V62C1161024L

更新时间:2024-09-18 02:10:44
品牌:MOSEL
描述:Ultra Low Power 64K x 16 CMOS SRAM

V62C1161024L 概述

Ultra Low Power 64K x 16 CMOS SRAM 超低功耗64K ×16的CMOS SRAM

V62C1161024L 数据手册

通过下载V62C1161024L数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
V62C1161024L(L)  
Ultra Low Power  
64K x 16 CMOS SRAM  
Features  
Functional Description  
The V62C1161024L is a Low Power CMOS Static RAM  
organized as 65,536 words by 16 bits. Easy memory exp-  
ansion is provided by an active LOW (CE) and (OE) pin.  
• Ultra Low-power consumption  
- Active: 30mA ICC at 70ns  
- Stand-by: 5 mA(CMOS input/output)  
1 mA (CMOS input/output, Lversion)  
This device has an automatic power-down mode feature  
when deselected. Separate Byte Enable controls (BLE  
• 70/85/100/120 ns access time  
• Equal access and cycle time  
• Single +1.8V to 2.2V Power Supply  
• Tri-state output  
and BHE  
) allow individual bytes to be accessed. BLE  
controls the lower bits I/O1 - I/O8. BHE controls the  
upper bits I/O9 - I/O16.  
Writing to these devices is performed by taking Chip  
Enable (CE) with Write Enable (WE) and Byte Enable  
(BLE/BHE) LOW.  
• Automatic power-down when deselected  
Reading from the device is performed by taking Chip  
Enable (CE) with Output Enable (OE) and Byte Enable  
(BLE/BHE) LOW while Write Enable (WE) is held  
HIGH.  
• Multiple center power and ground pins for  
improved noise immunity  
• Individual byte controls for both Read and  
Write cycles  
• Available in 44 pin TSOP (II) Package  
Logic Block Diagram  
TSOP(II)  
Pre-Charge Circuit  
A0  
A1  
A4  
A3  
A2  
A1  
A0  
CE  
I/O1  
I/O2  
I/O3  
I/O4  
Vcc  
Vss  
I/O5  
I/O6  
I/O7  
I/O8  
WE  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
A5  
A6  
A7  
OE  
Vcc  
Vss  
A2  
A3  
A4  
A5  
A6  
A7  
Memory Array  
1024 X 1024  
BHE  
BLE  
I/O16  
I/O15  
I/O14  
I/O13  
Vss  
Vcc  
I/O12  
I/O11  
I/O10  
I/O9  
NC  
A8  
A9  
Data  
Cont  
I/O1 - I/O8  
I/O Circuit  
Data  
Cont  
I/O9 - I/O16  
Column Select  
A10 A11 A12 A13 A14 A15  
A15  
A14  
A13  
A12  
NC  
A8  
A9  
A10  
A11  
NC  
WE  
OE  
BHE  
BLE  
CE  
1
REV. 1.1 April 2001 V62C1161024L(L)  
V62C1161024L(L)  
Absolute Maximum Ratings *  
Parameter  
Symbol Minimum Maximum  
Unit  
Voltage on Any Pin Relative to Gnd  
Power Dissipation  
Vt  
PT  
-0.5  
-
+4.0  
1.0  
V
W
0
Storage Temperature (Plastic)  
Tstg  
-55  
+150  
C
0
Temperature Under Bias  
Tbias  
-40  
+85  
C
* Note: Stresses greater than those listed above Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rat-  
ing only and function operation of the device at these or any other conditions outside those indicated in the operational sections of this spec-  
ification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect reliability.  
Truth Table  
CE  
H
L
OE WE BLE BHE I/O1-I/O8 I/O9-I/O16  
Power  
Standby  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Mode  
X
L
X
H
H
H
L
X
L
X
H
L
High-Z  
Data Out  
High-Z  
High-Z  
High-Z  
Standby  
Low Byte Read  
High Byte Read  
Word Read  
L
L
H
L
Data Out  
Data Out  
Data In  
High-Z  
L
L
L
Data Out  
Data In  
Data In  
High-Z  
L
X
X
X
H
X
L
L
Word Write  
L
L
L
H
L
Low Byte Write  
High Byte Write  
Output Disable  
Output Disable  
L
L
H
X
H
Data In  
High-Z  
L
H
X
X
H
High-Z  
L
High-Z  
High-Z  
* Key: X = Don’t Care, L = Low, H = High  
Recommended Operating Conditions (TA = 0oC to +70oC / -40oC to 85oC**)  
Parameter  
Symbol  
Min  
1.8  
Typ  
Max  
2.2  
Unit  
V
2.0  
0.0  
-
V
V
V
V
CC  
Supply Voltage  
Gnd  
0.0  
0.0  
V
1.6  
V
+ 0.2  
CC  
IH  
Input Voltage  
V
-0.5*  
-
0.4  
IL  
* VIL min = -2.0V for pulse width less than tRC/2.  
** For Industrial Temperature  
2
REV. 1.1 April 2001 V62C1161024L(L)  
V62C1161024L(L)  
DC Operating Characteristics (Vcc = 2V+10%, Gnd = 0V, TA = 00C to +700C / -400C to 850C)  
-70  
-85  
-100  
-120  
Parameter  
Sym Test Conditions  
Unit  
Min Max Min Max Min Max Min Max  
Vcc = Max,  
Vin = Gnd to Vcc  
-
1
1
-
1
1
-
1
1
-
1
1
mA  
Input Leakage Current  
II  
LI  
= VIH or Vcc= Max,  
CE  
VOUT = Gnd to Vcc  
-
-
-
-
mA  
Output Leakage  
Current  
IILO  
CE  
Operating Power  
Supply Current  
ICC  
= VIL , VIN = VIH or VIL ,  
-
-
-
3
30  
3
-
-
-
3
25  
3
-
-
-
3
20  
3
-
-
-
3
20  
3
mA  
mA  
mA  
IOUT =0  
IOUT = 0mA,  
Min Cycle, 100% Duty  
Average Operating  
Current  
ICC1  
ICC2  
CE  
IOUT = 0mA,  
< 0.2V  
Cycle Time=1ms, Duty=100%  
CE = VIH  
-
-
0.5  
-
-
0.5  
-
-
0.5  
-
-
0.5  
mA  
Standby Power Supply ISB  
Current (TTL Level)  
CE > Vcc - 0.2V  
VIN < 0.2V or  
L
Standby Power Supply ISB1  
Current (CMOS Level)  
5
5
5
5
mA  
mA  
-
-
-
1
1
1
1
-
V >  
Vcc- 0.2V  
LL  
IN  
IOL = 2 mA  
IOH = -1 mA  
-
0.4  
-
-
0.4  
-
-
0.4  
-
-
0.4  
-
V
V
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
1.6  
1.6  
1.6  
1.6  
Capacitance (f = 1MHz, TA = 250C)  
Parameter*  
Input Capacitance  
Symbol  
Cin  
Test Condition  
Max  
7
Unit  
pF  
V
= 0V  
in  
I/O Capacitance  
CI/O  
V
= V = 0V  
8
pF  
in  
out  
* This parameter is guaranteed by device characterization and is not production tested.  
AC Test Conditions  
Input Pulse Level  
Input Rise and Fall Time 5ns  
Input and Output Timing  
0.4V to 1.6V  
TTL  
CL  
*
Reference Level  
1.0V  
Output Load Condition  
70ns/85ns  
Load for 100ns/120ns  
CL = 30pf + 1TTL Load  
CL = 100pf + 1TTL Load  
Figure A.  
* Including Scope and Jig Capacitance  
3
REV. 1.1 April 2001 V62C1161024L(L)  
V62C1161024L(L)  
Read Cycle (9) (Vcc = 2V+0.2V, Gnd = 0V, TA = 00C to +700C / -400C to +850C)  
Note  
Unit  
Parameter  
Sym  
-70  
-85  
-100  
-120  
Min Max Min Max Min Max Min Max  
70  
-
-
85  
-
-
100  
-
100  
100  
50  
-
120  
-
120  
120  
60  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
tRC  
tAA  
tACE  
tOE  
70  
70  
40  
-
85  
85  
40  
-
-
-
-
-
Address Access Time  
-
-
Chip Enable Access Time  
-
-
-
-
Output Enable Access Time  
10  
10  
-
10  
10  
-
10  
10  
-
10  
10  
-
Output Hold from Address Change  
Chip Enable to Output in Low-Z  
Chip Disable to Output in High-Z  
Output Enable to Output in Low-Z  
Output Disable to Output in High-Z  
BLE, BHE Enable to Output in Low-Z  
BLE, BHE Disable to Output in High-Z  
BLE, BHE Access Time  
tOH  
-
-
-
-
4,5  
t LZ  
30  
-
35  
-
40  
-
40  
-
3,4,5  
tHZ  
5
-
5
-
5
-
5
-
tOLZ  
tOHZ  
tBLZ  
tBHZ  
tBA  
25  
-
30  
-
35  
-
40  
-
5
-
5
-
5
-
5
-
4,5  
25  
40  
30  
40  
35  
50  
40  
60  
3,4,5  
-
-
-
-
Write Cycle (11) (Vcc =2V+0.2V, Gnd = 0V, TA = 00C to +700C / -400C to +850C)  
Note  
Unit  
Parameter  
Symbol  
-70  
-85  
-100  
-120  
Min Max Min Max Min Max Min Max  
100  
80  
80  
0
70  
60  
60  
0
-
-
85  
70  
70  
0
-
-
-
-
120  
90  
40  
0
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Cycle Time  
tWC  
tCW  
tAW  
Chip Enable to Write End  
Address Setup to Write End  
Address Setup Time  
-
-
-
-
-
-
-
-
tAS  
50  
0
-
60  
0
-
70  
0
-
80  
0
-
Write Pulse Width  
t WP  
tWR  
t DW  
tDH  
t WHZ  
tOW  
-
-
-
-
Write Recovery Time  
30  
0
-
35  
0
-
40  
0
-
45  
0
-
Data Valid to Write End  
Data Hold Time  
-
-
-
-
-
30  
-
-
35  
-
-
40  
-
-
40  
-
Write Enable to Output in High-Z  
Output Active from Write End  
BLE, BHE Setup to Write End  
5
5
5
5
60  
-
70  
-
80  
-
90  
-
tBW  
4
REV. 1.1 April 2001 V62C1161024L(L)  
V62C1161024L(L)  
Timing Waveform of Read Cycle 1 (Address Controlled)  
tRC  
Address  
tAA  
tOH  
Data Out  
Previous Data Valid  
Data Valid  
Timing Waveform of Read Cycle 2  
tRC  
Address  
tAA  
tHZ(3,4,5)  
tACE  
CE  
tLZ(4,5)  
tBA  
tBHZ(3,4,5)  
(BLE/BHE)  
tBLZ(4,5)  
tOHZ  
tOE  
OE  
tOH  
tOLZ  
High-Z  
Data Valid  
Data Out  
Notes (Read Cycle)  
1. WE are high for read cycle.  
2. All read cycle timing is referenced from the last valid address to the first transition address.  
3. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit condition referenced to VOH or VOL levels.  
4. At any given temperature and voltage condition tHZ (max.) is less than tLZ (min.) both for a given device and from device to  
device.  
5. Transition is measured + 200mV from steady state voltage with load. This parameter is sampled and not 100% tested.  
6. Device is continuously selected with CE = VIL.  
7. Address valid prior to coincident with CE transition Low.  
8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write  
cycle.  
9. For test conditions, see AC Test Condition, Figure A.  
5
REV. 1.1 April 2001 V62C1161024L(L)  
V62C1161024L(L)  
Timing Waveform of Write Cycle 1 (Address Controlled)  
tWC  
Address  
tAW  
tWR (5)  
tCW (3)  
CE  
tBW  
BLE/BHE  
tAS (4)  
tWP (2)  
WE  
tDW  
tDH  
High-Z  
Data In  
tOHZ (6)  
tOW  
High-Z (8)  
Data Out  
Timing Waveform of Write Cycle 2 (CE Controlled)  
tWC  
Address  
tAW  
tWR (5)  
tCW (3)  
CE  
tAS (4)  
tBW  
BLE/BHE  
tWP (2)  
WE  
tDW  
tDH  
High-Z  
Data In  
tWHZ (6)  
tLZ  
High-Z  
High-Z (8)  
Data Out  
Timing Waveform of Write Cycle 3 (BLE/BHE Controlled)  
tWC  
Address  
tAW  
tWR (5)  
tCW (3)  
CE  
tAS (4)  
tBW  
BLE/BHE  
WE  
tWP (2)  
tDW  
tDH  
High-Z  
Data In  
Data Out  
tWHZ (6)  
tBLZ  
High-Z  
High-Z (8)  
6
REV. 1.1 April 2001 V62C1161024L(L)  
V62C1161024L(L)  
Notes (Write Cycle)  
1. All write timing is referenced from the last valid address to the first transition address.  
2. A write occurs during the overlap of a low CE and WE. A write begins at the latest transition among CE and WE going  
low: A write ends at the earliest transition among CE going high and WE going high. tWP is measured from the beginning  
of write to the end of write.  
3. tCW is measured from the later of CE going low to end of write.  
4. tAS is measured from the address valid to the beginning of write.  
5. tWR is measured from the end of write to the address change.  
6. If OE, CE and WE are in the Read Mode during this period, the I/O pins are in the output Low-Z state.  
Inputs of opposite phase of the output must not be applied because bus contention can occur.  
7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and  
write cycle.  
8. If CE goes low simultaneously with WE going low or after WE going low, the outputs remain high impedance state.  
9. DOUT is the read data of the new address.  
10. When CE is low: I/O pins are in the outputs state. The input signals in the opposite phase leading to the output should  
not be applied.  
11. For test conditions, see AC Test Condition, Figure A & B.  
7
REV. 1.1 April 2001 V62C1161024L(L)  
V62C1161024L(L)  
Data Retention Characteristics (L Version Only)(1)  
Parameter  
Symbol  
Test Condition  
Min Max Unit  
V
for Data Retention  
V DR  
-
CE >  
VCC - 0.2V  
1.0  
-
V
CC  
Data Retention Current  
I CCDR  
5
1
mA  
L
Chip Deselect to Data Retention Time  
Operation Recovery Time(2)  
t CDR  
VIN >VCC - 0.2V or  
0.2V  
0
-
ns  
ns  
tR  
tRC  
-
V <  
IN  
Data Retention Waveform (L Version Only) (TA = 00C to +700C / -400C to +850C)  
Data Retention Mode  
VCC  
Vcc_typ  
V
>
1.0V  
Vcc_typ  
DR  
tCDR  
tR  
CE  
V
V
V
IH  
DR  
IH  
Notes  
1. L-version includes this feature.  
2. This Parameter is sampled and not 100% tested.  
3. For test conditions, see AC Test Condition, Figure A.  
4. This parameter is tested with CL = 5pF as shown in Figure B. Transition is measured + 500mV from steady-state voltage.  
5. This parameter is guaranteed, but is not tested.  
6. WE is High for read cycle.  
7. CE and OE are LOW for read cycle.  
8. Address valid prior to or coincident with CE transition LOW.  
9. All read cycle timings are referenced from the last valid address to the first transtion address.  
10. CE or WE must be HIGH during address transition.  
11. All write cycle timings are referenced from the last valid address to the first transition address.  
8
REV. 1.1 April 2001 V62C1161024L(L)  
V62C1161024L(L)  
Ordering Information  
Device Type*  
Speed  
Package  
44-pin TSOP Type 2  
V62C1161024L-70T  
V62C1161024L-85T  
V62C1161024L-100T  
V62C1161024L-120T  
70 ns  
85 ns  
100 ns  
120 ns  
V62C1161024LL-70T  
V62C1161024LL-85T  
V62C1161024LL-100T  
V62C1161024LL-120T  
70 ns  
85 ns  
100 ns  
120 ns  
* For Industrial temperature tested devices, an “I” designator will be added to the end of the device number.  
9
REV. 1.1 April 2001 V62C1161024L(L)  
MOSEL VITELIC WORLDWIDE OFFICES  
V62C1161024L(L)  
U.S.A.  
TAIWAN  
SINGAPORE  
UK & IRELAND  
SUITE 50, GROVEWOOD  
BUSINESS CENTRE  
STRATHCLYDE BUSINESS  
PARK  
BELLSHILL, LANARKSHIRE,  
SCOTLAND, ML4 3NQ  
PHONE: 44-1698-748515  
FAX: 44-1698-748516  
3910 NORTH FIRST STREET  
SAN JOSE, CA 95134  
PHONE: 408-433-6000  
FAX: 408-433-0952  
7F, NO. 102  
10 ANSON ROAD #23-13  
INTERNATIONAL PLAZA  
SINGAPORE 079903  
PHONE: 65-3231801  
FAX: 65-3237013  
MIN-CHUAN E. ROAD, SEC. 3  
TAIPEI  
PHONE: 886-2-2545-1213  
FAX: 886-2-2545-1209  
NO 19 LI HSIN ROAD  
JAPAN  
ONZE 1852 BUILDING 6F  
2-14-6 SHINTOMI, CHUO-KU  
TOKYO 104-0041  
PHONE: 03-3537-1400  
FAX: 03-3537-1402  
SCIENCE BASED IND. PARK  
HSIN CHU, TAIWAN, R.O.C.  
PHONE: 886-3-579-5888  
FAX: 886-3-566-5888  
GERMANY  
(CONTINENTAL  
EUROPE & ISRAEL)  
BENZSTRASSE 32  
71083 HERRENBERG  
GERMANY  
PHONE: +49 7032 2796-0  
FAX: +49 7032 2796 22  
U.S. SALES OFFICES  
NORTHWESTERN  
3910 NORTH FIRST STREET  
SAN JOSE, CA 95134  
PHONE: 408-433-6000  
FAX: 408-433-0952  
SOUTHWESTERN  
302 N. EL CAMINO REAL #200  
SAN CLEMENTE, CA 92672  
PHONE: 949-361-7873  
FAX: 949-361-7807  
CENTRAL,  
NORTHEASTERN &  
SOUTHEASTERN  
604 FIELDWOOD CIRCLE  
RICHARDSON, TX 75081  
PHONE: 214-826-6176  
FAX: 214-828-9754  
4/01  
Printed in U.S.A.  
© Copyright 2001, MOSEL VITELIC Inc.  
The information in this document is subject to change without  
notice.  
MOSEL VITELIC subjects its products to normal quality control  
sampling techniques which are intended to provide an assurance  
of high quality products suitable for usual commercial applica-  
tions. MOSEL VITELIC does not do testing appropriate to provide  
100% product quality assurance and does not assume any liabil-  
ity for consequential or incidental arising from any use of its prod-  
ucts. If such products are to be used in applications in which  
personal injury might occur from failure, purchaser must do its  
own quality assurance testing appropriate to such applications.  
MOSEL VITELIC makes no commitment to update or keep cur-  
rent the information contained in this document. No part of this  
document may be copied or reproduced in any form or by any  
means without the prior written consent of MOSEL-VITELIC.  
MOSEL VITELIC 3910 N. First Street, San Jose, CA 95134-1501 Ph: (408) 433-6000 Fax: (408) 433-0952 Tlx: 371-9461  

V62C1161024L 相关器件

型号 制造商 描述 价格 文档
V62C1161024L-100T MOSEL Ultra Low Power 64K x 16 CMOS SRAM 获取价格
V62C1161024L-120T MOSEL Ultra Low Power 64K x 16 CMOS SRAM 获取价格
V62C1161024L-70T MOSEL Ultra Low Power 64K x 16 CMOS SRAM 获取价格
V62C1161024L-85T MOSEL Ultra Low Power 64K x 16 CMOS SRAM 获取价格
V62C1161024LL-100T MOSEL Ultra Low Power 64K x 16 CMOS SRAM 获取价格
V62C1161024LL-120T MOSEL Ultra Low Power 64K x 16 CMOS SRAM 获取价格
V62C1161024LL-70T MOSEL Ultra Low Power 64K x 16 CMOS SRAM 获取价格
V62C1161024LL-85T MOSEL Ultra Low Power 64K x 16 CMOS SRAM 获取价格
V62C1162048L MOSEL Ultra Low Power 128K x 16 CMOS SRAM 获取价格
V62C1162048L(L)-100B MOSEL Ultra Low Power 128K x 16 CMOS SRAM 获取价格

V62C1161024L 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6