M38501D1 [MITSUBISHI]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
M38501D1
型号: M38501D1
厂家: Mitsubishi Group    Mitsubishi Group
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

计算机
文件: 总52页 (文件大小:800K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Power source voltage  
DESCRIPTION  
In high-speed mode .................................................. 4.0 to 5.5 V  
(at 8 MHz oscillation frequency)  
The 3850 group is the 8-bit microcomputer based on the 740 fam-  
ily core technology.  
In high-speed mode .................................................. 2.7 to 5.5 V  
(at 4 MHz oscillation frequency)  
The 3850 group is designed for the household products and office  
automation equipment and includes serial I/O functions, 8-bit  
timer, and A-D converter.  
In middle-speed mode............................................... 2.7 to 5.5 V  
(at 8 MHz oscillation frequency)  
In low-speed mode .................................................... 2.7 to 5.5 V  
(at 32 kHz oscillation frequency)  
FEATURES  
Basic machine-language instructions ...................................... 71  
Minimum instruction execution time .................................. 0.5 µs  
(at 8 MHz oscillation frequency)  
Power dissipation  
In high-speed mode ..........................................................34 mW  
(at 8 MHz oscillation frequency, at 5 V power source voltage)  
In low-speed mode ............................................................ 60 µW  
(at 32 kHz oscillation frequency, at 3 V power source voltage)  
Operating temperature range.................................... –20 to 85°C  
Memory size  
ROM ................................................................... 8K to 24K bytes  
RAM ..................................................................... 512 to 640 byte  
Programmable input/output ports ............................................ 34  
Interrupts ................................................. 14 sources, 14 vectors  
Timers ............................................................................. 8-bit 4  
Serial I/O ....................... 8-bit 1(UART or Clock-synchronized)  
PWM ............................................................................... 8-bit 1  
A-D converter ............................................... 10-bit 5 channels  
Watchdog timer ............................................................ 16-bit 1  
Clock generating circuit ..................................... Built-in 2 circuits  
(connect to external ceramic resonator or quartz-crystal oscillator)  
APPLICATION  
Office automation equipment, FA equipment, Household products,  
Consumer electronics, etc.  
PIN CONFIGURATION (TOP VIEW)  
P3  
P3  
P3  
P3  
P3  
P0  
P0  
P0  
P0  
P0  
P0  
P0  
P0  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
0
1
2
3
4
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
V
CC  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
VREF  
AVSS  
/PWM  
/INT  
/INT  
/INT  
3
P4  
4
/INT  
3
4
P4  
P4  
P4  
3
2
1
2
5
1
0
1
2
3
4
5
6
7
0
1
2
6
0
1
7
P4  
0/CNTR  
8
P27  
/CNTR  
0
/SRDY  
/SCLK  
/TxD  
/RxD  
9
P2  
P2  
P2  
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
5
4
P2  
P2  
CNVSS  
P2 /XCIN  
P2 /XCOUT  
3
2
1
0
3/(LED  
4/(LED  
5/(LED  
6/(LED  
7/(LED  
0
1
2
3
4
)
)
)
)
)
RESET  
X
IN  
OUT  
SS  
X
V
Package type : FP ........................... 42P2R-A (42-pin plastic-molded SSOP)  
Package type : SP ........................... 42P4B (42-pin shrink plastic-molded DIP)  
Fig. 1 M38503M4-XXXFP/SP pin configuration  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL BLOCK  
Fig. 2 Functional block diagram  
2
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Table 1 Pin description  
Functions  
Pin  
Name  
Function except a port function  
VCC, VSS  
CNVSS  
Power source  
CNVSS input  
Reset input  
Clock input  
•Apply voltage of 2.7 V – 5.5 V to Vcc, and 0 V to Vss.  
•This pin controls the operation mode of the chip.  
•Normally connected to VSS.  
•Reset input pin for active “L.”  
RESET  
XIN  
•Input and output pins for the clock generating circuit.  
•Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set  
the oscillation frequency.  
•When an external clock is used, connect the clock source to the XIN pin and leave the XOUT  
pin open.  
XOUT  
Clock output  
I/O port P0  
I/O port P1  
•8-bit CMOS I/O port.  
P00–P07  
P10–P17  
•I/O direction register allows each pin to be individually programmed as either input or output.  
•CMOS compatible input level.  
•CMOS 3-state output structure.  
•P13 to P17 (5 bits) are enabled to output large current for LED drive.  
•8-bit CMOS I/O port.  
P20/XCOUT  
P21/XCIN  
P22  
• Sub-clock generating circuit I/O  
pins (connect a resonator)  
•I/O direction register allows each pin to be individually  
programmed as either input or output.  
•CMOS compatible input level.  
P23  
•P20, P21, P24 to P27: CMOS3-state output structure.  
•P22, P23: N-channel open-drain structure.  
P24/RxD  
P25/TxD  
P26/SCLK  
• Serial I/O function pin  
I/O port P2  
P27/CNTR0/  
SRDY  
• Serial I/O function pin/  
Timer X function pin  
P30/AN0–  
P34/AN4  
•8-bit CMOS I/O port with the same function as port P0.  
•CMOS compatible input level.  
• A-D converter input pin  
I/O port P3  
I/O port P4  
•CMOS 3-state output structure.  
P40/CNTR1  
P41/INT0–  
P43/INT2  
• Timer Y function pin  
• Interrupt input pins  
•8-bit CMOS I/O port with the same function as port P0.  
•CMOS compatible input level.  
•CMOS 3-state output structure.  
• Interrupt input pin  
• PWM output pin  
P44/INT3/PWM  
3
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PART NUMBERING  
M3850 3 M 4 XXX FP  
Product  
Package type  
: 42P2R-A package  
FP  
SP : 42P4B package  
SS : 42S1B-A package  
ROM number  
Omitted in some types.  
ROM/PROM size  
: 4096 bytes  
: 8192 bytes  
: 12288 bytes  
: 16384 bytes  
: 20480 bytes  
: 24576 bytes  
: 28672 bytes  
: 32768 bytes  
1
2
3
4
5
6
7
8
: 36864 bytes  
9
A : 40960 bytes  
B : 45056 bytes  
C: 49152 bytes  
D: 53248 bytes  
E : 57344 bytes  
: 61440 bytes  
F
The first 128 bytes and the last 2 bytes of ROM  
are reserved areas ; they cannot be used.  
Memory type  
M : Mask ROM version  
E : EPROM or One Time PROM version  
RAM size  
: 192 bytes  
: 256 bytes  
: 384 bytes  
: 512 bytes  
: 640 bytes  
: 768 bytes  
: 896 bytes  
: 1024 bytes  
: 1536 bytes  
: 2048 bytes  
0
1
2
3
4
5
6
7
8
9
Fig. 3 Part numbering  
4
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION  
Packages  
Mitsubishi plans to expand the 3850 group as follows:  
42P4B..........................................42-pin shrink plastic molded DIP  
42P2R-A ............................................ 42-pin plastic molded SSOP  
42S1B-A ................... 42-pin shrink ceramic DIP(EPROM version)  
Memory Type  
Support for mask ROM, One Time PROM, and EPROM versions.  
Memory Size  
ROM/PROM size ................................................... 8K to 24K bytes  
RAM size .............................................................. 512 to 640 bytes  
Memory Expansion Plan  
ROM size (bytes)  
48K  
32K  
28K  
24K  
Under development  
M38504M6/E6  
20K  
Mass production  
16K  
12K  
8K  
M38503M4/E4  
Mass production  
M38503M2  
128  
192  
256  
384  
512  
640  
768  
896  
1024  
RAM size (bytes)  
Products under development or planning : the development schedule and specification may be revised without notice.  
Planning products may be stopped the development.  
Fig. 4 Memory expansion plan  
Currently planning products are listed below.  
As of August 1998  
Table 2 Support products  
(P) ROM size (bytes)  
Product name  
RAM size (bytes)  
512  
Package  
Remarks  
ROM size for User in (  
)
Mask ROM version  
Mask ROM version  
Mask ROM version  
M38503M2-XXXSP  
M38503M2-XXXFP  
M38503M4-XXXSP  
M38503E4-XXXSP  
M38503E4SP  
42P4B  
8192  
(8062)  
42P2R-A  
One Time PROM version  
42P4B  
42S1B-A  
42P2R-A  
One Time PROM version (blank)  
16384  
(16254)  
512  
EPROM version (stock only replaced by M38504E6SS)  
Mask ROM version  
M38503E4SS  
M38503M4-XXXFP  
M38503E4-XXXFP  
M38503E4FP  
One Time PROM version  
One Time PROM version (blank)  
Mask ROM version  
M38504M6-XXXSP  
M38504E6-XXXSP  
M38504E6SP  
One Time PROM version  
One Time PROM version (blank)  
EPROM version  
42P4B  
42S1B-A  
42P2R-A  
32768  
(32638)  
640  
M38504E6SS  
Mask ROM version  
M38504M6-XXXFP  
M38504E6-XXXFP  
M38504E6FP  
One Time PROM version  
One Time PROM version (blank)  
5
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
CENTRAL PROCESSING UNIT (CPU)  
The 3850 group uses the standard 740 Family instruction set. Re-  
fer to the table of 740 Family addressing modes and machine  
instructions or the 740 Family Software Manual for details on the  
instruction set.  
Machine-resident 740 Family instructions are as follows:  
The FST and SLW instructions cannot be used.  
The STP, WIT, MUL, and DIV instructions can be used.  
[CPU Mode Register (CPUM)] 003B16  
The CPU mode register contains the stack page selection bit, etc.  
The CPU mode register is allocated at address 003B16.  
b7  
b0  
CPU mode register  
(
CPUM : address 003B16)  
Processor mode bits  
b1 b0  
0
0
1
1
0 : Single-chip mode  
1 :  
0 : Not available  
1 :  
Stack page selection bit  
0 : 0 page  
1 : 1 page  
Not used (return “1” when read)  
(Do not write “0” to this bit.)  
Port XC switch bit  
0 : I/O port function (stop oscillating)  
1 : XCIN–XCOUT oscillating function  
Main clock (XIN–XOUT) stop bit  
0 : Oscillating  
1 : Stopped  
Main clock division ratio selection bits  
b7 b6  
0
0
1
1
0 : φ = f(XIN)/2 (high-speed mode)  
1 : φ = f(XIN)/8 (middle-speed mode)  
0 : φ = f(XCIN)/2 (low-speed mode)  
1 : Not available  
Fig. 5 Structure of CPU mode register  
6
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MEMORY  
Zero Page  
Special Function Register (SFR) Area  
The Special Function Register area in the zero page contains con-  
trol registers such as I/O ports and timers.  
Access to this area with only 2 bytes is possible in the zero page  
addressing mode.  
Special Page  
RAM  
Access to this area with only 2 bytes is possible in the special  
RAM is used for data storage and for stack area of subroutine  
page addressing mode.  
calls and interrupts.  
ROM  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is user area for storing programs.  
Interrupt Vector Area  
The interrupt vector area contains reset and interrupt vectors.  
RAM area  
RAM size  
(bytes)  
Address  
XXXX16  
000016  
SFR area  
192  
256  
384  
512  
640  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
063F16  
083F16  
0C3F16  
0FFF16  
Zero page  
004016  
010016  
RAM  
768  
896  
XXXX16  
1024  
1536  
2048  
3072  
4032  
Reserved area  
Not used  
044016  
YYYY16  
ROM area  
Reserved ROM area  
(128 bytes)  
ROM size  
(bytes)  
Address  
YYYY16  
Address  
ZZZZ16  
ZZZZ16  
4096  
8192  
F00016  
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
700016  
600016  
500016  
400016  
300016  
200016  
100016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
708016  
608016  
508016  
408016  
308016  
208016  
108016  
12288  
16384  
20480  
24576  
28672  
32768  
36864  
40960  
45056  
49152  
53248  
57344  
61440  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
Reserved ROM area  
FFFE16  
FFFF16  
Fig. 6 Memory map diagram  
7
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Port P0 (P0)  
Prescaler 12 (PRE12)  
Timer 1 (T1)  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
001516  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
002C16  
Port P0 direction register (P0D)  
Port P1 (P1)  
Timer 2 (T2)  
Port P1 direction register (P1D)  
Port P2 (P2)  
Timer XY mode register (TM)  
Prescaler X (PREX)  
Timer X (TX)  
Port P2 direction register (P2D)  
Port P3 (P3)  
Prescaler Y (PREY)  
Timer Y (TY)  
Port P3 direction register (P3D)  
Port P4 (P4)  
Timer count source selection register (TCSS)  
Port P4 direction register (P4D)  
Reserved ✽  
Reserved ✽  
002D16 Reserved ✽  
002E16 Reserved ✽  
002F16 Reserved ✽  
003016  
003116  
003216  
003316  
003416  
003516  
003616  
003716  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
Reserved ✽  
A-D control register (ADCON)  
A-D conversion low-order register (ADL)  
A-D conversion high-order register (ADH)  
Reserved ✽  
001616 Reserved ✽  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
Reserved ✽  
Transmit/Receive buffer register (TB/RB)  
MISRG  
Serial I/O status register (SIOSTS)  
Serial I/O control register (SIOCON)  
Watchdog timer control register (WDTCON)  
Interrupt edge selection register (INTEDGE)  
CPU mode register (CPUM)  
UART control register (UARTCON)  
Baud rate generator (BRG)  
Interrupt request register 1 (IREQ1)  
Interrupt request register 2 (IREQ2)  
Interrupt control register 1 (ICON1)  
Interrupt control register 2 (ICON2)  
PWM control register (PWMCON)  
PWM prescaler (PREPWM)  
PWM register (PWM)  
Reserved : Do not write “1” to this address.  
Fig. 7 Memory map of special function register (SFR)  
8
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O PORTS  
The I/O ports have direction registers which determine the input/  
output direction of each individual pin. Each bit in a direction reg-  
ister corresponds to one pin, and each pin can be set to be input  
port or output port.  
When “0” is written to the bit corresponding to a pin, that pin be-  
comes an input pin. When “1” is written to that bit, that pin  
becomes an output pin.  
If data is read from a pin which is set to output, the value of the  
port output latch is read, not the value of the pin itself. Pins set to  
input are floating. If a pin set to input is written to, only the port  
output latch is written to and the pin remains floating.  
Table 3 I/O port function  
Input/Output  
Related SFRs  
Ref.No.  
(1)  
Name  
Pin  
P00–P07  
I/O Structure  
Non-Port Function  
Port P0  
CMOS compatible  
input level  
P10–P17  
Port P1  
P20/XCOUT  
P21/XCIN  
(2)  
(3)  
CMOS 3-state output  
Sub-clock generating  
circuit  
CPU mode register  
CMOS compatible  
input level  
N-channel open-drain  
output  
P22  
P23  
(4)  
Port P2  
(5)  
(6)  
P24/RxD  
P25/TxD  
Serial I/O control  
register  
Serial I/O function I/O  
Serial I/O function I/O  
Input/output,  
individual  
bits  
Serial I/O control  
register  
(7)  
(8)  
P26/SCLK  
Serial I/O control  
register  
Timer XY mode register  
Serial I/O function I/O  
Timer X function I/O  
P27/CNTR0/SRDY  
CMOS compatible  
input level  
CMOS 3-state output  
P30/AN0–  
P34/AN4  
A-D conversion input  
(9)  
Port P3  
Port P4  
A-D control register  
P40/CNTR1  
(10)  
(11)  
Timer Y function I/O  
Timer XY mode register  
P41/INT0–  
P43/INT2  
Interrupt edge selection  
register  
External interrupt input  
Interrupt edge selection  
register  
PWM control register  
External interrupt input  
PWM output  
P44/INT3/PWM  
(12)  
9
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(2) Port P2  
0
(1) Port P0, P1  
Port X  
C
switch bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Oscillator  
Port P2  
1
(3) Port P2  
1
Port X  
C
switch bit  
Port XC switch bit  
Direction  
register  
(4) Port P22, P2  
3
Data bus  
Port latch  
Direction  
register  
Data bus  
Port latch  
Sub-clock generating circuit input  
(5) Port P2  
4
Serial I/O enable bit  
Receive enable bit  
(6) Port P2  
5
Direction  
register  
P-channel output disable bit  
Serial I/O enable bit  
Transmit enable bit  
Data bus  
Port latch  
Direction  
register  
Data bus  
Port latch  
Serial I/O input  
(7) Port P2  
6
Serial I/O output  
Serial I/O clock  
selection bit  
Serial I/O enable bit  
(8) Port P2  
7
Serial I/O mode selection bit  
Serial I/O enable bit  
Pulse output mode  
Direction  
register  
Serial I/O mode selection bit  
Serial I/O enable bit  
S
RDY output enable bit  
Data bus  
Port latch  
Direction  
register  
Data bus  
Port latch  
Serial clock output  
External clock input  
Pulse output mode  
CNTR  
0
interrupt  
input  
Serial ready output  
Timer output  
Fig. 8 Port block diagram (1)  
10  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(9) Port P30–P34  
(10) Port P4  
0
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Pulse output mode  
Timer output  
A-D converter input  
Analog input pin selection bit  
CNTR1 interrupt input  
(11) Port P41–P4  
3
(12) Port P4  
4
Direction  
register  
PWM output enable bit  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Interrupt input  
PWM output  
Fig. 9 Port block diagram (2)  
11  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Notes  
Interrupts occur by 14 sources among 14 sources: six external,  
When the active edge of an external interrupt (INT0–INT3, CNTR0,  
CNTR1) is set, the corresponding interrupt request bit may also be  
set. Therefore, take the following sequence:  
seven internal, and one software.  
Interrupt Control  
Each interrupt is controlled by an interrupt request bit, an interrupt  
enable bit, and the interrupt disable flag except for the software in-  
terrupt set by the BRK instruction. An interrupt occurs if the  
corresponding interrupt request and enable bits are “1” and the in-  
terrupt disable flag is “0”.  
1. Disable the interrupt  
2. Change the interrupt edge selection register  
(the timer XY mode register for CNTR0 and CNTR1)  
3. Clear the interrupt request bit to “0”  
4. Accept the interrupt.  
Interrupt enable bits can be set or cleared by software.  
Interrupt request bits can be cleared by software, but cannot be  
set by software.  
The BRK instruction cannot be disabled with any flag or bit. The I  
(interrupt disable) flag disables all interrupts except the BRK in-  
struction interrupt.  
When several interrupts occur at the same time, the interrupts are  
received according to priority.  
Interrupt Operation  
By acceptance of an interrupt, the following operations are auto-  
matically performed:  
1. The contents of the program counter and the processor status  
register are automatically pushed onto the stack.  
2. The interrupt disable flag is set and the corresponding interrupt  
request bit is cleared.  
3. The interrupt jump destination address is read from the vector  
table into the program counter.  
12  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 4 Interrupt vector addresses and priority  
Vector Addresses (Note 1)  
Interrupt Request  
Generating Conditions  
Remarks  
Non-maskable  
Interrupt Source  
Reset (Note 2)  
INT0  
Priority  
1
High  
Low  
FFFD16  
FFFC16  
At reset  
At detection of either rising or  
falling edge of INT0 input  
External interrupt  
(active edge selectable)  
2
3
4
FFFB16  
FFF916  
FFF716  
FFFA16  
FFF816  
FFF616  
Reserved  
Reserved  
INT1  
At detection of either rising or External interrupt  
falling edge of INT1 input  
(active edge selectable)  
External interrupt  
(active edge selectable)  
At detection of either rising or  
falling edge of INT2 input  
FFF416  
INT2  
INT3  
5
6
FFF516  
At detection of either rising or External interrupt  
FFF316  
FFF216  
falling edge of INT3 input  
(active edge selectable)  
FFF116  
FFEF16  
FFED16  
FFEB16  
FFE916  
FFF016  
FFEE16  
FFEC16  
FFEA16  
FFE816  
Reserved  
7
8
Reserved  
Timer X  
Timer Y  
Timer 1  
Timer 2  
At timer X underflow  
At timer Y underflow  
At timer 1 underflow  
At timer 2 underflow  
9
STP release timer underflow  
10  
11  
At completion of serial I/O data  
reception  
Serial I/O  
reception  
FFE716  
FFE516  
FFE616  
FFE416  
12  
13  
Valid when serial I/O is selected  
At completion of serial I/O trans-  
fer shift or when transmission Valid when serial I/O is selected  
buffer is empty  
Serial I/O  
Transmission  
At detection of either rising or  
falling edge of CNTR0 input  
External interrupt  
(active edge selectable)  
CNTR0  
CNTR1  
14  
15  
FFE216  
FFE016  
FFE316  
FFE116  
At detection of either rising or  
falling edge of CNTR1 input  
External interrupt  
(active edge selectable)  
16  
17  
FFDF16  
FFDD16  
FFDE16  
FFDC16  
At completion of A-D conversion  
At BRK instruction execution  
A-D converter  
BRK instruction  
Non-maskable software interrupt  
Notes 1: Vector addresses contain interrupt jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
13  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
BRK instruction  
Reset  
Interrupt request  
Fig. 10 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
INT  
INT  
0
active edge selection bit  
1
2
3
active edge selection bit  
active edge selection bit  
active edge selection bit  
Reserved(Do not write “1” to this bit)  
Not used (returns “0” when read)  
0 : Falling edge active  
1 : Rising edge active  
b7  
b0  
b7  
b0  
Interrupt request register 2  
(IREQ2 : address 003D16  
Interrupt request register 1  
)
(IREQ1 : address 003C16  
)
INT  
0 interrupt request bit  
Timer 1 interrupt request bit  
Timer 2 interrupt request bit  
Reserved  
INT  
INT  
INT  
1
2
3
interrupt request bit  
interrupt request bit  
interrupt request bit  
Serial I/O reception interrupt request bit  
Serial I/O transmit interrupt request bit  
CNTR  
0
interrupt request bit  
interrupt request bit  
Reserved  
CNTR  
1
Timer X interrupt request bit  
Timer Y interrupt request bit  
AD converter interrupt request bit  
Not used (returns “0” when read)  
0 : No interrupt request issued  
1 : Interrupt request issued  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0  
b7  
b0  
Interrupt control register 2  
Interrupt control register 1  
(ICON2 : address 003F16  
)
(ICON1 : address 003E16  
)
Timer 1 interrupt enable bit  
Timer 2 interrupt enable bit  
INT interrupt enable bit  
0
Reserved(Do not write "1" to this bit)  
Serial I/O reception interrupt enable bit  
Serial I/O transmit interrupt enable bit  
INT  
INT  
INT  
1
2
3
interrupt enable bit  
interrupt enable bit  
interrupt enable bit  
CNTR  
0
interrupt enable bit  
interrupt enable bit  
CNTR  
1
Reserved(Do not write "1" to this bit)  
Timer X interrupt enable bit  
Timer Y interrupt enable bit  
AD converter interrupt enable bit  
Not used (returns “0” when read)  
(Do not write “1” to this bit)  
0 : Interrupts disabled  
1 : Interrupts enabled  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. 11 Structure of interrupt-related registers (1)  
14  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMERS  
Timer 1 and Timer 2  
The 3850 group has four timers: timer X, timer Y, timer 1, and  
The count source of prescaler 12 is the oscillation frequency  
which is selected by timer 12 count source selection bit. The out-  
put of prescaler 12 is counted by timer 1 and timer 2, and a timer  
underflow sets the interrupt request bit.  
timer 2.  
The division ratio of each timer or prescaler is given by 1/(n + 1),  
where n is the value in the corresponding timer or prescaler latch.  
All timers are count down. When the timer reaches “0016”, an un-  
derflow occurs at the next count pulse and the corresponding  
timer latch is reloaded into the timer and the count is continued.  
When a timer underflows, the interrupt request bit corresponding  
to that timer is set to “1”.  
Timer X and Timer Y  
Timer X and Timer Y can each select in one of four operating  
modes by setting the timer XY mode register.  
(1) Timer Mode  
The timer counts the count source selected by Timer count source  
selection bit.  
b0  
b7  
(2) Pulse Output Mode  
Timer XY mode register  
(TM : address 002316)  
The timer counts the count source selected by Timer count source  
selection bit. Whenever the contents of the timer reach “0016”, the  
signal output from the CNTR0 (or CNTR1) pin is inverted. If the  
CNTR0 (or CNTR1) active edge selection bit is “0”, output begins  
at “ H”.  
Timer X operating mode bit  
b1b0  
0 0: Timer mode  
0 1: Pulse output mode  
1 0: Event counter mode  
1 1: Pulse width measurement mode  
CNTR0 active edge selection bit  
0: Interrupt at falling edge  
Count at rising edge in event  
counter mode  
1: Interrupt at rising edge  
Count at falling edge in event  
counter mode  
If it is “1”, output starts at “L”. When using a timer in this mode, set  
the corresponding port P27 ( or port P40) direction register to out-  
put mode.  
(3) Event Counter Mode  
Timer X count stop bit  
0: Count start  
Operation in event counter mode is the same as in timer mode, ex-  
cept that the timer counts signals input through the CNTR0 or  
CNTR1 pin.  
1: Count stop  
Timer Y operating mode bit  
b5b4  
0 0: Timer mode  
0 1: Pulse output mode  
When the CNTR0 (or CNTR1) active edge selection bit is “0”, the  
rising edge of the CNTR0 (or CNTR1) pin is counted.  
When the CNTR0 (or CNTR1) active edge selection bit is “1”, the  
falling edge of the CNTR0 (or CNTR1) pin is counted.  
1 0: Event counter mode  
1 1: Pulse width measurement mode  
CNTR1 active edge selection bit  
0: Interrupt at falling edge  
Count at rising edge in event  
counter mode  
1: Interrupt at rising edge  
Count at falling edge in event  
counter mode  
(4) Pulse Width Measurement Mode  
If the CNTR0 (or CNTR1) active edge selection bit is “0”, the timer  
counts the selected signals by the count source selection bit while  
the CNTR0 (or CNTR1) pin is at “H”. If the CNTR0 (or CNTR1) ac-  
tive edge selection bit is “1”, the timer counts it while the CNTR0  
(or CNTR1) pin is at “L”.  
Timer Y count stop bit  
0: Count start  
1: Count stop  
Fig. 12 Structure of timer XY mode register  
The count can be stopped by setting “1” to the timer X (or timer Y)  
count stop bit in any mode. The corresponding interrupt request  
bit is set each time a timer underflows.  
b0  
b7  
Timer count source selection register  
(TCSS : address 002816  
)
Timer X count source selection bit  
0 : f(XIN)/16 (f(XCIN)/16 at low-speed mode)  
1 : f(XIN)/2 (f(XCIN)/2 at low-speed mode)  
Timer Y count source selection bit  
0 : f(XIN)/16 (f(XCIN)/16 at low-speed mode)  
1 : f(XIN)/2 (f(XCIN)/2 at low-speed mode)  
Note  
When switching the count source by the timer 12, X and Y count  
source bit, the value of timer count is altered in unconsiderable  
amount owing to generating of a thin pulses in the count input  
signals.  
Timer 12 count source selection bit  
0 : f(XIN)/16 (f(XCIN)/16 at low-speed mode)  
1 : f(XCIN  
)
Not used (returns “0” when read)  
Therefore, select the timer count source before set the value to  
the prescaler and the timer.  
Fig. 13 Structure of timer count source selection register  
15  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Data bus  
f(XIN)/16  
f(XIN)/2  
Prescaler X latch (8)  
Timer X latch (8)  
Pulse width  
Timer mode  
Timer X count source selection bit measurement  
mode  
Pulse output mode  
To timer X interrupt  
request bit  
Prescaler X (8)  
Timer X (8)  
CNTR0 active  
Event  
Timer X count stop bit  
edge selection  
counter  
mode  
P27/CNTR0  
“0”  
bit  
To CNTR0 interrupt  
request bit  
“1”  
CNTR0 active  
“1”  
“0”  
edge selection  
bit  
Q
Q
T
Toggle flip-flop  
R
Timer X latch write pulse  
Pulse output mode  
Port P27  
latch  
Port P27  
direction register  
Pulse output mode  
Data bus  
Prescaler Y latch (8)  
Timer Y latch (8)  
Timer Y (8)  
f(XIN)/16  
f(XIN)/2  
Pulse width  
measure-  
ment mode  
Timer mode  
Timer Y count source selection bit  
Pulse output mode  
To timer Y interrupt  
request bit  
Prescaler Y (8)  
CNTR1 active  
edge selection  
Event  
counter  
mode  
Timer Y count stop bit  
P40/CNTR1  
bit  
“0”  
To CNTR1 interrupt  
request bit  
“1”  
CNTR1 active  
“1”  
“0”  
edge selection  
bit  
Q
Q
T
Toggle flip-flop  
R
Port P40  
latch  
Timer Y latch write pulse  
Pulse output mode  
Port P40  
direction register  
Pulse output mode  
Data bus  
Prescaler 12 latch (8)  
Prescaler 12 (8)  
Timer 1 latch (8)  
Timer 1 (8)  
Timer 2 latch (8)  
Timer 2 (8)  
f(XIN)/16  
f(XCIN)  
To timer 2 interrupt  
request bit  
Timer 12 count source selection bit  
To timer 1 interrupt  
request bit  
Fig. 14 Block diagram of timer X, timerY, timer 1, and timer 2  
16  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Clock Synchronous Serial I/O Mode  
Clock synchronous serial I/O mode can be selected by setting the  
serial I/O mode selection bit of the serial I/O control register (bit 6  
of address 001A16) to “1”.  
SERIAL I/O  
Serial I/O can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O. A dedicated timer is also provided for baud  
rate generation.  
For clock synchronous serial I/O, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the TB/RB.  
Data bus  
Serial I/O control register  
Receive buffer full flag (RBF)  
Address 001A16  
Address 001816  
Receive buffer register  
Receive shift register  
Receive interrupt request (RI)  
P24/RXD  
Shift clock  
Clock control circuit  
P26/SCLK  
XIN  
Serial I/O synchronous  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
Baud rate generator  
Address 001C16  
1/4  
Clock control circuit  
Falling-edge detector  
P27/SRDY  
P25/TXD  
F/F  
Shift clock  
Transmit shift register  
Transmit buffer register  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
Transmit interrupt request (TI)  
Transmit buffer empty flag (TBE)  
Serial I/O status register  
Address 001916  
Address 001816  
Data bus  
Fig. 15 Block diagram of clock synchronous serial I/O  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
Serial output TxD  
Serial input RxD  
D
0
0
D
1
1
D
2
2
D
3
3
D
4
4
D
5
5
D
6
6
D
7
7
D
D
D
D
D
D
D
D
Receive enable signal SRDY  
Write pulse to receive/transmit  
buffer register (address 001816  
)
RBF = 1  
TSC = 1  
TBE = 0  
TBE = 1  
TSC = 0  
Overrun error (OE)  
detection  
Notes 1: As the transmit interrupt (TI), either when the transmit buffer has emptied (TBE=1) or after the transmit shift operation has  
ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O control register.  
2: If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data  
is output continuously from the TxD pin.  
3: The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .  
Fig. 16 Operation of clock synchronous serial I/O function  
17  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(2) Asynchronous Serial I/O (UART) Mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O mode selection bit (b6) of the serial I/O con-  
trol register to “0”.  
two buffers have the same address in memory. Since the shift reg-  
ister cannot be written to or read from directly, transmit data is  
written to the transmit buffer register, and receive data is read from  
the receive buffer register.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer, but the  
The transmit buffer register can also hold the next data to be  
transmitted, and the receive buffer register can hold a character  
while the next character is being received.  
Data bus  
Address 001816  
Serial I/O control register Address 001A16  
Receive buffer register  
OE  
Character length selection bit  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
P24/RXD  
ST detector  
7 bits  
8 bits  
Receive shift register  
PE FE SP detector  
1/16  
UART control register  
Address 001B16  
Clock control circuit  
Serial I/O synchronous clock selection bit  
P26/SCLK1  
XIN  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
1/4  
Baud rate generator  
Address 001C16  
ST/SP/PA generator  
1/16  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
P25/TXD  
Transmit shift register  
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer empty flag (TBE)  
Transmit buffer register  
Address 001816  
Address 001916  
Serial I/O status register  
Data bus  
Fig.17 Block diagram of UART serial I/O  
18  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Transmit or receive clock  
Transmit buffer write  
signal  
TBE=0  
TSC=0  
TBE=1  
TBE=0  
TBE=1  
TSC=1  
Serial output TXD  
ST  
SP  
D
0
D
1
ST  
D
0
D1  
SP  
1 start bit  
Generated at 2nd bit in 2-stop-bit mode  
7 or 8 data bit  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer read  
signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
Serial input R  
XD  
D0  
D
1
ST  
D0  
D1  
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes “1” (at 1st stop bit, during reception).  
2: As the transmit interrupt (TI), when either the TBE or TSC flag becomes “1,” can be selected to occur depending on the setting of the transmit  
interrupt source selection bit (TIC) of the serial I/O control register.  
3: The receive interrupt (RI) is set when the RBF flag becomes “1.”  
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.  
Fig. 18 Operation of UART serial I/O function  
Serial I/O Control Register (SIOCON)] 001A16  
The serial I/O control register consists of eight control bits for the  
serial I/O function.  
[Transmit Buffer Register/Receive Buffer  
Register (TB/RB)] 001816  
The transmit buffer register and the receive buffer register are lo-  
cated at the same address. The transmit buffer is write-only and  
the receive buffer is read-only. If a character bit length is 7 bits, the  
MSB of data stored in the receive buffer is “0”.  
[UART Control Register (UARTCON)] 001B16  
The UART control register consists of four control bits (bits 0 to 3)  
which are valid when asynchronous serial I/O is selected and set  
the data format of an data transfer and one bit (bit 4) which is al-  
ways valid and sets the output structure of the P25/TXD pin.  
[Serial I/O Status Register (SIOSTS)] 001916  
The read-only serial I/O status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O  
function and various errors.  
[Baud Rate Generator (BRG)] 001C16  
The baud rate generator determines the baud rate for serial trans-  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to “0” when the receive  
buffer register is read.  
fer.  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate genera-  
tor.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer reg-  
ister, and the receive buffer full flag is set. A write to the serial I/O  
status register clears all the error flags OE, PE, FE, and SE (bit 3  
to bit 6, respectively). Writing “0” to the serial I/O enable bit SIOE  
(bit 7 of the serial I/O control register) also clears all the status  
flags, including the error flags.  
Bits 0 to 6 of the serial I/O status register are initialized to “0” at re-  
set, but if the transmit enable bit (bit 4) of the serial I/O control  
register has been set to “1”, the transmit shift completion flag (bit  
2) and the transmit buffer empty flag (bit 0) become “1”.  
19  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b7  
b0  
Serial I/O status register  
Serial I/O control register  
(SIOSTS : address 0019 16  
)
(SIOCON : address 001A 16  
BRG count source selection bit (CSS)  
0: f(XIN  
)
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
)
1: f(XIN)/4  
Serial I/O synchronous clock selection bit (SCS)  
0: BRG output divided by 4 when clock synchronous  
serial I/O is selected, BRG output divided by 16  
when UART is selected.  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
1: External clock input when clock synchronous serial  
I/O is selected, external clock input divided by 16  
when UART is selected.  
Transmit shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
S
0: P2  
1: P2  
RDY output enable bit (SRDY)  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
7
pin operates as ordinary I/O pin  
pin operates as SRDY output pin  
7
Transmit interrupt source selection bit (TIC)  
0: Interrupt when transmit buffer has emptied  
1: Interrupt when transmit shift operation is completed  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transmit enable bit (TE)  
0: Transmit disabled  
1: Transmit enabled  
Framing error flag (FE)  
0: No error  
1: Framing error  
Receive enable bit (RE)  
0: Receive disabled  
1: Receive enabled  
Summing error flag (SE)  
0: (OE) U (PE) U (FE)=0  
1: (OE) U (PE) U (FE)=1  
Serial I/O mode selection bit (SIOM)  
0: Clock asynchronous (UART) serial I/O  
1: Clock synchronous serial I/O  
Not used (returns “1” when read)  
b7  
b0  
Serial I/O enable bit (SIOE)  
0: Serial I/O disabled  
UART control register  
(UARTCON : address 001B 16  
)
(pins P2  
1: Serial I/O enabled  
(pins P2 to P2 operate as serial I/O pins)  
4 to P27 operate as ordinary I/O pins)  
Character length selection bit (CHAS)  
0: 8 bits  
1: 7 bits  
4
7
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS)  
0: Even parity  
1: Odd parity  
Stop bit length selection bit (STPS)  
0: 1 stop bit  
1: 2 stop bits  
P25/TXD P-channel output disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open drain output (in output mode)  
Not used (return “1” when read)  
Fig. 19 Structure of serial I/O control registers  
20  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PULSE WIDTH MODULATION (PWM)  
The 3850 group has a PWM function with an 8-bit resolution,  
based on a signal that is the clock input XIN or that clock input di-  
vided by 2.  
PWM Operation  
When bit 0 (PWM enable bit) of the PWM control register is set to  
“1”, operation starts by initializing the PWM output circuit, and  
pulses are output starting at an “H”.  
If the PWM register or PWM prescaler is updated during PWM  
output, the pulses will change in the cycle after the one in which  
the change was made.  
Data Setting  
The PWM output pin also functions as port P44. Set the PWM pe-  
riod by the PWM prescaler, and set the “H” term of output pulse by  
the PWM register.  
If the value in the PWM prescaler is n and the value in the PWM  
register is m (where n = 0 to 255 and m = 0 to 255) :  
PWM period = 255 (n+1) / f(XIN)  
31.875 m (n+1)  
µs  
255  
= 31.875 (n+1) µs (when f(XIN) = 8 MHz)  
Output pulse “H” term = PWM period m / 255  
= 0.125 (n+1) m µs  
PWM output  
(when f(XIN) = 8 MHz)  
T = [31.875 (n+1)] µs  
m: Contents of PWM register  
n : Contents of PWM prescaler  
T : PWM period (when f(XIN) = 8 MHz)  
Fig. 20 Timing of PWM period  
Data bus  
PWM  
prescaler pre-latch  
PWM  
register pre-latch  
Transfer control circuit  
PWM  
prescaler latch  
PWM  
register latch  
Count source  
selection bit  
Port P44  
“0”  
XIN  
PWM register  
PWM prescaler  
“1”  
1/2  
Port P44 latch  
PWM enable bit  
Fig. 21 Block diagram of PWM function  
21  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
PWM control register  
(PWMCON : address 001D16)  
PWM function enable bit  
0: PWM disabled  
1: PWM enabled  
Count source selection bit  
0: f(XIN)  
1: f(XIN)/2  
Not used (return “0” when read)  
Fig. 22 Structure of PWM control register  
B
T
C
T2  
=
A
B
C
PWM output  
T
T
T2  
PWM register  
write signal  
(Changes “H” term from “A” to “B”.)  
PWM prescaler  
write signal  
(Changes PWM period from “T” to “T2”.)  
When the contents of the PWM register or PWM prescaler have changed, the PWM  
output will change from the next period after the change.  
Fig. 23 PWM output timing when PWM register or PWM prescaler is changed  
Note  
The PWM starts after the PWM enable bit is set to enable and "L" level is output from the PWM pin.  
The length of this "L" level output is as follows:  
n+1  
sec  
sec  
(Count source selection bit = 0, where n is the value set in the prescaler)  
(Count source selection bit = 1, where n is the value set in the prescaler)  
2 • f(XIN)  
n+1  
f(XIN)  
22  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
A-D CONVERTER  
[A-D Conversion Registers (ADL, ADH)]  
003516, 003616  
b7  
b0  
AD control register  
(ADCON : address 003416)  
The A-D conversion registers are read-only registers that store the  
result of an A-D conversion. Do not read these registers during an  
A-D conversion  
Analog input pin selection bits  
b2 b1 b0  
0 0 0: P30/AN0  
0 0 1: P31/AN1  
0 1 0: P32/AN2  
0 1 1: P33/AN3  
1 0 0: P34/AN4  
[AD Control Register (ADCON)] 003416  
The AD control register controls the A-D conversion process. Bits  
0 to 2 select a specific analog input pin. Bit 4 indicates the  
completion of an A-D conversion. The value of this bit remains at  
“0” during an A-D conversion and changes to “1” when an A-D  
conversion ends. Writing “0” to this bit starts the A-D conversion.  
Not used (returns “0” when read)  
A-D conversion completion bit  
0: Conversion in progress  
1: Conversion completed  
Not used (returns “0” when read)  
Comparison Voltage Generator  
The comparison voltage generator divides the voltage between  
Fig. 24 Structure of AD control register  
AVSS and VREF into 1024 and outputs the divided voltages.  
Channel Selector  
The channel selector selects one of ports P30/AN0 to P34/AN4 and  
10-bit reading  
(Read address 003616 before 003516  
)
inputs the voltage to the comparator.  
b7  
b0  
(Address 003616  
(Address 003516  
)
b9 b8  
Comparator and Control Circuit  
The comparator and control circuit compare an analog input volt-  
age with the comparison voltage, and the result is stored in the  
A-D conversion registers. When an A-D conversion is completed,  
the control circuit sets the A-D conversion completion bit and the  
A-D interrupt request bit to “1”.  
b7  
b0  
)
b7 b6 b5 b4 b3 b2 b1 b0  
Note : The high-order 6 bits of address 0036 16 become “0”  
at reading.  
Note that because the comparator consists of a capacitor cou-  
pling, set f(XIN) to 500 kHz or more during an A-D conversion.  
8-bit reading (Read only address 003516  
)
b0  
b7  
(Address 003516  
)
b9 b8 b7 b6 b5 b4 b3 b2  
Fig. 25 Structure of A-D conversion registers  
Data bus  
b7  
3
b0  
AD control register  
(Address 003416  
)
A-D interrupt request  
A-D control circuit  
P30/AN0  
P3  
P3  
P3  
P3  
1/AN  
2/AN  
3/AN  
4/AN  
1
2
3
4
A-D conversion high-order register (Address 003616  
)
)
Comparator  
A-D conversion low-order register (Address 003516  
10  
Resistor ladder  
V
REF AVSS  
Fig. 26 Block diagram of A-D converter  
23  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
WATCHDOG TIMER  
Watchdog timer H count source selection bit operation  
Bit 7 of the watchdog timer control register (address 003916) per-  
mits selecting a watchdog timer H count source. When this bit is  
set to “0”, the count source becomes the underflow signal of  
watchdog timer L. The detection time is set to 131.072 ms at f(XIN)  
= 8 MHz frequency and 32.768 s at f(XCIN) = 32 kHz frequency.  
When this bit is set to “1”, the count source becomes the signal  
divided by 16 for f(XIN) (or f(XCIN)). The detection time in this case  
is set to 512 µs at f(XIN) = 8 MHz frequency and 128 ms at f(XCIN)  
= 32 kHz frequency. This bit is cleared to “0” after resetting.  
The watchdog timer gives a mean of returning to the reset status  
when a program cannot run on a normal loop (for example, be-  
cause of a software run-away). The watchdog timer consists of an  
8-bit watchdog timer L and an 8-bit watchdog timer H.  
Standard Operation of Watchdog Timer  
When any data is not written into the watchdog timer control reg-  
ister (address 003916) after resetting, the watchdog timer is in the  
stop state. The watchdog timer starts to count down by writing an  
optional value into the watchdog timer control register (address  
003916) and an internal reset occurs at an underflow of the watch-  
dog timer H.  
Operation of STP instruction disable bit  
Bit 6 of the watchdog timer control register (address 003916) per-  
mits disabling the STP instruction when the watchdog timer is in  
operation.  
Accordingly, programming is usually performed so that writing to  
the watchdog timer control register (address 003916) may be  
started before an underflow. When the watchdog timer control reg-  
ister (address 003916) is read, the values of the high-order 6 bits  
of the watchdog timer H, STP instruction disable bit, and watch-  
dog timer H count source selection bit are read.  
When this bit is “0”, the STP instruction is enabled.  
When this bit is “1”, the STP instruction is disabled, once the STP  
instruction is executed, an internal reset occurs. When this bit is  
set to “1”, it cannot be rewritten to “0” by program. This bit is  
cleared to “0” after resetting.  
Initial value of watchdog timer  
At reset or writing to the watchdog timer control register (address  
003916), each watchdog timer H and L is set to “FF16.”  
“FF16” is set when  
watchdog timer  
control register is  
written to.  
Data bus  
“FF16” is set when  
watchdog timer  
control register is  
written to.  
XCIN  
“0”  
“1”  
“10”  
Watchdog timer L (8)  
Main clock division  
ratio selection bits  
(Note)  
Watchdog timer H (8)  
1/16  
“00”  
“01”  
Watchdog timer H count  
source selection bit  
XIN  
STP instruction disable bit  
STP instruction  
Reset  
circuit  
Internal reset  
RESET  
Note: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.  
Fig. 27 Block diagram of Watchdog timer  
b0  
b7  
Watchdog timer control register  
(WDTCON : address 003916)  
Watchdog timer H (for read-out of high-order 6 bit)  
STP instruction disable bit  
0: STP instruction enabled  
1: STP instruction disabled  
Watchdog timer H count source selection bit  
0: Watchdog timer L underflow  
1: f(XIN)/16 or f(XCIN)/16  
Fig. 28 Structure of Watchdog timer control register  
24  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
To reset the microcomputer, RESET pin must be held at an "L"  
level for 2 µs or more. Then the RESET pin is returned to an "H"  
level (the power source voltage must be between 2.7 V and 5.5 V,  
and the oscillation must be stable), reset is released. After the re-  
set is completed, the program starts from the address contained in  
address FFFD16 (high-order byte) and address FFFC16 (low-order  
byte). Make sure that the reset input voltage is less than 0.54 V for  
VCC of 2.7 V.  
Poweron  
(Note)  
Power source  
voltage  
0V  
RESET  
VCC  
Reset input  
voltage  
0V  
0.2VCC  
Note : Reset release voltage ; Vcc=2.7 V  
RESET  
V
CC  
Power source  
voltage detection  
circuit  
Fig. 29 Reset circuit example  
XIN  
φ
RESET  
RESETOUT  
Address  
ADH,L  
?
?
?
?
FFFC  
FFFD  
Reset address from the vector table.  
ADH  
Data  
?
?
?
ADL  
?
SYNC  
XIN: 8 to 13 clock cycles  
Notes 1: The frequency relation of f(XIN) and f(φ) is f(XIN) = 2 f(φ).  
2: The question marks (?) indicate an undefined state that depends on the previous state.  
3: All signals except XIN and RESET are internals.  
Fig. 30 Reset sequence  
25  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Address Register contents  
000116  
000316  
000516  
000716  
000916  
001916  
001A16  
001B16  
001D16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002C16  
002D16  
002E16  
002F16  
003016  
003416  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
(PS)  
(1)  
0016  
Port P0 direction register (P0D)  
Port P1 direction register (P1D)  
Port P2 direction register (P2D)  
Port P3 direction register (P3D)  
Port P4 direction register (P4D)  
Serial I/O status register (SIOSTS)  
Serial I/O control register (SIOCON)  
UART control register (UARTCON)  
PWM control register (PWMCON)  
Prescaler 12 (PRE12)  
(2)  
0016  
(3)  
0016  
(4)  
0016  
(5)  
0016  
(6)  
1 0 0 0 0 0 0 0  
(7)  
0016  
(8)  
1 1 1 0 0 0 0 0  
(9)  
0016  
FF16  
(10)  
(11)  
(12)  
(13)  
(14)  
(15)  
(16)  
(17)  
(18)  
(19)  
(20)  
(21)  
(22)  
(23)  
(24)  
(25)  
(26)  
(27)  
(28)  
(29)  
(30)  
(31)  
(32)  
(33)  
(34)  
0116  
Timer 1 (T1)  
0016  
Timer 2 (T2)  
0016  
Timer XY mode register (TM)  
Prescaler X (PREX)  
FF16  
FF16  
Timer X (TX)  
FF16  
Prescaler Y (PREY)  
FF16  
Timer Y (TY)  
0016  
Timer count source select register  
Reserved  
Not fixed  
Not fixed  
Not fixed  
Not fixed  
Not fixed  
0 0 0 1 0 0 0 0  
0016  
Reserved  
Reserved  
Reserved  
Reserved  
AD control register (ADCON)  
MISRG  
0 0 1 1 1 1 1 1  
0016  
Watchdog timer control register (WDTCON)  
Interrupt edge selection register (INTEDGE)  
CPU mode register (CPUM)  
Interrupt request register 1 (IREQ1)  
Interrupt request register 2 (IREQ2)  
Interrupt control register 1 (ICON1)  
Interrupt control register 2 (ICON2)  
Processor status register  
Program counter  
0 1 0 0 1 0 0 0  
0016  
0016  
0016  
0016  
1
X X X X X  
X X  
(PCH)  
FFFD16 contents  
FFFC16 contents  
(PCL)  
Note : X indicates Not fixed .  
Fig. 31 Internal status at reset  
26  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CLOCK GENERATING CIRCUIT  
be generated.  
The 3850 group has two built-in oscillation circuits. An oscillation  
circuit can be formed by connecting a resonator between XIN and  
XOUT (XCIN and XCOUT). Use the circuit constants in accordance  
with the resonator manufacturer’s recommended values. No exter-  
nal resistor is needed between XIN and XOUT since a feed-back  
resistor exists on-chip. However, an external feed-back resistor is  
needed between XCIN and XCOUT.  
(2) Wait mode  
If the WIT instruction is executed, the internal clock φ stops at an  
“H” level, but the oscillator does not stop. The internal clock φ re-  
starts at reset or when an interrupt is received. Since the oscillator  
does not stop, normal operation can be started immediately after  
the clock is restarted.  
Immediately after power on, only the XIN oscillation circuit starts  
oscillating, and XCIN and XCOUT pins function as I/O ports.  
To ensure that the interrupts will be received to release the STP or  
WIT state, their interrupt enable bits must be set to “1” before ex-  
ecuting of the STP or WIT instruction.  
Frequency Control  
(1) Middle-speed mode  
When releasing the STP state, the prescaler 12 and timer 1 will  
start counting the clock XIN divided by 16. Accordingly, set the  
timer 1 interrupt enable bit to “0” before executing the STP instruc-  
tion.  
The internal clock φ is the frequency of XIN divided by 8. After re-  
set, this mode is selected.  
(2) High-speed mode  
The internal clock φ is half the frequency of XIN.  
Note  
When using the oscillation stabilizing time set after STP instruction  
released bit set to “1”, evaluate time to stabilize oscillation of the  
used oscillator and set the value to the timer 1 and prescaler 12.  
(3) Low-speed mode  
The internal clock φ is half the frequency of XCIN.  
Note  
If you switch the mode between middle/high-speed and low-  
speed, stabilize both XIN and XCIN oscillations. The sufficient time  
is required for the sub-clock to stabilize, especially immediately af-  
ter power on and at returning from the stop mode. When switching  
the mode between middle/high-speed and low-speed, set the fre-  
quency on condition that f(XIN) > 3•f(XCIN).  
XCIN XCOUT  
XIN  
XOUT  
Rf  
Rd  
(4) Low power dissipation mode  
COUT  
CCIN  
CCOUT  
CIN  
The low power consumption operation can be realized by stopping  
the main clock XIN in low-speed mode. To stop the main clock, set  
bit 5 of the CPU mode register to “1.When the main clock XIN is  
restarted (by setting the main clock stop bit to “0”), set sufficient  
time for oscillation to stabilize.  
Fig. 32 Ceramic resonator circuit  
The sub-clock XCIN-XCOUT oscillating circuit can not directly input  
clocks that are generated externally. Accordingly, make sure to  
cause an external resonator to oscillate.  
Oscillation Control  
(1) Stop mode  
XCIN XCOUT  
XIN  
XOUT  
Open  
If the STP instruction is executed, the internal clock φ stops at an  
“H” level, and XIN and XCIN oscillation stops. When the oscillation  
stabilizing time set after STP instruction released bit is “0,” the  
prescaler 12 is set to “FF16” and timer 1 is set to “0116.” When the  
oscillation stabilizing time set after STP instruction released bit is  
“1,” set the sufficient time for oscillation of used oscillator to stabi-  
lize since nothing is set to the prescaler 12 and timer 1.  
Either XIN or XCIN divided by 16 is input to the prescaler 12 as  
count source. Oscillator restarts when an external interrupt is re-  
ceived, but the internal clock φ is not supplied to the CPU (remains  
at “H”) until timer 1 underflows. The internal clock φ is supplied for  
the first time, when timer 1 underflows. This ensures time for the  
clock oscillation using the ceramic resonators to be stabilized.  
When the oscillator is restarted by reset, apply “L” level to the  
RESET pin until the oscillation is stable since a wait time will not  
Rf  
Rd  
External oscillation  
circuit  
CCIN  
CCOUT  
Vcc  
Vss  
Fig. 33 External clock input circuit  
27  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Middle-speed mode automatic switch set bit  
By setting the middle-speed mode automatic switch set bit to “1”  
while operating in the low-speed mode, XIN oscillation automati-  
cally starts and the mode is automatically switched to the  
middle-speed mode when defecting a rising/falling edge of the  
SCL or SDA pin. The middle-speed automatic switch wait time set  
bit can select the switch timing from the low-speed to the middle-  
speed mode; either 4.5 to 5.5 machine cycles or 6.5 to 7.5  
machine cycles in the low-speed mode. Select it according to os-  
cillation start characteristics of used XIN oscillator.  
b7  
b0  
MISRG  
(MISRG : address 003816  
)
Oscillation stabilizing time set after STP instruction  
released bit  
0: Automatically set “0116” to Timer 1,  
“FF16” to Prescaler 12  
1: Automatically set nothing  
Middle-speed mode automatic switch set bit  
0: Not set automatically  
1: Automatic switching enable  
Middle-speed mode automatic switch wait time set bit  
0: 4.5 to 5.5 machine cycles  
1: 6.5 to 7.5 machine cycles  
The middle-speed mode automatic switch start bit is used to auto-  
matically make to XIN oscillation start and switch to the  
middle-speed mode by setting this bit to “1” while operating in the  
low-speed mode.  
Middle-speed mode automatic switch start bit  
(Depending on program)  
0: Invalid  
1: Automatic switch start  
Not used (return “0” when read)  
Fig. 34 Structure of MISRG  
XCOUT  
XCIN  
“0”  
“1”  
Port X  
C
switch bit  
XOUT  
XIN  
Main clock division ratio  
selection bits (Note)  
Low-speed mode  
1/2  
Prescaler 12  
FF16  
Timer 1  
0116  
1/4  
1/2  
High-speed or  
middle-speed  
mode  
Reset or  
STP instruction  
Main clock division ratio  
selection bits (Note)  
Middle-speed mode  
Timing φ (internal clock)  
High-speed or  
low-speed mode  
Main clock stop bit  
Q
S
R
S
R
Q
Q
S
R
STP instruction  
STP instruction  
WIT instruction  
Reset  
Interrupt disable flag l  
Interrupt request  
Note: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.  
When low-speed mode is selected, set port Xc switch bit (b1) to “1”.  
Fig. 35 System clock generating circuit block diagram (Single-chip mode)  
28  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset  
Middle-speed mode  
High-speed mode  
(f(φ)=4 MHz)  
(f(φ)=1 MHz)  
CM6  
“1”←→“0”  
CM7=0  
CM7=0  
CM6=1  
CM6=0  
CM5=0(8 MHz oscillating)  
CM4=0(32 kHz stopped)  
CM5=0(8 MHz oscillating)  
CM4=0(32 kHz stopped)  
High-speed mode  
(f(φ)=4 MHz)  
Middle-speed mode  
(f(φ)=1 MHz)  
CM6  
“1”←→“0”  
CM7=0  
CM6=1  
CM5=0(8 MHz oscillating)  
CM4=1(32 kHz oscillating)  
CM7=0  
CM6=0  
CM5=0(8 MHz oscillating)  
CM4=1(32 kHz oscillating)  
Low-speed mode  
(f(φ)=16 kHz)  
CM7=1  
CM6=0  
CM5=0(8 MHz oscillating)  
CM4=1(32 kHz oscillating)  
b7  
b4  
CPU mode register  
(CPUM : address 003B16)  
CM4 : Port Xc switch bit  
0 : I/O port function (stop oscillating)  
1 : XCIN-XCOUT oscillating function  
CM5 : Main clock (XIN- XOUT) stop bit  
0 : Operating  
1 : Stopped  
CM7, CM6: Main clock division ratio selection bit  
b7 b6  
Low-speed mode  
(f(φ)=16 kHz)  
0
0
1
1
0 : φ = f(XIN)/2 ( High-speed mode)  
1 : φ = f(XIN)/8 (Middle-speed mode)  
0 : φ = f(XCIN)/2 (Low-speed mode)  
1 : Not available  
CM7=1  
CM6=0  
CM5=1(8 MHz stopped)  
CM4=1(32 kHz oscillating)  
Notes  
1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the modes directly without an allow.)  
2 : The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the wait mode is  
ended.  
3 : Timer operates in the wait mode.  
4 : When the stop mode is ended, a delay of approximately 1 ms occurs by connecting prescaler 12 in middle/high-speed mode.  
5 : When the stop mode is ended, a delay of approximately 16 ms occurs by Timer 1 and Timer 2 in low-speed mode.  
6 : Wait until oscillation stabilizes after oscillating the main clock X IN before the switching from the low-speed mode to middle/high-speed  
mode.  
7 : The example assumes that 8 MHz is being applied to the X IN pin and 32 kHz to the X CIN pin. φ indicates the internal clock.  
Fig. 36 State transitions of system clock  
29  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
A-D Converter  
Processor Status Register  
The comparator uses capacitive coupling amplifier whose charge  
will be lost if the clock frequency is too low.  
Therefore, make sure that f(XIN) is at least on 500 kHz during an  
A-D conversion.  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is “1.” After  
a reset, initialize flags which affect program execution. In particu-  
lar, it is essential to initialize the index X mode (T) and the decimal  
mode (D) flags because of their effect on calculations.  
Do not execute the STP or WIT instruction during an A-D conver-  
sion.  
Interrupts  
Instruction Execution Time  
The contents of the interrupt request bits do not change immedi-  
ately after they have been written. After writing to an interrupt  
request register, execute at least one instruction before performing  
a BBC or BBS instruction.  
The instruction execution time is obtained by multiplying the fre-  
quency of the internal clock φ by the number of cycles needed to  
execute an instruction.  
The number of cycles required to execute an instruction is shown  
in the list of machine instructions.  
Decimal Calculations  
The frequency of the internal clock φ is half of the XIN frequency in  
high-speed mode.  
To calculate in decimal notation, set the decimal mode flag (D)  
to “1”, then execute an ADC or SBC instruction. After executing  
an ADC or SBC instruction, execute at least one instruction be-  
fore executing a SEC, CLC, or CLD instruction.  
• In decimal mode, the values of the negative (N), overflow (V),  
and zero (Z) flags are invalid.  
Timers  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
quency division ratio is 1/(n+1).  
Multiplication and Division Instructions  
• The index X mode (T) and the decimal mode (D) flags do not af-  
fect the MUL and DIV instruction.  
• The execution of these instructions does not change the con-  
tents of the processor status register.  
Ports  
The contents of the port direction registers cannot be read. The  
following cannot be used:  
• The data transfer instruction (LDA, etc.)  
• The operation instruction when the index X mode flag (T) is “1”  
• The addressing mode which uses the value of a direction regis-  
ter as an index  
• The bit-test instruction (BBC or BBS, etc.) to a direction register  
• The read-modify-write instructions (ROR, CLB, or SEB, etc.) to a  
direction register.  
Use instructions such as LDM and STA, etc., to set the port direc-  
tion registers.  
Serial I/O  
In clock synchronous serial I/O, if the receive side is using an ex-  
ternal clock and it is to output the SRDY signal, set the transmit  
enable bit, the receive enable bit, and the SRDY output enable bit  
to “1.”  
Serial I/O continues to output the final bit from the TXD pin after  
transmission is completed.  
When an external clock is used as synchronous clock in serial I/O,  
write transmission data to the transmit buffer register while the  
transfer clock is “H.”  
30  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DATA REQUIRED FOR MASK ORDERS  
ROM PROGRAMMING METHOD  
The following are necessary when ordering a mask ROM produc-  
The built-in PROM of the blank One Time PROM version and built-  
in EPROM version can be read or programmed with a  
general-purpose PROM programmer using a special programming  
adapter. Set the address of PROM programmer in the user ROM  
area.  
tion:  
1.Mask ROM Order Confirmation Form  
2.Mark Specification Form  
3.Data to be written to ROM, in EPROM form (three identical cop-  
ies)  
Table 5 Programming adapter  
DATA REQUIRED FOR ROM WRITING  
ORDERS  
Package  
Name of Programming Adapter  
42P2R-A  
42P4B  
PCA4738F-42A  
PCA4738S-42A  
The following are necessary when ordering a ROM writing:  
1.ROM Writing Confirmation Form  
2.Mark Specification Form  
3.Data to be written to ROM, in EPROM form (three identical cop-  
ies)  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after programming, the procedure shown in  
Figure 49 is recommended to verify programming.  
Programming with PROM  
programmer  
Screening (Caution)  
(150 °C for 40 hours)  
Verification with  
PROM programmer  
Functional check in  
target device  
The screening temperature is far higher  
than the storage temperature. Never  
expose to 150 °C exceeding 100 hours.  
Caution :  
Fig. 37 Programming and testing of One Time PROM version  
31  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS  
Table 6 Absolute maximum ratings  
Symbol  
Parameter  
Power source voltage  
Conditions  
Ratings  
Unit  
V
VCC  
–0.3 to 7.0  
Input voltage P00–P07, P10–P17, P20, P21,  
P24–P27, P30–P34, P40–P44,  
VREF  
VI  
–0.3 to VCC +0.3  
V
VI  
VI  
VI  
Input voltage P22, P23  
Input voltage RESET, XIN  
Input voltage CNVSS  
–0.3 to 5.8  
–0.3 to VCC +0.3  
–0.3 to 13  
V
V
V
All voltages are based on VSS.  
Output transistors are cut off.  
Output voltage P00–P07, P10–P17, P20, P21,  
P24–P27, P30–P34, P40–P44,  
XOUT  
VO  
–0.3 to VCC +0.3  
V
VO  
Output voltage P22, P23  
Power dissipation  
–0.3 to 5.8  
300  
V
mW  
°C  
Pd  
Ta = 25 °C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
–20 to 85  
–40 to 125  
°C  
Table 7 Recommended operating conditions (1)  
(VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
V
Min.  
Typ.  
5.0  
5.0  
0
Max.  
Power source voltage (At 8 MHz)  
Power source voltage (At 4 MHz)  
Power source voltage  
4.0  
2.7  
5.5  
5.5  
VCC  
VSS  
VREF  
AVSS  
VIA  
V
V
V
V
V
V
V
V
V
A-D convert reference voltage  
Analog power source voltage  
2.0  
VCC  
0
Analog input voltage  
“H” input voltage  
“H” input voltage  
AN0–AN4  
AVSS  
VCC  
VCC  
P00–P07, P10–P17, P20–P27, P30–P34, P40–P44  
RESET, XIN, CNVSS  
VIH  
0.8VCC  
VIH  
0.8VCC  
VCC  
VIL  
0
0
0
“L” input voltage  
P00–P07, P10–P17, P20–P27, P30–P34, P40–P44  
RESET, CNVSS  
0.2VCC  
0.2VCC  
0.16VCC  
VIL  
“L” input voltage  
VIL  
“L” input voltage  
XIN  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
“H” total peak output current  
“H” total peak output current  
“L” total peak output current  
“L” total peak output current  
“L” total peak output current  
P00–P07, P10–P17, P30–P34 (Note)  
P20, P21, P24–P27, P40–P44 (Note)  
P00–P07, P10–P12, P30–P34 (Note)  
P13–P17 (Note)  
–80  
–80  
80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
80  
P20–P27,P40–P44 (Note)  
80  
“H” total average output current P00–P07, P10–P17, P30–P34 (Note)  
“H” total average output current P20, P21, P24–P27, P40–P44 (Note)  
“L” total average output current P00–P07, P10–P12, P30–P34 (Note)  
“L” total average output current P13–P17 (Note)  
–40  
–40  
40  
40  
“L” total average output current P20–P27,P40–P44 (Note)  
40  
Note : The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured  
over 100 ms. The total peak current is the peak value of all the currents.  
32  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 8 Recommended operating conditions (2)  
(VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
“H” peak output current  
Lpeak output current  
P00–P07, P10–P17, P20, P21, P24–P27, P30–P34,  
P40–P44 (Note 1)  
IOH(peak)  
–10  
mA  
P00–P07, P10–P12, P20–P27, P30–P34, P40–P44  
(Note 1)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
10  
20  
–5  
mA  
mA  
mA  
Lpeak output current  
P13–P17 (Note 1)  
“H” average output current  
P00–P07, P10–P17, P20, P21, P24–P27, P30–P34,  
P40–P44 (Note 2)  
Laverage output current  
Lpeak output current  
P00–P07, P10–P12, P20–P27, P30–P34, P40–P44  
(Note 2)  
IOL(avg)  
5
mA  
15  
8
mA  
MHz  
kHz  
IOL(avg)  
f(XIN)  
f(XIN)  
P13–P17 (Note 2)  
Internal clock oscillation frequency (VCC = 4.0 to 5.5V) (Note 3)  
Internal clock oscillation frequency (VCC = 2.7 to 5.5V) (Note 3)  
4
Notes 1: The peak output current is the peak current flowing in each port.  
2: The average output current IOL(avg), IOH(avg) are average value measured over 100 ms.  
3: When the oscillation frequency has a duty cycle of 50%.  
33  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 9 Electrical characteristics  
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
“H” output voltage  
P00–P07, P10–P17, P20, P21,  
P24–P27, P30–P34, P40–P44  
(Note)  
Test conditions  
IOH = –10 mA  
VCC = 4.0–5.5 V  
IOH = –1.0 mA  
VCC = 2.7–5.5 V  
Unit  
Min.  
Max.  
V
V
V
V
V
V
VCC–2.0  
VCC–1.0  
VOH  
VOL  
VOL  
IOL = 10 mA  
VCC = 4.0–5.5 V  
IOL = 1.0 mA  
“L” output voltage  
P00–P07, P10–P12, P20–P27  
P30–P34, P40–P44  
2.0  
1.0  
2.0  
1.0  
VCC = 2.7–5.5 V  
IOL = 20 mA  
VCC = 4.0–5.5 V  
IOL = 10 mA  
VCC = 2.7–5.5 V  
Loutput voltage  
P13–P17  
Hysteresis  
CNTR0, CNTR1, INT0–INT3  
0.4  
VT+–VT–  
V
V
V
VT+–VT–  
VT+–VT–  
Hysteresis RxD, SCLK  
Hysteresis RESET  
0.5  
0.5  
“H” input current  
P00–P07, P10–P17, P20, P21,  
P24–P27, P30–P34, P40–P44  
5.0  
5.0  
IIH  
VI = VCC  
µA  
µA  
µA  
IIH  
IIH  
“H” input current RESET, CNVSS  
“H” input current XIN  
VI = VCC  
VI = VCC  
4
“L” input current  
P00–P07, P10–P17, P20–P27  
P30–P34, P40–P44  
IIL  
–5.0  
–5.0  
µA  
VI = VSS  
IIL  
“L” input current RESET,CNVSS  
µA  
µA  
V
VI = VSS  
IIL  
“L” input current  
XIN  
–4  
VI = VSS  
5.5  
VRAM  
RAM hold voltage  
2.0  
When clock stopped  
Note: P25 is measured when the P25/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
34  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 10 Electrical characteristics  
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
High-speed mode  
f(XIN) = 8 MHz  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
Unit  
Typ.  
Max.  
13  
Min.  
6.8  
mA  
High-speed mode  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
1.6  
60  
mA  
µA  
µA  
µA  
µA  
Low-speed mode  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
200  
40  
Low-speed mode  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
20  
Low-speed mode (VCC = 3 V)  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz  
Output transistors “off”  
ICC  
Power source current  
20  
55  
Low-speed mode (VCC = 3 V)  
f(XIN) = stopped  
f(XCIN) = 32.768 kHz (in WIT state)  
Output transistors “off”  
5.0  
10.0  
Middle-speed mode  
f(XIN) = 8 MHz  
f(XCIN) = stopped  
Output transistors “off”  
7.0  
mA  
4.0  
1.5  
Middle-speed mode  
f(XIN) = 8 MHz (in WIT state)  
f(XCIN) = stopped  
mA  
Output transistors “off”  
Increment when A-D conversion is  
executed  
f(XIN) = 8 MHz  
800  
0.1  
µA  
All oscillation stopped  
Ta = 25 °C  
(in STP state)  
1.0  
10  
µA  
µA  
Output transistors “off”  
Ta = 85 °C  
35  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 11 A-D converter characteristics  
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 8 MHz, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
10  
Resolution  
bit  
LSB  
tc(φ)  
kΩ  
Absolute accuracy (excluding quantization error)  
Conversion time  
±4  
tCONV  
61  
RLADDER  
IVREF  
Ladder resistor  
35  
150  
0.5  
VREF = 5.0 V  
Reference power source input current  
A-D port input current  
µA  
50  
200  
5.0  
II(AD)  
µA  
36  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS  
Table 12 Timing requirements (1)  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
2
Typ.  
Max.  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tW(RESET)  
tC(XIN)  
Reset input “Lpulse width  
External clock input cycle time  
125  
50  
tWH(XIN)  
External clock input “H” pulse width  
External clock input “Lpulse width  
CNTR0, CNTR1 input cycle time  
tWL(XIN)  
50  
tC(CNTR)  
tWH(CNTR)  
tWL(CNTR)  
tC(SCLK)  
200  
80  
CNTR0, CNTR1, INT0–INT3 input “H” pulse width  
CNTR0, CNTR1, INT0–INT3 input “Lpulse width  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input “H” pulse width (Note)  
Serial I/O clock input “Lpulse width (Note)  
Serial I/O input setup time  
80  
800  
370  
370  
220  
100  
tWH(SCLK)  
tWL(SCLK)  
tsu(RxD-SCLK)  
th(SCLK-RxD)  
Serial I/O input hold time  
Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART).  
Table 13 Timing requirements (2)  
(VCC = 2.7 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2
Max.  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tW(RESET)  
tC(XIN)  
Reset input “Lpulse width  
External clock input cycle time  
250  
100  
100  
500  
230  
230  
2000  
950  
950  
400  
200  
tWH(XIN)  
External clock input “H” pulse width  
External clock input “Lpulse width  
CNTR0, CNTR1 input cycle time  
tWL(XIN)  
tC(CNTR)  
tWH(CNTR)  
tWL(CNTR)  
tC(SCLK)  
CNTR0, CNTR1, INT0–INT3 input “H” pulse width  
CNTR0, CNTR1, INT0–INT3 input “Lpulse width  
Serial I/O clock input cycle time (Note)  
Serial I/O clock input “H” pulse width (Note)  
Serial I/O clock input “Lpulse width (Note)  
Serial I/O input setup time  
tWH(SCLK)  
tWL(SCLK)  
tsu(RxD-SCLK)  
th(SCLK-RxD)  
Serial I/O input hold time  
Note : When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1” (clock synchronous).  
Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0” (UART).  
37  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 14 Switching characteristics 1  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
tWH (SCLK)  
tWL (SCLK)  
td (SCLK-TXD)  
tv (SCLK-TXD)  
tr (SCLK)  
Serial I/O clock output “H” pulse width  
Serial I/O clock output “Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
tC(SCLK)/2–30  
tC(SCLK)/2–30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
140  
–30  
30  
30  
30  
30  
tf (SCLK)  
tr (CMOS)  
tf (CMOS)  
10  
10  
Notes 1: For tWH(SCLK), tWL(SCLK), when the P51/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: The XOUT pin is excluded.  
Table 15 Switching characteristics 2  
(VCC = 2.7 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
350  
tWH (SCLK)  
tWL (SCLK)  
td (SCLK-TXD)  
tv (SCLK-TXD)  
tr (SCLK)  
Serial I/O clock output “H” pulse width  
Serial I/O clock output “Lpulse width  
Serial I/O output delay time (Note 1)  
Serial I/O output valid time (Note 1)  
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CMOS output rising time (Note 2)  
CMOS output falling time (Note 2)  
tC(SCLK)/2–50  
tC(SCLK)/2–50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–30  
50  
50  
50  
50  
tf (SCLK)  
tr (CMOS)  
tf (CMOS)  
20  
20  
Notes 1: For tWH(SCLK), tWL(SCLK), when the P51/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.  
2: The XOUT pin is excluded.  
38  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
1kΩ  
Measurement output pin  
Measurement output pin  
100pF  
100pF  
CMOS output  
N-channel open-drain output  
Fig. 38 Circuit for measuring output switching characteris-  
tics (1)  
Fig. 39 Circuit for measuring output switching characteris-  
tics (2)  
39  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
tC(CNTR)  
tWL(CNTR)  
0.2VCC  
tWH(CNTR)  
0.8VCC  
CNTR0, CNTR1  
tWL(INT)  
0.2VCC  
tWH(INT)  
0.8VCC  
INT0 to INT3  
RESET  
tW(RESET)  
0.8VCC  
0.2VCC  
tC(XIN)  
tWL(XIN)  
0.2VCC  
tWH(XIN)  
0.8VCC  
XIN  
tC(SCLK)  
tr  
tf  
tWL(SCLK)  
tWH(SCLK)  
0.8VCC  
SCLK  
0.2VCC  
tsu(RxD-SCLK)  
th(SCLK-RxD)  
0.8VCC  
0.2VCC  
RXD  
TXD  
tv(SCLK-TXD)  
td(SCLK-TXD)  
Fig. 40 Timing diagram  
40  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MASK ROM CONFIRMATION FORM  
GZZ-SH53-11B<86A0>  
Mask ROM number  
Date:  
740 FAMILY MASK ROM CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38503M2-XXXSP/FP  
MITSUBISHI ELECTRIC  
Section head Supervisor  
signature signature  
Note : Please fill in all items marked .  
Submitted by Supervisor  
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date:  
1. Confirmation  
Specify the name of the product being ordered and the type of EPROMs submitted.  
Three EPROMs are required for each pattern.  
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data.  
We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this  
data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.  
Microcomputer name:  
M38503M2-XXXSP  
M38503M2-XXXFP  
Checksum code for entire EPROM  
(hexadecimal notation)  
EPROM type (indicate the type used)  
27512  
27256  
In the address space of the microcomputer, the internal  
ROM area is from address 608016 to FFFD16. The reset  
vector is stored in addresses FFFC16 and FFFD16.  
EPROM address  
000016  
EPROM address  
000016  
Product name  
ASCII code :  
‘M38503M2-’  
Product name  
ASCII code :  
‘M38503M2-’  
000F16  
001016  
000F16  
001016  
607F16  
608016  
E07F16  
E08016  
data  
data  
ROM (8K-130) bytes  
ROM (8K-130) bytes  
7FFD16  
7FFE16  
7FFF16  
FFFD16  
FFFE16  
FFFF16  
Address  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
Address  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
(1) Set the data in the unused area (the shaded area of  
the diagram) to “FF16”.  
‘M’ = 4D16  
‘3’ = 3316  
‘8’ = 3816  
‘5’ = 3516  
‘0’ = 3016  
‘3’ = 3316  
‘M’ = 4D16  
‘2’ = 3216  
‘–’ = 2D16  
FF16  
(2) The ASCII codes of the product name “M38503M2–”  
must be entered in addresses 000016 to 000816. And  
set the data “FF16” in addresses 000916 to 000F16.  
The ASCII codes and addresses are listed to the right  
in hexadecimal notation.  
FF16  
FF16  
FF16  
FF16  
FF16  
FF16  
(1/2)  
41  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Mask ROM number  
GZZ-SH53-11B<86A0>  
740 FAMILY MASK ROM CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38503M2-XXXSP/FP  
MITSUBISHI ELECTRIC  
We recommend the use of the following pseudo-command to set the start address of the assembler source program be-  
cause ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.  
EPROM type  
27256  
27512  
*= $0000  
.BYTE ‘M38503M2–’  
*= $8000  
.BYTE ‘M38503M2–’  
The pseudo-command  
Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM  
will not be processed.  
2. Mark specification  
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate  
mark specification form (42P4B for M38503M2-XXXSP, 42P2R-A for M38503M2-XXXFP) and attach it to the mask  
ROM confirmation form.  
3. Usage conditions  
Please answer the following questions about usage for use in our product inspection :  
(1) How will you use the XIN-XOUT oscillator?  
Ceramic resonator  
External clock input  
Quartz crystal  
Other (  
)
At what frequency?  
(2) Which function will you use the pins P21/XCIN and P20/XCOUT as P21 and P20, or XCIN and XCOUT ?  
Ports P21 and P20 function XCIN and XCOUT function (external resonator)  
f(XIN) =  
MHz  
4. Comments  
(2/2)  
42  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MASK ROM CONFIRMATION FORM  
GZZ-SH11-40A<6YA0>  
Mask ROM number  
740 FAMILY MASK ROM CONFIRMATION FORM  
Date:  
Section head Supervisor  
SINGLE-CHIP MICROCOMPUTER M38503M4-XXXSP/FP  
MITSUBISHI ELECTRIC  
signature  
signature  
Note : Please fill in all items marked .  
Submitted by Supervisor  
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date:  
1. Confirmation  
Specify the name of the product being ordered and the type of EPROMs submitted.  
Three EPROMs are required for each pattern.  
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data.  
We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this  
data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.  
Microcomputer name:  
M38503M4-XXXSP  
M38503M4-XXXFP  
Checksum code for entire EPROM  
(hexadecimal notation)  
EPROM type (indicate the type used)  
27256  
27512  
In the address space of the microcomputer, the internal  
ROM area is from address C08016 to FFFD16. The reset  
vector is stored in addresses FFFC16 and FFFD16.  
EPROM address  
EPROM address  
000016  
000016  
Product name  
ASCII code :  
‘M38503M4-’  
Product name  
ASCII code :  
‘M38503M4-’  
000F16  
001016  
000F16  
001016  
407F16  
408016  
C07F16  
C08016  
data  
data  
ROM (16K-130) bytes  
ROM (16K-130) bytes  
7FFD16  
7FFE16  
7FFF16  
FFFD16  
FFFE16  
FFFF16  
Address  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
Address  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
(1) Set the data in the unused area (the shaded area of  
the diagram) to “FF16”.  
‘M’ = 4D16  
‘3’ = 3316  
‘8’ = 3816  
‘5’ = 3516  
‘0’ = 3016  
‘3’ = 3316  
‘M’ = 4D16  
‘4’ = 3416  
‘–’ = 2D16  
FF16  
(2) The ASCII codes of the product name “M38503M4–”  
must be entered in addresses 000016 to 000816. And  
set the data “FF16” in addresses 000916 to 000F16.  
The ASCII codes and addresses are listed to the right  
in hexadecimal notation.  
FF16  
FF16  
FF16  
FF16  
FF16  
FF16  
(1/2)  
43  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Mask ROM number  
GZZ-SH11-40A<6YA0>  
740 FAMILY MASK ROM CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38503M4-XXXSP/FP  
MITSUBISHI ELECTRIC  
We recommend the use of the following pseudo-command to set the start address of the assembler source program be-  
cause ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.  
27256  
27512  
EPROM type  
*= $8000  
.BYTE ‘M38503M4–’  
*= $0000  
.BYTE ‘M38503M4–’  
The pseudo-command  
Note : If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM  
will not be processed.  
2. Mark specification  
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate  
mark specification form (42P4B for M38503M4-XXXSP, 42P2R-A for M38503M4-XXXFP) and attach it to the mask  
ROM confirmation form.  
3. Usage conditions  
Please answer the following questions about usage for use in our product inspection :  
(1) How will you use the XIN-XOUT oscillator?  
Ceramic resonator  
External clock input  
Quartz crystal  
Other (  
)
At what frequency?  
(2) Which function will you use the pins P21/XCIN and P20/XCOUT as P21 and P20, or XCIN and XCOUT ?  
Ports P21 and P20 function XCIN and XCOUT function (external resonator)  
f(XIN) =  
MHz  
4. Comments  
(2/2)  
44  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ROM PROGRAMMING CONFIRMATION FORM  
GZZ-SH11-41A<6YA0>  
ROM number  
740 FAMILY ROM PROGRAMMING CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38503E4-XXXSP/FP  
MITSUBISHI ELECTRIC  
Date:  
Section head Supervisor  
signature  
signature  
Note : Please fill in all items marked .  
Submitted by Supervisor  
TEL  
(
Company  
name  
)
Customer  
Date  
issued  
Date:  
1. Confirmation  
Specify the name of the product being ordered and the type of EPROMs submitted.  
Three EPROMs are required for each pattern.  
If at least two of the three sets of EPROMs submitted contain identical data, we will produce ROM programming based  
on this data. We shall assume the responsibility for errors only if the programming data on the products we produce dif-  
fers from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.  
Microcomputer name:  
M38503E4-XXXSP  
M38503E4-XXXFP  
Checksum code for entire EPROM  
(hexadecimal notation)  
EPROM type (indicate the type used)  
27256  
27512  
In the address space of the microcomputer, the internal  
ROM area is from address C08016 to FFFD16. The reset  
vector is stored in addresses FFFC16 and FFFD16.  
EPROM address  
EPROM address  
000016  
000016  
Product name  
ASCII code :  
‘M38503E4-’  
Product name  
ASCII code :  
‘M38503E4-’  
000F16  
001016  
000F16  
001016  
C07F16  
C08016  
407F16  
408016  
data  
data  
ROM (16K-130) bytes  
ROM (16K-130) bytes  
FFFD16  
FFFE16  
FFFF16  
7FFD16  
7FFE16  
7FFF16  
Address  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
Address  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
(1) Set the data in the unused area (the shaded area of  
the diagram) to “FF16”.  
‘M’ = 4D16  
‘3’ = 3316  
‘8’ = 3816  
‘5’ = 3516  
‘0’ = 3016  
‘3’ = 3316  
‘E’ = 4516  
‘4’ = 3416  
‘–’ = 2D16  
FF16  
(2) The ASCII codes of the product name “M38503E4–”  
must be entered in addresses 000016 to 000816. And  
set the data “FF16” in addresses 000916 to 000F16.  
The ASCII codes and addresses are listed to the right  
in hexadecimal notation.  
FF16  
FF16  
FF16  
FF16  
FF16  
FF16  
(1/2)  
45  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ROM number  
GZZ-SH11-41A<6YA0>  
740 FAMILY ROM PROGRAMMING CONFIRMATION FORM  
SINGLE-CHIP MICROCOMPUTER M38503E4-XXXSP/FP  
MITSUBISHI ELECTRIC  
We recommend the use of the following pseudo-command to set the start address of the assembler source program be-  
cause ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.  
27256  
27512  
EPROM type  
*= $8000  
.BYTE ‘M38503E4–’  
*= $0000  
.BYTE ‘M38503E4–’  
The pseudo-command  
Note : If the name of the product written to the EPROMs does not match the name of the ROM programming confirmation  
form, the ROM will not be processed.  
2. Mark specification  
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate  
mark specification form; 42P2R-A for the M38503E4-XXXFP, the shrink DIP package Mark Specification Form (only for  
built-in One Time PROM microcomputer) for the M38503E4-XXXSP; and attach it to the ROM programming confirma-  
tion form.  
3. Usage conditions  
Please answer the following questions about usage for use in our product inspection :  
(1) How will you use the XIN-XOUT oscillator?  
Ceramic resonator  
External clock input  
Quartz crystal  
Other (  
)
At what frequency?  
(2) Which function will you use the pins P21/XCIN and P20/XCOUT as P21 and P20, or XCIN and XCOUT ?  
Ports P21 and P20 function XCIN and XCOUT function (external resonator)  
f(XIN) =  
MHz  
4. Comments  
(2/2)  
46  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MARK SPECIFICATION FORM  
47  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
48  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SHRINK DIP MARK SPECIFICATION FORM  
for One Time PROM version microcomputers  
Enter the catalog number of the microcomputer for which this mark specification is intended. (If you do not know the ROM code number,  
enter XXX in its place.)  
The catalog number of the microcomputer  
M
A. Standard Mitsubishi Mark  
Customer specified part number will be printed together with the ROM code number on the top line.  
Enter the desired part number left aligned in the box below. (up to 10 characters)  
Note2 :  
RXXX  
Mitsubishi catalog name  
(blank model number before writing)  
Mitsubishi lot number  
(6-digit or 7-digit)  
Note1 : The following characters can be used in the part number :  
Uppercase alphabet, numbers, ampersand, hyphen, period, comma, +, /, (, ),  
x
will be printed at 1.5 character width)  
(
2 : XXX is the ROM code number.  
B. Special Mark Required  
If you desire anything other than the standard Mitsubishi mark, it will be treated as a special mark.  
Special marks will take longer to produce and should be avoided if possible.  
If a special mark is to be printed, indicate the desired layout of the mark in the figure below. The layout will be duplicated as closely as  
possible.  
Note1 : If the customer’s trademark logo must be used in the Special Mark, please submit a clean original logo.  
Note that special marks require extra cost and time to produce.  
49  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PACKAGE OUTLINE  
42P2R-A  
Plastic 42pin 450mil SSOP  
EIAJ Package Code  
SSOP42-P-450-0.80  
JEDEC Code  
Weight(g)  
0.63  
Lead Material  
Alloy 42/Cu Alloy  
e
b2  
42  
22  
Recommended Mount Pad  
F
Dimension in Millimeters  
Symbol  
A
Min  
0.05  
0.35  
0.13  
17.3  
8.2  
11.63  
0.3  
Nom  
Max  
2.4  
1
21  
A
1
A
A2  
2.0  
0.4  
0.15  
17.5  
8.4  
0.8  
11.93  
0.5  
1.765  
b
0.5  
0.2  
17.7  
8.6  
12.23  
0.7  
c
D
E
e
D
A
2
A1  
HE  
L
e
y
b
L1  
y
0°  
0.15  
10°  
c
b
e
2
1
0.5  
11.43  
Detail F  
I
2
1.27  
42P4B  
Plastic 42pin 600mil SDIP  
EIAJ Package Code  
SDIP42-P-600-1.78  
JEDEC Code  
Weight(g)  
4.1  
Lead Material  
Alloy 42/Cu Alloy  
42  
22  
1
21  
Dimension in Millimeters  
Symbol  
A
Min  
0.51  
Nom  
Max  
5.5  
D
A
1
A2  
3.8  
b
0.35  
0.9  
0.63  
0.22  
36.5  
12.85  
3.0  
0°  
0.45  
1.0  
0.55  
1.3  
1.03  
0.34  
36.9  
13.15  
15°  
b1  
b2  
0.73  
0.27  
36.7  
13.0  
1.778  
15.24  
c
D
E
e
e
b1  
b
b2  
e1  
L
SEATING PLANE  
50  
MITSUBISHI MICROCOMPUTERS  
3850 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
42S1B-A  
Metal seal 42pin 600mil DIP  
EIAJ Package Code  
WDIP42-C-600-1.78  
JEDEC Code  
Weight(g)  
D
42  
22  
1
21  
Dimension in Millimeters  
Symbol  
Min  
1.0  
0.38  
0.7  
0.17  
3.05  
Nom  
Max  
5.0  
3.44  
0.54  
0.9  
0.33  
41.1  
15.8  
A
A
1
A2  
b
0.46  
0.8  
0.25  
b
1
c
D
E
e
e
Z
b
b1  
1.778  
15.24  
e1  
3.05  
SEATING PLANE  
L
Z
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi  
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor  
product distributor for the latest product information before purchasing a product listed herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 1998 MITSUBISHI ELECTRIC CORP.  
New publication, effective Aug. 1998.  
Specifications subject to change without notice.  
REVISION DESCRIPTION LIST  
3850 GROUP DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
1.0 First Edition  
980817  
(1/1)  

相关型号:

M38501E1-XXXFP

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E1-XXXSP

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E1-XXXSS

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E1H-XXXFP

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E1H-XXXSP

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E1H-XXXSS

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E2-XXXFP

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E2-XXXSP

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E2-XXXSS

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E2H-XXXFP

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E2H-XXXSP

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS

M38501E2H-XXXSS

8-BIT CISC SINGLE-CHIP MICROCOMPUTER 740 FAMILY / 38000 SERIES
RENESAS