M37510E1156FP [MITSUBISHI]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
M37510E1156FP
型号: M37510E1156FP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

计算机
文件: 总43页 (文件大小:611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
2 Clock generating circuit  
DESCRIPTION  
(Connect to external ceramic resonator or quartz-crystal.)  
Power source voltage  
The 7510 group is the 8-bit microcomputer based on the 740 fam-  
ily core technology.  
In high-speed mode .................................................. 4.0 to 5.5 V  
In middle-speed mode............................................... 2.5 to 5.5 V  
In low-speed mode .................................................... 2.5 to 5.5 V  
Power dissipation  
This microcomputer is equipped with added functions such as a  
dot matrix type LCD controller/driver built in a contrast controller  
and UART.  
In high-speed mode ..........................................................32 mW  
(at 8.0 MHz oscillation frequency)  
FEATURES  
Basic machine-language instructions ...................................... 71  
The minimum instruction execution time ........................... 0.5 µs  
(at 8.0 MHz oscillation frequency)  
In low-speed mode ............................................................ 60 µW  
(at 32 kHz oscillation frequency and 3.0 V power source voltage)  
In wait mode ........................................................................ 9 µW  
(at 32 kHz oscillation frequency and 3.0 V power source voltage)  
Operating temperature range.................................. –20 to +85°C  
RAM for LCD display .................................................... 160 bytes  
Programmable input/output ports ............................................ 41  
Interrupts ................................................. 15 sources, 15 vectors  
(includes key-on wake up)  
APPLICATION  
Timers ........................................................... 8-bit 3, 16-bit 2  
Serial I/O ...................... 8-bit 2 (UART or clock-synchronized)  
LCD controller/driver Bias ........................................ 1/4, 1/5 bias  
Duty ratio ......................1/8, 1/11, 1/16 duty  
Cellular radio telephones, business telephones, facsimiles, and  
other portable equipment that need a large capacity of LCD dis-  
play.  
Common output ...................................... 16  
Segment output ...................................... 80  
Built-in an LCD contrast controller  
(capable of 32-step contrast adjustment)  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW)  
133  
88  
NC  
NC  
134  
87  
NC  
SEG65  
NC  
NC  
135  
86  
136  
85  
SEG64  
NC  
137  
84  
SEG63  
SEG62  
NC  
NC  
138  
83  
139  
82  
SEG61  
SEG60  
P11  
P12  
140  
81  
141  
80  
SEG59  
P13  
142  
79  
SEG58  
SEG57  
P14  
P15  
143  
78  
144  
77  
SEG56  
SEG55  
P16  
P17  
145  
76  
146  
75  
SEG54  
SEG53  
SEG52  
P20  
P21  
P22  
147  
74  
148  
73  
149  
72  
SEG51  
SEG50  
P23  
P24  
150  
71  
151  
70  
SEG49  
SEG48  
P25  
P26  
152  
69  
153  
68  
SEG47  
P27  
154  
67  
SEG46  
SEG45  
VSS  
XOUT  
M37510M6-XXXFP  
155  
66  
156  
65  
SEG44  
SEG43  
XIN  
P50/XCOUT  
157  
64  
158  
63  
SEG42  
P51/XCIN  
159  
62  
SEG41  
SEG40  
RESET  
P40/INT0  
160  
61  
161  
60  
SEG39  
SEG38  
P41/INT1  
P42/CNTR0  
162  
59  
163  
58  
SEG37  
SEG36  
SEG35  
P43/CNTR1  
P44/RXD1  
P45/TXD1  
164  
57  
165  
56  
166  
55  
SEG34  
SEG33  
P46/SCLK1  
P47/SRDY1  
167  
54  
168  
53  
SEG32  
SEG31  
NC  
NC  
169  
52  
170  
51  
SEG30  
NC  
171  
50  
SEG29  
SEG28  
NC  
NC  
172  
49  
173  
48  
SEG27  
SEG26  
NC  
VSS  
174  
47  
175  
46  
NC  
NC  
176  
45  
NC  
NC  
Package type : 176P6D-A  
176-pin plastic-molded QFP  
NC : No connect  
2
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Key-on wake up  
3
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Pin  
Name  
Function  
Function except a port function  
VCC, VSS  
RESET  
XIN  
Power source  
Reset input  
Apply voltage of 4.0 to 5.5 V to VCC, and 0 V to VSS (in high-speed mode).  
Reset input pin for active “L”.  
Input and output pins for the main clock generating circuit. Connect a ceramic resonator or  
quartz-crystal oscillator between the XIN and XOUT pins to set the oscillating frequency. If an ex-  
ternal clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.  
Clock input  
XOUT  
Clock output  
LCD voltage source  
VLCD  
This pin is used as voltage supply input for LCD driver. Input VLCD VCC voltage.  
When the LCD is operated at 1/5 bias, leave these pins open. When the LCD is operated at 1/4  
bias, connect these pins externally.  
VL2, VL3  
LCD bias control pin  
Common output  
COM0–  
COM15  
LCD common output pins.  
LCD segment output pins.  
SEG0–  
SEG79  
Segment output  
An 8-bit I/O port. The output structure of this port is CMOS 3-state, and the input levels are  
CMOS compatible. The port direction register allows each pin to be individually programmed as  
either input or output.  
P00–P07  
P10–P17  
P20–P27  
I/O port P0  
I/O port P1  
I/O port P2  
Key input (Key-on wake-up) interrupt input pins.  
P30/RXD2,  
P31/TXD2,  
P32/ SCLK2,  
P33/SRDY2  
Serial I/O2 function pins  
I/O port P3  
P34–P37  
P40/INT0  
P41/INT1  
Input port P4  
A 1-bit CMOS level input port.  
External interrupt input pins  
A 7-bit I/O port with the same function as port  
P0.  
Timer X, Timer Y function pins  
External interrupt input pins  
P42/CNTR0,  
P43/CNTR1  
I/O port P4  
The port direction register allows each pin to  
be individually programmed as either input or  
output.  
P44/RXD1,  
P45/TXD1,  
P46/ SCLK1,  
P47/SRDY1  
Serial I/O1 function pins  
A 2-bit I/O port with the same function as port  
P0.  
I/O pins for the internal sub clock generating  
circuit. Connect an oscillator.  
P50/XCOUT,  
P51/XCIN  
I/O port P5  
The port direction register allows each pin to  
be individually programmed as either input or  
output.  
4
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PART NUMBERING  
Product  
M37510  
M
6
XXX  
FP  
Package type  
FP: 176P6D-A package  
FS: 160D0 package  
ROM number  
Omitted in some types.  
ROM/PROM size  
1 : 4096 bytes  
2 : 8192 bytes  
3 : 12288 bytes  
4 : 16384 bytes  
5 : 20480 bytes  
6 : 24576 bytes  
7 : 28672 bytes  
8 : 32768 bytes  
RAM size  
512 bytes  
The first 128 bytes and the last 2 bytes of ROM  
are reserved areas; they cannot be used.  
Memory type  
M : Mask ROM version  
E : EPROM or One Time PROM version  
Currently supported products are listed below.  
As of May 1996  
Product name  
M37510M6-XXXFP  
M37510E6-XXXFP  
M37510E6FP  
(P) ROM size (bytes)  
24K  
RAM size (bytes)  
512  
Package  
Remarks  
Mask ROM version  
176P6D-A One Time PROM version  
One Time PROM version (blank)  
M37510E6FS  
EPROM version  
160D0  
5
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
CPU MODE REGISTER  
CENTRAL PROCESSING UNIT (CPU)  
The 7510 group uses the standard 740 family instruction set. Re-  
fer to the table of 740 family addressing modes and machine  
instructions or the SERIES 740 <Software> User’s Manual for de-  
tails on the instruction set.  
The CPU mode register is allocated at address 003B16.  
The CPU mode register contains the stack page selection bit and  
the internal system clock selection bit.  
Machine-resident 740 family instructions are as follows:  
The FST and SLW instruction are not available for use.  
The STP, WIT, MUL, and DIV instruction can be used.  
b7  
b0  
CPU mode register (CPUM : address 003B16)  
Processor mode bits  
b1 b0  
0
0
1
1
0 : Single-chip mode  
1 : Do not use  
0 : Do not use  
1 : Do not use  
Stack page selection bit  
0 : RAM in the zero page is used as stack area  
1 : RAM in page 1 is used as stack area  
XCOUT drivability selection bit  
0 : Low drive  
1 : High drive  
Port XC selection bit  
0 : I/O port  
1 : XCIN, XCOUT  
Main clock (XIN-XOUT) stop bit  
0 : Operating  
1 : Stopped  
Main clock division ratio selection bit  
0 : XIN/2 (high-speed mode)  
1 : XIN/8 (middle-speed mode)  
Internal system clock selection bit  
0 : XIN-XOUT selected (middle/high-speed mode)  
1 : XCIN-XCOUT selected (low-speed mode)  
Fig. 1 Structure of CPU mode register  
6
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MEMORY  
Interrupt Vector Area  
Special Function Register (SFR) Area  
The Special Function Register area contains registers which con-  
trol functions such as I/O ports and timers, and is located in the  
zero page area.  
The interrupt vector area contains reset and interrupt vectors.  
Zero Page  
This dedicated zero page addressing mode enables access to this  
area with only 2 bytes.  
RAM  
RAM is used for data storage as well for stack area.  
Special Page  
This dedicated special page addressing mode enables access to  
ROM  
this area with only 2 bytes.  
The first 128 bytes and the last two bytes of ROM are reserved for  
device testing and the rest is user area for storing programs.  
000016  
SFR area  
004016  
LCD display RAM area✽  
Zero page  
00DF16  
RAM area  
Type name  
Address XXXX16  
023F16  
010016  
M37510M6-XXXFP  
RAM  
034016  
LCD display RAM area✽  
03DF16  
XXXX16  
Not used  
YYYY16  
Reserved ROM area  
ROM area  
(common ROM area, 128 bytes)  
Type name  
Address YYYY16  
A00016  
Address ZZZZ16  
A08016  
ZZZZ16  
M37510M6-XXXFP  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
Reserved ROM area  
FFFE16  
FFFF16  
LCD display RAM area can reside at either zero page (addresses 004016 to 00DF16) or third page (addresses 034016 to 03DF16) by software.  
The third page is selected after reset.  
Fig. 2 Memory map diagram  
7
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
000016 Port P0 (P0)  
002016 Timer X (low) (TXL)  
000116 Port P0 direction register (P0D)  
000216 Port P1 (P1)  
000316 Port P1 direction register (P1D)  
000416 Port P2 (P2)  
002116 Timer X (high) (TXH)  
002216 Timer Y (low) (TYL)  
002316 Timer Y (high) (TYH)  
002416 Timer 1 (T1)  
000516 Port P2 direction register (P2D)  
000616 Port P3 (P3)  
002516 Timer 2 (T2)  
002616 Timer 3 (T3)  
000716 Port P3 direction register (P3D)  
000816 Port P4 (P4)  
000916 Port P4 direction register (P4D)  
000A16 Port P5 (P5)  
002716 Timer X mode register (TXM)  
002816 Timer Y mode register (TYM)  
002916 Timer 123 mode register (T123M)  
002A16  
000B16 Port P5 direction register (P5D)  
000C16 Port P0 pull-up control register (PULLP0)  
000D16 Port P1 pull-up control register (PULLP1)  
000E16 Port P2 pull-up control register (PULLP2)  
000F16 Port P3 pull-up control register (PULLP3)  
001016 Port P4 pull-up control register (PULLP4)  
001116 Port P5 pull-up control register (PULLP5)  
001216  
002B16  
002C16  
002D16  
002E16  
002F16  
003016 Transmit/receive buffer register 2 (TB2/RB2)  
003116 Serial I/O2 status register (SIO2STS)  
003216 Serial I/O2 control register (SIO2CON)  
003316 UART2 control register (UART2CON)  
003416 Baud rate generator 2 (BRG2)  
003516  
001316  
001416  
001516  
001616  
003616  
001716  
003716 LCD contrast control register (LC)  
003816  
001816 Transmit/receive buffer register 1 (TB1/RB1)  
001916 Serial I/O1 status register (SIO1STS)  
001A16 Serial I/O1 control register (SIO1CON)  
001B16 UART1 control register (UART1CON)  
001C16 Baud rate generator 1 (BRG1)  
001D16  
003916 LCD mode register (LM)  
003A16 Interrupt edge selection register (INTEDGE)  
003B16 CPU mode register (CPUM)  
003C16 Interrupt request register 1 (IREQ1)  
003D16 Interrupt request register 2 (IREQ2)  
003E16 Interrupt control register 1 (ICON1)  
003F16 Interrupt control register 2 (ICON2)  
001E16  
001F16  
Fig. 3 Memory map of special function register (SFR)  
8
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O PORTS  
When “0” is written to the pull-up control register, the pull up on the  
pin is disabled. When “1” is written to the pull-up control register,  
the pull-up on the pin is enabled.  
Direction Registers  
The 7510 group has 41 programmable I/O pins arranged in six I/O  
ports (ports P0 to P5). The I/O ports have direction registers which  
determine the input/output direction of each individual pin. Each  
bit in a direction register corresponds to one pin, each pin can be  
set to be input or output.  
After reset, all the pull-up control registers are initialized to “0016”,  
disabling all the internal pull-ups.  
When “0” is written to the bit corresponding to a pin, that pin be-  
comes an input pin. When “1” is written to that bit, that pin  
becomes an output pin.  
b7  
b0  
Port Pi pull-up control register  
(PULLPi : addresses 000C16 to 001116)  
If data is read from a pin which is set for output, the value of the  
port output latch is read, not the value of the pin itself. Pins set to  
input are floating and can read the value of the pin itself. If a pin  
set to input is written to, only the port output latch is written to and  
the pin remains floating.  
Pi0 pull-up  
Pi1 pull-up  
Pi2 pull-up  
Pi3 pull-up  
Pi4 pull-up  
Pi5 pull-up  
Pi6 pull-up  
Pi7 pull-up  
0 : Disabled  
1 : Enabled  
Port Pull-up Control Registers  
The 7510 group is equipped with internal pull-ups that can be en-  
abled by software. Each I/O port of ports P0–P5 has an port Pi (i=  
0 to 5) pull-up control register (addresses 000C16 to 001116). Each  
bit of the pull-up control register controls a corresponding bit of the  
port. The value written to each individual bit determines whether  
the pull-up of the corresponding pin is either enabled or disabled.  
i = 0 to 5  
Fig. 4 Structure of port Pi pull-up control register  
Pin  
Name  
Input/Output  
Input/output,  
individual bits  
Input/output,  
individual bits  
Input/output,  
individual bits  
I/O Format  
Non-Port Function  
Related SFRs  
Ref. No.  
(1)  
CMOS compatible input level  
CMOS 3-state output  
CMOS compatible input level  
CMOS 3-state output  
CMOS compatible input level  
CMOS 3-state output  
P00–P07  
Port P0  
P10–P17  
P20–P27  
Port P1  
Port P2  
(1)  
(2)  
Key-on wake up  
interrupt input  
Interrupt control  
register 2  
(3)  
(4)  
(5)  
(6)  
(1)  
(7)  
(8)  
(9)  
(8)  
(3)  
(4)  
(5)  
(6)  
Serial I/O2 control  
register  
P30/RXD2,  
P31/TXD2,  
P32/ SCLK2,  
P33/SRDY2  
P34–P37  
CMOS compatible  
input level  
Serial I/O2  
function I/O  
Input/output,  
individual bits  
Serial I/O2 status register  
UART control register 2  
Port P3  
CMOS 3-state output  
P40/INT0  
P41/INT1  
P42/CNTR0,  
P43/CNTR1  
P44/RXD1,  
P45/TXD1,  
P46/ SCLK1,  
P47/SRDY1  
P50/XCOUT,  
P51/XCIN  
COM0–  
Input  
CMOS compatible input level  
External interrupt  
input  
Timer X function I/O  
Timer Y function I/O  
Timer X mode register  
Timer Y mode register  
CMOS compatible  
input level  
Input/output,  
individual bits  
Port P4  
Serial I/O1 control  
register  
CMOS 3-state output  
Serial I/O1  
function I/O  
Serial I/O1 status register  
UART1 control register  
CMOS compatible input level  
Input/output,  
individual bits  
Sub-clock generat-  
ing circuit I/O  
Port P5  
Common  
Segment  
(1)  
CPU mode register  
LCD mode register  
CMOS 3-state output  
Output  
Output  
LCD common output  
LCD segment output  
COM15  
SEG0–  
SEG79  
Notes 1: For details of how to use double-function ports as function I/O ports, refer to the applicable sections.  
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.  
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.  
9
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Port P0, P1, P34 to P37, P5  
(2) Port P2  
Pull-up control  
Pull-up control  
Direction  
register  
Direction  
register  
Data bus  
Data bus  
Port latch  
Port latch  
Key-on wake up input  
(4) Port P31, P45  
(3) Port P30, P44  
Pull-up control  
Serial I/O enable bit  
Receive enable bit  
Pull-up control  
P-channel output disable bit  
Serial I/O enable bit  
Transmit enable bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Port latch  
Data bus  
Serial I/O input  
Serial I/O output  
(6) Port P33, P47  
(5) Port P32, P46  
Pull-up control  
Serial I/O synchronous  
clock selection bit  
Pull-up control  
Serial I/O enable bit  
Serial I/O  
mode selection bit  
Serial I/O enable bit  
RDY output enable bit  
Serial I/O mode selection bit  
Serial I/O enable bit  
S
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Serial clock output  
Serial ready output  
External clock input  
Fig. 5 Port block diagram (1)  
10  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(8) Port P41, P43  
(7) Port P40  
Pull-up control  
Direction  
register  
Data bus  
Port latch  
Data bus  
INT0 interrupt input  
INT1 interrupt input  
CNTR1 interrupt input  
(9) Port P42  
Pull-up control  
Direction  
register  
Data bus  
Port latch  
Pulse output mode  
Timer output  
CNTR0 interrupt input  
Fig. 6 Port block diagram (2)  
11  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Interrupt Operation  
A total of 15 sources can generate interrupts: 5 external, 9 inter-  
When an interrupt is received, the program counter and processor  
status register are automatically pushed onto the stack. The inter-  
rupt disable flag is set to inhibit other interrupts from interfering.  
The corresponding interrupt request bit is cleared and the interrupt  
jump destination address is read from the vector table into the pro-  
gram counter.  
nal, and 1 software.  
Interrupt Control  
Each interrupt is controlled by an interrupt request bit, an interrupt  
enable bit, and the interrupt disable flag except for the software in-  
terrupt set by the BRK instruction. An interrupt is generated if the  
corresponding interrupt request and enable bits are “1” and the in-  
terrupt disable flag is “0”.  
Notes on Use  
When the active edge of an external interrupt (INT0, INT1, CNTR0,  
or CNTR1) is changed, the corresponding interrupt request bit  
may also be set. Therefore, please take following sequence;  
(1) Disable the external interrupt which is selected.  
(2) Change the active edge selection.  
Interrupt enable bits can be set or cleared by software.  
Interrupt request bits can be cleared by software, but cannot be  
set by software.  
The reset and BRK instruction can not be disabled with any flag or  
bit.  
(3) Clear interrupt request which is selected to “0”.  
(4) Enable the external interrupt which is selected.  
The I flag disables all interrupts except for the BRK instruction in-  
terrupt and the reset.  
When several interrupts occur at the same time, the interrupts are  
received according to priority.  
Table 1 Interrupt vector addresses and priority  
Vector addresses (Note 1)  
Interrupt request  
Remarks  
Interrupt source  
Priority  
generating conditions  
High  
Low  
FFFD16  
FFFC16  
Reset (Note 2)  
INT0  
1
2
At reset  
Non-maskable  
At detection of either rising or External interrupt (active edge  
falling edge of INT0 input  
FFFB16  
FFF916  
FFF716  
FFFA16  
FFF816  
FFF616  
selectable)  
At detection of either rising or  
falling edge of INT1 input  
External interrupt (active edge  
selectable)  
INT1  
3
4
At end of serial I/O1 data re-  
ception  
Serial I/O1  
reception  
Valid when serial I/O1 is se-  
lected  
At end of serial I/O1 transfer  
shift or when transmission  
buffer is empty  
Serial I/O1  
transmission  
Valid when serial I/O1 is se-  
lected  
5
FFF516  
FFF416  
Timer X  
Timer Y  
Timer 2  
Timer 3  
6
7
8
9
FFF316  
FFF116  
FFEF16  
FFED16  
FFF216  
FFF016  
FFEE16  
FFEC16  
At timer X underflow  
At timer Y underflow  
At timer 2 underflow  
At timer 3 underflow  
Serial I/O2  
reception  
At end of serial I/O2 data re- Valid when serial I/O2 is se-  
10  
11  
12  
FFEB16  
FFE916  
FFE716  
FFEA16  
FFE816  
FFE616  
ception  
lected  
At end of serial I/O2 transfer  
shift or when transmission  
buffer is empty  
Serial I/O2  
transmission  
Valid when serial I/O2 is se-  
lected  
At detection of either rising or  
falling edge of CNTR0 input  
External interrupt (active edge  
selectable)  
CNTR0  
At detection of either rising or  
falling edge of CNTR1 input  
External interrupt (active edge  
selectable)  
13  
14  
FFE516  
FFE316  
FFE416  
FFE216  
CNTR1  
Timer 1  
At timer 1 underflow  
At falling of conjunction of in-  
put logic level for port P2 (at  
input)  
External interrupt (valid when  
an “L” level is applied)  
Key-on wake up  
BRK instruction  
15  
16  
FFE116  
FFDD16  
FFE016  
FFDC16  
Non-maskable software inter-  
rupt  
At BRK instruction execution  
Notes 1: Vector addresses contain interrupt jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
12  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
BRK instruction  
Reset  
Interrupt request  
Fig. 7 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
0
1
active edge selection bit  
active edge selection bit  
Not used (return “0” when read)  
0 : Falling edge active  
1 : Rising edge active  
b7  
b0  
b7  
b0  
Interrupt request register 1  
(IREQ1 : address 003C16  
Interrupt request register 2  
(IREQ2 : address 003D16)  
)
INT  
INT  
0
1
interrupt request bit  
interrupt request bit  
Serial I/O2 receive interrupt request bit  
Serial I/O2 transmit interrupt request bit  
Serial I/O1 receive interrupt request bit  
Serial I/O1 transmit interrupt request bit  
Timer X interrupt request bit  
CNTR  
CNTR  
0
interrupt request bit  
interrupt request bit  
1
Timer 1 interrupt request bit  
Timer Y interrupt request bit  
Timer 2 interrupt request bit  
Key-on wake up interrupt request bit  
Not used (return “0” when read)  
Timer 3 interrupt request bit  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0  
b7  
b0  
Interrupt control register 1  
Interrupt control register 2  
(ICON1 : address 003E16  
)
(ICON2 : address 003F16)  
INT  
INT  
0
1
interrupt enable bit  
interrupt enable bit  
Serial I/O2 receive interrupt enable bit  
Serial I/O2 transmit interrupt enable bit  
Serial I/O1 receive interrupt enable bit  
Serial I/O1 transmit interrupt enable bit  
Timer X interrupt enable bit  
CNTR  
CNTR  
0
interrupt enable bit  
interrupt enable bit  
1
Timer 1 interrupt enable bit  
Timer Y interrupt enable bit  
Timer 2 interrupt enable bit  
Timer 3 interrupt enable bit  
Key-on wake up interrupt enable bit  
Not used (returns “0” when read)  
Not used (returns “0” when read)  
(Do not write “1” to this bit)  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 8 Structure of interrupt-related registers  
13  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMERS  
All timers are down count timers. When the timer reaches “0016”,  
an underflow occurs at the next count pulse and the correspond-  
ing timer latch is reloaded into the timer and the count is  
continued. When a timer underflows, the interrupt request bit cor-  
The 7510 group has five built-in timers: timer X, timer Y, timer 1,  
timer 2, and timer 3. Timer X and timer Y are 16-bit timers,  
whereas timer 1, timer 2, and timer 3 are 8-bit timers.  
XCIN  
1/32  
Internal system  
clock selection bit  
“1”  
XIN  
1/16  
“0”  
Timer X stop control bit  
“00”  
Timer X write control bit  
Timer XH latch (8)  
CNTR0 active edge  
selection bit  
Timer XL latch (8)  
Timer XL (8)  
Timer X operation mode bit  
“01”  
“11”  
P42/CNTR0  
“0”  
Timer XH (8)  
Timer X interrupt request  
CNTR0 interrupt request  
“10”  
“1”  
Pulse output mode  
“0”  
S
Q
Q
T
CNTR0 active “1”  
edge selection bit  
P42 direction register  
Pulse output mode  
P42 latch  
Pulse width continuously  
measurement mode  
Rising edge detector  
Falling edge detector  
Period  
measurement mode  
Timer Y  
stop  
control bit  
“00”  
“01”  
“11”  
Timer YL latch (8)  
Timer YL (8)  
Timer YH latch (8)  
Timer YH (8)  
P43/CNTR1  
“0”  
“1”  
Timer Y interrupt request  
Timer Y operation mode bit  
“10”  
Timer Y operation mode bit  
“11”  
CNTR1 active edge  
selection bit  
CNTR1 interrupt request  
“00”  
“01”  
“10”  
Timer 2 write control bit  
Timer 1 latch (8)  
Timer 1 (8)  
Timer 2 latch (8)  
Timer 2 (8)  
“0”  
“1”  
Timer 2 interrupt request  
Timer 1 interrupt request  
“1”  
Timer 1 count source selection bit  
“0”  
Timer 2 count source  
selection bit  
Timer 3 latch (8)  
Timer 3 (8)  
“0”  
“1”  
Timer 3 interrupt request  
Timer 3 count source  
selection bit  
Fig. 9 Block diagram of Timer  
14  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
responding to that timer is set to “1”.  
If the value is written in latch only, unexpected value may be set in  
the high-order counter when the writing in high-order latch and the  
underflow of timer X are performed at the same timing.  
Read and write operation on 16-bit timer must be performed for  
both high and low-order bytes. When reading a 16-bit timer, read  
the high-order byte first. When writing to a 16-bit timer, write the  
low-order byte first. The 16-bit timer cannot perform the correct op-  
eration when reading during the write operation, or when writing  
during the read operation.  
Note on CNTR0 Interrupt Active Edge  
Selection  
CNTR0 interrupt active edge depends on the CNTR0 active edge  
selection bit.  
Timer X  
Timer X is a 16-bit timer that can be selected in one of four modes  
and can be controlled the timer X write by setting the timer X  
mode register.  
b7  
b0  
Timer X mode register  
(TXM : address 002716  
)
Timer mode  
The timer counts f(XIN)/16 (or f(XCIN)/16, if the selected system  
clock φ is f(XCIN)/2).  
Timer X write control bit  
0 : Write data in latch and timer  
1 : Write data in latch only  
Pulse output mode  
Not used (Always write “0” )  
Each time the timer underflows, a signal output from the CNTR0  
pin is inverted. Except for this, the operation in pulse output mode  
is the same as in timer mode. When using a timer in this mode, set  
the corresponding port P42 direction register to output mode.  
Event counter mode  
Timer X operation mode bits  
b5 b4  
0
0
1
1
0 : Timer mode  
1 : Pulse output mode  
0 : Event counter mode  
1 : Pulse width measurement mode  
CNTR0 active edge selection bit  
The timer counts signals input through the CNTR0 pin. Except for  
this, the operation in event counter mode is the same as in timer  
mode.  
0 : Count at rising edge in event counter mode  
Start from “H” output in pulse output mode  
Measure “H” pulse width in pulse width  
measurement mode  
Falling edge active for CNTR0 interrupt  
Pulse width measurement mode  
1 : Count at falling edge in event counter mode  
Start from “L” output in pulse output mode  
Measure “L” pulse width in pulse width  
measurement mode  
The count source is f(XIN)/16 (or f(XCIN)/16, if the selected system  
clock φ is f(XCIN)/2). If CNTR0 active edge selection bit is “0”, the  
timer counts while the input signal of CNTR0 pin is at “H”. If it is  
“1”, the timer counts while the input signal of CNTR0 pin is at “L”.  
Rising edge active for CNTR  
0 interrupt  
Timer X stop control bit  
0 : Count start  
1 : Count stop  
Timer X Write Control  
If the timer X write control bit is “0”, when the value is written in the  
address of timer X, the value is loaded in the timer X and the latch  
at the same time.  
Fig. 10 Structure of timer X mode register  
If the timer X write control bit is “1”, when the value is written in the  
address of timer X, the value is loaded only in the latch. The value  
in the latch is loaded in timer X after timer X underflows.  
15  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer Y  
b7  
b0  
Timer Y is a 16-bit timer that can be selected in one of four modes.  
Timer Y mode register  
(TYM : address 002816)  
Timer mode  
The timer counts f(XIN)/16 (or f(XCIN)/16, if the selected system  
clock φ is f(XCIN)/2).  
Not used (return “0” when read)  
Timer Y operation mode bits  
b5 b4  
Period measurement mode  
0
0
1
1
0 : Timer mode  
CNTR1 interrupt request is generated at rising/falling edge of  
CNTR1 pin input signal. Simultaneously, the value in timer Y latch  
is reloaded in timer Y and timer Y continues counting down. Except  
for the above-mentioned, the operation in period measurement  
mode is the same as in timer mode.  
1 : Period measurement mode  
0 : Event counter mode  
1 : Pulse width HL continuously  
measurement mode  
CNTR1 active edge selection bit  
0 : Count at rising edge in event counter mode  
Measure the falling edge to falling edge  
period in period measurement mode  
Falling edge active for CNTR1 interrupt  
The timer value just before the reloading at rising/falling of CNTR1  
pin input signal is retained until the timer Y is read once after the  
reload.  
1 : Count at falling edge in event counter mode  
Measure the rising edge to rising edge  
period in period measurement mode  
The rising/falling timing of CNTR1 pin input signal is found by  
CNTR1 interrupt.  
Rising edge active for CNTR1 interrupt  
Timer Y stop control bit  
0 : Count start  
1 : Count stop  
Event counter mode  
The timer counts signals input through the CNTR1 pin. Except for  
this, the operation in event counter mode is the same as in timer  
mode.  
Fig. 11 Structure of timer Y mode register  
Pulse width HL continuously measurement mode  
CNTR1 interrupt request is generated at both rising and falling  
edges of CNTR1 pin input signal. Except for this, the operation in  
pulse width HL continuously measurement mode is the same as in  
period measurement mode.  
Note on CNTR1 Interrupt Active Edge  
Selection  
CNTR1 interrupt active edge depends on the CNTR1 active edge  
selection bit. However, in pulse width HL continuously measure-  
ment mode, CNTR1 interrupt request is generated at both rising  
and falling edges of CNTR1 pin input signal regardless of the set-  
ting of CNTR1 active edge selection bit.  
16  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timer 1,Timer 2,Timer 3  
Timer 1, timer 2, and timer 3 are 8-bit timers. The count source for  
each timer can be selected by timer 123 mode register. The timer  
latch value is not affected by a change of the count source. How-  
ever, because changing the count source may cause an  
inadvertent count down of the timer.  
b7  
b0  
Timer 123 mode register  
(T123M : address 002916)  
Not used (Always write “0” )  
Timer 2 write control bit  
0 : Write data in latch and timer  
1 : Write data in latch only  
Therefore, rewrite the value of timer whenever the count source is  
changed.  
Timer 2 count source selection bit  
0 : Timer 1 output  
1 : XIN/16  
Timer 2 Write Control  
(or XCIN/16 when system clock φ = XCIN/2)  
If the timer 2 write control bit is “0”, when the value is written in the  
address of timer 2, the value is loaded in the timer 2 and the latch  
at the same time.  
Timer 3 count source selection bit  
0 : Timer 1 output  
1 : XCIN/32  
Timer 1 count source selection bit  
0 : XIN/16  
(or XCIN/16 when system clock φ = XCIN/2)  
1 : XCIN/32  
If the timer 2 write control bit is “1”, when the value is written in the  
address of timer 2, the value is loaded only in the latch. The value  
in the latch is loaded in timer 2 after timer 2 underflows.  
Not used (return “0” when read)  
Note on Timer 1 to Timer 3  
When the count source of timer 1 to 3 is changed, the timer count-  
ing value may be changed large because a thin pulse is generated  
in count input of timer. If the count source of timer 2 or timer 3 is  
connected to timer 1 output, when timer 1 is written, the counting  
value of timer 2 or timer 3 may be changed large because a thin  
pulse is generated in timer 1 output.  
Fig. 12 Structure of timer 123 mode register  
Therefore, set the value of timer in the order of timer 1 , timer 2  
and timer 3 after the count source selection of timer 1 to 3.  
17  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Asynchronous Serial I/O (UART) Mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O mode selection bit of the serial I/O control  
register to “0”.  
but the two buffers have the same address in memory.  
Since the shift register cannot be written to or read from directly,  
transmit data is written to the transmit buffer, and receive data is  
read from the receive buffer. The transmit buffer can also hold the  
next data to be transmitted, and the receive buffer can hold a char-  
acter while the next character is being received.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer,  
Data bus  
Address  
001816  
003016  
Address 001A16  
Serial I/O control register  
003216  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
OE  
Receive buffer  
Character length selection bit  
7 bits  
ST detector  
P44/RXD1  
P30/RXD2  
Receive shift register  
1/16  
8 bits  
UART control register  
PE FE  
SP detector  
Clock control circuit  
Address 001B16  
003316  
Serial I/O synchronous clock selection bit  
P46/SCLK1  
P32/SCLK2  
BRG count source selection bit  
1/4  
Frequency division ratio 1/(n+1)  
Baud rate generator  
Address 001C16 003416  
f(XIN)  
ST/SP/PA generator  
1/16  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
Transmit shift register  
P45/TXD1  
P31/TXD2  
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer register  
Address  
Transmit buffer empty flag (TBE)  
Serial I/O status register  
Address 001916 003116  
001816 003016  
Data bus  
Contents in  
are for serial I/O2.  
Fig. 15 Block diagram of UART serial I/O  
Transmit or receive clock  
Transmit buffer write signal  
TBE = 0  
TBE = 0  
D1  
TSC = 0  
TBE = 1  
TBE = 1  
TSC = 1  
ST  
D0  
SP  
ST  
D0  
D1  
SP  
Serial output TXD  
1 start bit  
Generated at 2nd bit in 2-stop-bit mode  
7 or 8 data bits  
1 or 0 parity bit  
1 or 2 stop bit(s)  
Receive buffer read signal  
RBF = 0  
RBF = 1  
SP  
RBF = 1  
SP  
ST  
D0  
D1  
ST  
D0  
D1  
Serial input RXD  
Notes 1 : Error flag detection occurs at the same time that the RBF flag becomes “1” (at 1st stop bit, during reception).  
2 : The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes “1”, depending on the setting of the transmit  
interrupt source selection bit (TIC) of the serial I/O control register.  
3 : The receive interrupt (RI) is set when the RBF flag becomes “1”.  
4 : After data is written to the transmit buffer when TSC = 1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC = 0.  
Fig. 16 Operation of UART serial I/O function  
19  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Serial I/O Control Register  
SIO1CON (001A16), SIO2CON (003216)  
The serial I/O control register consists of eight control bits for the  
serial I/O function.  
UART Control Register  
UART1CON (001B16), UART2CON (003316)  
The UART control register consists of four control bits (bits 0 to 3)  
which are valid when asynchronous serial I/O is selected and set  
the data format of an data transfer. One bit in this register (bit 4) is  
always valid and sets the output structure of the P45/TXD1 (P31/  
TXD2) pin.  
Serial I/O Status Register  
SIO1STS (001916), SIO2STS (003116)  
The read-only serial I/O status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O  
function and various errors.  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to “0” when the receive  
buffer is read.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer, and  
the receive buffer full flag is set. Writing to the serial I/O status reg-  
ister clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6,  
respectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of  
the serial I/O control register) also clears all the status flags, in-  
cluding the error flags.  
All bits of the serial I/O status register are initialized to “0” at reset,  
but if the transmit enable bit (bit 4) of the serial I/O control register  
has been set to “1”, the transmit shift completion flag (bit 2) and  
the transmit buffer empty flag (bit 0) become “1”.  
Transmit Buffer Register/Receive Buffer Register  
TB1/RB1 (001816), TB2/RB2 (003016)  
The transmit buffer register and the receive buffer register are lo-  
cated at the same address. The transmit buffer register is  
write-only and the receive buffer register is read-only.  
If a character bit length is 7 bits, the MSB of data stored in the re-  
ceive buffer register is “0”.  
Baud Rate Generator  
BRG1 (001C16), BRG2 (003416)  
The baud rate generator determines the baud rate for serial trans-  
fer.  
The baud rate generator divides the frequency of the count source  
by 1/(n+1), where n is the value written to the baud rate generator.  
20  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b7  
b0  
Serial I/O control register  
Serial I/O status register  
(SIO1STS : address 001916)  
(SIO1CON : address 001A16)  
(SIO2STS : address 003116)  
(SIO2CON : address 003216)  
Transmit buffer empty flag (TBE)  
0 : Buffer full  
BRG count source selection bit (CSS)  
0 : f(XIN)  
1 : Buffer empty  
1 : f(XIN) divided by 4  
Receive buffer full flag (RBF)  
0 : Buffer empty  
1 : Buffer full  
Serial I/O synchronous clock selection bit (SCS)  
0 : BRG output divided by 4 when clock  
synchronous serial I/O is selected,  
BRG output divided by 16 when UART  
is selected.  
Transmit shift completion flag (TSC)  
0 : Transmit shift in progress  
1 : Transmit shift completed  
1 : External clock input when clock synchronous  
serial I/O is selected, external clock input  
divided by 16 when UART is selected.  
Overrun error flag (OE)  
0 : No error  
1 : Overrun error  
SRDY output enable bit (SRDY)  
0 : P47 P33 pin operates as ordinary I/O pin  
1 : P47 P33 pin operates as SRDY output pin  
Parity error flag (PE)  
0 : No error  
1 : Parity error  
Transmit interrupt source selection bit (TIC)  
0 : Interrupt when transmit buffer has emptied  
1 : Interrupt when transmit shift operation  
is completed  
Framing error flag (FE)  
0 : No error  
1 : Framing error  
Transmit enable bit (TE)  
0 : Transmit disabled  
1 : Transmit enabled  
Summing error flag (SE)  
0 : (OE) U (PE) U (FE) = 0  
1 : (OE) U (PE) U (FE) = 1  
Receive enable bit (RE)  
0 : Receive disabled  
1 : Receive enabled  
Not used (returns “1” when read)  
Serial I/O mode selection bit (SIOM)  
0 : Asynchronous serial I/O (UART)  
1 : Clock synchronous serial I/O  
Serial I/O enable bit (SIOE)  
0 : Serial I/O disabled  
(pins P44 to P47 P30 to P33  
operate as ordinary I/O pins)  
1 : Serial I/O enabled  
(pins P44 to P47 P30 to P33  
operate as serial I/O pins)  
b7  
b0  
UART control register  
(UART1CON : address 001B16)  
(UART2CON : address 003316)  
Character length selection bit (CHAS)  
0 : 8 bits  
1 : 7 bits  
Parity enable bit (PARE)  
0 : Parity checking disabled  
1 : Parity checking enabled  
Parity selection bit (PARS)  
0 : Even parity  
1 : Odd parity  
Stop bit length selection bit (STPS)  
0 : 1 stop bit  
1 : 2 stop bits  
P45/TXD1 P-channel output disable bit (POFF)  
P31/TXD2 P-channel output disable bit  
0 : CMOS output (in output mode)  
1 : N-channel open-drain output  
(in output mode)  
Not used (return “1” when read)  
Contents in  
are for serial I/O2.  
Fig. 17 Structure of serial I/O control registers  
21  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
LCD CONTROLLER/DRIVER  
The 7510 group has a built-in Liquid Crystal Display (LCD) control-  
ler/driver consisting of the following.  
A 160-byte LCD display RAM  
Segment drivers  
A timing controller  
An LCD mode register  
An LCD contrast control register  
An LCD contrast controller  
A maximum of eighty segment output pins (SEG0–SEG79) and six-  
teen common output pins (COM0–COM15) can be used to control  
an external LCD display controller.  
Common drivers  
A timing generator  
A built-in bias resistor  
Fig. 18 Block diagram of LCD controller/driver  
22  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 2 Maximum number of display pixels for each duty ratio  
LCD Controller/Driver Function  
The controller/driver reads the display data, performs bias and  
duty ratio control, and outputs the correct LCD timing signals on  
the segment and common pins according to the data in LCD dis-  
play RAM.  
Duty ratio  
1/8  
Maximum number of display pixels  
8 80 dots  
(16 characters (5 7 dots/1 character) + cursor) 1 line  
11 80 dots  
(16 characters (5 10 dots/1 character) + cursor) 1 line  
1/11  
1/16  
LCD Mode Register  
LM (003916)  
16 80 dots  
(16 characters (5 7 dots/1 character) + cursor) 2 line  
The LCD mode register is an 8-bit register. This register is used to  
match the characteristics of the controller/driver to the LCD panel  
used.  
Note: Prior to executing an STP instruction, the LCD must be disabled by  
clearing the bit 3 of the LCD mode register to “0”.  
b7  
b0  
LCD mode register  
(LM : address 003916  
)
Duty ratio selection bits  
b1 b0  
0
0
1
1
0 : 1/8 duty (pins COM  
1 : 1/8 duty (pins COM  
0 : 1/11 duty (pins COM  
1 : 1/16 duty (pins COM  
0
8
– COM  
– COM15  
7)  
)
0
0
– COM10  
– COM15  
)
)
LCD display RAM address selection bit  
0 : Third page  
1 : Zero page  
LCD enable bit  
0 : Turn off  
1 : Turn on  
LCD drive timing selection bit  
0 : Type-A  
1 : Type-B  
LCDCK division ratio selection bits  
b6 b5  
0
0
1
1
0 : Clock input  
1 : Clock input/2  
0 : Clock input/4  
1 : Clock input/8  
LCDCK count source selection bit  
0 : f(XIN) /1024  
1 : f(XCIN) /16  
Fig. 19 Structure of LCD mode register  
23  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
LCD Display RAM  
RAM can not be used. After reset, the LCD display RAM is set to  
third page.  
The 7510 group has LCD display RAM apart from user RAM at  
addresses 004016 to 043F16. The LCD display RAM consists of  
160 bytes. The memory space for the LCD display RAM can be  
selected as zero page addresses 004016 to 00DF16 or third page  
addresses 034016 to 03DF16, by setting the LCD display RAM ad-  
dress selection bit.  
Writing “1” to a bit of the LCD display RAM activates the corre-  
sponding pixel on the LCD panel and writing “0” to the bit turns the  
pixel off.  
Note: The data of user RAM at the same addresses with the LCD display  
RAM (addresses 004016 to 00DF16 or 034016 to 03DF16) is retained.  
Therefore, user RAM can be used effectively by switching the LCD  
display RAM address.  
When the LCD display RAM is at zero page, the addresses 004016  
to 00DF16 of user RAM can not be used. When the LCD display  
RAM is at third page, the addresses 034016 to 03DF16 of user  
COM0  
COM1  
1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1  
1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1  
1 0 0 0 1 0 1 1 1 0 LSB  
1 0 0 0 1 0 0 1 0 0  
1 0 0 0 1 0 0 1 0 0  
1 1 1 1 1 0 0 1 0 0  
1 0 0 0 1 0 0 1 0 0  
1 0 0 0 1 0 0 1 0 0  
1 0 0 0 1 0 1 1 1 0  
0 0 0 0 0 0 0 0 0 0 MSB  
1 1 1 1 1 1 1 1 1 0 LSB  
1 0 0 0 0 1 0 0 0 1  
1 0 0 0 0 1 0 0 0 1  
1 1 1 1 0 1 1 1 1 0  
1 0 0 0 0 1 0 0 0 0  
1 0 0 0 0 1 0 0 0 0  
1 0 0 0 0 1 0 0 0 0  
1 1 1 1 1 0 0 0 0 0 MSB  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1  
1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1  
1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1  
1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1  
1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0  
1 1  
1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1
1
1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0  
1 1 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0  
1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0  
1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0  
1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0  
1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0  
1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
LCD display RAM map  
Fig. 20 LCD display RAM map and example of a display pattern for 1/16 duty operation  
24  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Bias Control and Time Division Control  
The LCD controller/driver has built-in bias resistor and supports 1/  
4 bias or 1/5 bias. The bias setting is made by either floating pins  
VL2 and VL3 (1/5 bias) or shorting them together externally (1/4  
bias). The number of common pins driven is determined by the  
duty ratio selected. Bits 0 and 1 of the LCD mode register are  
used to set the duty ratio.  
When the contrast controller is used, it becomes possible to apply  
32 steps of voltage to VL5 from 1/2 VLCD through VLCD. Conse-  
quently, 32 steps of contrast adjustment by the software becomes  
possible.  
Note: Supply power to the contrast controller from an external source  
through the VLCD pin.  
Also, when bit 7 of the LCD contrast control register is set to “0”,  
VLCD pin is coupled directly to VL5 (the contrast controller and VL5  
become separated). In this case, perform contrast adjustment using  
an external circuit.  
Table 3 Time division control  
Duty ratio selection bit  
Duty  
Common pins used  
ratio  
Bit 1  
Bit 0  
b7  
b0  
0
0
1
1
0
1
0
1
COM0–COM7  
COM8–COM15  
COM0–COM10  
COM0–COM15  
1/8  
LCD contrast control register  
(LC : address 003716  
)
1/11  
1/16  
VLCD level selection bit  
Not used (returns “0” when read)  
Note: For all duty ratios, the unused common pins output the non-select  
LCD contrast control enable bit  
0 : Built-in LCD contrast  
controller is not used  
waveform.  
1 : Built-in LCD contrast  
controller is used.  
Contrast Controller  
The contrast controller is a circuit generating 32 steps of voltages  
using the voltage applied to the VLCD pin as the reference voltage.  
The voltage generated varies depending on the values given to bit  
0–bit 4 with the LCD contrast control register. When bit 7 of the  
LCD contrast control register is set to “1”, the voltage generated by  
the contrast controller is applied to VL5. Given below is the relation  
between the values set to bit 0–bit 4 of LCD contrast control regis-  
ter and the voltages applied to VL5.  
Fig. 22 Structure of LCD contrast control register  
LCD Drive Timing  
The LCD controller/driver supports both type-A and type-B drive  
timing.  
The desired type is selected by setting the LCD drive timing selec-  
tion bit (bit 4 of the LCD mode register).  
Voltage applied to VL5  
If the LCD drive timing selection bit is set to “0”, type-A is selected,  
and if this bit is set to “1”, type-B is selected. After reset, type-A is  
selected for the drive timing.  
= Voltage applied to the VLCD pin (n+33)/64  
Where:  
The frame frequency can be determined by the following equation:  
n = Value set to bit 0–bit 4 of the LCD contrast control register (in  
decimal values)  
LCDCK count source frequency  
Frame frequency =  
LCDCK division ratio duty ratio  
Variable  
resistance  
for  
brightness  
control  
Contrast  
Contrast  
controller  
Variable resistance  
controller  
for  
brightness control  
V
LCD  
V
LCD  
“1”  
“1”  
LCD contrast control enable bit  
LCD contrast control enable bit  
“0”  
“0”  
V
V
V
V
V
L5  
L4  
L3  
L2  
L1  
VL5  
VL4  
VL3  
VL2  
VL1  
R
R
R
R
R
R
R
R
R
R
V
L3  
L2  
V
V
L3  
L2  
Open  
V
External  
connection  
1/5 bias  
1/4 bias  
Fig. 21 Example of circuit at 1/5 and 1/4 bias  
25  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
LCDCK  
1 frame  
VL5  
VL4  
VL3  
VL2  
VL1  
VSS  
COM7  
VL5  
VL4  
VL3  
VL2  
VL1  
VSS  
COM6  
VL5  
VL4  
VL3  
VL2  
VL1  
VSS  
SEG0  
VL5  
VL4  
VL3  
VL2  
VL1  
VSS  
VL1  
VL2  
VL3  
VL4  
VL5  
SEG0 – COM7  
ON  
OFF  
ON  
OFF  
VL5  
VL4  
VL3  
VL2  
VL1  
VSS  
VL1  
VL2  
VL3  
VL4  
VL5  
SEG0 – COM6  
OFF  
OFF  
Fig. 23 1/8 duty, 1/5 bias, type-A LCD wave diagram  
26  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
LCDCK  
1 frame  
1 frame  
V
V
V
V
V
V
L5  
L4  
L3  
L2  
L1  
SS  
COM  
COM  
7
V
V
V
V
V
V
L5  
L4  
L3  
L2  
L1  
SS  
6
V
V
V
V
V
V
L5  
L4  
L3  
L2  
L1  
SS  
SEG  
0
V
V
V
V
V
V
V
V
V
V
V
L5  
L4  
L3  
L2  
L1  
SS  
L1  
L2  
L3  
L4  
L5  
SEG0 – COM7  
ON  
OFF  
ON  
OFF  
ON  
OFF  
V
V
V
V
V
V
V
V
V
V
V
L5  
L4  
L3  
L2  
L1  
SS  
L1  
L2  
L3  
L4  
L5  
SEG0 – COM6  
OFF  
OFF  
OFF  
Fig. 24 1/8 duty, 1/5 bias, type-B LCD wave diagram  
27  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
KEY-ON WAKE UP  
This interrupt is generated by applying “L” level to any pin of port  
P2 and the microcomputer is returned to the normal operating  
state. If a key matrix is connected to port P20 to P23 as shown in  
Figure 25, the microcomputer can be returned to a normal state by  
pressing any one of the keys.  
The 7510 group contains a key-on wake up interrupt function. The  
key-on wake up interrupt function is one way of returning from a  
power down state caused by the STP or WIT instruction.  
Port P2x (X = 0 to 7)  
“L” level output  
PULLP2 register  
bit 7  
Port P2  
direction register  
bit 7 = “1”  
✽ ✽  
Key-on wake up input interrupt request  
Port P27  
latch  
P27 output  
P26 output  
P25 output  
PULLP2 register  
bit 6  
Port P2  
direction register  
bit 6 = “1”  
✽ ✽  
Port P26  
latch  
PULLP2 register  
bit 5  
Port P2  
direction register  
bit 5 = “1”  
✽ ✽  
Port P25  
latch  
PULLP2 register  
bit 4  
Port P2  
direction register  
bit 4 = “1”  
✽ ✽  
Port P24  
latch  
P24 output  
PULLP2 register  
bit 3  
Port P2  
direction register  
bit 3 = “0”  
Port P2 input  
read circuit  
✽ ✽  
Port P23  
latch  
P23 input  
PULLP2 register  
bit 2  
Port P2  
direction register  
bit 2 = “0”  
✽ ✽  
Port P22  
latch  
P22 input  
P21 input  
P20 input  
PULLP2 register  
bit 1  
Port P2  
direction register  
bit 1 = “0”  
✽ ✽  
Port P21  
latch  
PULLP2 register  
bit 0  
Port P2  
direction register  
bit 0 = “0”  
✽ ✽  
Port P20  
latch  
P-channel transistor for pull-up  
✽ ✽ CMOS output buffer  
Fig. 25 Block diagram of port P2, and example of wired at used key-on wake up  
28  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
To reset the microcomputer, RESET pin should be held at “L” level  
for 2 µs or more. Then RESET pin is returned to “H” level (the  
power source voltage should be between 2.5 V and 5.5 V, and XIN  
oscillation width is stable), reset is released. In order to give the  
XIN clock time to stabilize, internal operation does not begin until  
after about 8000 XIN clock cycles are complete. After the reset is  
completed, the program starts from the address contained in ad-  
dress FFFD16 (high-order) and address FFFC16 (low-order).  
Make sure that the reset input voltage is less than 0.5 V for VCC of  
3.0 V at f(XIN) = 8.0 MHz.  
Address  
Register contents  
(1) Port P0 direction register  
(2) Port P1 direction register  
(3) Port P2 direction register  
(4) Port P3 direction register  
(5) Port P4 direction register  
(6) Port P5 direction register  
(7) Port P0 pull-up control register  
(8) Port P1 pull-up control register  
(9) Port P2 pull-up control register  
(10) Port P3 pull-up control register  
(11) Port P4 pull-up control register  
(12) Port P5 pull-up control register  
(13) Serial I/O1 status register  
(14) Serial I/O1 control register  
(15) UART1 control register  
(16) Timer X (low)  
000116  
000316  
000516  
000716  
000916  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001916  
001A16  
001B16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
003116  
003216  
003316  
003716  
003916  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
Poweron  
3.0V  
Power source  
voltage 0V  
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0016  
Reset input  
voltage 0V  
0.5V  
0
0
FF16  
FF16  
FF16  
FF16  
FF16  
0116  
FF16  
0016  
0016  
0016  
(17) Timer X (high)  
V
CC  
(18) Timer Y (low)  
1
(19) Timer Y (high)  
5
4
(20) Timer 1  
RESET  
(21) Timer 2  
M51953AL  
(22) Timer 3  
0.1µF  
(23) Timer X mode register  
(24) Timer Y mode register  
(25) Timer 123 mode register  
(26) Serial I/O2 status register  
(27) Serial I/O2 control register  
(28) UART2 control register  
(29) LCD contrast control register  
(30) LCD mode register  
3
V
SS  
1
1
0
1
0
1
0
0
0
0
0
0
0
0
7510 group  
f(XIN) = 8.0MHz  
0016  
0
0
Fig. 26 Example of reset circuit  
0016  
0016  
0016  
(31) Interrupt edge selection register 003A16  
(32) CPU mode register  
003B16  
003C16  
003D16  
003E16  
003F16  
(PS)  
0
1
0
0
1
1
0
0
(33) Interrupt request register 1  
(34) Interrupt request register 2  
(35) Interrupt control register 1  
(36) Interrupt control register 2  
(37) Processor status register  
(38) Program counter  
0016  
0016  
0016  
0016  
✕ ✕ ✕ ✕ ✕ 1 ✕ ✕  
Contents of address  
FFFD16  
(PCH)  
(PCL)  
Contents of address  
FFFC16  
Note :The contents of all other registers and RAM are undefined after  
reset, so they must be initialized by software.  
: Undefined  
Fig. 27 Internal status of microcomputer after reset  
29  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
XIN  
φ
RESET  
Internal reset  
Address  
?
?
?
?
FFFC  
FFFD  
ADH, ADL  
Reset address from  
vector table  
?
?
?
?
AD  
L
ADH  
Data  
SYNC  
Notes 1 : f(XIN) and f(φ) are in the relationship : f(XIN) = 8.f(φ)  
2 : A question mark (?) indicates an undefined status that depens on the previous status.  
about 8000  
clock cycles  
Fig. 28 Reset sequence  
30  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CLOCK GENERATING CIRCUIT  
Oscillation Control  
The 7510 group has two built-in oscillation circuits. An oscillation  
circuit can be formed by connecting a resonator between XIN and  
XOUT (XCIN and XCOUT). Use the circuit constants in accordance  
with the resonator manufacturer’s recommended values. No exter-  
nal resistor is needed between XIN and XOUT since a feed-back  
resistor exists on-chip. However, an external feed-back resistor is  
needed between XCIN and XCOUT.  
Stop mode  
If the STP instruction is executed, the internal clock φ stops at an  
“H” level. Timer 1 is set to “FF16” and timer 2 is set to “0116”.  
Either XIN or XCIN divided by 16 is input to timer 1, and the output  
of timer 1 is connected to timer 2. The bits of the timer 123 mode  
register are cleared to “0” except for bit 4.  
The timer 1 and timer 2 interrupt enable bits must be set to dis-  
abled (“0”), so a program must set these bits before executing a  
STP instruction. Oscillation restarts at reset or when an external  
interrupt is received, but the internal clock φ is not supplied to the  
CPU until timer 2 underflows. This allows time for the clock circuit  
oscillation to stabilize.  
Immediately after power on, only the XIN oscillation circuit starts  
oscillating, and XCIN and XCOUT pins function as I/O port. The pull-  
up resistor of XCIN and XCOUT pins must be made invalid to use  
the XCIN oscillating circuit.  
Frequency Control  
Middle-speed mode  
Wait mode  
If the WIT instruction is executed, the internal clock φ stops at an  
“H” level. XIN and XCIN are the same state with that before the ex-  
ecution of the WIT instruction. The internal clock restarts if a reset  
occurs or when an interrupt is received. Since the oscillator does  
not stop, normal operation can be started immediately after the  
clock is restarted.  
The internal clock φ is the frequency of XIN divided by 8.  
After reset, this mode is selected.  
High-speed mode  
The internal clock φ is half the frequency of XIN.  
Low-speed mode  
The internal clock φ is half the frequency of XCIN.  
Note: If you switch the mode between middle/high-speed and low-speed,  
both of XIN and XCIN oscillation must be stabilized. The sufficient  
time is required for the XCIN oscillation to stabilize, especially imme-  
diately after power-on and at returning from stop mode. The mode  
must be switched on condition that f(XIN) > 3f(XCIN).  
Low-power consumption mode  
X
CIN  
XCOUT  
X
IN  
XOUT  
In low-speed mode, a low-power consumption operation can be  
entered by stopping the main clock XIN. To stop the main clock, set  
bit 5 of the CPU mode register to “1”. When the main clock XIN is  
restarted, the program must allow enough time for oscillation to  
stabilize.  
R
f
R
d
C
CIN  
C
COUT  
C
IN  
COUT  
In low-power consumption mode, the XCIN-XCOUT drive perfor-  
mance can be reduced, allowing lower power consumption (8 µA  
or less with XCIN = 32 kHz). To reduce the XCIN-XCOUT drive per-  
formance, clear bit 3 of the CPU mode register to “0”. At reset or  
when the STP instruction is executed, this bit is set to “1” and  
strong drive is selected to help the oscillation to start.  
Fig. 29 Ceramic resonator circuit  
XCIN  
XCOUT  
XIN  
XOUT  
Open  
Open  
External oscillator  
External oscillator  
or pulse  
2.5V  
V
CC  
SS  
VSS  
V
Fig. 30 External clock input circuit  
31  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
XCIN  
XCOUT  
“1”  
“0”  
Port XC selection bit  
1/32  
Timer 1 count  
source selection  
bit  
“1”  
Timer 2 count  
source selection  
bit  
Internal system clock selection bit  
XIN  
XOUT  
(Note 1)  
Low-speed mode  
“0”  
Timer 1  
1/2  
Middle/High-speed mode  
1/4  
1/2  
Timer 2  
“0”  
“1”  
Main clock division ratio selection bit  
Middle-speed mode  
Timing φ  
(Internal clock)  
High-speed mode  
or Low-speed mode  
Main clock stop bit  
Q
S
R
S
Q
Q
S
R
WIT  
R
STP instruction  
STP instruction  
instruction  
Reset  
Interrupt disable flag I  
Interrupt request  
Note : When using the low-speed mode, set the port XC selection bit to “1”.  
Fig. 31 System clock generating circuit block diagram  
32  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset  
Middle-speed mode (φ =1MHz)  
High-speed mode (φ = 4.0MHz)  
CM  
“1”  
6
6
6
CM  
CM  
CM  
CM  
7
6
5
4
= 0 (8.0MHz selected)  
= 1 (Middle-speed)  
= 0 (XIN oscillating)  
= 0 (32kHz stopped)  
CM  
CM  
CM  
CM  
7
6
5
4
= 0 (8.0MHz selected)  
= 0 (High-speed)  
= 0 (XIN oscillating)  
“0”  
= 0 (32kHz stopped)  
CM  
“1”  
4
6
CM  
4
6
“0”  
“0”  
“0”  
“1”  
“0”  
CM  
“1”  
CM  
“1”  
Middle-speed mode (φ =1MHz)  
High-speed mode (φ = 4.0MHz)  
CM  
“1”  
CM  
CM  
CM  
CM  
7
6
5
4
= 0 (8.0MHz selected)  
= 1 (Middle-speed)  
= 0 (XIN oscillating)  
= 1 (32kHz oscillating)  
CM  
CM  
CM  
CM  
7
6
5
4
= 0 (8.0MHz selected)  
= 0 (High-speed)  
= 0 (XIN oscillating)  
= 1 (32kHz oscillating)  
“0”  
Low-speed mode (φ =16kHz)  
Low-speed mode (φ = 16kHz)  
CM  
“1”  
CM  
CM  
CM  
CM  
7
6
5
4
= 1 (32kHz selected)  
= 1 (Middle-speed)  
= 0 (XIN oscillating)  
= 1 (32kHz oscillating)  
CM  
CM  
CM  
CM  
7
6
5
4
= 1 (32kHz selected)  
= 0 (High-speed)  
= 0 (XIN oscillating)  
“0”  
b7  
b0  
CPU mode register  
= 1 (32kHz oscillating)  
(CPUM : address 003B16  
)
CM  
0 : I/O port  
1 : XCIN, XCOUT  
CM : Main clock (XIN-XOUT) stop bit  
0 : Operating  
1 : Stopped  
4 : Port XC selection bit  
CM  
“1”  
5
6
CM  
5
6
“0”  
“0”  
“0”  
“1”  
“0”  
5
CM  
“1”  
CM  
“1”  
CM6 : Main clock division ratio selection bit  
0 : XIN/2 (high-speed mode)  
1 : XIN/8 (middle-speed mode)  
Low power consumption mode (φ =16kHz)  
Low power consumption mode (φ =16kHz)  
CM  
6
CM  
CM  
CM  
CM  
7
6
5
4
= 1 (32kHz selected)  
= 1 (Middle-speed)  
= 1 (XIN stopped)  
CM  
CM  
CM  
CM  
7
6
5
4
= 1 (32kHz selected)  
= 0 (High-speed)  
= 1 (XIN stopped)  
= 1 (32kHz oscillating)  
CM7 : Internal system clock selection bit  
“1”  
“0”  
0 : XIN-XOUT selected  
(middle/high-speed mode)  
1 : XCIN-XCOUT selected  
(low-speed mode)  
= 1 (32kHz oscillating)  
Notes 1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.)  
2 : The main clock must be oscillated (CM : 10) before the switching from the low-speed mode to middle/high-speed mode (CM 7 : 10).  
5
3 : The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the wait mode  
is ended.  
Timer and LCD operate in the wait mode.  
4 : When the stop mode is ended, a delay of approximately 2ms is automatically generated by timer 1 and timer 2 in middle/high-speed mode.  
5 : When the stop mode is ended, a delay of approximately 0.25s is automatically generated by timer 1 and timer 2 in low-speed mode.  
6 : The example assumes that 8.0MHz is being applied to the XIN pin and 32kHz to the XCIN pin φ indicates the internal clock.  
Fig. 32 State transitions of system clock  
33  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
Serial I/O  
Processor Status Register  
In clock synchronous serial I/O, if the receive side is using an ex-  
ternal clock and it is to output the SRDY signal, set the transmit  
enable bit, the receive enable bit, and the SRDY output enable bit  
to “1”.  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is “1”. Af-  
ter a reset, initialize flags which affect program execution. In  
particular, it is essential to initialize the index X mode (T) and the  
decimal operation mode (D) flag because of their effect on calcu-  
lations.  
Serial I/O continues to output the final bit from the TXD pin after  
transmission is completed.  
Instruction Execution Time  
Interrupts  
The instruction execution time is obtained by multiplying the fre-  
quency of the internal clock φ by the number of cycles needed to  
execute an instruction.  
The contents of the interrupt request bits do not change immedi-  
ately after they have been written.  
After writing to an interrupt request register, execute at least one  
instruction before performing a BBC or BBS instruction.  
The number of cycles required to execute an instruction is shown  
in the list of machine instructions.  
In high-speed mode, the frequency of the internal clock φ is half of  
the XIN frequency.  
Decimal Calculations  
To calculate in decimal notation, set the decimal operation mode  
flag (D) to “1”, then execute the ADC or the SBC instruction. Only  
the ADC and the SBC instruction yield proper decimal results. Af-  
ter executing the ADC or SBC instruction, execute at least one  
instruction before executing the SEC, the CLC, or the CLD instruc-  
tion.  
In middle-speed mode, the frequency of the internal clock φ is one  
eighth the XIN frequency.  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM produc-  
tion:  
1. Mask ROM Order Confirmation Form  
2. Mark Specification Form  
In decimal mode, the values of the negative (N), overflow (V), and  
zero (Z) flag are invalid. The carry flag can be used to indicate  
whether a carry or borrow has occurred.  
3. Data to be written to ROM, in EPROM form (three identical  
copies)  
Initialize the carry flag before each calculation. Clear the carry flag  
before the ADC instruction and set the flag before the SBC in-  
struction.  
Timers  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
quency division ratio is 1/(n+1).  
Multiplication and Division Instructions  
The index X mode (T) and the decimal mode (D) flag do not affect  
the MUL and DIV instruction.  
The execution of these instructions does not change the contents  
of the processor status register.  
Ports  
The contents of the port direction registers cannot be read.  
The following cannot be used:  
the data transfer instruction (LDA, etc.)  
the operation instruction when the index X mode flag (T) is “1”  
the addressing mode which uses the value of a direction register  
as an index  
the bit-test instruction (BBC or BBS, etc.) to a direction register  
the read-modify-write instruction (ROR, CLB, or SEB, etc.) to a  
direction register  
Use instructions such as LDM and STA, etc., to set the port direc-  
tion registers.  
34  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PROM Programming Method  
The built-in PROM of the blank One Time PROM version and built-  
in EPROM version can be read or programmed with a  
general-purpose PROM programmer using a special programming  
adapter.  
Set the address of PROM programmer in the user ROM area.  
Package  
Name of Programming Adapter  
PCA4738F-176A  
176P6D-A  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after programming, the procedure shown in  
Figure 33 is recommended to verify programming.  
Programming with PROM Programmer  
Screening (Caution)  
(150°C for 40 hours)  
Verification with PROM Programmer  
Functional check in target device  
Caution : The screening temperature is far higher than  
the storage temperature. Never expose to  
150°C exceeding 100 hours.  
Fig. 33 Programming and testing of One Time PROM version  
35  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Power source voltage  
Conditions  
Retings  
Unit  
V
VCC  
–0.3 to 7.0  
Input voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P41–P47, P50, P51  
Input voltage P40  
VI  
–0.3 to VCC+0.3  
V
VI  
VI  
VI  
–0.3 to 13  
V
V
V
Input voltage VLCD  
All voltage are based on VSS.  
Output transistors are cut off.  
–0.3 to VCC+0.3  
–0.3 to VCC+0.3  
Input voltage RESET, XIN, XCIN  
Output voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P41–P47, P50, P51, XOUT  
Output voltage SEG0–SEG79, COM0–COM15  
Output voltage XCOUT  
VO  
–0.3 to VCC+0.3  
V
VO  
VO  
Pd  
–0.3 to VLCD  
–0.3 to VCC  
300  
V
V
Power dissipation  
mW  
°C  
°C  
Ta = 25°C  
Topr  
Tstg  
Operating temperature  
–20 to 85  
–40 to 125  
Storage temperature  
RECOMMENDED OPERATING CONDITIONS (VCC = 4.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
4.0  
3.0  
2.5  
Typ.  
5.0  
5.0  
5.0  
Max.  
5.5  
High-speed mode f(φ) 2.5 MHz  
V
V
5.5  
VCC  
Power source voltage  
Middle-speed mode 1.0 MHz f(φ) < 2.5 MHz  
Low-speed mode f(φ) 650 kHz  
5.5  
V
VCC  
VLCD  
Power source voltage for LCD driver  
Power source voltage  
V
0
VSS  
V
0.8VCC  
0.8VCC  
VCC  
VCC  
2.5  
VIH  
“H” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50, P51  
“H” input voltage RESET, XIN  
V
VIH  
V
VIH  
“H” input voltage XCIN  
V
0
0
0
VIL  
“L” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47, P50, P51  
“L” input voltage RESET, XIN  
V
0.2VCC  
VIL  
V
0.2VCC  
0.4  
VIL  
“L” input voltage XCIN  
V
–80  
80  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOL(avg)  
IOH(peak)  
IOL(peak)  
IOH(avg)  
IOL(avg)  
f(CNTR0)  
f(CNTR1)  
f(XIN)  
“H” total peak output current (Note 1) P0  
“L” total peak output current P0 –P0 , P1  
“H” total average output current P0 –P0 , P1  
“L” total average output current P0 , P1  
“H” peak output current (Note 2) P0 , P1  
“L” peak output current P0 –P0 , P1 , P2  
“H” average output current (Note 3) P0 , P1  
“L” average output current P0 –P0 , P1 –P1 , P2  
0
–P0  
–P1  
–P1  
–P1  
–P1  
–P2  
–P1  
–P2  
7
, P1  
, P2  
, P2  
, P2  
, P2  
, P3  
, P2  
, P3  
0
–P1  
–P2  
–P2  
–P2  
–P2  
–P3  
–P2  
–P3  
7
, P2  
, P3  
, P3  
, P3  
, P3  
, P4  
, P3  
, P4  
0
–P2  
–P3  
–P3  
–P3  
–P3  
–P4  
–P3  
–P4  
7
, P3  
, P4  
, P4  
, P4  
, P4  
, P5  
, P4  
, P5  
0
–P3  
–P4  
–P4  
–P4  
–P4  
, P5  
–P4  
, P5  
7
, P4  
, P5  
, P5  
1
–P4  
7
, P5  
, P5  
, P5  
0
, P5  
1
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
0
7
0
7
0
7
0
7
1
7
0
1
–40  
40  
0
7
0
7
0
7
0
7
1
7
0
1
0
–P0  
7
0
7
0
7
0
7
1
7
, P5  
0
, P5  
1
–10  
10  
0
–P0  
7
0
7
0
7
0
7
1
7
, P50, P51  
0
7
0
–P1  
7
0
7
0
7
1
7
0
1
–5  
0
–P0  
7
0
7
0
7
0
7
1
7, P50, P51  
5
0
7
0
7
0
7
0
7
1
7
0
1
2.6  
Timer X, Timer Y input frequency (at 50% duty)  
MHz  
Main clock input oscillation frequency (Note 4)  
Sub-clock input oscillation frequency (Note 4, 5)  
MHz  
kHz  
8.0  
50  
f(XCIN)  
32.768  
Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value mea-  
sured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current is an average value measured over 100 ms.  
4: The oscillating frequency has a 50% duty cycle.  
5: In low-speed mode, the sub-clock input oscillation frequency must be used on condition that f(XCIN) < f(XIN)/3.  
36  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (VCC = 4.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
VOH  
Parameter  
Test conditions  
IOH = –10 mA  
Unit  
V
Min.  
Max.  
2.0  
“H” output voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P41–P47, P50, P51  
VCC–2.0  
“L” output voltage P00–P07, P10–P17, P20–P27,  
P30–P37, P41–P47, P50, P51  
VOL  
IOL = 10 mA  
V
0.4  
0.5  
0.5  
VT+–VT–  
VT+–VT–  
VT+–VT–  
Hysteresis INT0, INT1, CNTR0, CNTR1  
Hysteresis SCLK1, SCLK2, RXD1, RXD2  
Hysteresis RESET  
V
V
V
“H” input current P00–P07, P10–P17, P20–P27,  
P30–P37, P41–P47, P50, P51  
5.0  
5.0  
IIH  
µA  
IIH  
IIH  
IIH  
“H” input current RESET, P40  
VI = VCC  
µA  
µA  
µA  
4.0  
2.0  
“H” input current XIN  
VI = VCC  
“H” input current XCIN  
VI = 2.5 V  
VI = 0 V  
–5.0  
µA  
µA  
µA  
Pull-ups “off”  
VCC = 5 V, VI = 0 V  
Pull-ups “on”  
VCC = 3 V, VI = 0 V  
Pull-ups “on”  
VI = VSS  
“L” input current P00–P07, P10–P17, P20–P27,  
P30–P37, P41–P47, P50, P51  
–30  
–6  
–70  
–25  
–140  
IIL  
–45  
IIL  
“L” input current RESET, P40  
µA  
µA  
µA  
V
–5.0  
IIL  
“L” input current XIN  
VI = VSS  
–4.0  
–2.0  
IIL  
“L” input current XCIN  
VI = VSS  
VRAM  
Rbias  
RCOM5  
RCOM4  
RCOM1  
RCOM0  
RSEG5  
RSEG3  
RSEG2  
RSEG0  
RAM hold voltage  
With clock stopped  
2.0  
5.5  
LCD bias resistance (Note)  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
mA  
mA  
3
COM on-resistance with VL5 output from COM  
COM on-resistance with VL4 output from COM  
COM on-resistance with VL1 output from COM  
COM on-resistance with VL0 output from COM  
SEG on-resistance with VL5 output from SEG  
SEG on-resistance with VL3 output from SEG  
SEG on-resistance with VL2 output from SEG  
SEG on-resistance with VL0 output from SEG  
IO = –0.1 mA  
IO = ±0.1 mA  
IO = ±0.1 mA  
IO = 0.1 mA  
IO = –0.1 mA  
IO = ±0.1 mA  
IO = ±0.1 mA  
IO = 0.1 mA  
0.5  
4.5  
4.5  
0.5  
0.5  
6.5  
6.5  
0.5  
13  
In high-speed mode, VCC = 5 V  
f(XIN) = 8.0 MHz  
f(XIN) = 5.0 MHz  
6.4  
4.0  
Output transistors are isolated.  
In low-speed mode, VCC = 3 V  
f(XIN) = stopped  
8.0  
µA  
µA  
f(XCIN) = 32 kHz  
20  
Low-power consumption mode  
Output transistors are isolated.  
In low-speed mode, VCC = 3 V  
f(XIN) = stopped  
ICC  
Power source current  
f(XCIN) = 32 kHz (in wait mode)  
Low-power consumption mode  
Output transistors are isolated.  
All oscillation are stopped.  
(in stop mode)  
4.5  
0.1  
9.0  
µA  
µA  
Ta = 25°C  
Ta = 85°C  
1.0  
10  
Output transistors are isolated.  
Note: This is the value of bias resistance for one stage.  
37  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
LCD CONTRAST CONTROLLER CHARACTERISTICS (VCC = 4.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
5
Resolution  
Accuracy  
Iinearity  
Bits  
%
2.0  
LSB  
V
±0.5  
VLCD  
VCCH  
Maximum output voltage (Note)  
VCC = 5.0 V, VLCD = VCC  
4.9  
Note: When the value in the LCD contrast control register (address 003716) is “9F16”.  
38  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
External clock input cycle time  
125  
50  
twH(XIN)  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
twL(XIN)  
50  
tc(CNTR)  
200  
80  
twH(CNTR)  
twH(INT)  
CNTR0, CNTR1 input “H” pulse width  
INT0, INT1 input “H” pulse width  
80  
twL(CNTR)  
twL(INT)  
CNTR0, CNTR1 input “L” pulse width  
INT0, INT1 input “L” pulse width  
80  
80  
tc(SCLK1)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O2 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O2 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O2 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
800  
800  
370  
370  
370  
370  
220  
220  
100  
100  
tc(SCLK2)  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
tsu(RXD1–SCLK1)  
tsu(RXD2–SCLK2)  
th(SCLK1–RXD1)  
th(SCLK2–RXD2)  
Serial I/O2 input set up time  
Serial I/O1 input hold time  
Serial I/O2 input hold time  
Note: When f(φ) = 4 MHz and bit 6 of address 001A16 or 003216 is “1” (clock synchronous). Divide this value by four when f(φ) = 4 MHz and bit 6 of address  
001A16 or 003216 is “0” (clock asynchronous).  
TIMING REQUIREMENTS 2 (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
2
Typ.  
Max.  
tw(RESET)  
tc(XIN)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
External clock input cycle time  
500  
200  
200  
500  
230  
230  
230  
230  
2000  
2000  
950  
950  
950  
950  
400  
400  
200  
200  
twH(XIN)  
External clock input “H” pulse width  
External clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
twL(XIN)  
tc(CNTR)  
twH(CNTR)  
twH(INT)  
CNTR0, CNTR1 input “H” pulse width  
INT0, INT1 input “H” pulse width  
twL(CNTR)  
twL(INT)  
CNTR0, CNTR1 input “L” pulse width  
INT0, INT1 input “L” pulse width  
tc(SCLK1)  
Serial I/O1 clock input cycle time (Note)  
Serial I/O2 clock input cycle time (Note)  
Serial I/O1 clock input “H” pulse width (Note)  
Serial I/O2 clock input “H” pulse width (Note)  
Serial I/O1 clock input “L” pulse width (Note)  
Serial I/O2 clock input “L” pulse width (Note)  
Serial I/O1 input set up time  
tc(SCLK2)  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
tsu(RXD1–SCLK1)  
tsu(RXD2–SCLK2)  
th(SCLK1–RXD1)  
th(SCLK2–RXD2)  
Serial I/O2 input set up time  
Serial I/O1 input hold time  
Serial I/O2 input hold time  
Note: When f(φ) = 1 MHz and bit 6 of address 001A16 or 003216 is “1” (clock synchronous). Divide this value by four when f(φ) = 1 MHz and bit 6 of address  
001A16 or 003216 is “0” (clock asynchronous).  
39  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SWITCHING CHARACTERISTICS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
/2–30  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
td(SCLK1–TXD1)  
td(SCLK2–TXD2)  
tv(SCLK1–TXD1)  
tv(SCLK2–TXD2)  
tr(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O2 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O2 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O2 output valid time (Note 1)  
Serial I/O1 clock output rise time  
Serial I/O1 clock output fall time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tc(SCLK1)  
tc(SCLK2)  
tc(SCLK1)  
tc(SCLK2)  
/2–30  
/2–30  
/2–30  
140  
140  
–30  
–30  
CL = 100 pF  
30  
30  
30  
30  
30  
30  
tf(SCLK1)  
tr(SCLK2)  
Serial I/O2 clock output rise time  
Serial I/O2 clock output fall time  
tf(SCLK2)  
tr(CMOS)  
CMOS output rise time (Note 2)  
10  
10  
tf(CMOS)  
CMOS output fall time (Note 2)  
Notes 1: When bit 4 of the UART control register (address 001B16 or 003316) is “0”.  
2: XOUT pin is excluded.  
1kΩ  
Measurement output pin  
Measurement output pin  
100pF  
100pF  
CMOS output  
N-channel open-drain output  
Fig. 34 Circuit for measuring output switching characteristics (1)  
Fig. 35 Circuit for measuring output switching characteristics (2)  
Note: When bit 4 of the UART contronl register (address 001B16 or 003316)  
is “1” (N-channel open-drain output), and bit 7 of the serial I/O con-  
trol register (address 001A16 or 003216) is “1”.  
SWITCHING CHARACTERISTICS 2 (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
Max.  
/2–50  
twH(SCLK1)  
twH(SCLK2)  
twL(SCLK1)  
twL(SCLK2)  
td(SCLK1–TXD1)  
td(SCLK2–TXD2)  
tv(SCLK1–TXD1)  
tv(SCLK2–TXD2)  
tr(SCLK1)  
Serial I/O1 clock output “H” pulse width  
Serial I/O2 clock output “H” pulse width  
Serial I/O1 clock output “L” pulse width  
Serial I/O2 clock output “L” pulse width  
Serial I/O1 output delay time (Note 1)  
Serial I/O2 output delay time (Note 1)  
Serial I/O1 output valid time (Note 1)  
Serial I/O2 output valid time (Note 1)  
Serial I/O1 clock output rise time  
Serial I/O1 clock output fall time  
tc(SCLK1)  
tc(SCLK2)  
tc(SCLK1)  
tc(SCLK2)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
/2–50  
/2–50  
/2–50  
350  
350  
–30  
–30  
CL = 100 pF  
50  
50  
50  
50  
50  
50  
tf(SCLK1)  
tr(SCLK2)  
Serial I/O2 clock output rise time  
Serial I/O2 clock output fall time  
tf(SCLK2)  
tr(CMOS)  
CMOS output rise time (Note 2)  
20  
20  
tf(CMOS)  
CMOS output fall time (Note 2)  
Notes 1: When bit 4 of the UART control register (address 001B16 or 003316) is “0”.  
2: XOUT pin excluded.  
40  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING DIAGRAM  
tc(CNTR)  
twH(CNTR)  
twL(CNTR)  
0.8VCC  
CNTR0, CNTR1  
0.2VCC  
twH(INT)  
twL(INT)  
0.8VCC  
INT0, INT1  
0.2VCC  
tw(RESET)  
0.8VCC  
RESET  
0.2VCC  
tc(XIN)  
twH(XIN)  
twL(XIN)  
0.8VCC  
XIN  
0.2VCC  
tc(SCLK1), tc(SCLK2)  
tf  
tr  
twL(SCLK1), twL(SCLK2)  
twH(SCLK1), twH(SCLK2)  
SCLK1  
SCLK2  
0.8VCC  
0.2VCC  
tsu(RXD1 SCLK1)  
tsu(RXD2 SCLK2)  
th(SCLK1 RXD1), th(SCLK2 RXD2)  
RXD1  
RXD2  
0.8VCC  
0.2VCC  
tv(SCLK1 TXD1),  
tv(SCLK2 TXD2)  
td(SCLK1 TXD1), td(SCLK2 TXD2)  
TXD1  
TXD2  
41  
REVISION DESCRIPTION LIST  
7510 GROUP DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
1.0 First Edition  
980110  
(1/1)  
MITSUBISHI MICROCOMPUTERS  
7510 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi  
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor  
product distributor for the latest product information before purchasing a product listed herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 1998 MITSUBISHI ELECTRIC CORP.  
New publication, effective Jan. 1998.  
Specifications subject to change without notice.  

相关型号:

M37510E2156FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI

M37510E3156FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI

M37510E4156FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI

M37510E5156FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI

M37510E6-FP

8-BIT, OTPROM, 8MHz, MICROCONTROLLER, PQFP176, 24 X 24 MM, FINE PITCH, PLASTIC, QFP-176
MITSUBISHI

M37510E6-FS

8-BIT, UVPROM, 8MHz, MICROCONTROLLER, CQCC160, WINDOWED, GLASS SEALED, LCC-160
MITSUBISHI

M37510E6-XXXFP

8-BIT, MROM, 4MHz, MICROCONTROLLER, PQFP176, PLASTIC, QFP-176
RENESAS

M37510E6-XXXFP

Microcontroller, 8-Bit, OTPROM, MELPS740 CPU, 4MHz, CMOS, PQFP176, PLASTIC, QFP-176
MITSUBISHI

M37510E6156FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI

M37510E6FP

8-BIT, OTPROM, 4MHz, MICROCONTROLLER, PQFP176, PLASTIC, QFP-176
RENESAS

M37510E6FP

Microcontroller, 8-Bit, OTPROM, MELPS740 CPU, 4MHz, CMOS, PQFP176, PLASTIC, QFP-176
MITSUBISHI

M37510E6FS

8-BIT, UVPROM, 4MHz, MICROCONTROLLER, CQCC160
RENESAS