PM75CLB120_05 [MITSUBISHI]

FLAT-BASE TYPE INSULATED PACKAGE; FLAT -BASE型绝缘包装
PM75CLB120_05
型号: PM75CLB120_05
厂家: Mitsubishi Group    Mitsubishi Group
描述:

FLAT-BASE TYPE INSULATED PACKAGE
FLAT -BASE型绝缘包装

文件: 总8页 (文件大小:135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI <INTELLIGENT POWER MODULES>  
PM75CLB120  
FLAT-BASE TYPE  
INSULATED PACKAGE  
PM75CLB120  
FEATURE  
a) Adopting new 5th generation IGBT (CSTBT) chip, which  
performance is improved by 1µm fine rule process.  
For example, typical Vce(sat)=1.9V @Tj=125°C  
b) I adopt the over-temperature conservation by Tj detection of  
CSTBT chip, and error output is possible from all each con-  
servation upper and lower arm of IPM.  
c) New small package  
Reduce the package size by 32%, thickness by 22% from  
S-DASH series.  
• 3φ 75A, 1200V Current-sense IGBT type inverter  
• Monolithic gate drive & protection logic  
• Detection, protection & status indication circuits for, short-  
circuit, over-temperature & under-voltage (P-Fo available  
from upper arm devices)  
• Acoustic noise-less 11kW/15kW class inverter application  
• UL Recognized  
Yellow Card No.E80276(N)  
File No.E80271  
APPLICATION  
General purpose inverter, servo drives and other motor controls  
PACKAGE OUTLINES  
Dimensions in mm  
120  
7
106 ±0.25  
66.5  
19.75  
3.25  
17  
16  
16  
3-2  
16  
16  
3-2  
15.25  
6-2  
2-φ5.5  
3-2  
MOUNTING HOLES  
1.5  
3
1
5
9
13  
19  
B
U
V
W
9.5  
4
4
4
4
4
4
4 4  
2.5  
19.5  
22  
23  
23  
98.25  
23  
Terminal code  
1. VUPC 11. WP  
7.75  
2. UFO  
3. UP  
12. VWP1  
13. VNC  
19-0.5  
4. VUP1 14. VN1  
5. VVPC 15. NC  
6. VFO  
7. VP  
16. UN  
17. VN  
8. VVP1 18. WN  
9. VWPC 19. Fo  
10. WFO  
May 2005  
MITSUBISHI <INTELLIGENT POWER MODULES>  
PM75CLB120  
FLAT-BASE TYPE  
INSULATED PACKAGE  
INTERNAL FUNCTIONS BLOCK DIAGRAM  
W
WPC  
P
V
O
WP1  
VP  
V
O
VP1  
UP  
VUP1  
UFO  
NC Fo  
VNC  
WN  
VN1  
VN  
UN  
V
WF  
VVPC  
VF  
VUPC  
1.5k  
1.5k  
1.5k  
1.5k  
Gnd In Fo Vcc  
Gnd In Fo Vcc  
Gnd In Fo Vcc  
Gnd In Fo Vcc  
Gnd In Fo Vcc  
Gnd In Fo Vcc  
Gnd Si Out OT  
Gnd Si Out OT  
Gnd Si Out OT  
Gnd Si Out OT  
Gnd Si Out OT  
Gnd Si Out OT  
NC  
N
W
V
U
P
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)  
INVERTER PART  
Symbol  
VCES  
±IC  
Parameter  
Collector-Emitter Voltage  
Collector Current  
Condition  
Ratings  
1200  
75  
Unit  
V
A
VD = 15V, VCIN = 15V  
TC = 25°C  
±ICP  
PC  
Collector Current (Peak)  
Collector Dissipation  
Junction Temperature  
TC = 25°C  
150  
595  
A
W
°C  
TC = 25°C  
(Note-1)  
Tj  
20 ~ +150  
CONTROL PART  
Symbol  
Parameter  
Supply Voltage  
Condition  
Applied between : VUP1-VUPC  
VVP1-VVPC, VWP1-VWPC, VN1-VNC  
Applied between : UP-VUPC, VP-VVPC  
Ratings  
20  
Unit  
V
VD  
VCIN  
20  
V
Input Voltage  
WP-VWPC, UN VN WN-VNC  
Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC  
FO-VNC  
VFO  
IFO  
Fault Output Supply Voltage  
Fault Output Current  
20  
20  
V
Sink current at UFO, VFO, WFO, FO terminals  
mA  
May 2005  
MITSUBISHI <INTELLIGENT POWER MODULES>  
PM75CLB120  
FLAT-BASE TYPE  
INSULATED PACKAGE  
TOTAL SYSTEM  
Ratings  
Unit  
Symbol  
Parameter  
Condition  
Supply Voltage Protected by  
SC  
VD = 13.5 ~ 16.5V, Inverter Part,  
Tj = +125°C Start  
VCC(PROT)  
800  
V
VCC(surge) Supply Voltage (Surge)  
Applied between : P-N, Surge value  
1000  
40 ~ +125  
2500  
V
Storage Temperature  
Isolation Voltage  
Tstg  
Viso  
°C  
60Hz, Sinusoidal, Charged part to Base, AC 1 min.  
Vrms  
THERMAL RESISTANCES  
Limits  
Typ.  
Condition  
Symbol  
Unit  
Parameter  
Min.  
Max.  
0.21*  
0.30*  
Rth(j-c)Q  
Rth(j-c)F  
Inverter IGBT (per 1 element)  
Inverter FWDi (per 1 element)  
Case to fin, (per 1 module)  
Thermal grease applied  
(Note-1)  
(Note-1)  
Junction to case Thermal  
Resistances  
°C/W  
Rth(c-f)  
Contact Thermal Resistance  
0.038  
(Note-1)  
* If you use this value, Rth(f-a) should be measured just under the chips.  
(Note-1) TC (under the chip) measurement point is below.  
(Unit : mm)  
WN  
arm  
UP  
VP  
WP  
UN  
VN  
axis  
IGBT FWDi IGBT FWDi IGBT FWDi IGBT FWDi IGBT FWDi IGBT FWDi  
X
Y
28.3  
28.3  
2.0  
65.0  
65.0  
2.0  
87.0  
87.0  
2.0  
39.3  
6.2  
39.3  
54.0  
6.2  
54.0  
76.0  
6.2  
76.0  
8.2  
8.2  
8.2  
4.0  
4.0  
4.0  
Bottom view  
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)  
INVERTER PART  
Limits  
Typ.  
1.8  
1.9  
2.5  
1.0  
0.5  
0.4  
2.0  
0.7  
Unit  
Condition  
Symbol  
VCE(sat)  
Parameter  
Collector-Emitter  
Min.  
Max.  
2.3  
2.4  
3.5  
2.5  
0.8  
1.0  
3.0  
1.2  
1
0.5  
VD = 15V, IC = 75A  
VCIN = 0V  
Tj = 25°C  
V
V
Saturation Voltage  
(Fig. 1) Tj = 125°C  
IC = 75A, VD = 15V, VCIN = 15V  
(Fig. 2)  
VEC  
ton  
FWDi Forward Voltage  
VD = 15V, VCIN = 0V15V  
VCC = 600V, IC = 75A  
Tj = 125°C  
trr  
µs  
tc(on)  
toff  
Switching Time  
Inductive Load  
(Fig. 3,4)  
Tj = 25°C  
Tj = 125°C  
tc(off)  
Collector-Emitter  
Cutoff Current  
ICES  
V
CE = VCES, VCIN = 15V  
(Fig. 5)  
mA  
10  
May 2005  
MITSUBISHI <INTELLIGENT POWER MODULES>  
PM75CLB120  
FLAT-BASE TYPE  
INSULATED PACKAGE  
CONTROL PART  
Limits  
Unit  
Symbol  
Parameter  
Circuit Current  
Condition  
Min.  
Typ.  
15  
5
Max.  
25  
VN1-VNC  
ID  
VD = 15V, VCIN = 15V  
mA  
V*P1-V*PC  
10  
Input ON Threshold Voltage  
Input OFF Threshold Voltage  
Short Circuit Trip Level  
Short Circuit Current Delay  
Time  
Vth(ON)  
Vth(OFF)  
SC  
Applied between : UP-VUPC, VP-VVPC, WP-VWPC  
1.2  
1.7  
150  
1.5  
2.0  
1.8  
2.3  
V
A
UN VN WN-VNC  
20 Tj 125°C, VD = 15V  
(Fig. 3,6)  
(Fig. 3,6)  
Trip level  
VD = 15V  
µs  
toff(SC)  
0.2  
VD = 15V  
OT  
135  
145  
125  
12.0  
12.5  
12.5  
°C  
V
Over Temperature Protection  
Detect Tj of IGBT chip  
Reset level  
Trip level  
OTr  
Supply Circuit Under-Voltage  
Protection  
UV  
11.5  
20 Tj 125°C  
VD = 15V, VFO = 15V  
VD = 15V  
Reset level  
UVr  
IFO(H)  
IFO(L)  
0.01  
15  
mA  
ms  
(Note-2)  
(Note-2)  
Fault Output Current  
10  
Minimum Fault Output Pulse  
Width  
tFO  
1.0  
1.8  
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to  
protect it.  
MECHANICAL RATINGS AND CHARACTERISTICS  
Limits  
Typ.  
3.0  
Condition  
Unit  
Parameter  
Mounting torque  
Weight  
Symbol  
Min.  
2.5  
Max.  
3.5  
Mounting part  
screw : M5  
N m  
g
340  
RECOMMENDED CONDITIONS FOR USE  
Symbol Parameter  
Supply Voltage  
Condition  
Recommended value  
Unit  
V
VCC  
Applied across P-N terminals  
800  
Applied between : VUP1-VUPC, VVP1-VVPC  
VWP1-VWPC, VN1-VNC  
VD  
Control Supply Voltage  
15.0 ± 1.5  
V
(Note-3)  
Input ON Voltage  
Input OFF Voltage  
PWM Input Frequency  
Arm Shoot-through  
Blocking Time  
VCIN(ON)  
VCIN(OFF)  
fPWM  
Applied between : UP-VUPC, VP-VVPC, WP-VWPC  
UN VN WN-VNC  
0.8  
9.0  
20  
V
kHz  
µs  
Using Application Circuit of Fig. 8  
tdead  
For IPMs each input signals  
(Fig. 7)  
2.5  
(Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation 2V peak to peak  
May 2005  
MITSUBISHI <INTELLIGENT POWER MODULES>  
PM75CLB120  
FLAT-BASE TYPE  
INSULATED PACKAGE  
PRECAUTIONS FOR TESTING  
1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corre-  
sponding supply voltage and each input signal should be kept off state.  
After this, the specified ON and OFF level setting for each input signal should be done.  
2. When performing SCtests, the turn-off surge voltage spike at the corresponding protection operation should not be al-  
lowed to rise above VCES rating of the device.  
(These test should not be done by using a curve tracer or its equivalent.)  
P, (U,V,W)  
P, (U,V,W)  
IN  
IN  
Fo  
Fo  
Ic  
Ic  
V
V
V
CIN  
(15V)  
V
CIN  
(0V)  
U,V,W, (N)  
U,V,W, (N)  
V
D
(all)  
VD (all)  
Fig. 1 VCE(sat) Test  
Fig. 2 VEC Test  
a) Lower Arm Switching  
P
Fo  
trr  
Irr  
V
CE  
Signal input  
(Upper Arm)  
V
(15V)  
CIN  
Ic  
U,V,W  
Vcc  
C
S
90%  
Fo  
Signal input  
(Lower Arm)  
90%  
V
CIN  
N
P
10%  
V
D
(all)  
Fo  
Ic  
10%  
10%  
10%  
b) Upper Arm Switching  
tc (on)  
tc (off)  
Signal input  
(Upper Arm)  
VCIN  
VCIN  
U,V,W  
Vcc  
C
S
td (on)  
tr  
td (off)  
tf  
Fo  
V
(15V)  
CIN  
Signal input  
(Lower Arm)  
(ton= td (on) + tr)  
(toff= td (off) + tf)  
N
Ic  
VD  
(all)  
Fig. 3 Switching time and SC test circuit  
Fig. 4 Switching time test waveform  
VCIN  
Short Circuit Current  
P, (U,V,W)  
A
Constant Current  
SC  
IN  
Fo  
Pulse  
VCE  
VCIN  
(15V)  
Ic  
U,V,W, (N)  
Fo  
VD  
(all)  
toff(SC)  
Fig. 5 ICES Test  
Fig. 6 SC test waveform  
IPMinput signal  
(Upper Arm)  
0V  
V
V
CIN  
CIN  
1.5V  
2V  
t
1.5V  
t
IPMinput signal  
(Lower Arm)  
0V  
2V  
1.5V  
2V  
t
t
dead  
dead  
t
dead  
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value  
Fig. 7 Dead time measurement point example  
May 2005  
MITSUBISHI <INTELLIGENT POWER MODULES>  
PM75CLB120  
FLAT-BASE TYPE  
INSULATED PACKAGE  
P
10µ  
20k  
VUP1  
UFo  
OT  
OUT  
Vcc  
Fo  
1.5k  
1.5k  
1.5k  
+
VD  
IF  
Si  
UP  
In  
U
VUPC  
GND GND  
0.1µ  
VVP1  
VFo  
OT  
OUT  
Vcc  
Fo  
Si  
V
D
D
VP  
In  
V
VVPC  
GND GND  
M
VWP1  
WFo  
OT  
OUT  
Vcc  
Fo  
Si  
V
WP  
In  
W
VWPC  
GND GND  
20k  
OT  
Vcc  
OUT  
10µ  
Fo  
IF  
Si  
UN  
In  
GND GND  
0.1µ  
N
OT  
20k  
Vcc  
OUT  
10µ  
Fo  
IF  
Si  
VN  
In  
GND GND  
0.1µ  
20k  
VN1  
WN  
OT  
Vcc  
10µ  
OUT  
Si  
In  
Fo  
IF  
VD  
GND GND  
NC  
0.1µ  
VNC  
NC  
Fo  
1k  
5V  
1.5k  
: Interface which is the same as the U-phase  
Fig. 8 Application Example Circuit  
NOTES FOR STABLE AND SAFE OPERATION ;  
Design the PCB pattern to minimize wiring length between opto-coupler and IPMs input terminal, and also to minimize the  
stray capacity between the input and output wirings of opto-coupler.  
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.  
Fast switching opto-couplers: tPLH, tPHL 0.8µs, Use High CMR type.  
Slow switching opto-coupler: CTR > 100%  
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the  
power supply.  
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N  
terminal.  
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line  
and improve noise immunity of the system.  
May 2005  
MITSUBISHI <INTELLIGENT POWER MODULES>  
PM75CLB120  
FLAT-BASE TYPE  
INSULATED PACKAGE  
PERFORMANCE CURVES  
OUTPUT CHARACTERISTICS  
COLLECTOR-EMITTER SATURATION  
VOLTAGE (VS. Ic) CHARACTERISTICS  
(INVERTER PART · TYPICAL)  
2
(INVERTER PART · TYPICAL)  
80  
70  
60  
50  
40  
30  
20  
10  
0
VD = 15V  
Tj  
= 25°C  
V
D
= 17V  
15V  
13V  
1.5  
1
0.5  
0
T
T
j
j
= 25°C  
= 125°C  
0
0.5  
1
1.5  
2
0
10 20 30 40 50 60 70 80  
COLLECTOR CURRENT I (A)  
COLLECTOR-EMITTER VOLTAGE VCE (V)  
C
COLLECTOR-EMITTER SATURATION  
VOLTAGE (VS. V  
D
) CHARACTERISTICS  
SWITCHING TIME CHARACTERISTICS  
(TYPICAL)  
(INVERTER PART · TYPICAL)  
2.5  
2
101  
7
V
CC = 600V  
= 15V  
V
D
5
4
3
Tj  
= 25°C  
Tj  
= 125°C  
Inductive load  
2
1.5  
1
t
c(off)  
c(on)  
t
c(off)  
100  
7
5
4
3
t
0.5  
0
IC = 75A  
tc(off)  
2
Tj  
= 25°C  
Tj  
= 125°C  
10–1  
12  
13  
14  
15  
16  
17  
18  
(V)  
100  
2
3
4 5  
7
101  
2
3
4 5 7  
102  
CONTROL SUPPLY VOLTAGE V  
D
COLLECTOR CURRENT IC (A)  
SWITCHING TIME CHARACTERISTICS  
(TYPICAL)  
SWITCHING LOSS CHARACTERISTICS  
(TYPICAL)  
101  
7
102  
7
5
4
3
5
4
3
ESW(on)  
2
toff  
101  
7
5
4
3
toff  
2
100  
7
ton  
2
ESW(off)  
5
4
3
100  
ESW(on)  
V
CC = 600V  
= 15V  
V
CC = 600V  
= 15V  
7
5
4
3
ESW(off)  
V
D
V
D
ESW(on)  
T
j
= 25°C  
= 125°C  
Tj  
= 25°C  
ESW(off)  
2
Tj  
Tj  
= 125°C  
2
Inductive load  
Inductive load  
10–1  
10–1  
100  
2
3
4 5  
7
101  
2
3
4 5  
7
102  
100  
2
3
4 5  
7
101  
2
3
4 5 7  
102  
COLLECTOR CURRENT I  
C
(A)  
COLLECTOR CURRENT IC (A)  
May 2005  
MITSUBISHI <INTELLIGENT POWER MODULES>  
PM75CLB120  
FLAT-BASE TYPE  
INSULATED PACKAGE  
DIODE FORWARD CHARACTERISTICS  
DIODE REVERSE RECOVERY CHARACTERISTICS  
(INVERTER PART · TYPICAL)  
(INVERTER PART · TYPICAL)  
102  
7
100  
7
102  
7
VD = 15V  
trr  
trr  
Irr  
Irr  
5
4
3
5
4
3
5
4
3
2
2
2
101  
7
101  
7
101  
7
5
4
3
5
4
3
5
4
3
V
V
CC = 600V  
= 15V  
D
T
T
j
= 25°C  
= 125°C  
2
2
2
T
T
j
j
= 25°C  
= 125°C  
j
Inductive load  
100  
100  
102  
0
0.5  
1
1.5  
2
2.5  
3
100  
2
3
4 5  
7
101  
2
3
4 5 7  
102  
EMITTER-COLLECTOR VOLTAGE VEC (V)  
COLLECTOR RECOVERY CURRENT I  
C
(A)  
TRANSIENT THERMAL  
IMPEDANCE CHARACTERISTICS  
(INVERTER PART)  
I
D
VS. f  
c
CHARACTERISTICS  
(TYPICAL)  
100  
50  
40  
30  
20  
10  
0
7
5
VD = 15V  
= 25°C  
T
j
3
2
N-side  
101  
7
5
3
2
102  
7
Single Pulse  
IGBT Part;  
Per unit base = Rth(j c)Q = 0.21°C/W  
FWDi Part;  
Per unit base = Rth(j c)F = 0.30°C/W  
P-side  
5
3
2
103  
0
1
0
5
10  
15  
(kHz)  
20  
25  
52 3 5 7 42 3 5 7 32 3 5 7 22 3 5 7 12 3 5 7  
2 3 57  
10  
10  
10  
10  
10  
10  
10  
f
c
TIME (s)  
May 2005  

相关型号:

PM75CS1D060

INTELLIGENT POWER MODULES FLAT-BASE TYPE INSULATED PACKAGE
MITSUBISHI

PM75CS1D120

INTELLIGENT POWER MODULES FLAT-BASE TYPE INSULATED PACKAGE
MITSUBISHI

PM75CSA120

FLAT-BASE TYPE INSULATED PACKAGE
MITSUBISHI

PM75CSA120

Intellimod⑩ Module Three Phase IGBT Inverter Output (75 Amperes/1200 Volts)
POWEREX

PM75CSAJ120

Analog IC
ETC

PM75CSD060

Intellimod⑩ Module Three Phase IGBT Inverter Output (75 Amperes/600 Volts)
POWEREX

PM75CSD060

FLAT-BASE TYPE INSULATED PACKAGE
MITSUBISHI

PM75CSD120

Intellimod⑩ Module Three Phase IGBT Inverter Output (75 Amperes/600 Volts)
POWEREX

PM75CSD120

FLAT-BASE TYPE INSULATED PACKAGE
MITSUBISHI

PM75CSE060

FLAT-BASE TYPE INSULATED PACKAGE
MITSUBISHI

PM75CSE060_05

FLAT-BASE TYPE INSULATED PACKAGE
MITSUBISHI

PM75CSE120

FLAT-BASE TYPE INSULATED PACKAGE
MITSUBISHI