M30600E8-XXXFP [MITSUBISHI]

Microcontroller, 16-Bit, MROM, M16C CPU, 10MHz, CMOS, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, QFP-100;
M30600E8-XXXFP
型号: M30600E8-XXXFP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

Microcontroller, 16-Bit, MROM, M16C CPU, 10MHz, CMOS, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, QFP-100

微控制器
文件: 总139页 (文件大小:1782K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Mitsubishi microcomputers  
M16C / 60 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Description  
The M16C/60 group of single-chip microcomputers are built using the high-performance silicon gate  
CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP.  
These single-chip microcomputers operate using sophisticated instructions featuring a high level of in-  
struction efficiency. With 1M bytes of address space, they are capable of executing instructions at high  
speed. They also feature a built-in multiplier and DMAC, making them ideal for controlling office, communi-  
cations, industrial equipment, and other high-speed processing applications.  
The M16C/60 group includes a wide range of products with different internal memory types and sizes and  
various package types.  
Features  
• Memory capacity............................................ ROM (See Figure 1.4. ROM Expansion)  
RAM 10K bytes  
• Shortest instruction execution time................ 100ns (f(XIN)=10MHz)  
• Supply voltage ............................................... 4.0 to 5.5V (f(XIN)=10MHz)  
2.7 to 5.5V (f(XIN)=7MHz with software one-wait)  
• Low power consumption ................................ 18mW ( f(XIN)=7MHz, with software one-wait, Vcc = 3V)  
• Interrupts........................................................ 17 internal and 5 external interrupt sources, 4 software  
interrupt sources; 7 levels (including key input interrupt)  
• Multifunction 16-bit timer................................ 5 timers + 3 timers  
• Serial I/O (UART or clock synchronous)........ 2 channels  
• DMAC ............................................................ 2 channels (trigger: 15 sources)  
• A-D converter................................................. 10 bits X 8 channels  
(Expandable up to 10 channels)  
• D-A converter................................................. 8 bits X 2 channels  
• CRC calculation circuit................................... 1 circuit  
• Watchdog timer.............................................. 15 bits  
• Programmable I/O ......................................... 87 lines  
_______  
• Input port........................................................ 1 line (P85 shared with NMI pin)  
• Memory expansion ........................................ Available (to a maximum of 1M bytes)  
• Chip select output .......................................... 4 lines  
• Clock generating circuit ................................. 2 built-in clock generation circuits  
(built-in feedback resistor, and external ceramic or quartz oscillator)  
Applications  
Audio, cameras, office equipment, communications equipment, portable equipment  
------Table of Contents------  
Central Processing Unit (CPU) ..................... 13  
Reset.............................................................16  
Processor Mode ............................................ 20  
Clock Generating Circuit ............................... 30  
Protection ......................................................37  
Interrupts ....................................................... 38  
Watchdog Timer............................................ 46  
DMAC ...........................................................48  
Timer .............................................................55  
Serial I/O ....................................................... 72  
A-D Converter ...............................................86  
D-A Converter ...............................................96  
CRC Calculation Circuit ................................ 97  
Programmable I/O Ports ...............................98  
Electrical Characteristics.............................106  
1
Mitsubishi microcomputers  
M16C / 60 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pin Configuration  
Figures 1.1 and 1.2 show the pin configurations (top view).  
PIN CONFIGURATION (top view)  
P0  
P0  
P0  
P0  
P0  
P0  
P0  
P0  
7
6
5
4
3
2
1
0
/D  
/D  
/D  
/D  
/D  
/D  
/D  
/D  
7
6
5
4
3
2
1
0
P4  
P4  
P4  
P4  
P5  
P5  
4
5
6
7
/CS0  
/CS1  
/CS2  
/CS3  
81  
82  
83  
84  
85  
86  
87  
88  
89  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
0/WRL/WR  
1
/WRH/BHE  
P52/RD  
P5  
3
/BCLK  
/HLDA  
P10  
P10  
P10  
7
6
5
/AN  
/AN  
/AN  
7
6
5
/KI3  
/KI  
/KI  
P5  
4
2
90  
91  
92  
P55/HOLD  
P5  
M30600M8-XXXFP  
1
0
6
/ALE  
P104/AN4/KI  
P5  
7
/RDY/CLKOUT  
P10  
P10  
P10  
3
2
1
/AN  
/AN  
/AN  
3
2
1
93  
94  
95  
96  
97  
98  
99  
100  
P6  
P6  
P6  
P63/TXD0  
P64/CTS  
P6  
P6  
P67/TXD1  
0/CTS  
0
0
0
/RTS  
0
1
/CLK  
/RxD  
2
AVSS  
P10  
0/AN0  
1
/RTS  
1/CTS0/CLKS1  
V
REF  
5
/CLK  
/RxD  
1
1
AVcc  
7/ADTRG  
6
P9  
Package: 100P6S-A  
Figure 1.1. Pin configuration (top view)  
2
Mitsubishi microcomputers  
M16C / 60 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (top view)  
P1  
P1  
P1  
P0  
P0  
P0  
2
/D10  
/D  
/D  
/D  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
P4  
P4  
P4  
P4  
P4  
P4  
P5  
P5  
2
3
4
5
6
7
0
1
/A18  
/A19  
1
9
0
8
/CS0  
/CS1  
/CS2  
/CS3  
/WRL/WR  
/WRH/BHE  
/RD  
7
7
6
/D  
6
5
/D  
5
P0  
P0  
4
3
/D  
/D  
4
3
P0  
P0  
2
1
/D  
/D  
2
1
P5  
2
P53  
P54  
P55  
P56  
/BCLK  
P0  
0
/D  
/KI  
/KI  
/KI  
/AN4/KI  
0
/HLDA  
/HOLD  
/ALE  
P10  
P10  
P10  
7
/AN  
7
3
6
/AN  
/AN  
6
2
M30600M8-XXXGP  
5
5
1
P57/RDY/CLKOUT  
P6  
P6  
P6  
P6  
0
/CTS  
/CLK  
/RxD  
0
0
0
/RTS0  
P10  
4
0
1
2
3
P10  
3
/AN  
3
2
1
P10  
2
/AN  
/AN  
/TXD0  
P10  
1
P64/CTS1/RTS1/CTS0/CLKS1  
AVSS  
/AN  
P6  
P6  
P6  
P7  
P7  
P7  
5
6
7
/CLK  
/RxD  
/TXD1  
/TA0OUT  
/TA0IN  
/TA1OUT  
1
P10  
0
0
1
V
REF  
AVcc  
/ADTRG  
/ANEX1  
/ANEX0  
0
1
2
P9  
P9  
P9  
7
6
5
Package: 100P6D-A  
100P6Q-A  
Figure 1.2. Pin configuration (top view)  
3
Mitsubishi microcomputers  
M16C / 60 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Block Diagram  
Figure 1.3 is a block diagram of the M16C/60 group.  
Block diagram of the M16C/60 group  
8
8
Port P2  
8
8
8
8
8
I/O ports  
Port P0  
Port P1  
Port P3  
Port P4  
Port P5  
Port P6  
Internal peripheral functions  
Timer  
System clock generator  
IN-XOUT  
A-D converter  
(10 bits  
X 8 channels  
X
Expandable up to 10 channels)  
X
CIN-XCOUT  
Timer TA0 (16 bit)  
Timer TA1 (16 bit)  
Timer TA2 (16 bit)  
Timer TA3 (16 bit)  
Timer TA4 (16 bit)  
Timer TB0 (16 bit)  
Timer TB1 (16 bit)  
Timer TB2 (16 bits)  
UART/clock synchronous SO  
(8 bits X 2 channels )  
CRC arithmetic circuit (CCIT)  
(Polynomial : X16+X12+X5+1)  
M16C/60 series16-bit CPU core  
Memory  
ROM  
Registers  
Stack pointer  
Watchdog timer  
(15 bits)  
R0H  
R0H  
R1H  
R2  
R3  
A0  
A1  
FB  
R0L  
R0L  
R1L  
ISP  
USP  
Vector table  
INTB  
DMAC  
(2 channels)  
RAM  
10K bytes  
D-A converter  
Multiplier  
(8 bits X 2 channels)  
SB  
Figure 1.3. Block diagram of M16C/60 group  
4
Mitsubishi microcomputers  
M16C / 60 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Performance Outline  
Table 1.1 is a performance outline of M16C/60 group.  
Table 1.1. Outline performance of M16C/60 group  
Item  
Performance  
Number of basic instructions  
91 instructions  
100ns(f(XIN)=10MHz)  
Shortest instruction execution time  
Memory  
ROM  
(See Figure 1.4. ROM expansion)  
10K bytes  
capacity  
RAM  
I/O port  
P0 to P10 (except P85)  
P85  
8 bits X 10, 7 bits X 1  
1 bit X 1  
Input port  
Multifunction  
timer  
TA0,TA1,TA2,TA3,TA4  
TB0,TB1,TB2  
UART0,UART1  
16 bits X 5  
16 bits X 3  
Serial I/O  
A-D converter  
D-A converter  
DMAC  
(UART or clock synchronous) X 2  
10 bits X 8 channels (expandable up to 10 channels)  
8 bits X 2  
2 channels (trigger: 15 factors)  
16  
12  
5
CRC calculation circuit  
Watchdog timer  
1 circuit (Generator polynomial: X + X + X + 1)  
15 bits X 1 (with prescaler)  
Interrupt  
17 internal and 5 external sources, 4 software sources, 7 levels  
2 built-in clock generation circuits  
(built-in feedback resistor, and external ceramic or quartz oscillator)  
4.0 to 5.5V (f(XIN ) = 10MHz)  
Clock generating circuit  
Supply voltage  
2.7 to 5.5V(f(XIN) = 7MHz with software one-wait)  
18mW (f(XIN) = 7MHz with software one-wait,Vcc=3V)  
5V  
Power consumption  
I/O  
I/O withstand voltage  
Output current  
characteristics  
Memory expansion  
5mA  
Available (to a maximum of 1M bytes)  
o
Operating ambient temperature  
Device configuration  
Package  
– 40 to 85 C  
CMOS silicon gate  
100-pin plastic mold QFP  
5
Mitsubishi microcomputers  
M16C / 60 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Mitsubishi plans to release the following products in the M16C/60 group:  
(1) Support for mask ROM version, external ROM version, one-time PROM version, and EPROM version  
(2) ROM capacity  
(3) Package  
100P6S-A  
: Plastic molded QFP (mask ROM version and one-time PROM version)  
100P6D-A/100P6Q-A : Plastic molded QFP (mask ROM version and one-time PROM version)  
100D0  
: Ceramic LCC (EPROM version)  
ROM  
Size(Byte)  
External  
ROM  
M30600SFP / GP  
M30600M8-XXXFP / GP M30600E8-XXXFP / GP  
M30600E8FS  
64K  
32K  
Mask ROM version  
One-time PROM version  
EPROM version  
External ROM version  
Figure 1.4. ROM expansion  
The M16C/60 group products currently supported are listed in Table 1.2.  
Table 1.2. M16C/60 group  
Feb. 1997  
RAM Capacity  
10K bytes  
10K bytes  
10K bytes  
10K bytes  
10K bytes  
10K bytes  
10K bytes  
10K bytes  
10K bytes  
ROM Capacity  
64K bytes  
64K bytes  
64K bytes  
64K bytes  
64K bytes  
64K bytes  
64K bytes  
Package Type  
100P6S-A  
Remarks  
M30600M8-XXXFP  
M30600M8-XXXGP  
M30600E8-XXXFP  
M30600E8-XXXGP  
M30600E8FP  
Mask ROM version  
100P6D-A/100P6Q-A  
100P6S-A  
Mask ROM version  
One-time PROM version  
One-time PROM version  
One-time PROM version (blank)  
One-time PROM version (blank)  
EPROM version  
100P6D-A/100P6Q-A  
100P6S-A  
M30600E8GP  
100P6D-A/100P6Q-A  
100D0  
M30600E8FS  
M30600SFP  
100P6S-A  
External ROM version  
External ROM version  
M30600SGP  
100P6D-A/100P6Q-A  
6
Mitsubishi microcomputers  
M16C / 60 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Type No. M30600 M 8 - XXX FP  
Package type:  
FP : Package 100P6S-A  
GP :  
FS :  
100P6D-A/100P6Q-A  
100D0  
ROM No.  
Omitted for blank one-time PROM version  
and EPROM version  
ROM capacity:  
1 : 8K bytes  
2 : 16K bytes  
3 : 24K bytes  
4 : 32K bytes  
5 : 40K bytes  
6 : 48K bytes  
7 : 56K bytes  
8 : 64K bytes  
Memory type:  
M : Mask ROM version  
E : EPROM or one-time PROM version  
S : External ROM version  
F : Flash ROM version  
Shows RAM capacity, pin count, etc  
(The value itself has no specific meaning)  
M16C/60 Group  
M16C Family  
Figure 1.5. Type No., memory size, and package  
7
Mitsubishi microcomputers  
M16C / 60 Group  
Pin Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pin Description  
Pin name  
Signal name  
I/O type  
Function  
Power supply  
input  
VCC, VSS  
Supply 2.7 to 5.5 V to the VCC pin. Supply 0 V to the VSS pin.  
CNVSS  
RESET  
CNVSS  
Input  
This pin switches between processor modes. Connect it to the VSS pin  
when operating in single-chip or memory expansion mode. Connect it  
to the VCC pin when in microprocessor mode.  
Reset input  
Input  
A “L” on this input resets the microcomputer.  
X
IN  
OUT  
Clock input  
Input  
These pins are provided for the main clock generating circuit. Connect  
a ceramic resonator or crystal between the XIN and the XOUT pins. To  
use an externally derived clock, input it to the XIN pin and leave the  
X
Clock output  
Output  
XOUT pin open.  
This pin selects the width of an external data bus. A 16-bit width is  
selected when this input is “L”; an 8-bit width is selected when this  
input is “H”. This input must be fixed to either “H” or “L”. When  
BYTE  
External data Input  
bus width  
select input  
operating in single-chip mode, connect this pin to VSS  
.
AVCC  
AVSS  
Analog power  
supply input  
This pin is a power supply input for the A-D converter. Connect this  
pin to VCC  
.
Analog power  
supply input  
This pin is a power supply input for the A-D converter. Connect this  
pin to VSS  
.
V
REF  
Input  
Reference  
voltage input  
This pin is a reference voltage input for the A-D converter.  
This is an 8-bit CMOS I/O port. It has an input/output port direction  
register that allows the user to set each pin for input or output  
individually. When set for input, the user can specify in units of four  
bits via software whether or not they are tied to a pull-up resistor.  
P00  
to P0  
7
I/O port P0  
Input/output  
D
0
to D  
7
Input/output When set as a separate bus, these pins input and output data (D  
Input/output This is an 8-bit I/O port equivalent to P0.  
0–D7).  
P1  
0
to P1  
7
I/O port P1  
I/O port P2  
D
8
to D15  
to P2  
Input/output When set as a separate bus, these pins input and output data (D  
8–D15).  
P2  
0
7
Input/output This is an 8-bit I/O port equivalent to P0.  
A
0
to A7  
Output  
These pins output 8 low-order address bits (A0–A7).  
Input/output If the external bus is set as an 8-bit wide multiplexed bus, these pins  
input and output data (D –D ) and output 8 low-order address bits  
(A –A ) separated in time by multiplexing.  
A
0
/D  
0
to  
0
7
A7  
/D  
7
6
0
7
A
0
,
/D  
Output  
If the external bus is set as a 16-bit wide multiplexed bus, these pins  
input and output data (D –D ) and output address (A –A ) separated  
in time by multiplexing. They also output address (A ).  
A
1
0
to  
0
6
1
7
Input/output  
A7  
/D  
0
P3  
0
to P3  
to A15  
/D  
7
I/O port P3  
I/O port P4  
Input/output This is an 8-bit I/O port equivalent to P0.  
A
8
Output  
These pins output 8 middle-order address bits (A8–A15).  
Input/output If the external bus is set as a 16-bit wide multiplexed bus, these pins  
A
8
7,  
Output  
input and output data (D  
7) and output address (A  
8) separated in time  
–A15).  
A9 to A15  
by multiplexing. They also output address (A  
9
P40  
to P4  
7
Input/output This is an 8-bit I/O port equivalent to P0.  
Output  
Output  
These pins output CS0–CS3 signals and A16–A19. CS0–CS3 are chip  
select signals used to specify an access space. A16–A19 are 4 high-  
order address bits.  
CS  
A
0
to CS  
3,  
16 to A19  
8
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pin Description  
Pin Description  
Pin name  
P5 to P5  
Signal name  
I/O type  
Function  
This is an 8-bit I/O port equivalent to P0. In single-chip mode, P57 in  
this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of  
the same frequency as XCIN as selected by software.  
0
7
I/O port P5  
Input/output  
Output  
Output  
Output  
Output  
Output  
Input  
Output WRL, WRH (WR and BHE), RD, BCLK, HLDA, and ALE  
signals. WRL and WRH, and BHE and WR can be switched using  
software control.  
WRL / WR,  
WRH / BHE,  
RD,  
BCLK,  
HLDA,  
WRL, WRH, and RD selected  
With a 16-bit external data bus, data is written to even addresses  
when the WRL signal is “L” and to the odd addresses when the WRH  
signal is “L”. Data is read when RD is “L”.  
HOLD,  
ALE,  
RDY  
Output  
Input  
WR, BHE, and RD selected  
Data is written when WR is “L”. Data is read when RD is “L”. Odd  
addresses are accessed when BHE is “L”. Use this mode when using  
an 8-bit external data bus.  
While the input level at the HOLD pin is “L”, the microcomputer is  
placed in the hold state. While in the hold state, HLDA outputs a “L”  
level. ALE is used to latch the address. While the input level of the  
RDY pin is “L”, the microcomputer is in the ready state. BCLK outputs  
a clock with the same cycle as the internal clock  
.
This is an 8-bit I/O port equivalent to P0. Pins in this port also function  
as UART0 and UART1 I/O pins as selected by software.  
P6  
0
to P6  
7
I/O port P6  
I/O port P7  
I/O port P8  
Input/output  
Input/output  
This is an 8-bit I/O port equivalent to P0. Pins in this port also function  
as timer A0–A3 I/O pins as selected by software.  
P70  
to P7  
7
P8  
Using software, they can be made to function as the I/O pins for timer  
A4 and the input pins for external interrupts. P8 and P8 can be set  
using software to function as the I/O pins for a sub clock generation  
circuit. In this case, connect a quartz oscillator between P8  
pin) and P8 (XCIN pin). P8 is an input-only port that also functions  
0 to P84, P86, and P87 are I/O ports with the same functions as P0.  
P8  
P8  
0
6
to P8  
4
,
Input/output  
Input/output  
,
,
6
7
P87  
Input/output  
Input  
6
(XCOUT  
P85  
I/O port P85  
7
5
for NMI. The NMI interrupt is generated when the input at this pin  
changes from “H” to “L”. The NMI function cannot be canceled using  
software. The pull-up cannot be set for this pin.  
P9  
0
to P9  
7
I/O port P9  
Input/output  
Input/output  
This is an 8-bit I/O port equivalent to P0. Pins in this port also function  
as Timer B0–B2 input pins, D-A converter output pins, A-D converter’s  
extended input pins, or A-D trigger input pins as selected by software.  
P10  
0
to P10  
7
I/O port P10  
This is an 8-bit I/O port equivalent to P0. Pins in this port also function  
as A-D converter input pins. Furthermore, P10  
input pins for the key input interrupt function.  
4–P107 also function as  
9
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Memory  
Operation of Functional Blocks  
The M16C/60 group accommodates certain units in a single chip. These units include ROM and RAM to  
store instructions and data and the central processing unit (CPU) to execute arithmetic/logic operations.  
Also included are peripheral units such as timers, serial I/O, D-A converter, DMAC, CRC calculation circuit,  
A-D converter, and I/O ports.  
The following explains each unit.  
Memory  
Figure 1.6 is a memory map of the M16C/60 group. The address space extends the 1M bytes from address  
0000016 to FFFFF16. From FFFFF16 down is ROM. (In the M30600M8-XXXFP, there is 64K bytes of  
_______  
internal ROM from F000016 to FFFFF16.) The vector table for fixed interrupts such as the reset and NMI are  
mapped to FFFDC16 to FFFFF16. The starting address of the interrupt routine is stored here. The address  
of the vector table for timer interrupts, etc., can be set as desired using the internal register (INTB). See the  
section on interrupts for details.  
10K bytes of internal RAM is mapped to the space from 0040016 to 02BFF16. In addition to storing data, the  
RAM also stores the stack used when calling subroutines and when interrupts are generated.  
The SFR area is mapped to 0000016 to 003FF16. This area accommodates the control registers for periph-  
eral devices such as I/O ports, A-D converter, serial I/O, and timers, etc. Any part of the SFR area that is not  
occupied is reserved and cannot be used for other purposes.  
The special page vector table is mapped to FFE0016 to FFFDB16. If the starting addresses of subroutines  
or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions  
can be used as 2-byte instructions, reducing the number of program steps.  
In memory expansion mode, the spaces between 02C0016 and 03FFF16, and between D000016 and  
EFFFF16 are reserved and cannot be used. Likewise, the space between 02C0016 and 03FFF16 is re-  
served when in microprocessor mode.  
0000016  
SFR area  
For details, see  
Figures 1.7 and 1.8  
FFE0016  
0040016  
Internal RAM area  
10K bytes  
Special page  
vector table  
02C0016  
0400016  
Internal reserved  
area (Note1)  
FFFDC16  
Undefined instruction  
External area  
Overflow  
BRK instruction  
Address match  
Single step  
Internal reserved  
area (Note 2)  
D000016  
Address XXXXX16  
F000016  
Type No.  
Watchdog timer  
XXXXX16  
DBC  
NMI  
Reset  
Internal ROM area  
M30600M8/E8  
FFFFF16  
FFFFF16  
Note 1: During memory expansion and microprocessor modes, can not be used.  
Note 2: During memory expansion mode, can not be used.  
Figure 1.6. Memory map  
10  
Mitsubishi microcomputers  
M16C / 60 Group  
Memory  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
004016  
004116  
004216  
004316  
004416  
004516  
004616  
004716  
004816  
004916  
004A16  
004B16  
004C16  
004D16  
004E16  
004F16  
005016  
005116  
005216  
005316  
005416  
005516  
005616  
005716  
005816  
005916  
005A16  
005B16  
005C16  
005D16  
005E16  
005F16  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
001516  
001616  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
Processor mode register 0 (PM0)  
Processor mode register 1(PM1)  
System clock control register 0 (CM0)  
System clock control register 1 (CM1)  
Chip select control register (CSR)  
Address match interrupt enable register (AIER)  
Protect register (PRCR)  
DMA0 interrupt control register (DM0IC)  
DMA1 interrupt control register (DM1IC)  
Key input interrupt control register (KUPIC)  
A-D conversion interrupt control register (ADIC)  
Watchdog timer start register (WDTS)  
Watchdog timer control register (WDC)  
UART0 transmit interrupt control register (S0TIC)  
UART0 receive interrupt control register (S0RIC)  
UART1 transmit interrupt control register (S1TIC)  
UART1 receive interrupt control register (S1RIC)  
Timer A0 interrupt control register (TA0IC)  
Timer A1 interrupt control register (TA1IC)  
Timer A2 interrupt control register (TA2IC)  
Timer A3 interrupt control register (TA3IC)  
Timer A4 interrupt control register (TA4IC)  
Timer B0 interrupt control register (TB0IC)  
Timer B1 interrupt control register (TB1IC)  
Timer B2 interrupt control register (TB2IC)  
INT0 interrupt control register (INT0IC)  
Address match interrupt register 0 (RMAD0)  
Address match interrupt register 1 (RMAD1)  
INT1 interrupt control register (INT1IC)  
INT2 interrupt control register (INT2IC)  
002016  
002116 DMA0 source pointer (SAR0)  
002216  
002316  
002416  
DMA0 destination pointer (DAR0)  
002516  
002616  
002716  
002816  
DMA0 transfer counter (TCR0)  
002916  
002A16  
002B16  
002C16  
DMA0 control register (DM0CON)  
002D16  
002E16  
002F16  
003016  
DMA1 source pointer (SAR1)  
003116  
003216  
003316  
003416  
DMA1 destination pointer (DAR1)  
003516  
003616  
003716  
003816  
DMA1 transfer counter (TCR1)  
003916  
003A16  
003B16  
003C16  
DMA1 control register (DM1CON)  
003D16  
003E16  
003F16  
Figure 1.7. Location of peripheral unit control registers  
11  
Mitsubishi microcomputers  
M16C / 60 Group  
Memory  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
038016  
038116  
038216  
038316  
038416  
038516  
038616  
038716  
038816  
038916  
038A16  
038B16  
038C16  
038D16  
038E16  
038F16  
039016  
039116  
039216  
039316  
039416  
039516  
039616  
039716  
039816  
039916  
039A16  
039B16  
039C16  
039D16  
039E16  
039F16  
03A016  
03A116  
03A216  
03A316  
03A416  
03A516  
03A616  
03A716  
03A816  
03A916  
03AA16  
03AB16  
03AC16  
03AD16  
03AE16  
03AF16  
03B016  
03B116  
03B216  
03B316  
03B416  
03B516  
03B616  
03B716  
03B816  
03B916  
03BA16  
03BB16  
03BC16  
03BD16  
03BE16  
03BF16  
03C016  
03C116  
03C216  
03C316  
03C416  
03C516  
03C616  
03C716  
03C816  
03C916  
03CA16  
03CB16  
03CC16  
03CD16  
03CE16  
03CF16  
03D016  
03D116  
03D216  
03D316  
03D416  
03D516  
03D616  
03D716  
03D816  
03D916  
03DA16  
03DB16  
03DC16  
03DD16  
03DE16  
03DF16  
03E016  
03E116  
03E216  
03E316  
03E416  
03E516  
03E616  
03E716  
03E816  
03E916  
03EA16  
03EB16  
03EC16  
03ED16  
03EE16  
03EF16  
03F016  
03F116  
03F216  
03F316  
03F416  
03F516  
03F616  
03F716  
03F816  
03F916  
03FA16  
03FB16  
03FC16  
03FD16  
03FE16  
03FF16  
Count start flag (TABSR)  
A-D register 0 (AD0)  
Clock prescaler reset flag (CPSRF)  
One-shot start flag (ONSF)  
Trigger select register (TRGSR)  
Up-down flag (UDF)  
A-D register 1 (AD1)  
A-D register 2 (AD2)  
A-D register 3 (AD3)  
A-D register 4 (AD4)  
A-D register 5 (AD5)  
Timer A0 (TA0)  
Timer A1 (TA1)  
Timer A2 (TA2)  
Timer A3 (TA3)  
Timer A4 (TA4)  
Timer B0 (TB0)  
Timer B1 (TB1)  
Timer B2 (TB2)  
A-D register 6 (AD6)  
A-D register 7 (AD7)  
A-D control register 2 (ADCON2)  
A-D control register 0 (ADCON0)  
A-D control register 1 (ADCON1)  
D-A register 0 (DA0)  
Timer A0 mode register (TA0MR)  
Timer A1 mode register (TA1MR)  
Timer A2 mode register (TA2MR)  
Timer A3 mode register (TA3MR)  
Timer A4 mode register (TA4MR)  
Timer B0 mode register (TB0MR)  
Timer B1 mode register (TB1MR)  
Timer B2 mode register (TB2MR)  
D-A register 1 (DA1)  
D-A control register (DACON)  
Port P0 (P0)  
Port P1 (P1)  
Port P0 direction register (PD0)  
Port P1 direction register (PD1)  
Port P2 (P2)  
UART0 transmit/receive mode register (U0MR)  
UART0 bit rate generator (U0BRG)  
UART0 transmit buffer register (U0TB)  
UART0 transmit/receive control register 0 (U0C0)  
UART0 transmit/receive control register 1 (U0C1)  
Port P3 (P3)  
Port P2 direction register (PD2)  
Port P3 direction register (PD3)  
Port P4 (P4)  
UART0 receive buffer register (U0RB)  
UART1 transmit/receive mode register (U1MR)  
UART1 bit rate generator (U1BRG)  
Port P5 (P5)  
Port P4 direction register (PD4)  
Port P5 direction register (PD5)  
Port P6 (P6)  
UART1 transmit buffer register (U1TB)  
UART1 transmit/receive control register 0 (U1C0)  
UART1 transmit/receive control register 1 (U1C1)  
Port P7 (P7)  
Port P6 direction register (PD6)  
Port P7 direction register (PD7)  
Port P8 (P8)  
UART1 receive buffer register (U1RB)  
UART transmit/receive control register 2 (UCON)  
Port P9 (P9)  
Port P8 direction register (PD8)  
Port P9 direction register (PD9)  
Port P10 (P10)  
Port P10 direction register (PD10)  
DMA0 cause select register (DM0SL)  
DMA1 cause select register (DM1SL)  
Pull-up control register 0 (PUR0)  
Pull-up control register 1 (PUR1)  
Pull-up control register 2 (PUR2)  
CRC data register (CRCD)  
CRC input register (CRCIN)  
Figure 1.8. Location of peripheral unit control registers  
12  
Mitsubishi microcomputers  
M16C / 60 Group  
CPU  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Central Processing Unit (CPU)  
The CPU has a total of 13 registers shown in Figure 1.9. Seven of these registers (R0, R1, R2, R3, A0, A1,  
and FB) come in two sets; therefore, these have two register banks.  
b15  
b15  
b15  
b15  
b15  
b15  
b15  
b8 b7  
b8 b7  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
R0 (Note)  
R1 (Note)  
R2 (Note)  
R3 (Note)  
A0 (Note)  
A1 (Note)  
FB (Note)  
L
L
H
H
b19  
b19  
b0  
PC  
Program counter  
Data  
registers  
b0  
b0  
Interrupt table  
register  
INTB  
H
L
b15  
b15  
b15  
b15  
User stack pointer  
USP  
ISP  
SB  
b0  
b0  
b0  
Interrupt stack  
pointer  
Address  
registers  
Static base  
register  
FLG  
Frame base  
registers  
Flag register  
IPL  
U
I
O B  
S
Z
D
C
Note: These registers consist of two register banks.  
Figure 1.9. Configuration of central processing unit register  
(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)  
Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and  
arithmetic/logic operations.  
Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits as (R0H/R1H),  
and low-order bits as (R0L/R1L). In some instructions, registers R2 and R0, as well as R3 and R1 can be  
used as 32-bit data registers (R2R0/R3R1).  
(2) Address registers (A0 and A1)  
Address registers (A0 and A1) are configured with 16 bits, and have functions equivalent to those of data  
registers. These registers can also be used for address register indirect addressing and address register  
relative addressing.  
In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).  
13  
Mitsubishi microcomputers  
M16C / 60 Group  
CPU  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) Frame base register (FB)  
Frame base register (FB) is configured with 16 bits, and is used for FB relative addressing.  
(4) Program counter (PC)  
Program counter (PC) is configured with 20 bits, indicating the address of an instruction to be executed.  
(5) Interrupt table register (INTB)  
Interrupt table register (INTB) is configured with 20 bits, indicating the start address of an interrupt vector  
table.  
(6) Stack pointer (USP/ISP)  
Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each config-  
ured with 16 bits.  
Your desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag).  
This flag is located at the position of bit 7 in the flag register (FLG).  
(7) Static base register (SB)  
Static base register (SB) is configured with 16 bits, and is used for SB relative addressing.  
(8) Flag register (FLG)  
Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure 1.10 shows a configu-  
ration of the flag register (FLG). The following explains the function of each flag:  
• Bit 0: Carry flag (C flag)  
This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.  
• Bit 1: Debug flag (D flag)  
This flag enables a single-step interrupt.  
When this flag is “1”, a single-step interrupt is generated after instruction execution. This flag is  
cleared to “0” when the interrupt is acknowledged.  
• Bit 2: Zero flag (Z flag)  
This flag is set to “1” when an arithmetic operation resulted in 0; otherwise, cleared to “0”.  
• Bit 3: Sign flag (S flag)  
This flag is set to “1” when an arithmetic operation resulted in a negative value; otherwise, cleared to  
“0”.  
• Bit 4: Register bank select flag (B flag)  
This flag chooses a register bank. Register bank 0 is selected when this flag is “0” ; register bank 1 is  
selected when this flag is “1”.  
• Bit 5: Overflow flag (O flag)  
This flag is set to “1” when an arithmetic operation resulted in overflow; otherwise, cleared to “0”.  
• Bit 6: Interrupt enable flag (I flag)  
This flag enables a maskable interrupt.  
An interrupt is disabled when this flag is “0”, and is enabled when this flag is “1”. This flag is cleared to  
“0” when the interrupt is acknowledged.  
14  
Mitsubishi microcomputers  
M16C / 60 Group  
CPU  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
• Bit 7: Stack pointer select flag (U flag)  
Interrupt stack pointer (ISP) is selected when this flag is “0” ; user stack pointer (USP) is selected  
when this flag is “1”.  
This flag is cleared to “0” when a hardware interrupt is acknowledged or an INT instruction of software  
interrupt Nos. 0 to 31 is executed.  
• Bits 8 to 11: Reserved area  
• Bits 12 to 14: Processor interrupt priority level (IPL)  
Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight  
processor interrupt priority levels from level 0 to level 7.  
If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt  
is enabled.  
• Bit 15: Reserved area  
The C, Z, S, and O flags are changed when instructions are executed. See the software manual for  
details.  
b15  
b0  
IPL  
Flag Register (FLG)  
U
I O B S Z D C  
Carry flag  
Debug flag  
Zero flag  
Sign flag  
Register bank select flag  
Overflow flag  
Interrupt enable flag  
Stack pointer select flag  
Reserved area  
Processor interrupt priority level  
Reserved area  
Figure 1.10. Configuration of flag register (FLG)  
15  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Reset  
Reset  
There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset.  
(See “Software Reset” for details of software resets.) This section explains on hardware resets.  
When the supply voltage is in the range where operation is guaranteed, a reset is effected by holding the  
reset pin level “L” (0.2 VCC max.) for at least 2µs. When the reset pin level is then returned to the “H” level  
while main clock is stable, the reset status is cancelled and program execution resumes from the address  
in the reset vector table.  
Figure 1.11 shows an example reset circuit. Figure 1.12 shows the reset sequence.  
5V  
4.0V  
VCC  
0V  
VCC  
5V  
RESET  
RESET  
0.8V  
0V  
Example when f(XIN) = 10MHz and VCC = 5V.  
Figure 1.11. Example reset circuit  
X
IN  
More than 20 cycles are needed  
BCLK 24 cycles  
Microprocessor  
mode BYTE = “H”  
RESET  
BCLK  
Content of reset vector  
FFFFC16  
FFFFD16  
FFFFE16  
Address  
RD  
WR  
CS0  
Microprocessor  
mode BYTE = “L”  
Content of reset vector  
FFFFC16  
FFFFE16  
Address  
RD  
WR  
CS0  
Single-chip  
mode  
Content of reset vector  
FFFFC16  
FFFFE16  
Address  
Figure 1.12. Reset sequence  
18  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Reset  
____________  
Table 1.3 shows the statuses of the other pins while the RESET pin level is “L”. Figure 1.13 shows the  
internal status of the microcomputer immediately after the reset is cancelled.  
____________  
Table 1.3. Pin status when RESET pin level is “L”  
Status  
CNVSS = VCC  
Pin Name  
CNVSS = VSS  
BYTE = VSS  
Data input (floating)  
BYTE = VCC  
Data input (floating)  
P0  
Input port (floating)  
Input port (floating)  
Input port (floating)  
Input port (floating)  
Input port (floating)  
Input port (floating)  
Input port (floating)  
Input port (floating)  
Input port (floating)  
P1  
Data input (floating)  
Input port (floating)  
P2, P3, P4  
0
to P4  
3
Address output (undefined)  
Address output (undefined)  
P44  
CS0 output (“H” level is output) CS0 output (“H” level is output)  
Input port (floating) Input port (floating)  
WR output (“H” level is output) WR output (“H” level is output)  
BHE output (undefined) BHE output (undefined)  
RD output (“H” level is output) RD output (“H” level is output)  
BCLK output  
BCLK output  
P4  
5
0
to P47  
P5  
P5  
P5  
P5  
1
2
3
HLDA output (The output value HLDA output (The output value  
P5  
4
Input port (floating)  
depends on the input to the  
HOLD pin)  
depends on the input to the  
HOLD pin)  
P5  
P5  
P5  
5
6
7
Input port (floating)  
Input port (floating)  
Input port (floating)  
HOLD input (floating)  
HOLD input (floating)  
ALE output (“L” level is output) ALE output (“L” level is output)  
RDY input (floating)  
Input port (floating)  
RDY input (floating)  
Input port (floating)  
P6, P7, P8  
0 to P84,  
Input port (floating)  
P8 , P8 , P9, P10  
6
7
19  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Reset  
(42)Timer B0 mode register  
(039B16)···  
(039C16)···  
(039D16)···  
(03A016)···  
(1) Processor mode register 0 (Note) (000416)···  
0016  
0
0
0
0
0
0
?
?
?
0
0
0
0
0
0
0
0
0
0
0
(43)Timer B1 mode register  
(2) Processor mode register 1  
(3) System clock control register 0  
(4) System clock control register 1  
(5) Chip select control register  
(000516)···  
(000616)···  
(000716)···  
(000816)···  
(000916)···  
(000A16)···  
(000F16)···  
0
0
0
0
(44)Timer B2 mode register  
0
1
0
0
1
0
0
(45)UART0 transmit/receive mode register  
0016  
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
?
0
1
0
0
?
(46)UART0 transmit/receive control register 0 (03A416)···  
(47)UART0 transmit/receive control register 1 (03A516)···  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
(6) Address match interrupt enable  
register  
(7) Protect register  
0016  
(48)UART1 transmit/receive mode register  
(03A816)···  
0
?
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
(49)UART1 transmit/receive control register 0 (03AC16)···  
(50)UART1 transmit/receive control register 1 (03AD16)···  
(51)UART transmit/receive control register 2 (03B016)···  
(8) Watchdog timer control register  
0
0
0
?
?
0016  
0016  
0
(9) Address match interrupt register 0 (001016)···  
(001116)···  
0016  
0016  
(001216)···  
(10)Address match interrupt register 1 (001416)···  
(001516)···  
0
0
0
(52)DMA0 cause select register  
(53)DMA1 cause select register  
(54)A-D control register2  
(03B816)···  
(03BA16)···  
(03D416)···  
(03D616)···  
(03D716)···  
(03DC16)···  
(03E216)···  
(03E316)···  
(03E616)···  
(03E716)···  
(03EA16)···  
(03EB16)···  
(03EE16)···  
(03EF16)···  
(03F216)···  
(03F316)···  
(03F616)···  
(03FC16)···  
(03FD16)···  
(03FE16)···  
···  
0016  
0016  
0
0
?
0
?
?
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(001616)···  
0
0
0
0
0
?
?
(55)A-D control register 0  
0016  
0016  
(11)DMA0 control register  
(002C16)···  
(003C16)···  
(004B16)···  
(004C16)···  
(004D16)···  
0
0
0
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
(56)A-D control register 1  
(12)DMA1 control register  
(57)D-A control register  
(13)DMA0 interrupt control register  
(14)DMA1 interrupt control register  
(15)Key input interrupt control register  
0016  
0016  
0016  
(58)Port P0 direction register  
(59)Port P1 direction register  
(60)Port P2 direction register  
(61)Port P3 direction register  
(62)Port P4 direction register  
(63)Port P5 direction register  
(64)Port P6 direction register  
(65)Port P7 direction register  
(66)Port P8 direction register  
(67)Port P9 direction register  
(68)Port P10 direction register  
(69)Pull-up control register 0  
(70)Pull-up control register 1  
(71)Pull-up control register 2  
(72)Data registers (R0/R1/R2/R3)  
(73)Address registers (A0/A1)  
(74)Frame base register (FB)  
(75)Interrupt table register (INTB)  
(76)User stack pointer (USP)  
(77)Interrupt stack pointer (ISP)  
(78)Static base register (SB)  
(79)Flag register (FLG)  
(16)A-D conversion interrupt control register (004E16)···  
(17)UART0 transmit interrupt control register (005116)···  
(18)UART0 receive interrupt control register (005216)···  
(19)UART1 transmit interrupt control register (005316)···  
(20)UART1 receive interrupt control register (005416)···  
(21)Timer A0 interrupt control register (005516)···  
(22)Timer A1 interrupt control register (005616)···  
(23)Timer A2 interrupt control register (005716)···  
(24)Timer A3 interrupt control register (005816)···  
(25)Timer A4 interrupt control register (005916)···  
(26)Timer B0 interrupt control register (005A16)···  
(27)Timer B1 interrupt control register (005B16)···  
(28)Timer B2 interrupt control register (005C16)···  
0016  
0016  
0016  
0016  
0016  
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
?
?
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0016  
0016  
0016  
0016  
0016  
000016  
000016  
000016  
···  
(29)INT0 interrupt control register  
(30)INT1 interrupt control register  
(31)INT2 interrupt control register  
(32)Count start flag  
(005D16)···  
(005E16)···  
(005F16)···  
(038016)···  
(038116)···  
(038216)···  
(038316)···  
(038416)···  
(039616)···  
(039716)···  
(039816)···  
(039916)···  
(039A16)···  
···  
0
0
0
0
0
0
···  
0000016  
000016  
000016  
000016  
000016  
···  
?
0
0
0
0016  
···  
0
0
(33)Clock prescaler reset flag  
(34)One-shot start flag  
···  
0
0 0  
0
0
0
···  
(35)Trigger select flag  
0016  
0016  
0016  
(36)Up-down flag  
The content of other registers and RAM is undefined when the microcomputer is  
reset. The initial values must therefore be set.  
x : Nothing is mapped to this bit  
(37)Timer A0 mode register  
(38)Timer A1 mode register  
(39)Timer A2 mode register  
(40)Timer A3 mode register  
(41)Timer A4 mode register  
? : Undefined  
0016  
0016  
0016  
Note : When the VCC level is applied to the CNVSS pin, it is 0316 at a reset.  
0016  
Figure 1.13. Device's internal status after a reset is cleared  
20  
Mitsubishi microcomputers  
M16C / 60 Group  
Software Reset  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Software Reset  
Writing “1” to bit 3 of the processor mode register 0 (address 000416) applies a (software) reset to the  
microcomputer. A software reset has almost the same effect as a hardware reset. The contents of internal  
RAM are preserved. Figure 1.14 shows a configuration of processor mode register 0 and 1.  
Processor mode register 0 (Note 1)  
Symbol  
PM0  
Address  
000416  
When reset  
0016 (Note 2)  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit symbol  
PM00  
R W  
Bit name  
Function  
b1 b0  
Processor mode bit  
0 0: Single-chip mode  
0 1: Memory expansion mode  
1 0: Inhibited  
PM01  
PM02  
1 1: Microprocessor mode  
R/W mode select bit  
Software reset bit  
0 : RD,BHE,WR  
1 : RD,WRH,WRL  
The device is reset when this bit is set  
to “1”. The value of this bit is “0” when  
read.  
PM03  
PM04  
b5 b4  
Multiplexed bus space  
select bit  
0 0 : Multiplexed bus is not used  
0 1 : Allocated to CS2 space  
1 0 : Allocated to CS1 space  
1 1 : Allocated to entire space (Note 4)  
PM05  
PM06  
0 : Address output  
1 : Port function  
Port P40 to P43 function  
select bit (Note 3)  
(Address is not output)  
0 : BCLK is output  
1 : BCLK is not output  
(Pin is left floating)  
BCLK output disable bit  
PM07  
Note 1: Set bit 1 of the protect register (address 000A16) to “1” when writing new values to  
this register.  
Note 2: If the VCC voltage is applied to the CNVSS, the value of this register when reset is  
0316. (PM00 and PM01 are both set to “1”.)  
Note 3: Valid in microprocessor and memory expansion modes.  
Note 4: In microprocessor mode, multiplexed bus for the entire space cannot be selected.  
In memory expansion mode, when multiplexed bus for the entire space is selected,  
address bus range is 256 bytes in each chip select.  
Processor mode register 1 (Note)  
Symbol  
PM1  
Address  
000516  
When reset  
0XXXXXX0  
b7 b6 b5 b4 b3 b2 b1 b0  
2
0
R W  
Bit symbol  
Reserved bit  
Bit name  
Function  
Must always be set to “0”  
Nothing is assigned.  
These bits can neither be set nor reset. When read, their contents are  
indeterminate.  
0 : No wait state  
1 : Wait state inserted  
PM17  
Wait bit  
Note: Set bit 1 of the protect register (address 000A16) to “1” when writing new values to  
this register.  
Figure 1.14. Configuration of processor mode register 0 and 1  
19  
Mitsubishi microcomputers  
M16C / 60 Group  
Processor Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Processor Mode  
(1) Types of Processor Mode  
One of three processor modes can be selected: single-chip mode, memory expansion mode, and micro-  
processor mode. The functions of some pins, the memory map, and the access space differ according to  
the selected processor mode.  
• Single-chip mode  
In single-chip mode, only internal memory space (SFR, internal RAM, and internal ROM) can be  
accessed. Ports P0 to P10 can be used as programmable I/O ports or as I/O ports for the internal  
peripheral functions.  
• Memory expansion mode  
In memory expansion mode, external memory can be accessed in addition to the internal memory  
space (SFR, internal RAM, and internal ROM).  
In this mode, some of the pins function as the address bus, the data bus, and as control signals. The  
number of pins assigned to these functions depends on the bus and register settings. (See “Bus  
Settings” for details.)  
• Microprocessor mode  
In microprocessor mode, the SFR, internal RAM, and external memory space can be accessed. The  
internal ROM area cannot be accessed.  
In this mode, some of the pins function as the address bus, the data bus, and as control signals. The  
number of pins assigned to these functions depends on the bus and register settings. (See “Bus  
Settings” for details.)  
(2) Setting Processor Modes  
The processor mode is set using the CNVSS pin and the processor mode bits (bits 1 and 0 at address  
000416). Do not set the processor mode bits to “102”.  
Regardless of the level of the CNVSS pin, changing the processor mode bits selects the mode. Therefore,  
never change the processor mode bits when changing the contents of other bits. Also do not attempt to  
shift to or from the microprocessor mode within the program stored in the internal ROM area.  
• Applying VSS to CNVSS pin  
The microcomputer begins operation in single-chip mode after being reset. Memory expansion mode  
is selected by writing “012” to the processor mode bits.  
• Applying VCC to CNVSS pin  
The microcomputer starts to operate in microprocessor mode after being reset.  
Figure 1.15 shows the memory maps applicable for each of the modes.  
20  
Mitsubishi microcomputers  
M16C / 60 Group  
Processor Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Single-chip mode  
SFR area  
Memory expansion mode  
SFR area  
Microprocessor mode  
SFR area  
0000016  
0040016  
Internal RAM  
area  
Internal RAM  
area  
Internal RAM  
area  
02C0016  
0400016  
Internally reserved  
area  
Internally reserved  
area  
Inhibited  
External area  
External area  
D000016  
F000016  
Internally reserved  
area  
Internal ROM  
area  
Internal ROM  
area  
FFFFF16  
External area : Accessing this area allows the user to access a device connected  
externally to the microcomputer.  
Figure 1.15. Memory maps in each processor mode  
21  
Mitsubishi microcomputers  
M16C / 60 Group  
Bus Settings  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Bus Settings  
The BYTE pin and bits 4 to 6 of the processor mode register 0 (address 000416) are used to change the bus  
settings.  
Table 1.4 shows the factors used to change the bus settings.  
Table 1.4. Factors for switching bus settings  
Bus setting  
Switching factor  
Bit 6 of processor mode register 0  
BYTE pin  
Switching external address bus width  
Switching external data bus width  
Switching between separate and multiplex bus  
Bits 4 and 5 of processor mode register 0  
(1) Selecting external address bus width  
The address bus width for external output in the 1M bytes of address space can be set to 16 bits (64K  
bytes address space) or 20 bits (1M bytes address space). When bit 6 of the processor mode register 0  
is set to “1”, the external address bus width is set to 16 bits, and P2 and P3 become part of the address  
bus. P40 to P43 can be used as programmable I/O ports. When bit 6 of processor mode register 0 is set  
to “0”, the external address bus width is set to 20 bits, and P2, P3, and P40 to P43 become part of the  
address bus.  
(2) Selecting external data bus width  
The external data bus width can be set to 8 or 16 bits. (Note, however, that only the separate bus can be  
set.) When the BYTE pin is “L”, the bus width is set to 16 bits; when “H”, it is set to 8 bits. (The internal bus  
width is permanently set to 16 bits.)  
(3) Selecting separate/multiplex bus  
The bus format can be set to multiplex or separate bus using bits 4 and 5 of the processor mode register 0.  
• Separate bus  
In this mode, the data and address are input and output separately. The data bus can be set using the  
BYTE pin to be 8 or 16 bits. When the BYTE pin is “H”, the data bus is set to 8 bits and P0 functions as  
the data bus and P1 as a programmable I/O port. When the BYTE pin is “L”, the data bus is set to 16  
bits and P0 and P1 are both used for the data bus.  
When the separate bus is used for access, a software wait can be selected.  
• Multiplex bus  
In this mode, data and address I/O are time multiplexed. With an 8-bit data bus selected (BYTE pin =  
“H”), the 8 bits from D0 to D7 are multiplexed with A0 to A7.  
With a 16-bit data bus selected (BYTE pin = “L”), the 8 bits from D0 to D7 are multiplexed with A1 to A8.  
D8 to D15 are not multiplexed. In this case, the external devices connected to the multiplexed bus are  
mapped to the microcomputer’s even addresses (every 2nd address). To access these external de-  
vices, access the even addresses as bytes.  
The ALE signal latches the address. It is output from P56.  
Before accessing the multiplex bus, always set the CSi wait bit of the chip select control register to “0”.  
22  
Mitsubishi microcomputers  
M16C / 60 Group  
Bus Settings  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.5. Pin functions for each processor mode  
Single-chip  
Memory  
expansion mode  
Processor mode  
Memory expansion mode/microprocessor modes  
mode  
Multiplexed bus and  
separate bus  
Multiplexed  
bus (Note 1)  
separate bus  
“00”  
External bus type  
Multiplexed bus  
space select bit  
“01”, “10”  
“11” (Note 2)  
8 bits  
= “H”  
16 bits  
= “L”  
Data bus width  
BYTE pin level  
8 bits  
= “H”  
16 bits  
= “L”  
8 bits  
= “H”  
P0  
0
to P0  
7
I/O port  
Data bus  
I/O port  
Data bus  
Data bus  
Data bus  
I/O port  
I/O port  
P1  
P2  
0
0
to P1  
7
I/O port  
I/O port  
Data bus  
I/O port  
Data bus  
Address bus  
/data bus (Note 3)  
Address bus  
Address bus  
Address bus  
Address bus  
/data bus  
P2  
1
0
to P2  
7
I/O port  
I/O port  
Address bus  
/data bus (Note 3) /data bus (Note 3)  
Address bus  
Address bus  
Address bus  
Address bus  
Address bus  
Address bus  
/data bus  
P3  
Address bus  
Address bus  
I/O port  
/data bus (Note 3)  
P3  
1
0
to P3  
to P4  
7
I/O port  
I/O port  
Address bus  
I/O port  
Address bus  
I/O port  
Address bus  
I/O port  
Address bus  
I/O port  
I/O port  
I/O port  
P4  
3
Port P4  
0
to P43  
function select bit = 1  
P40  
to P4  
3
I/O port  
Address bus  
Address bus  
Address bus  
Address bus  
I/O port  
Port P4  
0
to P43  
function select bit = 0  
P4  
4
to P4  
7
I/O port  
I/O port  
CS (chip select) or programmable I/O port  
(For details, refer to “Bus control”)  
Outputs RD, WRL, WRH, and BCLK or RD, BHE, WR, and BCLK  
(For details, refer to “Bus control”)  
P50  
to P5  
3
P5  
P5  
P5  
P5  
4
5
6
7
I/O port  
I/O port  
I/O port  
I/O port  
HLDA  
HOLD  
ALE  
HLDA  
HOLD  
ALE  
HLDA  
HOLD  
ALE  
HLDA  
HOLD  
ALE  
HLDA  
HOLD  
ALE  
RDY  
RDY  
RDY  
RDY  
RDY  
Note 1: In memory expansion mode, do not select a 16-bit multiplex bus.  
Note 2: In microprocessor mode, muitiplexed bus for the entire space cannot be selected.  
In memory expansion mode, when muitiplexed bus for the entire space is selected, address bus range is 256 bytes  
in each chip select.  
Note 3: Address bus when in separate bus mode.  
23  
Mitsubishi microcomputers  
M16C / 60 Group  
Bus Control  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Bus Control  
The following explains the signals required for accessing external devices and software waits. The signals  
required for accessing the external devices are valid when the processor mode is set to memory expansion  
mode and microprocessor mode. The software waits are valid in all processor modes.  
(1) Address bus/data bus  
The address bus consists of the 20 pins A0 to A19 for accessing the 1M bytes of address space.  
The data bus consists of the pins for data I/O. When the BYTE pin is “H”, the 8 ports D0 to D7 function  
as the data bus. When BYTE is “L”, the 16 ports D0 to D15 function as the data bus.  
Both the address and data bus retain their previous states when internal ROM or RAM is accessed.  
Also, when a change is made from single-chip mode to memory expansion mode, the value of the  
address bus is undefined until external memory is accessed.  
(2) Chip select signal  
The chip select signal is output using the same pins as P44 to P47. Bits 0 to 3 of the chip select control  
register (address 000816) set each pin to function as a port or to output the chip select signal. The chip  
select control register is valid in memory expansion mode and microprocessor mode. In single-chip  
mode, P44 to P47 function as programmable I/O ports regardless of the value in the chip select control  
register.  
_______  
In microprocessor mode, only CS0 outputs the chip select signal after the reset state has been can-  
_______  
_______  
_______  
_______  
celled. CS1 to CS3 function as input ports. Therefore, when using CS1 to CS3, external pull-up resis-  
tors are required. Figure 1.16 shows the configuration of the chip select control register.  
The chip select signal can be used to split the external area into as many as four blocks. Table 1.6  
shows the external memory areas specified using the chip select signal.  
Table 1.6. External areas specified by the chip select signals  
Chip select  
Specified address range  
Memory expansion mode  
Microprocessor mode  
9000016 to FFFFF16 (448K)  
1000016 to 8FFFF16 (512K)  
_______  
CS0  
9000016 to CFFFF16(256K)  
1000016 to 8FFFF16(512K)  
0800016 to 0FFFF16 (32K)  
0400016 to 07FFF16 (16K)  
_______  
CS1  
_______  
CS2  
0800016 to 0FFFF16  
0400016 to 07FFF16  
(32K)  
(16K)  
_______  
CS3  
Chip select control register  
Symbol  
CSR  
Address  
000816  
When reset  
0116  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit name  
Function  
Bit symbol  
R W  
CS0  
CS1  
CS0 output enable bit  
CS1 output enable bit  
CS2 output enable bit  
CS3 output enable bit  
CS0 wait bit  
0 : Chip select output disabled  
(Normal port pin)  
1 : Chip select output enabled  
CS2  
CS3  
CS0W  
CS1W  
0 : Wait state inserted  
1 : No wait state  
CS1 wait bit  
CS2 wait bit  
CS3 wait bit  
CS2W  
CS3W  
Figure 1.16. Configuration of chip select control register  
24  
Mitsubishi microcomputers  
M16C / 60 Group  
Bus Control  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) Read/write signals  
With a 16-bit data bus (BYTE pin =“L”), bit 2 of the processor mode register 0 (address 000416) select the  
_____ ________  
______  
_____ ________  
_________  
combinations of RD, BHE, and WR signals or RD, WRL, and WRH signals. With an 8-bit data bus (BYTE  
_____ ______  
_______  
pin = “H”), use the combination of RD, WR, and BHE signals. (Set bit 2 of the processor mode register 0  
(address 000416) to “0”.) Tables 7 and 8 show the operation of these signals.  
_____ ______  
________  
After a reset has been cancelled, the combination of RD, WR, and BHE signals is automatically selected.  
_____ _________  
_________  
When switching to the RD, WRL, and WRH combination, do not write to external memory until bit 2 of the  
processor mode register 0 (address 000416) has been set (Note).  
Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect  
register (address 000A16) to “1”.  
_____ ________  
_________  
Table 1.7. Operation of RD, WRL, and WRH signals  
Data bus width  
Status of external data bus  
RD  
L
WRL  
WRH  
H
L
H
H
L
Read data  
H
Write 1 byte of data to even address  
Write 1 byte of data to odd address  
Write data to both even and odd addresses  
16-bit  
(BYTE = “L”)  
H
H
L
H
L
_____ ______  
________  
Table 1.8. Operation of RD, WR, and BHE signals  
Data bus width  
Status of external data bus  
RD  
WR  
BHE  
A0  
H
L
L
H
L
L
H
H
Write 1 byte of data to odd address  
Read 1 byte of data from odd address  
Write 1 byte of data to even address  
Read 1 byte of data from even address  
Write data to both even and odd addresses  
Read data from both even and odd addresses  
Write 1 byte of data  
L
H
L
H
L
16-bit  
(BYTE = “L”)  
H
L
H
L
H
L
L
L
H
L
L
L
H
L
Not used  
Not used  
H/L  
H/L  
8-bit  
(BYTE = “H”)  
H
Read 1 byte of data  
25  
Mitsubishi microcomputers  
M16C / 60 Group  
Bus Control  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(4) ALE signal  
The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the  
ALE signal falls.  
When BYTE pin = “H”  
ALE  
/A  
When BYTE pin = “L”  
ALE  
Address  
Data (Note 1)  
D0  
0 to D7/A7  
A0  
Address  
Address  
Data (Note 1)  
D0/A1 to D7/A8  
A8 to A19  
Address (Note 2)  
A9 to A19  
Address  
Note 1: Floating when reading.  
Note 2: When multiplexed bus for the entire space is selected, these are I/O ports.  
Figure 1.17. ALE signal and address/data bus  
(5) Ready signal  
The ready signal facilitates access of external devices that require a long time for access. As shown in  
________  
Figure 1.18, inputting “L” to the RDY pin at the falling edge of BCLK causes the microcomputer to enter  
________  
the ready state. Inputting “H” to the RDY pin at the falling edge of BCLK cancels the ready state. Table 1.9  
_____  
shows the microcomputer status in the ready state. Figure 1.18 shows an example of the RD signal being  
________  
extended using the RDY signal.  
Ready is valid when accessing the external area during the bus cycle in which the software wait is applied.  
Table 1.9. Microcomputer status in ready state (Note)  
Item  
Status  
Oscillation  
On  
___  
_____  
R/W signal, address bus, data bus, CS  
Maintain status when ready signal received  
__________  
ALE signal, HLDA, programmable I/O ports  
Internal peripheral circuits  
On  
Note: The ready signal cannot be received immediately prior to a software wait.  
BCLK  
RD  
:
Wait using ready function  
Wait using software  
CSi  
(i = 0 to 3)  
:
RDY  
tsu(RDY — BCLK)  
_____  
________  
Figure 1.18. Example of RD signal extended by RDY signal  
26  
Mitsubishi microcomputers  
M16C / 60 Group  
Bus Control  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(6) Hold signal  
The hold signal is used to transfer the bus privileges from the CPU to the external circuits. Inputting “L” to  
__________  
the HOLD pin places the microcomputer in the hold state at the end of the current bus access. This status  
__________  
__________  
is maintained and “L” is output from the HLDA pin as long as “L” is input to the HOLD pin. Table 1.10  
shows the microcomputer status in the hold state.  
Table 1.10. Microcomputer status in hold state  
Item  
Status  
Oscillation  
ON  
___  
_____ _______  
R/W signal, address bus, data bus, CS, BHE  
Floating  
Floating  
Programmable I/O ports  
P0, P1, P2, P3, P4, P5  
P6, P7, P8, P9, P10  
Maintains status when hold signal is received  
Undefined  
ALE signal  
__________  
HLDA  
Output “L”  
Internal peripheral circuits  
ON (but watchdog timer stops)  
(7) BCLK output  
The output of the internal clock can be selected using bit 7 of the processor mode register 0 (address  
000416) (Note). The output is floating when bit 7 is set to “1”.  
Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect  
register (address 000A16) to “1”.  
27  
Mitsubishi microcomputers  
M16C / 60 Group  
Bus Control  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(8) Software wait  
A software wait can be inserted by setting the wait bit (bit 7) of the processor mode register 1 (address  
000516) (Note) and bits 4 to 7 of the chip select control register (address 000816).  
A software wait is inserted in the internal ROM/RAM area and in the external memory area by setting the  
wait bit of the processor mode register 1. When set to “0”, each bus cycle is executed in one BCLK cycle.  
When set to “1”, each bus cycle is executed in two or three BCLK cycles. After the microcomputer has been  
reset, this bit defaults to “0”. When set to “1”, bits 4 to 7 of the chip select control register are invalid and a  
wait is applied to all external memory areas (two or three BCLK cycles). When VCC is in the range 2.7V to  
4.0V, set the wait bit to “1”. However, this is not necessary if the oscillation frequency is less than 3MHz.  
When the wait bit of the processor mode register 1 is “0”, software waits can be set independently for  
each of the 4 areas selected using the chip select signal. Bits 4 to 7 of the chip select control register  
_______  
_______  
correspond to chip selects CS0 to CS3. When one of these bits is set to “1”, the bus cycle is executed in  
one BCLK cycle. When set to “0”, the bus cycle is executed in two or three BCLK cycles. These bits  
default to “0” after the microcomputer has been reset.  
The SFR area is always accessed in two BCLK cycles regardless of the setting of these control bits. Also,  
the corresponding bits of the chip select control register must be set to “0” if using the multiplex bus to  
access the external memory area.  
Table 1.11 shows the software wait and bus cycles. Figure 1.19 shows example bus timing when using  
software waits.  
Note: Before attempting to change the contents of the processor mode register 1, set bit 1 of the protect  
register (address 000A16) to “1”.  
Table 1.11. Software waits and bus cycles  
Bits 4 to 7 of chip select  
Bus cycle  
2 BCLK cycles  
Area  
SFR  
Bus status  
Wait bit  
control register  
Invalid  
0
Invalid  
Invalid  
1 BCLK cycle  
Internal  
ROM/RAM  
1
0
0
Invalid  
2 BCLK cycles  
1 BCLK cycle  
2 BCLK cycles  
Separate bus  
Separate bus  
Separate bus  
1
0
External  
memory  
area  
1
0
1
0 (Note)  
0 (Note)  
0 (Note)  
2 BCLK cycles  
3 BCLK cycles  
3 BCLK cycles  
Multiplex bus  
Multiplex bus  
Note: Always set to “0”.  
28  
Mitsubishi microcomputers  
M16C / 60 Group  
Bus Control  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
< Separate bus (no wait) >  
Bus cycle  
BCLK  
Write signal  
Read signal  
Data bus  
Input  
Output  
Address bus  
Chip select  
Address  
Address  
< Separate bus (with wait) >  
Bus cycle  
BCLK  
Write signal  
Read signal  
Output  
Input  
Data bus  
Address bus  
Address  
Address  
Chip select  
< Multiplexed bus >  
Bus cycle  
BCLK  
Write signal  
Read signal  
ALE  
Address bus  
Address bus/  
Address  
Address  
Input  
Address  
Address  
Data output  
Data bus  
Chip select  
Figure 1.19. Typical bus timings using software wait  
29  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock Generating Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Generating Circuit  
The clock generating circuit contains two oscillator circuits that supply the operating clock sources to the  
CPU and internal peripheral units.  
Table 1.12. Main clock and sub clock generating circuits  
Main clock generating circuit  
• CPU’s operating clock source  
• Internal peripheral units’  
operating clock source  
Ceramic or crystal oscillator  
XIN, XOUT  
Sub clock generating circuit  
• CPU’s operating clock source  
• Timer A/B’s count clock  
source  
Use of clock  
Usable oscillator  
Crystal oscillator  
XCIN, XCOUT  
Pins to connect oscillator  
Oscillation stop/restart function  
Oscillator status immediately after reset  
Other  
Available  
Available  
Oscillating  
Stopped  
Externally derived clock can be input  
Example of oscillator circuit  
Figure 1.20 shows some examples of the main clock circuit, one using an oscillator connected to the circuit,  
and the other one using an externally derived clock for input. Figure 1.21 shows some examples of sub  
clock circuits, one using an oscillator connected to the circuit, and the other one using an externally derived  
clock for input. Circuit constants in Figures 1.20 and 1.21 vary with each oscillator used. Use the values  
recommended by the manufacturer of your oscillator.  
Microcomputer  
(Built-in feedback resistor)  
Microcomputer  
(Built-in feedback resistor)  
X
IN  
XOUT  
X
IN  
XOUT  
Open  
(Note)  
R
d
Externally derived clock  
Vcc  
Vss  
CIN  
C
OUT  
Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive  
capacity setting. Use the value recommended by the maker of the oscillator.  
When the oscillation drive capacity is set to low, check that oscillation is stable.  
Figure 1.20. Examples of main clock  
Microcomputer  
(Built-in feedback resistor)  
Microcomputer  
(Built-in feedback resistor)  
XCIN  
XCOUT  
XCIN  
XCOUT  
Open  
(Note)  
R
Cd  
Externally derived clock  
C
CIN  
CCOUT  
Vcc  
Vss  
Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive  
capacity setting. Use the value recommended by the maker of the oscillator.  
When the oscillation drive capacity is set to low, check that oscillation is stable.  
Figure 1.21. Examples of sub clock  
30  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock Generating Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Control  
Figure 1.22 shows a block diagram of the clock generating circuit.  
X
CI  
N
XCOUT  
fC32  
1/32  
f
1
CM04  
fAD  
fC  
f
8
Sub clock  
CM10 “1”  
Write signal  
f
32  
S
R
Q
X
I
XOUT  
b
c
CM07=0  
a
d
Divider  
RESET  
Software reset  
NMI  
Internal  
clock  
f
C
Main clock  
CM02  
CM07=1  
CM0  
5
Interrupt request  
level judgment  
output  
S Q  
R
WAIT instruction  
c
b
1/  
2
1/  
2
1/  
2
1/  
2
1/  
2
a
CM06=0  
CM17,CM16=11  
CM06=1  
CM06=0  
CM17,CM16=10  
d
CM06=0  
CM17,CM16=01  
CM0i : Bit i at address 000616  
CM1i : Bit i at address 000716  
WDCi : Bit i at address 000F16  
CM06=0  
CM17,CM16=00  
Details of divider  
Figure 1.22. Clock generating circuit  
31  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock Generating Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
The following paragraphs describe the clocks generated by the clock generating circuit.  
(1) Main clock  
The main clock is generated by the main clock oscillation circuit. After a reset, the clock is divided by 8 to  
the internal clock . The clock can be stopped using the main clock stop bit (bit 5 at address 000616).  
Stopping the clock reduces the power dissipation.  
After the oscillation of the main clock oscillation circuit has stabilized, the drive capacity of the XOUT pin  
can be reduced using the XIN-XOUT drive capacity select bit (bit 5 at address 000716). Reducing the drive  
capacity of the XOUT pin reduces the power dissipation. This bit defaults to “1” when shifting to stop mode  
and after a reset.  
(2) Sub clock  
The sub clock is generated by the sub clock oscillation circuit. No sub clock is generated after a reset.  
After oscillation is started using the port Xc select bit (bit 4 at address 000616), the sub clock can be  
selected as the internal clock  
by using the system clock select bit (bit 7 at address 000616). However,  
be sure that the sub clock oscillation has fully stabilized before switching.  
After the oscillation of the sub clock oscillation circuit has stabilized, the drive capacity of the XCOUT pin  
can be reduced using the XCIN-XCOUT drive capacity select bit (bit 3 at address 000616). Reducing the  
drive capacity of the XCOUT pin reduces the power dissipation. This bit changes to “1” when shifting to  
stop mode and at a reset.  
(3) Internal clock  
The internal clock  
is the clock that drives the CPU, and is either the main clock or fc or is derived by  
dividing the main clock by 2, 4, 8, or 16. The internal clock is derived by dividing the main clock by 8  
after a reset.  
When shiffing to stop mode, the main clock division select bit (bit 6 at 000616) is set to “1”.  
(4) Peripheral function clock  
• f1, f8, f32  
The clock for the peripheral devices is derived from the main clock or by dividing it by 8 or 32. The  
peripheral function clock is stopped by stopping the main clock or by setting the WAIT peripheral function  
clock stop bit (bit 2 at 000616) to “1” and then executing a WAIT instruction.  
• fAD  
This clock has the same frequency as the main clock and is used for A-D conversion.  
(5) fC32  
This clock is derived by dividing the sub clock by 32. It is used for the timer A and timer B counts.  
(6) fC  
This clock has the same frequency as the sub clock. It is used for internal clock and for the watchdog  
timer.  
32  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Generating Circuit  
Figure 1.23 shows the configuration of system clock control registers 0 and 1.  
System clock control register 0 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CM0  
Address  
000616  
When reset  
4816  
Bit symbol  
CM00  
Bit name  
Function  
R W  
b1 b0  
Clock output function  
select bit  
0 0 : I/O port P5  
7
0 1 : f  
1 0 : f  
C
output  
output  
8
CM01  
CM02  
CM03  
1 1 : f32 output  
0 : Do not stop f  
1 : Stop f , f , f32 in wait mode  
WAIT peripheral function  
clock stop bit  
1, f8, f32 in wait mode  
1
8
X
CIN-XCOUT drive capacity 0 : LOW  
select bit (Note 2)  
1 : HIGH  
Port XC select bit  
0 : I/O port  
1 : XCIN-XCOUT generation  
CM04  
CM05  
Main clock (XIN-XOUT  
stop bit (Note 3) (Note 4)  
)
0 : On  
1 : Off  
Main clock division select 0 : CM16 and CM17 valid  
CM06  
CM07  
bit 0 (Note 2)  
1 : Division by 8 mode  
System clock select bit  
(Note 5)  
0 : XIN, XOUT  
1 : XCIN, XCOUT  
Note 1: Set bit 0 of the protect register (address 000A16) to “1” before writing to this register.  
Note 2: Changes to “1” when shifting to stop mode.  
Note 3: When entering power saving mode, main clock stops using this bit. When returning from stop  
mode and operating with XIN, set this bit to “0”. When main clock oscillation is operating by  
itself, set system clock select bit (CM07) to “1” before setting this bit to “1”.  
Note 4: When inputting external clock, only clock oscillation buffer is stopped and clock input  
is acceptable.  
Note 5: Set port Xc select bit (CM04) to “1” before writing to this bit. The both bits can not be  
written at the same time.  
System clock control register 1 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CM1  
Address  
000716  
When reset  
2016  
0
0 0 0  
Bit symbol  
CM10  
Bit name  
All clock stop control bit  
Function  
R W  
0 : Clock on  
1 : All clocks off (stop mode)  
Reserved bit  
Reserved bit  
Reserved bit  
Reserved bit  
Always set to “0”  
Always set to “0”  
Always set to “0”  
Always set to “0”  
X
IN-XOUT drive capacity  
0 : LOW  
1 : HIGH  
CM15  
select bit (Note 2)  
b7 b6  
Main clock division  
select bit1 (Note 3)  
0 0 : No division mode  
CM16  
CM17  
0 1 : Division by 2 mode  
1 0 : Division by 4 mode  
1 1 : Division by 16 mode  
Note 1: Set bit 0 of the protect register (address 000A16) to “1” before writing to this register.  
Note 2: Changes to “1” when shiffing to stop mode.  
Note 3: Can be selected when bit 6 of the system clock control register 0 (address 000616) is “0”. If “1”,  
division mode is fixed at 8.  
Figure 1.23. Configuration of system clock control registers 0 and 1  
33  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock Generating Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Output  
In single-chip mode, the clock output function select bits (bits 0 and 1 at address 000616) enable f8, f32, or  
fc to be output from the P57/CLKOUT pin. When the WAIT peripheral function clock stop bit (bit 2 at address  
000616) is set to “1”, the output of f8 and f32 stops when a WAIT instruction is executed.  
Stop Mode  
Writing “1” to the all-clock stop control bit (bit 0 at address 000716) stops all oscillation and the microcom-  
puter enters stop mode. In stop mode, the content of the internal RAM is retained provided that VCC re-  
mains above 2V.  
Because the oscillation of internal clock , f1 to f32, fc, fc32, and fAD stops in stop mode, peripheral functions  
such as the A-D converter and watchdog timer do not function. However, timer A and timer B operate  
provided that the event counter mode is set to an external pulse, and UART0 and UART1 functions pro-  
vided an external clock is selected. Table 1.13 shows the status of the ports in stop mode.  
Stop mode is cancelled by a hardware reset or interrupt. If an interrupt is to be used to cancel stop mode,  
that interrupt must first have been enabled.  
When shifting to stop mode, the main clock division select bit 0 (bit 6 at 000616) is set to “1”.  
Table 1.13. Port status during stop mode  
Pin  
Memory expansion mode  
Single-chip mode  
Microprocessor mode  
_______  
_______  
Address bus, data bus, CS0 to CS3  
Retains status before stop mode  
_____ ______ ________ ________ _________  
RD, WR, BHE, WRL, WRH  
“H”  
“H”  
“H”  
__________  
HLDA, BCLK  
ALE  
Port  
Retains status before stop mode Retains status before stop mode  
Valid only in single-chip mode “H”  
CLKOUT  
When fc selected  
When f8, f32 selected  
Valid only in single-chip mode Retains status before stop mode  
34  
Mitsubishi microcomputers  
M16C / 60 Group  
Wait Mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Wait Mode  
When a WAIT instruction is executed, the internal clock  
stops and the microcomputer enters the wait  
and watchdog timer stop. Writing “1” to  
mode. In this mode, oscillation continues but the internal clock  
the WAIT peripheral function clock stop bit and executing a WAIT instruction stops the clock being supplied  
to the internal peripheral functions, allowing power dissipation to be reduced. Table 1.14 shows the status  
of the ports in wait mode.  
Wait mode is cancelled by a hardware reset or interrupt. If an interrupt is used to cancel wait mode, the  
microcomputer restarts using as internal clock  
tion was executed.  
the clock that had been selected when the WAIT instruc-  
Table 1.14. Port status during wait mode  
Pin  
Memory expansion mode  
Single-chip mode  
Microprocessor mode  
_______  
_______  
Address bus, data bus,CS0 to CS3  
Retains status before wait mode  
_____ ______ ________ ________ _________  
RD,WR,BHE,WRL,WRH  
“H”  
__________  
HLDA,BCLK  
ALE  
“H”  
“H”  
Port  
Retains status before wait mode  
Retains status before wait mode  
CLKOUT  
When fC selected  
Valid only in single-chip mode Does not stop  
When f8, f32 selected Valid only in single-chip mode Does not stop when the WAIT  
peripheral function clock stop  
bit is “0”.  
When the WAIT peripheral  
function clock stop bit is “1”,  
the status immediately prior  
to entering wait mode is main  
tained.  
35  
Mitsubishi microcomputers  
M16C / 60 Group  
Status Transition Of Internal Clock  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Status Transition Of Internal Clock  
Power dissipation can be reduced and low-voltage operation achieved by changing the count source for  
internal clock . Table 1.15 shows the operating modes corresponding to the settings of system clock  
control registers 0 and 1.  
After a reset, operation defaults to division by 8 mode. When shifting to stop mode, the main clock division select  
bit 0 (bit 6 at address 000616) is set to “1”. The following shows the operational modes of internal clock  
:
(1) Division by 2 mode  
The main clock is divided by 2 to obtain the internal clock  
.
.
(2) Division by 4 mode  
The main clock is divided by 4 to obtain the internal clock  
(3) Division by 8 mode  
The main clock is divided by 8 to obtain the internal clock . Note that oscillation of the main clock must  
have stabilized before transferring from this mode to another mode.  
(4) Division by 16 mode  
The main clock is divided by 16 to obtain the internal clock  
.
(5) No-division mode  
The main clock is used as internal clock  
.
(6) Low-speed mode  
fC is used as internal clock . Note that oscillation of both the main and sub clocks must have stabilized  
before transferring from this mode to another or vice versa. At least 2 to 3 seconds are required after the  
sub clock starts. Therefore, the program must be written to wait until this clock has stabilized immediately  
after powering up and after stop mode is cancelled.  
(7) Low power dissipation mode  
fC is the internal clock and the main clock is stopped.  
Table 1.15. Operating modes dictated by settings of system clock control registers 0 and 1  
CM17  
CM16  
CM07  
CM06  
CM05  
CM04  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1
Operating mode of internal clock  
Division by 2 mode  
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
Division by 4 mode  
Invalid  
1
Invalid  
1
1
0
Division by 8 mode  
Division by 16 mode  
No-division mode  
0
0
0
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Low-speed mode  
1
Low power dissipation mode  
36  
Mitsubishi microcomputers  
M16C / 60 Group  
Protection  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Protection  
The protection function is provided so that the values in important registers cannot be changed in the event  
that the program runs out of control. Figure 1.24 shows the configuration of the protect register. The values  
in the processor mode register 0 (addresss 000416), processor mode register 1 (address 000516), system  
clock control register 0 (address 000616), system clock control register 1 (address 000716) and port P9  
direction register (address 03F316) can only be changed when the respective bit in the protect register is set  
to “1”. Therefore, important outputs can be allocated to port P9.  
If, after “1” (write-enabled) has been written to the port P9 direction register write-enable bit (bit 2 at address  
000A16), a value is written to any address, the bit automatically reverts to “0” (write-inhibited). However, the  
system clock control registers 0 and 1 write-enable bit (bit 0 at 000A16) and processor mode register 0 and  
1 write-enable bit (bit 1 at 000A16) do not automatically return to “0” after a value has been written to an  
address. The program must therefore be written to return these bits to “0”.  
Protect register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PRCR  
Address  
000A16  
When reset  
XXXXX000  
2
Bit symbol  
PRC0  
Bit name  
Function  
R W  
Enables writing to system clock  
control registers 0 and 1 (addresses  
0 : Write-inhibited  
1 : Write-enabled  
000616 and 000716  
)
Enables writing to processor mode  
registers 0 and 1 (addresses 000416  
0 : Write-inhibited  
1 : Write-enabled  
PRC1  
PRC2  
and 000516  
)
Enables writing to port P9 direction 0 : Write-inhibited  
1 : Write-enabled  
register (address 03F316) (Note  
)
Nothing is assigned.  
These bits can neither be set nor reset. When read, their contents are  
indeterminate.  
Note: Writing a value to an address after “1” is written to this bit returns the bit  
to “0” . Other bits do not automatically return to “0” and they must therefore  
be reset by the program.  
Figure 1.24. Configuration of protect register  
37  
Mitsubishi microcomputers  
M16C / 60 Group  
Interrupts  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupts  
Tables 1.16 and 1.17 show the interrupt sources and vector addresses. When an interrupt is received, the  
program is executed from the address shown by the respective interrupt vector.  
The vector addresses for the interrupts in Table 1.16 are fixed (interrupt vector addresses). These inter-  
rupts are not affected by the interrupt enable flag (I flag) (non-maskable interrupts).  
The vector table addresses for the interrupt in Table 1.17 are variable, being determined as relative to the  
fixed address in the interrupt table register (INTB) (variable interrupt addresses). These interrupts can be  
enabled or disabled using the interrupt enable flag (I flag) (maskable interrupts). 64 vectors can be set in  
the interrupt table register (INTB). Any software interrupt Nos. 0 to 63 can be assigned to each vector. By  
using the INT instruction to specify a software interrupt No., the program can be executed starting at the  
address indicated by the respective vector. The BRK instruction interrupt has interrupt vectors in both the  
fixed vector addresses and variable vector addresses. When the contents of FFFE416 to FFFE716 are all  
“FF16”, the program is executed from the address shown in the BRK instruction interrupt vector in the  
variable vector addresses.  
Specify the starting address of the interrupt program in the interrupt vector. Figure 1.25 shows the format  
for specifying the address.  
Table 1.16. Interrupt factors (fixed interrupt vector addresses)  
Interrupt source  
Vector table addresses  
Address (L) to address (H)  
FFFDC16 to FFFDF16  
FFFE016 to FFFE316  
FFFE416 to FFFE716  
Remarks  
Undefined instruction  
Overflow  
Interrupt on UND instruction  
Interrupt on INTO instruction  
BRK instruction  
If the vector is filled with FF16, program execution starts from  
the address shown by the vector in the variable vector table  
There is an address-matching interrupt enable bit  
Do not use  
Address match  
FFFE816 to FFFEB16  
FFFEC16 to FFFEF16  
FFFF016 to FFFF316  
FFFF416 to FFFF716  
FFFF816 to FFFFB16  
FFFFC16 to FFFFF16  
Single step (Note)  
Watchdog timer  
________  
DBC (Note)  
Do not use  
_______  
_______  
NMI  
External interrupt by input to NMI pin  
Reset  
Note: Interrupts used for debugging purposes only.  
MSB  
LSB  
Low address  
Vector address + 0  
Vector address + 1  
Vector address + 2  
Mid address  
0 0 0 0  
0 0 0 0  
High address  
0 0 0 0  
V
ector address + 3  
Figure 1.25. Format for specifying interrupt vector addresses  
38  
Mitsubishi microcomputers  
M16C / 60 Group  
Interrupts  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.17. Interrupt causes (variable interrupt vector addresses)  
Vector table address  
Software interrupt number  
Software interrupt number 0  
Interrupt source  
Remarks  
Address (L) to address (H)  
+0 to +3 (Note)  
BRK instruction  
Cannot be masked by I flag  
Software interrupt number 11  
+44 to +47 (Note)  
DMA0  
Software interrupt number 12  
Software interrupt number 13  
Software interrupt number 14  
+48 to +51 (Note)  
+52 to +55 (Note)  
+56 to +59 (Note)  
DMA1  
Key input interrupt  
A-D  
Software interrupt number 17  
Software interrupt number 18  
Software interrupt number 19  
Software interrupt number 20  
Software interrupt number 21  
Software interrupt number 22  
Software interrupt number 23  
Software interrupt number 24  
Software interrupt number 25  
Software interrupt number 26  
Software interrupt number 27  
Software interrupt number 28  
Software interrupt number 29  
Software interrupt number 30  
Software interrupt number 31  
+68 to +71 (Note)  
+72 to +75 (Note)  
+76 to +79 (Note)  
+80 to +83 (Note)  
+84 to +87 (Note)  
+88 to +91 (Note)  
+92 to +95 (Note)  
+96 to +99 (Note)  
+100 to +103 (Note)  
+104 to +107 (Note)  
+108 to +111 (Note)  
+112 to +115 (Note)  
+116 to +119 (Note)  
+120 to +123 (Note)  
+124 to +127 (Note)  
UART0 transmit  
UART0 receive  
UART1 transmit  
UART1 receive  
Timer A0  
Timer A1  
Timer A2  
Timer A3  
Timer A4  
Timer B0  
Timer B1  
Timer B2  
INT0  
INT1  
INT2  
Software interrupt number 32  
to  
+128 to +131 (Note)  
to  
Software interrupt  
Cannot be masked by I flag  
Software interrupt number 63  
+252 to +255 (Note)  
Note: Address relative to address in interrupt table register (INTB).  
39  
Mitsubishi microcomputers  
M16C / 60 Group  
Interrupts  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Interrupt control registers  
Peripheral I/O interrupts have their own interrupt control registers. Table 1.18 shows the addresses of the  
interrupt control registers. Figure 1.26 shows the configuration of the interrupt control registers.  
The interrupt request bit is set by hardware to “0” when an interrupt request is received. The interrupt  
request bit can also be set by software to “0”. (Do not set to “1”.)  
________ _______  
________  
INT0, INT1, and INT2 are triggered by the edges of external inputs. The edge polarity is selected using the  
polarity select bit. (Other interrupts are described elsewhere.)  
An interrupt must first be enabled before it can be used to cancel stop mode.  
Table 1.18. Addresses in interrupt control register  
Interrupt control register  
Symbol name Address  
Interrupt control register  
Symbol name Address  
DMA0 interrupt control register  
DM0IC  
004B16 DMA1 interrupt control register  
004D16 A-D interrupt control register  
DM1IC  
ADIC  
004C16  
004E16  
005216  
005416  
005616  
005816  
005A16  
005C16  
005E16  
Key input interrupt control register KUPIC  
UART0 transmit interrupt control register  
UART1 transmit interrupt control register  
S0TIC  
S1TIC  
005116 UART0 receive interrupt control registe  
r
S0RIC  
S1RIC  
005316 UART1 receive interrupt control register  
Timer A0 interrupt control register TA0IC  
Timer A2 interrupt control register TA2IC  
Timer A4 interrupt control register TA4IC  
005516 Timer A1 interrupt control register TA1IC  
005716 Timer A3 interrupt control register TA3IC  
005916 Timer B0 interrupt control register TB0IC  
Timer B1 interrupt control register TB1IC  
005B16 Timer B2 interrupt control register TB2IC  
________  
________  
INT0 interrupt control register INT0IC  
005D16 INT1 interrupt control register INT1IC  
005F16  
________  
INT2 interrupt control register INT2IC  
(2) Interrupt priority  
The order of priority when two or more interrupts are generated simultaneously is determined by both  
hardware and software.  
_______  
________  
The interrupt priority levels determined by hardware are reset > NMI > DBC > wacthdog timer > peripheral  
I/O interrupts > single-step > address matching interrupt.  
The interrupt priority levels determined by software are as the interrupt priority levels are set in the inter-  
rupt control registers.  
Figure 1.27 shows the circuit that judges the interrupt priority level. When two or more interrupts are  
generated simultaneously, this circuit selects the interrupt with the highest priority level. However, if the  
interrupts have the same priority level, the interrupt is selected according to the priority set in the circuit.  
The selected interrupt is accepted only when the priority level is higher than the processor interrupt  
priority level (IPL) in the flag register (FLG) and the interrupt enable flag (I flag) is “1”. Note that the reset,  
_______ ________  
NMI, DBC, watchdog timer, single-step, address-match, BRK instruction, overflow, and undefined in-  
struction interrupts are generated regardless of the interrupt enable flag (I flag).  
40  
Mitsubishi microcomputers  
M16C / 60 Group  
Interrupts  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt control register  
Symbol  
Address  
When reset  
DMiIC(i=0,1)  
KUPIC  
ADIC  
SiTIC(i=0,1)  
SiRIC(i=0,1)  
TAiIC(i=0 to 4)  
TBiIC(i=0 to 2)  
004B16, 004C16  
XXXXX000  
2
2
2
2
2
2
2
004D16 XXXXX000  
004E16 XXXXX000  
005116,005316 XXXXX000  
005216,005416 XXXXX000  
005516 to 005916 XXXXX000  
005A16 to 005C16 XXXXX000  
b7 b6 b5 b4 b3 b2 b1 b0  
R
W
Bit symbol  
ILVL0  
Bit name  
Function  
Interrupt priority level  
select bit  
b2 b1 b0  
0 0 0 : Level 0 (interrupt disabled)  
0 0 1 : Level 1  
0 1 0 : Level 2  
0 1 1 : Level 3  
ILVL1  
1 0 0 : Level 4  
1 0 1 : Level 5  
1 1 0 : Level 6  
1 1 1 : Level 7  
ILVL2  
IR  
Interrupt request bit  
0 : Interrupt not requested  
1 : Interrupt requested  
(Note)  
Nothing is assigned.  
These bits can neither be set nor reset. When read, their contents are  
indeterminate.  
Note: This bit can only be accessed for reset (= 0), but cannot be accesd  
for set (= 1).  
Symbol  
Address  
When reset  
XX00X000  
b7 b6 b5 b4 b3 b2 b1 b0  
INTiIC(i=0 to 2) 005D16 to 005F16  
2
0
R
W
Bit symbol  
Bit name  
Function  
ILVL0  
Interrupt priority level  
select bit  
b2 b1 b0  
0 0 0 : Level 0 (interrupt disabled)  
0 0 1 : Level 1  
0 1 0 : Level 2  
0 1 1 : Level 3  
ILVL1  
1 0 0 : Level 4  
1 0 1 : Level 5  
1 1 0 : Level 6  
ILVL2  
1 1 1 : Level 7  
IR  
0: Interrupt not requested  
1: Interrupt requested  
Interrupt request bit  
Polarity select bit  
(Note)  
POL  
0 : Selects falling ede  
1 : Selects rising edge  
Reserved bit  
Always set to “0”  
Nothing is assigned.  
These bits can neither be set nor reset. When read, their contents are  
indeterminate.  
Note: This bit can only be accessed for reset (= 0), but cannot be accesd  
for set (= 1).  
Figure 1.26. Configuration of interrupt control register  
41  
Mitsubishi microcomputers  
M16C / 60 Group  
Interrupts  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Priority level of each interrupt  
INT1  
Level 0 (initial value)  
High  
Timer B2  
Timer B0  
Timer A3  
Timer A1  
INT2  
INT0  
Timer B1  
Timer A4  
Timer A2  
Priority of peripheral I/O interrupts  
(if priority levels are same)  
UART1 reception  
UART0 reception  
A-D conversion  
DMA1  
Timer A0  
UART1 transmission  
UART0 transmission  
Key input interrupt  
DMA0  
Low  
Processor interrupt priority level (IPL)  
Interrupt  
request  
Interrupt enable flag (I flag)  
accepted  
Address match  
Watchdog timer  
DBC  
NMI  
Reset  
Figure 1.27. Interrupt resolution circuit  
42  
Mitsubishi microcomputers  
M16C / 60 Group  
Interrupts  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) Flag changes  
When an interrupt request is received, the stack pointer select flag (U flag) changes to “0” and the flag  
register (FLG) and program counter (PC) are saved to the stack area indicated by the interrupt stack  
pointer (ISP). Thereafter, the interrupt enable flag (I flag) and debug flag (D flag) change to “0” and the  
processor interrupt priority level (IPL) at the flag register (FLG) is replaced by the priority level of the  
received interrupt. However, when interrupt requests are received for software interrupt Nos. 32 to 63, the  
flag register (FLG) and program counter (PC) are saved to the stack shown by the stack pointer select  
flag (U flag) at the time the interrupt was received. The stack pointer select flag (U flag) does not change.  
The value of the processor interrupt priority level (IPL) in the flag register (FLG) differs in the case of  
_______ ________  
reset, NMI, DBC, watchdog timer, single-step, address-match, BRK instruction, overflow, and undefined  
instruction interrupts. Table 1.19 shows how the IPL changes when interrupt requests are received.  
Table 1.19. Change of IPL state when interrupt requests are accepted  
Interrupt  
Change of IPL  
Reset  
Level 0 (“0002”) is set  
Level 7 (“1112”) is set  
_______  
NMI  
________  
DBC  
Does not change  
Level 7 (“1112”) is set  
Does not change  
Does not change  
Does not change  
Watchdog timer  
Single step  
Address match  
Software interrupt  
43  
Mitsubishi microcomputers  
M16C / 60 Group  
______  
NMI Interrupts  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
______  
NMI Interrupt  
______  
______  
______  
An NMI interrupt is generated when the input to the P85/NMI pin changes from “H” to “L”. The NMI interrupt  
is a non-maskable external interrupt. The pin level can be checked in the port P85 register (bit 5 at address  
03F016).  
This pin cannot be used as a normal port input.  
Notes:  
______  
______  
______  
(1) When not intending to use the NMI function, be sure to connect the NMI pin to VCC. Because the NMI  
interrupt is non-maskable, it cannot be disabled.  
______  
______  
(2) When the NMI pin input is “L”, do not set the microcomputer in stop mode or wait mode. The NMI  
interrupt is triggered by the falling edge, so the “L” level does not need to be maintained longer than  
necessary.  
Key Input Interrupt  
If the direction register of any of P104 to P107 is set for input and a falling edge is input to that port, a key  
input interrupt is generated. A key input interrupt can also be used as a key-on wakeup function for cancel-  
ling the wait mode or stop mode. However, if you intend to use the key input interrupt, do not use P104 to  
P107 as A-D input ports. Figure 1.28 shows a block diagram of the key input interrupt. Note that if an “L”  
level is input to any pin that has not been disabled for input, inputs to the other pins are not detected as an  
interrupt.  
Port P104-P107 pull-up  
select bit  
Pull-up  
Key input interrupt control register  
(address 004D16  
)
transistor  
Port P107 direction  
register  
Port P10  
7
direction register  
P10  
7
/KI  
3
2
Port P106 direction  
register  
Pull-up  
transistor  
Key input interrupt  
request  
Interrupt control circuit  
P10  
6
/KI  
Pull-up  
transistor  
Port P10  
register  
5
direction  
direction  
P105/KI1  
Port P10  
4
Pull-up  
transistor  
register  
P104/KI0  
Figure 1.28. Block diagram of key input interrupt  
44  
Mitsubishi microcomputers  
M16C / 60 Group  
Address Match Interrupts  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Address Match Interrupt  
An address match interrupt is generated when the address match interrupt address register contents match  
the program counter value. Two address match interrupts can be set, each of which can be enabled and  
disabled by an address match interrupt enable bit. Address match interrupts are not affected by the inter-  
rupt enable flag (I flag) and processor interrupt priority level (IPL).  
Figure 1.29 shows a configuration of address match interrupt-related registers.  
Address match interrupt enable register  
Symbol  
AIER  
Address  
000916  
When reset  
XXXXXX00  
b7 b6 b5 b4 b3 b2 b1 b0  
2
Bit symbol  
AIER0  
Bit name  
Function  
R W  
Address match interrup 0  
enable bit  
0: Interrupt disabled  
1: Interrupt enabled  
Address match interrupt 1 0: Interrupt disabled  
enable bit  
1: Interrupt enabled  
AIER1  
Nothing is assigned.  
These bits can neither be set nor reset. When read, their contents are  
indeterminate.  
Address match interrupt register i (i = 0, 1)  
(b19)  
b3  
(b16)(b15)  
b0 b7  
(b8)  
b0 b7  
Symbol  
RMAD0  
RMAD1  
Address  
001216 to 001016  
001616 to 001416  
When reset  
X0000016  
X0000016  
(b23)  
b7  
b0  
Function  
Values that can be set  
R W  
Address setting register for address match interrupt  
Nothing is assigned.  
0000016 to FFFFF16  
These bits can neither be set nor reset. When read, their contents are  
indeterminate.  
Figure 1.29. Configuration of address match interrupt-related registers  
45  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Watchdog Timer  
Watchdog Timer  
The watchdog timer has the function of detecting when the program is out of control. The watchdog timer is  
a 15-bit counter which down-counts the clock derived by dividing the internal clock using the prescaler.  
A watchdog timer interrupt is generated when an underflow occurs in the watchdog timer. When XIN is  
selected for the internal clock , bit 7 of the watchdog timer control register (address 000F16) selects the  
prescaler division ratio (by 16 or by 128). When XCIN is selected as the internal clock , the prescaler is set  
for division by 2 regardless of bit 7 of the watchdog timer control register (address 000F16). Table 1.20  
shows a periodic table for the watchdog timer.  
Table 1.20. Watchdog timer periodic table (XIN = 10MHz, XCIN = 32kHz)  
CM07  
0
CM06  
0
CM17  
0
CM16  
0
Internal clock  
10MHz  
WDC7  
Period  
0
Approx. 52.4ms (Note)  
Approx. 419.2ms (Note)  
Approx. 104.9ms (Note)  
Approx. 838.8ms (Note)  
Approx. 209.7ms (Note)  
Approx. 1.68s (Note)  
Approx. 838.8ms (Note)  
Approx. 6.71s (Note)  
Approx. 419.2ms (Note)  
Approx. 3.35s (Note)  
Approx. 2s (Note)  
1
0
0
0
0
1
0
0
1
1
1
0
1
5MHz  
2.5MHz  
0.625MHz  
1.25MHz  
32kHz  
0
1
0
0
1
0
1
0
1
Invalid Invalid  
0
1
Invalid  
Invalid Invalid  
Invalid  
Note: Error is generated by the prescaler.  
The watchdog timer is initialized by writing to the watchdog timer start register (address 000E16) and when  
a watchdog timer interrupt request is generated. The prescaler is initialized only when the microcomputer is  
reset. After a reset is cancelled, the watchdog timer and prescaler are both stopped. The count is started by  
writing to the watchdog timer start register (address 000E16).  
Figure 1.30 shows a block diagram of the watchdog timer. Figure 1.31 shows the configuration of the  
watchdog timer-related registers.  
Prescaler  
"CM07=0"  
"WDC7=0"  
1/16  
"CM07=0"  
"WDC7=1"  
Internal clock  
HOLD  
Watchdog timer  
interrupt request  
1/128  
1/2  
Watchdog timer  
"CM07=1"  
Write to the watchdog  
timer start register  
Set to  
"7FFF16  
(address 000E16  
)
"
RESET  
Figure 1.30. Block diagram of watchdog timer  
46  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Watchdog Timer  
Watchdog timer control register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
WDC  
Address  
000F16  
When reset  
00XXXXXX  
0
0
2
Bit symbol  
Bit name  
Function  
R W  
High-order bit of watchdog timer  
Reserved bit  
Must always be set to “0”  
Must always be set to “0”  
Reserved bit  
WDC7  
Prescaler select bit  
0 : Divided by 16  
1 : Divided by 128  
Watchdog timer start register  
b7  
b0  
Symbol  
WDTS  
Address  
000E16  
When reset  
Indeterminate  
Function  
The watchdog timer is initialized and starts counting after a write instruction to  
R W  
this register. The watchdog timer value is always initialized to “7FFF16  
regardless of the value written.  
Figure 1. 31. Configuration of watchdog timer control and start registers  
47  
Mitsubishi microcomputers  
M16C / 60 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
DMAC  
This microcomputer has two DMAC (direct memory access controller) channels that allow data to be sent to  
memory without using the CPU. Table 1.21 shows the DMAC specifications. Figure 1.33 shows a block  
diagram of the DMAC. Figures 1.34 and 1.35 show the configuration of the registers used by the DMAC.  
Table 1.21. DMAC specifications  
Item  
No. of channels  
Transfer memory space  
Specification  
2 (cycle steal method)  
• From any address in the 1M bytes space to a fixed address  
• From a fixed address to any address in the 1M bytes space  
• From a fixed address to a fixed address  
(Note that DMA-related registers [002016 to 003F16] cannot be accessed)  
Maximum No. of bytes transferred 128K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)  
________  
________ ________  
________  
DMA request factors (Note)  
Falling edge of INT0 or INT1 (INT0 can be selected by DMA0, INT1 by DMA1)  
Timer A0 to timer A4 interrupt requests  
Timer B0 to timer B2 interrupt requests  
UART0 transmission and reception interrupt requests  
UART1 transmission and reception interrupt requests  
A-D conversion interrupt requests  
Software triggers  
Channel priority  
DMA0 takes precedence if DMA0 and DMA1 requests are generated simultaneously  
8 bits or 16 bits  
Transfer unit  
Transfer address direction  
forward/fixed (forward direction cannot be specified for both source and  
destination simultaneously)  
Transfer mode  
• Single transfer  
The DMA enable bit is cleared and transfer ends when an underflow  
occurs in the transfer counter  
• Repeat transfer  
When an underflow occurs in the transfer counter, the value in the transfer counter  
reload register is reloaded into the transfer counter and the DMA transfer is repeated  
DMA interrupt request generation timing When an underflow occurs in the transfer counter  
DMA startup  
• Single transfer  
Transfer starts when the DMA is requested after “1” is written to the DMA enable bit  
• Repeat transfer  
Transfer starts when the DMA is requested after “1” is written to the DMA enable bit  
Transfer starts when the DMA is requested after an underflow occurs in the transfer counter  
• When “0” is written to the DMA enable bit  
DMA shutdown  
• When, in simple transfer mode, an underflow occurs in the transfer counter  
When DMA transfer starts, the value of whichever of the source or destination pointer  
that is set up as the forward pointer is reloaded into the forward address pointer. The  
value in the transfer counter reload register is reloaded into the transfer counter.  
Registers specified for forward direction transfer are always write enabled.  
Registers specified for fixed address transfer are write-enabled when  
the DMA enable bit is “0”.  
Forward address pointer and  
reload timing for transfer  
counter  
Writing to register  
Reading the register  
Can be read at any time.  
However, when the DMA enable bit is “1”, reading the register set up as the  
forward register is the same as reading the value of the forward address pointer.  
Note: DMA transfer is not effective to any interrupt.  
48  
Mitsubishi microcomputers  
M16C / 60 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Address bus  
DMA0 source pointer SAR0(20)  
(addresses 002216 to 002016  
DMA0 destination pointer DAR0 (20)  
)
(addresses 002616 to 002416  
)
DMA0 forward address pointer (20) (Note)  
DMA0 transfer counter reload register TCR0 (16)  
DMA1 source pointer SAR1 (20)  
(addresses 003216 to 003016  
DMA1 destination pointer DAR1 (20)  
(addresses 002916, 002816  
)
)
DMA0 transfer counter TCR0 (16)  
(addresses 003616 to 003416  
)
DMA1 forward address pointer (20) (Note)  
DMA1 transfer counter reload register TCR1 (16)  
(addresses 003916, 003816  
)
DMA latch high-order bits DMA latch low-order bits  
DMA1 transfer counter TCR1 (16)  
Data bus low-order bits  
Data bus high-order bits  
Note: Pointer is incremented by a DMA request.  
Figure 1.33. Block diagram of DMAC  
49  
Mitsubishi microcomputers  
M16C / 60 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
DMAi request cause select register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
DMiSL(i=0,1)  
Address  
03B816,03BA16  
When reset  
0016  
Bit symbol  
DSEL0  
Bit name  
Function  
R
W
b3 b2 b1 b0  
DMA request cause  
select bit  
0 0 0 0 : Falling edge of INT0 / INT1  
pin (Note)  
0 0 0 1 : Software trigger  
0 0 1 0 : Timer A0  
0 0 1 1 : Timer A1  
0 1 0 0 : Timer A2  
0 1 0 1 : Timer A3  
0 1 1 0 : Timer A4  
0 1 1 1 : Timer B0  
1 0 0 0 : Timer B1  
1 0 0 1 : Timer B2  
DSEL1  
DSEL2  
1 0 1 0 : UART0 transmit  
1 0 1 1 : UART0 receive  
1 1 0 0 : UART1 transmit  
1 1 0 1 : UART1 receive  
1 1 1 0 : A-D conversion  
1 1 1 1 : Inhibited  
DSEL3  
Nothing is assigned.  
These bits can neither be set nor reset. When read, the value of these bits is “0”.  
If software trigger is selected, a  
DMA request is generated by  
setting this bit to “1” (When read,  
the value of this bit is always “0”)  
Software DMA request bit  
DSR  
Note: Address 03B816 is for INT0; address 03BA16 is for INT1.  
DMAi control register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
DMiCON(i=0,1)  
Address  
002C16, 003C16  
When reset  
00000X00  
2
Bit symbol  
DMBIT  
Bit name  
Function  
R
W
Transfer unit bit select bit  
0 : 16 bits  
1 : 8 bits  
Repeat transfer mode  
select bit  
0 : Single transfer  
1 : Repeat transfer  
DMASL  
DMAS  
DMAE  
0 : DMA not requested  
1 : DMA requested  
DMA request bit (Note 1)  
DMA enable bit  
(Note 2)  
0 : Disabled  
1 : Enabled  
Source address direction  
select bit (Note 3)  
0 : Fixed  
1 : Forward  
DSD  
DAD  
Destination address  
direction select bit (Note 3)  
0 : Fixed  
1 : Forward  
Nothing is assigned.  
These bits can neither be set nor reset. When read, the value of these bits is “0”.  
Note 1: DMA request can be cleared by resetting the bit.  
Note 2: This bit can only be set to “0”.  
Note 3: Source address direction select bit and destination address direction select bit  
cannot be set to “1” simultaneously.  
Figure 1.34. Configuration of DMAC register (1)  
50  
Mitsubishi microcomputers  
M16C / 60 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
DMAi source pointer (i = 0, 1)  
(b19)  
b3  
(b16)(b15)  
b0 b7  
(b8)  
b0 b7  
(b23)  
b7  
b0  
Symbol  
SAR0  
SAR1  
Addre  
When reset  
002216 to 002016 Indeterminate  
003216 to 003016 Indeterminate  
Transfer count  
R W  
Function  
specification  
• Source pointer  
Stores the source address  
0000016 to FFFFF16  
Nothing is assigned.  
These bits can neither be set nor reset. When read, the value of these bits is “0”.  
DMAi destination pointer (i = 0, 1)  
(b19)  
b3  
(b16)(b15)  
b0 b7  
(b8)  
b0 b7  
(b23)  
b7  
b0  
Symbol  
DAR0  
DAR1  
Addresse  
002616 to 002416 Indeterminate  
003616 to 003416 Indeterminate  
When reset  
Transfer count  
R W  
Function  
specification  
• Destination pointer  
Stores the destination address  
0000016 to FFFFF16  
Nothing is assigned.  
These bits can neither be set nor reset. When read, the value of these bits is “0”.  
DMAi transfer counter (i = 0, 1)  
(b15)  
b7  
(b8)  
b0 b7  
b0  
Symbol  
TCR0  
TCR1  
Address  
002916, 002816  
003916, 003816  
When reset  
Indeterminate  
Indeterminate  
Transfer count  
specification  
Function  
R W  
• Transfer counter  
Set a value one less than the transfer count  
000016 to FFFF16  
Figure 1.35. Configuration of DMAC register (2)  
51  
Mitsubishi microcomputers  
M16C / 60 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Transfer cycle  
The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area  
(source read) and the bus cycle in which the data is written to memory or to the SFR area (destination  
write). The number of read and write bus cycles depends on the source and destination addresses. In  
memory expansion mode and microprocessor mode, the number of read and write bus cycles also de-  
pends on the level of the BYTE pin. Also, the bus cycle itself is longer when software waits are inserted.  
(a) Effect of source and destination addresses  
When 16-bit data is transferred on a 16-bit data bus, and the source and destination both start at odd  
addresses, there are one more source read cycle and destination write cycle than when the source  
and destination both start at even addresses.  
(b) Effect of BYTE pin level  
When transferring 16-bit data over an 8-bit data bus (BYTE pin = “H”) in memory expansion mode and  
microprocessor mode, the 16 bits of data are sent in two 8-bit blocks. Therefore, two bus cycles are  
required for reading the data and two are required for writing the data. Also, in contrast to when the  
CPU accesses internal memory, when the DMAC accesses internal memory (internal ROM, internal  
RAM, and SFR), these areas are accessed using the data size selected by the BYTE pin.  
(c) Effect of software wait  
When the SFR area or a memory area with a software wait is accessed, the number of cycles is  
increased for the wait by 1 bus cycle. The length of the cycle is determined by BCLK.  
Figure 1.36 shows an example of the transfer cycles for a source read. For convenience, the destination  
write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In  
reality, the destination write cycle is subject to the same conditions as the source read cycle, with the  
transfer cycle changing accordingly. When calculating the transfer cycle, remember to apply the respec-  
tive conditions to both the destination write cycle and the source read cycle. For example (2) in Figure  
1.36, if data is being transferred in 16-bit units on an 8-bit bus, two bus cycles are required for both the  
source read cycle and the destination write cycle.  
52  
Mitsubishi microcomputers  
M16C / 60 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) 8-bit transfers  
16-bit transfers from even address and the source address is even.  
BCLK  
Address  
bus  
Dummy  
cycle  
CPU use  
Source  
Destination  
CPU use  
RD signal  
WR signal  
Data  
bus  
Dummy  
cycle  
CPU use  
Source  
Destination  
CPU use  
(2) 16-bit transfers and the source address is odd  
Transferring 16-bit data on an 8-bit data bus (In this case, there are also two destination write cycles).  
BCLK  
Address  
bus  
Dummy  
cycle  
CPU use  
Source  
Source + 1 Destination  
CPU use  
RD signal  
WR signal  
Data  
bus  
Dummy  
cycle  
CPU use  
Source + 1  
Source  
CPU use  
Destination  
(3) One wait is inserted into the source read under the conditions in (1)  
BCLK  
Address  
bus  
Dummy  
cycle  
CPU use  
Source  
Destination  
CPU use  
RD signal  
WR signal  
Data  
bus  
Dummy  
cycle  
CPU use  
Source  
Destination  
CPU use  
(4) One wait is inserted into the source read under the conditions in (2)  
(When 16-bit data is transferred on an 8-bit data bus, there are two destination write cycles).  
BCLK  
Address  
bus  
Dummy  
cycle  
CPU use  
Source  
Source + 1  
Destination  
CPU use  
RD signal  
WR signal  
Data  
bus  
Dummy  
cycle  
CPU use  
Source  
Source + 1  
Destination  
CPU use  
Note: The same timing changes occur with the respective conditions at the destination as at the source.  
Figure 1.36. Example of the transfer cycles for a source read  
53  
Mitsubishi microcomputers  
M16C / 60 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) DMAC transfer cycles  
Any combination of even or odd transfer read and write addresses is possible. Table 1.22 shows the  
number of DMAC transfer cycles.  
The number of DMAC transfer cycles can be calculated as follows:  
No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k  
Table 1.22. No. of DMAC transfer cycles  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
Transfer unit  
Bus width  
Access address  
No. of read No. of write No. of read No. of write  
cycles  
cycles  
cycles  
cycles  
16-bit  
(BYTE= “L”)  
8-bit  
Even  
Odd  
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
2
2
2
8-bit transfers  
(DMBIT= “1”)  
Even  
Odd  
1
1
(BYTE = “H”)  
16-bit  
Even  
Odd  
16-bit transfers  
(DMBIT= “0”)  
(BYTE = “L”)  
8-bit  
2
2
Even  
Odd  
(BYTE = “H”)  
Coefficient j, k  
Internal memory  
External memory  
Internal ROM/RAM Internal ROM/RAM SFR area Separate bus Separate bus  
Multiplex  
No wait  
1
With wait  
2
No wait  
1
With wait  
2
bus  
3
2
54  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer  
There are eight 16-bit timers. These timers can be classified by function into timers A (five) and timers B  
(three). All these timers function independently. Figure 1.37 shows a block diagram of timers.  
Clock prescaler  
1/32  
Reset  
X
IN  
f
1
8
fC32  
X
CIN  
f
1/8  
Clock prescaler reset flag (bit 7  
at address 038116) set to “1”  
1/4  
f
32  
f1 f8 f32 fc32  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A0 interrupt  
Timer A1 interrupt  
Timer A2 interrupt  
Timer A3 interrupt  
Timer A4 interrupt  
Timer A0  
Noise  
filter  
TA0IN  
TA1IN  
TA2IN  
TA3IN  
• Event counter mode  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A1  
Noise  
filter  
• Event counter mode  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A2  
Noise  
filter  
• Event counter mode  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A3  
Noise  
filter  
• Event counter mode  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A4  
Noise  
filter  
TA4IN  
TB0IN  
• Event counter mode  
• Timer mode  
• Pulse width measuring mode  
Timer B0 interrupt  
Timer B1 interrupt  
Noise  
filter  
Timer B0  
• Event counter mode  
• Timer mode  
• Pulse width measuring mode  
Noise  
filter  
TB1IN  
TB2IN  
Timer B1  
• Event counter mode  
• Timer mode  
• Pulse width measuring mode  
Timer B2 interrupt  
Noise  
filter  
Timer B2  
• Event counter mode  
Figure 1.37. Block diagram of timer  
55  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
Figure 1.38 shows a block diagram of timer A. Figures 1.39 to 1.41 show configuration of timer A-related  
registers.  
Except in event counter mode, timers A0 through A4 all have the same function. Use the timer Ai mode  
register (i = 0 to 4)'s bits 0 and 1 to choose the desired mode.  
Timer A has the four operation modes listed as follows:  
• Timer mode: The timer counts an internal count source.  
Event counter mode: The timer counts pulses from an external source or a timer's over flow.  
• One-shot timer mode: The timer stops counting when the count reaches “000016”.  
• Pulse width modulation (PWM) mode: The timer outputs pulses of a given width.  
Data bus high-order bits  
Clock source  
Data bus low-order bits  
selection  
• Timer  
• One shot  
• PWM  
f
f
1
8
Low-order  
8 bits  
High-order  
8 bits  
f
32  
• Timer  
(gate function)  
Reload register (16)  
f
C32  
• Event counter  
Clock selection  
Counter (16)  
Polarity  
selection  
Up count/down count  
TAiIN  
Always down count except  
in event counter mode  
(i = 0 to 4)  
Count start flag  
(Address 038016  
)
TAi  
Addresses  
TAj  
TAk  
Down count  
Timer A0 038716 038616  
Timer A1 038916 038816  
Timer A4 Timer A1  
Timer A0 Timer A2  
TB2 overflow  
External  
trigger  
Up/down flag  
Timer A2 038B16 038A16 Timer A1 Timer A3  
Timer A3 038D16 038C16 Timer A2 Timer A4  
Timer A4 038F16 038E16 Timer A3 Timer A0  
TAj overflow  
(j = i - 1. Note, however, that j = 4 when i = 0)  
(Address 038416  
)
TAk overflow  
(k = i + 1. Note, however, that k = 0 when i = 4)  
Pulse output  
TAiOUT  
(i = 0 to 4)  
Toggle flip-flop  
Figure 1.38. Block diagram of timer A  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
TAiMR(i=0 to 4) 039616 to 039A16  
R W  
Bit  
Bit name  
Function  
l  
TMOD0  
b1 b0  
Operation mode select bit  
0 0 : Timer mode  
0 1 : Event counter mode  
1 0 : One-shot timer mode  
1 1 : Pulse width modulation  
(PWM) mode  
TMOD1  
MR0  
MR1  
MR2  
MR3  
TCK0  
TCK1  
Function varies with each operation mode  
Count source select bit  
(Function varies with each operation mode)  
Figure 1.39. Configuration of timer A-related registers (1)  
56  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer Ai register (Note)  
Symbol  
TA0  
TA1  
TA2  
TA3  
Address  
When reset  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
(b15)  
b7  
(b8)  
b0 b7  
b0  
038716,038616  
038916,038816  
038B16,038A16  
038D16,038C16  
038F16,038E16  
TA4  
Values that can be set  
Function  
R W  
• Timer mode  
000016 to FFFF  
Counts an internal count source  
• Event counter mode  
Counts pulses from an external source or timer overflow 000016 to FFFF16  
• One-shot timer mode  
Counts a one shot width  
000016 to FFFF16  
000016 to FFFE16  
• Pulse width modulation mode (16-bit PWM)  
Functions as a 16-bit pulse width modulator  
• Pulse width modulation mode (8-bit PWM)  
Timer low-order address functions as an 8-bit  
prescaler and high-order address functions as an 8-bit  
pulse width modulator  
0016 to FE16  
(Both high-order  
and low-order  
addresses)  
Note: Read and write data is in 16-bit units.  
Count start flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
TABSR  
Address  
038016  
When reset  
0016  
R W  
Bit symbol  
TA0S  
TA1S  
TA2S  
TA3S  
TA4S  
TB0S  
TB1S  
TB2S  
Bit name  
Function  
Timer A0 count start flag  
Timer A1 count start flag  
Timer A2 count start flag  
Timer A3 count start flag  
Timer A4 count start flag  
Timer B0 count start flag  
Timer B1 count start flag  
Timer B2 count start flag  
0 : Stops counting  
1 : Starts counting  
Up/down flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UDF  
Address  
038416  
When reset  
0016  
Bit symbol  
TA0UD  
TA1UD  
TA2UD  
TA3UD  
TA4UD  
TA2P  
Bit name  
Function  
R W  
Timer A0 up/down flag  
0 : Down count  
1 : Up count  
Timer A1 up/down flag  
Timer A2 up/down flag  
This specification becomes valid  
when the up/down flag content is  
selected for up/down switching  
cause  
Timer A3 up/down flag  
Timer A4 up/down flag  
0 : two-phase pulse signal  
processing disabled  
1 : two-phase pulse signal  
processing enabled  
Timer A2 two-phase pulse  
signal processing select bit  
TA3P  
TA4P  
Timer A3 two-phase pulse  
signal processing select bit  
When not using the two-phase  
pulse signal processing function,  
set the select bit to “0”  
Timer A4 two-phase pulse  
signal processing select bit  
Figure 1.40. Configuration of timer A-related registers (2)  
57  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
One-shot start flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ONSF  
Address  
038216  
When reset  
00X00000  
2
R W  
Bit symbol  
Bit name  
Function  
TA0OS  
TA1OS  
TA2OS  
TA3OS  
TA4OS  
Timer A0 one-shot start flag  
Timer A1 one-shot start flag  
Timer A2 one-shot start flag  
Timer A3 one-shot start flag  
Timer A4 one-shot start flag  
1: Timer start  
When read, the value is “0”  
Nothing is assigned.  
This bit can neither be set nor reset. When read, the content is indeterminate.  
b7 b6  
TA0TGL  
TA0TGH  
Timer A0 event/trigger  
select bit  
0 0 : Input on TA0IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA4 overflow is selected  
1 1 : TA1 overflow is selected  
Note: Set the corresponding port direction register to “0”.  
Trigger select register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
TRGSR  
Address  
038316  
When reset  
0016  
Bit symbol  
TA1TGL  
Bit name  
Function  
R W  
b1 b0  
Timer A1 event/trigger  
select bit  
0 0 : Input on TA1IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA0 overflow is selected  
1 1 : TA2 overflow is selected  
TA1TGH  
TA2TGL  
b3 b2  
Timer A2 event/trigger  
select bit  
0 0 : Input on TA2IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA1 overflow is selected  
1 1 : TA3 overflow is selected  
TA2TGH  
TA3TGL  
TA3TGH  
b5 b4  
Timer A3 event/trigger  
select bit  
0 0 : Input on TA3IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA2 overflow is selected  
1 1 : TA4 overflow is selected  
b7 b6  
Timer A4 event/trigger  
select bit  
TA4TGL  
TA4TGH  
0 0 : Input on TA4IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA3 overflow is selected  
1 1 : TA0 overflow is selected  
Note: Set the corresponding port direction register to “0”.  
Clock prescaler reset flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CPSRF  
Address  
038116  
When reset  
0XXXXXXX  
2
R W  
Bit symbol  
Bit name  
Function  
Nothing is assigned.  
These bits can neither be set nor reset. When read, their contents are indeterminate.  
0 : No effect  
1 : Prescaler is reset  
CPSR  
Clock prescaler reset flag  
(When read, the value is “0”)  
Figure 1.41. Configuration of timer A-related registers (3)  
58  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Timer mode  
In this mode, the timer counts an internally generated count source. (See Table 1.23.) Figure 1.42 shows  
the configuration of the timer Ai mode register in timer mode.  
Table 1.23. Specifications of timer mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fc32  
• Down count  
When the timer underflows, reload register’s content is reloaded and the timer starts over again  
Divide ratio  
1/(n+1) n : Set value  
Count start condition  
Count stop condition  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
Interrupt request generation timing The timer underflows  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or gate input  
Programmable I/O port or pulse output  
Count value can be read out by reading timer Ai register  
• When counting stopped  
When a value is written to timer Ai register, it is written to both reload register and counter  
• When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
• Gate function  
Select function  
Counting can be started and stopped by the TAiIN pin’s input signal  
• Pulse output function  
Each time the timer underflows, the TAiOUT pin’s polarity is reversed  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
TAiMR(i=0 to 4) 039616 to 039A16  
0
0 0  
Bit symbol  
Bit name  
Function  
R W  
b1 b0  
TMOD0  
Operation mode  
select bit  
0 0 : Timer mode  
TMOD1  
MR0  
Pulse output function  
select bit  
0 : Pulse is not output  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 1)  
(TAiOUT pin is a pulse output pin)  
b4 b3  
Gate function select bit  
MR1  
MR2  
0 X (Note 2): Gate function not available  
(TAiIN pin is a normal port pin)  
1 0 : Timer counts only when TAiIN pin is  
held “L” (Note 3)  
1 1 : Timer counts only when TAiIN pin is  
held “H” (Note 3)  
MR3  
0 (Must always be fixed to “0” in timer mode)  
b7 b6  
0 0 : f  
Count source select bit  
TCK0  
1
8
0 1 : f  
1 0 : f32  
1 1 : fC32  
TCK1  
Note 1: The settings of the corresponding port register and port direction register  
are invalid.  
Note 2: The bit can be “0” or “1”.  
Note 3: Set the corresponding port direction register to “0”.  
Figure 1.42. Configuration of timer Ai mode register in timer mode  
59  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) Event counter mode  
In this mode, the timer counts an external signal or an internal timer’s overflow. Timers A0 and A1 can  
count a single-phase external signal. Timers A2, A3, and A4 can count a single-phase and a two-phase  
external signal. Table 1.24 lists timer specifications when counting a single-phase external signal. Fig-  
ure 1.43 shows the configuration of the timer Ai mode register in event counter mode.  
Table 1.25 lists timer specifications when counting a two-phase external signal. Figure 1.44 shows the  
configuration of the timer Ai mode register in event counter mode.  
Table 1.24. Timer specifications in event counter mode (when not processing two-phase pulse signal)  
Item  
Specification  
Count source  
External signals input to TAiIN pin (effective edge can be selected by software)  
• TB2 overflow, TAj overflow  
Count operation  
Divide ratio  
• Up count or down count can be selected by external signal or software  
• When the timer overflows or underflows, reload register content is reloaded  
and the timer starts over again (Note)  
1/ (FFFF16 - n + 1) for up count  
1/ (n + 1) for down count  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
n : Set value  
Count start condition  
Count stop condition  
Interrupt request generation timing The timer overflows or underflows  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or count source input  
Programmable I/O port, pulse output, or up/down count select input  
Count value can be read out by reading timer Ai register  
• When counting stopped  
When a value is written to timer Ai register, it is written to both reload register and counter  
• When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
Select function  
• Free-run count function  
Even when the timer overflows or underflows, the reload register’s content is not reloaded to it  
• Pulse output function  
Each time the timer overflows or underflows, the TAiOUT pin’s polarity is reversed  
Note: This does not apply when the free-run function is selected.  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
TAiMR(i = 0, 1)  
Address  
039616, 039716  
When reset  
0016  
0
0 1  
Bit symbol  
Bit name  
Function  
R W  
TMOD0  
TMOD1  
MR0  
b1 b0  
Operation mode select bit  
0 1 : Event counter mode (Note 1)  
0 : Pulse is not output  
Pulse output function  
select bit  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 2)  
(TAiOUT pin is a pulse output pin)  
MR1  
MR2  
Count polarity  
select bit (Note 3)  
0 : Counts external signal's falling edge  
1 : Counts external signal's rising edge  
Up/down switching  
cause select bit  
0 : Up/down flag's content  
1 : TAiOUT pin's input signal (Note 4)  
MR3  
0 (Must always be fixed to “0” in event counter mode)  
Count operation type  
0 : Reload type  
TCK0  
select bit  
1 : Free-run type  
TCK1  
Invalid in event counter mode  
Can be “0” or “1”  
Note 1: In event counter mode, the count source is selected by the event / trigger select bit  
(addresses 038216 and 038316).  
Note 2: The settings of the corresponding port register and port direction register are invalid.  
Note 3: Valid only when counting an external signal.  
Note 4: When an “L” signal is input to the TAiOUT pin, the downcount is activated. When “H”,  
the upcount is activated. Set the corresponding port direction register to “0”.  
Figure 1.43. Configuration of timer Ai mode register in event counter mode  
60  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.25. Timer specifications in event counter mode (when processing two-phase pulse signal  
with timers A2, A3, and A4)  
Item  
Count source  
Count operation  
Specification  
• Two-phase pulse signals input to TAiIN or TAiOUT pin  
• Up count or down count can be selected by two-phase pulse signal  
• When the timer overflows or underflows, the reload register’s content is  
reloaded and the timer starts over again(Note)  
Divide ratio  
1/ (FFFF16 - n + 1) for up count  
1/ (n + 1) for down count  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
n : Set value  
Count start condition  
Count stop condition  
Interrupt request generation timing The timer overflows or underflows  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Two-phase pulse input  
Two-phase pulse input  
Count value can be read out by reading timer A2, A3, or A4 register  
• When counting stopped  
When a value is written to timer A2, A3, or A4 register, it is written to both  
reload register and counter  
• When counting in progress  
When a value is written to timer A2, A3, or A4 register, it is written to only  
the reload register (Transferred to counter at next reload time)  
• Normal processing operation  
Select function  
The timer counts up rising edges or counts down falling edges on the TAiIN  
pin when input signal on the TAiOUT pin is “H”  
TAiOUT  
TAiIN  
(i=2,3)  
Up  
count  
Up  
count  
Up  
Down  
Down  
count  
Down  
count  
count count  
• Multiply-by-4 processing operation  
If the phase relationship is such that the TAiIN pin goes “H” when the input  
signal on the TAiOUT pin is “H”, the timer counts up rising and falling edges  
on the TAiOUT and TAiIN pins. If the phase relationship is such that the  
TAiIN pin goes “L” when the input signal on the TAiOUT pin is “H”, the timer  
counts down rising and falling edges on the TAiOUT and TAiIN pins.  
TAiOUT  
Count down all edges  
Count down all edges  
Count up all edges  
TAiIN  
(i=3,4)  
Count up all edges  
Note: This does not apply when the free-run function is selected.  
61  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer Ai mode register  
(When not using two-phase pulse signal processing)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
TAiMR(i = 2 to 4) 039816 to 039A16  
0
0 1  
R W  
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
TMOD1  
Operation mode select bit  
0 1 : Event counter mode  
Pulse output function  
select bit  
0 : Pulse is not output  
MR0  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 1)  
(TAiOUT pin is a pulse output pin)  
Count polarity  
select bit (Note 2)  
0 : Counts external signal's falling edges  
1 : Counts external signal's rising edges  
MR1  
MR2  
0 : Up/down flag's content  
1 : TAiOUT pin's input signal (Note 3)  
Up/down switching  
cause select bit  
0 (Must always be “0” in event counter mode)  
MR3  
TCK0  
Count operation type  
select bit  
0 : Reload type  
1 : Free-run type  
Two-phase pulse signal  
processing operation  
select bit (Note 4)(Note 5)  
TCK1  
0 : Normal processing operation  
1 : Multiply-by-4 processing operation  
Note 1: The settings of the corresponding port register and port direction register are invalid  
Note 2: This bit is valid when only counting an external signal.  
Note 3: Set the corresponding port direction register to “0”.  
Note 4: This bit is valid for timer A3 mode register.  
For timer A2 and A4 mode registers, this bit can be “0 ”or “1”.  
Note 5: When performing two-phase pulse signal processing, make sure the two-phase pulse  
signal processing operation select bit (address 038416) is set to “1”. Also, always be  
sure to set the event/trigger select bit (addresses 038216 and 038316) to “00”.  
Timer Ai mode register  
(When using two-phase pulse signal processing)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
0
1 0 0 0 1  
TAiMR(i = 2 to 4) 039816 to 039A16  
Bit symbol  
Bit name  
Function  
R W  
b1 b0  
TMOD0  
TMOD1  
Operation mode select bit  
0 1 : Event counter mode  
0 (Must always be “0” when using two-phase pulse  
signal processing)  
MR0  
MR1  
0 (Must always be “0” when using two-phase pulse  
signal processing)  
1 (Must always be “1” when using two-phase pulse  
signal processing)  
MR2  
0 (Must always be “0” when using two-phase pulse  
signal processing)  
MR3  
Count operation type  
select bit  
0 : Reload type  
1 : Free-run type  
TCK0  
Two-phase pulse  
processing operation  
select bit (Note 1)(Note 2)  
TCK1  
0 : Normal processing operation  
1 : Multiply-by-4 processing operation  
Note 1: This bit is valid for timer A3 mode register.  
For timer A2 and A4 mode registers, this bit can be “0” or “1”.  
Note 2: When performing two-phase pulse signal processing, make sure the two-phase pulse  
signal processing operation select bit (address 038416) is set to “1”. Also, always be  
sure to set the event/trigger select bit (addresses 038216 and 038316) to “00”.  
Figure 1.44. Configuration of timer Ai mode register in event counter mode  
62  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) One-shot timer mode  
In this mode, the timer operates only once. (See Table 1.26.) When a trigger occurs, the timer starts up  
and continues operating for a given period. Figure 1.45 shows the configuration of the timer Ai mode  
register in one-shot timer mode.  
Table 1.26. Timer specifications in one-shot timer mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fC32  
• The timer counts down  
• When the count reaches 000016, the timer stops counting after reloading a new count  
• If a trigger occurs when counting, the timer reloads a new count and restarts counting  
Divide ratio  
1/n  
n : Set value  
Count start condition  
• An external trigger is input  
• The timer overflows  
• The one-shot start flag is set (= 1)  
• A new count is reloaded after the count has reached 000016  
• The count start flag is reset (= 0)  
Count stop condition  
Interrupt request generation timing The count reaches 000016  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or trigger input  
Programmable I/O port or pulse output  
When timer Ai register is read, it indicates an indeterminate value  
• When counting stopped  
When a value is written to timer Ai register, it is written to both reload  
register and counter  
• When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
TAiMR(i = 0 to 4) 039616 to 039A16  
0
1 0  
Bit symbol  
Bit name  
Function  
R W  
TMOD0  
TMOD1  
MR0  
b1 b0  
Operation mode select bit  
1 0 : One-shot timer mode  
Pulse output function  
select bit  
0 : Pulse is not output  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 1)  
(TAiOUT pin is a pulse output pin)  
MR1  
MR2  
0 : Falling edge of TAiIN pin's input signal (Note 3)  
1 : Rising edge of TAiIN pin's input signal (Note 3)  
External trigger select  
bit (Note 2)  
Trigger select bit  
0 : One-shot start flag is valid  
1 : Selected by event/trigger select  
register  
MR3  
0 (Must always be “0” in one-shot timer mode)  
b7 b6  
TCK0  
Count source select bit  
0 0 : f  
1
8
0 1 : f  
TCK1  
1 0 : f32  
1 1 : fC32  
Note 1: The settings of the corresponding port register and port direction register are invalid  
Note 2: Valid only when the TAiIN pin is selected by the event/trigger select bit  
(addresses 038216 and 038316). If timer overflow is selected, this bit can be “1” or “0”.  
Note 3: Set the corresponding port direction register to “0”.  
Figure45. Configuration of timer Ai mode register in one-shot timer mode  
63  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(4) Pulse width modulation (PWM) mode  
In this mode, the timer outputs pulses of a given width in succession. (See Table 1.27.) In this mode, the counter  
functions as either a 16-bit pulse width modulator or an 8-bit pulse width modulator. Figure 1.46 shows the configu-  
ration of the timer Ai mode register in pulse width modulation mode. Figure 1.47 shows an example of how a 16-bit  
pulse width modulator operates. Figure 1.48 shows an example of how an 8-bit pulse width modulator operates.  
Table 1.27. Timer specifications in pulse width modulation mode  
Item  
Specification  
Count source  
Count operation  
f1, f8, f32, fC32  
• The timer counts down (operating as an 8-bit or a 16-bit pulse width modulator)  
The timer reloads a new count at a rising edge of PWM pulse and continues counting  
• The timer is not affected by a trigger that occurs when counting  
• High level width n / fi n : Set value  
• Cycle time  
(216-1) / fi fixed  
16-bit PWM  
8-bit PWM  
High level width n X (m+1) / fi  
Cycle time  
n : values set to timer Ai register’s high-order address  
m : values set to timer Ai register’s low-order address  
(28-1) X (m+1) / fi  
Count start condition  
• External trigger is input  
• The timer overflows  
• The count start flag is set (= 1)  
• The count start flag is reset (= 0)  
Count stop condition  
Interrupt request generation timing PWM pulse goes “L”  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or trigger input  
Pulse output  
When timer Ai register is read, it indicates an indeterminate value  
• When counting stopped  
When a value is written to timer Ai register, it is written to both reload  
register and counter  
• When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
1
1 1  
TAiMR(i=0 to 4) 039616 to 039A16  
R W  
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
TMOD1  
MR0  
Operation mode  
select bit  
1 1 : PWM mode  
1 (Must always be fixed to “1” in PWM mode)  
External trigger select  
MR1  
0: Falling edge of TAiIN pin's input signal (Note 2)  
bit (Note 1)  
1: Rising edge of TAiIN pin's input signal (Note 2)  
MR2  
Trigger select bit  
0: Count start flag is valid  
1: Selected by event/trigger select register  
0: Functions as a 16-bit pulse width modulator  
1: Functions as an 8-bit pulse width modulator  
16/8-bit PWM mode  
select bit  
MR3  
b7 b6  
TCK0  
TCK1  
Count source select bit  
0 0 : f  
0 1 : f  
1 0 : f32  
1 1 : fC32  
1
8
Note 1: Valid only when the TAiIN pin is selected by the event/trigger select bit  
(addresses 038216 and 038316). If timer overflow is selected, this bit can be “1” or “0  
Note 2: Set the corresponding port direction register to “0”.  
Figure 1.46. Configuration of timer Ai mode register in pulse width modulation mode  
64  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer A  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Condition : Reload register = 000316, when external trigger  
(falling edge of TAiIN pin's input signal) is selected.  
1 / fi X  
(216 –1)  
Count source  
“H”  
“L”  
TAiIN pin's  
input signal  
Trigger is not generated by this signal  
1 / f  
i
X n  
“H”  
“L”  
PWM pulse output  
from TAiOUT pin  
“1”  
“0”  
Timer Ai interrupt  
request bit  
fi  
: Frequency of count source  
(f , f  
1
8, f32, fC32)  
Cleared to “0” by software, or when interrupt request is accepted.  
Note: n = 000016 to FFFE16  
.
Figure 1.47. Example of how a 16-bit pulse width modulator operates  
Condition : Reload register's high-order 8 bits = 0216  
Reload register's low-order bits 8 = 0216  
When external trigger (falling edge of TAiIN pin's input signal) is selected.  
1 / fi X (m + 1) X  
(28 – 1)  
Count sourc  
(Note 1)  
“H”  
“L”  
TAiIN pin's input  
signal  
1 / fi X (m + 1)  
“H”  
“L”  
Underflow signal of 8-  
bit prescaler (Note 2)  
1 / fi X (m + 1) X n  
“H”  
“L”  
PWM pulse output  
from TAiOUT pin  
“1”  
“0”  
Timer Ai interrupt  
request bit  
fi  
: Frequency of count source  
(f , f , f32, fC32  
Cleared to “0” by software, or when interrupt request is accepted.  
1
8
)
Note 1: The 8-bit prescaler counts the count source.  
Note 2: The 8-bit pulse width modulator counts the 8-bit prescaler's underflow signal.  
Note 3: m = 0016 to FE16; n = 0016 to FE16  
.
Figure 1.48. Example of how an 8-bit pulse width modulator operates  
65  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer B  
Figure 1.49 shows a block diagram of timer B. Figures 1.50 and 1.51 show configuration of timer B-related  
registers.  
Use the timer Bi mode register (i = 0 to 2) bits 0 and 1 to choose the desired mode.  
Timer B has three operation modes listed as follows:  
• Timer mode: The timer counts an internal count source.  
• Event counter mode: The timer counts pulses from an external source or a timer overflow.  
• Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or  
pulse width.  
Data bus high-order bits  
Data bus low-order bits  
Clock source selection  
High-order 8 bits  
Low-order 8 bits  
f
1
• Timer  
Reload register (16)  
• Pulse period/pulse width measurement  
f
8
f
32  
fc32  
Counter (16)  
• Event counter  
Count start flag  
(address 038016  
TBiIN  
(i = 0 to 2)  
Polarity switching  
and edge pulse  
)
Counter reset circuit  
Can be selected in only  
event counter mode  
TBi  
Address  
TBj  
Timer B0 039116 039016 Timer B2  
Timer B1 039316 039216 Timer B0  
Timer B2 039516 039416 Timer B1  
TBj overflow  
(j = i - 1. Note, however,  
j = 2 when i = 0)  
Figure 1.49. Block diagram of timer B  
Timer Bi mode register  
Symbol  
Address  
When reset  
b7 b6 b5 b4 b3 b2 b1 b0  
TBiMR(i = 0 to 2) 039B16 to 039D16  
00XX0000  
2
R
W
Bit symbol  
TMOD0  
Function  
Bit name  
b1 b0  
Operation mode select bit  
0 0 : Timer mode  
0 1 : Event counter mode  
1 0 : Pulse period/pulse width  
measurement mode  
1 1 : Inhibited  
TMOD1  
MR0  
MR1  
MR2  
Function varies with each operation mode  
(Note 1)  
(Note 2)  
MR3  
TCK0  
TCK1  
Count source select bit  
(Function varies with each operation mode)  
Note 1: Timer B0.  
Note 2: Timer B1, timer B2.  
Figure 1.50. Configuration of timer B-related registers (1)  
66  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer Bi register (Note)  
Symbol  
TB0  
TB1  
Address  
When reset  
(b15)  
b7  
(b8)  
b0 b7  
039116, 039016 Indeterminate  
039316, 039216 Indeterminate  
039516, 039416 Indeterminate  
b0  
TB2  
Values that can be set  
000016 to FFFF16  
R W  
Function  
• Timer mode  
Counts the timer's period  
• Event counter mode  
000016 to FFFF16  
Counts external pulses input or a timer overflow  
• Pulse period / pulse width measurement mode  
Measures a pulse period or width  
Note: Read and write data in 16-bit units.  
Count start flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
TABSR  
Address  
038016  
When reset  
0016  
R W  
Bit symbol  
TA0S  
TA1S  
TA2S  
TA3S  
TA4S  
TB0S  
TB1S  
TB2S  
Bit name  
Function  
Timer A0 count start flag  
Timer A1 count start flag  
Timer A2 count start flag  
Timer A3 count start flag  
Timer A4 count start flag  
Timer B0 count start flag  
Timer B1 count start flag  
Timer B2 count start flag  
0 : Stops counting  
1 : Starts counting  
Clock prescaler reset flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CPSRF  
Address  
038116  
When reset  
0XXXXXXX  
2
Bit symbol  
R W  
Bit name  
Function  
Nothing is assigned.  
These bits can neither be set nor reset. When read, their contents are indeterminate.  
0 : No effect  
CPSR  
Clock prescaler reset flag  
1 : Prescaler is reset  
(When read, the value is “0”)  
Figure 1.51. Configuration of timer B-related registers (2)  
67  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Timer mode  
In this mode, the timer counts an internally generated count source. (See Table 1.28.) Figure 1.52 shows  
the configuration of the timer Bi mode register in timer mode.  
Table 1.28. Timer specifications in timer mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fC32  
• Counts down  
• When the timer underflows, it reloads the reload register contents before  
continuing counting  
Divide ratio  
1/(n+1) n : Set value  
Count start condition  
Count stop condition  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
Interrupt request generation timing The timer underflows  
TBiIN pin function  
Read from timer  
Write to timer  
Programmable I/O port  
Count value is read out by reading timer Bi register  
• When counting stopped  
When a value is written to timer Bi register, it is written to both reload register and counter  
• When counting in progress  
When a value is written to timer Bi register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Bi mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
00XX0000  
0
0
TBiMR(i=0 to 2) 039B16 to 039D16  
2
Bit symbol  
R
W
Bit name  
Function  
0 0 : Timer mode  
b1 b0  
TMOD0  
TMOD1  
MR0  
Operation mode select bit  
Invalid in timer mode  
Can be “0” or “1”  
MR1  
MR2  
MR3  
0 (Fixed to “0” in timer mode ; i = 0)  
(Note 1)  
(Note 2)  
Nothing is assigned (i = 1,2).  
This bit can neither be set nor reset. When read, its content is indeterminate.  
Invalid in timer mode.  
This bit can neither be set nor reset. When read in timer mode,  
its content is indeterminate.  
b7 b6  
TCK0  
TCK1  
Count source select bit  
0 0 : f  
0 1 : f  
1 0 : f32  
1
8
1 1 : fC32  
Note 1: Timer B0.  
Note 2: Timer B1, timer B2.  
Figure 1.52. Configuration of timer Bi mode register in timer mode  
68  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) Event counter mode  
In this mode, the timer counts an external signal or an internal timer's overflow. (See Table 1.29.) Figure  
1.53 shows the configuration of the timer Bi mode register in event counter mode.  
Table 1.29. Timer specifications in event counter mode  
Item  
Specification  
• External signals input to TBiIN pin  
Count source  
• Effective edge of count source can be a rising edge, a falling edge, or falling  
and rising edges as selected by software  
• Counts down  
Count operation  
When the timer underflows, the reload register's content is reloaded and the timer starts over again  
Divide ratio  
1/(n+1)  
n : Set value  
Count start condition  
Count stop condition  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
Interrupt request generation timing The timer underflows  
TBiIN pin function  
Read from timer  
Write to timer  
Count source input  
Count value can be read out by reading timer Bi register  
• When counting stopped  
When a value is written to timer Bi register, it is written to both reload register and counter  
• When counting in progress  
When a value is written to timer Bi register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Bi mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
00XX0000  
TBiMR(i=0 to 2) 039B16 to 039D16  
2
0
1
R
W
Bit symbol  
Bit name  
Function  
TMOD0  
TMOD1  
MR0  
b1 b0  
Operation mode  
select bit  
0 1 : Event counter mode  
b3 b2  
Count polarity select  
bit (Note 1)  
0 0 : Counts external signal's falling edges  
0 1 : Counts external signal's rising edges  
1 0 : Counts external signal's falling and  
rising edges  
MR1  
MR2  
1 1 : Inhibited  
0 (Fixed to “0” in event counter mode; i = 0)  
(Note 2)  
(Note 3)  
Nothing is assigned (i = 1, 2).  
This bit can neither be set nor reset. When read, its content is  
indeterminate.  
Invalid in event counter mode.  
This bit can neither be set nor reset. When read in event counter  
mode, its content is indeterminate.  
MR3  
Invalid in event counter mode.  
Can be “0” or “1”.  
TCK0  
TCK1  
0: Input from TBiIN pin (Note 4)  
1: TBj overflow  
Event clock select  
(j = i-1; however, j = 2 when i = 0)  
Note 1: Valid only when input from the TBiIN pin is selected as the event clock.  
If timer's overflow is selected, this bit can be “0” or “1”.  
Note 2: Timer B0.  
Note 3: Timer B1, timer B2.  
Note 4: Set the corresponding port direction register to “0”.  
Figure 1.53. Configuration of timer Bi mode register in event counter mode  
69  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) Pulse period/pulse width measurement mode  
In this mode, the timer measures the pulse period or pulse width of an external signal. (See Table 1.30.)  
Figure 1.54 shows the configuration of timer Bi mode register in pulse period/pulse width measurement  
mode. Figure 1.55 shows the operation timing when measuring a pulse period. Figure 1.56 shows the  
operation timing when measuring a pulse width.  
Table 1.30. Timer specifications in pulse period/pulse width measurement mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fc32  
• Up count  
• Counter value “000016” is transferred to reload register at measurement  
pulse's effective edge and the timer continues counting  
Count start flag is set (= 1)  
Count start condition  
Count stop condition  
Count start flag is reset (= 0)  
Interrupt request generation timing • When measurement pulse's effective edge is input(Note 1)  
• When an overflow occurs. (Simultaneously, the timer Bi overflow flag  
changes to “1”. The timer Bi overflow flag changes to “0” when the count  
start flag is “1” and a value is written to the timer Bi mode register.)  
TBiIN pin function  
Read from time  
Measurement pulse input  
When timer Bi register is read, it indicates the reload register’s content  
(measurement result)(Note 2)  
Write to timer  
Cannot be written to  
Note 1: An interrupt request is not generated when the first effective edge is input after the timer has started counting.  
Note 2: The value read out from the timer Bi register is indeterminate until the second effective edge is input after the timer.  
Timer Bi mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
00XX0000  
1
0
TBiMR (i=0 to 2) 039B16 to 039D16  
2
R
W
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
TMOD1  
Operation mode  
select bit  
1 0 : Pulse period / pulse width measurement mode  
b3 b2  
MR0  
MR1  
Measurement mode  
select bit  
0 0 : Pulse period measurement (Interval between  
measurement pulse's falling edge to falling edge)  
0 1 : Pulse period measurement (Interval between  
measurement pulse's rising edge to rising edge)  
1 0 : Pulse width measurement (Interval between  
measurement pulse's falling edge to rising edge,  
and between rising edge to falling edge)  
1 1 : Inhibited  
MR2  
MR3  
0 (Fixed to “0” in pulse period/pulse width measurement mode; i = 0)  
(Note 2)  
(Note 3)  
Nothing is assigned (i = 1, 2).  
This bit can neither be set nor reset. When read, its content is indeterminate.  
Timer Bi overflow  
flag ( Note 1)  
0 : Timer did not overflow  
1 : Timer has overflowed  
b7 b6  
Count source  
select bit  
TCK0  
TCK1  
0 0 : f  
0 1 : f  
1 0 : f32  
1 1 : fC32  
1
8
Note 1: The timer Bi overflow flag changes to “0” when the count start flag is “1” and a value is written to the  
timer Bi mode register. This flag cannot be set to “1” by software.  
Note 2: Timer B0.  
Note 3: Timer B1, timer B2.  
Figure 1.54. Configuration of timer Bi mode register in pulse period/pulse width measurement mode  
70  
Mitsubishi microcomputers  
M16C / 60 Group  
Timer B  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Measurement of puls time interval from falling edge to falling edge  
Count source  
“H”  
“L”  
Measurement pulse  
Transfer  
Transfer  
(indeterminate value)  
(measured value)  
Reload register counter  
transfer timing  
(Note 1)  
(Note 1)  
(Note 2)  
Timing when counter  
reaches “000016  
“1”  
“0”  
Count start  
flag  
“1”  
“0”  
Timer Bi interrupt  
request bit  
Cleared to “0” by software, or when interrupt request is accepted.  
“1”  
“0”  
Timer Bi overflow  
flag  
Note 1: Counter is initialized at completion of measurement.  
Note 2: Timer has overflowed.  
Figure 1.55. Operation timing when measuring a pulse period  
Count source  
“H”  
Measurement pulse  
“L”  
Transfer (indeterminate value) Transfer (measured value)  
Reload register  
transfer timing  
counter  
(Note 2)  
(Note 1)  
(Note 1)  
(Note 1) (Note 1)  
Timing when counter  
reaches 000016  
“1”  
“0”  
Count start  
flag  
“1”  
“0”  
Timer Bi interrupt  
request bit  
Cleared to “0” by software, or when interrupt request is accepted.  
“1”  
“0”  
Timer Bi overflow flag  
Note 1: Counter is initialized at completion of measurement.  
Note 2: Timer has overflowed.  
Figure 1.56. Operation timing when measuring a pulse width  
71  
Mitsubishi microcomputers  
M16C / 60 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O  
Serial I/O is configured as two channels: UART0 and UART1. UART0 and UART1 each have an exclusive  
timer to generate a transfer clock, so they operate independently of each other.  
Figure 1.57 shows a block diagram of UART0 and UART1. Figure 1.58 shows a block diagram of the  
transmit/receive unit.  
UARTi (i = 0, 1) has two operation modes: a clock synchronous serial I/O mode and a clock asynchronous  
serial I/O mode (UART mode). The contents of the serial I/O mode select bits (bits 0 to 2 at addresses  
03A016 and 03A816) determine whether UARTi is used as a clock synchronous serial I/O or as a UART.  
Although a few functions are different, UART0 and UART1 have almost the same functions. Figure 1.59  
through 61 show configuration of UARTi-related registers.  
(UART0)  
TxD  
0
RxD  
0
UART reception  
Receive  
clock  
1/16  
Transmit/  
receive  
unit  
Reception  
Clock source selection  
control circuit  
Clock synchronous type  
Bit rate generator  
f
f
1
8
Internal  
(address 03A116  
)
UART transmission  
1/16  
Transmit  
clock  
1 / (m+1)  
f32  
Transmission  
control circuit  
Clock synchronous type  
External  
Clock synchronous type  
(when internal clock is  
selected)  
1/2  
Clock synchronous type  
(when external clock is  
selected)  
Clock synchronous type  
(when internal clock is selected)  
Polarity  
reversing  
circuit  
CLK  
0
CTS/RTS disabled  
CTS/RTS selected  
RTS0  
CTS0 / RTS0  
Vcc  
CTS/RTS disabled  
CTS0  
CTS/RTS separated  
CTS0 from UART1  
(UART1)  
RxD  
1
TxD  
1
UART reception  
Receive  
clock  
1/16  
Reception  
control circuit  
Transmit/  
receive  
unit  
Clock source selection  
Clock synchronous type  
Bit rate generator  
f
f
1
Internal  
(address 03A916  
)
8
UART transmission  
1/16  
Transmit  
clock  
1 / (n+1)  
f
32  
Transmission  
control circuit  
Clock synchronous type  
External  
Clock synchronous type  
(when internal clock is  
selected)  
1/2  
Clock synchronous type  
(when external clock is selected)  
Clock synchronous type  
(when internal clock is selected)  
Polarity  
reversing  
circuit  
CLK  
1
CTS/RTS disabled  
CTS/RTS separated  
Clock output pin  
select switch  
RTS  
1
1
CTS  
CTS  
1
0
/ RTS  
/ CLKS  
1
1
VCC  
CTS/RTS disabled  
CTS  
CTS  
0
CTS  
0
to UART0  
m: Values set to UART0 bit rate generator (BRG0)  
n : Values set to UART1 bit rate generator (BRG1)  
Figure 1.57. Block diagram of UARTi (i = 0, 1)  
72  
Mitsubishi microcomputers  
M16C / 60 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock  
synchronous type  
UART (7 bits)  
UART (8 bits)  
Clock  
UARTi receive register  
synchronous  
type  
UART (7 bits)  
PAR  
disabled  
1SP  
2SP  
SP  
SP  
PAR  
RxDi  
PAR  
enabled  
UART  
UART (9 bits)  
Clock  
synchronous type  
UART (8 bits)  
UART (9 bits)  
UARTi receive  
buffer register  
D7  
D6  
D5  
D4  
D3  
D
2
D1  
D0  
0
0
0
0
0
0
0
D8  
Address 03A616  
Address 03A716  
Address 03AE16  
Address 03AF16  
MSB/LSB conversion circuit  
Data bus high-order bits  
Data bus low-order bits  
MSB/LSB conversion circuit  
UARTi transmit  
buffer register  
D7  
D6  
D5  
D
4
D3  
D2  
D
1
D0  
D
8
Address 03A216  
Address 03A316  
Address 03AA16  
Address 03AB16  
UART (8 bits)  
UART (9 bits)  
Clock  
synchronouss  
type  
UART (9 bits)  
PAR  
enabled  
UART  
2SP  
1SP  
SP  
SP  
PAR  
TxDi  
Clock  
synchronous  
type  
PAR  
disabled  
UART (7 bits)  
UARTi transmit register  
SP: Stop bit  
UART (7 bits)  
UART (8 bits)  
"0"  
Clock synchronous  
type  
PAR: Parity bit  
Figure 1.58. Block diagram of transmit/receive unit  
73  
Mitsubishi microcomputers  
M16C / 60 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit buffer register  
(b15)  
b7  
(b8)  
b0 b7  
Symbol  
U0TB  
U1TB  
Address  
03A316, 03A216  
03AB16, 03AA16  
When reset  
Indeterminate  
Indeterminate  
b0  
Function  
R W  
Transmission data  
Nothing is assigned.  
These bits can neither be set nor reset. When read, their contents are indeterminate.  
UARTi receive buffer register  
(b15)  
b7  
(b8)  
b0 b7  
Symbol  
U0RB  
U1RB  
Address  
03A716, 03A616  
03AF16, 03AE16  
When reset  
Indeterminate  
Indeterminate  
b0  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
Reception data  
Reception data  
Nothing is assigned.  
These bits can neither be set nor reset. When read, the value of these bits is indeterminate.  
OER  
Overrun error flag (Note) 0 : No overrun error  
1 : Overrun error found  
0 : No overrun error  
1 : Overrun error found  
FER  
PER  
Framing error flag (Note) Invalid  
0 : No framing error  
1 : Framing error found  
Parity error flag (Note)  
Invalid  
Invalid  
0 : No parity error  
1 : Parity error found  
SUM Error sum flag (Note)  
0 : No error  
1 : Error found  
Note: Bits 15 through 12 are set to “0” when the serial I/O mode select bit (bits 2 to 0 at addresses  
03A016 and 03A816) are set to “000 ” or the receive enable bit is set to “0”.  
2
(Bit 15 is set to “0” when bits 14 to 12 all are set to “0”.) Bits 14 and 13 are also set to “0” when  
the lower byte of the UARTi receive buffer register (addresses 03A616 and 03AE16) is read out.  
UARTi bit rate generator  
b7  
b0  
Symbol  
U0BRG  
U1BRG  
Address  
03A116  
03A916  
When reset  
Indeterminate  
Indeterminate  
R
W
Function  
Values that can be set  
0016 to FF16  
Assuming that set value = n, BRGi divides the count  
source by (n + 1)  
Figure 1.59. Configuration of serial I/O-related registers (1)  
74  
Mitsubishi microcomputers  
M16C / 60 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit/receive mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiMR (i=0,1)  
Address  
03A016, 03A816  
When reset  
0016  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
b2 b1 b0  
SMD0  
Must be fixed to 001  
b2 b1 b0  
Serial I/O mode select bit  
1 0 0 : Transfer data 7 bits long  
1 0 1 : Transfer data 8 bits long  
1 1 0 : Transfer data 9 bits long  
0 0 0 : Serial I/O invalid  
0 1 0 : Inhibited  
0 0 0 : Serial I/O invalid  
0 1 0 : Inhibited  
0 1 1 : Inhibited  
SMD1  
SMD2  
1 1 1 : Inhibited  
0 1 1 : Inhibited  
1 1 1 : Inhibited  
CKDIR  
STPS  
PRY  
Internal/external clock  
select bit  
0 : Internal clock  
1 : External clock  
0 : Internal clock  
1 : External clock  
0 : One stop bit  
1 : Two stop bits  
Stop bit length select bit  
Invalid  
Valid when bit 6 = “1”  
0 : Odd parity  
Odd/even parity select bit Invalid  
1 : Even parity  
0 : Parity disabled  
1 : Parity enabled  
PRYE  
SLEP  
Parity enable bit  
Sleep select bit  
Invalid  
0 : Sleep mode deselected  
1 : Sleep mode selected  
Must always be “0”  
UARTi transmit/receive control register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiC0 (i=0,1)  
Address  
03A416, 03AC16  
When reset  
0816  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
Function  
(During UART mode)  
R W  
Bit name  
symbol  
CLK0  
b1 b0  
b1 b0  
BRG count source  
select bit  
0 0 : f  
0 1 : f  
1
8
is selected  
is selected  
0 0 : f  
0 1 : f  
1
8
is selected  
is selected  
1 0 : f32 is selected  
1 1 : Inhibited  
1 0 : f32 is selected  
1 1 : Inhibited  
CLK1  
CRS  
Valid when bit 4 = “0”  
0 : CTS function is selected (Note 1)  
1 : RTS function is selected (Note 2)  
Valid when bit 4 = “0”  
0 : CTS function is selected (Note 1)  
1 : RTS function is selected (Note 2)  
CTS/RTS function  
select bit  
0 : Data present in transmit  
register (during transmission)  
1 : No data present in transmit  
register (transmission  
0 : Data present in transmit register  
(during transmission)  
1 : No data present in transmit  
register (transmission completed)  
TXEPT Transmit register empty  
flag  
completed)  
0 : CTS/RTS function enabled  
1 : CTS/RTS function disabled  
0 : CTS/RTS function enabled  
1 : CTS/RTS function disabled  
(P60 and P64 function as  
CRD  
NCH  
CTS/RTS disable bit  
Data output select bit  
(P60  
and P6  
4
function as  
programmable I/O port)  
programmable I/O port)  
0 : TXDi pin is CMOS output  
1 : TXDi pin is N-channel  
open-drain output  
0: TXDi pin is CMOS output  
1: TXDi pin is N-channel  
open-drain output  
0 : Transmit data is output at  
falling edge of transfer clock  
and receive data is input at  
rising edge  
Must always be “0”  
CKPOL CLK polarity select bit  
1 : Transmit data is output at  
rising edge of transfer clock  
and receive data is input at  
falling edge  
0 : LSB first  
1 : MSB first  
UFORM Transfer format select bit  
Must always be “0”  
Note 1: Set the corresponding port direction register to “0”.  
Note 2: The settings of the corresponding port register and port direction register are invalid.  
Figure 1.60. Configuration of serial I/O-related registers (2)  
75  
Mitsubishi microcomputers  
M16C / 60 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit/receive control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiC1(i=0,1)  
Address  
03A516, 03AD16  
When reset  
0216  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
TE  
Transmit enable bit  
0 : Transmission disabled  
1 : Transmission enabled  
0 : Transmission disabled  
1 : Transmission enabled  
TI  
Transmit buffer  
empty flag  
0 : Data present in  
0 : Data present in  
transmit buffer register  
1 : No data present in  
transmit buffer register  
transmit buffer register  
1 : No data present in  
transmit buffer register  
RE  
RI  
Receive enable bit  
0 : Reception disabled  
1 : Reception enabled  
0 : Reception disabled  
1 : Reception enabled  
Receive complete flag  
0 : No data present in  
receive buffer register  
1 : Data present in  
0 : No data present in  
receive buffer register  
1 : Data present in  
receive buffer register  
receive buffer register  
Nothing is assigned.  
These bits can neither be set nor reset. When read, the value of these bits is “0”.  
UART transmit/receive control register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UCON  
Address  
03B016  
When reset  
X00000002  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
U0IRS UART0 transmit  
interrupt cause select bit  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
U1IRS UART1 transmit  
interrupt cause select bit  
U0RRM UART0 continuous  
receive mode enable bit  
0 : Continuous receive  
mode disabled  
1 : Continuous receive  
mode enable  
Invalid  
U1RRM UART1 continuous  
receive mode enable bit  
0 : Continuous receive  
mode disabled  
1 : Continuous receive  
mode enabled  
Invalid  
CLKMD CLK/CLKS select bit 0  
0
Valid when bit 5 = “1”  
0 : Clock output to CLK1  
1 : Clock output to CLKS1  
Invalid  
CLKMD CLK/CLKS select  
0 : Normal mode  
Must always be “0”  
1
bit 1 (Note)  
(CLK output is CLK1 only)  
1 : Transfer clock output  
from multiple pins  
function selected  
0 : CTS/RTS shared pin  
1 : CTS/RTS separated  
Separate CTS/RTS bit  
RCSP  
0 : CTS/RTS shared pin  
1 : CTS/RTS separated  
Nothing is assigned.  
This bit can neither be set nor reset. When read, its content is indeterminate.  
Note: When using multiple pins to output the transfer clock, the following requirement must be met:  
• UART1 internal/external clock select bit (bit 3 at address 03A816) = “0”.  
Figure 1.61. Configuration of serial I/O-related registers (3)  
76  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Clock synchronous serial I/O mode  
The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 1.31 lists the specifications  
of the clock synchronous serial I/O mode. Figure 1.62 shows a configuration of the UARTi transmit/receive mode register.  
Table 1.31. Specifications of clock synchronous serial I/O mode  
Item  
Specification  
Transfer data format  
Transfer clock  
• Transfer data length: 8 bits  
When internal clock is selected (bit 3 at addresses 03A016, 03A816 = “0”) : fi/ 2(n+1)(Note 1) fi = f1, f8, f32  
When external clock is selected (bit 3 at addresses 03A016, 03A816 = “1”) : Input from CLKi pin(Note 2)  
Transmission/reception control CTS function/_R__T__S__ function/C___T__S__, _R__T__S__ function chosen to be invalid  
Transmission start condition • To start transmission, the following requirements must be met:  
_ Transmit enable bit (bit 0 at addresses 03A516, 03AD16) = “1”  
_______  
_ Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16) = “0”  
_______  
_______  
_ When CTS function selected, CTS input level = “L”  
Furthermore, if external clock is selected, the following requirements must also be met:  
_ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16) = “0”: CLKi input level = “H”  
_ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16) = “1”: CLKi input level = “L”  
Reception start condition • To start reception, the following requirements must be met:  
_ Receive enable bit (bit 2 at addresses 03A516, 03AD16) = “1”  
_ Transmit enable bit (bit 0 at addresses 03A516, 03AD16) = “1”  
_ Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16) = “0”  
Furthermore, if external clock is selected, the following requirements must also be met:  
_ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16) = “0”: CLKi input level = “H”  
_ CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16) = “1”: CLKi input level = “L”  
• When transmitting  
Interrupt request  
generation timing  
_ Transmit interrupt cause select bit (bits 0, 1 at address 03B016) = “0”:  
Interrupts requested when data transfer from UARTi transfer buffer register  
to UARTi transmit register is completed  
_ Transmit interrupt cause select bit (bits 0, 1 at address 03B016) = “1”:  
Interrupts requested when data transmission from UARTi transfer register is completed  
• When receiving  
_ Interrupts requested when data transfer from UARTi receive register to  
UARTi receive buffer register is completed  
Error detection  
Select function  
• Overrun error (Note 3)  
This error occurs when the next data is ready before contents of UARTi  
receive buffer register are read out  
• Polarity selection  
Whether transmit data is output/input at the rising edge or falling edge of the  
transfer clock can be selected  
• LSB first/MSB first selection  
Whether transmission/reception begins with bit 0 or bit 7 can be selected  
• Continuous receive mode selection  
Reception is enabled simultaneously by a read from the receive buffer register  
• Transfer clock output from multiple pins selection (Note 4)  
UART1 transfer clock can be chosen by software to be output from one of the two pins set  
_______ _______  
• Separate CTS/RTS pins(Note 4)  
_______  
_______  
UART0's CTS and RTS pins each can be assigned to separate pins  
Note 1: “n” denotes the value 0016 to FF16 that is set to the UART bit rate generator.  
Note 2: Maximum 5 Mbps.  
Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that  
the UARTi receive interrupt request bit is not set to “1”.  
_______ _______  
Note 4: The transfer clock output from multiple pins and the separate CTS/RTS pins functions cannot be  
selected simultaneously.  
77  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit/receive mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiMR(i=0,1)  
Address  
03A016, 03A816  
When reset  
0016  
0
0 0 1  
Bit symbol  
Bit name  
Function  
R W  
b2 b1 b0  
SMD0  
SMD1  
SMD2  
CKDIR  
Serial I/O mode select bit  
0 0 1 : Clock synchronous serial  
I/O mode  
Internal/external clock  
select bit  
0 : Internal clock  
1 : External clock  
STPS  
PRY  
Invalid in clock synchronous serial I/O mode  
PRYE  
SLEP  
0 (Must always be "0" in clock synchronous serial I/O mode)  
Figure 1.62. Configuration of UARTi transmit/receive mode register in clock synchronous serial I/O mode  
Table 1.32 lists the functions of the input/output pins during clock synchronous serial I/O mode. This  
_______  
table shows the pin functions when the transfer clock output from multiple pins and the separate CTS/  
_______  
RTS pins functions are not selected. Note that for a period from when the UARTi operation mode is  
selected to when transfer starts, the TxDi pin outputs a “H”. (If the N-channel open-drain is selected, this  
pin is in floating state.)  
Table 1.32. Input/output pin functions in clock synchronous serial I/O mode  
Pin name  
Function  
Method of selection  
TxDi  
Serial data output  
(P63, P67)  
RxDi  
(Outputs dummy data when performing reception only)  
Serial data input  
Port P62 and P66 direction register (bits 2 and 6 at address 03EE16) = “0”  
(P62, P66)  
CLKi  
(Can be used as an input port when performing transmission only)  
Internal/external clock select bit (bit 3 at address 03A016, 03A816) = “0”  
Internal/external clock select bit (bit 3 at address 03A016, 03A816) = “1”  
Transfer clock output  
Transfer clock input  
(P61, P65)  
Port P61 and P65 direction register (bits 1 and 5 at address 03EE16) = “0”  
_______ _______  
________ ________  
_______  
CTSi/RTSi  
CTS input  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) = “0”  
_______ _______  
(P60, P64)  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16) = “0”  
Port P60 and P64 direction register (bits 0 and 4 at address 03EE16) = “0”  
_______ _______  
_______  
RTS output  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) = “0”  
_______ _______  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16) = “1”  
_______ _______  
Programmable I/O port CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) = “1”  
_______ _______  
(When transfer clock output from multiple pins and separate CTS/RTS pins functions are not selected)  
78  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
• Example of transmit timing (when internal clock is selected)  
Tc  
Transfer clock  
“1”  
Transmit enable  
“0”  
“1”  
“0”  
“H”  
Data is set in UARTi transmit buffer register  
bit (TE)  
Transmit buffer  
empty flag (Tl)  
Transferred from UARTi transmit buffer register to UARTi transmit register  
CTSi  
CLKi  
TCLK  
“L”  
Stopped pulsing because CTS = “H”  
Stopped pulsing because transfer enable bit = “0”  
TxDi  
D0  
D
1
D
2
D3  
D4  
D5  
D
6
D7  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D7  
Transmit  
register empty  
flag (TXEPT)  
“1”  
“0”  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” by software, or when an interrupt request is accepted.  
Tc = TCLK = 2(n + 1) / fi  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings:  
• Internal clock is selected.  
fi: frequency of BRGi's count source (f  
n: value set to BRGi  
1, f8, f32)  
• CTS function is selected.  
• CLK polarity select bit = “0”.  
• Transmit interrupt cause select bit = “0”.  
• Example of receive timing (when external clock is selected)  
“1”  
Receive enable  
bit (RE)  
“0”  
“1”  
Transmit enable  
bit (TE)  
“0”  
“1”  
“0”  
“H”  
Dummy data is set in UARTi transmit buffer register  
Transmit buffer  
empty flag (Tl)  
Transferred from UARTi transmit buffer register to UARTi transmit register  
RTSi  
CLKi  
RxDi  
“L”  
1 / fEXT  
Receive data is taken in  
D
0
D1  
D2  
D3  
D
4
D5  
D6  
D0  
D1  
D
2
D4  
D5  
D7  
D3  
Transferred from UARTi receive register  
to UARTi receive buffer register  
Read out from UARTi receive buffer register  
“1”  
“0”  
Receive complete  
flag (Rl)  
“1”  
“0”  
Receive interrupt  
request bit (IR)  
Cleared to “0” by software, or when an interrupt request is accepted.  
fEXT: frequency of external clock  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings.  
• External clock is selected.  
Meet the following conditions when the CLK input bef  
data reception = “H”  
• Transmit enable bit  
• Receive enable bit  
“1”  
“1”  
• RTS function is selected.  
• CLK polarity select bit = “0”.  
• Dummy data write to UARTi transmit buffer registe  
Figure 1.63. Typical transmit/receive timings in clock synchronous serial I/O mode  
79  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(a) Polarity select function  
As shown in Figure 1.64, the CLK polarity select bit (bit 6 at addresses 03A416, 03AC16) allows selec-  
tion of the polarity of the transfer clock.  
• When CLK polarity select bit = “0”  
CLK  
i
Note 1: The CLK pin level when not  
transferring data is “H”.  
D0  
D
1
D
2
D
3
D
4
4
D
5
D
6
D7  
TXDi  
D
1
D
2
D
3
D
D
5
D
6
D7  
D0  
RXDi  
• When CLK polarity select bit = “1”  
CLK  
i
Note 2: The CLK pin level when not  
transferring data is “L”.  
D
0
0
D
1
D
2
D
3
D
4
4
D
5
D
6
D7  
TXDi  
D
1
D
2
D
3
D
D
5
D
6
D7  
D
RXDi  
Figure 1. 64. Polarity of transfer clock  
(b) LSB first/MSB first select function  
As shown in Figure 1.65, when the transfer format select bit (bit 7 at addresses 03A416, 03AC16) = “0”,  
the transfer format is “LSB first”; when the bit = “1”, the transfer format is “MSB first”.  
• When transfer format select bit = “0”  
CLK  
i
D0  
D
1
D
2
D
3
3
D
4
D
5
5
D
6
6
D
7
7
TXDi  
LSB first  
D
1
D
2
D
D4  
D
D
D
D0  
RXDi  
• When transfer format select bit = “1”  
CLK  
i
D
7
7
D
6
D
5
D
4
D
3
3
D
2
D
1
D0  
TXDi  
MSB first  
D
6
D
5
D
4
D
D
2
D
1
D0  
D
RXDi  
Note: This applies when the CLK polarity select bit = “0”.  
Figure 1. 65. Transfer format  
80  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(c) Transfer clock output from multiple pins function  
This function allows the setting two transfer clock output pins and choosing one of the two to output a  
clock by using the CLK and CLKS select bit (bits 4 and 5 at address 03B016). (See Figure 1.66.) The  
multiple pins function is valid only when the internal clock is selected for UART1. Note that when this  
_______ _______  
function is selected, UART1 CTS/RTS function cannot be used.  
Microcomputer  
TXD1 (P67)  
CLKS  
1
1
(P6  
4
)
CLK  
(P65  
)
IN  
IN  
CLK  
CLK  
Note: This applies when the internal clock is selected and transmission is  
performed only in clock synchronous serial I/O mode.  
Figure 1. 66. The transfer clock output from the multiple pins function usage  
(d) Continuous receive mode  
If the continuous receive mode enable bit (bits 2 and 3 at address 03B016) is set to “1”, the unit is  
placed in the continuous receive mode. In this mode, when the receive buffer register is read out, the  
unit simultaneously goes to a receive enable state without having to set dummy data to the transmit  
buffer register back again.  
_______ _______  
(e) Separate CTS/RTS pins function  
This function works the same way as in the clock asynchronous serial I/O (UART) mode. The method  
of setting and the input/output pin functions are both the same, so refer to select function in the next  
section, “(2) Clock asynchronous serial I/O (UART) mode.” Note that this function is invalid if the  
transfer clock output from the multiple pins function is selected.  
81  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) Clock asynchronous serial I/O (UART) mode  
The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer  
data format. Table 1.33 lists the specifications of the UART mode. Figure 1.67 shows the configuration  
of the UARTi transmit/receive mode register.  
Table 1.33. Specifications of UART Mode  
Item  
Specification  
Transfer data format  
• Character bit (transfer data): 7 bits, 8 bits, or 9 bits as selected  
• Start bit: 1 bit  
• Parity bit: Odd, even, or nothing as selected  
• Stop bit: 1 bit or 2 bits as selected  
Transfer clock  
• When internal clock is selected (bit 3 at addresses 03A016, 03A816 = “0”) :  
fi/16 (n+1) (Note 1) fi = f1, f8, f32  
• When external clock is selected (bit 3 at addresses 03A016, 03A816=“1”) :  
fEXT/16 (n+1) (Note 1) (Note 2)  
_______  
_______  
_______ _______  
Transmission/reception control • CTS function/RTS function/CTS, RTS function chosen to be invalid  
Transmission start condition • To start transmission, the following requirements must be met:  
- Transmit enable bit (bit 0 at addresses 03A516, 03AD16) = “1”  
- Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16) = “0”  
_______  
_______  
- When CTS function selected, CTS input level = “L”  
• To start reception, the following requirements must be met:  
- Receive enable bit (bit 2 at addresses 03A516, 03AD16) = “1”  
- Start bit detection  
Reception start condition  
Interrupt request  
generation timing  
• When transmitting  
- Transmit interrupt cause select bits (bits 0,1 at address 03B016) = “0”:  
Interrupts requested when data transfer from UARTi transfer buffer register  
to UARTi transmit register is completed  
-
Transmit interrupt cause select bits (bits 0, 1 at address 03B016) = “1”: Interrupts  
requested when data transmission from UARTi transfer register is completed  
When receiving  
- Interrupts requested when data transfer from UARTi receive register to  
UARTi receive buffer register is completed  
• Overrun error (Note 3)  
Error detection  
This error occurs when the next data is ready before contents of UARTi  
receive buffer register are read out  
• Framing error  
This error occurs when the number of stop bits set is not detected  
• Parity error  
This error occurs when if parity is enabled, the number of 1’s in parity and  
character bits does not match the number of 1’s set  
• Error sum flag  
This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered  
_______ _______  
Select function  
• Separate CTS/RTS pins  
_______  
_______  
UART0’s CTS and RTS pins can each be assigned to separate pins  
• Sleep mode selection  
This mode is used to transfer data to and from one of multiple slave microcomputers  
Note 1: ‘n’ denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.  
Note 2: fEXT is input from the CLKi pin.  
Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that  
the UARTi receive interrupt request bit is not set to “1”.  
82  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit/receive mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiMR (i=0,1)  
Address  
03A016, 03A816  
When reset  
0016  
R W  
Bit symbol  
Bit name  
Function  
b2 b1 b0  
SMD0  
SMD1  
SMD2  
Serial I/O mode select bit  
1 0 0 : Transfer data 7 bits long  
1 0 1 : Transfer data 8 bits long  
1 1 0 : Transfer data 9 bits long  
CKDIR  
STPS  
PRY  
Internal/external clock  
select bit  
0 : Internal clock  
1 : External clock  
Stop bit length select bit  
0 : One stop bit  
1 : Two stop bits  
Odd/even parity select bit Valid when bit 6 = “1”  
0 : Odd parity  
1 : Even parity  
PRYE  
SLEP  
Parity enable bit  
Sleep select bit  
0 : Parity disabled  
1 : Parity enabled  
0 : Sleep mode deselected  
1 : Sleep mode selected  
Figure 1.67. Configuration of UARTi transmit/receive mode register in UART mode  
Table 1.34 lists the functions of the input/output pins during UART mode. This table shows the pin  
_______ _______  
functions when the separate CTS/RTS pins function is not selected. Note that for a period from when the  
UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a “H”. (If the N-channel  
open-drain is selected, this pin is in floating state.)  
________ _______  
Table 1.34. Input/output pin functions in UART mode (when separate CTS/RTS pins function is  
not selected)  
Pin name  
TxDi  
Function  
Method of selection  
Serial data output  
(P63, P67)  
RxDi  
Serial data input  
Internal/external clock select bit (bit 2, bit 6 at address 03EE16) = “0”  
(P62, P66)  
CLKi  
(Can be used as an input port when performing transmission only)  
Programmable I/O port  
Internal/external clock select bit (bit 3 at address 03A016, 03A816) = “0”  
(P61, P65)  
Transfer clock input  
Internal/external clock select bit (bit 3 at address 03A016, 03A816) = “1”  
________ ________  
_______  
_______ _______  
CTSi/RTSi  
(P60, P64)  
CTS input  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) = “0”  
_______ _______  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16) = “0”  
Port P60 and P64 direction register (bits 0 and 4 at address 03EE16) = “0”  
_______ _______  
_______  
RTS output  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) = “0”  
_______ _______  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16) = “1”  
_______ _______  
Programmable I/O port  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16) = “1”  
83  
Mitsubishi microcomputers  
M16C / 60 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
• Example of transmit timing when transfer data is 8 bits long (parity enabled, one stop bit)  
The transfer clock stops momentarily as CTS is “H” when the stop bit is checked.  
The transfer clock starts as the transfer starts immediately CTS changes to “L”.  
Tc  
Transfer clock  
“1”  
Transmit enablee  
bit(TE)  
“0”  
“1”  
“0”  
Data is set in UARTi transmit buffer register.  
Transmit buffer  
empty flag(TI)  
Transferred from UARTi transmit buffer register to UARTi transmit register  
“H”  
“L”  
CTSi  
Stopped pulsing because transmit enable bit = “0”  
Start  
bit  
Parity Stop  
bit bit  
TxDi  
ST  
D0  
D1  
ST  
D0  
D1  
D2  
D
3
D
4
D
5
D
7
P
ST  
D0  
D1  
D2  
D3  
D4  
D5  
D7  
P
D6  
SP  
D6  
SP  
“1”  
“0”  
Transmit register  
empty flag (TXEPT)  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” by software, or when an interrupt request is accepted.  
Shown in ( ) are bit symbols.  
Tc = 16 (n + 1) / fi or 16 (n + 1) / fEXT  
fi : frequency of BRGi's count source (f  
The above timing applies to the following settings :  
• Parity is enabled.  
1, f8, f32)  
fEXT : frequency of BRGi's count source (external clock)  
• One stop bit.  
n : value set to BRGi  
• CTS function is selected.  
• Transmit interrupt cause select bit = “1”.  
• Example of transmit timing when transfer data is 9 bits long (parity disabled, two stop bits)  
Tc  
Transfer clock  
“1”  
Transmit enable  
bit(TE)  
Data is set in UARTi transmit buffer register  
“0”  
“1”  
Transmit buffer  
empty flag(TI)  
“0”  
Transferred from UARTi transmit buffer register to UARTi transmit register  
Stop Stop  
Start  
bit  
bit  
bit  
TxDi  
ST  
D0  
D1  
ST  
D
0
D1  
D2  
D3  
D
4
D5  
D
7
D8  
ST  
D0  
D1  
D2  
D3  
D4  
D5  
D7  
D8  
SPSP  
D6  
SPSP  
D6  
“1”  
“0”  
Transmit register  
empty flag (TXEPT)  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” by software, or when an interrupt request is accepted.  
Tc = 16 (n + 1) / fi or 16 (n + 1) / fEXT  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings :  
• Parity is disabled.  
• Two stop bits.  
fi : frequency of BRGi's count source (f  
EXT : frequency of BRGi's count source (external clock)  
n : value set to BRGi  
1, f8, f32)  
f
• CTS function is disabled.  
• Transmit interrupt causes select bit = “0”.  
Figure 1.68. Typical transmit timings in UART mode  
84  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock asynchronous serial I/O (UART) mode  
• Example of receive timing when transfer data is 8 bits long (parity disabled, one stop bit)  
BRGi's count  
source  
“1”  
“0”  
Receive  
enable bit  
Stop bit  
Start bit  
Sampled “L”  
D1  
D7  
RxDi  
D0  
Receive data taken in  
Transfer clock  
Reception triggered when  
transfer clock is genelated  
by falling edge of start bit  
Transferred from UARTi receive register to  
UARTi receive buffer register  
“1”  
Receive  
complete flag  
“0”  
“H”  
“L”  
RTSi  
Receive interrupt “1”  
request bit  
“0”  
Cleared to “0” by software, or when an interrupt request is accepted.  
The above timing applies to the following settings :  
• Parity is disabled.  
• One stop bit.  
• RTS function is selected.  
Figure 1.69. Typical receive timing in UART mode  
_______ _______  
(a) Separate CTS/RTS pins function  
_______ _______  
_______  
With the separate CTS/RTS bit (bit 6 at address 03B016) is set to “1”, the unit outputs/inputs the CTS  
_______  
and RTS signals on different pins. (See Figure 1.70.) This function is valid only for UART0. Note that  
_______ _______  
if this function is selected, the CTS/RTS function for UART1 cannot be used.  
Microcomputer  
IC  
TX  
D
0
(P63)  
IN  
R
X
D0  
(P62)  
OUT  
RTS0 (P6  
0
4
)
)
CTS  
RTS  
CTS0 (P6  
_______ _______  
Figure 1.70. Example for the separate CTS/RTS pins function usage  
(b) Sleep mode  
This mode is used to transfer data between specific microcomputers among multiple microcomputers  
connected using UARTi. The sleep mode is selected when the sleep select bit (bit 7 at addresses  
03A016, 03A816) is set to “1” during reception. In this mode, the unit performs receive operation when  
the MSB of the received data = “1” and does not perform receive operation when the MSB = “0”.  
85  
Mitsubishi microcomputers  
M16C / 60 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
A-D Converter  
The A-D converter consists of one 10-bit successive approximation A-D converter circuit with a capacitive  
coupling amplifier. Pins P100 to P107, P95, and P96 also function as the analog signal input pins. The  
direction registers of these pins for A-D conversion must therefore be set to input. The Vref connect bit (bit  
5 at address 03D716) can be used to isolate the resistance ladder of the A-D converter from the reference  
voltage input pin (VREF) when the A-D converter is not used. Doing so stops any current flowing into the  
resistance ladder from VREF, reducing the power dissipation. When using the A-D converter, start A-D  
conversion only after setting bit 5 of 03D716 to connect VREF.  
The result of A-D conversion is stored in the A-D registers of the selected pins. When set to 10-bit precision,  
the low 8 bits are stored in the even addresses and the high 2 bits in the odd addresses. When set to 8-bit  
precision, the low 8 bits are stored in the even addresses.  
Table 1.35 shows the performance of the A-D converter. Figure 1.71 shows a block diagram of the A-D  
converter, and Figures 1.72 and 1.73 show configurations of the A-D converter-related registers.  
Table 1.35. Performance of A-D converter  
Item  
Performance  
Method of A-D conversion Successive approximation (capacitive coupling amplifier)  
Analog input voltage (Note 1) 0V to AVCC (VCC)  
Operating clock AD (Note 2) VCC = 5V  
VCC = 3V  
fAD/divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)  
divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)  
Resolution  
8-bit or 10-bit (selectable)  
Absolute precision  
VCC = 5V  
• Without sample and hold function  
±3LSB  
• With sample and hold function (8-bit resolution)  
±2LSB  
• With sample and hold function (10-bit resolution)  
AN0 to AN7 input : ±3LSB  
ANEX0 and ANEX1 input (including mode in which exter  
nal operation amp is connected) : ±7LSB  
• Without sample and hold function (8-bit resolution)  
±2LSB  
VCC = 3V  
Operating modes  
One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,  
and repeat sweep mode 1  
Analog input pins  
A-D conversion  
start condition  
8pins (AN0 to AN7) + 2pins (ANEX0 and ANEX1)  
• Software trigger  
A-D conversion starts when the A-D conversion start flag changes to “1”  
• External trigger (can be retriggered)  
A-D conversion starts when the A-D conversion start flag is “1” and the  
___________  
ADTRG/P97 input changes from “H” to “L”  
Conversion speed per pin • Without sample and hold function  
8-bit resolution: 49 AD cycles  
• With sample and hold function  
8-bit resolution: 28 AD cycles  
,
10-bit resolution: 59 AD cycles  
,
10-bit resolution: 33 AD cycles  
Note 1: Does not depend on use of sample and hold function.  
Note 2: Without sample and hold function, set the AD frequency to 250kHz min.  
With the sample and hold function, set the AD frequency to 1MHz min.  
86  
Mitsubishi microcomputers  
M16C / 60 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
CKS1=1  
CKS0=1  
CKS0=0  
AD  
f
AD  
1/2  
1/2  
A-D conversion  
rate selection  
CKS1=0  
VCUT=0  
VCUT=1  
AVSS  
Resistor ladder  
V
REF  
Successive conversion register  
A-D control register 1 (address 03D716  
)
)
A-D control register 0 (address 03D616  
Addresses  
(03C116, 03C016  
)
A-D register 0(16)  
(03C316, 03C216  
)
A-D register 1(16)  
A-D register 2(16)  
A-D register 3(16)  
(03C516, 03C416  
)
Vref  
(03C716, 03C616  
(03C916, 03C816  
(03CB16, 03CA16  
(03CD16, 03CC16  
(03CF16, 03CE16  
)
Decoder  
)
A-D register 4(16)  
)
A-D register 5(16)  
A-D register 6(16)  
Comparator  
V
IN  
)
)
A-D register 7(16)  
Data bus high-order  
Data bus low-order  
CH2,CH1,CH0=000  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
0
1
2
3
4
5
6
7
CH2,CH1,CH0=001  
CH2,CH1,CH0=010  
CH2,CH1,CH0=011  
CH2,CH1,CH0=100  
CH2,CH1,CH0=101  
CH2,CH1,CH0=110  
CH2,CH1,CH0=111  
OPA1,OPA0=0,0  
OPA1, OPA0  
0
0
1
1
0 : Normal operation  
1 : ANEX0  
0 : ANEX1  
1 : External op-amp mode  
OPA1,OPA0=1,1  
OPA0=1  
OPA1=1  
ANEX0  
ANEX1  
OPA1,OPA0=0,1  
Figure 1.71. Block diagram of A-D converter  
87  
Mitsubishi microcomputers  
M16C / 60 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
A-D control register 0 (Note)  
Symbol  
ADCON0  
Address  
03D616  
When reset  
b7 b6 b5 b4 b3 b2 b1 b0  
00000XXX  
2
R W  
Bit symbol  
Bit name  
Function  
0 is selected  
b2 b1 b0  
Analog input pin select bit  
CH0  
CH1  
0 0 0 : AN  
0 0 1 : AN  
0 1 0 : AN  
0 1 1 : AN  
1 0 0 : AN  
1 0 1 : AN  
1 1 0 : AN  
1 1 1 : AN  
b4 b3  
1
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
2
3
4
5
6
7
CH2  
MD0  
A-D operation mode  
select bit 0  
0 0 : One-shot mode  
0 1 : Repeat mode  
1 0 : Single sweep mode  
1 1 : Repeat sweep mode 0  
Repeat sweep mode 1  
MD1  
TRG  
Trigger select bit  
0 : Software trigger  
1 : ADTRG trigger  
A-D conversion start flag  
Frequency select bit 0  
0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
CKS0  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is  
indeterminate.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
Bit symbol  
Bit name  
Function  
R W  
When single sweep and repeat sweep  
A-D sweep pin select bit  
mode 0 are selected  
b1 b0  
SCAN0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
, AN1 (2 pins)  
to AN  
to AN  
to AN  
3
5
7
(4 pins)  
(6 pins)  
(8 pins)  
When repeat sweep mode 1 is selected  
b1 b0  
SCAN1  
MD2  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
(1 pin)  
, AN  
1
(2 pins)  
to AN  
2
3
(3 pins)  
(4 pins)  
to AN  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep  
mode 1  
1 : Repeat sweep mode 1  
8/10-bit mode select bit  
Frequency select bit 1  
0 : 8-bit mode  
1 : 10-bit mode  
BITS  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
CKS1  
Vref connect bit  
0 : Vref not connected  
1 : Vref connected  
VCUT  
OPA0  
OPA1  
b7 b6  
External op-amp  
connection mode bit  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is  
indeterminate.  
Figure 1.72. Configuration of A-D converter-related registers (1)  
88  
Mitsubishi microcomputers  
M16C / 60 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
A-D control register 2 (Note)  
Symbol  
ADCON2  
Address  
03D416  
When reset  
XXXXXXX02  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit symbol  
SMP  
Bit name  
Function  
R W  
0
1
Without sample and hold  
With sample and hold  
A-D conversion method  
select bit  
Nothing is assigned.  
These bits can neither be set nor reset. When read, their content is “0”.  
Note: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
Symbol  
ADi (i=0 to 7)  
Address  
When reset  
A-D register i  
(b15)  
b7  
03C016 to 03CF16 Indeterminate  
(b8)  
b0 b7  
b0  
Function  
R W  
Eight low-order bits of A-D conversion result  
• During 10-bit mode  
Two high-order bits of A-D conversion result  
• During 8-bit mode  
When read, the content is indeterminate  
Nothing is assigned.  
These bits can neither be set nor reset. When read, their  
content is “0”.  
Figure 1.73. Configuration of A-D converter-related registers (2)  
89  
Mitsubishi microcomputers  
M16C / 60 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) One-shot mode  
In one-shot mode, the pin selected using the analog input pin select bit is used for one-shot A-D conversion. Table 1.36  
shows the specifications of one-shot mode. Figure 1.74 shows the configuration of the A-D control register in one-shot  
mode.  
Table 1.36. One-shot mode specifications  
Item  
Specification  
Function  
The pin selected by the analog input pin select bit is used for one A-D conversion  
Writing “1” to A-D conversion start flag  
Start condition  
Stop condition  
End of A-D conversion (A-D conversion start flag changes to “0”, except  
when external trigger is selected)  
• Writing “0” to A-D conversion start flag  
Interrupt request generation timing End of A-D conversion  
Input pin  
One of AN0 to AN7, as selected  
Read A-D register corresponding to selected pin  
Reading of result of A-D converter  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX2  
0
0
Bit symbol  
Bit name  
Function  
R W  
b2 b1 b0  
Analog input pin  
select bit  
CH0  
CH1  
0 0 0 : AN  
0 0 1 : AN  
0 1 0 : AN  
0 1 1 : AN  
1 0 0 : AN  
1 0 1 : AN  
1 1 0 : AN  
1 1 1 : AN  
0
1
2
3
4
5
6
7
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
CH2  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
0 0 : One-shot mode  
0 : Software trigger  
1 : ADTRG trigger  
Trigger select bit  
TRG  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
0: fAD/4 is selected  
1: fAD/2 is selected  
CKS0  
Frequency select bit 0  
Note: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
0
Bit symbol  
Bit name  
A-D sweep pin  
Function  
R W  
Invalid in one-shot mode  
SCAN0  
SCAN1  
MD2  
select bit  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep  
mode 1  
8/10-bit mode select bit 0 : 8-bit mode  
1 : 10-bit mode  
BITS  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
CKS1  
Frequency select bit1  
Vref connect bit  
VCUT  
OPA0  
1 : Vref connected  
b7 b6  
External op-amp  
connection mode bit  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
OPA1  
Note: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
Figure 1.74. Configuration of A-D conversion register in one-shot mode  
90  
Mitsubishi microcomputers  
M16C / 60 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) Repeat mode  
In repeat mode, the pin selected using the analog input pin select bit is used for repeated A-D conversion. Table 1.37  
shows the specifications of repeat mode. Figure 1.75 shows the configuration of the A-D control register in repeat  
mode.  
Table 1.37. Repeat mode specifications  
Item  
Specification  
Function  
The pin selected by the analog input pin select bit is used for repeated A-D conversion  
Writing “1” to A-D conversion start flag  
Start condition  
Stop condition  
Writing “0” to A-D conversion start flag  
Interrupt request generation timing None generated  
Input pin  
One of AN0 to AN7, as selected  
Read A-D register corresponding to selected pin  
Reading of result of A-D converter  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX2  
0
1
Bit symbol  
Bit name  
Function  
0 is selected  
R W  
b2 b1 b0  
Analog input pin  
select bit  
CH0  
0 0 0 : AN  
0 0 1 : AN  
0 1 0 : AN  
0 1 1 : AN  
1 0 0 : AN  
1 0 1 : AN  
1 1 0 : AN  
1 1 1 : AN  
1
2
3
4
5
6
7
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
CH1  
CH2  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
0 1 : Repeat mode  
Trigger select bit  
0 : Software trigger  
1 : ADTRG trigger  
TRG  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
CKS0  
Frequency select bit 0  
Note: If the A-D control register is rewritten during A-D conversion, the conversin  
result is indeterminate.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
0
Bit symbol  
Bit name  
A-D sweep pin  
Function  
R W  
Invalid in repeat mode  
SCAN0  
SCAN1  
select bit  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep mode 1  
MD2  
8/10-bit mode select bit 0 : 8-bit mode  
1 : 10-bit mode  
BITS  
CKS1  
VCUT  
0 : fAD/2 or fAD/4 is selected  
Frequency select bit 1  
Vref connect bit  
1 : fAD is selected  
1 : Vref connected  
b7 b6  
External op-amp  
connection mode bit  
OPA0  
OPA1  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
Note: If the A-D control register is rewritten during A-D conversion, the conversn  
result is indeterminate.  
Figure 1.75. Configuration of A-D conversion register in repeat mode  
91  
Mitsubishi microcomputers  
M16C / 60 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) Single sweep mode  
I
n single sweep mode, the pins selected using the A-D sweep pin select bit are used for one-by-one A-D  
conversion. Table 1.38 shows the specifications of single sweep mode. Figure 1.76 shows the configura-  
tion of the A-D control register in single sweep mode.  
Table 1.38. Single sweep mode specifications  
Item  
Specification  
Function  
The pins selected by the A-D sweep pin select bit are used for one-by-one A-D conversion  
Writing “1” to A-D converter start flag  
Start condition  
Stop condition  
• End of A-D conversion (A-D conversion start flag changes to “0”, except  
when external trigger is selected)  
• Writing “0” to A-D conversion start flag  
Interrupt request generation timing End of A-D conversion  
Input pin  
AN0 and AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), or AN0 to AN7 (8 pins)  
Reading of result of A-D converter  
Read A-D register corresponding to selected pin  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX  
0
1
2
Bit symbol  
Bit name  
Function  
R W  
Analog input pin  
select bit  
Invalid in single sweep mode  
CH0  
CH1  
CH2  
b4 b3  
A-D operation mode  
select bit 0  
MD0  
MD1  
1 0 : Single sweep mode  
Trigger select bit  
0 : Software trigger  
1 : ADTRG trigger  
TRG  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
Frequency select bit 0  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
CKS0  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
A-D control register 1 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
0
Bit symbol  
SCAN0  
Bit name  
Function  
R W  
A-D sweep pin select bit When single sweep and repeat sweep mode 0  
are selected  
b1 b0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
, AN1 (2 pins)  
to AN  
to AN  
to AN  
3
5
7
(4 pins)  
SCAN1  
(6 pins)  
(8 pins)  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep mode 1  
MD2  
BITS  
CKS1  
8/10-bit mode select bit  
Frequency select bit 1  
Vref connect bit  
0 : 8-bit mode  
1 : 10-bit mode  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
VCUT  
OPA0  
1 : Vref connected  
b7 b6  
External op-amp  
connection mode  
bit (Note 2)  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
OPA1  
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
Note 2: Neither ‘01’ nor ‘10’ can be selected with the external op-amp connection mode bit.  
Figure 1.76. Configuration of A-D conversion register in single sweep mode  
92  
Mitsubishi microcomputers  
M16C / 60 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(4) Repeat sweep mode 0  
In repeat sweep mode 0, the pins selected using the A-D sweep pin select bit are used for repeat sweep  
A-D conversion. Table 1.39 shows the specifications of repeat sweep mode 0. Figure 1.77 shows the  
configuration of the A-D control register in repeat sweep mode 0.  
Table 1.39. Repeat sweep mode 0 specifications  
Item  
Specification  
Function  
The pins selected by the A-D sweep pin select bit are used for repeat sweep A-D conversion  
Writing “1” to A-D conversion start flag  
Start condition  
Stop condition  
Writing “0” to A-D conversion start flag  
Interrupt request generation timing None generated  
Input pin  
AN0 and AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), or AN0 to AN7 (8 pins)  
Reading of result of A-D converter  
Read A-D register corresponding to selected pin (at any time)  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX  
1
1
2
Bit symbol  
Bit name  
Function  
R W  
Analog input pin  
select bit  
Invalid in repeat sweep mode 0  
CH0  
CH1  
CH2  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
1 1 : Repeat sweep mode 0  
Trigger select bit  
0 : Software trigger  
1 : ADTRG trigger  
TRG  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
CKS0  
Frequency select bit 0  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
A-D control register 1 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
0
Bit symbol  
Bit name  
Function  
R W  
A-D sweep pin select bit When single sweep and repeat sweep mode 0  
SCAN0  
SCAN1  
are selected  
b1 b0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
, AN1 (2 pins)  
to AN  
to AN  
to AN  
3
5
7
(4 pins)  
(6 pins)  
(8 pins)  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep mode 1  
MD2  
BITS  
CKS1  
8/10-bit mode select bit  
0 : 8-bit mode  
1 : 10-bit mode  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
Frequency select bit 1  
Vref connect bit  
VCUT  
OPA0  
1 : Vref connected  
b7 b6  
External op-amp  
connection mode  
bit (Note 2)  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
OPA1  
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
Note 2: Neither “01” nor “10” can be selected with the external op-amp connection mode bit.  
Figure 1.77. Configuration of A-D conversion register in repeat sweep mode 0  
93  
Mitsubishi microcomputers  
M16C / 60 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(5) Repeat sweep mode 1  
In repeat sweep mode 1, all pins are used for A-D conversion with emphasis on the pin or pins selected  
using the A-D sweep pin select bit. Table 1.40 shows the specifications of repeat sweep mode 1. Figure  
1.78 shows the configuration of the A-D control register in repeat sweep mode 1  
.
Table 1.40. Repeat sweep mode 1 specifications  
Item  
Specification  
Function  
All pins perform repeat sweep A-D conversion, with emphasis on the pin or  
pins selected by the A-D sweep pin select bit  
Example : AN0 selected AN0  
AN1  
AN0  
AN2  
AN0  
AN3, etc  
Start condition  
Stop condition  
Writing “1” to A-D conversion start flag  
Writing “0” to A-D conversion start flag  
Interrupt request generation timing None generated  
Input pin  
AN0 (1 pin), AN0 and AN1 (2 pins), AN0 to AN2 (3 pins), AN0 to AN3 (4 pins)  
Read A-D register corresponding to selected pin (at any time)  
Reading of result of A-D converter  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX  
1
1
2
Bit symbol  
Bit name  
Function  
R W  
Analog input pin  
select bit  
Invalid in repeat sweep mode 1  
CH0  
CH1  
CH2  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
1 1 : Repeat sweep mode 1  
Trigger select bit  
0 : Software trigger  
1 : ADTRG trigger  
TRG  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
CKS0  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
Frequency select bit 0  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
A-D control register 1 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
1
Bit symbol  
SCAN0  
Bit name  
Function  
R W  
A-D sweep pin select bit When repeat sweep mode 1 is selected  
b1 b0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
(1 pin)  
, AN (2 pins)  
1
SCAN1  
to AN  
to AN  
2
3
(3 pins)  
(4 pins)  
A-D operation mode  
select bit 1  
1 : Repeat sweep mode 1  
MD2  
BITS  
CKS1  
8/10-bit mode select bit  
Frequency select bit 1  
Vref connect bit  
0 : 8-bit mode  
1 : 10-bit mode  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
VCUT  
OPA0  
1 : Vref connected  
b7 b6  
External op-amp  
connection mode  
bit (Note 2)  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
OPA1  
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
Note 2: Neither ‘01’ nor ‘10’ can be selected with the external op-amp connection mode bit.  
Figure 1.78. Configuration of A-D conversion register in repeat sweep mode 1  
94  
Mitsubishi microcomputers  
M16C / 60 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(a) Sample and hold  
Sample and hold is selected by setting bit 0 of the A-D control register 2 (address 03D416) to “1”.  
When sample and hold is selected, the rate of conversion of each pin increases. As a result, a 28 f AD  
cycle is achieved with 8-bit resolution and 33 f AD with 10-bit resolution. Sample and hold can be  
selected in all modes. However, in all modes, be sure to specify before starting A-D conversion  
whether sample and hold is to be used.  
(b) Extended analog input pins  
In one-shot mode and repeat mode, the input via the extended analog input pins, ANEX0 and ANEX1,  
can also be converted from analog to digital.  
When bit 6 of the A-D control register 1 (address 03D716) is “1” and bit 7 is “0”, input via ANEX0 is  
converted from analog to digital. The result of conversion is stored in A-D register 0.  
When bit 6 of the A-D control register 1 (address 03D716) is “0” and bit 7 is “1”, input via ANEX1 is  
converted from analog to digital. The result of conversion is stored in A-D register 1.  
(c) External operation amp connection mode  
In this mode, multiple external analog inputs via the extended analog input pins, ANEX0 and ANEX1,  
can be amplified together by just one operation amp and used as the input for A-D conversion.  
When bit 6 of the A-D control register 1 (address 03D716) is “1” and bit 7 is “1”, input via AN0 to AN7 is  
output from ANEX0. The input from ANEX1 is converted from analog to digital and the result stored in  
the corresponding A-D register. The speed of A-D conversion depends on the response of the exter-  
nal operation amp. Do not connect the ANEX0 and ANEX1 pins directly. Figure 1.79 is an example of  
how to connect the pins in external operation amp mode.  
Resistor ladder  
Successive conversion register  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
0
1
2
3
4
5
6
Analog  
input  
AN7  
ANEX0  
ANEX1  
Comparator  
External op-amp  
Figure 1.79. Example of external op-amp connection mode  
95  
Mitsubishi microcomputers  
M16C / 60 Group  
D-A Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
D-A Converter  
This is an 8-bit, R-2R type D-A converter. The microcomputer contains two independent D-A converters of  
this type.  
D-A conversion is performed when a value is written to the corresponding D-A register. Bits 0 and 1 (D-A  
output enable bits) of the D-A control register decide if the result of conversion is to be output. Do not set the  
target port to output mode if D-A conversion is to be performed.  
Output analog voltage (V) is determined by a set value (n : decimal) in the D-A register.  
V = VREF X n/ 256 (n = 0 to 255)  
VREF : reference voltage  
Table 1.41 lists the performance of the D-A converter. Figure 1.80 shows a block diagram of the D-A  
converter. Figure 1.81 shows the configuration of the D-A control register.  
Table 1.41. Performance of D-A converter  
Item  
Conversion method  
Resolution  
Performance  
R-2R method  
8 bits  
Analog output pin  
2 channels  
Data bus low-order bits  
(Address 03D816, 03DA16  
)
D-A register i (8) (i = 0, 1)  
R-2R resistor ladder  
D-Ai output enable bit (i = 0, 1)  
P9  
P9  
3
4
/ DA  
0
1
/ DA  
Figure 1.80. Block diagram of D-A converter  
D-A control register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
DACON  
Address  
03DC16  
When reset  
0016  
Bit symbol  
DA0E  
Bit name  
Function  
R W  
0 : Output disabled  
1 : Output enabled  
D-A0 output enable bit  
D-A1 output enable bit  
0 : Output disabled  
1 : Output enabled  
DA1E  
Nothing is assigned.  
These bits can neither be set nor reset. When read, the value of these bits is “0”.  
D-A register  
b7  
Symbol  
DAi (i = 0,1)  
Address  
03D816 03DA16  
When reset  
Indeterminate  
b0  
,
Function  
R W  
Output value of D-A conversion  
Figure 1.81. Configuration of D-A control register  
96  
Mitsubishi microcomputers  
M16C / 60 Group  
CRC Calculation Circuit  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
CRC Calculation Circuit  
The Cyclic Redundancy Check (CRC) calculation circuit detects an error in data blocks. The microcom-  
puter uses a generator polynomial of CRC_CCITT (X16 + X12 + X5 + 1) to generate CRC code.  
The CRC code is a 16-bit code generated for a block of a given data length in multiples of 8 bits. The CRC  
code is set in a CRC data register each time one byte of data is transferred to a CRC input register after  
writing an initial value into the CRC data register. Generation of CRC code for one byte of data is com-  
pleted in two machine cycles.  
Figure 1.82 shows a block diagram of the CRC circuit. Figure 1.83 shows the configuration of CRC-related  
registers.  
Data bus high-order bits  
Data bus low-order bits  
Eight low-order bits  
Eight high-order bits  
CRC data register (16)  
(Addresses 03BD16, 03BC16  
)
CRC code generating circt  
x
16 + x12 + x5 + 1  
CRC input register (8) (Address 03BE16  
)
Figure 1.82. Block diagram of CRC circuit  
CRC data register  
(b15)  
b7  
(b8)  
b0 b7  
Symbol  
CRCD  
Address  
03BD16, 03BC16  
When reset  
Indeterminate  
b0  
Values that  
can be set  
Function  
R W  
CRC calculation result output register  
000016 to FFFF16  
CRC input register  
b7  
b0  
Symbo  
CRCIN  
Address  
03BE16  
When reset  
Indeterminate  
Values that  
can be set  
Function  
R W  
Data input register  
0016 to FF16  
Figure 1.83. Configuration of CRC-related registers  
97  
Mitsubishi microcomputers  
M16C / 60 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Programmable I/O Ports  
There are 87 programmable I/O ports: P0 to P10 (excluding P85). Each port can be set independently for  
input or output using the direction register. A pull-up resistance for each block of 4 ports can be set. P85 is  
an input-only port and has no built-in pull-up resistance.  
Figures 1.84 and 1.85 show the configuration of the programmable I/O ports.  
Each pin functions as a programmable I/O port and as the I/O for the built-in peripheral devices.  
To use the pins as the inputs for the built-in peripheral devices, set the direction register of each pin to input  
mode. When the pins are used as the outputs for the built-in peripheral devices (other than the D-A con-  
verter), they function as outputs regardless of the contents of the direction registers. When pins are to be  
used as the outputs for the D-A converter, do not set the direction registers to output mode. See the  
descriptions of the respective functions for how to set up the built-in peripheral devices.  
(1) Direction registers  
Figure 1.86 shows a configuration of direction registers.  
These registers are used to choose the direction of the programmable I/O ports. Each bit in these regis-  
ters corresponds one for one to each I/O pin.  
Note: There is no direction register bit for P85.  
(2) Port registers  
Figure 1.87 shows a configuration of port registers.  
These registers are used to write and read data for input and output to and from an external device. A  
port register consists of a port latch to hold output data and a circuit to read the status of a pin. Each bit  
in port registers corresponds one for one to each I/O pin.  
(3) Pull-up control registers  
Figure 1.88 shows a configuration of pull-up control registers.  
The pull-up control register can be set to apply a pull-up resistance to each block of 4 ports. When ports  
are set to have a pull-up resistance, the pull-up resistance is connected only when the direction register is  
set for input.  
However, in memory expansion mode and microprocessor mode, P0 to P5 operate as the bus and the  
pull-up control register setting is invalid.  
98  
Mitsubishi microcomputers  
M16C / 60 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
P0  
P2  
P4  
0
0
0
to P0  
to P2  
to P4  
7
7
3
, P1  
0
0
to P1  
7
7
,
,
Pull-up selection  
Direction register  
, P3  
to P3  
Data bus  
Port latch  
Pull-up selection  
Direction register  
P5  
P7  
P9  
5
5
0
, P6  
2
, P6  
6
1
, P7  
1
, P7  
3
,
, P77, P8  
to P8  
4
, P8  
7,  
to P92, P97  
Port latch  
Data bus  
Input to respective peripheral functions  
Pull-up selection  
P4  
P5  
4
to P4  
7
, P5  
0
to P54,  
6, P6 , P6  
3
7
, P8  
6
Direction register  
“1”  
output  
Data bus  
Port latch  
Pull-up selection  
P5  
P6  
P7  
7
5
6
, P6  
, P7  
, P8  
0
0
0
, P6  
1
2
, P6  
4
,
,
Direction register  
“1”  
, P7  
, P7  
4
output  
Data bus  
Port latch  
Input to respective peripheral functions  
Figure 1.84. Configuration of programmable I/O ports (1)  
99  
Mitsubishi microcomputers  
M16C / 60 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
P85  
Data bus  
NMI interrupt input  
Pull-up selection  
P9  
(inside dotted-line not included)  
P10 to P10  
(inside dotted-line included)  
5, P96, P100 to P103  
Direction register  
4
7
Data bus  
Port latch  
Analog input  
Pull-up selection  
Direction register  
P93, P94  
Data bus  
Port latch  
Analog output  
D-A output enabled  
Figure 1.85. Configuration of programmable I/O ports (2)  
100  
Mitsubishi microcomputers  
M16C / 60 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Port Pi direction register (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
PDi (i = 0 to 10, except 8) 03E216, 03E316, 03E616, 03E716, 03EA16  
03EB16, 03EE16, 03EF16, 03F316, 03F616  
Bit symbol  
PDi_0  
Bit name  
direction register  
Function  
R W  
Port Pi  
0
0 : Input mode  
(Functions as an input port)  
1 : Output mode  
PDi_1  
PDi_2  
Port Pi  
Port Pi  
1
2
direction register  
direction register  
(Functions as an output port)  
PDi_3  
PDi_4  
PDi_5  
PDi_6  
PDi_7  
Port Pi  
Port Pi  
Port Pi  
Port Pi  
Port Pi  
3
4
5
6
7
direction register  
direction register  
direction register  
direction register  
direction register  
(i = 0 to 10 except 8)  
Note: Set bit 2 of protect register (address 000A16) to “1” before rewritting  
to the port P9 direction register.  
Port P8 direction register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PD8  
Address  
03F216  
When reset  
00X00000  
2
Bit symbol  
PD8_0  
Bit name  
Function  
0: Input mode  
(Functions as an input port)  
1: Output mode  
R W  
Port P8  
Port P8  
Port P8  
Port P8  
Port P8  
0
1
2
3
4
direction register  
direction register  
direction register  
direction register  
direction register  
PD8_1  
PD8_2  
(Functions as an output port)  
PD8_3  
PD8_4  
Nothing is assigned.  
This bit can neither be set nor reset. When read, its content is indeterminate.  
0 : Input mode  
(Functions as an input port)  
1 : Output mode  
PD8_6  
PD8_7  
Port P8  
Port P8  
6
7
direction register  
direction register  
(Functions as an output port)  
Figure 1.86. Configuration of direction register  
101  
Mitsubishi microcomputers  
M16C / 60 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Port Pi register  
Symbol  
Pi (i = 0 to 10, except  
Addres  
When reset  
Indeterminate  
Indeterminate  
b7 b6 b5 b4 b3 b2 b1 b0  
03E016, 03E116, 03E416, 03E516, 03E816  
03E916, 03EC16, 03ED16, 03F116, 03F416  
Bit symbol  
PDi_0  
Bit name  
register  
Function  
R W  
Port Pi  
0
1
Data is input and output to and from  
each pin by reading and writing to and  
from each corresponding bit  
0 : “L” level data  
PDi_1  
Port Pi  
register  
PDi_2  
PDi_3  
PDi_4  
PDi_5  
PDi_6  
PDi_7  
Port Pi  
Port Pi  
Port Pi  
Port Pi  
Port Pi  
Port Pi  
2
3
4
5
6
7
register  
register  
register  
register  
register  
register  
1 : “H” level data  
(i = 0 to 10 except 8)  
Port P8 register  
Symbol  
P8  
Address  
03F016  
When reset  
Indeterminate  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit symbol  
PD8_0  
Bit name  
register  
register  
register  
register  
register  
register  
register  
register  
Function  
R W  
Port P8  
0
1
2
3
4
5
6
7
Data is input and output to and from  
each pin by reading and writing to  
and from each corresponding bit  
(except for P85)  
0 : “L” level data  
1 : “H” level data  
PD8_1  
Port P8  
Port P8  
Port P8  
Port P8  
Port P8  
Port P8  
Port P8  
PD8_2  
PD8_3  
PD8_4  
PD8_5  
PD8_6  
PD8_7  
Figure 1.87. Configuration of port register  
102  
Mitsubishi microcomputers  
M16C / 60 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pull-up control register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PUR0  
Address  
03FC16  
When rese  
0016  
t
Bit  
symbo
PU00  
Bit  
name  
pull-up  
Function  
R W  
R W  
R W  
P0  
0
to P0  
3
The corresponding port is pulled  
high with a pull-up resistor  
0 : Not pulled high  
PU01  
PU02  
P0  
4
0
to P0  
7
3
pull-up  
pull-up  
P1  
to P1  
1 : Pulled high  
PU03  
PU04  
PU05  
P1  
P2  
P2  
4
0
4
to P1  
to P2  
to P2  
7
3
7
pull-up  
pull-up  
pull-up  
PU06  
PU07  
P3  
0
4
to P3  
3
7
pull-up  
pull-up  
P3  
to P3  
Pull-up control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PUR1  
Address  
03FD16  
When rese  
0016  
t
Function  
Bit name  
Bit symbol  
PU10  
P4  
P4  
P5  
P5  
P6  
P6  
P7  
0
to P4  
to P4  
to P5  
to P5  
to P6  
to P6  
to P7  
3
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
The corresponding port is pulled  
high with a pull-up resistor  
0 : Not pulled high  
PU11  
PU12  
PU13  
PU14  
PU15  
PU16  
4
7
0
4
0
4
0
3
7
3
7
3
1 : Pulled high  
PU17  
P7  
4
to P7  
7
pull-up  
Pull-up control register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PUR2  
Address  
03FE16  
When reset  
0016  
Bit symbol  
PU20  
Bit name  
Function  
P8  
0
4
to P8  
3
pull-up  
The corresponding port is pulled  
high with a pull-up resistor  
0 : Not pulled high  
PU21  
P8  
to P8  
7
pull-up  
(Except P85)  
1 : Pulled high  
PU22  
PU23  
PU24  
P9  
P9  
0
4
to P9  
3
7
pull-up  
pull-up  
to P9  
P10  
P10  
0
4
to P10  
3
pull-up  
pull-up  
PU25  
to P10  
7
Nothing is assigned.  
Theses bits can neither be set nor reset. When read, their contents are "0".  
Figure 1.88. Configuration of pull-up control register  
103  
Mitsubishi microcomputers  
M16C / 60 Group  
Programmable I/O Ports  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.42. Example of connection of unused pins in single-chip mode  
Pin name  
Connection  
Specify output mode, and leave these pins open;  
Ports P0 to P10 (excluding P85)  
or specify input mode, and connect to VSS via resistor (pull-down)  
Open  
XOUT (Note)  
Connect to VCC  
Connect to VSS  
AVCC, NMI  
AVSS, VREF, BYTE  
Note: With external clock input to XIN pin.  
Table 1.43. Example of connection of unused pins in memory expansion and microprocessor mode  
Pin name  
Connection  
Specify output mode, and leave these pins open;  
Ports P6 to P10 (excluding P85)  
or specify input mode, and connect to VSS via resistor (pull-down)  
Open  
BHE, ALE, HLDA,  
X
OUT (Note), BCLK  
Connect via resistor to VCC (pull-up)  
Connect to VCC  
HOLD, RDY  
AVCC, NMI  
AVSS, VREF  
Connect to VSS  
Note: With external clock input to XIN pin.  
Microcomputer  
Microcomputer  
Port P0 to P10 (except for P8  
5
)
Port P6 to P10 (except for P85)  
(Input mode)  
(Input mode)  
(Output mode)  
(Output mode)  
Open  
Open  
Open  
Open  
NMI  
BHE  
HLDA  
ALE  
NMI  
XOUT  
VCC  
XOUT  
VCC  
BCLK  
AVCC  
HOLD  
BYTE  
AVSS  
RDY  
AVCC  
VREF  
AVSS  
VSS  
VSS  
VREF  
In memory expansion mode or  
in microprocessor mode  
In single-chip mode  
Figure 1.89. Example of connection of unused pins  
104  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Items to be submitted when ordering masked ROM version  
Please submit the following when ordering masked ROM products:  
(1) Mask ROM confirmation form  
(2) Mark specification sheet  
(3) ROM data : EPROM (3 sets)  
Items to be submitted when ordering data to be written to ROM  
Please submit the following when ordering data to be written to one-time PROM products at the factory:  
(1) ROM writing order form  
(2) Mark specification sheet  
(3) ROM data : EPROM (3 sets)  
105  
Mitsubishi microcomputers  
M16C / 60 Group  
Electrical characteristics  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.44. Absolute maximum ratings  
Symbol  
Vcc  
Parameter  
Condition  
Rated value  
–0.3 to 7  
Unit  
V
Supply voltage  
AVcc  
–0.3 to 7  
V
Analog supply voltage  
V
I
Input voltage  
RESET, CNVss, BYTE  
P0  
P3  
0
to P0  
7
, P1  
0
to P17, P2  
to P47, P5  
0
0
to P2  
7
,
,
0
to P3  
7
, P4  
0
to P5  
7
–0.3 to Vcc + 0.3  
(Note 1)  
V
P6  
P9  
0
0
to P6  
to P9  
7
, P7  
, P10  
0 to P77, P80 to P87,  
7
0
to P107,  
VREF, XIN  
Output voltage  
P0  
P3  
0
0
to P0  
7
, P1  
0
0
0
to P17, P2  
to P47, P5  
0
to P2  
to P57,  
to P84,  
7,  
to P3  
7
, P4  
, P7  
0
V
O
d
V
P60  
to P6  
7
to P77, P8  
0
–0.3 to Vcc + 0.3  
P8  
6
,P8 , P9  
7
0
to P97, P10  
0
to P107,  
X
OUT  
300  
mW  
C
P
Power dissipation  
Ta=25 C  
Topr  
Operating ambient temperature  
Storage temperature  
–40 to 85  
–65 to 150  
T
stg  
C
Note 1: When writting to EPROM, only CNVss is –0.3 to 13 (V).  
Table 1.45. Recommended operating conditions (referenced to VCC = 2.7V to 5V at Ta = –40 to  
o
85 C unless otherwise specified)  
Standard  
Symbol  
Parameter  
Unit  
Min  
Typ.  
5.0  
Vcc  
0
Max.  
Supply voltage  
Vcc  
2.7  
5.5  
V
V
V
V
Analog supply voltage  
Supply voltage  
AVcc  
Vss  
AVss  
0
Analog supply voltage  
P3  
P7  
1
0
to P3  
to P7  
7
, P4  
, P8  
0
0
to P4  
to P8  
7
, P5  
, P9  
0
0
to P57, P6  
0
to P6  
0
7,  
HIGH input  
voltage  
7
7
to P9  
7
, P10 to P107,  
V
IH  
IH  
0.8Vcc  
Vcc  
V
X
IN, RESET, CNVSS, BYTE  
V
HIGH input  
voltage  
P0  
0
to P0  
7
, P1  
0
to P1  
7
, P2  
0
to P2  
7
, P3  
0
0.8Vcc  
0.5Vcc  
Vcc  
Vcc  
V
V
(during single-chip mode)  
HIGH input  
voltage  
P0 to P0 , P1 to P1 , P2  
(during memory expansion and microprocessor modes)  
0
7
0
7
0
to P2  
7
, P3  
0
V
IH  
P3 to P3 , P4 to P4 , P5 to P5 , P6 to P6  
1
7
0
7
0
7
0
7,  
LOW input  
voltage  
V
V
0
0.2Vcc  
V
P7 to P7 , P8 to P8 , P9 to P9 , P10 to P10  
0
7
0
7
0
7
0
7,  
IL  
IL  
XIN, RESET, CNVSS, BYTE  
P0 to P0 , P1 to P1 , P20 to P27, P30  
(during single-chip mode)  
0
7
0
7
LOW input  
voltage  
0
0
0.2Vcc  
V
V
LOW input  
voltage  
P0  
0 to P07, P10 to P17, P20 to P27, P30  
V
0.16Vcc  
IL  
(during memory expansion and microprocessor modes)  
P0  
P4  
P8  
0
0
to P0  
to P4  
to P84,P86,P87,P9  
7
7
, P1  
, P5  
0
0
to P1  
7
, P2  
0
0
to P2  
to P6  
7
7
,P3  
,P7  
0
0
to P3  
to P7  
7
7
,
,
HIGH peak  
output current  
to P5  
7
, P6  
0
–10.0  
–5.0  
mA  
mA  
I OH (peak)  
0
to P97,P10  
0
to P10  
7
P0  
P4  
P8  
0
0
to P0  
to P4  
to P84,P86,P87,P9  
7
7
, P1  
, P5  
0
0
to P1  
7
, P2  
0
0
to P2  
to P6  
7
7
,P3  
,P7  
0
0
to P3  
to P7  
7
7
,
,
HIGH average  
output current  
to P5  
7
, P6  
0
I OH (avg)  
0
to P97,P10  
0
to P10  
7
P0  
P4  
0
0
to P0  
to P4  
7
7
, P1  
, P5  
0
0
to P1  
7
, P2  
0
0
to P2  
to P6  
7
7
,P3  
,P7  
0
0
to P3  
to P7  
7
7
,
,
LOW peak  
output current  
I OL (peak)  
to P5  
7
, P6  
10.0  
5.0  
mA  
mA  
P8  
0
to P84,P86,P87,P9  
0
to P97,P10  
0
to P10  
7
P00  
0
to P0  
7
, P1  
0
0
to P1  
7
7
, P2  
, P6  
0
0
to P2  
to P6  
7
7
,P3  
,P7  
0
0
to P3  
to P7  
7
,
,
LOW average  
output current  
I OL (avg)  
P4  
to P47, P5  
to P5  
7
P80 to P84,P86,P87,P90 to P97,P100 to P107  
Vcc =4.0V to 5.5V  
10  
7
MHz  
MHz  
kHz  
Main clock input oscillation frequency  
Subclock oscillation frequency  
f (XIN  
)
Vcc = 2.7V to 5.5V  
(with wait)  
f (XcIN  
)
32.768  
50  
Note 1: The mean output current is the mean value within 100ms.  
Note 2: The total IOL (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IOH (peak) for ports P0, P1,  
P2, P86, P87, P9, and P10 must be 80mA max. The total IOL (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be  
80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be 80mA max.  
106  
Mitsubishi microcomputers  
M16C / 60 Group  
Electrical characteristics (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Table 1.46. Electrical characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25 C, f(XIN) = 10MHz  
unless otherwise specified)  
Standard  
Min. Typ. Max.  
Symbol  
Parameter  
Measuring condition  
Unit  
HIGH output  
voltage  
P00 to P07,P10 to P17,P20 to P27,  
P30 to P37,P40 to P47,P50 to P57,  
P60 to P67,P70 to P77,P80 to P84,  
P86,P87,P90 to P97,P100 to P107  
VOH  
IOH = –5mA  
3.0  
V
HIGH output  
voltage  
P00 to P07,P10 to P17,P20 to P27,  
P30 to P37,P40 to P47,P50 to P57  
VOH  
VOH  
IOH = –200µA  
4.7  
V
V
IOH = –1mA  
HIGHPOWER  
3.0  
3.0  
HIGH output  
voltage  
XOUT  
LOWPOWER  
IOH = –0.5mA  
LOW output  
voltage  
P00 to P07,P10 to P17,P20 to P27,  
P30 to P37,P40 to P47,P50 to P57,  
P60 to P67,P70 to P77,P80 to P84,  
P86,P87,P90 to P97,P100 to P107  
VOL  
IOL = 5mA  
2.0  
V
P00 to P07,P10 to P17,P20 to P27,  
P30 to P37,P40 to P47,P50 to P53  
LOW output  
voltage  
VOL  
VOL  
IOL = 200µA  
0.45  
V
V
IOL = 1mA  
HIGHPOWER  
2.0  
2.0  
LOW output  
voltage  
XOUT  
IOL = 0.5mA  
LOWPOWER  
Hysteresis  
HOLD, RDY, TA0IN to TA4IN,  
TB0IN to TB2IN, INT0 to INT2,  
ADTRG, CTS0, CTS1, CLK0,  
CLK1  
VT+-VT-  
0.2  
0.8  
V
VT+-VT-  
VT+-VT-  
0.2  
0.2  
1.8  
0.8  
V
V
RESET  
XIN  
Hysteresis  
Hysteresis  
P00 to P07,P10 to P17,P20 to P27,  
P30 to P37,P40 to P47,P50 to P57,  
P60 to P67,P70 to P77,P80 to P87,  
P90 to P97,P100 to P107,  
HIGH input  
current  
IIH  
VI = 5V  
5.0  
µA  
XIN, RESET, CNVss, BYTE  
P00 to P07,P10 to P17,P20 to P27,  
P30 to P37,P40 to P47,P50 to P57,  
P60 to P67,P70 to P77,P80 to P87,  
P90 to P97,P100 to P107,  
LOW input  
current  
IIL  
VI = 0V  
–5.0  
µA  
XIN, RESET, CNVss, BYTE  
VRAM  
2.0  
V
RAM retention voltage  
When clock is stopped  
f(XIN) = 10MHz  
Square wave,  
no division  
19.0 38.0  
4.2  
mA  
When reset  
in single-chip  
mode, the  
output-only  
pins are open  
and other  
f(XIN) = 10MHz  
Square wave,  
division by 8  
mA  
µA  
Icc  
Power supply current  
f(XCIN) = 32kHz  
When a WAIT  
instruction is  
executed  
4.0  
pins are VSS  
Ta = 25 C when  
clock is stopped  
1.0  
µA  
Ta = 85 C when  
clock is stopped  
20.0  
107  
Mitsubishi microcomputers  
M16C / 60 Group  
Electrical characteristics (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
Table 1.47. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 5V, Vss = AVSS = 0V  
o
at Ta = 25 C, f(XIN) = 10MHz unless otherwise specified)  
Standard  
Min. Typ. Max.  
Symbol  
Parameter  
Measuring condition  
Unit  
V
REF  
REF = VCC = 5V  
AN  
=
V
CC  
10  
Bits  
LSB  
LSB  
Resolution  
Absolute  
accuracy  
Sample & hold function not available  
±3  
V
±3  
0
to AN7 input  
V
REF =VCC  
Sample & hold function available(10bit)  
ANEX0, ANEX1 input,  
External op-amp connection mode  
±7  
±2  
LSB  
= 5V  
Sample & hold function available(8bit)  
VREF = VCC = 5V  
LSB  
k  
R
LADDER  
VREF =VCC  
10  
3.3  
2.8  
0.3  
2
40  
Ladder resistance  
Conversion time(10bit)  
Conversion time(8bit)  
Sampling time  
t
t
t
CONV  
µs  
µs  
µs  
V
CONV  
SAMP  
V
REF  
IA  
V
CC  
Reference voltage  
Analog input voltage  
V
0
VREF  
V
Table 1.48. D-A conversion characteristics (referenced to VCC = 5V, VSS = AVSS = 0V, VREF = 5V at  
o
Ta = 25 C, f(XIN) = 10MHz unless otherwise specified)  
Standard  
Symbol  
Parameter  
Measuring condition  
Unit  
Min. Typ. Max.  
Bits  
%
Resolution  
Absolute accuracy  
8
1.0  
tsu  
µs  
Setup time  
3
kΩ  
RO  
Output resistance  
4
10  
20  
I
VREF  
Reference power supply input current  
mA  
(
Note)  
1.5  
Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to  
“0016”.  
The A-D converter's ladder resistance is not included.  
108  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25 C unless otherwise specified)  
Table 1.50. External clock input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
40  
Max.  
t
c
ns  
ns  
ns  
ns  
ns  
External clock input cycle time  
t
w(H  
)
External clock input HIGH pulse width  
External clock input LOW pulse width  
External clock rise time  
t
w(L)  
40  
t
r
15  
15  
t
f
External clock fall time  
Table 1.51. Memory expansion and microprocessor modes  
Standard  
Symbol  
Parameter  
Unit  
Min.  
Max.  
t
ac1(RD-DB)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data input access time (no wait)  
(Note)  
t
ac2(RD-DB)  
ac3(RD-DB)  
Data input access time (with wait)  
Data input access time (when accessing multiplex bus area)  
(Note)  
(Note)  
t
t
su(DB-RD)  
40  
30  
40  
0
Data input setup time  
t
t
t
su(RDY-BCLK )  
su(HOLD-BCLK )  
h(RD-DB)  
RDY input setup time  
HOLD input setup time  
Data input hold time  
t
t
t
h(BCLK -RDY)  
h(BCLK-HOLD )  
d(BCLK-HLDA )  
0
RDY input hold time  
HOLD input hold time  
HLDA output delay time  
0
40  
Note: Calculated according to the BCLK frequency as follows:  
109  
f(BCLK) X 2  
3 X 109  
f(BCLK) X 2  
[ns]  
t
ac1(RD – DB) =  
– 45  
– 45  
[ns]  
[ns]  
t
t
ac2(RD – DB) =  
ac3(RD – DB) =  
3 X 109  
f(BCLK) X 2  
– 45  
109  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25 C unless otherwise specified)  
Table 1.52. Timer A input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
40  
Max.  
ns  
ns  
ns  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
w(TAL)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
40  
Table 1.53. Timer A input (gating input in timer mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
400  
Max.  
ns  
ns  
ns  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
w(TAL)  
200  
200  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
Table 1.54. Timer A input (external trigger input in one-shot timer mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
200  
100  
100  
Max.  
ns  
ns  
ns  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
w(TAL)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
Table 1.55. Timer A input (external trigger input in pulse width modulation mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
100  
Max.  
t
w(TAH)  
ns  
ns  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
Table 1.56. Timer A input (up/down input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
2000  
1000  
1000  
400  
Max.  
t
c(UP)  
ns  
ns  
ns  
ns  
ns  
TAiOUT input cycle time  
t
w(UPH)  
TAiOUT input HIGH pulse width  
t
w(UPL)  
TAiOUT input LOW pulse width  
TAiOUT input setup time  
TAiOUT input hold time  
t
su(UP-TIN  
)
t
h(TIN-UP)  
400  
110  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25 C unless otherwise specified)  
Table 1.57. Timer B input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
Max.  
t
c(TB)  
ns  
ns  
ns  
ns  
ns  
ns  
TBiIN input cycle time (counted on one edge)  
t
w(TBH)  
w(TBL)  
c(TB)  
TBiIN input HIGH pulse width (counted on one edge)  
TBiIN input LOW pulse width (counted on one edge)  
TBiIN input cycle time (counted on both edges)  
TBiIN input HIGH pulse width (counted on both edges)  
TBiIN input LOW pulse width (counted on both edges)  
40  
40  
t
t
200  
80  
t
w(TBH)  
t
w(TBL)  
80  
Table 1.58. Timer B input (pulse period measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
ns  
Min.  
400  
Max.  
t
c(TB)  
TBiIN input cycle time  
t
w(TBH)  
w(TBL)  
ns  
ns  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
200  
200  
t
Table 1.59. Timer B input (pulse width measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
400  
200  
200  
Max.  
t
c(TB)  
ns  
ns  
ns  
TBiIN input cycle time  
t
w(TBH)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
t
w(TBL)  
Table 1.60. A-D trigger input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
1000  
125  
Max.  
t
c(AD)  
ns  
ns  
ADTRG input cycle time (trigger able minimum)  
ADTRG input LOW pulse width  
t
w(ADL)  
Table 1.61. Serial I/O  
Standard  
Symbol  
Parameter  
Unit  
Min.  
200  
100  
100  
Max.  
t
c(CK)  
w(CKH)  
w(CKL)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKi input cycle time  
CLKi input HIGH pulse width  
CLKi input LOW pulse width  
TxDi output delay time  
TxDi hold time  
t
t
t
t
d(C-Q)  
h(C-Q)  
80  
0
30  
90  
t
su(D-C)  
h(C-D)  
RxDi input setup time  
RxDi input hold time  
t
_______  
Table 1.62. External interrupt INTi inputs  
Standard  
Symbol  
Parameter  
Unit  
Min.  
250  
250  
Max.  
t
w(INH)  
w(INL)  
ns  
ns  
INTi input HIGH pulse width  
INTi input LOW pulse width  
t
111  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25 C, CM15 = “1” unless  
otherwise specified)  
Table 1.63. Memory expansion mode and microprocessor mode (no wait)  
Standard  
Measuring condition  
Symbol  
Parameter  
Unit  
Min.  
Max.  
25  
t
t
t
t
t
d(BCLK-AD)  
h(BCLK-AD)  
Address output delay time  
ns  
ns  
ns  
ns  
ns  
ns  
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
Address output hold time (WR standard)  
Chip select output delay time  
4
0
0
h(RD-AD)  
h(WR-AD)  
d(BCLK-CS)  
h(BCLK-CS)  
25  
t
Chip select output hold time (BCLK standard)  
4
t
t
d(BCLK-ALE)  
ALE signal output delay time  
ALE signal output hold time  
RD signal output delay time  
RD signal output hold time  
WR signal output delay time  
WR signal output hold time  
25  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
h(BCLK-ALE)  
– 4  
0
Figure 1.90  
t
t
d(BCLK-RD)  
h(BCLK-RD)  
t
t
d(BCLK-WR)  
h(BCLK-WR)  
0
t
d(BCLK-DB)  
h(BCLK-DB)  
40  
ns  
ns  
ns  
ns  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
Data output delay time (WR standard)  
Data output hold time (WR standard) (Note 2)  
t
4
(Note 1)  
t
d(DB-WR)  
h(WR-DB)  
t
0
Note 1: Calculated according to the BCLK frequency as follows:  
10 9  
– 40  
td(DB – WR) =  
[ns]  
f(BCLK) X 2  
Note 2: This is standard value shows the timing when the output is off,  
and doesn't show hold time of data bus.  
Hold time of data bus is different by capacitor volume and pull-up  
(pull-down) resistance value.  
Hold time of data bus is expressed in  
R
C
DBi  
t = –CR X ln (1 – VOL / VCC  
by a circuit of the right figure.  
)
For example, when VOL = 0.2VCC, C = 30pF, R = 1kW, hold time  
of output “L” level is  
t = – 30pF X 1kW X ln (1 – 0.2VCC / VCC  
= 6.7ns.  
)
112  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25 C, CM15 = “1” unless  
otherwise specified)  
Table 1.64. Memory expansion mode and microprocessor mode  
(with wait, accessing external memory)  
Standard  
Measuring condition  
Symbol  
Parameter  
Unit  
ns  
Min.  
Max.  
25  
t
d(BCLK-AD)  
h(BCLK-AD)  
Address output delay time  
t
t
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
4
0
ns  
ns  
h(RD-AD)  
t
h(WR-AD)  
Address output hold time (WR standard)  
Chip select output delay time  
Chip select output hold time (BCLK standard)  
0
ns  
ns  
ns  
td(BCLK-CS)  
25  
25  
25  
25  
40  
t
h(BCLK-CS)  
4
t
t
d(BCLK-ALE)  
h(BCLK-ALE)  
ALE signal output delay time  
ALE signal output hold time  
ns  
ns  
– 4  
0
Figure 1.90  
t
t
d(BCLK-RD)  
h(BCLK-RD)  
RD signal output delay time  
RD signal output hold time  
ns  
ns  
t
t
d(BCLK-WR)  
h(BCLK-WR)  
WR signal output delay time  
ns  
WR signal output hold time  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
0
ns  
ns  
ns  
t
t
d(BCLK-DB)  
h(BCLK-DB)  
4
(Note 1)  
0
t
d(DB-WR)  
h(WR-DB)  
Data output delay time (WR standard)  
ns  
ns  
t
Data output hold time (WR standard) (Note 2)  
Note 1: Calculated according to the BCLK frequency as follows:  
109  
td(DB – WR) =  
[ns]  
– 40  
f(BCLK)  
Note 2: This is standard value shows the timing when the output is off,  
and doesn't show hold time of data bus.  
Hold time of data bus is different by capacitor volume and pull-up  
(pull-down) resistance value.  
Hold time of data bus is expressed in  
R
C
DBi  
t = –CR X ln (1 – VOL / VCC  
by a circuit of the right figure.  
)
For example, when VOL = 0.2VCC, C = 30pF, R = 1kW, hold time  
of output “L” level is  
t = – 30pF X 1kW X ln (1 – 0.2VCC / VCC  
= 6.7ns.  
)
113  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25 C, CM15 =“1” unless  
otherwise specified)  
Table 1.65. Memory expansion mode and microprocessor mode  
(with wait, accessing external memory, multiplex bus area selected)  
Standard  
Measuring condition  
Symbol  
Parameter  
Address output delay time  
Unit  
Min.  
Max.  
25  
t
d(BCLK-AD)  
h(BCLK-AD)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
Address output hold time (WR standard)  
Chip select output delay time  
4
(Note)  
t
h(RD-AD)  
(Note)  
t
h(WR-AD)  
t
d(BCLK-CS)  
h(BCLK-CS)  
25  
25  
t
Chip select output hold time (BCLK standard)  
Chip select output hold time (RD standard)  
Chip select output hold time (WR standard)  
RD signal output delay time  
4
(Note)  
t
h(RD-CS)  
(Note)  
t
h(WR-CS)  
t
d(BCLK-RD)  
h(BCLK-RD)  
t
t
t
t
t
RD signal output hold time  
WR signal output delay time  
WR signal output hold time  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
0
0
ns  
ns  
ns  
ns  
ns  
d(BCLK-WR)  
25  
40  
Figure 1.90  
h(BCLK-WR)  
d(BCLK-DB)  
h(BCLK-DB)  
4
(Note)  
t
t
d(DB-WR)  
h(WR-DB)  
Data output delay time (WR standard)  
ns  
(Note)  
Data output hold time (WR standard)  
ns  
ns  
ns  
ns  
ns  
t
t
d(BCLK-ALE)  
ALE signal output delay time (BCLK standard)  
ALE signal output hold time (BCLK standard)  
ALE signal output delay time (Address standard)  
ALE signal output hold time (Adderss standard)  
25  
h(BCLK-ALE)  
– 4  
(Note)  
t
t
d(AD-ALE)  
h(ALE-AD)  
50  
0
0
t
t
t
d(AD-RD)  
d(AD-WR)  
dZ(RD-AD)  
Post-address RD signal output delay time  
Post-address WR signal output delay time  
Address output floating start time  
ns  
ns  
ns  
8
Note: Calculated according to the BCLK frequency as follows:  
109  
th(RD – AD) =  
[ns]  
f(BCLK) X 2  
109  
th(WR – AD) =  
[ns]  
f(BCLK) X 2  
109  
th(RD – CS) =  
th(WR – CS) =  
td(DB – WR) =  
[ns]  
[ns]  
[ns]  
f(BCLK) X 2  
109  
f(BCLK) X 2  
109 X 3  
– 40  
– 25  
f(BCLK) X 2  
109  
th(WR – DB) =  
td(AD – ALE) =  
[ns]  
[ns]  
f(BCLK) X 2  
109  
f(BCLK) X 2  
114  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
P10  
30pF  
Figure 1.90. Port P0 to P10 measurement circuit  
115  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
t
c(TA)  
t
w(TAH)  
TAiIN input  
t
w(TAL)  
t
c(UP)  
t
w(UPH)  
TAiOUT input  
t
w(UPL)  
TAiOUT input  
(Up/down input)  
During event counter mode  
TAiIN input  
(When count on falling  
edge is selected)  
t
h(TIN–UP)  
t
su(UP–TIN)  
TAiIN input  
(When count on rising  
edge is selected)  
t
c(TB)  
t
w(TBH)  
TBiIN input  
t
w(TBL)  
t
c(AD)  
t
w(ADL)  
ADTRG input  
t
c(CK)  
tw(CKH)  
CLKi  
t
w(CKL)  
t
h(C–Q)  
TxDi  
RxDi  
t
d(C–Q)  
t
su(D–C)  
t
h(C–D)  
t
w(INL)  
INTi input  
t
w(INH)  
116  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
Memory Expansion Mode and Microprocessor Mode  
(Valid only with wait)  
BCLK  
RD  
RDY input  
t
su(RDY-BCLK)  
t
h(BCLK-RDY)  
(Valid with or without wait)  
BCLK  
t
h(BCLK-HOLD)  
t
su(HOLD-BCLK)  
HOLD input  
HLDA output  
t
d(BCLK-HLDA)  
t
d(BCLK-HLDA)  
P0, P1, P2,  
P3, P4,  
Hi-Z  
P50  
to P5  
2
Note: The above pins are set to high-impedance regardless of the input level of the  
BYTE pin and bit (PM06) of processor mode register 0 selects the function of  
ports P40 to P43.  
Measuring conditions :  
•VCC = 5V  
• Input timing voltage : Determined with VIL = 1.0V, VIH = 4.0V  
• Output timing voltage : Determined with VOL =2.5V, VOH = 2.5V  
117  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
Memory Expansion Mode and Microprocessor Modes  
(With no wait)  
Read timing  
BCLK  
t
d(BCLK–CS)  
25ns.max  
th(BCLK–CS)  
4ns.min  
CSi  
tcyc  
t
h(RD–CS)  
0ns.min  
t
d(BCLK–AD)  
t
h(BCLK–AD)  
25ns.max  
4ns.min  
ADi  
BHE  
t
d(BCLK–ALE)  
t
h(BCLK–ALE)  
t
h(RD–AD)  
0ns.min  
25ns.max  
–4ns.min  
ALE  
RD  
DB  
t
h(BCLK–RD)  
0ns.min  
t
d(BCLK–RD)  
25ns.max  
t
ac1(RD–DB)  
Hi–Z  
th(RD–DB)  
tSU(DB–RD)  
0ns.min  
40ns.min  
Write timing  
BCLK  
t
h(BCLK–CS)  
td(BCLK–CS)  
4ns.min  
25ns.max  
CSi  
t
h(WR–CS)  
0ns.min  
tcyc  
t
d(BCLK–AD)  
t
h(BCLK–AD)  
4ns.min  
25ns.max  
ADi  
BHE  
t
d(BCLK–ALE)  
t
h(WR–AD)  
25ns.max  
t
h(BCLK–ALE)  
0ns.min  
ALE  
–4ns.min  
t
d(BCLK–WR)  
25ns.max  
t
h(BCLK–WR)  
0ns.min  
WR,WRL,  
WRH  
t
d(BCLK–DB)  
t
h(BCLK–DB)  
40ns.max  
4ns.min  
DB  
Hi–Z  
t
h(WR–DB)  
t
d(DB–WR)  
(tcyc/2–40)ns.min  
0ns.min  
118  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
Memory Expansion Mode and Microprocessor Modes  
(When accessing external memory area with wait)  
Read timing  
BCLK  
t
h(BCLK–CS)  
4ns.min  
t
d(BCLK–CS)  
25ns.max  
CSi  
t
h(RD–CS)  
0ns.min  
tcyc  
t
d(BCLK–AD)  
t
h(BCLK–AD)  
4ns.min  
25ns.max  
ADi  
BHE  
t
h(RD–AD)  
t
d(BCLK–ALE)  
t
h(BCLK–ALE)  
25ns.max  
0ns.min  
–4ns.min  
ALE  
RD  
DB  
t
h(BCLK–RD)  
0ns.min  
t
d(BCLK–RD)  
25ns.max  
tac2(RD–DB)  
Hi–Z  
t
h(RD–DB)  
t
SU(DB–RD)  
40ns.min  
0ns.min  
Write timing  
BCLK  
t
h(BCLK–CS)  
t
d(BCLK–CS)  
25ns.max  
4ns.min  
CSi  
tcyc  
t
h(WR–CS)  
0ns.min  
t
d(BCLK–AD)  
t
h(BCLK–AD)  
4ns.min  
25ns.max  
ADi  
BHE  
t
d(BCLK–ALE)  
t
h(BCLK–ALE)  
t
h(WR–AD)  
25ns.max  
–4ns.min  
0ns.min  
ALE  
t
h(BCLK–WR)  
0ns.min  
t
d(BCLK–WR)  
25ns.max  
WR,WRL,  
WRH  
t
h(BCLK–DB)  
4ns.min  
t
d(BCLK–DB)  
40ns.max  
DBi  
t
h(WR–DB)  
0ns.min  
td(DB–WR)  
(tcyc–40)ns.min  
Measuring conditions :  
• VCC = 5V  
• Input timing voltage : Determined with VIL = 0.8V, VIH = 2.5V  
• Output timing voltage : Determined with VOL = 0.8V, VOH = 2.0V  
119  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
Memory Expansion Mode and Microprocessor Mode  
(When accessing external memory area with wait, and select multiplexed bus)  
Read timing  
BCLK  
t
d(BCLK–CS)  
t
h(BCLK–CS)  
4ns.min  
tcyc  
t
h(RD–CS)  
25ns.max  
(tcyc/2)ns.min  
CSi  
t
d(AD–ALE)  
(tcyc/2–25)ns.min  
th(ALE–AD)  
50ns.min  
ADi  
/DBi  
Data input  
Address  
Address  
dz(RD–AD)  
t
h(RD–DB)  
0ns.min  
t
tac3(RD–DB)  
t
SU(DB–RD)  
40ns.min  
8ns.max  
t
d(AD–RD)  
0ns.min  
t
h(BCLK–AD)  
t
d(BCLK–AD)  
25ns.max  
4ns.min  
ADi  
BHE  
t
h(BCLK–ALE)  
t
h(RD–AD)  
(tcyc/2)ns.min  
–4ns.min  
ALE  
RD  
t
d(BCLK–ALE)  
25ns.max  
t
d(BCLK–RD)  
t
h(BCLK–RD)  
0ns.min  
25ns.max  
Write timing  
BCLK  
t
h(BCLK–CS)  
4ns.min  
tcyc  
t
d(BCLK–CS)  
25ns.max  
t
h(WR–CS)  
(tcyc/2)ns.min  
CSi  
t
h(BCLK–DB)  
4ns.min  
t
d(BCLK–DB)  
40ns.max  
ADi  
/DBi  
Address  
d(AD–ALE)  
Data input  
Address  
td(DB–WR)  
t
h(WR–DB)  
t
(tcyc*3/2–40)ns.min  
(tcyc/2–25)ns.min  
(tcyc/2)ns.min  
t
h(BCLK–AD)  
4ns.min  
td(BCLK–AD)  
25ns.max  
ADi  
BHE  
t
h(BCLK–ALE)  
–4ns.min  
t
h(WR–AD)  
(tcyc/2)ns.min  
t
d(AD–WR)  
0ns.min  
ALE  
t
d(BCLK–ALE)  
25ns.max  
t
h(BCLK–WR)  
0ns.min  
t
d(BCLK–WR)  
25ns.max  
WR,WRL,  
WRH  
Measuring conditions :  
• VCC = 5V  
• Input timing voltage : Determined with VIL = 0.8V, VIH = 2.5V  
• Output timing voltage : Determined with VOL = 0.8V, VOH = 2.0V  
120  
Mitsubishi microcomputers  
M16C / 60 Group  
Electrical characteristics (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Table 1.66. Electrical characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25oC, f(XIN) = 7MHz  
with wait)  
Standard  
Min. Typ. Max.  
Symbol  
Parameter  
Measuring condition  
Unit  
P0  
P3  
P6  
P8  
0
0
0
6
to P0  
to P3  
to P6  
7
7
7
,P1  
,P4  
,P7  
0
0
0
to P1  
to P4  
to P7  
7
7
7
,P2  
,P5  
,P8  
0
0
0
to P2  
to P5  
to P8  
7
7
4
7
,
,
,
HIGH output  
voltage  
V
OH  
OH  
I
OH = –1mA  
2.5  
V
,P87,P9  
0
to P9  
7,P10  
0
to P10  
HIGHPOWER  
LOWPOWER  
I
OH = –0.1mA  
2.5  
2.5  
HIGH output  
voltage  
V
XOUT  
V
V
V
I
OH = –50µA  
P00  
P30  
P60  
P86  
to P0  
to P3  
to P6  
7
7
7
,P1  
,P4  
,P7  
0
0
0
to P1  
to P4  
to P7  
7
7
7
,P2  
,P5  
,P8  
0
0
0
to P2  
to P5  
to P8  
7
7
4
7
,
,
,
LOW output  
voltage  
V
OL  
OL  
I
OL = 1mA  
0.5  
,P87,P90 to P97,P100 to P10  
HIGHPOWER  
LOWPOWER  
IOL = 0.1mA  
0.5  
0.5  
LOW output  
voltage  
V
X
OUT  
I
OL = 50µA  
Hysteresis HOLD, RDY, TA0IN to TA4IN  
TB0IN to TB2IN, INT to INT  
, CLK  
,
0
2,  
V
T+-  
V
T-  
0.2  
0.8  
V
ADTRG, CTS  
CLK  
RESET  
0
, CTS  
1
0,  
1
V
T+-  
V
V
T-  
T-  
0.2  
0.2  
1.8  
0.8  
V
V
Hysteresis  
Hysteresis  
V
T+-  
X
IN  
P0  
P3  
P6  
P9  
0
0
0
0
to P0  
to P3  
to P6  
to P9  
7
7
7
7
,P1  
,P4  
,P7  
0
0
0
to P1  
to P4  
to P7  
7
7
7
,P2  
,P5  
,P8  
0
to P2  
to P5  
to P8  
7
7
7
,
,
,
HIGH input  
current  
0
0
I
IH  
V
I
= 3V  
= 0V  
4.0  
µA  
µA  
,P100 to P107,  
XIN, RESET, CNVss, BYTE  
P00  
P30  
P60  
P90  
to P0  
to P3  
to P6  
to P9  
7
7
7
7
,P1  
,P4  
,P7  
0
0
0
to P1  
to P4  
to P7  
7
7
7
,P2  
,P5  
,P8  
0
0
0
to P2  
to P5  
to P8  
7
7
7
,
,
,
LOW input  
current  
I
IL  
VI  
–4.0  
,P100 to P107,  
X
IN, RESET, CNVss, BYTE  
V
RAM  
RAM retention voltage  
When clock is stopped  
2.0  
V
f(XIN) = 7MHz  
Square wave,  
no division  
6.0  
1.6  
15.0  
mA  
f(XIN) = 7MHz  
Square wave,  
division by 8  
mA  
µA  
When reset  
in single-chip  
mode, the  
output-only  
pins are  
f(XCIN) = 32kHz  
When a WAIT  
instruction is  
executed.  
Oscillation capacity  
High (Note)  
Icc  
Power supply current  
2.8  
0.9  
open and  
other pins  
are VSS  
f(XCIN) = 32kHz  
When a WAIT  
instruction is  
executed.  
Oscillation capacity  
Low (Note)  
µA  
µA  
Ta=25 C when  
clock is stopped  
1.0  
Ta=85 C when  
clock is stopped  
20.0  
Note: With one timer operated using fc32.  
121  
Mitsubishi microcomputers  
M16C / 60 Group  
Electrical characteristics (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Table 1.67. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 3V, VSS = AVSS =  
0V at Ta = 25oC, f(XIN) = 7MHz unless otherwise specified)  
Standard  
Min. Typ. Max  
10  
Symbol  
Parameter  
Measuring condition  
Unit  
Bits  
Resolution  
V
REF = VCC  
Sample & hold function not  
available (8 bit)  
V
REF = VCC = 3V,  
AD = f(XIN)/2  
Absolute  
accuracy  
± 2  
LSB  
10  
40  
kΩ  
R
LADDER  
Ladder resistance  
Conversion time(8bit)  
Reference voltage  
Analog input voltage  
V
REF = VCC  
14.0  
t
CONV  
µs  
V
V
REF  
IA  
2.7  
0
VCC  
V
REF  
V
V
Table 1.68. D-A conversion characteristics (referenced to VCC = 3V, VSS = AVSS = 0V, VREF = 3V  
at Ta = 25oC, f(XIN) = 7MHz unless otherwise specified)  
Standard  
Min. Typ. Max  
Symbol  
Parameter  
Measuring condition  
Unit  
Bits  
%
µs  
Resolution  
Absolute accuracy  
Setup time  
8
1.0  
3
tsu  
R
O
kΩ  
Output resistance  
4
10  
20  
(Note)  
1.0  
I
VREF  
Reference power supply input current  
mA  
Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to  
“0016”.  
The A-D converter's ladder resistance is not included.  
122  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25oC unless otherwise specified)  
Table 1.69. External clock input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
143  
60  
Max.  
ns  
ns  
ns  
ns  
ns  
t
c
External clock input cycle time  
t
w(H  
)
External clock input HIGH pulse width  
External clock input LOW pulse width  
External clock rise time  
t
w(L)  
60  
t
r
18  
18  
t
f
External clock fall time  
Table 1.70. Memory expansion and microprocessor modes  
Standard  
Symbol  
Parameter  
Unit  
Min.  
Max.  
(Note)  
t
ac1(RD-DB)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data input access time (no wait)  
t
ac2(RD-DB)  
(Note)  
(Note)  
Data input access time (with wait)  
Data input access time (when accessing multiplex bus area)  
Data input setup time  
t
ac3(RD-DB)  
t
su(DB-RD)  
80  
60  
80  
0
t
su(RDY-BCLK )  
RDY input setup time  
t
su(HOLD-BCLK )  
HOLD input setup time  
Data input hold time  
t
h(RD-DB)  
t
h(BCLK -RDY)  
0
RDY input hold time  
HOLD input hold time  
HLDA output delay time  
t
h(BCLK-HOLD )  
0
t
d(BCLK-HLDA)  
100  
Note: Calculated according to the BCLK frequency as follows:  
109  
[ns]  
[ns]  
[ns]  
– 90  
– 90  
– 90  
tac1(RD – DB) =  
f(BCLK) X 2  
3 X 109  
tac2(RD – DB) =  
f(BCLK) X 2  
3 X 109  
tac3(RD – DB) =  
f(BCLK) X 2  
123  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25oC unless otherwise specified)  
Table 1.71. Timer A input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
60  
Max.  
t
c(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
60  
Table 1.72. Timer A input (gating input in timer mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
600  
300  
300  
Max.  
t
c(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
Table 1.73. Timer A input (external trigger input in one-shot timer mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
300  
150  
150  
Max.  
t
c(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
t
w(TAH)  
w(TAL)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
Table 1.74. Timer A input (external trigger input in pulse width modulation mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
150  
Max.  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
ns  
ns  
t
w(TAL)  
Table 1.75. Timer A input (up/down input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
3000  
1500  
1500  
600  
Max.  
t
c(UP)  
TAiOUT input cycle time  
ns  
ns  
ns  
ns  
ns  
t
w(UPH)  
w(UPL)  
su(UP-TIN  
h(TIN-UP)  
TAiOUT input HIGH pulse width  
TAiOUT input LOW pulse width  
TAiOUT input setup time  
t
t
)
t
TAiOUT input hold time  
600  
124  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25oC unless otherwise specified)  
Table 1.76. Timer B input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
60  
Max.  
t
c(TB)  
TBiIN input cycle time (counted on one edge)  
ns  
ns  
ns  
ns  
ns  
ns  
t
w(TBH)  
w(TBL)  
c(TB)  
w(TBH)  
w(TBL)  
TBiIN input HIGH pulse width (counted on one edge)  
TBiIN input LOW pulse width (counted on one edge)  
TBiIN input cycle time (counted on both edges)  
TBiIN input HIGH pulse width (counted on both edges)  
TBiIN input LOW pulse width (counted on both edges)  
t
60  
t
300  
160  
160  
t
t
Table 1.77. Timer B input (pulse period measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
600  
300  
300  
Max.  
t
c(TB)  
TBiIN input cycle time  
ns  
ns  
ns  
t
w(TBH)  
w(TBL)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
t
Table 1.78. Timer B input (pulse width measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
600  
300  
300  
Max.  
t
c(TB)  
TBiIN input cycle time  
ns  
ns  
ns  
t
w(TBH)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
t
w(TBL)  
Table 1.79. A-D trigger input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
1500  
200  
Max.  
t
c(AD)  
ADTRG input cycle time (trigger able minimum)  
ADTRG input LOW pulse width  
ns  
ns  
t
w(ADL)  
Table 1.80. Serial I/O  
Standard  
Symbol  
Parameter  
Unit  
Min.  
300  
150  
150  
Max.  
t
c(CK)  
w(CKH)  
w(CKL)  
CLKi input cycle time  
CLKi input HIGH pulse width  
CLKi input LOW pulse width  
TxDi output delay time  
TxDi hold time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
d(C-Q)  
h(C-Q)  
160  
t
0
50  
90  
t
su(D-C)  
RxDi input setup time  
RxDi input hold time  
t
h(C-D)  
_______  
Table 1.81. External interrupt INTi inputs  
Standard  
Symbol  
Parameter  
Unit  
Min.  
380  
380  
Max.  
t
w(INH)  
INTi input HIGH pulse width  
INTi input LOW pulse width  
ns  
ns  
t
w(INL)  
125  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25oC, CM15 = “1” unless  
otherwise specified)  
Table 1.82. Memory expansion and microprocessor modes (with no wait)  
Standard  
Measuring condition  
Symbol  
Parameter  
Unit  
Min.  
Max.  
60  
t
t
d(BCLK-AD)  
h(BCLK-AD)  
Address output delay time  
ns  
ns  
Address output hold time (BCLK standard)  
4
0
0
t
h(RD-AD)  
Address output hold time (RD standard)  
Address output hold time (WR standard)  
Chip select output delay time  
ns  
ns  
ns  
ns  
t
t
h(WR-AD)  
d(BCLK-CS)  
h(BCLK-CS)  
60  
60  
60  
t
Chip select output hold time (BCLK standard)  
4
–4  
0
t
d(BCLK-ALE)  
ALE signal output delay time  
ALE signal output hold time  
RD signal output delay time  
RD signal output hold time  
ns  
ns  
ns  
ns  
Figure 1.90  
t
h(BCLK-ALE)  
t
d(BCLK-RD)  
h(BCLK-RD)  
t
t
d(BCLK-WR)  
WR signal output delay time  
60  
80  
ns  
ns  
ns  
ns  
t
h(BCLK-WR)  
WR signal output hold time  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
0
t
d(BCLK-DB)  
h(BCLK-DB)  
t
4
(Note 1)  
0
t
t
d(DB-WR)  
h(WR-DB)  
Data output delay time (WR standard)  
ns  
ns  
Data output hold time (WR standard) (Note 2)  
Note 1: Calculated according to the BCLK frequency as follows:  
109  
– 80  
td(DB – WR) =  
[ns]  
f(BCLK) X 2  
Note 2: This is standard value shows the timing when the output is off,  
and doesn't show hold time of data bus.  
Hold time of data bus is different by capacitor volume and pull-up  
(pull-down) resistance value.  
Hold time of data bus is expressed in  
R
C
DBi  
t = –CR X ln (1 – VOL / VCC  
by a circuit of the right figure.  
)
For example, when VOL = 0.2VCC, C = 30pF, R = 1kW, hold time  
of output “L” level is  
t = – 30pF X 1kW X ln (1 – 0.2VCC / VCC  
= 6.7ns.  
)
126  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25oC, CM15 = “1” unless  
otherwise specified)  
Table 1.83. Memory expansion and microprocessor modes  
(when accessing external memory area with wait)  
Standard  
Measuring condition  
Symbol  
Parameter  
Unit  
Min.  
Max.  
60  
t
t
d(BCLK-AD)  
h(BCLK-AD)  
Address output delay time  
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
ns  
ns  
ns  
4
0
0
t
h(RD-AD)  
t
t
h(WR-AD)  
Address output hold time (WR standard)  
Chip select output delay time  
ns  
ns  
ns  
d(BCLK-CS)  
60  
t
h(BCLK-CS)  
Chip select output hold time (BCLK standard)  
4
– 4  
0
t
t
d(BCLK-ALE)  
h(BCLK-ALE)  
ALE signal output delay time  
ALE signal output hold time  
60  
60  
60  
ns  
ns  
Figure 1.90  
t
d(BCLK-RD)  
h(BCLK-RD)  
RD signal output delay time  
RD signal output hold time  
WR signal output delay time  
ns  
ns  
ns  
t
t
d(BCLK-WR)  
h(BCLK-WR)  
t
WR signal output hold time  
0
ns  
ns  
ns  
t
t
d(BCLK-DB)  
h(BCLK-DB)  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
80  
4
(Note 1)  
0
t
d(DB-WR)  
Data output delay time (WR standard)  
ns  
ns  
t
h(WR-DB)  
Data output hold time (WR standard) (Note 2)  
Note 1: Calculated according to the BCLK frequency as follows:  
109  
td(DB – WR) =  
[ns]  
– 80  
f(BCLK) X 2  
Note 2: This is standard value shows the timing when the output is off,  
and doesn't show hold time of data bus.  
Hold time of data bus is different by capacitor volume and pull-up  
(pull-down) resistance value.  
R
C
Hold time of data bus is expressed in  
t = –CR X ln (1 – VOL / VCC)  
by a circuit of the right figure.  
DBi  
For example, when VOL = 0.2VCC, C = 30pF, R = 1kW, hold time  
of output “L” level is  
t = – 30pF X 1kW X ln (1 – 0.2VCC / VCC)  
= 6.7ns.  
127  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25oC, CM15 = “1” unless  
otherwise specified)  
Table 1.84. Memory expansion and microprocessor modes  
(when accessing external memory area with wait, and select multiplexed bus)  
Standard  
Measuring condition  
Symbol  
Parameter  
Address output delay time  
Unit  
ns  
Min.  
Max.  
60  
t
d(BCLK-AD)  
t
t
h(BCLK-AD)  
h(RD-AD)  
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
4
ns  
ns  
(Note)  
t
h(WR-AD)  
Address output hold time (WR standard)  
Chip select output delay time  
(Note)  
ns  
ns  
t
t
t
d(BCLK-CS)  
60  
h(BCLK-CS)  
h(RD-CS)  
Chip select output hold time (BCLK standard)  
Chip select output hold time (RD standard)  
Chip select output hold time (WR standard)  
4
ns  
ns  
ns  
(Note)  
(Note)  
th(WR-CS)  
t
t
d(BCLK-RD)  
h(BCLK-RD)  
RD signal output delay time  
RD signal output hold time  
60  
60  
80  
ns  
ns  
0
0
t
t
d(BCLK-WR)  
h(BCLK-WR)  
WR signal output delay time  
WR signal output hold time  
ns  
ns  
Figure 1.90  
t
d(BCLK-DB)  
h(BCLK-DB)  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
Data output delay time (WR standard)  
ns  
ns  
ns  
t
4
td(DB-WR)  
(Note)  
t
h(WR-DB)  
Data output hold time (WR standard)  
ALE signal output delay time (BCLK standard)  
(Note)  
ns  
ns  
td(BCLK-ALE)  
60  
t
h(BCLK-ALE)  
ALE signal output hold time (BCLK standard)  
ALE signal output delay time (Address standard)  
– 4  
(Note)  
ns  
ns  
td(AD-ALE)  
t
h(ALE-AD)  
ALE signal output hold time(Address standard)  
Post-address RD signal output delay time  
Post-address WR signal output delay time  
50  
0
0
ns  
ns  
ns  
t
t
d(AD-RD)  
d(AD-WR)  
tdZ(RD-AD)  
Address output floating start time  
8
ns  
Note: Calculated according to the BCLK frequency as follows:  
10 9  
th(RD – AD) =  
[ns]  
f(BCLK) X 2  
10 9  
th(WR – AD) =  
th(RD – CS) =  
th(WR – CS) =  
[ns]  
[ns]  
[ns]  
f(BCLK) X 2  
10 9  
f(BCLK) X 2  
10 9  
f(BCLK) X 2  
10 9 X 3  
– 80  
– 60  
td(DB – WR) =  
th(WR – DB) =  
[ns]  
[ns]  
f(BCLK) X 2  
10 9  
f(BCLK) X 2  
10 9  
td(AD – ALE) =  
[ns]  
f(BCLK) X 2  
128  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
tc(TA)  
tw(TAH)  
TAiIN input  
t
w(TAL)  
tc(UP)  
tw(UPH)  
TAiOUT input  
tw(UPL)  
TAiOUT input  
(Up/down input)  
During event counter mode  
TAiIN input  
t
su(UPTIN)  
t
h(TIN –UP)  
(When count on falling edge  
is selected)  
TAiIN input  
(When count on rising edge  
is selected)  
tc(TB)  
t
w(TBH)  
TBiIN input  
t
w(TBL)  
tc(AD)  
t
w(ADL)  
ADTRG input  
tc(CK)  
tw(CKH)  
CLKi  
tw(CKL)  
th(C Q)  
TxDi  
RxDi  
t
su(DC)  
td(CQ)  
th(C D)  
tw(INL)  
INTi input  
t
w(INH)  
129  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(Valid only with wait)  
BCLK  
RD  
RDY input  
t
su(RDY – BCLK)  
t
h(BCLK – RDY)  
(Valid with or without wait)  
BCLK  
th(BCLK – HOLD)  
t
su(HOLD – BCLK)  
HOLD input  
HLDA output  
td(BCLK – HLDA)  
t
d(BCLK – HLDA)  
P0, P1, P2,  
P3, P4,  
P50 to P52  
Hi – Z  
Note: The above pins are set to high-impedance regardless of the input level of the BYTE pin and bit  
(PM06) of processor mode register 0 selects the function of ports P4 to P4  
0
3.  
Measuring conditions :  
• VCC = 3V  
• Input timing voltage : Determined with VIL = 0.6V, VIH = 2.4V  
• Output timing voltage : Determined with VOL = 1.5V, VOH = 1.5V  
130  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(With no wait)  
Read timing  
BCLK  
t
h(BCLK–CS)  
4ns.min  
t
d(BCLK–CS)  
60ns.max  
CSi  
tcyc  
th(RD–CS)  
0ns.min  
t
d(BCLK–AD)  
60ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
h(RD–AD)  
0ns.min  
t
h(BCLK–ALE)  
–4ns.min  
t
d(BCLK–ALE)  
60ns.max  
ALE  
RD  
DB  
t
d(BCLK–RD)  
60ns.max  
t
h(BCLK–RD)  
0ns.min  
t
ac1(RD-DB)  
Hi–Z  
th(RD–DB)  
tSU(DB–RD)  
0ns.min  
80ns.min  
Write timing  
BCLK  
t
h(BCLK–CS)  
4ns.min  
t
d(BCLK–CS)  
60ns.max  
CSi  
t
h(WR–CS)  
0ns.min  
tcyc  
t
d(BCLK–AD)  
60ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
h(WR–AD)  
t
h(BCLK–ALE)  
–4ns.min  
t
d(BCLK–ALE)  
0ns.min  
60ns.max  
ALE  
t
h(BCLK–WR)  
0ns.min  
t
d(BCLK–WR)  
60ns.max  
WR,WRL,  
WRH  
t
d(BCLK–DB)  
t
h(BCLK–DB)  
80ns.max  
4ns.min  
DB  
Hi–Z  
t
h(WR–DB)  
0ns.min  
td(DB–WR)  
(tcyc/2–80)ns.min  
131  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Memory Expansion Mode and Microprocessor Mode  
(When accessing external memory area with wait)  
VCC = 3V  
Read timing  
BCLK  
t
h(BCLK–CS)  
t
d(BCLK–CS)  
4ns.min  
60ns.max  
CSi  
t
h(RD–CS)  
tcyc  
0ns.min  
t
h(BCLK–AD)  
t
d(BCLK–AD)  
4ns.min  
60ns.max  
ADi  
BHE  
t
h(RD–AD)  
t
h(BCLK–ALE)  
td(BCLK–ALE)  
60ns.max  
–4ns.min  
0ns.min  
ALE  
RD  
t
h(BCLK–RD)  
0ns.min  
t
d(BCLK–RD)  
60ns.max  
tac2(RD–DB)  
DB  
Hi–Z  
t
h(RD–DB)  
0ns.min  
tSU(DB–RD)  
80ns.min  
Write timing  
BCLK  
t
d(BCLK–CS)  
t
h(BCLK–CS)  
4ns.min  
60ns.max  
CSi  
t
h(WR–CS)  
0ns.min  
tcyc  
t
d(BCLK–AD)  
t
h(BCLK–AD)  
4ns.min  
60ns.max  
ADi  
BHE  
t
h(WR–AD)  
t
h(BCLK–ALE)  
td(BCLK–ALE) 60ns.max  
0ns.min  
–4ns.min  
ALE  
t
h(BCLK–WR)  
0ns.min  
t
d(BCLK–WR)  
60ns.max  
WR,WRL,  
WRH  
t
h(BCLK–DB)  
4ns.min  
t
d(BCLK–DB)  
80ns.max  
DBi  
t
h(WR–DB)  
t
d(DB–WR)  
0ns.min  
(tcyc–80)ns.min  
Measuring conditions :  
• VCC = 3V  
• Input timing voltage : Determined with VOL = 0.48V, VOH = 1.5V  
• Output timing voltage : Determined with VIL = 1.5V, VIH = 1.5V  
132  
Mitsubishi microcomputers  
M16C / 60 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(When accessing external memory area with wait, and select multiplexed bus)  
Read timing  
BCLK  
t
h(BCLK–CS)  
4ns.min  
t
d(BCLK–CS)  
60ns.max  
tcyc  
th(RD–CS)  
(tcyc/2)ns.min  
CSi  
t
d(AD–ALE)  
(tcyc/2–60)ns.min  
Address  
t
dz(RD–AD)  
8ns.max  
ADi  
/DBi  
Address  
Data input  
t
h(RD–DB)  
tac3(RD–DB)  
t
SU(DB–RD)  
80ns.min  
t
h(ALE–AD)  
50ns.min  
0ns.min  
t
d(AD–RD)  
0ns.min  
t
d(BCLK–AD)  
60ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
d(BCLK–ALE)  
t
h(RD–AD)  
(tcyc/2)ns.min  
t
h(BCLK–ALE)  
–4ns.min  
ALE  
RD  
60ns.max  
t
h(BCLK–RD)  
t
d(BCLK–RD)  
0ns.min  
60ns.max  
Write timing  
BCLK  
t
h(BCLK–CS)  
4ns.min  
tcyc  
t
h(WR–CS)  
t
d(BCLK-CS)  
60ns.max  
(tcyc/2)ns.min  
CSi  
th(BCLK–DB)  
t
d(BCLK-DB)  
80ns.max  
4ns.min  
ADi  
/DBi  
Address  
d(AD–ALE)  
Data input  
Address  
t
d(DB–WR)  
t
t
h(WR–DB)  
(tcyc/2)ns.min  
(tcyc/2–60)ns.min  
(tcyc*3/2–80)ns.min  
t
h(BCLK–AD)  
t
d(BCLK–AD)  
60ns.max  
4ns.min  
ADi  
BHE  
t
h(BCLK–ALE)  
td(BCLK–ALE)  
t
h(WR–AD)  
t
d(AD–WR)  
0ns.min  
(tcyc/2)ns.min  
–4ns.min  
ALE  
60ns.max  
t
h(BCLK–WR)  
0ns.min  
t
d(BCLK–WR)  
60ns.max  
WR,WRL,  
WRH  
Measuring conditions :  
• VCC = 3V  
• Input timing voltage : Determined with VOL = 0.48V, VOH = 1.5V  
• Output timing voltage : Determined with VIL = 1.5V, VIH = 1.5V  
133  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH00 39B <67A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30600M8-XXXFP/GP  
Date :  
MASK ROM CONFIRMATION FORM  
Section head Supervisor  
signature  
signature  
Note : Please complete all items marked  
Submitted by Supervisor  
.
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date :  
1. Check sheet  
Please specify the name of the product being ordered and the EPROM being supplied.  
We require 3 sets of EPROMs per pattern (please mark the box).  
Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the  
same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any  
discrepancy between the data on the EPROM sets and the ROM data written to the product.  
Please carefully check the data on the EPROMs being submitted to Mitsubishi.  
Microcomputer type No. :  
M30600M8-XXXFP  
Checksum code for total EPROM area :  
EPROM type :  
M30600M8-XXXGP  
(hex)  
27C101  
Address  
0000016  
Product : Area  
containing ASCII  
code for M30600M8 -  
0000F16  
0001016  
0FFFF16  
1000016  
ROM(64K)  
1FFFF16  
Address  
0000816  
0000916  
Address  
0000016  
0000116  
0000216  
(1) Write “FF16” to the lined area.  
(2) The area from 0000016 to 0000F16 is for storing  
data on the product type name.  
' M  
'
= 4D16  
'
'
2D16  
FF16  
'
3
' = 3316  
'
'
'
0
6
0
'
'
'
= 3016  
= 3616  
= 3016  
0000A16  
0000B16  
0000C16  
FF16  
FF16  
FF16  
The ASCII code for 'M30600M8-' is shown at right.  
The data in this table must be written to address  
0000316  
0000416  
0000516  
0000016 to 0000F16  
.
'
0
'
= 3016  
0000D16  
0000E16  
0000F16  
FF16  
FF16  
FF16  
Both address and data are shown in hex.  
'
'
M ' = 4D16  
8 ' = 3816  
0000616  
0000716  
134  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH00 39B <67A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30600M8-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the  
pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the  
assembler source program.  
EPROM type  
27C101  
Code entered in  
source program  
* = $00000  
.BYTE ' M30600M8-'  
Note:  
The ROM cannot be processed if the type No. written to the EPROM does not match the type No.  
in the check sheet.  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for  
submission to Mitsubishi.  
For the M30600M8-XXXFP, submit the 100P6S mark specification sheet. For the M30600M8-XXXGP,  
submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage of  
the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XIN) =  
MHZ  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XCIN) =  
kHZ  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
4. Special item (Indicate none if there is no specified item)  
135  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ-SH00-40B <67A1>  
ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30600E8-XXXFP/GP  
Date :  
ROM WRITING ORDER FORM  
Section head Supervisor  
signature  
signature  
Note : Please complete all items marked  
Submitted by Supervisor  
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date :  
1. Check sheet  
Please specify the name of the product being ordered and the EPROM being supplied.  
We require 3 sets of EPROMs per pattern (please mark the box).  
Mitsubishi will write to ROM using the data on the EPROMs supplied, providing the data is the  
same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any  
discrepancy between the data on the EPROM sets and the ROM data written to the product.  
Please carefully check the data on the EPROMs being submitted to Mitsubishi.  
Microcomputer type No. :  
M30600E8-XXXFP  
Checksum code for total EPROM area :  
EPROM type :  
M30600E8-XXXGP  
(hex)  
27C101  
Address  
0000016  
Product : Area  
containing ASCII  
code for M30600E8 -  
0000F16  
0001016  
0FFFF16  
1000016  
ROM(64K)  
1FFFF16  
Address  
0000816  
0000916  
Address  
0000016  
0000116  
0000216  
(1) Write "FF16" to the lined area.  
(2) The area from 0000016 to 0000F16 is for storing  
data on the product type name.  
' M '  
' 3 '  
= 4D16  
= 3316  
' 2D16  
FF16  
'
' 0 '  
' 6 '  
' 0 '  
= 3016  
= 3616  
= 3016  
0000A16  
0000B16  
0000C16  
FF16  
FF16  
FF16  
The ASCII code for 'M30600E8-' is shown at right.  
The data in this table must be written to address  
0000316  
0000416  
0000516  
0000016 to 0000F16  
.
' 0 '  
' E '  
' 8 '  
= 3016  
= 4516  
= 3816  
0000D16  
0000E16  
0000F16  
FF16  
FF16  
FF16  
Both address and data are shown in hex.  
0000616  
0000716  
136  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ-SH00-40B <67A1>  
ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30600E8-XXXFP/GP  
ROM WRITING ORDER FORM  
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the  
pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the  
assembler source program.  
EPROM type  
27C101  
Code entered in  
source program  
* = $00000  
.BYTE 'M30600E8-'  
Note:  
The ROM cannot be processed if the type No. written to the EPROM does not match the type No.  
in the check sheet.  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for  
submission to Mitsubishi.  
For the M30600E8-XXXFP, submit the 100P6S mark specification sheet. For the M30600E8-XXXGP,  
submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage of  
the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XIN) =  
MHz  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you us?  
f(XCIN) =  
kHz  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
4. Special item (Indicate none if there is no specified item)  
137  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
138  
Mitsubishi microcomputers  
M16C / 60 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
139  

相关型号:

M30600E8FP

Microcontroller, 16-Bit, OTPROM, M16C CPU, 10MHz, CMOS, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, QFP-100
MITSUBISHI

M30600E8GP

Microcontroller, 16-Bit, OTPROM, M16C CPU, 10MHz, CMOS, PQFP100, 14 X 14 MM, 0.50 MM PITCH, PLASTIC, LQFP-100
MITSUBISHI

M30600M8-XXXFP

Microcontroller, 16-Bit, MROM, M16C CPU, 10MHz, CMOS, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, QFP-100
MITSUBISHI

M30600M8-XXXGP

Microcontroller, 16-Bit, MROM, M16C CPU, 10MHz, CMOS, PQFP100, 14 X 14 MM, 0.50 MM PITCH, PLASTIC, LQFP-100
MITSUBISHI

M30600SGP

Microcontroller, 16-Bit, OTPROM, M16C CPU, 10MHz, CMOS, PQFP100, 14 X 14 MM, 0.50 MM PITCH, PLASTIC, LQFP-100
MITSUBISHI

M3060C

Dual Common-Cathode Schottky Rectifier
VISHAY

M3060C-E3/4W

Dual Common-Cathode Schottky Rectifier
VISHAY

M30610EC

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30610EC-XXXGP

暂无描述
MITSUBISHI

M30610ECA-XXXFP

Microcontroller, 16-Bit, UVPROM, M16C CPU, 10MHz, CMOS, PQFP100
MITSUBISHI

M30610ECA-XXXGP

Microcontroller, 16-Bit, UVPROM, M16C CPU, 10MHz, CMOS, PQFP100
MITSUBISHI

M30610ECFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI