SL6679 [MITEL]

Direct Conversion FSK Data Receiver; 直接转换FSK数据接收
SL6679
型号: SL6679
厂家: MITEL NETWORKS CORPORATION    MITEL NETWORKS CORPORATION
描述:

Direct Conversion FSK Data Receiver
直接转换FSK数据接收

文件: 总23页 (文件大小:373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL6679  
Direct Conversion FSK Data Receiver  
Preliminary Information  
Supersedes September 1996 version, DS4410 - 1.5  
DS4410 - 2.1 April 1998  
The SL6679 is an advanced Direct Conversion FSK Data  
Receiver for operation up to 450 MHz. The device integrates all  
functions to convert a binary FSK modulated RF signal into a  
demodulated data stream.  
Adjacent channel rejection is provided using tuneable gyrator  
filters. RF and audio AGC functions assist operation when large  
interfering signals are present and an automatic frequency control  
(AFC) function is provided to extend centre frequency acceptance.  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
IRF  
GND  
MIXIP A  
MIX DEC  
MIXIP B  
REG CNT  
24  
23  
22  
21  
20  
19  
18  
17  
AFC1  
BATT FLAG  
V
2
CC  
FEATURES  
Very Low Power Operation from Single Cell  
Superior Sensitivity  
Operation at 512, 1200 and 2400 Baud  
On Chip 1 Volt Regulator  
DATA OP  
BEC  
SL6679  
AFC OP  
V
REF  
TPQ  
V
REG  
TPI  
9
10 11 12 13 14 15 16  
1mm Height Miniature Package  
Automatic Frequency Control Function  
Programmable Post Detection Filter  
AGC Detection Circuitry  
TP32  
Fig. 1 Pin identification diagram (top view). See Table 1 for  
pin descriptions  
Power Down Function  
Battery Strength Indicator  
APPLICATIONS  
Pagers, including Credit Card, PCMCIA and  
Watch Pagers  
Low Data Rate Receivers, e.g. Security Systems  
ABSOLUTE MAXIMUM RATINGS  
Storage temperature  
Operating temperature  
Maximum voltage on any pin w.r.t. any  
other pin, subject to the following conditions:  
Current, pin 3 (MIXIP), pin 5 (MIXPB),  
pin 12 (LOIPI) and pin 14 (LOIPB)  
Most negative voltage on any pin  
255°C to1150°C  
210°C to155°C  
14V  
ORDERING INFORMATION  
SL6679/KG/TP1N 1mm TQFP device, baked and dry  
packed, supplied in trays  
<5ma  
SL6679/KG/TP1Q 1mm TQFP device, baked and dry  
20·5V w.r.t. gnd  
packed, supplied in tape and reel  
12  
9
10 13  
7
6
8
29  
4
20  
11  
22  
2
18  
+
MIX  
DEC  
BEC  
V 1  
CC  
V 2  
CC  
GND V  
REF  
1·0V  
3
5
26  
27  
21  
4
f
MIXER  
LIMITER  
DETECTOR  
LIMITER  
31  
30  
+
1·08V  
19  
AFC  
14  
15 16 28  
23 17  
1
32  
24 25  
Fig. 2 Block diagram of SL6679  
SL6679  
Pin name  
IRF  
Pin description  
Pin number  
1
LNA current source  
Ground  
2
GND  
3
MIXIP A  
MIX DEC  
MIXIP B  
REG CNT  
VREG  
TPI  
Mixer input A  
4
Mixer biasing decouple  
Mixer input B  
5
6
1V regulator control external PNP drive  
1V regulator output voltage  
I channel pre-gyrator filter test point.  
Mixer output, I channel  
7
8
9
I1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I2  
Mixer output, I channel  
VCC1  
Positive supply 1  
LOIP I  
GYRI  
LO input channel I  
Gyrator current adjust pin  
LO input channel Q  
LOIP Q  
Q1  
Mixer output, Q channel  
Q2  
Mixer output, Q channel  
TPQ  
Q channel pre-gyrator filter test point  
Reference voltage  
VREF  
AFC OP  
BEC  
AFC output  
Battery economy control  
DATA OP  
VCC2  
Data output pin  
Positive supply 2  
BATT FLAG  
AFC1  
Battery flag output  
AFC characteristic defining pin  
AFC characteristic defining pin  
Bit rate filter control  
AFC2  
BRF CNT  
BRF1  
Bit rate filter 1, output from detector  
Battery flag input voltage  
I channel limiter (post gyrator filter) test point, output only  
Audio AGC output current  
Audio AGC time constant adjust  
Audio AGC gain and threshold adjust. RSSI signal indicator  
VBATT  
TP LIM I  
IAGC OP  
TC ADJ  
GTH ADJ  
Table 1 SL6679 pin descriptions  
2
SL6679  
ELECTRICAL CHARACTERISTICS (1)  
Electrical Characteristics (1) are guaranteed over the following range of operating conditions unless otherwise stated  
TAMB = 125°C, VCC1 = 1·3V, VCC2 = 2·7V  
Value  
Characteristic  
Pin  
Units  
Conditions  
Typ.  
Max.  
Min.  
Supply voltage, VCC  
Supply voltage, VCC2  
Supply current, ICC1  
1
11  
22  
11  
22  
7
7
1
18  
18  
18  
1·3  
2·7  
1·60  
390  
1·0  
2·7  
3·5  
2·2  
490  
1·05  
3
700  
1·31  
20  
V
V
mA  
µA  
V
mA  
µA  
V
µA  
µA  
VCC1<VCC220·8V  
Including IRF  
0·95  
1·9  
1·20  
260  
0·95  
0·25  
375  
1·15  
Supply current, ICC2  
1 volt regulator, VREG  
1 volt regulator load current  
LNA current source, IRF  
Reference voltage, VREF  
VREF source current  
ILOAD = 3mA, external PNP(b>100, VCE = 0·1V)  
External PNP (hFE>100, VCE = 0·1V)  
PTAT, voltage on pin 1 = 0·3V and 1·3V  
Typical temperature coefficient = 10·1mV/°C  
500  
1·25  
VREF sink current  
1·0  
Data Amplifier  
DATA OP sink current  
DATA OP leakage current  
Output mark:space ratio  
21  
21  
21  
µA  
µA  
Output logic low, pin 21 voltage = 0·3V  
Output logic high, pin 21 voltage = VCC2  
Preamble at 1200 baud, Df = 4kHz,  
pin 26 = 0V, BRF capacitor = 560pF,  
DATA OP pullup resistor = 200kΩ  
25  
1·0  
9:7  
7:9  
Battery Economy  
Power down ICC1  
Power down ICC2  
BEC input logic high  
BEC input logic low  
BEC input current  
BEC input current  
11  
22  
20  
20  
20  
20  
0·5  
2·0  
10  
10  
µA  
µA  
V
V
µA  
µA  
Pin 20 = logic low  
Pin 20 = logic low  
Powered up  
Powered down  
Powered up  
VCC2  
V
CC220·3V  
0·3  
1·0  
1·0  
0
21·0  
21·0  
Powered down  
Battery Flag  
V
BATT trigger point  
28  
23  
23  
23  
28  
28  
28  
1·08  
1·12  
1·0  
V
Current sunk by pin 23 = 1µA  
Pin 28 voltage = 1·04V  
Pin 28 voltage = 1·12V  
Pin 28 voltage = 1·14V  
1·04  
BATT FLAG sink current  
BATT FLAG sink current  
BATT FLAG sink current  
µA  
µA  
µA  
V
µA  
µA  
1·0  
25  
VBATT input voltage  
VBATT input current  
VBATT input current  
2·0  
1·0  
1·0  
VBATT = 1·14V  
BATT = 1·04V  
21·0  
21·0  
V
Continued…  
3
SL6679  
ELECTRICAL CHARACTERISTICS (1) (Cont.)  
Electrical Characteristics (1) are guaranteed over the following range of operating conditions unless otherwise stated  
TAMB = 125°C, VCC1 = 1·3V, VCC2 = 2·7V  
Value  
Characteristic  
Pin  
Units  
Conditions  
Max.  
Typ.  
Min.  
Mixers  
LO DC bias voltage  
Gain to TPI  
12,14  
3,5,8,12  
V
dB  
V
42  
CC1  
LO inputs (12, 14) driven in quadrature:  
45mVrms at 450MHz, CW.  
38  
46  
Mixer inputs (3, 5) driven differentially:  
0·45mVrms at 450·004MHz, CW.  
As gain to TPI  
Gain to TPQ  
3,5,14,  
17  
3,5,8,  
12,14,17  
dB  
dB  
38  
42  
0
46  
Match of gain to TPI  
and TPQ  
As gain toTPI  
21  
11  
Audio AGC  
IAGC OP max. sink current  
IAGC OP leakage current  
30  
30  
µA  
µA  
TPI, TPQ signals limiting  
No signal applied  
45  
1
AFC  
AFC DC current, IAFC4k5  
AFC DC current  
19  
19  
µA  
µA  
fC = fLO14·5kHz, CW  
fC = fLO12·5kHz, CW  
0·0  
IAFC4k5  
10·2  
IAFC4k5  
10·7  
IAFC4k5  
20·9  
AFC DC current  
19  
µA  
fC = fLO16·5kHz, CW  
IAFC4k5  
20·2  
Bit Rate Filter Control  
BRF CNT input logic high  
26  
V
2400 baud  
VCC  
2
VCC2  
20·3  
0
20·4  
BRF CNT input logic low  
Tristate I/P current window  
BRF 1 output current  
BRF 1 output current  
BRF 1 output current  
26  
26  
27  
27  
27  
26  
26  
V
1200 baud  
512 baud  
Pin 26 logic high  
Pin 26 logic low  
Pin 26 logic tristate (open circuit)  
0·1  
10·4  
µA  
µA  
µA  
µA  
µA  
µA  
3·5  
1·7  
0·74  
BRF CNT input high current  
BRF CNT input low current  
27·5  
27·5  
115  
17·5  
4
SL6679  
ELECTRICAL CHARACTERISTICS (2)  
Electrical Characteristics (2) are guaranteed over the following range of operating conditions unless otherwise stated.  
Characteristics are tested at room temperature only and are guaranteed by characterisation test or design.  
TAMB = 210°C to 155°C, VCC1 = 1·4V to 2·0V, VCC2 = 2·3V to 3·2V. VCC1,VCC220·8V  
Value  
Characteristic  
Pin  
Units  
Conditions  
Typ.  
Max.  
Min.  
Supply voltage, VCC  
Supply voltage, VCC2  
Supply current, ICC1  
1
11  
22  
11  
22  
7
7
1
18  
18  
18  
0·95  
1·9  
1·3  
2·7  
1·60  
350  
1·0  
2·7  
3·5  
2·4  
510  
1·05  
3
800  
1·33  
18  
V
V
mA  
µA  
V
mA  
µA  
V
µA  
µA  
ms  
VCC1<VCC220·8V at >25°C only  
Including IRF  
Supply current, ICC2  
1 volt regulator, VREG  
1 volt regulator load current  
LNA current source, IRF  
Reference voltage, VREF  
VREF source current  
0·93  
0·25  
375  
ILOAD = 3mA, external PNP(b>100, VCE = 0·1V)  
External PNP(hFE>100, VCE = 0·1V)  
PTAT, voltage on pin 1 = 0·3V and 1·3V  
Typical temperature coefficient = 10·1mV/°C  
500  
1·25  
1·13  
VREF sink current  
0·8  
Turn-on time  
9
2
Stable data O/P when 3dB above sensitivity.  
CVREF = 2·2µF  
Turn-off time  
ms  
Fall to 10% of steady state ICC1. CVREF = 2·2µF  
Data Amplifier  
DATA OP sink current  
DATA OP leakage current  
Output mark:space ratio  
21  
21  
21  
22  
µA  
µA  
Output logic low, pin 21 voltage = 0·3V  
Output logic high, pin 21 voltage = VCC2  
Preamble at 1200 baud, Df = 4kHz,  
pin 26 = 0V, BRF capacitor = 560pF,  
DATA OP pullup resistor = 200kΩ  
1·5  
9:7  
7:9  
Battery Economy  
Power down ICC1  
Power down ICC2  
BEC input logic high  
BEC input logic low  
BEC input current  
BEC input current  
11  
22  
20  
20  
20  
20  
0·5  
2·0  
12  
12  
VCC2  
0·3  
1·5  
1·5  
µA  
µA  
V
V
µA  
µA  
Pin 20 = logic low  
Pin 20 = logic low  
Powered up  
Powered down  
Powered up  
V
CC220·3V  
0
21·5  
21·5  
Powered down  
Battery Flag  
V
BATT trigger point  
28  
23  
23  
23  
28  
28  
28  
1·04  
1·08  
1·12  
2
V
Current sunk by pin 23 = 1µA  
Pin 28 voltage = 1·04V  
Pin 28 voltage = 1·12V  
Pin 28 voltage = 1·14V  
BATT FLAG sink current  
BATT FLAG sink current  
BATT FLAG sink current  
µA  
µA  
µA  
V
µA  
µA  
2
20  
VBATT input voltage  
VBATT input current  
VBATT input current  
2·0  
1·5  
1·5  
21·5  
21·5  
VBATT = 1·14V  
BATT = 1·04V  
V
Continued…  
5
SL6679  
ELECTRICAL CHARACTERISTICS (2) (Cont.)  
Electrical Characteristics (2) are guaranteed over the following range of operating conditions unless otherwise stated.  
Characteristics are tested at room temperature only and are guaranteed by characterisation test or design.  
TAMB = 210°C to 155°C, VCC1 = 1·4V to 2·0V, VCC2 = 2·3V to 3·2V. VCC1,VCC220·8V  
Value  
Characteristic  
Pin  
Units  
Conditions  
Max.  
Typ.  
Min.  
Mixers  
LO DC bias voltage  
Gain to TPI  
12,14  
3,5,8,12  
V
42  
CC1  
V
dB  
35  
LO inputs (12, 14) driven in quadrature:  
45mVrms at 450MHz, CW.  
46  
Mixer inputs (3, 5) driven differentially:  
0·45mVrms at 450·004MHz, CW.  
As gain to TPI  
Gain to TPQ  
3,5,14,  
17  
3,5,8,  
35  
42  
0
dB  
dB  
46  
Match of gain to TPI  
and TPQ  
21·5  
As gain toTPI  
11·5  
12,14,17  
Audio AGC  
IAGC OP max. sink current  
IAGC OP leakage current  
30  
30  
30  
45  
µA  
µA  
TPI, TPQ signals limiting  
No signal applied  
70  
1
AFC  
AFC DC current, IAFC4k5  
AFC DC current  
19  
19  
0·0  
µA  
µA  
fC = fLO14·5kHz, CW  
fC = fLO12·5kHz, CW  
IAFC4k5  
10·1  
IAFC4k5  
10·7  
IAFC4k5  
20·9  
AFC DC current  
19  
µA  
fC = fLO16·5kHz, CW  
IAFC4k5  
20·1  
Bit Rate Filter Control  
BRF CNT input logic high  
26  
VCC  
2
V
2400 baud  
VCC2  
20·3  
0
20·4  
BRF CNT input logic low  
Tristate I/P current window  
BRF 1 output current  
BRF 1 output current  
BRF 1 output current  
26  
26  
27  
27  
27  
26  
26  
V
1200 baud  
512 baud  
Pin 26 logic high  
Pin 26 logic low  
Pin 26 logic tristate (open circuit)  
0·1  
10·4  
µA  
µA  
µA  
µA  
µA  
µA  
3·5  
1·7  
0·74  
BRF CNT input high current  
BRF CNT input low current  
210  
210  
110  
110  
6
SL6679  
RECEIVER CHARACTERISTICS (450MHz)  
Receiver Characteristics (450MHz) are guaranteed over the following range of operating conditions unless otherwise stated.  
Characteristics are not tested but are guaranteed by characterisation test or design. All measurements made using the  
characterisation circuit Fig. 5. See Application Note AN137 for details of test method.  
TAMB = 210°C to 155°C, VCC1 = 1·04V to 2·0V, VCC2 = 2·3V to 3·2V, VCC1,VCC220·8V, carrier frequency = 450MHz,  
BER = 1 in 30, AFC open loop. LNA gain set such that an RF signal of273dBm at the LNA input, offset from the LO  
by 4kHz, gives a typical IF signal level of 300mV p-p at TPI and TPQ. LNA noise figure,2dB  
Value  
Characteristic  
Units  
Conditions  
Max.  
Typ.  
Min.  
Sensitivity  
2128  
2126  
2123  
dBm  
2122 dBm  
2119 dBm  
512bps, Df = 4·5kHz  
1200bps, Df = 4·0kHz  
2400bps, Df = 4·5kHz. LO = 215dBm  
Intermodulation, IP3  
Adjacent Channel  
57  
55  
53  
dB  
dB  
dB  
512bps, Df = 4·5kHz  
1200bps, Df = 4·0kHz  
2400bps, Df = 4·5kHz. LO = 215dBm. Channel  
spacing 25kHz  
50  
48  
70  
69  
66  
dB  
dB  
dB  
512bps, Df = 4·5kHz  
1200bps, Df = 4·0kHz  
2400bps, Df = 4·5kHz. LO = 215dBm. Channel  
spacing 25kHz  
62·5  
60  
Deviation Acceptance  
Up  
Down  
Up  
Down  
Up  
Down  
11·9  
22·5  
13·0  
22·3  
12·5  
22·3  
kHz  
kHz  
14·6 kHz  
21·7 kHz  
14·6 kHz  
21·7 kHz  
512bps, Df = 4·5kHz, no AFC  
512bps, Df = 4·5kHz, no AFC  
1200bps, Df = 4·0kHz, no AFC  
1200bps, Df = 4·0kHz, no AFC  
2400bps, Df = 4·5kHz, no AFC  
2400bps, Df = 4·5kHz, no AFC  
11·8  
22·7  
11·7  
23  
Centre Frequency Acceptance  
62·8  
62·5  
62·5  
kHz  
62·9 kHz  
63·2 kHz  
512bps, Df = 4·5kHz, no AFC  
1200bps, Df = 4·0kHz, no AFC  
2400bps, Df = 4·5kHz, no AFC  
62·0  
62·0  
AFC Capture Range (AFC  
Closed Loop)  
64  
63·5  
64  
kHz  
kHz  
kHz  
512bps, Df = 4·5kHz. All at sensitivity 13dB or above  
1200bps, Df = 4·0kHz. All at sensitivity 13dB or above  
2400bps, Df = 4·5kHz. All at sensitivity 13dB or above  
7
SL6679  
RECEIVER CHARACTERISTICS (280MHz)  
Receiver Characteristics (280MHz) are guaranteed over the following range of operating conditions unless otherwise stated.  
Characteristics are not tested but are guaranteed by characterisation test or design. All measurements made using the  
characterisation circuit Fig. 5. See Application Note AN137 for details of test method.  
T
= 210°C to 155°C, VCC1 = 1·04V to 2·0V, VCC2 = 2·3V to 3·2V, VCC1,VCC220·8V, carrier frequency = 280MHz,  
BAEMRB = 1 in 30, AFC open loop. LNA gain set such that an RF signal of273dBm at the LNA input, offset from the LO  
by 4kHz, gives a typical IF signal level of 300mV p-p at TPI and TPQ. LNA noise figure,2dB  
Value  
Characteristic  
Units  
Conditions  
Max.  
Typ.  
Min.  
Sensitivity  
2129  
2127  
2124  
dBm  
2124 dBm  
2121 dBm  
512bps, Df = 4·5kHz  
1200bps, Df = 4·0kHz  
2400bps, Df = 4·5kHz. LO = 215dBm  
2128  
2127  
Intermodulation, IP3  
Adjacent Channel  
57  
56  
53·5  
dB  
dB  
dB  
512bps, Df = 4·5kHz  
1200bps, Df = 4·0kHz  
2400bps, Df = 4·5kHz. LO = 215dBm. Channel  
spacing 25kHz  
52  
49  
60  
57  
72  
69  
60  
dB  
dB  
dB  
512bps, Df = 4·5kHz  
1200bps, Df = 4·0kHz  
2400bps, Df = 4·5kHz. LO = 215dBm. Channel  
spacing 25kHz  
62·5  
60  
80  
77  
Deviation Acceptance  
Up  
Down  
Up  
Down  
Up  
Down  
11·9  
22·5  
13·0  
22·9  
12·5  
22·3  
kHz  
kHz  
14·6 kHz  
21·7 kHz  
14·6 kHz  
21·7 kHz  
512bps, Df = 4·5kHz, no AFC  
512bps, Df = 4·5kHz, no AFC  
1200bps, Df = 4·0kHz, no AFC  
1200bps, Df = 4·0kHz, no AFC  
2400bps, Df = 4·5kHz, no AFC  
2400bps, Df = 4·5kHz, no AFC  
11·8  
23·8  
11·7  
23·0  
Centre Frequency Acceptance  
63·1  
62·9  
62·5  
kHz  
63·1 kHz  
63·2 kHz  
512bps, Df = 4·5kHz, no AFC  
1200bps, Df = 4·0kHz, no AFC  
2400bps, Df = 4·5kHz, no AFC  
62·0  
62·0  
AFC Capture Range (AFC  
Closed Loop)  
64  
63·5  
64  
kHz  
kHz  
kHz  
512bps, Df = 4·5kHz. All at sensitivity 13dB or above  
1200bps, Df = 4·0kHz. All at sensitivity 13dB or above  
2400bps, Df = 4·5kHz. All at sensitivity 13dB or above  
1MHz Blocking  
75  
75  
73  
dB  
dB  
dB  
512bps, Df = 4·5kHz  
1200bps, Df = 4·0kHz  
2400bps, Df = 4·5kHz. LO = 215dBm  
67  
65  
78  
76  
Mark:space amplitude  
modulation acceptance  
20  
23  
dB  
2400bps, R14 = 120k(Fig. 5), room temperature  
only. See Note.  
NOTE  
The mark:space amplitude acceptance is the maximum amplitude ratio which can occur (for example due to Simulcast conditions) with 2400bps,  
using a POCSAG decoder with R14 = 120kto achieve an 80% call rate and the lower amplitude set at a sensitivity of 120dB. the maxima and  
minima of the amplitude modulation correspond to the positive and negative (or vice versa) frequency shifts of the FSK modulation.  
8
SL6679  
OPERATION OF SL6679  
Low Noise Amplifier  
To achieve optimum performance it is necessary to incor-  
porate a Low Noise RF Amplifier at the front end of the  
receiver. This is easily biased using the on-chip voltages and  
current source provided. All voltages and current sources  
used for bias of the RF amplifier, receiver and mixers should  
be RF decoupled using 1nF capacitors. The receiver also  
requires a stable Local Oscillator at the required channel  
frequency.  
the external AGC circuit by causing a PIN diode to conduct,  
reducing the signal to the RF amplifier.  
RF AGC  
The RF AGC is an automatic gain control loop that  
protects the mixer’s RF inputs, Pins 3 and 5, from large out of  
band RF signals. The loop consists of an RF received signal  
strength indicator which detect the signal at the inputs of the  
mixers. This RSSI signal is then used to control the LNA  
current source (pin 1).  
Local Oscillator  
The Local Oscillator signal is applied to the device in  
phase quadrature. This can be achieved with the use of two  
RC networks operating at their 23dB/45° transfer character-  
istic. The RC characteristics for I and Q channels are com-  
bined to give a full 90° phase differential between the LO ports  
of the device. Each LO port also requires an equal level of  
drive from the oscillator. This is achieved by forming the two  
RC networks into a power divider.  
Regulator  
The on-chip regulator should be used in conjunction with  
asuitablePNPtransistortoachieveregulation. Asthetransis-  
tor forms part of the regulator feedback loop the transistor  
should exhibit the following characteristics:  
H
FE.100 for VCE. = 0·1V  
Gyrator Filters  
If no external transistor is used, the maximum current  
sourcing capability of the regulator is limited to 30µA.  
The on-chip filters include an adjustable gyrator filter. This  
may be adjusted by changing the value of the resistor con-  
nected between pin 13 and GND. This allows adjustment of  
the filters’ cutoff frequency and allows for compensation for  
possible process variations.  
Automatic Frequency Control (Fig. 4)  
The Automatic Frequency Control consists of a detection  
circuit which gives a current output at AFC OP whose magni-  
tude and sign is a function of the difference between the local  
oscillator (fLO) and carrier frequencies (fC). This output current  
is then filtered by an off-chip integrating capacitor. The  
integrator’s output voltage is used to control a voltage control  
crystal oscillator. This closes the AFC feedback loop giving  
the automatic frequency control function. For an FSK modu-  
lated incoming RF carrier, the AFC OP current’s polarity is  
positive, i.e.current is sourced for fLO,fC,fLO14kHz and  
negative, i.e. current is sunk, for fLO.fC.fLO24kHz. The  
magnitude of the AFC OP current is a function of frequency  
offset and the transmitted data’s bit stream. If the carrier  
Audio AGC (Fig. 3)  
The Audio AGC consists of a current sink which is control-  
led by the audio (baseband) signal. It has three parameters  
that may be controlled by the user. These are the attack (turn  
on ) time, decay (duration) time and threshold level. The  
attack time is simply determined by the value of the external  
capacitor connected to TCADJ. The external capacitor is in  
series with an internal 100kresistor and the time constant  
of this circuit dictates the attack time of the AGC.  
i.e. tATTACK = 100k3C18  
frequency, (fC), equals the local oscillator frequency, (fLO  
)
The decay time is determined by the external resistor  
connected in parallel with the capacitor CTC. The decay time  
is simply  
then the magnitude of the current is zero.  
BIT RATE FILTER CONTROL  
t
DECAY = R173C18  
The logic level on pin 26 controls the cutoff frequency of  
the 1st order bit rate for a given bit rate filter capacitor at pin  
27. This allows the cutoff frequency to be changed between  
fC, 2fC and 0·43fC through the logic level on pin 26. This  
functionisachievedbychangingthevalueofthecurrentinthe  
4f detector’s output stage. A logic zero (0V to 0·1V) on pin 26  
gives a cutoff frequency of fC a logic one (VCC220·3V to VCC2)  
gives a cut off frequency of 2fC and an open circuit at pin 26  
gives a cutoff frequency of 0·43fC.  
When a large audio (baseband) signal is incident on the  
input to the AGC circuit, the variable current source is turned  
on. This causes a voltage drop across R13. The voltage  
potential between VREF and the voltage on pin 31 causes a  
current to flow in pin 30. This charges up C18 through the  
100kinternal resistor. As the voltage across the capacitor  
increases, a current source is turned on and this sinks current  
from pin 32. The current sink on pin 32 can be used to drive  
9
SL6679  
RF  
INPUT  
SL6679  
V 1  
CC  
V
V
REF  
15mV  
CC  
CURRENT  
SOURCE 1  
30  
+
TO RF AMP  
+
100k  
32  
31  
R17  
DECAY  
C18  
C
TC  
R13  
C34  
R
V
V
REF  
REF  
Fig.3 AGC schematic  
SL6679  
18  
VOLTAGE  
REFERENCE  
C
VREF  
V
2
CC  
C15  
C30  
C
INT  
1
C
INT  
2
0µA/5µA  
5µA/0µA  
AFC  
DETECTION  
CIRCUIT  
TO VCXO  
VARACTOR  
DIODE  
19  
R15  
320k  
V 1  
CC  
C21  
C22  
R11  
24  
25  
Fig. 4 AFC schematic  
Component (Fig. 4)  
C22 C21 R11  
Peak deviation  
(kHz)  
Baud rate  
(bps)  
512, 1200, 2400  
512, 1200, 2400  
512, 1200, 2400  
512, 1200, 2400  
512, 1200, 2400  
750pF 2·0nF 15kΩ  
560pF 1·5nF 15kΩ  
510pF 1·3nF 15kΩ  
470pF 1·2nF 15kΩ  
430pF 1·1nF 15kΩ  
3·5  
4
4·5  
5
5·5  
Table 2 AFC defining components  
10  
SL6679  
A F C 2  
Q 2  
Q 1  
Q
B R F C N T  
B R F 1  
L O I P  
G Y R I  
L O I P  
R 1 4  
T T V B A  
L I M T P I  
I A G C O P  
I
C C  
1
V
C 1 8  
R 1 7  
T C A D J  
I 2  
I 1  
G T H A D J  
R 1 3  
C 3 4  
Fig. 5 SL6679 characterisation circuit (see Tables 3 and 4 for component values)  
11  
SL6679  
Resistors  
4·7kΩ  
Capacitors  
Capacitors (cont.)  
Inductors  
56nH  
C1  
C2  
12pF  
O/C  
C18  
C19  
100nF L1  
1nF  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
T1  
30nH 1:1, Coilcraft M1686-A  
4·7kΩ  
1·5kΩ  
100Ω  
100Ω  
100Ω  
100Ω  
430kΩ  
220kΩ  
S/C  
C3  
220nF C20  
2·2µF  
1·5nF  
560pF TR1  
1nF TR2  
2·2µF TR3  
100nF  
100nF  
560pF  
1nF  
Transistors  
C4  
C5  
C6  
C7  
1nF  
1nF  
1nF  
1nF  
C21  
C22  
C23  
C24  
Toshiba 2SC5065  
Toshiba 2SC5065  
FMMT589 (Zetex ZTX550)  
C8  
C9  
3·3pF C25  
4·7nF C26  
4·7nF C27  
4·7pF C28  
5·6pF C29  
1nF  
1nF  
1nF  
1nF  
R9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
15kΩ  
2kΩ  
1nF  
C30  
C32  
C33  
C34  
1nF  
39kΩ  
180kΩ  
430kΩ  
220kΩ  
220kΩ  
3·3MΩ  
100nF  
100nF  
100nF  
3-10pF  
2·2µF VC1  
Table 3 Component list for 280MHz characterisation board  
Capacitors  
Capacitors (cont.)  
Inductors  
47nH  
Resistors  
L1  
T1  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
4·7kC1  
4·7kC2  
1·5kC3  
O/C  
O/C  
1nF  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
100nF  
1nF  
2·2µF  
1·5nF  
560pF  
1nF  
2·2µF  
100nF  
100nF  
560pF  
1nF  
16nH 1:1, Coilcraft Q4123-A  
Transistors  
100Ω  
100Ω  
100Ω  
100Ω  
C4  
1nF  
1nF  
1nF  
1nF  
TR1  
TR2  
TR3  
Philips BFT25A  
Philips BFT25A  
FMMT589 (Zetex ZTX550)  
C5  
C6  
C7  
430kC8  
220kC9  
3·3pF C25  
4·7nF C26  
4·7nF C27  
3·9pF C28  
3·3pF C29  
1nF  
1nF  
1nF  
1nF  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
S/C  
15kΩ  
2kΩ  
C10  
C11  
C12  
C13  
1nF  
39kΩ  
C30  
C32  
C33  
C34  
1nF  
180kC14  
430kC15  
220kC16  
220kC17  
3.3MΩ  
100nF  
100nF  
100nF  
3-10pF  
2·2µF VC1  
Table 4 Component list for 450MHz characterisation board  
12  
SL6679  
TYPICAL DC PARAMETERS (FIGS. 6 TO 8)  
2·2  
2
Fig. 6a Typical ICC  
1
1·8  
1·6  
1·4  
1·2  
1
V
V
CC = 3·0, 4·0  
0·8  
0·6  
0·4  
0·2  
CC = 1·3, 2·7  
CC = 1·0, 1·9  
V
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
0·55  
0·5  
Fig. 6b Typical ICC  
2
0·45  
0·4  
0·35  
0·3  
0·25  
0·2  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
0·15  
0·1  
V
CC = 1·0, 1·9  
0·05  
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
Conditions  
Standard Mitel characterisation board (Fig. 5)  
I
CC1 includes IRF LNA current (typ. 500µA) but does not include the regulator load current  
The Audio AGC and RF AGC are both inactive  
ICC2 is measured with BATTFLAG and DATAS OP high, fC = 282MHz  
V
BATT connected to VCC  
1
Fig. 6 Typical ICC1 and ICC2 v. supply and temperature  
13  
SL6679  
1·30  
1·28  
1·26  
1·24  
1·22  
Fig. 7a Typical VREF  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
V
CC = 1·0, 1·9  
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
1·05  
1·03  
1·01  
0·99  
0·97  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
Fig. 7b Typical VREG (load = 2·2kto GND)  
V
CC = 1·0, 1·9  
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
Conditions  
Standard Mitel characterisation board (Fig. 5)  
I
CC1 includes IRF LNA current (typ. 500µA) but does not include the regulator load current  
The Audio AGC and RF AGC are both inactive  
ICC2 is measured with BATTFLAG and DATAS OP high, fC = 282MHz  
V
BATT connected to VCC  
1
Fig. 7 Typical VREF and VREG v. supply and temperature  
14  
SL6679  
700  
600  
500  
400  
300  
200  
100  
Fig. 8a Typical IRF (VIRF = 0·3V)  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
CC = 1·0, 1·9  
V
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
700  
600  
500  
400  
300  
200  
100  
Fig. 8b Typical IRF (VIRF = 1·3V)  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
V
CC = 1·0, 1·9  
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
Conditions  
Standard Mitel characterisation board (Fig. 5)  
I
CC1 includes IRF LNA current (typ. 500µA) but does not include the regulator load current  
The Audio AGC and RF AGC are both inactive  
ICC2 is measured with BATTFLAG and DATAS OP high, fC = 282MHz  
V
BATT connected to VCC  
1
Fig. 8 Typical IRF v. supply and temperature  
15  
SL6679  
1·1  
1·08  
1·06  
1·04  
VCC = 3·5  
VCC = 2·7  
VCC = 2·3  
VCC = 1·9  
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
Conditions  
Standard Mitel characterisation board (Fig. 5)  
ICC1 includes IRF LNA current (typ. 500µA) but does not include the regulator load current  
The Audio AGC and RF AGC are both inactive  
ICC2 is measured with BATTFLAG and DATAS OP high, fC = 282MHz  
VBATT connected to VCC  
1
Fig. 9 Typical battery flag trigger voltage (VBATTFLAG = VCC/2) v. supply and temperature  
TYPICAL AC PARAMETERS (FIGS. 10 TO 13)  
TEMPERATURE °C  
240  
220  
0
20  
40  
60  
80  
VCC = 3·0, 4·0  
VCC = 1·3, 2·7  
2124·00  
2126·00  
2128·00  
2130·00  
VCC = 1·0, 1·9  
Conditions  
282 Mitel characterisation board (Fig. 5), fC = 282MHz  
1200bps baud rate, 4kHz peak deviation frequency, BER 1 in 30  
The LNA gain is set such that an RF signal of 273dBm at the LNA input, offset from the LO by 4kHz, gives a typical signal  
level of 300mVp-p at TPI and TPQ  
Fig. 10 Typical sensitivity v. supply and temperature  
16  
SL6679  
60  
58  
56  
54  
52  
Fig. 11a Typical IP3  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
CC = 1·0, 1·9  
V
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
69  
68·5  
68  
Fig. 11b Typical adjacent channel  
67·5  
67  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
V
CC = 1·0, 1·9  
66·5  
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
Conditions  
282 Mitel characterisation board (Fig. 5), fC = 282MHz  
1200bps baud rate, 4kHz peak deviation frequency, BER 1 in 30  
The LNA gain is set such that an RF signal of 273dBm at the LNA input, offset from the LO by 4kHz, gives a typical signal  
level of 300mVp-p at TPI and TPQ  
Fig. 11 Typical IP3 and adjacent channel v. supply and temperature  
17  
SL6679  
4·0  
3·5  
3·0  
2·5  
Fig. 12a Typial deviation acceptance UP  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
V
CC = 1·0, 1·9  
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
3·07  
3·02  
2·97  
2·92  
2·87  
Fig 12b Typical deviation acceptance DOWN  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
V
CC = 1·0, 1·9  
240  
220  
0
20  
40  
60  
80  
Conditions  
TEMPERATURE °C  
282 Mitel characterisation board (Fig. 5), fC = 282MHz  
1200bps baud rate, 4kHz peak deviation frequency, BER 1 in 30  
The LNA gain is set such that an RF signal of 273dBm at the LNA input, offset from the LO by 4kHz, gives a typical signal  
level of 300mVp-p at TPI and TPQ  
Fig. 12 Typical deviation acceptance v. supply and temperature  
18  
SL6679  
3·15  
3·1  
Fig. 13a Typical centre frequency acceptance  
3·05  
3
2·95  
2·9  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
CC = 1·0, 1·9  
V
2·85  
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
Fig. 13b Typical1MHz blocking  
V
V
CC = 3·0, 4·0  
CC = 1·3, 2·7  
V
CC = 1·0, 1·9  
240  
220  
0
20  
40  
60  
80  
TEMPERATURE °C  
Conditions  
282 Mitel characterisation board (Fig. 5), fC = 282MHz  
1200bps baud rate, 4kHz peak deviation frequency, BER 1 in 30  
The LNA gain is set such that an RF signal of 273dBm at the LNA input, offset from the LO by 4kHz, gives a typical signal  
level of 300mVp-p at TPI and TPQ  
Fig. 13 Typical centre frequency acceptance and 1MHz blocking v. supply and temperature  
19  
http://www.mitelsemi.com  
World Headquarters - Canada  
Tel: +1 (613) 592 2122  
Fax: +1 (613) 592 6909  
North America  
Tel: +1 (770) 486 0194  
Fax: +1 (770) 631 8213  
Asia/Pacific  
Tel: +65 333 6193  
Fax: +65 333 6192  
Europe, Middle East,  
and Africa (EMEA)  
Tel: +44 (0) 1793 518528  
Fax: +44 (0) 1793 518581  
Information relating to products and services furnished herein by Mitel Corporation or its subsidiaries (collectively “Mitel”) is believed to be reliable. However, Mitel assumes no  
liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of  
patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or  
service conveys any license, either express or implied, under patents or other intellectual property rights owned by Mitel or licensed from third parties by Mitel, whatsoever.  
Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Mitel, or non-Mitel furnished goods or services may infringe patents or  
other intellectual property rights owned by Mitel.  
This publication is issued to provide information only and (unless agreed by Mitel in writing) may not be used, applied or reproduced for any purpose nor form part of any order or  
contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this  
publication are subject to change by Mitel without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or  
service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific  
piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or  
data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in  
any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Mitel’s  
conditions of sale which are available on request.  
M Mitel (design) and ST-BUS are registered trademarks of MITEL Corporation  
Mitel Semiconductor is an ISO 9001 Registered Company  
Copyright 1999 MITEL Corporation  
All Rights Reserved  
Printed in CANADA  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

SL6679/KG/TP1N

Paging Receiver, Bipolar, PQFP32, 1MM HEIGHT, PLASTIC, QFP-32
DYNEX

SL6679/KG/TP1N

Paging Receiver, Bipolar, PQFP32, TQFP-32
MICROSEMI

SL6679/KG/TP1N

Telecom Circuit, Bipolar, PQFP32,
ZARLINK

SL6679/KG/TP1Q

Paging Receiver, PQFP32, 1MM HEIGHT, PLASTIC, QFP-32
DYNEX

SL6679KG

Direct Conversion FSK Data Receiver
MITEL

SL6679TP1N

Direct Conversion FSK Data Receiver
MITEL

SL6679TP1Q

Direct Conversion FSK Data Receiver
MITEL

SL6691CDP

Telecom Circuit, 1-Func, PDIP16,
DYNEX

SL66N0

Telecom and Datacom Connector, 66 Contact(s), Male, Solder Terminal
MOLEX

SL66N1

Telecom and Datacom Connector, 66 Contact(s), Male, Solder Terminal
MOLEX

SL66N2

Telecom and Datacom Connector, 66 Contact(s), Male, Solder Terminal
MOLEX

SL66N3

Telecom and Datacom Connector, 66 Contact(s), Male, Solder Terminal
MOLEX