (see Table 1). The MRS command can be executed only when both  
banks are deactivated.  
A11  
A10  
A9  
A8  
0
A7  
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Reserved  
0 = Serial  
1 = Interleave  
(burst type)  
REGISTER  
BITS  
REGISTER  
BITS  
WRITE-  
BURST  
LENGTH  
REGISTER  
BIT A9  
READ  
LATENCY  
BURST LENGTH  
A6  
A5  
A4  
A2  
A1  
A0  
0
0
0
1
1
1
0
1
0
1
1
1
2
4
8
256  
0
1
A2–A0  
1
0
0
0
1
0
0
1
1
0
1
2
3
All other combinations are reserved.  
See the timing requirements for minimum valid read latencies based on maximum frequency rating.  
Figure 1. Mode-Register Programming  
refresh  
The ’626162 must be refreshed at intervals not exceeding t  
(see timing requirements) or data cannot be  
REF  
retained. Refresh can be accomplished by performing a read or write access to every row in both banks, or by  
performing 4096 autorefresh (REFR) commands. Regardless of the method used, refresh must be  
accomplished before t  
has expired.  
REF  
autorefresh (REFR)  
Before performing a REFR operation, both banks must be deactivated (placed in precharge). To enter a REFR  
command, RAS and CAS must be low and W must be high upon the rising edge of CLK (see Table 1). The  
refresh address is generated internally such that after 4096 REFR commands, both banks of the ’626162 have  
been refreshed. The external address and bank select (A11) are ignored. The execution of a REFR command  
automaticallydeactivatesbothbanksuponcompletionoftheinternalautorefreshcycle. Thisallowsconsecutive  
REFR-only commands to be executed, if desired, without any intervening DEAC commands. The REFR  
commands do not necessarily have to be consecutive, but all 4096 must be completed before t  
expires.  
REF  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
CLK-suspend/power-down mode  
For normal device operation, CKE must be held high to enable CLK. If CKE goes low during the execution of  
a read or write operation, the DQ bus occurring at the immediate next rising edge of CLK is frozen at its current  
state. No further inputs are accepted until CKE returns high; this is known as a CLK-suspend operation, and  
its execution is denoted as a HOLD command. The device resumes operation from the point at which it was  
placed in suspension, beginning with the second rising edge of CLK after CKE returns high.  
If CKE is brought low when no read or write command is in progress, the device enters the power-down mode.  
If both banks are deactivated when the power-down mode is entered, power consumption is reduced to the  
minimum. Power-down mode can be used during row-active or autorefresh periods to reduce input-buffer  
power. After power-down mode is entered, no further inputs are accepted until CKE returns high. To ensure that  
data in the device remains valid, the power-down mode must be exited periodically to meet the requirements  
described earlier for device refresh. When exiting power-down mode, new commands can be entered on the  
first CLK edge after CKE returns high, provided that the setup time (t  
) is satisfied. Table 2 shows the  
CESP  
command configuration for a CLK-suspend/power-down operation; Figure 17, Figure 18, and Figure 35 show  
examples of the procedure.  
interrupted bursts  
A read burst or write burst can be interrupted before the burst sequence has been completed with no adverse  
effects to the operation. This is accomplished by entering certain superseding commands as listed in Table 7  
and Table 8, provided that all timing requirements are met. A DEAC command is considered an interrupt only  
if it is issued to the same bank as the preceding READ or WRT command. The interruption of a READ-P or a  
WRT-P operation is not supported.  
Table 7. Read-Burst Interruption  
INTERRUPTING  
EFFECT OR NOTE ON USE DURING READ BURST  
COMMAND  
Current output cycles continue until the programmed latency from the superseding READ (READ-P) command is met  
and new output cycles begin (see Figure 2).  
READ, READ-P  
TheWRT (WRT-P)commandimmediatelysupersedesthereadburstinprogress. Toavoiddatacontention, DQMxmust  
WRT, WRT-P  
DEAC, DCAB  
be held high before the WRT (WRT-P) command to mask output of the read burst on cycles (n  
CCD  
–1), n , and  
CCD  
(n  
CCD  
+1), assuming that there is any output on these cycles (see Figure 3).  
TheDQbusisinthehigh-impedancestatewhenn  
occurs first (see Figure 4).  
cyclesaresatisfiedorwhenthereadburstcompletes, whichever  
HZP  
n
CCD  
= 1 Cycle  
CLK  
Output Burst for the  
Interrupting READ  
Command Begins Here  
READ Command  
at Column Address C0  
Interrupting  
READ Command  
at Column Address C1  
DQ  
C0  
C1  
C1 + 1  
C1 + 2  
NOTE A: For this example, assume read latency = 3 and burst length = 4.  
Figure 2. Read Burst Interrupted by Read Command  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
interrupted bursts (continued)  
n
CCD  
= 5 Cycles  
CLK  
Interrupting  
READ Command  
WRT Command  
DQ  
Q
D
D
See Note B  
DQMx  
NOTES: A. For this example, assume read latency = 3 and burst length = 4.  
B. DQMx must be high to mask output of the read burst on cycles (n  
– 1), n  
CCD  
, and (n + 1).  
CDD  
CCD  
Figure 3. Read Burst Interrupted by Write Command  
n
CCD  
= 2 Cycles  
n
HZP  
CLK  
Interrupting  
DEAC/DCAB  
Command  
READ Command  
DQ  
Q
Q
NOTE A: For this example, assume read latency = 3 and burst length = 4.  
Figure 4. Read Burst Interrupted by DEAC Command  
Table 8. Write-Burst Interruption  
INTERRUPTING  
COMMAND  
EFFECT OR NOTE ON USE DURING WRITE BURST  
READ, READ-P  
Data that was input on the previous cycle is written; no further data inputs are accepted (see Figure 5).  
The new WRT (WRT-P) command and data inputs immediately supersede the write burst in progress  
(see Figure 6).  
WRT, WRT-P  
The DEAC/DCAB command immediately supersedes the write burst in progress. DQMx must be used to  
DEAC, DCAB  
mask the DQ bus such that the write recovery specification (t ) is not violated by the  
RWL  
interrupt (see Figure 7).  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
interrupted bursts (continued)  
n
CCD  
= 1 Cycle  
CLK  
WRT  
READ  
Command  
Command  
DQ  
D
Q
Q
Q
NOTE A: For this example, assume read latency = 3 and burst length = 4.  
Figure 5. Write Burst Interrupted by Read Command  
n
CCD  
= 2 Cycles  
CLK  
DQ  
WRT Command  
at Column  
Address C0  
Interrupting  
WRT Command  
at Column Address C1  
C0  
C0 + 1  
C1  
C1 + 1  
C1 + 2  
C1 + 3  
NOTE A: For this example, assume burst length = 4.  
Figure 6. Write Burst Interrupted by Write Command  
n
CCD  
= 3 Cycles  
CLK  
WRT Command  
Interrupting  
DEAC or DCAB  
Command  
Ignored  
DQ  
D
D
Ignored  
t
RWL  
DQMx  
NOTE A: For this example, assume burst length = 4.  
Figure 7. Write Burst Interrupted by DEAC/DCAB Command  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
power up  
Device initialization should be performed after a power up to the full V  
level; however, after power is  
CC  
established, a 200-µs interval is required (with no inputs other than CLK). After this interval, both banks of the  
device must be deactivated. Eight REFR commands must be performed and the mode register must be set to  
complete the device initialization.  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
absolute maximum ratings over ambient temperature range (unless otherwise noted)  
Supply voltage range, V  
Supply voltage range for output drivers, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 4.6 V  
CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 4.6 V  
CCQ  
Voltage range on any input pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 4.6 V  
Voltage range on any output pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to V + 0.5 V  
CC  
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
Ambient temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
A
stg  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN  
3.135  
3.135  
NOM  
3.3  
3.3  
0
MAX  
3.465  
3.465  
UNIT  
V
V
V
V
V
V
V
Supply voltage  
CC  
CCQ  
SS  
Supply voltage for output drivers  
V
Supply voltage  
V
Supply voltage for output drivers  
High-level input voltage  
Low-level input voltage  
Ambient temperature  
0
V
SSQ  
IH  
2
– 0.3  
–55  
V
CC  
+ 0.3  
0.8  
V
V
IL  
T
A
125  
°C  
V
CCQ  
V
+ 0.3 V  
CC  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
electrical characteristics over recommended ranges of supply voltage and ambient temperature  
(unless otherwise noted) (see Note 2)  
’626162-12  
’626162-15  
’626162-20  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
High-level output  
voltage  
V
V
I
I
= –2 mA  
2.4  
2.4  
2.4  
V
V
OH  
OH  
Low-level output  
voltage  
= 2 mA  
0.4  
±10  
±10  
0.4  
±10  
±10  
0.4  
±10  
±10  
OL  
OL  
Input current  
(leakage)  
0 V V V  
All other pins = 0 V to V  
,
I
CC  
I
I
µA  
µA  
I
CC  
Output current  
(leakage)  
0 V V V  
, Output disabled  
O
O
CCQ  
Burst length = 1,  
Read latency = 2  
85  
75  
95  
70  
85  
t
t MIN,  
RC RC  
Average read or  
write current  
I
/I = 0 mA,  
I
mA  
OH OL  
CC1  
One bank activated  
(see Note 3)  
Read latency = 3  
100  
I
I
CKE V MAX,  
t
= MIN (see Note 4)  
2
2
2
2
2
2
CC2P  
Precharge standby  
current in  
power-down mode  
IL  
CK  
mA  
mA  
CKE and CLK  
V
MAX,  
IL  
CC2PS  
t
= (see Note 5)  
CK  
Precharge standby  
current in  
nonpower-down  
mode  
I
CKE V MIN,  
t
= MIN (see Note 4)  
40  
2
35  
2
30  
2
CC2N  
IH  
CK  
CKE V MIN,  
CLK V MAX,  
IH  
IL  
I
CC2NS  
t
= (see Note 5)  
CK  
CKE V MAX,  
t
= MIN  
IL  
One bank activated (see Note 4)  
CK  
I
I
I
I
10  
10  
55  
15  
10  
10  
45  
15  
10  
10  
40  
15  
CC3P  
Active standby  
current in  
power-down mode  
mA  
mA  
CKE and CLK V MAX,  
IL  
One bank activated (see Note 5)  
t
= ∞  
CK  
CC3PS  
CC3N  
CKE V MIN, = MIN  
t
IH  
CK  
Active standby  
current in  
nonpower-down  
mode  
One bank activated (see Note 4)  
CKE V MIN,  
CLK V MAX,  
IH IL  
CC3NS  
t
= , One bank activated (see Note 5)  
CK  
Continuous burst,  
/I = 0 mA,  
Read latency = 2  
Read latency = 3  
165  
210  
130  
175  
110  
150  
I
OH OL  
All banks activated,  
= one cycle  
I
Burst current  
Autorefresh  
mA  
mA  
CC4  
n
CCD  
(see Note 6)  
Read latency = 2  
Read latency = 3  
120  
120  
100  
100  
80  
80  
I
t t MIN  
RC RC  
CC5  
NOTES: 2. All specifications apply to the device after power-up initialization. All control and address inputs must be stable and valid.  
3. Control and address inputs change state twice during t  
4. Control and address inputs change state once every 2 × t  
5. Control and address inputs do not change state (stable).  
.
RC  
.
CK  
6. Control and address inputs change state once every cycle.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
capacitance over recommended ranges of supply voltage and ambient temperature,  
f = 1 MHz (see Note 7)  
PARAMETER  
MIN  
MAX  
UNIT  
pF  
C
C
C
C
Input capacitance, CLK input  
8
i(S)  
i(AC)  
i(E)  
o
Input capacitance, address and control inputs: A0–A11, CS, DQMx, RAS, CAS, W  
Input capacitance, CKE input  
8
8
pF  
pF  
Output capacitance  
10  
pF  
NOTE 7: Capacitance is sampled only at initial design and after any major changes. Samples are tested at 0 V and 25°C with a 1-MHz signal  
applied to the pin under test. All other pins are open.  
†‡  
ac timing requirements  
’626162-12  
’626162-15  
’626162-20  
UNIT  
MIN  
15  
12  
4
MAX  
MIN  
20  
15  
4
MAX  
MIN  
30  
20  
4
MAX  
Read latency = 2  
Read latency = 3  
t
Cycle time, CLK (system clock)  
ns  
CK  
t
t
Pulse duration, CLK (system clock) high  
Pulse duration, CLK (system clock) low  
ns  
ns  
CKH  
4
4
4
CKL  
Read latency = 2  
Read latency = 3  
9
8
15  
9
20  
10  
Access time, CLK to data out  
(see Note 8)  
t
t
t
ns  
ns  
ns  
AC  
Delay time, CLK to DQ in the low-impedance state (see Note 9)  
0
0
0
LZ  
Read latency = 2  
Read latency = 3  
8
8
14  
11  
15  
12  
Delay time, CLK to DQ in the  
high-impedance state (see Note 10)  
HZ  
t
t
t
t
t
t
t
t
t
t
Setup time, data input  
Setup time, address  
3
3
4
4
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DS  
AS  
Setup time, control input (CS, RAS, CAS, W, DQMx)  
Setup time, CKE (suspend entry/exit, power-down entry)  
Setup time, CKE (power-down/self-refresh exit) (see Note 11)  
Hold time, CLK to data out  
3
4
4
CS  
3
4
4
CES  
CESP  
OH  
10  
1.5  
2
10  
2
10  
2
Hold time, data input  
2
2
DH  
Hold time, address  
2
2
2
AH  
Hold time, control input (CS, RAS, CAS, W, DQMx)  
Hold time, CKE  
2
2
2
CH  
2
2
2
CEH  
REFR command to ACTV, MRS, or REFR command;  
ACTV command to ACTV, MRS, or REFR command  
t
96  
120  
160  
ns  
RC  
t
t
t
ACTV command to DEAC or DCAB command  
60 100 000  
75 100 000  
100 100 000  
ns  
ns  
ns  
RAS  
RCD  
RP  
ACTV command to READ or WRT command (see Note 12)  
DEAC or DCAB command to ACTV, MRS, or REFR command  
24  
36  
30  
45  
40  
60  
See Parameter Measurement Information for load circuits.  
All references are made to the rising transition of CLK unless otherwise noted.  
NOTES: 8. t  
is referenced from the rising transition of CLK that precedes the data-out cycle. For example, the first data-out t  
is referenced  
AC  
AC  
from the rising transition of CLK that is one cycle before read latency for the READ command. Access time is measured at output  
reference level 1.4 V.  
9.  
10.  
t
t
is measured from the rising transition of CLK that is one cycle before read latency for the READ command.  
(MAX) defines the time at which the outputs are no longer driven and is not referenced to output voltage levels.  
LZ  
HZ  
11. See Figure 18.  
12. For read or write operations with automatic deactivate, t  
must be set to satisfy minimum t .  
RAS  
RCD  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
†‡  
ac timing requirements (continued)  
’626162-12  
’626162-15  
’626162-20  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Final data out of READ-P operation to ACTV, MRS, or REFR  
command  
t
t
+ (n  
× t  
EP CK  
)
ns  
APR  
RP  
t
t
t
t
t
Final data in of WRT-P operation to ACTV, MRS, or REFR command  
Final data in to DEAC or DCAB command  
ACTV command for one bank to ACTV command for the other bank  
Transition time, all inputs (see Note 13)  
Refresh interval  
t
+ t  
ns  
ns  
ns  
ns  
ms  
APW  
RWL  
RRD  
T
RP CK  
24  
24  
1
30  
30  
1
40  
40  
1
5
5
5
32  
32  
32  
REF  
See Parameter Measurement Information for load circuits.  
All references are made to the rising transition of CLK unless otherwise noted.  
NOTE 13: Transition time (rise and fall) should be a minimum of 1 ns and a maximum of 5 ns measured between V MIN and V MAX. This is  
IH  
IL  
ensured by design but not tested.  
‡§  
clock timing requirements  
’626162-12  
’626162-15  
’626162-20  
§
UNIT  
MIN  
–1  
MAX  
MIN  
–1  
MAX  
MIN  
–1  
MAX  
Read latency = 2  
Final data out to DEAC or  
DCAB command  
n
cycles  
EP  
Read latency = 3  
Read latency = 2  
–2  
–2  
–2  
DEAC or DCAB interrupt of  
data-out burst to DQ in the  
high-impedance state  
2
3
2
3
2
3
n
cycles  
cycles  
HZP  
CCD  
Read latency = 3  
READ or WRT command to interrupting READ, WRT, DEAC, or DCAB  
command  
n
1
1
1
n
n
n
n
Final data in to READ or WRT command in either bank  
WRT command to first data in  
1
0
0
2
1
0
0
2
1
0
0
2
cycles  
cycles  
cycles  
cycles  
CWL  
WCD  
DID  
0
0
2
0
0
0
2
ENBL or MASK command to data in  
ENBL or MASK command to data out  
0
2
DOD  
HOLD command to suspended CLK edge;  
HOLD operation exit to entry of any command  
n
CLE  
1
1
1
1
1
1
cycles  
n
n
MRS command to ACTV, REFR, or MRS command  
DESL command to control input inhibit  
2
0
2
0
2
0
cycles  
cycles  
RSA  
0
0
0
CDD  
§
All references are made to the rising transition of CLK unless otherwise noted.  
A CLK cycle can be considered as contributing to a timing requirement for those parameters defined in cycle units only when not gated by CKE  
(those CLK cycles occurring during the time when CKE is asserted low).  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION  
The ac timing measurements are based on signal rise and fall times equal to 1 ns (t = 1 ns) and a midpoint  
T
reference level of 1.4 V for LVTTL. For signal rise and fall times greater than 1 ns, the reference level is changed  
to V MIN and V MAX instead of the midpoint level. All specifications referring to READ commands are also  
IH  
IL  
valid for READ-P commands unless otherwise noted. All specifications referring to WRT commands are also  
valid for WRT-P commands unless otherwise noted. All specifications referring to consecutive commands are  
specified as consecutive commands for the same bank unless otherwise noted.  
I
OL  
Tester Pin  
Electronics  
(see Note A)  
Output  
Under  
Test  
50 Ω  
1.4 V  
C
= 50 pF  
L
I
OH  
NOTE A: Series termination resistors may be used on test  
hardwarefor output impedance matching purposes.  
Figure 8. LVTTL-Load Circuit  
t
CK  
t
CKH  
CLK  
t
T
t
CKL  
t
, t , t , t  
DS AS CS CES  
t
T
t
, t , t , t  
DH AH CH CEH  
DQ, A0–A11, CS, RAS,  
CAS, W, DQMx, CKE  
t
T
t
, t , t , t  
DH AH CH CEH  
t
, t , t , t  
, t  
DS AS CS CES CESP  
DQ, A0–A11, CS, RAS,  
CAS, W, DQMx, CKE  
t
T
Figure 9. Input-Attribute Parameters  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION  
Read Latency  
CLK  
t
ACTV  
READ  
AC  
Command  
Command  
t
HZ  
t
LZ  
t
OH  
DQ  
Figure 10. Output Parameters  
READ, WRT  
DESL  
READ, READ-P, WRT, WRT-P, DEAC, DCAB  
Command Disable  
n
CCD  
n
t
CDD  
ACTV  
DEAC, DCAB  
RAS  
ACTV, REFR  
ACTV  
ACTV, MRS, REFR  
t
RC  
READ, READ-P, WRT, WRT-P  
ACTV, MRS, REFR  
t
t
RCD  
DEAC, DCAB  
ACTV  
t
RP  
ACTV (different bank)  
ACTV, MRS  
RRD  
MRS  
n
RSA  
Figure 11. Command-to-Command Parameters  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION  
n
HZP  
n
EP  
CLK  
DQ  
DEAC or  
DCAB  
Command  
READ  
Command  
t
HZ  
Q
Q
Q
NOTE A: For this example, assume read latency = 3 and burst length = 4.  
Figure 12. Read Followed by Deactivate  
t
APR  
CLK  
DQ  
ACTV, MRS, or  
REFR Command  
READ-P  
Command  
Final Data Out  
Q
NOTE A: For this example, assume read latency = 3 and burst length = 1.  
Figure 13. Read With Auto-Deactivate  
n
CWL  
t
RWL  
CLK  
DQ  
DEAC or DCAB  
Command  
WRT  
Command  
WRT  
Command  
D
D
NOTE A: For this example, assume burst length = 1.  
Figure 14. Write Followed By Deactivate  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION  
n
CWL  
t
APW  
CLK  
DQ  
ACTV, MRS, or  
REFR Command  
WRT  
Command  
WRT-P  
Command  
D
D
Figure 15. Write With Auto-Deactivate  
n
DOD  
t
RWL  
n
DOD  
CLK  
DEAC or  
DCAB  
Command  
WRT  
Command  
READ  
Command  
DQ  
Q
D
Ignored  
MASK  
Ignored  
Ignored  
ENBL  
MASK  
MASK  
MASK  
ENBL  
MASK  
Command  
Command  
Command  
Command  
Command  
Command Command  
DQMx  
NOTE A: For this example, assume read latency = 3 and burst length = 4.  
Figure 16. DQ Masking  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION  
n
CLE  
n
CLE  
CLK  
DQ  
DQ  
DQ  
DQ  
DQ  
t
CES  
t
CES  
t
CEH  
t
CEH  
CKE  
Figure 17. CLK-Suspend Operation  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION  
CLK  
Last Data-In  
WRT  
(WRT-P)  
Operation  
Exit  
power-down  
modeift  
is  
CESP  
satisfied (new  
command)  
CLK is don’t  
care, but  
must be  
stable  
before CKE  
high  
Last  
Data-Out  
READ  
(READ-P)  
Operation  
Enter  
power-down  
mode  
CKE  
CLK  
t
t
CESP  
CEH  
t
CES  
DESL or  
NOOP  
Last Data-In  
WRT  
command  
(WRT-P)  
Operation  
only if t  
CESP  
is not  
CLK is don’t  
care, but  
must be  
stable  
before CKE  
high  
satisfied  
Last  
Data-Out  
READ  
(READ-P)  
Operation  
Exit power-down  
mode (new  
command)  
Enter  
power-down  
mode  
CKE  
t
CEH  
t
CESP  
t
CES  
Figure 18. Power-Down Operation  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ACTV T  
READ T  
DEAC T  
CLK  
DQ  
a
b
c
d
DQMx  
RAS  
CAS  
W
A10  
R0  
R0  
A11  
A0A9  
CS  
C0  
CKE  
BURST  
TYPE  
BURST CYCLE  
BANK  
ROW  
(D/Q)  
(B/T)  
ADDR  
a
b
c
d
Q
T
R0  
C0  
C0 + 1  
C0 + 2  
C0 + 3  
Column-address sequence depends on programmed burst type and starting column address C0 (see Table 5).  
NOTE A: This example illustrates minimum t and n for the ’626162-15 at 66 MHz.  
RCD  
EP  
Figure 19. Read Burst (read latency = 3, burst length = 4)  
ACTV T  
WRT T  
DEAC T  
CLK  
DQ  
a
b
c
d
e
f
g
h
DQMx  
RAS  
CAS  
W
R0  
R0  
A10  
A11  
C0  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK  
ROW  
BURST CYCLE  
(D/Q)  
(B/T)  
ADDR  
a
b
c
d
e
f
g
h
D
T
R0  
C0  
C0 + 1  
C0 + 2  
C0 + 3  
C0 + 4  
C0 + 5  
C0 + 6  
C0 + 7  
Column-address sequence depends on programmed burst type and starting column address C0 (see Table 6).  
NOTE A: This example illustrates minimum t and t for the ’626162-15 at 66 MHz.  
RCD  
RWL  
Figure 20. Write Burst (burst length = 8)  
ACTV B  
WRT B  
READ B  
DEAC B  
CLK  
DQ  
a
b
c
d
DQMx  
RAS  
CAS  
W
A10  
R0  
R0  
A11  
A0A9  
CS  
C0  
C1  
CKE  
BURST  
TYPE  
BANK  
(B/T)  
ROW  
BURST CYCLE  
(D/Q)  
ADDR  
a
b
c
d
D
Q
B
B
R0  
R0  
C0  
C0 + 1  
C1  
C1 + 1  
Column-address sequence depends on programmed burst type and starting column address C0 and C1 (see Table 4).  
NOTE A: This example illustrates minimum t and n for the ’626162-15 at 66 MHz.  
RCD  
EP  
Figure 21. Write-Read Burst (read latency = 3, burst length = 2)  
ACTV T  
READ T  
WRT-P T  
i
CLK  
DQ  
a
b
c
d
e
f
g
h
j
k
l
m
n
o
p
DQMx  
RAS  
CAS  
W
R0  
R0  
A10  
A11  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BURST CYCLE  
BANK  
ROW  
(D/Q)  
(B/T)  
ADDR  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
Q
D
T
T
R0  
R0  
C0  
C0+1 C0+2 C0+3 C0+4 C0+5 C0+6 C0+7  
C1  
C1+1 C1+2 C1+3 C1+4 C1+5 C1+6 C1+7  
Column-address sequence depends on programmed burst type and starting column address C0 and C1 (see Table 6).  
NOTE A: This example illustrates minimum t for the ’626162-15 at 66 MHz.  
RCD  
Figure 22. Read-Write Burst With Automatic Deactivate (read latency = 3, burst length = 8)  
ACTV T  
READ T  
WRT-P T  
i
CLK  
DQ  
a
b
c
d
e
f
g
h
DQMx  
RAS  
CAS  
W
A10  
R0  
R0  
A11  
A0A9  
CS  
C0  
C1  
CKE  
BURST  
TYPE  
f
BANK  
ROW  
BURST CYCLE  
(D/Q)  
(B/T)  
ADDR  
a
b
c
d
e
g
h
i
Q
D
T
T
R0  
R0  
C0  
C0+1 C0+2 C0+3 C0+4 C0+5 C0+6 C0+7  
C1  
Column-address sequence depends on programmed burst type and starting column address C0 and C1 (see Table 6).  
NOTE A: This example illustrates minimum t for the ’626162-15 at 66 MHz.  
RCD  
Figure 23. Read Burst – Single Write With Automatic Deactivate (read latency = 3, burst length = 8)  
ACTV B  
READ-P B  
CLK  
DQ0  
DQMx  
RAS  
CAS  
W
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
n+8  
n+9  
n+10 n+11 n+12 n+13 n+14  
n+253 n+254 n+255  
R0  
R0  
A10  
A11  
C0  
A0A9  
CS  
CKE  
BURST  
BURST CYCLE  
BANK ROW  
TYPE  
(D/Q)  
Q
(B/T) ADDR  
R0  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
.
.
B
C0 C0+1 C0+2 C0+3 C0+4 C0+5 C0+6 C0+7  
255  
Column-address sequence depends on programmed burst type and starting column address C0.  
NOTE A: This example illustrates minimum t for the ’626162-15 at 66 MHz.  
RCD  
Figure 24. Read Burst – Full Page (read latency = 3, burst length = 256)  
ACTV T READ-P T  
ACTV T  
ACTV B READ-P B  
ACTV B READ-P B  
CLK  
DQ  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
DQMx  
RAS  
CAS  
W
R0  
R1  
R1  
R2  
R2  
R3  
R3  
A10  
A11  
R0  
C0  
C1  
C2  
A0A9  
CS  
CKE  
BURST  
TYPE  
BURST CYCLE  
BANK ROW  
(B/T) ADDR  
(D/Q)  
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
.
.
Q
Q
Q
B
T
B
R0  
R1  
R2  
C0 C0+1 C0+2 C0+3 C0+4 C0+5 C0+6 C0+7  
C1 C1+1 C1+2 C1+3 C1+4 C1+5 C1+6 C1+7  
C2 C2+1 C2+2  
.
.
Column-address sequence depends on programmed burst type and starting column address C0, C1, and C2 (see Table 6).  
NOTE A: This example illustrates minimum t for the ’626162-15 at 66 MHz.  
RCD  
Figure 25. Two-Bank Row-Interleaving Read Bursts With Automatic Deactivate (read latency = 3, burst length = 8)  
ACTV T  
READ T  
READ T  
ACTV B  
READ B  
READ B  
READ B  
CLK  
DQ  
a
b
c
d
e
f
DQMx  
RAS  
CAS  
W
A10  
R0  
R0  
R1  
R1  
A11  
A0A9  
CS  
C0  
C1  
C2  
C3  
C4  
CKE  
BURST  
TYPE  
BURST CYCLE  
BANK  
ROW  
(D/Q)  
(B/T)  
ADDR  
a
b
C0 + 1  
c
d
e
f
. . .  
. . .  
Q
Q
Q
.
B
T
B
R0  
R1  
R0  
. . .  
C0  
C1  
C1 + 1  
C2  
C2 + 1  
. . .  
. . .  
. . .  
Column-address sequence depends on programmed burst type and starting column address C0, C1, and C2 (see Table 4).  
Figure 26. Two-Bank Column-Interleaving Read Bursts (read latency = 3, burst length = 2)  
ACTV T  
WRT T  
DEAC T  
ACTV B  
READ B  
DEAC B  
CLK  
DQ  
DQMx  
RAS  
CAS  
W
a
b
c
d
e
f
g
h
A10  
R0  
R0  
R1  
R1  
A11  
A0A9  
C0  
C1  
CS  
CKE  
BURST  
TYPE  
BANK  
(B/T)  
ROW  
BURST CYCLE  
(D/Q)  
ADDR  
a
b
c
d
e
f
g
h
Q
D
B
T
R0  
R1  
C0  
C0 +1  
C0 + 2  
C0 + 3  
C1  
C1 + 1  
C1 +2  
C1+ 3  
Column-address sequence depends on programmed burst type and starting column address C0 and C1 (see Table 5.)  
NOTE A: This example illustrates minimum t , n , and t for the ’626162-15 at 66 MHz.  
RCD EP  
RWL  
Figure 27. Read-Burst Bank B, Write-Burst Bank T (read latency = 3, burst length = 4)  
ACTV T  
WRT-P T  
ACTV B  
READ-P B  
CLK  
DQ  
a
b
c
d
e
f
g
DQMx  
RAS  
CAS  
W
R0  
R0  
R1  
R1  
A10  
A11  
A0A9  
CS  
C0  
C1  
CKE  
BURST  
TYPE  
BURST CYCLE  
BANK  
ROW  
(D/Q)  
(B/T)  
ADDR  
a
b
C0 +1  
c
d
e
f
C1 + 1  
g
h
D
Q
T
B
R0  
R1  
C0  
C0 + 2  
C0 + 3  
C1  
C1 + 2  
C1 + 3  
Column-address sequence depends on programmed burst type and starting column address C0 and C1 (see Table 5).  
NOTE A: This example illustrates minimum n for the ’626162-15 at 66 MHz.  
CWL  
Figure 28. Write-Burst Bank T, Read-Burst Bank B With Automatic Deactivate (read latency = 3, burst length = 4)  
ACTV T  
READ T  
WRT T  
e
DCAB  
CLK  
DQ  
g
b
a
c
d
f
h
DQMx  
RAS  
CAS  
W
R0  
R0  
A10  
A11  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BURST CYCLE  
BANK  
(B/T)  
ROW  
(D/Q)  
ADDR  
a
b
C0+1  
c
d
e
f
g
h
Q
D
T
T
R0  
R1  
C0  
C0+2  
C0+3  
C1  
C1+1  
C1+2  
C1+3  
Column-address sequence depends on programmed burst type and starting column address C0 and C1 (see Table 5).  
NOTE A: This example illustrates minimum t for the ’626162-15 at 66 MHz.  
RCD  
Figure 29. Data Mask (read latency = 3, burst length = 4)  
ACTV B  
ACTV T  
READ B  
READ T  
READ B  
READ T  
READ B  
CLK  
DQ0DQ7  
a
b
c
d
e
f
DQML  
Hi-Z  
DQ8DQ15  
DQMU  
RAS  
CAS  
W
R0  
R0  
R1  
R1  
A10  
A11  
A0A9  
CS  
C0  
C1  
C2  
C3  
C4  
CKE  
BURST  
TYPE  
BANK  
(B/T)  
ROW  
BURST CYCLE  
(D/Q)  
ADDR  
a
b
c
d
e
f
g
h
Q
Q
Q
Q
T
B
T
B
R0  
R1  
R0  
R1  
C0  
C0+1  
C1  
C1+1  
C2  
C1+1  
C3  
C3+1  
Column-address sequence depends on programmed burst type and starting column address C0 and C1 (see Table 4).  
Figure 30. Data Mask With Byte Control (read latency = 3, burst length = 2)  
ACTV T  
ACTV B  
READ B  
DEAC B  
WRT T  
DEAC T  
CLK  
DQ0DQ7  
DQML  
e
f
g
h
a
b
c
d
DQ8DQ15  
DQMU  
RAS  
CAS  
W
A10  
R0  
R0  
R1  
R1  
A11  
A0A9  
CS  
C0  
C1  
CKE  
BURST  
TYPE  
BANK  
(B/T)  
ROW  
BURST CYCLE  
(D/Q)  
ADDR  
a
b
c
d
e
f
g
h
Q
D
T
B
R0  
R1  
C0  
C0+1  
C0+2  
C0+3  
C1  
C1+1  
C1+2  
C1+3  
Column-address sequence depends on programmed burst type and starting column address C0 and C1 (see Table 5).  
NOTE A: This example illustrates minimum t and n read burst, and a minimum t write burst for the ’626162-15 at 66 MHz.  
RCD  
EP RWL  
Figure 31. Data Mask With Byte Control (read latency = 3, burst length = 4)  
ACTV T  
READ T  
ACTV B  
c
WRT B  
DCAB  
CLK  
DQ0DQ7  
DQML  
b
b
a
a
d
d
f
f
h
h
c
e
g
DQ8DQ15  
DQMU  
RAS  
CAS  
W
R0  
R0  
R1  
R1  
A10  
A11  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK  
(B/T)  
ROW  
BURST CYCLE  
(D/Q)  
ADDR  
a
b
c
d
e
f
g
h
Q
D
T
B
R0  
R1  
C0  
C0+1  
C0+2  
C0+3  
C1  
C1+1  
C1+2  
C1+3  
Column-address sequence depends on programmed burst type and starting column address C0 and C1 (see Table 5).  
NOTE A: This example illustrates minimum t and t for the ’626162-15 at 66 MHz.  
RCD  
RWL  
Figure 32. Data Mask With Cycle-by-Cycle Byte Control (read latency = 3, burst length = 4)  
REFR  
ACTV T  
READ T  
DEAC T  
REFR  
CLK  
DQ  
a
b
c
d
DQMx  
RAS  
CAS  
W
R0  
R0  
A10  
A11  
A0A9  
C0  
CS  
CKE  
BURST  
TYPE  
BURST CYCLE  
BANK  
ROW  
(D/Q)  
(B/T)  
ADDR  
a
b
c
d
Q
T
R0  
C0  
C0+1  
C0+2  
C0+3  
Column-address sequence depends on programmed burst type and starting column address C0 (see Table 5).  
NOTE A: This example illustrates minimuim t , t , and n for the ’626162-15 at 66 MHz.  
RC RCD EP  
Figure 33. Refresh Cycles (read latency = 3, burst length = 4)  
DCAB  
MRS  
ACTV B  
WRT-P B  
CLK  
DQ  
a
b
c
d
DQMx  
RAS  
CAS  
W
R0  
R0  
A10  
See Note B  
See Note B  
See Note B  
A11  
A0A9  
C0  
CS  
CKE  
BURST  
TYPE  
BURST CYCLE  
BANK  
ROW  
(D/Q)  
(B/T)  
ADDR  
a
b
c
d
D
B
R0  
C0  
C0+1  
C0+2  
C0+3  
Column-address sequence depends on programmed burst type and starting column address C0 (see Table 5).  
NOTES: A. This example illustrates minimum t , n , and t for the ’626162-15 at 66 MHz.  
RP RSA  
RCD  
B. See Figure 1.  
Figure 34. Set Mode Register (deactivate all, set mode register, write burst with automatic deactivate)  
(read latency = 3, burst length = 4)  
ACTV T  
READ T  
WRT-P T  
HOLD  
PDE  
HOLD  
b
CLK  
DQ  
a
d
e
f
g
h
c
DQMx  
RAS  
CAS  
W
R0  
R0  
A10  
A11  
C0  
C1  
A0A9  
CS  
CKE  
BURST  
TYPE  
BANK  
(B/T)  
ROW  
BURST CYCLE  
(D/Q)  
ADDR  
a
b
c
d
e
f
g
h
Q
D
T
T
R0  
R1  
C0  
C0+1  
C0+2  
C0+3  
C1  
C1+1  
C1+2  
C1+3  
Column-address sequence depends on programmed burst type and starting column address C0 and C1 (see Table 5).  
Figure 35. CLK Suspend (HOLD) During Read Burst and Write Burst (read latency = 3, burst length = 4)  
SMJ626162  
524288 BY 16-BIT BY 2-BANK  
SYNCHRONOUS DYNAMIC RANDOM-ACCESS MEMORY  
SGMS737C – JULY 1997 – REVISED MARCH 1999  
MECHANICAL DATA  
HKD (R-CDFP-F50)  
CERAMIC DUAL FLATPACK  
0.665 (16,90)  
0.634 (16,10)  
1
50  
0.031 (0,80)  
0.843 (21,40)  
0.811 (20,60)  
0.766 (19,45)  
0.746 (18,95)  
0.020 (0,50)  
0.012 (0,30)  
25  
26  
0.370 (9,40)  
0.250 (6,35)  
0.015 (0,38) MIN  
(4 Places)  
Lid  
0.140 (3,55)  
0.110 (2,80)  
0.587 (14,90)  
0.026 (0,66) MIN  
0.555 (14,10)  
0.009 (0,23)  
0.004 (0,10)  
0.030 (0,76) MIN  
4081537/B 10/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. The leads will be gold plated.  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

SMJ626162-15HKDM

Synchronous DRAM, 1MX16, 9ns, CMOS, CDFP50, 0.650 INCH, CERAMIC, DFP-50
MICROSS

SMJ626162-20DGE

1MX16 SYNCHRONOUS DRAM, 10ns, PDSO50
TI

SMJ626162-20DGEM

1MX16 SYNCHRONOUS DRAM, PDSO50, 0.400 INCH, TSOP2-50
TI

SMJ626162-20HKD

Synchronous DRAM, 1MX16, 10ns, CMOS, CDFP50, 0.650 INCH, CERAMIC, DFP-50
MICROSS

SMJ626162-20HKD

1MX16 SYNCHRONOUS DRAM, 10ns, CDFP50, 0.650 INCH, CERAMIC, DFP-50
TI

SMJ626162DGE

1MX16 SYNCHRONOUS DRAM, 10ns, PDSO50
TI

SMJ626162HKD

1MX16 SYNCHRONOUS DRAM, 8ns, CDFP50, 0.650 INCH, CERAMIC, DFP-50
TI

SMJ64C16-25FG

IC,SRAM,4KX4,CMOS,LLCC,20PIN,CERAMIC
TI

SMJ64C16-45JD

IC,SRAM,4KX4,CMOS,DIP,20PIN,CERAMIC
TI

SMJ64C256-45FGM

64KX4 STANDARD SRAM, 45ns, CQCC28
TI

SMJ64C256-45JDM

64KX4 STANDARD SRAM, 45ns, CDIP24
TI

SMJ64C256-55JDM

64KX4 STANDARD SRAM, 55ns, CDIP24
TI