M37905F8CSP

更新时间:2024-09-18 01:55:14
品牌:MITSUBISHI
描述:16-BIT CMOS MICROCOMPUTER

M37905F8CSP 概述

16-BIT CMOS MICROCOMPUTER 16位微机的CMOS 微控制器

M37905F8CSP 规格参数

生命周期:Transferred零件包装代码:DIP
包装说明:SDIP,针数:64
Reach Compliance Code:unknownHTS代码:8542.31.00.01
风险等级:5.49Is Samacsys:N
具有ADC:YES地址总线宽度:
位大小:16最大时钟频率:20 MHz
DAC 通道:YESDMA 通道:NO
外部数据总线宽度:JESD-30 代码:R-PDIP-T64
长度:56.4 mmI/O 线路数量:52
端子数量:64最高工作温度:85 °C
最低工作温度:-20 °CPWM 通道:NO
封装主体材料:PLASTIC/EPOXY封装代码:SDIP
封装形状:RECTANGULAR封装形式:IN-LINE, SHRINK PITCH
认证状态:Not QualifiedROM可编程性:FLASH
座面最大高度:5.08 mm速度:20 MHz
最大供电电压:5.5 V最小供电电压:4.5 V
标称供电电压:5 V表面贴装:NO
技术:CMOS温度等级:OTHER
端子形式:THROUGH-HOLE端子节距:1.778 mm
端子位置:DUAL宽度:19.05 mm
uPs/uCs/外围集成电路类型:MICROCONTROLLERBase Number Matches:1

M37905F8CSP 数据手册

通过下载M37905F8CSP数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
DESCRIPTION  
<Flash memory mode>  
These are single-chip 16-bit microcomputers designed with high-per-  
formance CMOS silicon gate technology, including the internal flash  
memory and, being packaged in 64-pin plastic molded QFP or shrink  
plastic molded DIP. These microcomputers support the 7900 Series  
instruction set, which are enhanced and expanded instruction set  
and are upper-compatible with the 7700/7751 Series instruction set.  
The CPU of these microcomputers is a 16-bit parallel processor that  
can also be switched to perform 8-bit parallel processing. Also, the  
bus interface unit of these microcomputers enhances the memory  
access efficiency to execute instructions fast. Therefore, these mi-  
crocomputers are suitable for office, business, and industrial equip-  
ment controller that require high-speed processing of large data.  
Also, they are suitable for motor-control equipment since each of  
them includes the motor control circuit.  
Power supply voltage .................................................. 5 V ± 0.5 V  
Programming/Erase voltage ........................................ 5 V ± 0.5 V  
Programming method .................... Programming in a unit of word  
Erase method ............................................Block erase or Total erase  
M37905F8CFP, M37905F8CSP  
............... 4 blocks (8 Kbytes 2, 16 Kbytes 1, 28 Kbytes 1)  
Programming/Erase control by software command  
Maximum number of reprograms ............................................ 100  
APPLICATION  
Control devices for office equipment such as copiers and facsimiles  
Control devices for industrial equipment such as communication  
and measuring instruments  
For the internal flash memory, single-power-supply programming  
and erasure, using a PROM programmer or the control by the cen-  
tral processing unit (CPU), is supported. Also, each of these micro-  
computers has the memory area dedicated for storing a certain  
software which controls programming and erasure (reprogramming  
control software). Therefore, on these microcomputers, the program  
can easily be changed even after they are mounted on the board.  
Control devices for equipment, requiring motor control, such as  
inverter air conditioners and general-purpose inverters  
DISTINCTIVE FEATURES  
<Microcomputer mode>  
Number of basic machine instructions .................................... 203  
Memory  
Flash memory (User ROM area) ................................... 60 Kbytes  
RAM .............................................................................3072 bytes  
Flash memory (Boot ROM area) ..................................... 8 Kbytes  
Instruction execution time  
The fastest instruction at 20 MHz frequency ........................ 50 ns  
Single power supply .................................................... 5 V ± 0.5 V  
Interrupts ........... 8 external sources, 23 internal sources, 7 levels  
Multi-functional 16-bit timer ................................................. 10 + 3  
(Three-phase motor drive waveform or Pulse motor drive waveform  
output is available.)  
Serial I/O (UART or Clock synchronous)..................................... 3  
10-bit A-D converter .......................................... 12-channel inputs  
8-bit D-A converter ............................................2-channel outputs  
12-bit watchdog timer  
Programmable input/output (ports P1, P2, P4, P5, P6, P7, P8)......50  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
M37905F8CFP PIN CONFIGURATION (TOP VIEW)  
P1  
/CTS  
/CTS  
2
/R  
/CLK  
/RTS  
X
D
0
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P4  
P4  
P4  
P4  
P4  
P4  
2
3
4
5
6
7
/TA6OUT/RTP2  
/TA6IN/RTP2  
/TA7OUT/RTP3  
/TA7IN/RTP3  
/TA8OUT/RTP3  
/TA8IN/RTP3  
2
0
2
P1  
1
0
0
0
3
P10  
0
V
CC  
AVCC  
REF  
AVSS  
1
V
3
P4OUTCUT/INT  
0
P51  
P52  
P53  
/INT  
/INT  
/INT  
1
2
3
V
X
SS  
2
M37905F8CFP  
P8  
P8  
/AN  
/CTS  
P7  
3
/AN11/T  
/AN10/R  
/CTS  
/RTS  
D
/RTPTRG1  
/RTPTRG0  
2
X
D
2
2
1
0
6
5
4
P8  
1
9
2
/CLK  
V
V
X
X
SS  
P80/AN  
8
2
2/DA  
7/DA  
6/AN  
5/AN  
4/AN  
CONT  
OUT  
IN  
7
/AN  
P7  
P7  
P7  
RESET  
MD0  
Note: Allocation of pins TB0IN to TB2IN  
Outline 64P6N-A  
can be switched by software.  
2
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
M37905F8CSP PIN CONFIGURATION (TOP VIEW)  
P8  
P8  
/AN  
P80/AN8/CTS  
P77/AN7  
3
/AN11/TxD  
2
2
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VSS  
AVSS  
VREF  
AVCC  
2
2/AN10/RxD  
P81  
9/CTS  
2
/CLK  
2
DA1  
DA0  
3
4
2
/RTS2/  
5
/
VCC  
6
P76/AN6  
P75/AN5  
P74/AN4  
P73/AN3  
P72/AN2  
P71/AN1  
P10/CTS0/RTS0  
P11/CTS0/CLK0  
P12/RxD0  
P13/TxD0  
P14/CTS1/RTS1  
P15/CTS1/CLK1  
P16/RxD1  
P17/TxD1  
P20/TA4OUT  
P21/TA4IN  
P22/TA9OUT  
P23/TA9IN  
P24(/TB0IN)  
P25(/TB1IN)  
P26(/TB2IN)  
P27  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P70/AN0  
P67/TA3IN/RTP13  
P66/TA3OUT/RTP12  
P65/TA2IN/U/RTP11  
P64/TA2OUT/V/RTP10  
P63/TA1IN/W/RTP03  
P62/TA1OUT/U/RTP02  
P61/TA0IN/V/RTP01  
P60/TA0OUT/W/RTP00  
P57/INT7/TB2IN/IDU  
P56/INT6/TB1IN/IDV  
P55/INT5/TB0IN/IDW  
P6OUTCUT/INT4  
MD0  
Note  
Note  
MD1  
P40/TA5OUT/RTP20  
P41/TA5IN/RTP21  
P42/TA6OUT/RTP22  
P43/TA6IN/RTP23  
P44/TA7OUT/RTP30  
P45/TA7IN/RTP31  
P46/TA8OUT/RTP32  
P47/TA8IN/RTP33  
P4OUTCUT/INT0  
P51/INT1  
RESET  
XIN  
XOUT  
VCONT  
VSS  
P53/INT3/RTPTRG0  
P52/INT2/RTPTRG1  
Note: Allocation of pins TB0IN to TB2IN  
can be switched by software.  
Outline 64P4B  
3
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Data Bus (Even)  
Data Bus (Odd)  
Data Buffer DQ  
Data Buffer DQ  
Data Buffer DQ  
Data Buffer DQ  
0
1
2
3
(8)  
(8)  
(8)  
(8)  
Address Bus  
Instruction Queue Buffer Q  
Instruction Queue Buffer Q  
Instruction Queue Buffer Q  
0
1
2
(8)  
(8)  
(8)  
Instruction Queue Buffer Q  
Instruction Queue Buffer Q  
Instruction Queue Buffer Q  
3
4
5
(8)  
(8)  
(8)  
Instruction Queue Buffer Q  
Instruction Queue Buffer Q  
Instruction Queue Buffer Q  
Instruction Queue Buffer Q  
6
7
8
9
(8)  
(8)  
(8)  
(8)  
0
1
Incrementer (24)  
Program Address Register PA (24)  
Data Address Register DA (24)  
Incrementer/Decrementer (24)  
Program Counter PC (16)  
Program Bank Register PG (8)  
Data Bank Register DT (8)  
Input Buffer Register IB (16)  
Processor Status Register PS (11)  
Direct Page Register DPR0 (16)  
Direct Page Register DPR1 (16)  
Direct Page Register DPR2 (16)  
Direct Page Register DPR3 (16)  
Stack Pointer S (16)  
Index Register Y (16)  
Index Register X (16)  
Accumulator B (16)  
Accumulator A (16)  
Arithmetic Logic  
Unit (16)  
4
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
FUNCTIONS (Microcomputer mode)  
Parameter  
Functions  
203  
Number of basic machine instructions  
50 ns (the fastest instruction at f(fsys) = 20 MHz)  
Instruction execution time  
20 MHz (Max.)  
External clock input frequency f(XIN)  
System clock frequency f(fsys)  
20 MHz (Max.)  
Flash memory (User ROM area)  
60 Kbytes  
Memory size  
RAM  
3072 bytes  
8 Kbytes  
Flash memory (Boot ROM area)  
8-bit 5  
Programmable input/output  
ports  
P1, P2, P4, P6, P7  
6-bit 1  
P5  
4-bit 1  
P8  
16-bit 10  
Multi-functional timers  
TA0TA9  
16-bit 3  
TB0TB2  
(UART or Clock synchronous serial I/O) 3  
Serial I/O  
UART0, UART1, and UART2  
10-bit successive approximation method 1 (12 channels)  
A-D converter  
D-A converter  
Dead-time timer  
Watchdog timer  
Interrupts  
8-bit 2  
8-bit 3  
12-bit 1  
8 external sources, 20 internal sources. Each interrupt can be set  
to a priority level within the range of 07 by software.  
Maskable interrups  
3 internal sources.  
Non-maskable interrups  
Incorporated (externally connected to a ceramic resonator or  
quartz crystal resonator).  
Clock generating circuit  
The following multiplication ratios are available: 2,3,4.  
PLL frequency multiplier  
Power supply voltage  
Power dissipation  
5 V±0.5 V  
125 mW (at f(fsys) = 20 MHz, Typ., ; the PLL frequency multiplier  
is inactive.)  
Input/Output withstand voltage  
Output current  
5 V  
Portsinput/output  
characteristics  
5 mA  
Not available (single-chip mode only).  
20 to 85 °C  
Memory expansion  
Operating ambient temperature range  
Device structure  
CMOS high-performance silicon gate process  
(Note)  
Package  
Note:  
Packages  
M37905F8CFP  
M37905F8CSP  
64-pin plastic molded QFP (64P6N-A)  
64-pin shrink plastic moldeds DIP (64P4B)  
5
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
FUNCTIONS (Flash memory mode)  
Parameter  
Functions  
5 V±0.5 V  
Power supply voltage  
Programming/Erase voltage  
Flash memory mode  
5 V±0.5 V  
3 modes: parallel I/O, serial I/O, and CPU reprogramming modes  
Block division for erasure  
User ROM area  
Boot ROM area  
4 blocks (8 Kbytes 2, 16 Kbytes 1, 28 Kbytes 1); total of  
60 Kbytes  
1 block (8 Kbytes 1) (Note)  
Programmed per word  
User ROM area + Boot ROM area  
User ROM area  
Programming method  
Flash memory parallel I/O mode  
Flash memory serial I/O mode  
User ROM area  
Flash memory CPU reprogramming mode  
Total erase/Block erase  
User ROM area + Boot ROM area  
User ROM area  
Erase method  
Flash memory parallel I/O mode  
Flash memory serial I/O mode  
User ROM area  
Flash memory CPU reprogramming mode  
Programming/Erase control  
Number of commands  
Programming/Erase control by software commands  
6 commands  
100  
Maximum number of reprograms  
Note: On shipment, our reprogramming control firmware for the flash memory serial I/O mode has been stored into the boot ROM area.  
6
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION (MICROCOMPUTER MODE)  
Input/  
Output  
Pin  
Vcc, Vss  
MD0  
Name  
Power supply input  
MD0  
Functions  
Apply 5 V±0.5 V to Vcc, and 0 V to Vss.  
Input  
Input  
Connect this pin to VSS.  
MD1  
MD1  
Connect this pin to Vss.  
RESET  
XIN  
Reset input  
Clock input  
Clock output  
Input  
The microcomputer is reset when Llevel is applies to this pin.  
Input  
These are input and output pins of the internal clock generating circuit. Connect a  
ceramic resonator or quartz-crystal oscillator between pins XIN and XOUT. When an  
external clock is used, the clock source should be connected to pin XIN, and pin  
XOUT should be left open.  
XOUT  
Output  
VCONT  
Filter circuit connection  
When using the PLL frequency multiplier, connect this pin to the filter circuit. When  
not using the PLL frequency multiplier, this pin should be left open.  
AVcc,  
AVss  
Analog power supply input  
Power supply input pins for the A-D and D-A converters. Connect AVcc to Vcc, and  
AVss to Vss externally.  
VREF  
Reference voltage input  
I/O port P1  
Input  
I/O  
This is the reference voltage input pin for the A-D and D-A converters.  
P10P17  
Port P1 is an 8-bit I/O port. This port has an I/O direction register, and each pin can  
be programmed for input or output. These pins enter the input mode ar reset. These  
pins also function as I/O pins of UART0, 1.  
P20P27  
P40P47  
I/O port P2  
I/O  
In addition to having the same functions as port P1, these pins function as I/O pins  
for timers A4 and A9. Also, they can be programmed to function as input pins for tim-  
ers B0 to B2.  
I/O port P4  
I/O port P5  
I/O  
I/O  
In addition to having the same functions as port P1, these pins function as I/O pins  
for timers A5 to A8. Also, they function as output pins for motor drive waveform.  
P51P53,  
P55P57  
In addition to having the same functions as port P1, these pins function as input pins  
for INT1 to INT3 and INT5 to INT7. Also, pins P55 to P57 function as input pins for tim-  
ers B0 to B2 and as input pins for position data in the three-phase waveform mode;  
and pins P52 and P53 function as trigger-input pins in the pulse output port mode.  
P60P67  
P70P77  
P80P83  
I/O port P6  
I/O port P7  
I/O port P8  
I/O  
I/O  
I/O  
In addition to having the same functions as port P1, these pins function as I/O pins  
for timers A0 to A3. Also, they function as motor drive waveform output pins.  
In addition to having the same functions as port P1, these pins function as input pins  
for the A-D converter. Also, P77 functions as an output pin for the D-A converter.  
In addition to having the same functions as port P1, these pins function as input pins  
for the A-D converter. Also, these pins function as I/O pins for UART2, and pin P80  
functions as an output pin for the D-A converter.  
P4OUTCUT P4OUTCUT input  
P6OUTCUT P6OUTCUT input  
Input  
Input  
This pin has the function to forcibly place port P4 pins in the input mode. Also, this  
pin functions as an input pin for INT0; and this pin is used to input a signal, which  
forcibly cuts off a motor drive waveform output.  
This pin has the function to forcibly place port P6 pins in the input mode. Also, this  
pin functions as an input pin for INT4; and this pin is used to input a signal, which  
forcibly cuts off a motor drive waveform output.  
7
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION (FLASH MEMORY SERIAL I/O MODE)  
Input  
/Output  
Pin  
Name  
Functions  
Input  
Input  
Input  
Input  
Output  
Power supply input  
MD0  
VCC, VSS  
MD0  
Apply 5 V ± 0.5 V to Vcc, and 0 V to Vss.  
Connect this pin to Vss.  
MD1  
MD1  
Connect this pin to Vss via a resistor of 10 kto 100 k.  
The reset input pin.  
_____  
RESET  
XIN  
Reset input  
Clock input  
Connect a ceramic oscillator between the XIN and XOUT pins, or input an external  
clock from the XIN pin with the XOUT pin left open.  
Clock output  
Analog supply input  
Reference voltage input  
Input port P1  
Input port P2  
SCLK input  
XOUT  
AVcc, AVss  
VREF  
Connect AVcc to Vcc, and AVss to Vss.  
Input  
Input  
Input  
Input  
I/O  
Input an arbitrary level within the range of VSSVCC. (This is not used in the flash memory serial I/O mode.)  
Input Hor L, or leave them open. (This is not used in the flash memory serial I/O mode.)  
Input Hor L, or leave them open. (This is not used in the flash memory serial I/O mode.)  
This is an input pin for a serial clock.  
P10P17  
P20P23, P27  
P24  
P25  
P26  
SDA I/O  
This is an I/O pin for serial data. Connect this pin to VCC via a resistor (about 1 k).  
This is an output pin for the BUSY signal.  
Output  
Input  
Input  
Input  
Input  
BUSY output  
P4OUTCUT input  
P6OUTCUT input  
Input port P4  
Input port P5  
P4OUTCUT  
P6OUTCUT  
P40P47  
P55P53,  
P55P57  
P60P67  
P70P74  
P80P83  
VCONT  
Input H.  
Input H.  
Input Hor L, or leave them open. (This is not used in the flash memory serial I/O mode.)  
Input Hor L, or leave them open. (This is not used in the flash memory serial I/O mode.)  
Input  
Input  
Input  
Input port P6  
Input Hor L, or leave them open. (This is not used in the flash memory serial I/O mode.)  
Input Hor L, or leave them open. (This is not used in the flash memory serial I/O mode.)  
Input Hor L, or leave them open. (This is not used in the flash memory serial I/O mode.)  
Input port P7  
Input port P8  
Filter circuit connection  
Connect this pin to the filter circuit, or leave this pin open. (This is not used in the flash  
memory serial I/O mode.)  
8
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
BASIC FUNCTION BLOCKS  
Each of the M37905F8CFP and M37905F8CSP has the same func-  
tion as that of the M37905M4C-XXXFP except for the following.  
Therefore, for details except for the following, refer to the datasheet  
of the M37905M4C-XXXFP.  
Internal ROM: type (flash memory) and size  
RAM size  
MEMORY  
Figure 1 shows the memory map.  
00000016  
00000016  
0000FF  
0001001166  
Peripheral devices  
control registers  
00000016  
0000FF16  
00FFB416  
Peripheral devices  
control registers  
(See Figures 2 and 3.)  
Unused area  
0003FF16  
00040016  
Bank 016  
Internal RAM  
3072 bytes  
000FFF16  
00100016  
Interrupt vector table  
UART2 transmit  
UART2 receive  
Timer A9  
00FFFF16  
Timer A8  
Timer A7  
Timer A6  
Internal ROM  
60 Kbytes  
Timer A5  
INT  
INT  
INT  
7
6
5
Reserved area  
Address matching detect  
Reserved area  
Reserved area  
00FFB416  
00FFFF16  
INT  
INT  
4
3
A-D conversion  
UART1 transmit  
UART1 receive  
UART0 transmit  
UART0 receive  
Timer B2  
Timer B1  
Timer B0  
Timer A4  
Timer A3  
Timer A2  
Timer A1  
Timer A0  
INT  
INT  
INT  
2
1
0
Reserved area  
Watchdog timer  
DBC  
BRK instruction  
Zero divide  
00FFFE16  
RESET  
Fig. 1 Memory map of M37905F8CFP, M37905F8CSP (Single-chip mode)  
9
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Address (Hexadecimel notation)  
Address (Hexadecimel notation)  
Reserved area (Note)  
Reserved area (Note)  
Reserved area (Note)  
Port P1 register  
00000016  
00000116  
00000216  
00000316  
00004016 Count start register 0  
00004116 Count start register 1  
00004216 One-shot start register 0  
One-shot start register 1  
Up-down register 0  
Timer A clock division select register  
00004316  
00004416  
00004516  
00004616  
00004716  
00004816  
00004916  
00004A16  
00004B16  
00004C16  
00004D16  
00004E16  
00004F16  
00005016  
00005116  
00005216  
00005316  
00005416  
00005516  
00005616  
00000416 Reserved area (Note)  
00000516 Port P1 direction register  
00000616 Port P2 register  
00000716 Reserved area (Note)  
00000816 Port P2 direction register  
00000916 Reserved area (Note)  
00000A16 Port P4 register  
00000B16 Port P5 register  
00000C16 Port P4 direction register  
00000D16 Port P5 direction register  
00000E16 Port P6 register  
00000F16 Port P7 register  
00001016 Port P6 direction register  
00001116 Port P7 direction register  
00001216 Port P8 register  
00001316  
Timer A0 register  
Timer A1 register  
Timer A2 register  
Timer A3 register  
Timer A4 register  
Timer B0 register  
Timer B1 register  
00001416 Port P8 direction register  
00001516  
Timer B2 register  
Reserved area (Note)  
Reserved area (Note)  
Reserved area (Note)  
Reserved area (Note)  
Timer A0 mode register  
00001616  
00001716  
00001816  
00001916  
00001A16  
00001B16  
00001C16  
00001D16  
00005716 Timer A1 mode register  
00005816 Timer A2 mode register  
00005916 Timer A3 mode register  
00005A16 Timer A4 mode register  
00005B16 Timer B0 mode register  
00005C16 Timer B1 mode register  
00005D16 Timer B2 mode register  
Processor mode register 0  
Processor mode register 1  
00001E16 A-D control register 0  
00001F16 A-D control register 1  
00005E16  
00005F16  
00002016  
00006016 Watchdog timer register  
A-D register 0  
00002116  
Watchdog timer frequency select register  
00006116  
00002216  
00006216 Particular function select register 0  
00006316 Particular function select register 1  
A-D register 1  
00002316  
00002416  
00006416  
00006516  
Particular function select register 2  
Reserved area (Note)  
A-D register 2  
00002516  
00002616  
00006616 Debug control register 0  
00006716 Debug control register 1  
00006816  
00006916 Address comparison register 0  
00006A16  
A-D register 3  
00002716  
00002816  
A-D register 4  
00002916  
00002A16  
00002B16  
A-D register 5  
00006B16  
Address comparison register 1  
00002C16  
00002D16  
00002E16  
00002F16  
00006C16  
00006D16  
00006E16  
00006F16  
A-D register 6  
3 interrupt control register  
4 interrupt control register  
INT  
INT  
A-D register 7  
00003016 UART0 transmit/receive mode register  
00003116 UART0 band rate register (BRG0)  
00007016 A-D conversion interrupt control register  
00007116 UART0 transmit interrupt control register  
00007216 UART0 receive interrupt control register  
00007316 UART1 transmit interrupt control register  
00007416 UART1 receive interrupt control register  
00007516 Timer A0 interrupt control register  
00007616 Timer A1 interrupt control register  
00007716 Timer A2 interrupt control register  
00007816 Timer A3 interrupt control register  
00007916 Timer A4 interrupt control register  
00007A16 Timer B0 interrupt control register  
00007B16 Timer B1 interrupt control register  
00007C16 Timer B2 interrupt control register  
00003216  
UART0 transmit buffer register  
00003316  
00003416 UART0 transmit/receive control register 0  
00003516 UART0 transmit/receive control register 1  
00003616  
UART0 receive buffer register  
00003716  
00003816 UART1 transmit/receive mode register  
00003916 UART1 baud rate register (BRG1)  
00003A16  
UART1 transmit buffer register  
00003B16  
00003C16 UART1 transmit/receive control register 0  
00003D16 UART1 transmit/receive control register 1  
00007D16  
00007E16  
00007F16 INT  
0 interrupt control register  
1 interrupt control register  
2 interrupt control register  
INT  
INT  
00003E16  
UART1 receive buffer register  
00003F16  
Note: Do not write to this address.  
Fig. 2 Location of SFRs (1)  
10  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Address (Hexadecimel notation)  
Address (Hexadecimel notation)  
Reserved area (Note)  
Reserved area (Note)  
Reserved area (Note)  
Reserved area (Note)  
00008016  
00008116  
00008216  
00008316  
0000C016  
0000C116  
0000C216  
0000C316  
00008416 Reserved area (Note)  
0000C416 Up-down register  
0000C516  
1
Reserved area (Note)  
Reserved area (Note)  
Reserved area (Note)  
00008516  
00008616  
00008716  
00008816  
00008916  
0000C616  
0000C716  
Timer A5 register  
0000C816  
0000C916  
Timer A6 register  
00008A16 Reserved area (Note)  
00008B16  
0000CA16  
0000CB16  
Timer A7 register  
Reserved area (Note)  
Reserved area (Note)  
Reserved area (Note)  
Reserved area (Note)  
00008C16  
00008D16  
00008E16  
00008F16  
00009016  
00009116  
00009216  
00009316  
00009416  
00009516  
0000CC16  
0000CD16  
0000CE16  
0000CF16  
Timer A8 register  
Timer A9 register  
0000D016  
Timer A0  
Timer A1  
Timer A2  
1
1
1
register  
0000D116  
0000D216  
0000D316  
0000D416  
0000D516  
register  
register  
External interrupt input read-out register  
00009616 D-A control register  
00009716  
0000D616 Timer A5 mode register  
0000D716  
Timer A6 mode register  
D-A register 0  
D-A register 1  
00009816  
00009916  
00009A16  
00009B16  
00009C16  
00009D16  
00009E16  
00009F16  
0000D816 Timer A7 mode register  
0000D916 Timer A8 mode register  
0000DA16 Timer A9 mode register  
A-D control register 2  
0000DB16  
0000DC16 Comparator function select register 0  
0000DD16 Comparator function select register 1  
Reserved area (Note)  
Reserved area (Note)  
Flash memory control register  
Comparator result register 0  
0000DE16  
Comparator result register 1  
A-D register 8  
0000DF16  
0000E016  
0000E116  
0000E216  
0000E316  
0000E416  
0000E516  
0000E616  
0000E716  
0000A016 Pulse output control register  
0000A116  
0000A216 Pulse output data register 0  
0000A316  
0000A416 Pulse output data register 1  
0000A516  
0000A616 Waveform output mode register  
0000A716 Dead-time timer  
A-D register 9  
A-D register 10  
A-D register 11  
0000A816 Three-phase output data register 0  
0000A916 Three-phase output data register 1  
0000E816 Reserved area (Note)  
0000E916 Reserved area (Note)  
0000EA16 Reserved area (Note)  
0000EB16 Reserved area (Note)  
0000EC16 Reserved area (Note)  
0000ED16 Reserved area (Note)  
0000EE16 Reserved area (Note)  
Position-data-retain function control register  
0000AA16  
0000AB16  
0000AC16  
0000AD16  
0000AE16  
0000AF16  
0000B016  
0000B116  
0000B216  
0000B316  
0000B416  
Serial I/O pin control register  
function control register  
Port P2 pin  
0000EF16  
0000F016  
Reserved area (Note)  
UART2 transmit/receive mode register  
UART2 band rate register (BRG2)  
0000F116 UART2 transmit interrupt control register  
0000F216 UART2 receive interrupt control register  
0000F316  
UART2 transmit buffer register  
UART2 transmit/receive control register 0  
0000F416  
0000B516 UART2 transmit/receive control register 1  
0000F516 Timer A5 interrupt control register  
0000F616 Timer A6 interrupt control register  
0000B616  
UART2 receive buffer register  
0000B716  
0000F716  
Timer A7 interrupt control register  
Reserved area (Note)  
0000B816  
0000B916  
0000BA16  
0000BB16  
0000BC16  
0000BD16  
0000BE16  
0000BF16  
0000F816 Timer A8 interrupt control register  
0000F916 Timer A9 interrupt control register  
0000FA16  
0000FB16  
0000FC16  
Reserved area (Note)  
Reserved area (Note)  
Clock control register 0  
Reserved area (Note)  
Reserved area (Note)  
Reserved area (Note)  
0000FD16  
0000FE16  
0000FF16 INT  
INT  
INT  
5
6
7
interrupt control register  
interrupt control register  
interrupt control register  
Note: Do not write to this address.  
Fig. 3 Location of SFRs (2)  
11  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
FLASH MEMORY MODE  
This internal flash memory has the boot ROM area storing the repro-  
gramming control software for reprogramming in the CPU repro-  
gramming mode and flash memory serial I/O mode, as well as the  
user ROM area storing a certain control software for the normal op-  
eration in the microcomputer mode.  
These microcomputers contain the flash memory; and single-power-  
supply reprogramming is available to this. These microcomputers  
have the following three modes, enabling reading/programming/era-  
sure for the flash memory:  
• Flash memory parallel I/O mode and Flash memory serial I/O  
mode, where the flash memory is handled by using an external pro-  
grammer.  
Although our reprogramming control firmware for the flash memory  
serial I/O mode has been stored into this boot ROM area on ship-  
ment, the user-original reprogramming control software which is  
more appropriate for the user’s system is reprogrammable into this  
area, instead. Note that the reprogramming for the boot ROM area is  
enabled only in the flash memory parallel I/O mode.  
• CPU reprogramming mode, where the flash memory is handled by  
the central processing unit (CPU).  
As shown in Figure 4, the flash memory is divided into several  
blocks, and erasure per block is possible.  
00100016  
00FFFF16  
00100016  
28 Kbytes  
16 Kbytes  
007FFF16  
00800016  
00BFFF  
00C0001166  
8 Kbytes  
8 Kbytes  
00DFFF16  
00E00016  
00FFFF16  
Fig. 4 M37905F8CFP, M37905F8CSP: block configuration of internal flash memory  
12  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Flash Memory Parallel I/O Mode  
User ROM Area and Boot ROM Area  
The user ROM area and boot ROM area can be reprogrammed in  
the flash memory parallel I/O mode.  
The flash memory parallel I/O mode is used to manipulate the inter-  
nal flash memory with a parallel programmer. This parallel program-  
mer uses the software commands listed in Table 1 to do the flash  
memory manipulations, such as read/programming/erase opera-  
tions.  
The programming and block erase operations can be performed only  
to these areas.  
The boot ROM area, 8 Kbytes in size, is assigned to addresses  
0000161FFF16, so that programming and block erase operations  
can be performed only to this area. (Access to any address out of  
this area is prohibited).  
Table 1. Software commands (flash memory parallel I/O mode  
Software Command  
Read Array  
The erasable block in the boot ROM area is only one block, consist-  
ing of 8 Kbytes. The reprogramming control firmware to be used in  
the flash memory serial I/O mode has been stored to this boot ROM  
area on our shipment. Therefore, do not reprogram the boot ROM  
area if the user uses the flash memory serial I/O mode.  
Do not program to addresses FF9016 to FF9F16 because this area is  
the reserved area for the programmer.  
Read Status Register  
Clear Status Register  
Programming  
Block Erase  
Erase All Block  
Note that, when the boot ROM area is read out from the CPU in the  
CPU reprogramming mode, described later, its addresses will be  
shifted to E00016FFFF16.  
Addresses FF9016 to FF9F16 are the reserved area for the parallel  
programmer. Therefore, when the user uses the flash memory paral-  
lel I/O mode, do not program to this area.  
13  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Flash Memory Serial I/O Mode  
In the flash memory serial I/O mode, addresses, data, and software  
commands, which are required to read/program/erase the internal  
flash memory, are serially input and output with a fewer pins and the  
dedicated serial programmer.  
In this mode, being different from the flash memory parallel I/O  
mode, the CPU controls reprogramming of the flash memory (using  
the CPU reprogramming mode), serial input of the reprogramming  
data, etc.  
The reprogramming control firmware for the flash memory serial I/O  
mode has been stored in the boot ROM area on shipment of the  
product from us. Note that, then, the flash memory serial I/O mode  
will become unavailable if the boot ROM area has been repro-  
grammed in the flash memory parallel I/O mode.  
Note that, also, this reprogramming control firmware for the flash  
memory serial I/O mode is subject to change.  
Figures 5 and 6 show the pin connections in the flash memory serial  
I/O mode.  
The three pins, SCLK, SDA, and BUSY, are used to input and output  
serial data.  
The SCLK pin is the input pin of external transfer clocks. The SDA  
pin is the I/O pin of transmit and receive data, and its output acts as  
the N-channel open-drain output. To the SDA pin, connect an exter-  
nal pullup resistor (about 1 k). The BUSY pin is the output pin of the  
BUSY flag (CMOS output) and goes Hduring BUSY periods owing  
to a certain operation, such as transmit, receive, erase, program-  
ming, etc.  
Transmit and receive data are serially transferred 8 bits at a time.  
In the flash memory serial I/O mode, only the user ROM area can be  
reprogrammed; the boot ROM area is not accessible.  
Addresses FF9016 to FF9F16 are the reserved area for the serial  
programmer. Therefore, when the user uses the flash memory serial  
I/O mode, do not program to this area.  
14  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
P1  
/CTS  
/CTS  
2
/RxD  
/CLK  
/RTS  
0
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
P4  
P4  
P4  
P4  
P4  
P4  
P4OUTCUT/INT  
P5 /INT  
P5 /INT  
/INT  
2
/TA6OUT/RTP2  
/TA6IN/RTP2  
/TA7OUT/RTP3  
/TA7IN/RTP3  
/TA8OUT/RTP3  
/TA8IN/RTP3  
2
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
P1  
1
0
0
3
3
P10  
0
0
4
0
Vcc  
5
1
AVcc  
6
2
V
REF  
7
3
AVss  
Vss  
0
(Note 3)  
(Note 2)  
1
1
P8  
P8  
/AN  
/CTS  
P7  
3
/AN11/TxD  
/AN10/RxD  
/CTS /CLK  
/RTS  
/AN  
P7  
P7  
P7  
2
2
2/RTPTRG1  
2
2
P5  
3
3/RTPTRG0  
Vss  
P8  
1
9
2
2
P80  
/AN  
8
2
2
/DA  
1
0
6
5
4
V
CONT  
7
7/DA  
X
X
OUT  
6/AN  
IN  
5/AN  
RESET  
MD0  
RESET  
4/AN  
Notes 1: Allocation of pins TB0IN to TB2IN  
can be switched by software.  
2: Connected to the oscillation circuit.  
3: Recommended to be connected with  
V
CC via a resistor.  
: Connected to a serial programmer.  
Outline 64P6N-A  
Fig. 5 Pin connection of M37905F8CFP in flash memory serial I/O mode (outline: 64P6N-A)  
15  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
V
CC  
1
2
64  
63  
62  
P8  
P8  
/AN  
/CTS  
P7  
3
/AN11 /T  
/AN10 /R  
/CTS /CLK  
/RTS /DA  
/AN /DA  
P7  
P7  
P7  
P7  
P7  
P7  
P7  
XD2  
Vss  
AVss  
2
XD2  
3
4
P8  
1
9
2
2
VREF  
61  
60  
AVcc  
Vcc  
P80  
/AN  
8
2
2
1
5
6
7
7
0
59  
58  
57  
6
/AN  
/AN  
6
5
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
MD1  
P4 /TA5OUT/RTP2  
P4 /TA5IN/RTP2  
P4 /TA6OUT/RTP2  
P4 /TA6IN/RTP2  
P4 /TA7OUT/RTP3  
P4 /TA7IN/RTP3  
P4 /TA8OUT/RTP3  
P4 /TA8IN/RTP3  
P4OUTCUT/INT  
P5 /INT  
0/CTS  
0
/RTS  
0
7
8
5
1
/CTS  
/R  
/T  
/CTS  
0
/CLK  
0
2
X
D
0
4
/AN  
/AN  
4
3
9
56  
3
3
XD  
0
10  
11  
55  
54  
2
/AN  
/AN  
/AN  
2
1
0
4
1
/RTS  
1
5
/CTS  
/R  
/T  
1/CLK  
1
1
12  
13  
53  
52  
51  
6
XD  
1
0
P6  
P6 /TA3OUT/RTP1  
P6 /TA2IN/U/RTP1  
P6 /TA2OUT/V/RTP1  
P6 /TA1IN/W/RTP0  
P6 /TA1OUT/U/RTP0  
P6 /TA0IN/V/RTP0  
P6 /TA0OUT/W/RTP0  
P5 /INT /TB2IN/IDU  
P5 /INT /TB1IN/IDV  
P5 /INT /TB0IN/IDW  
P6OUTCUT/INT  
7/TA3IN/RTP1  
3
7
XD  
1
14  
15  
0
/TA4OUT  
6
2
50  
49  
5
1
1
/TA4IN  
16  
17  
4
0
2/TA9OUT  
48  
47  
3/TA9IN  
3
3
18  
19  
2
2
SCLK  
SDA  
4
(/ TB0IN  
(/ TB1IN  
(/ TB2IN  
)
)
)
46  
45  
44  
43  
5
1
1
(Note 1)  
20  
21  
0
0
6
BUSY  
7
7
7
22  
23  
(Note 1)  
(Note 3)  
MD1  
6
6
42  
41  
40  
0
0
5
5
24  
4
1
1
25  
26  
MD0  
RESET  
2
2
39  
38  
3
3
RESET  
27  
28  
X
IN  
OUT  
CONT  
4
0
(Note 2)  
37  
36  
X
5
1
29  
30  
6
2
V
Vs  
35  
34  
s
7
3
P53/INT  
3
/RTPTRG0  
/RTPTRG1  
31  
32  
(Note 3)  
0
33  
P52/INT  
2
1
1
V
SS  
Notes 1: Allocation of pins TB0IN to TB2IN  
can be switched by software.  
2: Connected to the oscillation circuit.  
3: Recommended to be connected with  
VCC via a resistor.  
: Connected to a serial programmer.  
Outline 64P4B  
Fig. 6 Pin connection of M37905F8CSP in flash memory serial I/O mode (outline: 64P4B)  
16  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
CPU Reprogramming Mode  
Note that addresses of the boot ROM area depend on the accessing  
ways to the boot ROM area, When accessing in the flash memory  
parallel I/O mode, these addresses will be shifted to 000016 to  
1FFF16. On the other hand, when accessing with the CPU, these ad-  
dresses will be shifted to E00016 to FFFF16.  
The CPU reprogramming mode is used to perform the operations for  
the internal flash memory (reading, programming, erasing) under  
control of the CPU.  
In this mode, only the user ROM area can be reprogrammed; the  
boot ROM area cannot be reprogrammed.  
Reset removal with both of the MD0 and MD1 pins held “L” invokes  
the normal microcomputer mode, and the CPU operates using the  
control software stored in the user ROM area. In this case, the boot  
ROM area is not accessible.  
The user-original reprogramming control software for the CPU repro-  
gramming mode can be stored in either the user ROM area or the  
boot ROM area.  
Because the CPU cannot read out the flash memory in the CPU re-  
programming mode, the above software must be transferred to the  
internal RAM in advance to be executed.  
Removing reset with the MD0 pin held “L” and the MD1 pin “H”, the  
CPU starts its operation using the reprogramming control software  
stored in the boot ROM area. This mode is called the boot mode. The  
reprogramming control software in the boot ROM area can also re-  
program the user ROM area.  
Boot Mode  
After reset removal, be sure not to change the status at pins MD0  
and MD1.  
The user-original reprogramming control software for the CPU repro-  
gramming mode must be stored into the user ROM area or the boot  
ROM area in the flash memory parallel I/O mode in advance. (If this  
program has been stored into the boot ROM area, the flash memory  
serial I/O mode will become unavailable).  
7
6
5
4
3
2
1
0
Address  
Flash memory control register  
RY/BY status bit  
9E16  
0: Busy (Programming or erasing is active.)  
1: Ready  
CPU reprogramming mode select bit (Note 2)  
0: Normal mode (Software commands are ignored.)  
1: CPU reprogramming mode (Software commands are acceptable.)  
Flash memory reset bit (Note 3)  
0: Normal operation  
1: Reset  
User ROM area select bit (Note 4)  
(Valid only in the boot mode.)  
0: Boot ROM area access  
1: User ROM area access  
Notes 1: The contents of the flash memory control register after reset is removed are XX000001.  
2: To set 1, writing of 0to bit 1 and subsequent writing of 1to bit 1 are necessary. Writing to bit 1 must be  
performed by the user-original reprogramming control software in the internal RAM.  
3: This bit is valid only when bit 1 = 1. Before setting this bit to 0, be sure to confirm that bit 0 = 1after  
setting this bit to 1(reset). This bit 3 must be controlled with bit 1 = 1.  
4: Writing to bit 5 must be performed by the user-original reprogramming control software in the internal RAM.  
Fig. 7 Bit configuration of flash memory control register  
17  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Function overview (CPU reprogramming mode)  
The CPU reprogramming mode is available in the single-chip mode,  
memory expansion mode, and boot mode to reprogram the user  
ROM area only.  
chart, and be sure to follow this flowchart. As shown in Note 1 of Fig-  
ure 8, before selecting the CPU reprogramming mode, set 0to the  
processor mode register 1s bit 7 (the internal ROM bus cycle select  
bit) and set flag I to 1to avoid an interrupt request input.  
When a watchdog timer interrupt request is generated in the CPU  
reprogramming mode, when an input to the RESET pin is L, or  
when the software reset is performed, the flash memory control cir-  
cuit and flash memory control register will be reset.  
In the CPU reprogramming mode, the CPU erases, programs, and  
reads the internal flash memory by writing software commands. Note  
that the user-original reprogramming control software must be trans-  
ferred to the internal RAM in advance to be executed.  
The CPU reprogramming mode becomes active when 1is written  
into the flash memory control registers bit 1 (the CPU reprogram-  
ming mode select bit) shown in Figure 7, and software commands  
become acceptable.  
When the flash memory is reset during the erase or programming  
operation, this operation is cancelled and the target blocks data will  
be invalid. Just before writing a software command related to the  
erase/programming operation, be sure to write to the watchdog  
timer. In the CPU reprogramming mode, be sure not to use the STP  
and WIT instructions.  
In the CPU reprogramming mode, software commands and data are  
all written to and read from even addresses (Note that address A0 in  
byte addresses = 0.) 16 bits at a time. Therefore, a software com-  
mand consisting of 8 bits must be written to an even address; there-  
fore, any command written to an odd address will be invalid. Since  
the write data at the 2nd cycle of a programming command consists  
of 16 bits, this data must be written to even and odd addresses.  
The seaquencer in the flash memory controls the erase and pro-  
gramming operations. What the status of the seaquencer operation  
is and whether the programming or erase operation has been com-  
pleted normally or terminated by an error can be examined by read-  
ing the flash memory control register.  
Figure 7 shows the bit configuration of the flash memory control reg-  
ister.  
Bit 0 (the RY/BY status bit) is a read-only bit for indicating the sea-  
quencer operation. This bit goes to 0(BUSY) while the automatic  
programming/erase operation is active and goes to 1(READY) dur-  
ing the other operations.  
Bit 1 serves as the CPU reprogramming mode select bit. Writing of  
1to this bit selects the CPU reprogramming mode, and software  
commands will be acceptable. Because the CPU cannot directly ac-  
cess the internal flash memory in the CPU reprogramming mode,  
writing to this bit 1 must be performed by the user-original repro-  
gramming control software which has been transferred to the inter-  
nal RAM in advance. To set bit 1 to 1, it is necessary to write 0and  
1to this bit 1 successively. On the other hand, to clear this bit to 0,  
it is sufficient only to write 0.  
Bit 3 (the flash memory reset bit) resets the control circuit of the in-  
ternal flash memory and is used when the CPU reprogramming  
mode is terminated or when an abnormal access to the flash  
memory happens. Writing of 1to bit 3 with the CPU reprogramming  
mode select bit = 1preforms the reset operation. To remove the  
reset, write 0to bit 3 after confirming bit 0 (the RY/BY status bit) be-  
comes 1.  
Bit 5 serves as the user ROM area select bit and is valid only in the  
boot mode. Setting this bit to 1in the boot mode switches an acces-  
sible area from the boot ROM area to the user ROM area. To use the  
CPU reprogramming mode in the boot mode, set this bit to 1. Note  
that when the microcomputer is booted up in the user ROM area,  
only the user ROM area is accessible and bit 5 is invalid; on the other  
hand, when the microcomputer is in the boot mode, bit 5 is valid in-  
dependent of the CPU reprogramming mode. To rewrite bit 5, ex-  
ecute the user-original reprogramming control software transferred  
to the internal RAM in advance.  
Figure 8 shows the CPU reprogramming mode set/termination flow-  
18  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Software Commands  
Table 2 lists the software commands.  
Start  
By writing a software command after the CPU reprogramming mode  
select bit has been set to 1, erasing, programming, etc. can be  
specified. Note that, at software commandsinput, the high-order  
byte (D8D15) is ignored. (Except for the write data at the 2nd cycle  
of a programming command.)  
Single-chip mode,  
Memory expansion mode,  
or Boot mode  
Software commands are explained as below.  
Read Array Command (FF16)  
The processor mode register 1 is set (Note 1).  
Flag I is set to 1.  
By writing command code FF16at the 1st bus cycle, the microcom-  
puter enters the read array mode. If an address to be read is input in  
the next or the following bus cycles, the contents at the specified ad-  
dress are output to the data bus (D0 to D15) in a unit of 16 bits.  
The read array mode is maintained until writing of another software  
command.  
The user-original reprogramming control software  
for the CPU reprogramming mode is transferred to  
the internal RAM.  
Jump to the above software in the internal RAM.  
(The operations shown below will be executed by  
the above software in this RAM.)  
Read Status Register Command (7016)  
Writing command code 7016at the 1st bus cycle outputs the con-  
tents of the status register to the data bus (D0-D7) by a read at the  
2nd bus cycle.  
(Only in the boot mode.)  
The user ROM area select bit is set to 1.  
The status register is explained later.  
Clear Status Register Command (5016)  
This command clears two status bits (SR.4, 5) each of which is set  
to 1to indicate that the operation has been terminated by an error.  
To clear these bits, write command code 5016at the 1st bus cycle.  
Writing of 1to the CPU reprogramming mode select bit.  
(Writing of 0Writing of 1)  
Programming Command (4016)  
Operations such as erasing, programming are  
executed by using software commands.  
This command facilitates programming of 1 word (2 bytes) at a time.  
To initiate programming, write command code 4016at the 1st bus  
cycle; when write data is written in a unit of 16 bits at the 2nd bus  
cycle, the address is specified at the same time. Upon completion of  
data writing, automatic programming (data programming and verifi-  
cation) operation is started.  
Read array command is executed, or reset is  
performed by setting the flash memory reset bit.  
(Writing of 1Writing of 0) (Note 2)  
The completion of the automatic programming operation is con-  
firmed by a read of the flash memory control register. The RY/BY sta-  
tus bit of the flash memory control register goes 0during the  
automatic programming operation; and also, it goes 1after the  
end of it.  
Writing of 0to the CPU reprogramming mode  
select bit.  
(Only in the boot mode.)  
Writing of 0to user ROM area select bit (Note 3).  
Before execution of the next command, be sure to confirm that the  
RY/BY status bit is set to 1(READY). During the automatic pro-  
gramming operation, writing of commands and access to the flash  
memory must not be performed.  
Completed  
When programming continuously, the programming command can  
be executed with the read status register mode kept if there is no  
programming error. Simultaneously with start of the automatic pro-  
gramming, the read status register mode is automatically active. In  
this case, the read status register mode is retained until the next read  
array command (FF16) is written or until the reset is performed by  
using the flash memory reset bit.  
Notes 1: The processor mode register 1s bit 7 (address 5F16, the  
internal ROM bus cycle select bit) must be 0(bus cycle  
= 3φ).  
2: To terminate the CPU reprogramming mode after the  
erase and programming operations have been  
completed, be sure to execute the read array command  
or perform the flash memory reset operation.  
3: This bit may remain 1. However, if this bit is 1, the  
user ROM area access is specified.  
Reading out the status register after the automatic programming op-  
eration is completed reports the result of it. For details, refer to the  
section on the status register.  
Figure 9 shows an example of the programming flowchart.  
Additional programming to any word that has already been pro-  
grammed is prohibited.  
Fig. 8 CPU reprogramming mode set/termination flowchart  
19  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Table 2. Software commands (CPU reprogramming mode)  
1st cycle  
2nd cycle  
Command  
Data  
(D0 to D7)  
Mode  
Address  
Data  
Mode  
Address  
Read Array  
FF16  
7016  
5016  
4016  
2016  
2016  
Write  
Write  
Write  
Write  
Write  
Write  
X (Note 2)  
Read  
X
SRD (Note 3)  
Read Status Register  
Clear Status Register  
Programming  
X
X
X
X
X
Write  
WA (Note 4) WD (Note 4)  
Block Erase  
Write BA (Note 5)  
Write  
D016  
2016  
Erase All Block  
X
Notes 1: At software commandsinput, the high-order byte of data (D8D15) is ignored.  
2: X = An arbitrary address in the user ROM area. (Note that A0 = 0.)  
3: SRD = Status Register Data  
4: WA = Write Address, WD = Write Data (16 bits).  
5: Block address: the maximum address of each block must be input. Note that address A0 = 0.  
Block Erase Command (2016/D016)  
Writing command code 2016at the 1st bus cycle and writing confir-  
mation command code D016and the maximum address of the  
block (Note that address A0 = 0.) at the subsequent 2nd bus cycle  
initiate the automatic erase (erasing and erase verification) operation  
for the specified block.  
The completion of the automatic erase operation is confirmed by a  
read of the flash memory control register. The RY/BY status bit of the  
flash memory control register goes 0simultaneously with start of  
the automatic erase operation; and also, it goes 1simultaneously  
with completion of it.  
Before execution of the next command, be sure to confirm that the  
RY/BY status bit is set to 1(READY). During the automatic erase  
operation, writing of commands and access to the flash memory  
must not be performed.  
Simultaneously with start of the automatic erase, the read status reg-  
ister mode is automatically active. In this case, the read status regis-  
ter mode is retained until the next read array command (FF16) is  
written or until the reset is performed by using the flash memory re-  
set bit.  
Reading out the status register after the automatic erase operation  
is completed reports the result of it. For details, refer to the section  
on the status register.  
Figure 10 shows an example of the block erase flowchart.  
20  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Erase All Block Command (2016/2016)  
Writing command code 2016at the 1st bus cycle and writing com-  
mand code 2016at the subsequent 2nd bus cycle initiate the con-  
tinuous block erase (chip erase) operations for all the blocks.  
The completion of the chip erase operation, as well as of the block  
erase operation, is confirmed by a read of the flash memory control  
register. The result of the automatic erase operation is also reported  
by a read of the status register.  
Start  
Write 4016  
Write,  
Address, Data  
During the automatic erase operation (when the RY/BY status bit =  
0), writing of commands and access to the flash memory must not  
be performed.  
Flash memory control  
register Read  
NO  
RY/BY Status  
Status Register  
Bit = 1?  
The status register is used to indicate whether the programming/  
erase operation has been completed normally or terminated by an  
error. By writing the read status register command (7016), the con-  
tents of the status register can be read out; by writing the clear sta-  
tus register command (5016), the contents of the status register can  
be cleared.  
YES  
Full status check  
Programming  
Completed  
Table 3 lists the definition of each bit of the status register.  
The status register outputs 8016after reset is removed.  
The status of each bit is described below.  
Fig. 9 Programming flowchart  
Start  
Write 2016  
Write D016  
,
Block address  
Flash memory control  
register Read  
NO  
RY/BY Status  
Bit = 1?  
YES  
Full status check  
Block erase Completed  
Fig. 10 Block erase flowchart  
21  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
(1) when data other than D016and FF16is written to the data in  
the 2nd bus cycle of the block erase command (2016/D016)  
(2) when data other than 2016and FF16is written to the data in  
the 2nd bus cycle of the erase all block command  
(2016/2016)  
Erase Status Bit (SR.5)  
This bit reports the status of the automatic erase operation. This bit  
is set to 1if an erase error occurs and returns to 0if the clear sta-  
tus register command (5016) is written.  
Programming Status Bit (SR.4)  
Note that, writing of FF16forces the microcomputer into the read  
array mode. Simultaneously with this, the command written in the 1st  
bus cycle will be canceled.  
This bit reports the status of the automatic programming operation.  
This bit is set to 1if a programming error occurs and returns to 0”  
if the clear status register command (5016) is written.  
Under the condition that any of SR.5, SR.4 = 1, none of the pro-  
gramming, block erase, and erase all block commands can be ac-  
cepted. Before execution of these commands, execute the clear  
status register command (5016), in advance, to clear these status  
bits.  
Full Status Check  
The full status check reports the results of the erase or programming  
operation.  
Figure 11 shows the full status check flowchart and actions to be  
taken if an error has occurred.  
Both of SR.4, SR.5 are set to 1under the following conditions  
(Command Sequence Error):  
Table 3. Bit definition of status register  
Definition  
Status  
Symbol  
0”  
1”  
Reserved  
SR.7 (D7)  
SR.6 (D6)  
SR.5 (D5)  
SR.4 (D4)  
SR.3 (D3)  
SR.2 (D2)  
SR.1 (D1)  
SR.0 (D0)  
Reserved  
Erase Status  
Terminated by error.  
Terminated by error.  
Terminated normally.  
Terminated normally.  
Programming Status  
Reserved  
Reserved  
Reserved  
Reserved  
22  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Status Register Read  
YES  
SR.4 = 1  
and  
Command Sequence  
Error  
Execute the clear status register command (5016) to clear the status register.  
Confirm whether the command has correctly been input or not; and then,  
start the operation again.  
SR.5 = 1  
?
NO  
SR.5 = 0?  
YES  
NO  
NO  
Perform the block erase operation again.  
If an error occurs even after the above operation is performed, the block cannot be used.  
Block Erase Error  
Programming Error  
Perform the programming operation again.  
If an error occurs even after the above operation is performed, the word cannot be used.  
SR.4 = 0?  
YES  
End  
(Block erase, Programming)  
Note: Under the condition that any of SR.5 and SR.4 = 1 , none of the programming,  
block erase, and erase all block commands can be accepted. Before execution  
of these commands, execute the clear status register command (5016) in advance.  
Fig. 11 Full status check flowchart and actions to be taken if an error has ocurred  
DC Electrical Characteristics (VCC = 5 V ± 0.5 V, Ta = 0 to 60 °C, f(fsys) = 20 MHz (Note))  
Limits  
Unit  
Symbol  
Parameter  
Min.  
Typ.  
30  
Max.  
Icc1  
Icc2  
Icc3  
Icc4  
VCC power source current (at read)  
VCC power source current (at write)  
VCC power source current (at programming)  
VCC power source current (at erasing)  
mA  
mA  
mA  
mA  
48  
48  
54  
54  
Limits of VIH, VIL, VOH, VOL, IIH, and IIL for each pin are the same as those in the microcomputer mode.  
Note: f(fsys) indicates the system clcok (fsys) frequency.  
AC Electrical Characteristics (VCC = 5 V ± 0.5 V, Ta = 0 to 60 °C, f(fsys) = 20 MHz (Note))  
Limits  
Parameter  
Unit  
Min.  
Typ.  
4
0.6  
Max.  
40  
8
256-byte programming time  
Block erase time  
ms  
s
Erase all block time  
s
8 n  
0.6 n  
n = Number of blocks to be erased  
The limits of parameters other than the above are same as those in the microcomputer mode.  
Note: f(fsys) indicates the system clock (fsys) frequency.  
23  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS  
Ratings  
–0.3 to 6.5  
Parameter  
Unit  
V
Symbol  
Power source voltage  
VCC  
AVCC  
VI  
–0.3 to 6.5  
Analog power source voltage  
V
–0.3 to VCC+0.3  
Input voltage P10–P17, P20–P27, P40–P47, P51–P53, P55–P57, P60–P67,  
P70–P77, P80–P83, P4OUTCUT, P6OUTCUT, VCONT, VREF,  
XIN, RESET, MD0, MD1  
V
–0.3 to VCC+0.3  
Output voltage P10–P17, P20–P27, P40–P47, P51–P53, P55–P57, P60–P67,  
P70–P77, P80–P83, XOUT  
V
VO  
300  
Power dissipation  
mW  
°C  
Pd  
–20 to 85  
–40 to 150  
Operating ambient temperature  
Storage temperature  
Topr  
Tstg  
°C  
RECOMMENDED OPERATING CONDITIONS (Vcc = 5 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Typ.  
5.0  
VCC  
0
Min.  
4.5  
Max.  
5.5  
VCC  
AVCC  
VSS  
Power source voltage  
V
V
V
V
V
Analog power source voltage  
Power source voltage  
AVSS  
VIH  
Analog power source voltage  
0
High-level Input voltage P10–P17, P20–P27, P40–P47, P51–P53, P55–P57, P60–P67,  
P70–P77, P80–P83, P4OUTCUT, P6OUTCUT, XIN, RESET,  
MD0, MD1  
0.8 Vcc  
0
Vcc  
VIL  
Low-level Input voltage P10–P17, P20–P27, P40–P47, P51–P53, P55–P57, P60–P67,  
P70–P77, P80–P83, P4OUTCUT, P6OUTCUT, XIN, RESET,  
MD0, MD1  
0.2 VCC  
V
IOH(peak)  
IOH(avg)  
IOL(peak)  
IOL(peak)  
IOL(avg)  
IOL(avg)  
f(XIN)  
High-level peak output current  
P10–P17, P20–P27, P55–P57, P60–P67, P70–P77  
–10  
–5  
10  
20  
5
mA  
mA  
High-level average output current P10–P17, P20–P27, P55–P57, P60–P67, P70–P77  
Low-level peak output current  
Low-level peak output current  
P10–P17, P20–P27, P51–P53, P55–P57, P70–P77  
P40–P47, P60–P67  
mA  
mA  
Low-level average output current P10–P17, P20–P27, P51–P53, P55–P57, P70–P77  
Low-level average output current P40–P47, P60–P67  
External clock input frequency (Note 1)  
mA  
15  
20  
20  
mA  
MHz  
MHz  
f(fsys)  
System clock frequency  
Notes 1: When using the PLL frequency multiplier, be sure that f(fsys) = 20 MHz or less.  
2: Average output current is the average value of an interval of 100 ms.  
3: The sum of IOL(peak) must be 110 mA or less, the sum of IOH(peak) must be 80 mA or less.  
24  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
DC ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = 20 to 85 °C, f(fsys) = 20 MHz)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
IOH = –10 mA  
Unit  
V
Max.  
Min.  
3
VOH  
High-level output voltage P1  
0
1
0
–P1  
7
3
7
, P2  
, P5  
, P8  
0
5
0
–P2  
–P5  
–P8  
7
7
3
, P4  
, P6  
0
–P4  
–P6  
7
,
,
P5  
P7  
–P5  
–P7  
0
7
VOL  
Low-level output voltage P1  
0
1
0
–P1  
–P5  
–P7  
7
3
7
, P2  
, P5  
, P8  
0
5
0
–P2  
–P5  
–P8  
7
7
3
, P4  
, P6  
0
–P4  
–P6  
7
,
,
IOL = 10 mA  
2
1
V
V
P5  
P7  
0
7
VT+ —VT–  
Hysteresis  
TA0IN–TA9IN, TA0OUT–TA9OUT,  
0.4  
TB0IN–TB2IN, INT0–INT7, CTS0, CTS1,  
CTS2, CLK0, CLK1, CLK2, RxD0, RxD1,  
RxD2, RTPTRG0, RTPTRG1, P4OUTCUT,  
P6OUTCUT  
VT+ —VT–  
VT+ —VT–  
IIH  
Hysteresis RESET  
Hysteresis XIN  
1.5  
0.3  
5
V
V
0.5  
0.1  
High-level input current P1  
0
1
0
–P1  
–P5  
–P7  
7
, P2  
, P5  
0
–P2  
–P5  
7
, P4  
0
0
–P4  
–P6  
7
7
,
,
VI = 5.0 V  
µA  
P5  
P7  
3
5
7, P6  
7, P8  
0
–P8  
3, P4OUTCUT,  
P6OUTCUT, XIN, RESET, MD0,  
MD1  
IIL  
Low-level input current P1  
0
1
0
–P1  
–P5  
–P7  
7
, P2  
, P5  
0
–P2  
–P5  
7
, P4  
0
0
–P4  
–P6  
7
7
,
,
VI = 0 V  
–5  
50  
µA  
P5  
P7  
3
5
7, P6  
7, P8  
0
–P8  
3, P4OUTCUT,  
P6OUTCUT  
MD1  
, XIN, RESET, MD0,  
When clock is stoped.  
V
VRAM  
ICC  
2
RAM hold voltage  
25  
mA  
Power source current  
Output-only pins  
are open, and the  
other pins are con-  
nected to Vss or  
Vcc. An external  
square-waveform  
clock is input. (Pin  
f(fsys) = 20 MHz.  
CPU is active.  
1
µA  
Ta = 25 °C when  
clock is inactive.  
XOUT is open.) The  
PLL frequency  
multiplier is inac-  
tive.  
20  
Ta = 85 °C when  
clock is inactive.  
25  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
A-D CONVERTER CHARACTERISTICS  
(VCC = AVCC = 5 V ± 0.5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Resolution  
Test conditions  
A-D converter  
Unit  
Bits  
Min.  
Max.  
10  
—————  
VREF = VCC  
Comparator  
1
256  
V
VREF  
± 3  
± 2  
LSB  
LSB  
mV  
k  
10-bit resolution mode  
8-bit resolution mode  
Comparater  
—————  
RLADDER  
tCONV  
Absolute accuracy  
Ladder resistance  
Conversion time  
VREF = VCC  
± 40  
VREF = VCC  
5
5.9  
10-bit resolution mode  
8-bit resolution mode  
Comparater  
µs  
f(fsys) 20 MHz  
2.45 (Note)  
0.7 (Note)  
2.7  
VREF  
VIA  
Reference voltage  
VCC  
V
V
Analog input voltage  
VREF  
0
Note: This is applied when A-D conversion freguency (φAD) = f1 (φ).  
D-A CONVERTER CHARACTERISTICS  
(VCC = 5 V, VSS = AVSS = 0 V, VREF = 5 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Test conditions  
Symbol  
——  
Parameter  
Unit  
Min.  
2
Max.  
8
Resolution  
Bits  
%
——  
tsu  
Absolute accuracy  
Set time  
± 1.0  
3
µs  
RO  
Output resistance  
4.5  
3.2  
kΩ  
mA  
3.5  
IVREF  
Reference power source input current  
(Note)  
Note: The test conditions are as follows:  
• One D-A converter is used.  
• The D-A register value of the unused D-A converter is “0016.”  
• The reference power source input current for the ladder resistance of the A-D converter is excluded.  
RESET INPUT  
Reset input timing requirements (VCC = 5 V ± 0.5 V, VSS = 0V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
RESET input low-level pulse width  
Unit  
Typ.  
Max.  
Min.  
10  
µs  
tw(RESETL)  
RESET input  
tw(RESETL)  
26  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
PERIPHERAL DEVICE INPUT/OUTPUT TIMING  
(VCC = 5 V±0.5 V, VSS = 0 V, Ta = –20 to 85 °C, f(fsys) = 20 MHz unless otherwise noted)  
For limits depending on f(fsys), their calculation formulas are shown below. Also, the values at f(fsys) = 20 MHz are shown in ( ).  
Timer A input (Count input in event counter mode)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
80  
Max.  
tc(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
40  
40  
Timer A input (Gating input in timer mode)  
Limits  
Symbol  
Parameter  
Unit  
ns  
Min.  
16 × 109  
f(fsys)  
8 × 109  
f(fsys)  
8 × 109  
f(fsys)  
Max.  
(800)  
f(fsys)  
20 MHz  
20 MHz  
20 MHz  
tc(TA)  
TAiIN input cycle time  
(400)  
(400)  
ns  
f(fsys)  
f(fsys)  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
ns  
Note :The TAiIN input cycle time requires 4 or more cycles of a count source. The TAiIN input high-level pulse width and the TAiIN input low-level pulse width  
respectively require 2 or more cycles of a count source. The limits in this table are applied when the count source = f2 at f(fsys)  
20 MHz.  
Timer A input (External trigger input in one-shot pulse mode)  
Limits  
Symbol  
Parameter  
Unit  
ns  
Min.  
8 × 109  
f(fsys)  
Max.  
tc(TA)  
TAiIN input cycle time  
f(fsys) 20 MHz  
(400)  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
80  
80  
ns  
ns  
Timer A input (External trigger input in pulse width modulation mode)  
Symbol Parameter  
Limits  
Unit  
Min.  
80  
Max.  
tw(TAH)  
tw(TAL)  
TAiIN input high-level pulse width  
TAiIN input low-level pulse width  
ns  
ns  
80  
Timer A input (Up-down input and Count input in event counter mode)  
Symbol Parameter  
Limits  
Unit  
Min.  
2000  
1000  
1000  
400  
Max.  
tc(UP)  
TAiOUT input cycle time  
ns  
ns  
ns  
ns  
ns  
tw(UPH)  
TAiOUT input high-level pulse width  
TAiOUT input low-level pulse width  
TAiOUT input setup time  
tw(UPL)  
tsu(UP-TIN)  
th(TIN-UP)  
TAiOUT input hold time  
400  
27  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Timer A input (Two-phase pulse input in event counter mode)  
Symbol Parameter  
Limits  
Unit  
Min.  
800  
200  
200  
Max.  
TAjIN input cycle time  
TAjIN input setup time  
TAjOUT input setup time  
tc(TA)  
ns  
ns  
ns  
tsu(TAjIN-TAjOUT)  
tsu(TAjOUT-TAjIN)  
• Gating input in timer mode  
• Count input in event counter mode  
• External trigger input in one-shot pulse mode  
• External trigger input in pulse width modulation mode  
tc(TA)  
tw(TAH)  
TAiIN input  
tw(TAL)  
• Up-down and Count input in event counter mode  
tc(UP)  
tw(UPH)  
TAiOUT input  
(Up-down input)  
tw(UPL)  
TAiOUT input  
(Up-down input)  
TAiIN input  
(When count by falling)  
th(TIN-UP)  
t
su(UP-TIN  
)
TAiIN input  
(When count by rising)  
Two-phase pulse input in event counter mode  
tc(TA)  
TAjIN input  
tsu(TAjIN-TAjOUT  
)
tsu(TAjIN-TAjOUT)  
tsu(TAjOUT-TAjIN)  
TAjOUT input  
tsu(TAjOUT-TAjIN)  
Test conditions  
VCC = 5 V ± 0.5 V, Ta = 20 to 85 °C  
Input timing voltage : VIL = 1.0 V, VIH = 4.0 V  
28  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Timer B input (Count input in event counter mode)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
80  
Max.  
tc(TB)  
TBiIN input cycle time (one edge count)  
ns  
ns  
ns  
ns  
ns  
ns  
tw(TBH)  
tw(TBL)  
tc(TB)  
TBiIN input high-level pulse width (one edge count)  
TBiIN input low-level pulse width (one edge count)  
TBiIN input cycle time (both edge count)  
40  
40  
160  
80  
tw(TBH)  
tw(TBL)  
TBiIN input high-level pulse width (both edge count)  
TBiIN input low-level pulse width (both edge count)  
80  
Timer B input (Pulse period measurement mode)  
Symbol Parameter  
Limits  
Unit  
ns  
Min.  
16 × 109  
f(fsys)  
8 × 109  
f(fsys)  
8 × 109  
f(fsys)  
Max.  
tc(TB)  
TBiIN input cycle time  
f(fsys) 20 MHz  
f(fsys) 20 MHz  
f(fsys) 20 MHz  
(800)  
tw(TBH)  
tw(TBL)  
TBiIN input high-level pulse width  
TBiIN input low-level pulse width  
(400)  
(400)  
ns  
ns  
Note: The TBiIN input cycle time requires 4 or more cycles of a count source. The TBiIN input high-level pulse width and the TBiIN input low-level pulse width  
respectively require 2 or more cycles of a count source. The limits in this table are applied when the count source = f2 at f(fsys) 20 MHz.  
Timer B input (Pulse width measurement mode)  
Limits  
Symbol  
Parameter  
Unit  
ns  
Min.  
16 × 109  
f(fsys)  
8 × 109  
f(fsys)  
8 × 109  
f(fsys)  
Max.  
tc(TB)  
TBiIN input cycle time  
f(fsys) 20 MHz  
f(fsys) 20 MHz  
f(fsys) 20 MHz  
(800)  
(400)  
(400)  
tw(TBH)  
tw(TBL)  
TBiIN input high-level pulse width  
TBiIN input low-level pulse width  
ns  
ns  
Note: The TBiIN input cycle time requires 4 or more cycles of a count source. The TBiIN input high-level pulse width and the TBiIN input low-level pulse width  
respectively require 2 or more cycles of a count source. The limits in this table are applied when the count source = f2 at f(fsys) 20 MHz.  
Serial I/O  
Limits  
Symbol  
Parameter  
Unit  
Min.  
200  
100  
100  
Max.  
80  
tc(CK)  
CLKi input cycle time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw(CKH)  
tw(CKL)  
td(C-Q)  
th(C-Q)  
tsu(D-C)  
th(C-D)  
CLKi input high-level pulse width  
CLKi input low-level pulse width  
TXDi output delay time  
TXDi hold time  
0
20  
90  
RXDi input setup time  
RXDi input hold time  
29  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
External interrupt (INTi) input  
Limits  
Unit  
Symbol  
Parameter  
Min.  
250  
250  
Max.  
tw(INH)  
tw(INL)  
INTi input high-level pulse width  
INTi input low-level pulse width  
ns  
ns  
tc(TB)  
t
w(TBH)  
TBiIN input  
t
w(TBL)  
tc(CK)  
t
w(CKH)  
CLK  
i
input  
t
w(CKL)  
t
h(C-Q)  
TxD  
i
output  
input  
td(C-Q)  
t
h(C-D)  
t
su(D-C)  
RxD  
i
tw(INL)  
INT  
i
input  
tw(INH)  
Test conditions  
Vcc = 5 V ± 0.5 V, Ta = 20 to 85 °C  
Input timing voltage : VIL = 1.0 V, VIH = 4.0 V  
Output timing voltage : VOL = 0.8 V, VOH = 2.0 V, C  
L
= 50 pF  
30  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
External clock input  
Timing Requirements (VCC = 5 V±0.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Symbol Parameter  
Limits  
Unit  
Min.  
50  
Max.  
tc  
External clock input cycle time  
ns  
ns  
ns  
ns  
ns  
ns  
tw(half)  
tw(H)  
tw(L)  
tr  
External clock input pulse width with half input-voltage  
External clock input high-level pulse width  
External clock input low-level pulse width  
External clock input rise time  
0.45 tc  
0.5 tc – 8  
0.5 tc – 8  
0.55 tc  
8
8
tf  
External clock input fall time  
External clock input  
t
c
tr  
tf  
t
w(L)  
t
w(H)  
tw(half)  
XIN  
Test conditions  
Vcc = 5 V ± 0.5 V, Ta = 20 to 85 °C  
Input timing voltage : VIL = 1.0 V, VIH = 4.0 V (tw(H), tw(L), t  
Output timing voltage : 2.5 V (t  
r
, t )  
f
c, tw(half))  
31  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
PACKAGE OUTLINE  
64P6N-A  
Plastic 64pin 1414mm body QFP  
EIAJ Package Code  
QFP64-P-1414-0.80  
JEDEC Code  
Weight(g)  
1.11  
Lead Material  
Alloy 42  
MD  
HD  
D
64  
49  
1
48  
I
2
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
0.3  
0.13  
13.8  
13.8  
16.5  
16.5  
0.4  
0°  
1.3  
Nom  
Max  
3.05  
0.2  
0.45  
0.2  
14.2  
14.2  
17.1  
17.1  
0.8  
0.2  
0.1  
10°  
A
A
A
1
2
0.1  
2.8  
0.35  
0.15  
14.0  
14.0  
0.8  
16.8  
16.8  
0.6  
1.4  
0.5  
14.6  
14.6  
b
c
D
E
e
16  
33  
A
17  
32  
L1  
HD  
HE  
L
L1  
x
y
F
e
b
b2  
x
M
L
I
2
y
M
M
D
E
Detail F  
MMP  
64P4B  
Plastic 64pin 750mil SDIP  
EIAJ Package Code  
JEDEC Code  
Weight(g)  
7.9  
Lead Material  
Alloy 42/Cu Alloy  
SDIP64-P-750-1.78  
64  
33  
1
32  
Dimension in Millimeters  
Symbol  
A
Min  
0.38  
Nom  
Max  
5.08  
D
A
A
1
2
3.8  
b
0.4  
0.9  
0.65  
0.2  
56.2  
16.85  
2.8  
0°  
0.5  
1.0  
0.59  
1.3  
1.05  
0.32  
56.6  
17.15  
15°  
b1  
b2  
0.75  
0.25  
56.4  
17.0  
1.778  
19.05  
c
e
b1  
b
b2  
D
E
e
SEATING PLANE  
e1  
L
32  
MITSUBISHI MICROCOMPUTERS  
M37905F8CFP, M37905F8CSP  
16-BIT CMOS MICROCOMPUTER  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit  
application examples contained in these materials.  
All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to  
change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized  
Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these  
inaccuracies or errors.  
Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).  
When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making  
a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 2001 MITSUBISHI ELECTRIC CORP.  
New publication, effective May., 2001.  
Specifications subject to change without notice.  
REVISION HISTORY  
M37905F8CFP, M37905F8CSP DATASHEET  
Rev.  
1.0  
Date  
Description  
Summary  
Page  
5/28/01  
First Edition  
(1/1)  

M37905F8CSP 相关器件

型号 制造商 描述 价格 文档
M37905M4C MITSUBISHI 16 BIT CMOS MICROCOMPUTER 获取价格
M37905M4C-XXXFP MITSUBISHI 16 BIT CMOS MICROCOMPUTER 获取价格
M37905M4C-XXXFP RENESAS 16-BIT CMOS MICROCOMPUTER 获取价格
M37905M4C-XXXSP MITSUBISHI 16 BIT CMOS MICROCOMPUTER 获取价格
M37905M4C-XXXSP RENESAS 16-BIT CMOS MICROCOMPUTER 获取价格
M37905M6C-XXXFP MITSUBISHI 16 BIT CMOS MICROCOMPUTER 获取价格
M37905M6C-XXXFP RENESAS 16-BIT CMOS MICROCOMPUTER 获取价格
M37905M6C-XXXSP MITSUBISHI 16 BIT CMOS MICROCOMPUTER 获取价格
M37905M6C-XXXSP RENESAS 16-BIT CMOS MICROCOMPUTER 获取价格
M37905M8C-XXXFP MITSUBISHI 16 BIT CMOS MICROCOMPUTER 获取价格

M37905F8CSP 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6