V53C8129H40

更新时间:2024-09-18 12:50:29
品牌:MOSEL
描述:ULTRA-HIGH PERFORMANCE, 128K X 8EDO PAGE MODE CMOS DYNAMIC RAM

V53C8129H40 概述

ULTRA-HIGH PERFORMANCE, 128K X 8EDO PAGE MODE CMOS DYNAMIC RAM 超高性能, 128K X 8EDO页模式的CMOS动态RAM

V53C8129H40 数据手册

通过下载V53C8129H40数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
V53C8129H  
PRELIMINARY  
MOSEL VITELIC  
ULTRA-HIGH PERFORMANCE,  
128K X 8 EDO PAGE MODE  
CMOS DYNAMIC RAM  
HIGH PERFORMANCE  
35  
40  
45  
50  
Max. RAS Access Time, (tRAC  
)
35 ns  
18 ns  
14 ns  
70 ns  
40 ns  
20 ns  
15 ns  
75 ns  
45 ns  
22 ns  
17 ns  
80 ns  
50 ns  
24 ns  
19 ns  
90 ns  
Max. Column Address Access Time, (tCAA  
)
Min. Fast Page Mode With EDO Cycle Time, (tPC  
)
Min. Read/Write Cycle Time, (tRC  
)
Features  
Description  
128K x 8-bit organization  
The V53C8129H is a high speed 131,072 x 8 bit  
CMOS dynamic random access memory. The  
V53C8129H offers a combination of features: EDO  
Page Mode for high data bandwidth, fast usable  
speed, CMOS standby current.  
RAS access time: 35, 40, 45, 50 ns  
EDO Page Mode supports sustained I/O data  
rates up to 71.5 MHz  
Low power dissipation  
• V53C8129H-50  
All inputs and outputs are TTL compatible. Input  
and output capacitances are significantly lowered to  
allow increased system performance. Page Mode  
with extended data out operation allows random ac-  
cess of up to 256 columns (x8) bits within a row with  
cycle times as short as 14 ns. Because of static cir-  
cuitry, the CAS clock is not in the critical timing path.  
The flow-through column address latches allow ad-  
dress pipelining while relaxing many critical system  
timing requirements for fast usable speed. These  
features make the V53C8129H ideally suited for  
graphics, digital signal processing and high perfor-  
mance peripherals.  
— Operating Current: 135 mA max  
— TTL Standby Current: 2.0 mA max  
Low CMOS Standby Current: 1.0 mA max  
Read-Modify-Write, RAS-Only Refresh,  
CAS-Before-RAS Refresh capability  
Refresh Interval: 512 cycles/8 ms  
Available in 26/24 pin 300 mil SOJ package  
Device Usage Chart  
Operating  
Temperature  
Range  
Package Outline  
K
Access Time (ns)  
Power  
Std.  
Temperature  
Mark  
35  
40  
45  
50  
0°C to 70 °C  
Blank  
V53C8129H Rev. 1.3 July 1997  
1
MOSEL VITELIC  
V53C8129H  
V
5
3
C
8
1
2
9
H
FAMILY  
DEVICE  
PKG SPEED  
( t  
TEMP.  
PWR.  
.
)
RAC  
BLANK (0°C to 70°C)  
K
(SOJ)  
BLANK (NORMAL)  
Description Pkg. Pin Count  
35 (35 ns)  
40 (40 ns)  
45 (45 ns)  
50 (50 ns)  
SOJ  
K
26/24  
8129H-01  
26/24 Lead SOJ  
Pin Names  
PIN CONFIGURATION  
Top View  
A0–A8  
RAS  
CAS  
WE  
Address Inputs (A8: Column Address only)  
Row Address Strobe  
Column Address Strobe  
Write Enable  
1
2
3
4
5
6
26  
25  
24  
23  
22  
21  
VSS  
I/O1  
I/O2  
I/O3  
I/O4  
WE  
VSS  
I/O8  
I/O7  
I/O6  
I/O5  
CAS  
OE  
Output Enable  
I/O1–I/O8  
VCC  
Data Input, Output  
+5V Supply  
8
19  
18  
17  
16  
15  
14  
RAS  
A0  
OE  
9
A8 (Column Add. only)  
VSS  
0V Supply  
10  
11  
12  
13  
A1  
A7  
A6  
A5  
A4  
A2  
A3  
VCC  
8129H-02  
Absolute Maximum Ratings*  
Ambient Temperature  
Capacitance*  
T = 25°C, V = 5 V ± 10%, V = 0 V  
A
CC  
SS  
Under Bias .............................. –10°C to +80°C  
Storage Temperature (plastic)..... –55°C to +125°C  
Symbol  
Parameter  
Typ.  
Max.  
Unit  
pF  
Voltage Relative to V .................–1.0 V to +7.0 V  
SS  
C
C
C
Address Input  
3
4
5
4
5
7
IN1  
Data Output Current ..................................... 50 mA  
Power Dissipation.......................................... 1.0 W  
RAS, CAS, WE, OE  
Data Input/Output  
pF  
IN2  
pF  
OUT  
*Note: Operation above Absolute Maximum Ratings can  
adversely affect device reliability.  
* Note: Capacitance is sampled and not 100% tested  
V53C8129H Rev. 1.3 July 1997  
2
MOSEL VITELIC  
V53C8129H  
Block Diagram  
128K x 8  
OE  
WE  
CAS  
RAS  
RAS CLOCK  
GENERATOR  
CAS CLOCK  
GENERATOR  
WE CLOCK  
GENERATOR  
OE CLOCK  
GENERATOR  
V
V
CC  
SS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
1
2
3
DATA I/O BUS  
COLUMN DECODERS  
SENSE AMPLIFIERS  
I/O  
BUFFER  
4
5
Y –Y  
0
8
6
7
8
REFRESH  
COUNTER  
512 x 8  
9
A
0
A
1
X –X  
0 7  
256  
MEMORY  
ARRAY  
A
A
7
8
8129H-03  
V53C8129H Rev. 1.3 July 1997  
3
MOSEL VITELIC  
V53C8129H  
DC and Operating Characteristics (1-2)  
T = 0°C to 70°C, V = 5 V ± 10%, V = 0 V, unless otherwise specified.  
A
CC  
SS  
V53C8129H  
Typ.  
Access  
Time  
Symbol  
Parameter  
Min.  
Max..  
Unit  
Test Conditions  
Notes  
I
I
I
Input Leakage Current  
(any input pin)  
–10  
10  
µA  
V
V
V V  
IN CC  
LI  
SS  
Output Leakage Current  
(for High-Z State)  
–10  
10  
µA  
V  
V  
OUT  
LO  
CC1  
SS  
CC  
IH  
RAS, CAS at V  
V
Supply Current,  
35  
40  
45  
50  
160  
150  
145  
135  
4
mA  
t
= t (min.)  
1, 2  
CC  
RC  
RC  
Operating  
I
I
V
Supply Current,  
mA  
mA  
RAS, CAS at V  
IH  
CC2  
CC3  
CC  
TTL Standby  
other inputs V  
SS  
V
Supply Current,  
35  
40  
45  
50  
35  
40  
45  
50  
160  
150  
145  
135  
95  
t
= t (min.)  
2
1, 2  
1
CC  
RC  
RC  
RAS-Only Refresh  
I
V
Supply Current,  
CC  
mA  
Minimum cycle  
CC4  
EDO Page Mode Operation  
90  
85  
80  
I
I
V
Supply Current,  
2
mA  
mA  
RAS = V , CAS = V  
IH IL  
CC5  
CC  
Standby, Output Enabled  
other inputs V  
SS  
V
Supply Current,  
1
RAS V – 0.2 V,  
CC  
CC6  
CC  
CMOS Standby  
CAS V – 0.2 V,  
CC  
All other inputs V  
SS  
V
V
V
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–1  
0.8  
V
V
V
V
3
3
IL  
2.4  
V
+ 1  
CC  
IH  
0.4  
I
I
= 4.2 mA  
= –5 mA  
OL  
OH  
OL  
2.4  
OH  
V53C8129H Rev. 1.3 July 1997  
4
MOSEL VITELIC  
V53C8129H  
AC Characteristics  
TA = 0°C to 70°C, VCC = 5 V ±10%, VSS = 0V unless otherwise noted  
AC Test conditions, input pulse levels 0 to 3V  
35  
40  
45  
50  
JEDEC  
#
1
2
3
4
5
6
7
8
9
Symbol  
tRL1RH1  
tRL2RL2  
tRH2RL2  
tRL1CH1  
tCL1CH1  
tRL1CL1  
tWH2CL2  
tAVRL2  
Symbol Parameter  
tRAS RAS Pulse Width  
tRC  
Min. Max. Min. Max. Min. Max. Min. Max. Unit Notes  
35 75K 40 75K 45 75K 50 75K ns  
Read or Write Cycle Time  
RAS Precharge Time  
CAS Hold Time  
70  
25  
35  
7
75  
25  
40  
8
80  
25  
45  
9
90  
30  
50  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRP  
tCSH  
tCAS  
tRCD  
tRCS  
tASR  
tRAH  
tASC  
tCAH  
CAS Pulse Width  
RAS to CAS Delay  
16  
0
23  
17  
0
28  
18  
0
32  
19  
0
36  
Read Command Setup Time  
Row Address Setup Time  
Row Address Hold Time  
Column Address Setup Time  
Column Address Hold Time  
4
0
0
0
0
tRL1AX  
6
7
8
9
10 tAVCL2  
11 tCL1AX  
0
0
0
0
4
5
6
7
12 tCL1RH1(R) tRSH (R) RAS Hold Time (Read Cycle)  
14  
5
14  
5
15  
5
15  
5
13 tCH2RL2  
14 tCH2WX  
tCRP  
tRCH  
CAS to RAS Precharge Time  
Read Command Hold Time Referenced  
to CAS  
0
0
0
0
5
5
15 tRH2WX  
tRRH  
Read Command Hold Time Referenced  
to RAS  
0
8
0
9
0
0
ns  
16 tOEL1RH2  
17 tGL1QV  
18 tCL1QV  
19 tRL1QV  
20 tAVQV  
21 tCL1QX  
22 tCH2QZ  
23 tRL1AX  
24 tRL1AV  
tROH  
tOAC  
tCAC  
tRAC  
tCAA  
tLZ  
RAS Hold Time Referenced to OE  
Access Time from OE  
10  
10  
ns  
ns  
ns  
12  
12  
35  
18  
12  
12  
40  
20  
13  
13  
45  
22  
14  
14  
50  
24  
Access Time from CAS (EDO)  
Access Time from RAS  
6, 7  
ns 6, 8, 9  
ns 6, 7, 10  
Access Time from Column Address  
CAS to Low-Z Output  
0
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
16  
16  
tHZ  
Output buffer turn-off delay time  
Column Address Hold Time from RAS  
RAS to Column Address Delay Time  
6
6
7
8
tAR  
28  
11  
12  
12  
0
30  
12  
12  
12  
0
35  
13  
13  
13  
0
40  
14  
14  
14  
0
tRAD  
17  
20  
23  
26  
11  
25 tCL1RH1(W) tRSH (W) RAS or CAS Hold Time in Write Cycle  
26 tWL1CH1  
27 tWL1CL2  
28 tCL1WH1  
29 tWL1WH1  
30 tRL1WH1  
31 tWL1RH1  
tCWL  
tWCS  
tWCH  
tWP  
Write Command to CAS Lead Time  
Write Command Setup Time  
Write Command Hold Time  
ns 12, 13  
5
5
6
7
ns  
ns  
ns  
ns  
Write Pulse Width  
5
5
6
7
tWCR  
tRWL  
Write Command Hold Time from RAS  
Write Command to RAS Lead Time  
28  
12  
30  
12  
35  
13  
40  
14  
V53C8129H Rev. 1.3 July 1997  
5
MOSEL VITELIC  
V53C8129H  
AC Characteristics (Cont’d)  
35  
40  
45  
50  
JEDEC  
#
Symbol  
Symbol Parameter  
Min. Max. Min. Max. Min. Max. Min. Max. Unit Notes  
32 tDVWL2  
33 tWL1DX  
34 tWL1GL2  
35 tGH2DX  
tDS  
Data in Setup Time  
0
4
0
5
0
6
0
7
ns  
ns  
ns  
ns  
ns  
14  
14  
14  
14  
tDH  
Data in Hold Time  
tWOH  
tOED  
tRWC  
Write to OE Hold Time  
OE to Data Delay Time  
Read-Modify-Write Cycle Time  
5
6
7
8
5
6
7
8
36 tRL2RL2  
(RMW)  
105  
110  
115  
130  
37 tRL1RH1  
(RMW)  
tRRW  
Read-Modify-Write Cycle RAS Pulse  
Width  
70  
75  
80  
87  
ns  
38 tCL1WL2  
39 tRL1WL2  
tCWD  
tRWD  
CAS to WE Delay  
28  
54  
30  
58  
32  
62  
34  
68  
ns  
ns  
12  
12  
RAS to WE Delay in Read-Modify-Write  
Cycle  
40 tCL1CH1  
41 tAVWL2  
42 tCL2CL2  
tCRW  
tAWD  
tPC  
CAS Pulse Width (RMW)  
Col. Address to WE Delay  
46  
35  
14  
48  
38  
15  
50  
41  
17  
52  
42  
19  
ns  
ns  
ns  
12  
EDO Page Mode Read or Write Cycle  
Time  
43 tCH2CL2  
44 tAVRH1  
45 tCH2QV  
46 tRL1DX  
47 tCL1RL2  
tCP  
CAS Precharge Time  
4
5
6
7
ns  
ns  
ns  
ns  
ns  
tCAR  
tCAP  
tDHR  
tCSR  
Column Address to RAS Setup Time  
Access Time from Column Precharge  
Data in Hold Time Referenced to RAS  
18  
20  
22  
24  
21  
23  
25  
27  
7
28  
10  
30  
10  
35  
10  
40  
10  
CAS Setup Time CAS-before-RAS  
Refresh  
48 tRH2CL2  
49 tRL1CH1  
tRPC  
tCHR  
tPCM  
RAS to CAS Precharge Time  
0
8
0
8
0
0
ns  
ns  
ns  
CAS Hold Time CAS-before-RAS Refresh  
10  
65  
12  
70  
50 tCL2CL2  
(RMW)  
EDO Page Mode Read-Modify-Write  
Cycle Time  
58  
60  
51 tT  
52  
tT  
Transition Time (Rise and Fall)  
Refresh Interval (512 Cycles)  
Output Hold After CAS Low  
3
5
50  
8
3
5
50  
8
3
5
50  
8
3
5
50  
8
ns  
ms  
ns  
15  
tREF  
tCOH  
53  
V53C8129H Rev. 1.3 July 1997  
6
MOSEL VITELIC  
V53C8129H  
Notes:  
1. ICC is dependent on output loading when the device output is selected. Specified ICC (max.) is measured with the  
output open.  
2.  
ICC is dependent upon the number of address transitions. Specified IDD (max.) is measured with a maximum of two  
transitions per address cycle in EDO Page Mode.  
3. Specified VIL (min.) is steady state operating. During transitions, VIL (min.) may undershoot to –1.0 V for a period  
not to exceed 20 ns. All AC parameters are measured with VIL (min.) VSS and VIH (max.) VDD  
.
4. tRCD (max.) is specified for reference only. Operation within tRCD (max.) limits insures that tRAC (max.) and tCAA  
(max.) can be met. If tRCD is greater than the specified tRCD (max.), the access time is controlled by tCAA and tCAC  
.
5. Either tRRH or tRCH must be satisified for a Read Cycle to occur.  
6. Measured with a load equivalent to two TTL inputs and 50 pF.  
7. Access time is determined by the longest of tCAA, tCAC and tCAP  
.
8. Assumes that tRAD tRAD (max.). If tRAD is greater than tRAD (max.), tRAC will increase by the amount that tRAD ex-  
ceeds tRAD (max.).  
9. Assumes that tRCD tRCD (max.). If tRCD is greater than tRCD (max.), tRAC will increase by the amount that tRCD  
exceeds tRCD (max.).  
10. Assumes that tRAD tRAD (max.).  
11. Operation within the tRAD (max.) limit ensures that tRAC (max.) can be met. tRAD (max.) is specified as a reference  
point only. If tRAD is greater than the specified tRAD (max.) limit, the access time is controlled by tCAA and tCAC  
.
12.  
13.  
14.  
t
t
t
WCS, tRWD, tAWD and tCWD are not restrictive operating parameters.  
WCS (min.) must be satisfied in an Early Write Cycle.  
DS and tDH are referenced to the latter occurrence of CAS or WE.  
15. tT is measured between VIH (min.) and VIL (max.). AC-measurements assume tT = 3 ns.  
16. Assumes a three-state test load (5 pF and a 380 Ohm Thevenin equivalent).  
17. An initial 200 µs pause and 8 RAS-containing cycles are required when exiting an extended period of bias without  
clocks. An extended period of time without clocks is defined as one that exceeds the specified Refresh Interval.  
V53C8129H Rev. 1.3 July 1997  
7
MOSEL VITELIC  
V53C8129H  
Waveforms of Read Cycle  
t
RC (2)  
t
t
RP (3)  
RAS (1)  
t
AR (23)  
V
IH  
RAS  
V
IL  
t
CSH (4)  
t
t
t
t
t
CRP (13)  
RCD (6)  
RSH (R)(12)  
CAS (5)  
CRP (13)  
V
IH  
CAS  
V
t
IL  
RAD (24)  
t
t
RAH (9)  
CAH (11)  
t
t
ASR (8)  
ASC (10)  
V
IH  
ADDRESS  
ROW ADDRESS  
COLUMN ADDRESS  
V
IL  
t
t
RCH (14)  
CAR (44)  
t
t
RCS (7)  
RRH (15)  
V
IH  
WE  
OE  
V
IL  
t
ROH (16)  
t
t
HZ (22)  
CAA (20)  
t
V
OAC (17)  
IH  
V
IL  
t
CAC (18)  
t
HZ (22)  
t
t
RAC (19)  
HZ (22)  
V
OH  
I/O  
VALID DATA-OUT  
V
OL  
8129H-04  
t
LZ (21)  
Waveforms of Early Write Cycle  
t
RC (2)  
t
t
RP (3)  
RAS (1)  
t
AR (23)  
V
IH  
RAS  
V
IL  
t
CSH (4)  
t
t
t
t
t
CRP (13)  
RCD (6)  
RSH (W)(25)  
CAS (5)  
CRP (13)  
V
V
IH  
IL  
CAS  
t
CAR (44)  
t
t
RAH (9)  
CAH (11)  
t
t
ASC (10)  
ASR (8)  
V
V
IH  
IL  
ADDRESS  
ROW ADDRESS  
t
COLUMN ADDRESS  
t
RAD (24)  
WCH (28)  
t
CWL (26)  
t
t
t
t
WP (29)  
WSR  
RWH  
WCS (27)  
V
V
IH  
IL  
WE  
OE  
I/O  
t
WCR (30)  
t
RWL (31)  
V
V
IH  
IL  
t
DHR (46)  
t
t
DH (33)  
DS (32)  
V
V
IH  
IL  
VALID DATA-IN  
HIGH-Z  
8129H-05  
Undefined  
Don’t Care  
V53C8129H Rev. 1.3 July 1997  
8
MOSEL VITELIC  
V53C8129H  
Waveforms of OE-Controlled Write Cycle  
t
RC (2)  
t
t
RP (3)  
RAS (1)  
t
AR (23)  
V
V
IH  
IL  
RAS  
CAS  
t
CSH (4)  
t
t
t
t
t
CRP (13)  
RCD (6)  
RSH (W)(12)  
CAS (5)  
CRP (13)  
V
V
IH  
IL  
t
t
RAD (24)  
t
CAR (44)  
t
CAH (11)  
RAH (9)  
t
t
ASR (8)  
ASC (10)  
V
V
IH  
IL  
ADDRESS  
ROW ADDRESS  
COLUMN ADDRESS  
t
t
CWL (26)  
RWL (31)  
WP (29)  
t
V
V
IH  
IL  
WE  
OE  
t
WOH (34)  
V
V
IH  
IL  
t
t
OED (35)  
DH (33)  
DS (32)  
t
V
V
IH  
IL  
I/O  
VALID DATA-IN  
8129H-06  
Waveforms of Read-Modify-Write Cycle  
t
RWC (36)  
t
t
RRW (37)  
RP (3)  
t
AR (23)  
V
IH  
RAS  
CAS  
V
IL  
t
CSH (4)  
t
t
t
t
t
CRP (13)  
RCD (6)  
RSH (W)(25)  
CRP (13)  
CRW (40)  
V
IH  
V
IL  
t
t
t
RAH (9)  
CAH (11)  
t
t
ASC (10)  
ASR (8)  
V
IH  
ROW  
ADDRESS  
COLUMN  
ADDRESS  
ADDRESS  
V
IL  
t
AWD (41)  
t
CWL (26)  
t
t
RWL (31)  
t
RAD (24)  
CWD (38)  
t
RWD (39)  
t
WP (29)  
RCS (17)  
V
IH  
WE  
OE  
V
IL  
t
CAA (20)  
t
OAC (17)  
V
IH  
V
IL  
t
t
OED (35)  
DH (33)  
t
t
HZ (22)  
CAC (18)  
t
t
DS (32)  
RAC (19)  
V
V
OH  
IH  
VALID  
DATA-OUT  
VALID  
DATA-IN  
I/O  
V
V
OL  
IL  
8129H-07  
t
LZ (21)  
Undefined  
Don’t Care  
V53C8129H Rev. 1.3 July 1997  
9
MOSEL VITELIC  
V53C8129H  
Waveforms of EDO Page Mode Read Cycle  
t
t
RAS (1)  
RP (3)  
t
AR (23)  
V
V
IH  
IL  
t
RAS  
CAS  
RCD (6)  
t
t
PC (42)  
t
RSH (R)(12)  
t
t
CRP (13)  
CP (43)  
CRP (13)  
t
CAS (5)  
t
t
CAS (5)  
CAS (5)  
V
V
IH  
IL  
t
t
CSH (4)  
CAR (44)  
t
t
RAH (9)  
t
ASC (10)  
ASC (10)  
t
t
t
ASR (8)  
CAH (11)  
CAH (11)  
V
V
IH  
IL  
ROW  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
ADDRESS  
t
t
t
RCH (14)  
RCH (14)  
RCS (7)  
t
RCS (7)  
t
t
RCS (7)  
CAH (11)  
V
V
IH  
IL  
WE  
OE  
t
t
CAA (20)  
CAA (20)  
t
t
RRH (15)  
CAP (45)  
t
t
OAC (17)  
OAC (17)  
V
V
IH  
IL  
t
t
t
RAC (19)  
CAC (18)  
CAC (18)  
t
t
t
t
CAC (18)  
HZ (22)  
t
LZ (21)  
HZ (22)  
t
t
HZ (22)  
COH  
HZ (22)  
V
V
OH  
OL  
VALID  
DATA OUT  
VALID  
DATA OUT  
VALID  
DATA OUT  
I/O  
t
LZ  
8129H-08  
Waveforms of EDO Page Mode Write Cycle  
t
t
RP (3)  
AR (23)  
t
RAS (1)  
V
V
IH  
IL  
RAS  
CAS  
t
t
t
RSH (W)(25)  
CRP (13)  
t
PC (42)  
t
t
CRP (13)  
RCD (6)  
CP (43)  
t
t
CAS (5)  
t
CAS (5)  
V
V
CAS (5)  
IH  
IL  
t
CSH (4)  
t
t
RAH (9)  
CAR (44)  
t
t
t
t
ASC (10)  
t
CAH (11)  
ASC (10)  
t
ASR (8)  
CAH (11)  
CAH (11)  
V
V
IH  
IL  
ROW  
ADD  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
ADDRESS  
t
t
t
t
RAD (24)  
CWL (26)  
CWL (26)  
CWL (26)  
t
t
WCS (27)  
WCS (27)  
t
t
t
t
WCS (27)  
WCH (28)  
WCH (28)  
RWL (31)  
t
WCH (28)  
WP (29)  
t
t
t
WP (29)  
WP (29)  
V
V
IH  
IL  
WE  
OE  
V
V
IH  
IL  
t
t
t
t
t
DS (32)  
DH (33)  
DH (33)  
DH (33)  
DS (32)  
t
DS (32)  
V
V
IH  
IL  
VALID  
DATA IN  
VALID  
DATA IN  
VALID  
DATA IN  
I/O  
OPEN  
OPEN  
8129H-09  
Undefined  
Don’t Care  
V53C8129H Rev. 1.3 July 1997  
10  
MOSEL VITELIC  
V53C8129H  
Waveforms of EDO Page Mode Read-Write Cycle  
t
RAS (1)  
V
IH  
RAS  
V
IL  
t
t
CSH (4)  
RP (3)  
t
RCD (6)  
t
t
PCM (50)  
RSH (W)(25)  
t
t
CP (43)  
CRP (13)  
t
t
V
t
CAS (5)  
CAS (5)  
CAS (5)  
IH  
CAS  
t
RAD (24)  
V
IL  
t
t
RAH (9)  
CAR (44)  
t
t
t
t
ASC (10)  
ASC (10)  
CAH (11)  
ASC (10)  
t
CAH (11)  
t
t
CAH (11)  
ASR (8)  
V
IH  
ROW  
ADD  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
COLUMN  
ADDRESS  
ADDRESS  
V
IL  
t
t
t
RWD (39)  
t
CWD (38)  
CWD (38)  
t
t
t
RWL (31)  
RCS (7)  
CWL (26)  
t
t
CWL (26)  
CWD (38)  
CWL (26)  
V
IH  
WE  
OE  
V
IL  
t
AWD (41)  
WP (29)  
OAC (17)  
t
t
AWD (41)  
AWD (41)  
WP (29)  
t
OAC (17)  
t
t
t
t
CAA (20)  
WP (29)  
t
t
t
WSR  
OAC (17)  
V
IH  
V
IL  
t
t
t
CAP (43)  
t
CAP (43)  
t
CAA (20)  
EMH  
t
t
CAA (20)  
t
EMS  
t
t
OED (35)  
OED (35)  
OED (35)  
t
t
t
CAC (18)  
CAC (18)  
RAC (19)  
CAC (18)  
t
t
t
HZ (22)  
HZ (22)  
t
HZ (22)  
t
t
t
t
DH (33)  
DH (33)  
DH (33)  
DS (32)  
t
DS (32)  
DS (32)  
V
I/O  
I/OH  
I/OL  
OUT  
OUT  
OUT  
IN  
IN  
IN  
V
8129H-10  
t
LZ (21)  
t
t
LZ  
LZ  
Waveforms of RAS-Only Refresh Cycle  
t
RC (2)  
t
RP (3)  
t
RAS (1)  
V
V
IH  
IL  
RAS  
CAS  
t
CRP (13)  
V
V
IH  
IL  
t
t
RAH (9)  
ASR (8)  
V
V
IH  
IL  
ADDRESS  
ROW ADD  
8129H-11  
NOTE: WE, OE = Don’t care  
Undefined  
Don’t Care  
V53C8129H Rev. 1.3 July 1997  
11  
MOSEL VITELIC  
V53C8129H  
Waveforms of CAS-before-RAS Refresh Counter Test Cycle  
t
t
RAS (1)  
RP (3)  
V
V
IH  
IL  
RAS  
t
RSH (W)(25)  
t
t
CP (43)  
CHR (49)  
t
t
CSR (47)  
CAS (5)  
V
V
IH  
IL  
CAS  
V
V
IH  
IL  
ADDRESS  
t
t
RRH (15)  
RCH (14)  
READ CYCLE  
t
RCS (7)  
V
V
IH  
IL  
WE  
OE  
I/O  
t
ROH (16)  
t
OAC (17)  
V
V
IH  
IL  
t
t
HZ (22)  
HZ (22)  
t
LZ (21)  
V
V
IH  
IL  
D
OUT  
t
t
t
RWL (31)  
CWL (26)  
HZ (22)  
WRITE CYCLE  
t
t
WCS (27)  
WCH (28)  
V
V
IH  
IL  
WE  
OE  
I/O  
V
V
IH  
IL  
t
t
DH (33)  
DS (32)  
V
V
IH  
IL  
D
IN  
8129H-12  
Waveforms of CAS-before-RAS Refresh Cycle  
t
RC (2)  
t
t
t
RP (3)  
RP (3)  
RAS (1)  
V
V
IH  
IL  
RAS  
t
RPC (48)  
t
t
t
CHR (49)  
CP (43)  
HZ (22)  
t
CSR (47)  
V
V
IH  
IL  
CAS  
I/O  
V
V
OH  
OL  
8129H-13  
WE, OE, A –A = Don’t care  
NOTE:  
8
0
Undefined  
Don’t Care  
V53C8129H Rev. 1.3 July 1997  
12  
MOSEL VITELIC  
V53C8129H  
Waveforms of Hidden Refresh Cycle (Read)  
t
t
RC (2)  
RC (2)  
t
t
RP (3)  
t
t
t
RAS (1)  
RAS (1)  
RP (3)  
AR (23)  
V
V
IH  
IL  
RAS  
CAS  
t
t
RSH (R)(12)  
t
t
CRP (13)  
RCD (6)  
CRP (13)  
CHR (49)  
t
V
V
IH  
IL  
t
RAD (24)  
t
t
ASR (8)  
t
ASC (10)  
t
RAH (9)  
CAH (11)  
V
V
IH  
IL  
COLUMN  
ADDRESS  
ROW  
ADD  
ADDRESS  
WE  
t
t
RCS (7)  
RRH (15)  
V
V
IH  
IL  
t
CAA (20)  
t
t
HZ (22)  
OAC (17)  
V
V
IH  
IL  
OE  
I/O  
t
t
HZ (22)  
CAC (18)  
t
t
HZ (22)  
LZ (21)  
t
RAC (19)  
V
OH  
OL  
VALID DATA  
V
8129H-14  
Waveforms of Hidden Refresh Cycle (Write)  
t
t
RC (2)  
RC (2)  
t
t
RP (3)  
t
t
RAS (1)  
RAS (1)  
RP (3)  
t
AR (23)  
V
V
IH  
IL  
RAS  
CAS  
t
t
RSH (12)  
t
t
CRP (13)  
RCD (6)  
CRP (13)  
CHR (49)  
t
V
V
IH  
IL  
t
RAD (24)  
t
t
ASR (8)  
t
ASC (10)  
t
RAH (9)  
CAH (11)  
V
V
IH  
IL  
ROW  
COLUMN  
ADDRESS  
ADDRESS  
WE  
ADD  
t
t
WCS (27)  
WCH (28)  
V
V
IH  
IL  
V
V
IH  
IL  
OE  
t
t
DS (32)  
DH (33)  
V
IH  
IL  
VALID DATA-IN  
I/O  
V
8129H-15  
t
DHR (46)  
Undefined  
Don’t Care  
V53C8129H Rev. 1.3 July 1997  
13  
MOSEL VITELIC  
V53C8129H  
Functional Description  
Refresh Cycle  
The V53C8129H is a CMOS dynamic RAM opti-  
mized for high data bandwidth, low power applica-  
tions. It is functionally similar to a traditional  
dynamic RAM. The V53C8129H reads and writes  
data by multiplexing an 17-bit address into a 8-bit  
row and an 9-bit column address. The row address  
is latched by the Row Address Strobe (RAS). The  
column address “flows through” an internal address  
buffer and is latched by the Column Address Strobe  
(CAS). Because access time is primarily dependent  
on a valid column address rather than the precise  
time that the CAS edge occurs, the delay time from  
RAS to CAS has little effect on the access time.  
To retain data, 512 Refresh Cycles are required  
in each 8 ms period. There are two ways to refresh  
the memory:  
1. By clocking each of the 512 row addresses (A  
0
through A ) with RAS at least once every 8 ms.  
8
Any Read, Write, Read-Modify-Write or RAS-  
only cycle refreshes the addressed row.  
2. Using a CAS-before-RAS Refresh Cycle. If CAS  
makes a transition from low to high to low after  
the previous cycle and before RAS falls, CAS-  
before-RAS  
refresh  
is  
activated.  
The  
V53C8129H uses the output of an internal 9-bit  
counter as the source of row addresses and ig-  
nore external address inputs.  
Memory Cycle  
A memory cycle is initiated by bringing RAS low.  
Any memory cycle, once initiated, must not be end-  
CAS-before-RAS is a “refresh-only” mode and no  
data access or device selection is allowed. Thus,  
the output remains in the High-Z state during the cy-  
cle. A CAS-before-RAS counter test mode is provid-  
ed to ensure reliable operation of the internal  
refresh counter.  
ed or aborted before the minimum t  
time has ex-  
RAS  
pired. This ensures proper device operation and  
data integrity. A new cycle must not be initiated until  
the minimum precharge time t /t has elapsed.  
RP CP  
Read Cycle  
A Read cycle is performed by holding the Write  
Enable (WE) signal High during a RAS/CAS opera-  
tion. The column address must be held for a mini-  
Extended Data Out Page Mode  
The V53C8129H offers fast access within a row.  
Unlike ordinary fast page mode DRAM, the  
V53C8129H output remains active and valid even  
after CAS goes high and it will stay valid for 5ns af-  
ter CAS changes low. The feature allows the  
V53C8129H to CAS cycle faster than ordinary page  
mode DRAM since the cycle time be short as data  
access time.  
mum specified by t . Data Out becomes valid only  
AR  
when t  
, t  
, t  
and t  
are all satisifed. As  
OAC RAC CAA  
CAC  
a result, the access time is dependent on the timing  
relationships between these parameters. For exam-  
ple, the access time is limited by t  
when t  
,
CAA  
RAC  
t
and t  
are all satisfied.  
CAC  
OAC  
The outputs are disabled at the tHZ time after  
RAS and CAS are high. The tHZ time is referenced  
from rising edge of RAS or CAS whichever occurs  
last. In addition, high on OE input and activation of  
the write-cycle will also disable the outputs.  
The following equation can be used to calculate  
the maximum data rate:  
Write Cycle  
A Write Cycle is performed by taking WE and  
CAS low during a RAS operation. The column ad-  
dress is latched by CAS. The Write Cycle can be  
WE controlled or CAS controlled depending on  
whether WE or CAS falls later. Consequently, the  
input data must be valid at or before the falling edge  
of WE or CAS, whichever occurs last. In the CAS-  
controlled Write Cycle, when the leading edge of  
WE occurs prior to the CAS low transition, the I/O  
data pins will be in the High-Z state at the beginning  
of the Write function. Ending the Write with RAS or  
CAS will maintain the output in the High-Z state.  
In the WE controlled Write Cycle, OE must be in  
256  
Data Rate = ----------------------------------------  
t
+ 255 × t  
RC  
PC  
the high state and t  
must be satisfied.  
OED  
V53C8129H Rev. 1.3 July 1997  
14  
MOSEL VITELIC  
V53C8129H  
Data Output Operation  
Table 1. V53C8129H Data Output  
Operation for Various Cycle Types  
The V53C8129H Input/Output is controlled by  
OE, CAS, WE and RAS. A RAS low transition en-  
ables the transfer of data to and from the selected  
row address in the Memory Array. A RAS high tran-  
sition disables data transfer and latches the output  
data if the output is enabled. After a memory cycle  
is initiated with a RAS low transition, a CAS low  
transition or CAS low level enables the internal I/O  
path. A CAS high transition or a CAS high level dis-  
ables the I/O path and the output driver if it is en-  
abled. A CAS low transition while RAS is high has  
no effect on the I/O data path or on the output driv-  
ers. The output drivers, when otherwise enabled,  
can be disabled by holding OE high. The OE signal  
has no effect on any data stored in the output latch-  
es. A WE low level can also disable the output driv-  
ers when CAS is low. During a Write cycle, if WE  
goes low at a time in relationship to CAS that would  
normally cause the outputs to be active, it is neces-  
sary to use OE to disable the output drivers prior to  
the WE low transition to allow Data In Setup Time  
Cycle Type  
I/O State  
Read Cycles  
Data from Addressed Memory  
Cell  
CAS-Controlled Write Cycle  
(Early Write)  
High-Z  
WE-Controlled Write Cycle  
(Late Write)  
OE Controlled.  
High OE = High-Z I/Os  
Read-Modify-Write Cycles  
Data from Addressed Memory  
Cell  
EDO Page Mode Read  
Data from Addressed Memory  
Cell  
EDO Page Mode Write Cycle High-Z  
(Early Write)  
EDO Page Mode Read-  
Modify-Write Cycle  
Data from Addressed Memory  
Cell  
RAS-only Refresh  
High-Z  
(t ) to be satisfied.  
DS  
CAS-before-RAS Refresh  
Cycle  
Data remains as in previous  
cycle  
Power-On  
CAS-only Cycles  
High-Z  
After application of the V  
supply, an initial  
CC  
pause of 200 µs is required followed by a minimum  
of 8 initialization cycles (any combination of cycles  
containing a RAS clock). Eight initialization cycles  
are required after extended periods of bias without  
clocks (greater than the Refresh Interval).  
During Power-On, the V current requirement of  
CC  
the V53C8129H is dependent on the input levels of  
RAS and CAS. If RAS is low during Power-On, the  
device will go into an active cycle and I will exhibit  
CC  
current transients. It is recommended that RAS and  
CAS track with V or be held at a valid V during  
CC  
IH  
Power-On to avoid current surges.  
V53C8129H Rev. 1.3 July 1997  
15  
MOSEL VITELIC  
V53C8129H  
Package Outlines  
24-pin 300 mil PDIP  
0.300 – 0.330  
[7.62 – 8.38]  
Unit in inches [mm]  
0.250 – 0.300  
[6.35 – 7.62]  
.180 Max.  
[4.57 Max.]  
1.310 Max.  
[33.27 Max.]  
0.005 – 0.050  
[0.127 – 1.27]  
0.110 – 0.140  
[2.79 – 3.56]  
.008 – .013  
[.203 – .330]  
.100 Typ.  
0.018 – 0.024  
[0.457 – 0.610]  
[2.54 Typ.]  
0.320 – 0.390  
[8.13 – 9.91]  
0.048 – 0.065  
[1.22 – 1.65]  
26/24-pin 300 mil SOJ  
Unit in inches [mm]  
0.332 – 0.342  
[8.43 – 8.69]  
0.296 – 0.304  
[7.52 – 7.72]  
0.665 – 0.698  
[16.89 – 17.73]  
0.125 – 0.135  
[3.175 – 3.429]  
0.082 – 0.093  
[2.08 – 2.36]  
0.025 Min.  
[0.635 Min.]  
0.028 Typ.  
[0.711 Typ.]  
0.255 – 0.275  
[6.477 – 6.985]  
0.05 Typ.  
[1.27 Typ.]  
0.018 Typ.  
[0.457 Typ.]  
V53C8129H Rev. 1.3 July 1997  
16  
MOSEL VITELIC  
V53C8129H  
V53C8129H Rev. 1.3 July 1997  
17  
MOSEL VITELIC WORLDWIDE OFFICES  
V53C8129H  
U.S.A.  
TAIWAN  
JAPAN  
3910 NORTH FIRST STREET  
SAN JOSE, CA 95134  
PHONE: 408-433-6000  
FAX: 408-433-0185  
7F, NO. 102  
RM.302 ANNEX-G  
MIN-CHUAN E. ROAD, SEC. 3  
TAIPEI  
PHONE: 011-886-2-545-1213  
FAX: 011-886-2-545-1209  
HIGASHI-NAKANO  
NAKANO-KU, TOKYO 164  
PHONE: 011-81-03-3365-2851  
FAX: 011-81-03-3365-2836  
HONG KONG  
19 DAI FU STREET  
1 CREATION ROAD I  
SCIENCE BASED IND. PARK  
HSIN CHU, TAIWAN, R.O.C.  
PHONE: 011-886-35-783344  
FAX: 011-886-35-792838  
TAIPO INDUSTRIAL ESTATE  
TAIPO, NT, HONG KONG  
PHONE: 011-852-665-4883  
FAX: 011-852-664-7535  
U.S. SALES OFFICES  
NORTHWESTERN  
3910 NORTH FIRST STREET  
SAN JOSE, CA 95134  
PHONE: 408-433-6000  
FAX: 408-433-0185  
SOUTHWESTERN  
SUITE 200  
5150 E. PACIFIC COAST HWY.  
LONG BEACH, CA 90804  
PHONE: 310-498-3314  
FAX: 310-597-2174  
CENTRAL & SOUTHEASTERN  
604 FIELDWOOD CIRCLE  
RICHARDSON, TX 75081  
PHONE: 972-690-1402  
FAX: 972-690-0341  
NORTHEASTERN  
SUITE 436  
20 TRAFALGAR SQUARE  
NASHUA, NH 03063  
PHONE: 603-889-4393  
FAX: 603-889-9347  
7/97  
Printed in U.S.A.  
© Copyright 1997, MOSEL VITELIC Inc.  
The information in this document is subject to change without  
notice.  
MOSEL VITELIC subjects its products to normal quality control  
sampling techniques which are intended to provide an assurance  
of high quality products suitable for usual commercial applica-  
tions. MOSEL VITELIC does not do testing appropriate to provide  
100% product quality assurance and does not assume any liabil-  
ity for consequential or incidental arising from any use of its prod-  
ucts. If such products are to be used in applications in which  
personal injury might occur from failure, purchaser must do its  
own quality assurance testing appropriate to such applications.  
MOSEL VITELIC makes no commitment to update or keep cur-  
rent the information contained in this document. No part of this  
document may be copied or reproduced in any form or by any  
means without the prior written consent of MOSEL-VITELIC.  
MOSEL VITELIC 3910 N. First Street, San Jose, CA 95134-1501 Ph: (408) 433-6000 Fax: (408) 433-0952 Tlx: 371-9461  

V53C8129H40 相关器件

型号 制造商 描述 价格 文档
V53C8129H45 MOSEL ULTRA-HIGH PERFORMANCE, 128K X 8EDO PAGE MODE CMOS DYNAMIC RAM 获取价格
V53C8129H50 MOSEL ULTRA-HIGH PERFORMANCE, 128K X 8EDO PAGE MODE CMOS DYNAMIC RAM 获取价格
V53C816H MOSEL 512K X 16 FAST PAGE MODE CMOS DYNAMIC RAM 获取价格
V53C816H40 MOSEL 512K X 16 FAST PAGE MODE CMOS DYNAMIC RAM 获取价格
V53C816H45 MOSEL 512K X 16 FAST PAGE MODE CMOS DYNAMIC RAM 获取价格
V53C816H50 MOSEL 512K X 16 FAST PAGE MODE CMOS DYNAMIC RAM 获取价格
V53C816H60 MOSEL 512K X 16 FAST PAGE MODE CMOS DYNAMIC RAM 获取价格
V53C818H MOSEL HIGH PERFORMANCE 512K X 16 EDO PAGE MODE CMOS DYNAMIC RAM 获取价格
V53C818H30 MOSEL HIGH PERFORMANCE 512K X 16 EDO PAGE MODE CMOS DYNAMIC RAM 获取价格
V53C818H35 MOSEL HIGH PERFORMANCE 512K X 16 EDO PAGE MODE CMOS DYNAMIC RAM 获取价格

V53C8129H40 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6