PUMA68SV16000XL-015 [MOSAIC]

SRAM Module, 512KX32, 15ns, CMOS, PLASTIC, LCC-68;
PUMA68SV16000XL-015
型号: PUMA68SV16000XL-015
厂家: MOSAIC    MOSAIC
描述:

SRAM Module, 512KX32, 15ns, CMOS, PLASTIC, LCC-68

静态存储器
文件: 总12页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
51Kx32SaticRAM  
PUMA 68SV16000X - 012/015/017  
Issue 5.1 December 1999  
Description  
Block Diagram  
The PUMA68 range of devices provide a high  
density surface mount industry standard memory  
solution which may accommodate various memory  
technologies including SRAM, EEPROM and  
Flash. The devices are designed to offer a defined  
upgrade path and may be user configured as 8, 16  
or 32 bits wide.  
A0~A18  
/OE  
/WE  
512K x 8  
SRAM  
512K x 8  
SRAM  
512K x 8  
SRAM  
512K x 8  
SRAM  
The PUMA68SV16000X is a 512Kx32 SRAM mod-  
ulehousedina68Jleadedpackagewhichcomplies  
withtheJEDEC68PLCCstandard.Accesstimesof  
12, 15 or 17ns are available. The 3.3V low voltage  
device is available to commercial and industrial  
temperature grade.  
/CS1  
/CS2  
/CS3  
/CS4  
D0~7  
D8~15  
D16~23  
D24~31  
64Kx32, 128Kx32 and 256Kx32 SRAM PUMA68  
devices are available in the same footprint. The  
upgrade part (1Mx32 SRAM) is planned.  
Features  
Pin Definition  
See page 2.  
• Access times of 12/15/17 ns.  
• 3.3V + 10%.  
• Comercial and Industrial temperature grades  
• JEDEC standard 68 J Lead footprint.  
• Industry standard pinout.  
Pin Functions  
• May be organised as 512K x 32, 1M x 16, 2M X 8  
• Operating Power  
(32 Bit) 2.95W (max)  
Description  
Signal  
• Low power standby. (TTL) 0.72W (max)  
(CMOS) 145mW (max)  
Address Input  
Data Input/Output  
Chip Select  
Write Enable  
Output Enable  
No Connect  
Power  
A0~A18  
D0~D31  
/CS1~4  
/WE  
• Low voltage data retention mode.  
• Completely Static Operation.  
/OE  
NC  
Package Details  
VCC  
PUMA 68 - Plastic 68 ‘J’ Leaded Package  
Max. Dimensions (mm) - 25.27 x 25.27 x 5.08  
Ground  
VSS  
11403 West Bernardo Court, Suite 100, San Diego, CA92127.  
TEL (858) 674 2233, Fax No. (858) 674 2230 E-mail: sales@mosaicsemi.com  
Pin Definition - PUMA68SV16000X  
Pin  
1
Signal  
Pin  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
Signal  
VCC  
A13  
A12  
A11  
A10  
A9  
VCC  
NC  
2
3
/CS1  
/CS2  
/CS3  
/CS4  
A17  
A18  
D16  
D17  
D18  
D19  
VSS  
4
5
6
7
A8  
8
A7  
9
D0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
D1  
D2  
D3  
VSS  
D4  
D20  
D21  
D22  
D23  
VCC  
D5  
D6  
D7  
VCC  
D8  
D24  
D25  
D26  
D27  
VSS  
D9  
D10  
D11  
VSS  
D12  
D13  
D14  
D15  
A14  
A15  
A16  
/WE  
/OE  
NC  
NC  
D28  
D29  
D30  
D31  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Issue 5.1 December 1999  
PAGE 2  
Absolute Maximum Ratings(1)  
DOperagCdtions  
Parameter  
Symbol  
VT  
Min  
-0.3  
Max  
+4.6  
Unit  
V
Voltage on any pin relative to VSS  
Power Dissipation  
to  
4.0  
to  
PT  
W
Storage Temperature  
TSTG  
-55  
+125  
OC  
Notes : (1) Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
reliability  
Recommended Operating Conditions  
Parameter  
Symbol  
VCC  
Min  
3.0  
2.0  
-0.3  
0
Typ  
Max  
3.6  
Unit  
V
Supply Voltage  
3.3  
Input High Voltage  
Input Low Voltage  
Operating Temperature  
VIH  
-
-
-
-
VCC+0.3  
0.8  
V
(1)  
VIL  
V
TA  
70  
OC  
OC  
TAI  
-40  
85  
(I Suffix)  
Notes : (1) Pulse Width : -2.0V for less than 10ns.  
DC Electrical Characteristics  
(VCC=3.3V+10%, TA=-40OC to +85OC)  
Parameter  
Symbol Test Condition  
Min Typ Max  
Unit  
µ
Input Leakage Current  
Output Leakage Current  
ILI  
VIN=0V to VCC  
VI/O=0V to VCC  
-8  
-8  
-
-
-
-
-
-
-
8
A
µ
A
ILO  
8
Average Supply Current(2) 32 Bit ICC32 /CS(1)=VIL, II/O=0mA,f=fmax  
820  
510  
355  
200  
mA  
mA  
mA  
mA  
16 Bit ICC16 As Above.  
-
8 Bit  
TTL  
ICC8  
ISB  
As Above.  
-
Standby Supply Current  
/CS(1)=VIH ,Min Cycle  
-
/CS>VCC-0.2V, 0.2V  
>VIN>VCC-0.2V, f=0  
CMOS ISB1  
-
-
40  
mA  
Output Voltage Low  
Output Voltage High  
VOL  
VOH  
IOL=8.0mA, VCC=Min  
IOH=-4.0mA, VCC=Min  
-
-
-
0.4  
-
V
V
2.4  
Notes (1) /CS1~4 inputs operate simultaneously for 32 bit mode, in pairs for 16 bit mode and singly for 8 bit mode.  
(2) At f=fMAX address and data inputs are cycling at max frequency.  
Issue 5.1 December 1999  
PAGE 3  
Capacitance  
(VCC = 3.3V, TA = 25OC, F=1MHz.)  
Parameter  
Symbol Test Condition Min  
Typ Max Unit  
Address, /OE, /WE  
Input Capacitance,  
CIN1  
CI/O  
VIN=0V  
VI/O=0V  
-
-
-
-
32  
38  
pF  
pF  
8 bit mode (worst case)  
Output Capacitance,  
Note : These Parameters are calculated not measured.  
Test Conditions  
Output Load  
166Ω  
• Input pulse levels : 0V to 3.0V  
• Input rise and fall times : 3ns  
I/O Pin  
1.76V  
• Input and Output timing reference levels : 1.5V  
• Output Load : See Load Diagram.  
• VCC = 3.3V+10%  
30pF  
• PUMA module tested in 32 bit mode.  
Operation Truth Table  
/CS1 /CS2 /CS3 /CS4  
/OE  
X
X
X
X
X
X
X
L
/WE Supply Current  
Mode  
L
H
H
H
L
H
L
H
H
L
H
H
H
L
L
L
ICC8  
ICC8  
Write D0~D7  
Write D8~D15  
Write D16~D23  
Write D24~D31  
Write D0~D15  
Write D16~D31  
Write D0~D31  
Read D0~D7  
H
H
L
L
ICC8  
H
H
L
L
ICC8  
H
L
L
ICC16  
ICC16  
ICC32  
ICC8  
H
L
H
L
L
L
L
L
L
H
L
H
H
L
H
H
H
L
H
H
H
H
H
H
H
H
X
H
H
H
L
L
ICC8  
Read D8~D15  
Read D16~D23  
Read D24~D31  
Read D0~D15  
Read D16~D31  
Read D0~D31  
H
H
L
L
ICC8  
H
H
L
L
ICC8  
H
L
L
ICC16  
ICC16  
ICC32  
H
L
H
L
L
L
L
L
X
H
X
H
X
H
X
H
H
X
ICC32 /ICC16/ICC8 D0~D31 High-Z  
ISB, ISB1 D0~D31 Standby  
Notes : H=VIH : L=VIL : X=VIH or VIL  
Issue 5.1 December 1999  
PAGE 4  
AOperagCdtions  
Read Cycle  
12  
15  
17  
Parameter  
Symbol Min Max Min Max Min Max Units  
Read Cycle Time  
tRC  
12  
-
-
12  
12  
6
15  
-
-
15  
15  
7
17  
-
-
17  
17  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time  
tAA  
Chip Select Access Time  
tACS  
tOE  
-
-
-
Output Enable to Output Valid  
Output Hold From Address Change  
Chip Selection to Output in Low Z  
Output Enable to Output in Low Z  
Chip Deselection to Output in High Z  
Output Disable to Output in High Z  
-
-
-
tOH  
3
3
0
0
0
-
3
3
0
0
0
-
3
3
0
0
0
-
tCLZ  
tOLZ  
tCHZ  
tOHZ  
-
-
-
-
-
-
6
7
8
6
7
8
Write Cycle  
12  
15  
17  
Parameter  
Symbol Min Max Min Max Min Max Units  
Write Cycle Time  
tWC  
tCW  
tAW  
tAS  
12  
8
-
-
-
-
-
-
-
6
-
-
-
15  
10  
10  
0
-
-
-
-
-
-
-
7
-
-
-
17  
12  
12  
0
-
-
-
-
-
-
-
8
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Selection to End of Write  
Address Valid to End of Write  
Address Setup Time  
8
0
Write Pulse Width (/OE High)  
Write Pulse Width (/OE Low)  
Write Recovery Time  
tWP1  
tWP2  
tWR  
tWHZ  
tDW  
tDH  
8
10  
12  
0
12  
13  
0
12  
0
Write to Output in High Z  
Data to Write Time Overlap  
Data Hold time from Write Time  
Output Active from End of Write  
0
0
0
6
7
8
0
0
0
tOW  
3
3
3
Issue 5.1 December 1999  
PAGE 5  
Read Cycle 1  
TingWaveforms  
(Address Controlled, /CS=/OE=VIL, /WE=VIH)  
tRC  
Address  
tAA  
tOH  
Previous Data Valid  
Data Valid  
Data Out  
Read Cycle 2  
(/WE = VIH)  
tRC  
Address  
tAA  
tCHZ(3,4,5)  
tACS  
/CS  
tOHZ  
tOE  
/OE  
tOLZ  
tOH  
tCLZ(4,5)  
Data Out  
Valid Data  
(READ CYCLE)  
NOTES  
1. /WE is high for read cycle.  
2. All read cycle timing is referenced from the last valid address to the first transition address.  
3. tCHZ and tOHZ are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V OH or  
VOL levels.  
4. At any given temperature and voltage condition, t CHZ(Max.) is less than t CLZ(Min.) both for a given device and from device to  
device.  
5. Transition is measured 200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested.  
±
6. Device is continuously selected with /CS=V IL  
.
7. Address valid prior to coincident with /CS transition low.  
8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.  
9. /CS=/CS1~4  
Issue 5.1 December 1999  
PAGE 6  
Write Cycle 1  
(/OE = Clock)  
tWC  
Address  
/OE  
tAW  
tWR(5)  
tCW(3)  
/CS  
tAS(4)  
tWP(2)  
/WE  
Data In  
tDW  
tDH  
High Z  
Valid Data  
tOHZ(6)  
High Z(8)  
Data Out  
(WRITE CYCLE)  
NOTES  
1. All write cycle timing is referenced from the last valid address to the first transition address.  
2. A write occurs during the overlap of a low /CS and /WE. A write begins at the latest transition /CS going low and /WE going low ;  
A write ends at the earliest transition /CS going high or /WE going high. tWP is measured from the beginning of write to the end of  
write.  
3. tCW is measured from the later of /CS going low to end of write.  
4. tAS is measured from the address valid to the beginning of write.  
5. tWR is measured from the end of write to the address change. tWR applied in case a write ends as /CS or /WE going high.  
6. If OE, /CS and /WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase  
of the output must not be applied because bus contention can occur.  
7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.  
8. If /CS goes low simultaneously with /WE going or after /WE going low, the outputs remain high impedance state.  
9. Dout is the read data of the new address.  
10.When /CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be  
applied.  
11./CS=/CS1~4  
Issue 5.1 December 1999  
PAGE 7  
Write Cycle 2  
(/OE = Low Fixed)  
tWC  
Address  
tAW  
tWR(5)  
tCW(3)  
/CS  
/WE  
tAS(4)  
tWP(2)  
tDW  
tDH  
High Z  
Data In  
Data Out  
Valid Data  
tWHZ(6)  
tOW  
(10)  
(9)  
High Z(8)  
(WRITE CYCLE)  
NOTES  
1. All write cycle timing is referenced from the last valid address to the first transition address.  
2. A write occurs during the overlap of a low /CS and /WE. A write begins at the latest transition /CS going low and /WE going low ;  
A write ends at the earliest transition /CS going high or /WE going high. tWP is measured from the beginning of write to the end of  
write.  
3. tCW is measured from the later of /CS going low to end of write.  
4. tAS is measured from the address valid to the beginning of write.  
5. tWR is measured from the end of write to the address change. tWR applied in case a write ends as /CS or /WE going high.  
6. If OE, /CS and /WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase  
of the output must not be applied because bus contention can occur.  
7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.  
8. If /CS goes low simultaneously with /WE going or after /WE going low, the outputs remain high impedance state.  
9. Dout is the read data of the new address.  
10.When /CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be  
applied.  
11./CS=/CS1~4  
Issue 5.1 December 1999  
PAGE 8  
Write Cycle 3  
(/CS = Controlled)  
tWC  
Address  
/CS  
tAW  
tWR(5)  
tCW(3)  
tAS(4)  
tWP(2)  
/WE  
Data In  
tDW  
tDH  
High Z  
High Z  
High Z  
Valid Data  
tLZ  
tWHZ(6)  
High Z(8)  
Data Out  
(WRITE CYCLE)  
NOTES  
1. All write cycle timing is referenced from the last valid address to the first transition address.  
2. A write occurs during the overlap of a low /CS and /WE. A write begins at the latest transition /CS going low and /WE going low ;  
A write ends at the earliest transition /CS going high or /WE going high. t WP is measured from the beginning of write to the end of  
write.  
3. tCW is measured from the later of /CS going low to end of write.  
4. tAS is measured from the address valid to the beginning of write.  
5. tWR is measured from the end of write to the address change. t WR applied in case a write ends as /CS or /WE going high.  
6. If /OE, /CS and /WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase  
of the output must not be applied because bus contention can occur.  
7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.  
8. If /CS goes low simultaneously with /WE going or after /WE going low, the outputs remain high impedance state.  
9. Dout is the read data of the new address.  
10.When /CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be  
applied.  
11/CS=/CS1~4  
Data Retention  
tSDR  
tRDR  
Data Retention Mode  
/CS Controlled  
VCC  
3.0V  
2.2V  
VDR  
/CS>VCC - 0.2V  
/CS  
GND  
Note: /CS = /CS1~4  
Issue 5.1 December 1999  
PAGE 9  
PckgDetails  
PUMA 68 Pin JEDEC Surface Mount PLCC  
25.27 (0.995) sq.  
25.02 (0.985) sq.  
Pin 1  
Pin 68  
Top View  
5.08  
0.90 (0.035) typ.  
(0.200) max  
0.10 (0.004)  
0.46 typ.  
(0.018)  
1.27 typ.  
(0.050)  
24.13 (0.950)  
23.11 (0.910)  
PAGE 10  
Issue 5.1 December 1999  
Ordering Information  
OdegIfrmation  
PUMA 68SV16000XLI-015  
Speed  
012 = 12ns  
015 = 15ns  
017 = 17ns  
Temp. Range/Screening Blank = Commercial  
I = Industrial  
Power Consumption  
Blank = Standard  
L = Low Power  
Pinout Configuration  
Memory Organisation  
X = Industry Standard  
Pinout  
16000 = 512K x 32 configurable  
as 1M x 16 and 2M x 8  
Technology  
Package  
SV = SRAM 3.3V+10% VCC  
PUMA 68 = 68 pin ‘J’ Leaded PLCC  
Note :  
Although this data is believed to be accurate the information contained herein is not intended to and does not create  
any warranty of merchantibility or fitness for a particular purpose.  
Our products are subject to a constant process of development. Data may be changed without notice.  
Products are not authorised for use as critical components in life support devices without the express written  
approval of a company director.  
PAGE 11  
http://www.mosaicsemi.com/  
Issue 5.1 December 1999  
CtomrGudlines  
Co Planarity  
Specified as +/- 2 thou max.  
Visual Inspection Standard  
All devices inspected to ANSI/J-STD-001B Class 2 standard  
Moisture Sensitivity  
Devices are moisture sensitive.  
Shelf Life in Sealed Bag 12 months at <40OC and <90% relative humidity (RH).  
After this bag has been opened, devices that will be subjected to infrared reflow, vapour phase reflow, or  
equivalent processing (peak package body temp 220OC) must be :  
A : Mounted within 72 Hours at factory conditions of <30OC/60% RH  
OR  
B : Stored at <20% RH  
Iftheseconditionsarenotmetorindicatorcardis>20%whenreadat23OC +/-5% devicesrequirebaking  
as specified below.  
If baking is required, devices may be baked for :-  
A : 24 hours at 125OC +/-5% for high temperature device containers  
OR  
B : 192 hours at 40OC +5OC/-0OC and <5% RH for low temperature device containers.  
Packaging Standard  
Devices packaged in dry nitrogen, JED-STD-020.  
Packaged in trays as standard.  
Tape and reel available for shipment quantities exceeding 200pcs upon request.  
Soldering Recomendations  
IR/Convection - Ramp Rate  
Temp. exceeding 183OC 150 secs. max.  
Peak Temperature  
225OC  
Time within 5OC of peak 20 secs max.  
6OC/sec max.  
Ramp down  
6OC/sec max.  
Vapour Phase - Ramp up rate  
6OC/sec max.  
215 - 219OC  
Peak Temperature  
Time within 5OC of peak 60 secs max.  
Ramp down  
6OC/sec max.  
The above conditions must not be exceeded  
Note : The above recomendations are based on standard industry practice. Failure to comply with  
the above recommendations invalidates product warranty.  
PAGE 12  
Issue 5.1 December 1999  

相关型号:

PUMA68SV16000XL-017

SRAM Module, 512KX32, 17ns, CMOS, PLASTIC, LCC-68
MOSAIC

PUMA68SV16000XLI-012

SRAM Module, 512KX32, 12ns, CMOS, PLASTIC, LCC-68
MOSAIC

PUMA68SV16000XLI-015

SRAM Module, 512KX32, 15ns, CMOS, PLASTIC, LCC-68
MOSAIC

PUMA68SV4000X-017

SRAM Module, 128KX32, 17ns, CMOS, PQCC68, PLASTIC, LCC-68
MOSAIC

PUMA68SV4000XI-017

SRAM Module, 128KX32, 17ns, CMOS, PQCC68, PLASTIC, LCC-68
MOSAIC

PUMA68SV4000XL-012

SRAM Module, 128KX32, 12ns, CMOS, PQCC68, PLASTIC, LCC-68
MOSAIC

PUMA68SV4000XLI-012

SRAM Module, 128KX32, 12ns, CMOS, PQCC68, PLASTIC, LCC-68
MOSAIC

PUMA68SV4000XLI-015

SRAM Module, 128KX32, 15ns, CMOS, PQCC68, PLASTIC, LCC-68
MOSAIC

PUMA77E4001-12

x32 EEPROM Module
ETC

PUMA77E4001-12E

x32 EEPROM Module
ETC

PUMA77E4001-15

x32 EEPROM Module
ETC

PUMA77E4001-15E

x32 EEPROM Module
ETC