M2L64S40DWG-6 [MITSUBISHI]

Synchronous DRAM, 4MX16, 7ns, CMOS, PBGA54, BGA-54;
M2L64S40DWG-6
型号: M2L64S40DWG-6
厂家: Mitsubishi Group    Mitsubishi Group
描述:

Synchronous DRAM, 4MX16, 7ns, CMOS, PBGA54, BGA-54

时钟 动态存储器 内存集成电路
文件: 总47页 (文件大小:587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Some of contents are described for general products and are subject to change without notice.  
DESCRIPTION  
M2L64S40DWG is a 4-bank x 1,048,576-word x 16-bit, low power synchronous DRAM, with1.8V  
/2.5V interface. All inputs and outputs are referenced to the rising edge of CLK. They achieves low  
power consumption with the lower VDD(=2.5V) and VDDQ(=1.8V/2.5V), compared to the normal  
synchronous DRAM, and has the additional functions standarized in JEDEC for reducing self-refresh  
current. It is suitable for main memory in mobile system, such as PDA and 3G phone terminal.  
FEATURES  
M2L64S40DWG  
ITEM  
-6  
-7  
CL3  
CL2  
8ns  
9.5ns  
9.5ns  
19 ns  
Clock Cycle Time  
(Min.)  
(Max.)  
tCLK  
tAC  
9.5ns  
19 ns  
CL1  
CL3  
CL2  
CL1  
7ns  
7ns  
8ns  
8ns  
Access Time from CLK  
17ns  
18ns  
Icc1  
Icc6  
Icc7  
Operation Current(Max.) (Single Bank)  
55mA  
0.3mA  
10 uA  
50mA  
0.3mA  
10uA  
Self Refresh Current  
(Max.)  
(Max.)  
Deep Power Down Current  
- 2.5V±0.2V power supply and 1.8V±0.15V/ 2.5V±0.2V I/O power supply for output  
- Operating temperature range is -20'C ~ 85'C for -6L/-7L version. (for -6/-7 : 0'C~70'C)  
- Max. Clock frequency -6:125MHz(CL3), -7:105MHz(CL3)  
- Fully Synchronous operation referenced to clock rising edge  
- 4 bank operation controlled by BA0 & BA1 (Bank Address)  
- /CAS latency- 1, 2 and 3 (programmable)  
- Burst length- 1, 2, 4, 8 and full page (programmable)  
- Burst type- sequential and interleave (programmable)  
- Byte Control- DQML and DQMU  
- Random column access  
- Auto precharge and All bank precharge controlled by A10  
- Low power function: Deep power down,  
Temperature compensated self-refresh, and  
Partial array self-refresh  
- 4096 refresh cycles every 64ms  
-1.8V/ 2.5V Interface  
- 54 ball BGA ( M2L64S40DWG )  
MITSUBISHI ELECTRIC  
1
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
M2L64S40DWG PIN Configration & Package Dimension  
8.0 mm  
6.4 mm  
0.8 mm  
0.8 mm  
6.4 mm  
9.0 mm  
A
B
C
D
E
F
9 8  
3 2 1  
7
G
H
J
<Bottom View>  
54ea -  
0.45 mm  
Max. 1.2 mm  
7
8
9
Vdd  
1
Vss  
2
3
CLK  
CKE  
/CS  
: Master Clock  
DQ15 VssQ A VddQ DQ0  
: Clock Enable  
: Chip Select  
B
C
D
E
DQ14 DQ13 VddQ  
DQ12 DQ11 VssQ  
DQ10 DQ9 VddQ  
VssQ  
VddQ  
VssQ  
Vdd  
DQ2  
DQ4  
DQ6  
DQ1  
DQ3  
DQ5  
/RAS  
/CAS  
/WE  
: Row Address Strobe  
: Column Address Strobe  
: Write Enable  
DQ0-15 : Data I/O  
DQ8  
NC  
Vss  
CKE  
A9  
LDQM DQ7  
DQM  
: Output Disable/ Write Mask  
: Address Input  
UDQM CLK  
F /CAS  
/RAS  
BA1  
A1  
/WE  
/CS  
A0-11  
BA0,1 : Bank Address  
G
H
J
NC  
A8  
A11  
A7  
BA0  
A0  
Vdd  
: Power Supply  
A6  
A10  
Vdd  
VddQ  
Vss  
: Power Supply for Output  
: Ground  
Vss  
A5  
A4  
A3  
A2  
VssQ  
: Ground for Output  
<Top View>  
MITSUBISHI ELECTRIC  
2
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
BLOCK DIAGRAM  
DQ0-7 and DQ8-15  
I/O Buffer  
Memory Array  
4096 x256 x16  
Cell Array  
Bank #0  
Memory Array  
4096 x256 x16  
Cell Array  
Memory Array  
4096 x256 x16  
Cell Array  
Memory Array  
4096 x256 x16  
Cell Array  
Bank #1  
Bank #2  
Bank #3  
Mode  
Register  
Control Circuitry  
Address Buffer  
Control Signal Buffer  
Clock Buffer  
/RAS  
/WE  
A0-11  
CLK  
CKE  
/CS  
/CAS  
DQL,U  
BA0,1  
Type Designation Code  
M2 L 64 S 4 0  
These rules are only applied to the Synchronous DRAM family.  
D
WG -7  
Access Item  
-6 : 125MHz (CL3)  
-7 : 105MHz (CL3)  
Package Type  
Process Generation  
Function  
WG: 54 ball BGA  
D : 5th gen.  
Reserved for Future Use  
4 : x16  
Organization  
Synchronous DRAM  
Density  
64 : 64Mbit  
Interface  
L : Vdd=2.5V, VddQ=1.8V/2.5V  
Mitsubishi DRAM  
MITSUBISHI ELECTRIC  
3
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
PIN FUNCTION  
Master Clock:  
CLK  
Input  
All other inputs are referenced to the rising edge of CLK.  
Clock Enable:  
CKE controls internal clock. When CKE is low, internal clock for the  
following cycle is ceased. CKE is also used to select auto / self refresh. After self  
refresh mode is started, CKE becomes asynchronous input. Self refresh is  
maintained as long as CKE is low.  
CKE  
Input  
Chip Select:  
/CS  
Input  
Input  
When /CS is high, any command means No Operation.  
/RAS, /CAS, /WE  
Combination of /RAS, /CAS, /WE defines basic commands.  
A0-11 specify the Row / Column Address in conjunction with BA0,1.  
The Row Address is specified by A0-11. The Column Address is specified by  
A0-7 (x16).  
A0-11  
Input  
A10 is also used to indicate precharge option. When A10 is high at a read /  
write command, an auto precharge is performed. When A10 is high at a  
precharge command, all banks are precharged.  
Bank Address:  
BA0,1 specifies one of four banks to which a command is applied. BA0,1 must  
be set with ACT, PRE, READ, WRITE commands.  
BA0,1  
Input  
Data In and Data out are referenced to the rising edge of CLK.  
DQ0-15  
Input / Output  
Din Mask and Output Disable:  
When DQMU, L is high in burst write, Din for the current cycle is masked.  
When DQMU, L is high in burst read, Dout is disabled at the next but one  
cycle.  
DQM(U, L)  
Input  
Power Supply for the memory array and peripheral circuitry.  
VddQ and VssQ are supplied to the Output Buffers only.  
Vdd, Vss  
Power Supply  
Power Supply  
VddQ, VssQ  
MITSUBISHI ELECTRIC  
4
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
BASIC FUNCTIONS  
The M2L64S40DWG provides basic functions, bank (row) activate, burst read and write, bank (row)  
precharge, and auto and self refresh. Each command is defined by control signals of /RAS, /CAS and /WE at  
CLK rising edge. In addition to 3 signals, /CS ,CKE and A10 are used as chip select, refresh option, and  
precharge option, respectively. To know the detailed definition of commands, please see the command  
truth table.  
CLK  
Chip Select : L=select, H=deselect  
Command  
/CS  
/RAS  
/CAS  
/WE  
CKE  
A10  
Command  
Command  
define basic commands  
Refresh Option @refresh command  
Precharge Option @precharge or read/write command  
Activate (ACT) [/RAS =L, /CAS =/WE =H]  
ACT command activates a row in an idle bank indicated by BA.  
Read (READ) [/RAS =H, /CAS =L, /WE =H]  
READ command starts burst read from the active bank indicated by BA. First output data appears after  
/CAS latency. When A10 =H at this command, the bank is deactivated after the burst read (auto-  
precharge, READA)  
Write (WRITE) [/RAS =H, /CAS =/WE =L]  
WRITE command starts burst write to the active bank indicated by BA. Total data length to be written  
is set by burst length. When A10 =H at this command, the bank is deactivated after the burst write  
(auto-precharge, WRITEA).  
Precharge (PRE) [/RAS =L, /CAS =H, /WE =L]  
PRE command deactivates the active bank indicated by BA. This command also terminates burst read  
/write operation. When A10 =H at this command, all banks are deactivated (precharge all, PREA).  
Auto-Refresh (REFA) [/RAS =/CAS =L, /WE =CKE =H]  
REFA command starts auto-refresh cycle. Refresh address are generated internally. After this  
command, the banks are precharged automatically.  
MITSUBISHI ELECTRIC  
5
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
COMMAND TRUTH TABLE  
CKE CKE  
A0-9  
COMMAND  
MNEMONIC  
/CS /RAS /CAS /WE BA1 BA0 A10  
n-1  
n
A11  
Deselect  
DESEL  
NOP  
H
X
H
L
L
X
H
L
X
H
H
X
H
H
X
X
V
X
X
V
X
X
V
X
X
V
No Operation  
H
H
X
X
Row Address Entry &  
Bank Activate  
ACT  
PRE  
Single Bank Precharge  
H
H
X
X
L
L
L
L
H
H
L
L
V
X
V
X
L
X
X
PREA  
WRITE  
WRITEA  
READ  
READA  
REFA  
REFS  
H
Precharge All Banks  
Column Address Entry  
H
X
L
H
L
L
V
V
L
V
& Write  
Column Address Entry &  
H
H
X
X
L
L
H
H
L
L
L
V
V
V
V
H
L
V
V
Write with Auto-Precharge  
Column Address Entry  
& Read  
H
Column Address Entry &  
Read with Auto-Precharge  
H
H
X
H
L
L
H
L
L
L
H
H
V
X
V
X
H
X
V
X
Auto-Refresh  
Self-Refresh Entry  
H
L
L
L
L
H
X
X
X
X
L
L
H
H
H
L
X
H
X
H
X
H
X
X
X
X
X
X
X
X
Self-Refresh Exit  
REFSX  
TBST  
Deep Power Down Exit  
Burst Terminate  
H
X
L
H
H
L
X
X
X
X
H
H
H
L
X
X
L
L
L
L
X
L
L
L
L
L
L
L
X
L
H
X
X
L
L
L
L
X
X
V*1  
V*2  
X
Mode Register Set  
Extended Mode Register Set  
Deep Power Down  
MRS  
EMRS  
DPD  
H
X
H
X
X
X
H
X
Deep Power Down Exit  
DPDX  
H=High Level, L=Low Level, V=Valid, X=Don't Care, n=CLK cycle number  
NOTE:  
1. A7-A9,11 =0, A0-A6 =Mode Address  
2. A5-A11 =0, A0-A4 =Extended Mode Address  
MITSUBISHI ELECTRIC  
6
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
SIMPLIFIED STATE DIAGRAM  
DEEP  
DPDX  
POWER  
EXTENDED  
MODE  
DOWN  
REGISTER  
SET  
DPD  
EMRS  
MODE  
REGISTER  
SET  
MRS  
REFA  
AUTO  
IDLE  
REFRESH  
REFS  
CKEL  
REFSX  
CKEH  
SELF  
REFRESH  
ACT  
POWER  
DOWN  
CKEL  
CKEH  
CLK  
SUSPEND  
ROW  
ACTIVE  
TERM  
TERM  
READ  
WRITE  
WRITEA READA  
CKEL  
CKEH  
CKEL  
CKEH  
READ  
WRITE  
READ  
WRITE  
READ  
WRITE  
SUSPEND  
SUSPEND  
READA  
WRITEA  
WRITEA  
READA  
PRE  
CKEL  
CKEH  
CKEL  
CKEH  
READA  
WRITEA  
WRITEA  
PRE  
READA  
SUSPEND  
SUSPEND  
PRE  
POWER  
APPLIED  
PRE  
CHARGE  
POWER  
ON  
PRE  
Automatic Sequence  
Command Sequence  
MITSUBISHI ELECTRIC  
7
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
POWER ON SEQUENCE  
Before starting normal operation, the following power on sequence is necessary to prevent a  
SDRAM from damaged or malfunctioning.  
1. Apply power and start clock. Attempt to maintain CKE high, DQM high and NOP condition at the  
inputs.  
2. Maintain stable power, stable clock, and NOP input conditions for a minimum of 200µs.  
3. Issue precharge commands for all banks. (PRE or PREA)  
4. After all banks become idle state (after tRP), issue 2 or more auto-refresh commands.  
5. Issue a normal mode register set command to initialize the normal mode register.  
6. Issue a extended mode register set command to initialize the extended mode register.  
After these sequence, the SDRAM is idle state and ready for normal operation.  
CLK  
NORMAL MODE REGISTER  
/CS  
Burst Length, Burst Type, /CAS Latency and Write Mode can be  
programmed by setting the normal mode register (MRS) with BA0-BA1  
=0. The normal mode register stores these data until the next MRS  
command, which may be issued when both banks are in idle state. After  
tRSC from a MRS command, the SDRAM is ready for the extended  
mode resister set (EMRS). Unused bit A7-A8, A10-A11have to be  
programmed to "0".  
/RAS  
/CAS  
/WE  
BA0,1  
A11-A0  
V
BA0 BA1 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
0
0
0
0
WM  
0
0
LTMODE  
BT  
BL  
Write  
0
1
Burst Write  
Mode  
Single Write  
BL  
BT=0  
BT=1  
1
1
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
2
2
CL  
/CAS LATENCY  
4
4
BURST  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
R
1
8
8
LENGTH  
R
R
R
R
R
R
R
2
LATENCY  
MODE  
3
Full Page  
R
R
R
R
BURST  
TYPE  
0
1
SEQUENTIAL  
INTERLEAVED  
R: Reserved for Future Use  
MITSUBISHI ELECTRIC  
8
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
CLK  
Read  
Write  
Y
Command  
Y
Address  
DQ  
Q0  
Q1  
Q2  
Q3  
D0  
D1  
D2  
D3  
/CAS Latency  
CL= 3  
BL= 4  
Burst Length  
Burst Length  
Burst Type  
Initial Address BL  
A2 A1 A0  
Column Addressing  
Sequential  
Interleaved  
0
0
0
0
1
1
1
1
-
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
0
1
1
2
3
4
5
6
7
0
1
2
2
3
4
5
6
7
0
1
2
3
3
4
5
6
7
0
1
2
3
0
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
1
1
0
3
2
5
4
7
6
1
0
2
3
0
1
6
7
4
5
2
3
3
2
1
0
7
6
5
4
3
2
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
8
-
4
2
-
-
1
1
0
1
2
3
3
0
0
1
1
2
2
3
3
2
0
1
1
0
-
-
-
-
0
1
0
1
1
0
0
1
1
0
MITSUBISHI ELECTRIC  
9
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
EXTENDED MODE REGISTER  
Low power functions such as Partial Array Self-Refresh (PASR) and  
Temperature Compensated Self-Refresh (TCSR) can be programmed by  
setting the extended mode register (EMRS) with BA1=1 and BA0=0.  
The main difference between EMRS and MRS is the input of BA0-1.  
The mode register stores these data until the next EMRS command,  
which may be issued when both banks are in idle state. After tRSC from  
a EMRS command, the SDRAM is ready for new command.  
CLK  
/CS  
/RAS  
/CAS  
/WE  
BA0  
Unused bit A5-A11 have to be programmed to "0".  
BA1  
V
A11-A0  
PARTIAL ARRAY SELF-REFRESH (PASR) reduces the self-refresh  
current by reducing the memory array size to be refreshed during the self-  
refresh operation. Two banks (BA1=0) and one bank ( BA1=BA0=0) can be  
selected in case of 32Mb and 16Mb partial array self-refresh, respectively.  
Temperature Compensated Self-Refresh (TCSR) is used for  
programming the refresh rate for self-refresh mode to allow the system to  
control power as a function of the temperature.  
Three kinds of TCSR select the self-refresh rate for the maximum  
temperature of 15'C, 45'C and 85'C *1).  
BA0 BA1 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
0* 0* 0* 0* 0*  
0
1
0* 0*  
TCSR  
PASR  
A logic 0 should be programmed to unused bits  
to ensure future compatibility (indicated by 0*).  
Self-Refresh Coverage  
All banks  
0 0 0  
Banks 0 and 1 (BA1=0)  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Bank 0 (BA1=BA0=0)  
R
PASR  
Temperature (max)  
R
0 0  
0 1  
1 0  
1 1  
85 'C *1)  
45 'C  
15 'C  
R
TCSR  
R
R
R
R: Reserved for Future Use  
Note) *1 Only for -6L/-7L. (For -6/-7 : Ta max.= 70'C)  
MITSUBISHI ELECTRIC  
10  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
OPERATIONAL DESCRIPTION  
BANK ACTIVATE  
One of four banks is activated by an ACT command.  
An bank is selected by BA0-1. A row is selected by A0-11.  
Multiple banks can be active state concurrently by issuing multiple ACT commands.  
Minimum activation interval between one bank and another bank is tRRD.  
PRECHARGE  
An open bank is deactivated by a PRE command.  
A bank to be deactivated is designated by BA0-1.  
When multiple banks are active, a precharge all command (PREA, PRE + A10=H) deactivates all of  
open banks at the same time. BA0-1 are "Don't Care" in this case.  
Minimum delay of an ACT command after a PRE command to the same bank is tRP.  
Bank Activation and Precharge All (BL=4, CL=2)  
CLK  
Command  
A0-9,11  
A10  
ACT  
Xa  
ACT  
Xb  
READ  
Yb  
PRE  
ACT  
Xa  
tRRD  
tRCD  
tRP  
Xa  
Xb  
0
1
Xa  
BA0-1  
DQ  
00  
01  
01  
00  
Qb0  
Qb1  
Qb2  
Qb3  
Precharge All  
READ  
A READ command can be issued to any active bank. The start address is specified by A0-7 (x16). 1st  
output data is available after the /CAS Latency from the READ. The consecutive data length is defined by  
the Burst Length. The address sequence of the burst data is defined by the Burst Type. Minimum delay  
of a READ command after an ACT command to the same bank is tRCD.  
When A10 is high at a READ command, auto-precharge (READA) is performed. Any command (READ,  
WRITE, PRE, ACT,TBST) to the same bank is inhibited till the internal precharge is complete. The  
internal precharge starts at the BL after READA. The next ACT command can be issued after (BL +  
tRP) from the previous READA. In any case, tRCD+BL > tRASmin must be met.  
=
MITSUBISHI ELECTRIC  
11  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Multi Bank Interleaving Read (CL=2, BL=4)  
CLK  
Command  
A0-9,11  
A10  
ACT  
Xa  
READ  
Ya  
ACT  
Xb  
READ PRE  
Yb  
ACT  
Xa  
tRCD  
tRCD  
tRP  
Xa  
0
Xb  
0
01  
0
Xa  
BA0-1  
DQ  
00  
00  
01  
00  
00  
Qa0  
Qa1  
Qa2  
Qa3 Qb0  
Qb1  
Qb2  
Qb3  
Read with Auto-Precharge (CL=2, BL=4)  
CLK  
Command  
ACT  
Xa  
READ  
Ya  
ACT  
tRCD  
BL  
tRP  
A0-9,11  
A10  
Xa  
Xa  
00  
Xa  
1
BA0-1  
DQ  
00  
00  
Qa0  
Qa1  
Qa2  
Qa3  
internal precharge starts  
Auto-Precharge Timing (READ, BL=4)  
CLK  
Command  
ACT  
READ  
ACT  
tRCD  
BL  
DQ  
DQ  
CL=2  
Qa0  
Qa1  
Qa0  
Qa2  
Qa1  
Qa3  
CL=3  
Qa2 Qa3  
internal precharge starts  
MITSUBISHI ELECTRIC  
12  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
WRITE  
A WRITE command can be issued to any active bank.The start address is specified by A0-7 (x16). 1st  
input data is set at the same cycle as the WRITE. The consecutive data length to be written is defined by  
the Burst Length. The address sequence of burst data is defined by the Burst Type. Minimum delay of a  
WRITE command after an ACT command to the same bank is tRCD. From the last input data to the  
PRE command, the write recovery time (tWR) is required. When A10 is high at a WRITE command,  
auto-precharge (WRITEA) is performed. Any command (READ, WRITE, PRE, ACT, TBST) to the  
same bank is inhibited till the internal precharge is complete. The internal precharge starts at tWR after  
the last input data cycle. The next ACT command can be issued after (BL + tWR -1 +tRP) from the  
previous WRITEA. In any case, tRCD + BL + tWR -1 > tRASmin must be met.  
=
Write (BL=4)  
CLK  
Command  
A0-9,11  
A10  
ACT  
Xa  
Write  
Ya  
PRE  
ACT  
Xa  
tRCD  
BL  
tRP  
Xa  
0
0
Xa  
BA0-1  
DQ  
00  
00  
00  
00  
tWR  
Da0  
Da1  
Da2  
Da3  
Write with Auto-Precharge (BL=4)  
CLK  
Command  
ACT  
Xa  
Write  
ACT  
Xa  
tRCD  
BL  
tRP  
A0-9,11  
A10  
Ya  
1
Xa  
Xa  
BA0-1  
DQ  
00  
00  
00  
tWR  
Da0  
Da1  
Da2  
Da3  
internal precharge starts  
MITSUBISHI ELECTRIC  
13  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
BURST INTERRUPTION  
[ Read Interrupted by Read ]  
Burst read operation can be interrupted by new read of any active bank. Random column access is  
allowed. READ to READ interval is minimum 1 CLK.  
Read interrupted by Read (CL=2, BL=4)  
CLK  
Command  
A0-9,11  
A10  
READ  
Ya  
READ READ  
Yb  
Yc  
0
0
0
00  
BA0-1  
DQ  
00  
10  
Qa0 Qa1  
Qa2  
Qb0  
Qc0  
Qc1  
Qc2  
Qc3  
[ Read Interrupted by Write ]  
Burst read operation can be interrupted by write of any active bank. Random column access is allowed.  
In this case, the DQ should be controlled adequately by using the DQM to prevent the bus contention.  
The output is disabled automatically 1 cycle after WRITE assertion.  
Read interrupted by Write (CL=2, BL=4)  
CLK  
Command  
A0-9,11  
A10  
ACT  
Xa  
READ  
Ya  
Write  
Ya  
0
Xa  
0
BA0-1  
00  
00  
00  
DQM  
DQ  
Qa0  
Da0  
Da1  
Da2  
Da3  
Output disable by DQM by WRITE  
MITSUBISHI ELECTRIC  
14  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
[ Read Interrupted by Precharge ]  
A burst read operation can be interrupted by a precharge of the same bank . READ to PRE interval is  
minimum 1 CLK.  
A PRE command to output disable latency is equivalent to the /CAS Latency.  
Read interrupted by Precharge (BL=4)  
CLK  
Command  
READ  
PRE  
Q1  
DQ  
Q0  
Q2  
Command  
READ  
PRE  
CL=2  
DQ  
Q0  
Q1  
Command  
READ PRE  
DQ  
Q0  
Command  
READ  
PRE  
Q0  
DQ  
Q1  
Q1  
Q2  
Command  
READ  
PRE  
CL=3  
DQ  
Q0  
Q0  
Command  
READ PRE  
DQ  
MITSUBISHI ELECTRIC  
15  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
[ Read Interrupted by Burst Terminate ]  
Similarly to the precharge, a burst terminate command can interrupt the burst read operation and  
disable the data output. The terminated bank remains active. READ to TBST interval is minimum 1  
CLK. A TBST command to output disable latency is equivalent to the /CAS Latency.  
Read interrupted by Terminate (BL=4)  
CLK  
Command  
READ  
TBST  
Q1  
DQ  
Q0  
Q2  
Command  
READ  
TBST  
CL=2  
DQ  
Q0  
Q1  
Command  
READ TBST  
DQ  
Q0  
Command  
READ  
TBST  
Q0  
DQ  
Q1  
Q1  
Q2  
Command  
READ  
TBST  
CL=3  
DQ  
Q0  
Q0  
Command  
READ TBST  
DQ  
MITSUBISHI ELECTRIC  
16  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
[ Write Interrupted by Write ]  
Burst write operation can be interrupted by new write of any active bank. Random column access is  
allowed. WRITE to WRITE interval is minimum 1 CLK.  
Write interrupted by Write (BL=4)  
CLK  
Command  
A0-9,11  
A10  
Write  
Ya  
Write Write  
Yb  
0
Yc  
0
0
BA0-1  
DQ  
00  
00  
10  
Da0  
Da1  
Da2  
Db0 Dc0  
Dc1  
Dc2  
Dc3  
[ Write Interrupted by Read ]  
Burst write operation can be interrupted by read of any active bank. Random column access is allowed.  
WRITE to READ interval is minimum 1 CLK. The input data on DQ at the interrupting READ cycle is  
"Don't Care".  
Write interrupted by Read (CL=2, BL=4)  
CLK  
Command  
A0-9,11  
A10  
ACT  
Xa  
Write  
Ya  
READ  
Yb  
Xa  
0
0
BA0-1  
DQ  
00  
00  
00  
Da0  
Da1  
Qb0  
Qb1  
Qb2 Qb3  
don't care  
MITSUBISHI ELECTRIC  
17  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
[ Write Interrupted by Precharge ]  
Burst write operation can be interrupted by precharge of the same bank. Write recovery time (tWR) is  
required from the last data to PRE command. During write recovery, data inputs must be masked by  
DQM.  
Write interrupted by Precharge (BL=4)  
CLK  
Command  
A0-9,11  
A10  
ACT  
Xa  
0
Write  
Ya  
0
PRE  
ACT  
Xa  
0
tRP  
0
BA0-1  
DQM  
00  
00  
00  
00  
tWR  
DQ  
Da0  
Da1  
[ Write Interrupted by Burst Terminate ]  
Burst terminate command can terminate burst write operation. In this case, the write recovery time is  
not required and the bank remains active. WRITE to TBST interval is minimum 1 CLK.  
Write interrupted by Terminate (BL=4)  
CLK  
Command  
A0-9,11  
A10  
ACT  
Xa  
0
Write  
Ya  
TBST  
Write  
Yb  
0
0
BA0-1  
DQ  
00  
00  
00  
Da0  
Da1  
Db0  
Db1 Db2  
Db3  
MITSUBISHI ELECTRIC  
18  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
[ Write with Auto-Precharge Interrupted by Write or Read to another Bank ]  
Burst write with auto-precharge can be interrupted by write or read to another bank. Next ACT  
comand can be issued after (BL+tWR-1+tRP) from the WRITEA. Auto-precharge interruption by a  
command to the same bank is inhibited.  
WRITEA interrupted by WRITE to another bank (BL=4)  
CLK  
ACT  
Xa  
Command  
A0-9,11  
A10  
Write  
Ya  
Write  
BL  
tRP  
Yb  
tWR  
Xa  
1
0
00  
BA0-1  
DQ  
00  
10  
Da0  
Da1  
Db0 Db1  
Db2  
Db3  
auto-precharge interrupted  
activate  
WRITEA interrupted by READ to another bank (CL=2, BL=4)  
CLK  
Command  
Write  
Ya  
Read  
BL  
ACT  
Xa  
tRP  
A0-9,11  
A10  
Yb  
tWR  
Xa  
1
0
00  
BA0-1  
DQ  
00  
10  
Da0  
Da1  
Qb0  
Qb1  
Qb2 Qb3  
auto-precharge interrupted  
activate  
MITSUBISHI ELECTRIC  
19  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
[ Read with Auto-Precharge Interrupted by Read to another Bank ]  
Burst read with auto-precharge can be interrupted by read to another bank. Next ACT comand can  
be issued after (BL+tRP) from the READA. Auto-precharge interruption by a command to the same  
bank is inhibited.  
READA interrupted by READ to another bank (CL=2, BL=4)  
CLK  
Command  
A0-9,11-12  
A10  
Read  
Ya  
1
Read  
BL  
ACT  
Xa  
tRP  
Yb  
0
Xa  
BA0-1  
00  
10  
00  
DQ  
Qa0 Qa1  
Qb0  
Qb1  
Qb2  
activate  
Qb3  
auto-precharge interrupted  
Full Page Burst  
Full page burst length is available for only the sequential burst type. Full page burst read or write  
is repeated untill a Precharge or a Burst Terminate command is issued. In case of the full page  
burst, a read or write with auto-precharge command is illegal.  
Single Write  
When sigle write mode is set, burst length for write is always one, independently of Burst Length  
defined by (A2-0).  
MITSUBISHI ELECTRIC  
20  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
AUTO REFRESH  
Single cycle of auto-refresh is initiated with a REFA (/CS= /RAS= /CAS= L, /WE= /CKE= H)  
command. The refresh address is generated internally. 4096 REFA cycles within 64ms refresh 64Mbit  
memory cells. The auto-refresh is performed on 4 banks concurrently. Before performing an auto-  
refresh, all banks must be in idle state. Auto-refresh to auto-refresh interval is minimum tRFC. Any  
command must not be issued before tRFC from the REFA command.  
Auto-Refresh  
CLK  
/CS  
NOP or DESELECT  
/RAS  
/CAS  
/WE  
CKE  
minimum tRFC  
A0-11  
BA0-1  
Auto Refresh on All Banks  
Auto Refresh on All Banks  
MITSUBISHI ELECTRIC  
21  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
SELF REFRESH  
Self-refresh mode is entered by issuing a REFS command (/CS= /RAS= /CAS= L, /WE= H, CKE= L).  
Once the self-refresh is initiated, it is maintained as long as CKE is kept low. During the self-refresh mode,  
CKE is asynchronous and the only enabled input. All other inputs including CLK are disabled and  
ignored, so that power consumption due to synchronous inputs is saved. To exit the self-refresh,  
supplying stable CLK inputs, asserting DESEL or NOP command and then asserting CKE=H. After  
tRFC from the 1st CLK edge following CKE=H, all banks are in idle state and a new command can be  
issued, but DESEL or NOP commands must be asserted till then.  
Self-Refresh  
CLK  
Stable CLK  
NOP  
/CS  
/RAS  
/CAS  
/WE  
CKE  
new command  
X
A0-11  
BA0-1  
00  
Self Refresh Entry  
Self Refresh Exit  
minimum tRFC  
for recovery  
MITSUBISHI ELECTRIC  
22  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
DEEP POWER DOWN  
During the deep power down mode all input except CKE is disabled and the power of the whole memory  
array is cut, so that the maximum power reduction is achieved. Once the device enters deep power down  
mode, data will not be retained.  
[Deep Power Down Entry]  
Deep power down mode is entered by issuing a DPD command (/CS= /WE= L, / RAS=/CAS= H, CKE=  
L). All banks is needed to be idle state in advance before issuing DPD command. If precharge all command  
is needed, a DPD command can be issued after tRP. Once the deep power down is initiated, it is  
maintained as long as CKE is kept low. During the deep power down mode, CKE is asynchronous and the  
only enabled input.  
Deep Power Down Entry  
CLK  
/CS  
/RAS  
/CAS  
/WE  
CKE  
A0-9,11  
A10  
BA0-1  
tRP  
Precharge All  
( If necessary )  
Deep Power Down  
Entry  
MITSUBISHI ELECTRIC  
23  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
[Deep Power Down Exit]  
To exit the deep power down, supplying stable CLK inputs, asserting NOP command and then asserting  
CKE=H. The power on sequence is required before issuing a new command.  
Deep Power DownExit  
CLK  
/CS  
/RAS  
/CAS  
/WE  
CKE  
A0-9,11  
A10  
Key  
Key  
BA0  
BA1  
200us  
tRP  
tRFC  
tRFC  
tRSC  
tRSC  
Deep Power  
Down Exit  
Precharge Auto-Refresh Auto-Refresh  
All  
Normal  
MRS  
Extended  
MRS  
New Command  
MITSUBISHI ELECTRIC  
24  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
CLK SUSPEND and POWER DOWN  
CKE controls the internal CLK at the following cycle. Figure below shows how CKE works. By  
negating CKE, the next internal CLK is suspended. The purpose of CLK suspend is power down, output  
suspend or input suspend. CKE is a synchronous input except during the self-refresh mode. CLK  
suspend can be performed either when the banks are active or idle. A command at the suspended cycle is  
ignored.  
ext.CLK  
tIH  
tIS  
tIH  
tIS  
CKE  
int.CLK  
Power Down by CKE  
CLK  
CKE  
Standby Power Down  
Active Power Down  
Command  
PRE NOP NOP NOP  
CKE  
Command  
ACT NOP NOP NOP  
DQ Suspend by CKE  
CLK  
CKE  
Command  
Write  
Read  
D0  
D1  
D2  
D3  
DQ  
Q0  
Q1  
Q2  
Q3  
MITSUBISHI ELECTRIC  
25  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
DQM CONTROL  
DQM(U, L) is a dual functional signal defined as the data mask for writes and the output disable for  
reads. During writes, DQM(U, L) masks input data word by word. DQM(U, L) to Data In latency is  
0. During reads, DQM(U, L) forces output to Hi-Z word by word. DQM(U, L) to output Hi-Z  
latency is 2.  
DQM Function  
CLK  
Write  
Read  
Command  
DQM(U, L)  
D0  
D2  
D3  
Q0  
Q1  
Q3  
DQ  
masked by DQM(U, L)=H  
disabled by DQM(U, L)=H  
MITSUBISHI ELECTRIC  
26  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Vdd  
VddQ  
VI  
Parameter  
Conditions  
Ratings  
-0.5 ~ 3.7  
Unit  
V
Supply Voltage  
with respect to Vss  
Supply Voltage for Output with respect to VssQ  
-0.5 ~ 3.7  
V
Input Voltage  
Output Voltage  
with respect to Vss  
-0.5 ~ Vdd+0.5  
V
VO  
with respect to VssQ -0.5 ~ VddQ+0.5  
50  
V
IO  
Output Current  
mA  
mW  
'C  
Pd  
Power Dissipation  
Operating Temperature  
Storage Temperature  
Ta = 25'C  
1000  
Topr  
Tstg  
-20 ~ 85 *1)  
-65 ~ 150  
'C  
Note 1) Only for -6L/-7L parts. -6/-7 parts has the spec. of Topr : 0 ~ 70 'C.  
RECOMMENDED OPERATING CONDITIONS  
(Ta=-20 ~ 85'C *1), unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
2.3  
0
Typ.  
2.5  
0
Max.  
2.7  
0
Vdd  
Vss  
Supply Voltage  
Supply Voltage  
V
V
VddQ(2.5V)  
VddQ(1.8V)  
Supply Voltage  
for Output  
2.3  
2.5  
1.8  
2.7  
V
VddQ  
1.65  
1.95  
VssQ  
VIH  
VIL  
Supply Voltage for Output  
0
0
0
V
V
V
High-Level Input Voltage all inputs VddQ x 0.8  
Low-Level Input Voltage all inputs -0.3  
VddQ+0.3  
0.3  
Note 1) Only for -6L/-7L parts. For -6/-7 parts : Ta= 0 ~ 70 'C.  
CAPACITANCE  
(Ta=-20 ~ 85'C *1) , Vdd = 2.5 ± 0.2V, VddQ = 1.8 ± 0.15V / 2.5V± 0.2V, Vss = VssQ = 0V,  
unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test Condition  
Unit  
Min.  
2.5  
2.5  
2.5  
4.0  
Max.  
3.8  
3.8  
3.5  
6.5  
CI(A) Input Capacitance, address pin  
CI(C) Input Capacitance, control pin  
CI(K) Input Capacitance, CLK pin  
CI/O Input Capacitance, I/O pin  
pF  
pF  
pF  
pF  
VI=0.9v  
f=1MHz  
VI=200mVrms  
Note 1) Only for -6L/-7L parts. For -6/-7 parts : Ta= 0 ~ 70 'C.  
MITSUBISHI ELECTRIC  
27  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
AVERAGE SUPPLY CURRENT from Vdd  
(Ta=-20 ~ 85'C *1), Vdd = 2.5 ± 0.2V, VddQ = 1.8 ± 0.15V / 2.5V± 0.2V, Vss = VssQ = 0V,  
Output Open, unless otherwise noted)  
Limits (max.)  
Unit  
Symbol  
Parameter  
Test condition  
-6  
-7  
tRC=min, tCLK =min  
BL=1, CL=3  
tCLK = 15ns, CKE = H  
VIH > Vcc - 0.2V,  
Operating current  
55  
50  
mA  
mA  
mA  
Icc1  
( Single bank operation )  
Icc2N  
Icc2NS  
15  
15  
Precharge standby current in  
VIL < 0.2V  
Non Power down mode  
CLK = L & CKE = H  
VIH > Vcc - 0.2V, VIL < 0.2V  
all input signals are fixed.  
7
1
7
1
/CS > Vcc -0.2V  
Precharge standby current  
Icc2P  
Icc2PS  
Icc3N  
Icc3NS  
Icc4  
tCLK = 15ns, CKE = L  
CLK = L, CKE = L  
mA  
mA  
in Power down mode  
0.5  
25  
20  
0.5  
25  
20  
/CS > Vcc -0.2V  
CKE = H, tCLK=15ns  
Active standby current  
mA  
mA  
CKE = H, CLK=L  
All Bank Active  
tCLK = min, BL=4, CL=3  
Burst current  
60  
55  
110  
0.3  
Icc5  
tRC=min, tCLK=min  
100  
0.3  
mA  
mA  
Auto-refresh current  
4 Banks  
2 Banks  
1 Bank  
8 5'C  
0.25  
0.2  
0.3  
0.2  
0.1  
0.4  
0.25  
0.2  
0.3  
0.2  
0.1  
0.4  
mA  
mA  
Self-refresh current  
-6 L,  
-7L  
CKE < 0.2V  
Icc6  
mA  
mA  
mA  
mA  
uA  
45'C  
15'C  
4
-6 , -7 *  
-6 L, -7L  
-6 , -7  
10  
30  
10  
30  
Deep power down current  
Icc7  
CKE < 0.2V  
uA  
Note 1) Only for -6L/-7L parts. For -6/-7 parts : Ta= 0 ~ 70 'C.  
2) In the case of TCSR=85'C  
3) In the case of PASR=4 Banks  
4) Only specified the Icc6 with PASR=4-banks, TCSR=70'C(85'C)  
AC OPERATING CONDITIONS AND CHARACTERISTICS  
(Ta=-20 ~ 85'C *1), Vdd = 2.5 ± 0.2V, VddQ = 1.8 ± 0.15V / 2.5V± 0.2V, Vss = VssQ = 0V,  
unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test Conditions  
Unit  
Min.  
Max.  
0.2  
VOH(DC) High-Level Output Voltage (DC) IOH=-0.1mA  
VOL(DC) Low-Level Output Voltage (DC) IOL= 0.1mA  
VddQ-0.2  
V
V
IOZ  
II  
Off-state Output Current  
Input Current  
Q floating Vo=0 ~ VddQ  
VIH=0 ~ VddQ+0.3V  
µA  
µA  
-5  
-5  
5
5
Note 1) Only for -6L/-7L parts. For -6/-7 parts : Ta= 0 ~ 70 'C.  
MITSUBISHI ELECTRIC  
28  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
AC TIMING REQUIREMENTS  
(Ta=-20 ~ 85'C *1), Vdd = 2.5 ± 0.2V, VddQ = 1.8 ± 0.15V / 2.5V± 0.2V, Vss = VssQ = 0V,  
unless otherwise noted) Input Pulse Levels : 0.2V to 1.6V  
Input Timing Measurement Level : 0.9V  
Limits  
-6  
-7  
Unit  
Parameter  
Symbol  
tCLK  
Max.  
Max.  
Min.  
8
Min.  
9.5  
9.5  
19  
CL=3  
ns  
ns  
ns  
CLK cycle time  
CL=2  
CL=1  
9.5  
19  
2.5  
2.5  
1.0  
2.5  
tCH  
tCL  
CLK High pulse width  
CLK Low pulse width  
3
3
ns  
ns  
10  
10  
tT  
Transition time of CLK  
Input Setup time  
1.5  
3
ns  
ns  
tIS  
(all inputs)  
(all inputs)  
tIH  
tRC  
Input Hold time  
1.0  
67.5  
72  
1.5  
70  
ns  
ns  
ns  
ns  
ns  
Row Cycle time  
76  
tRFC  
tRCD  
tRAS  
Refresh Cycle time  
Row to Column Delay  
Row Active time  
19  
45  
19  
100K  
100K  
47.5  
tRP  
Row Precharge time  
Write Recovery time  
19  
16  
19  
19  
ns  
ns  
tWR  
Act to Act delay  
19  
tRRD  
tRSC  
tREF  
16  
ns  
ns  
Mode Register Set Cycle time  
Refresh Interval time  
9.5  
9.5  
64  
64  
ms  
Note 1) Only for -6L/-7L parts. For -6/-7 parts : Ta= 0 ~ 70 'C.  
CLK  
0.9V  
0.9V  
AC timing is referenced to the  
input signal crossing through  
0.9V.  
Signal  
MITSUBISHI ELECTRIC  
29  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
SWITCHING CHARACTERISTICS  
(Ta=-20 ~ 85'C *1), Vdd = 2.5 ± 0.2V, VddQ = 1.8 ± 0.15V/ 2.5V± 0.2V, Vss = VssQ = 0V,  
unless otherwise noted)  
SWITCHING CHARACTERISTICS  
Limits  
Symbol  
tAC  
Parameter  
-6  
-7  
Unit Note  
ns  
Max.  
Min.  
Max.  
7
Min.  
CL=3  
CL=2  
8
8
Access time from CLK  
7
ns  
ns  
CL=1  
17  
20  
ns  
CL=3  
CL=2  
3
3
3
3
3
Output Hold time  
from CLK  
tOH  
*1  
ns  
CL=1  
3
0
ns  
ns  
Delay, output low-  
tOLZ  
tOHZ  
0
3
impedance from CLK  
Delay, output high-  
3
ns  
8
7
impedance from CLK  
Note 1) Only for -6L/-7L parts. For -6/-7 parts : Ta= 0 ~ 70 'C.  
Output Load Condition  
CLK  
0.9V  
0.9V  
V
OUT  
30pF  
DQ  
Output Timing Measurement  
Reference Point  
CLK  
DQ  
0.9V  
0.9V  
tOLZ  
tAC  
tOHZ  
tOH  
MITSUBISHI ELECTRIC  
30  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Burst Write (Single Bank) [BL=4]  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
tRC  
tRAS  
tRP  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
tRCD  
tWR  
tWR  
X
X
X
0
Y
X
Y
X
X
0
A9,11  
BA0,1  
DQ  
0
0
0
0
D0 D0 D0 D0  
D0 D0 D0 D0  
ACT#0 WRITE#0  
PRE#0 ACT #0 WRITE#0  
PRE#0  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
31  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Burst Write (Multi Bank) [BL=4]  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
tRC  
tRC  
tRAS  
tRP  
tRRD  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
tRCD  
tRCD  
tWR  
tWR  
X
X
X
0
Y
X
X
X
1
Y
X
X
X
0
Y
X
X
X
1
A9,11  
BA0,1  
DQ  
0
1
0
0
0
D0 D0 D0 D0 D1 D1 D1 D1  
D0 D0 D0 D0  
ACT#0 WRITE#0  
ACT#1  
PRE#0 ACT #0 WRITE#0  
PRE#0  
WRITEA#1  
ACT#1  
(Auto-Precharge)  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
32  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Burst Read (Single Bank) [CL=2, BL=4]  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
tRC  
tRAS  
tRP  
tRAS  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
tRCD  
X
X
X
0
Y
X
X
X
0
Y
A9,11  
BA0,1  
DQ  
0
0
0
0
Q0 Q0 Q0 Q0  
Q0 Q0 Q0 Q0  
ACT#0 READ#0  
PRE#0 ACT #0 READ#0  
PRE#0  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
33  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Burst Read (Multi Bank) [CL=2, BL=4]  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
tRC  
tRC  
tRRD  
tRAS  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
tRCD  
tRCD  
X
X
X
0
Y
X
X
X
1
Y
X
X
X
0
Y
X
X
X
1
A9,11  
BA0,1  
DQ  
0
1
0
0
Q0 Q0 Q0 Q0 Q1 Q1 Q1 Q1 Q0 Q0 Q0 Q0  
ACT#0 READA #0  
ACT#1  
ACT #0 READ#0  
PRE#0  
ACT #1  
READA #1  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
34  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Write Interrupted by Write [BL=4]  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
tRRD  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
tWR  
X
X
X
0
Y
X
X
X
1
Y
Y
Y
X
X
X
1
A9,11  
BA0,1  
DQ  
0
0
1
0
0
D0 D0 D0 D0 D0 D1 D1 D1 D0 D0 D0 D0  
ACT#0 WRITE#0  
ACT#1  
WRITE#0 WRITEA#1  
WRITE#0  
interrupt  
other  
PRE#0  
interrupt  
same  
interrupt  
other  
ACT #1  
bank  
bank  
bank  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
35  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Read Interrupted by Read [CL=2, BL=4]  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
tRRD  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
tRCD  
X
X
X
0
Y
X
X
X
1
Y
Y
Y
X
X
X
1
A9,11  
BA0,1  
DQ  
0
1
1
0
Q0 Q0 Q0 Q1 Q1 Q1 Q1 Q1 Q0 Q0 Q0 Q0  
ACT#0 READ#0  
ACT#1  
READ#1 READA #1  
READ#0  
interrupt  
interrupt  
other  
interrupt  
ACT #1  
same bank other  
bank  
bank  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
36  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Write Interrupted by Read, Read Interrupted by Write [CL=2, BL=4]  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
tRRD  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
tRCD  
tWR  
X
X
X
0
X
Y
Y
Y
X
X
1
A9,11  
BA0,1  
DQ  
0
1
1
1
D0 D0  
Q1 Q1  
D1 D1 D1 D1  
ACT#0  
WRITE#0 READ#1  
ACT#1  
WRITE#1  
PRE#1  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
37  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Write / Read Terminated by Precharge [CL=2, BL=4]  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
tRC  
tRP  
tRAS  
tRP  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
tRCD  
tWR  
X
X
X
0
Y
X
X
X
0
Y
X
X
X
0
A9,11  
BA0,1  
DQ  
0
0
0
0
D0 D0  
Q0 Q0  
ACT#0 WRITE#0  
PRE#0 ACT#0  
Terminate  
READ#0 PRE#0  
Terminate  
ACT#0  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
38  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Write / Read Terminated by Burst Terminate [CL=2, BL=4]  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
tWR  
X
X
X
0
Y
Y
Y
A9,11  
BA0,1  
DQ  
0
0
0
0
D0 D0  
Q0 Q0  
D0 D0 D0 D0  
ACT#0 WRITE#0 TERM READ#0 TERM  
WRITE#0  
PRE#0  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
39  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Single Write Burst Read [CL=2, BL=4]  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
X
X
X
0
Y
Y
A9,11  
BA0,1  
DQ  
0
0
D0  
Q0 Q0 Q0 Q0  
ACT#0 WRITE#0 READ#0  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
40  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Power-On Sequence and Intialize  
CLK  
/CS  
200µs  
tRP  
tRFC  
tRFC  
tRSC  
tRSC  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
A9,11  
BA0  
BA1  
DQ  
MA  
EA  
X
X
X
0
0
0
0
0
0
0
0
1
0
NOP  
Power On  
PRE ALL REFA  
REFA  
REFA  
MRS  
EMRS  
ACT #0  
Minimum 8 REFA cycles  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
41  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Auto Refresh  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
tRFC  
tRP  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8  
A10  
tRCD  
X
Y
X
X
0
A9,11  
BA0,1  
DQ  
0
D0 D0 D0 D0  
PRE ALL  
REFA  
ACT#0 WRITE#0  
All banks must be idle before REFA is issued.  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
42  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Self Refresh  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
CLK  
/CS  
tRFC  
tRP  
/RAS  
/CAS  
/WE  
CKE  
DQM  
A0-8,  
A10  
X
X
X
0
A9,11  
BA0,1  
DQ  
PRE ALL Self Refresh Entry  
All banks must be idle before REFS is issued.  
Self Refresh Exit  
ACT#0  
Italic paramater shows minimum case  
MITSUBISHI ELECTRIC  
43  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
CLK Suspension [CL=2, BL=4]  
0
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
CLK  
/CS  
/RAS  
/CAS  
/ W E  
CKE  
DQM  
A0-8  
A10  
t R C D  
X
X
X
0
Y
Y
A9,11  
BA0,1  
DQ  
0
0
D 0  
D 0  
D 0  
D 0  
Q 0  
Q 0  
Q 0  
Q 0  
A C T # 0 W R I T E # 0 i n t e r n a l  
C L K  
R E A D # 0  
i n t e r n a l  
C L K  
s u s p e n d e d  
s u s p e n d e d  
Italic paramater s h o w s m i n i m u m c a s e  
MITSUBISHI ELECTRIC  
44  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576 -WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov . ' 0 1  
64 M Low Power Synchronous DRAM  
P o w e r D o w n  
0
1
2
3
4
5
6
7
8
9
1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
CLK  
/CS  
/RAS  
/CAS  
/ W E  
CKE  
DQM  
A0-8  
A10  
S t a n d b y P o w e r D o w n  
A c t i v e P o w e r D o w n  
X
X
X
0
A9,11  
BA0,1  
DQ  
P R E A L L  
A C T # 0  
Italic paramater s h o w s m i n i m u m c a s e  
MITSUBISHI ELECTRIC  
45  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576 -WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov . ' 0 1  
64 M Low Power Synchronous DRAM  
Revison History  
Date  
May '01  
Description  
Rev.  
- 1st edition (Preliminaly Version)  
0.1  
0.2  
- Package dimension of BGA was changed.  
(from 9x10.5mm2 to 9.25x10.85mm2)  
- Command truth table of DPD was revised.  
May '01  
- Package dimension of BGA was changed again.  
(from 9.25x10.85mm2 to 10.05x10.85mm2)  
0.3  
1.0  
Jul. '01  
- Remove sTSOP(64-pin) package  
- Change operation temperature range.  
-6L/-7L : Ta= -20'C ~ 85'C  
Aug. '01  
-6/-7 : Ta= 0'C ~ 70'C  
- Change the package size  
1.1  
Sep . '01  
From 10.05x10.85mm2 to 9.25x10.85mm2. (P2)  
- Add the Icc6 spec. for TCSR. (P28)  
- Change the Access and Frequency. (P1, P3, P29, P30)  
2.0  
Sep . '01  
Oct . '01  
- Change the package size  
3.0  
From 9.25x10.85mm2 to 9.0x8.0mm2. (P2)  
- Removed 'Preliminary'  
3.1  
Nov. '01  
MITSUBISHI ELECTRIC  
46  
MITSUBISHI LSIs  
SDRAM (Rev.3.1)  
(4-BANK x 1,048,576-WORD x 16-BIT)  
M2L64S40DWG -6, -6L,-7,-7L  
Nov.'01  
64M Low Power Synchronous DRAM  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better  
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due  
consideration to safety when making your circuit designs, with appropriate measures such as (i)  
placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention  
against any malfunction or mishap.  
Notes regarding these materials  
1.These materials are intended as a reference to assist our customers in the selection of the Mitsubishi  
semiconductor product best suited to the customer's application; they do not convey any license under  
any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third  
party.  
2.Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-  
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit  
application examples contained in these materials.  
3.All information contained in these materials, including product data, diagrams, charts, programs and  
algorithms represents information on products at the time of publication of these materials, and are  
subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other  
reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an  
authorized Mitsubishi Semiconductor product distributor for the latest product information before  
purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi  
Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these  
inaccuracies or errors.  
Please also pay attention to information published by Mitsubishi Electric Corporation by various means,  
including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).  
4.When using any or all of the information contained in these materials, including product data, diagrams,  
charts, programs, and algorithms, please be sure to evaluate all information as a total system before  
making a f inal decision on the applicability of the information and products. Mitsubishi Electric Corporation  
assumes no responsibility for any damage, liability or other loss resulting from the information contained  
herein.  
5.Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or  
system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when  
considering the use of a product contained herein for any specific purposes, such as apparatus or  
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
6. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole  
or in part these materials.  
7. these products or technologies are subject to the Japanese export control restrictions, they must be  
exported under a license from the Japanese government and cannot be imported into a country other than  
the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country  
of destination is prohibited.  
8.Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product  
distributor for further details on these materials or the products contained therein.  
MITSUBISHI ELECTRIC  
47  

相关型号:

M2L64S40DWG-6L

Synchronous DRAM, 4MX16, 7ns, CMOS, PBGA54, BGA-54
MITSUBISHI

M2L64S40DWG-7

Synchronous DRAM, 4MX16, 8ns, CMOS, PBGA54, BGA-54
MITSUBISHI

M2L64S40DWG-7L

Synchronous DRAM, 4MX16, 8ns, CMOS, PBGA54, BGA-54
MITSUBISHI

M2L64S50DWG-6L

Synchronous DRAM, 2MX32, 7ns, CMOS, PBGA90, BGA-90
MITSUBISHI

M2L64S50DWG-7

Synchronous DRAM, 2MX32, 8ns, CMOS, PBGA90, BGA-90
MITSUBISHI

M2L64S50DWG-7L

Synchronous DRAM, 2MX32, 8ns, CMOS, PBGA90, BGA-90
MITSUBISHI

M2LR-1V1-M

Super-mini Signal Conditioners Mini-M Series
MSYSTEM

M2LR-1V1-M/Q

Super-mini Signal Conditioners Mini-M Series
MSYSTEM

M2LR-1V2-M

Super-mini Signal Conditioners Mini-M Series
MSYSTEM

M2LR-1V2-M/Q

Super-mini Signal Conditioners Mini-M Series
MSYSTEM

M2LR-1Z1-M

Super-mini Signal Conditioners Mini-M Series
MSYSTEM

M2LR-1Z1-M/Q

Super-mini Signal Conditioners Mini-M Series
MSYSTEM