74VHC4066 [MOTOROLA]

Quad Analog Switch/Multiplexer/Demultiplexer; 四路模拟开关/多路复用器/多路解复用器
74VHC4066
型号: 74VHC4066
厂家: MOTOROLA    MOTOROLA
描述:

Quad Analog Switch/Multiplexer/Demultiplexer
四路模拟开关/多路复用器/多路解复用器

解复用器 开关
文件: 总12页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MC74VHC4066/D  
SEMICONDUCTOR TECHNICAL DATA  
High–Performance Silicon–Gate CMOS  
D SUFFIX  
14–LEAD SOIC PACKAGE  
CASE 751A–03  
The MC74VHC4066 utilizes silicon–gate CMOS technology to  
achieve fast propagation delays, low ON resistances, and low OFF–  
channel leakage current. This bilateral switch/multiplexer/demultiplexer  
controls analog and digital voltages that may vary across the full  
power–supply range (from V  
to GND).  
CC  
The VHC4066 is identical in pinout to the metal–gate CMOS MC14066  
and the high–speed CMOS HC4066A. Each device has four independent  
switches. The device has been designed so that the ON resistances  
DT SUFFIX  
14–LEAD TSSOP PACKAGE  
CASE 948G–01  
(R  
) are much more linear over input voltage than R  
of metal–gate  
ON  
CMOS analog switches.  
ON  
The ON/OFF control inputs are compatible with standard CMOS  
outputs; with pullup resistors, they are compatible with LSTTL outputs.  
For analog switches with voltage–level translators, see the VHC4316.  
ORDERING INFORMATION  
MC74VHCXXXXD  
MC74VHCXXXXDT  
SOIC  
TSSOP  
Fast Switching and Propagation Speeds  
High ON/OFF Output Voltage Ratio  
Low Crosstalk Between Switches  
Diode Protection on All Inputs/Outputs  
PIN ASSIGNMENT  
Wide Power–Supply Voltage Range (V  
– GND) = 2.0 to 12.0 Volts  
CC  
– GND) = 2.0 to 12.0 Volts  
V
X
1
2
3
4
5
6
14  
13  
12  
11  
10  
9
CC  
Analog Input Voltage Range (V  
A
CC  
A ON/OFF  
CONTROL  
D ON/OFF  
CONTROL  
Improved Linearity and Lower ON Resistance over Input Voltage than  
Y
A
the MC14016 or MC14066  
Y
B
Low Noise  
X
X
D
B
Chip Complexity: 44 FETs or 11 Equivalent Gates  
B ON/OFF  
CONTROL  
Y
D
C
C ON/OFF  
CONTROL  
Y
LOGIC DIAGRAM  
7
8
X
GND  
C
1
2
3
X
Y
A
A
13  
4
A ON/OFF CONTROL  
FUNCTION TABLE  
On/Off Control  
State of  
X
B
Y
Y
Y
Input  
Analog Switch  
B
C
D
L
H
Off  
On  
ANALOG  
OUTPUTS/INPUTS  
5
B ON/OFF CONTROL  
8
9
X
C
6
C ON/OFF CONTROL  
11  
10  
X
D
12  
D ON/OFF CONTROL  
ANALOG INPUTS/OUTPUTS = X , X , X , X  
D
A
B
C
PIN 14 = V  
CC  
PIN 7 = GND  
This document contains information on a new product. Specifications and information herein are subject to  
change without notice.  
07/99  
REV 3  
Motorola, Inc. 1999  
MC74VHC4066  
MAXIMUM RATINGS*  
Symbol  
Parameter  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high–impedance cir-  
V
CC  
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage (Referenced to GND)  
Digital Input Voltage (Referenced to GND)  
DC Current Into or Out of Any Pin  
– 0.5 to + 14.0  
V
IS  
– 0.5 to V  
– 0.5 to V  
+ 0.5  
+ 0.5  
V
CC  
V
in  
V
CC  
I
± 25  
mA  
mW  
cuit. For proper operation, V and  
in  
P
D
Power Dissipation in Still Air,  
SOIC Package†  
TSSOP Package†  
500  
450  
V
should be constrained to the  
out  
range GND (V or V  
)
V
.
in out  
CC  
T
stg  
Storage Temperature  
– 65 to + 150  
260  
C
C
Unused inputs must always be  
tied to an appropriate logic voltage  
T
L
Lead Temperature, 1 mm from Case for 10 Seconds  
level (e.g., either GND or V  
).  
CC  
* Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the Recommended Operating Conditions.  
†Derating — SOIC Package: – 7 mW/ C from 65 to 125 C  
Unused outputs must be left open.  
I/O pins must be connected to a  
properly terminated line or bus.  
TSSOP Package: – 6.1 mW/ C from 65 to 125 C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
2.0  
Max  
Unit  
V
V
CC  
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage (Referenced to GND)  
Digital Input Voltage (Referenced to GND)  
Static or Dynamic Voltage Across Switch  
Operating Temperature, All Package Types  
Input Rise and Fall Time, ON/OFF Control  
12.0  
V
IS  
GND  
GND  
V
V
V
CC  
V
in  
V
CC  
V
IO  
*
1.2  
V
T
A
– 55 + 125  
C
t , t  
r f  
ns  
Inputs (Figure 10)  
V
V
V
V
= 2.0 V  
= 3.0 V  
= 4.5 V  
= 9.0 V  
0
0
0
0
0
1000  
600  
500  
400  
250  
CC  
CC  
CC  
CC  
V
CC  
= 12.0 V  
* For voltage drops across the switch greater than 1.2 V (switch on), excessive V  
current may  
and switch input components.  
CC  
be drawn; i.e., the current out of the switch may contain both V  
CC  
The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.  
DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
V
CC  
V
– 55 to  
25 C  
Symbol  
Parameter  
Test Conditions  
= Per Spec  
Unit  
85 C  
125 C  
V
IH  
Minimum High–Level Voltage  
ON/OFF Control Inputs  
R
R
2.0  
3.0  
4.5  
9.0  
12.0  
1.5  
2.1  
3.15  
6.3  
1.5  
2.1  
3.15  
6.3  
1.5  
2.1  
3.15  
6.3  
V
on  
on  
8.4  
8.4  
8.4  
V
IL  
Maximum Low–Level Voltage  
ON/OFF Control Inputs  
= Per Spec  
2.0  
3.0  
0.5  
0.9  
0.5  
0.9  
0.5  
0.9  
V
4.5  
9.0  
1.35  
2.7  
1.35  
2.7  
1.35  
2.7  
12.0  
3.6  
3.6  
3.6  
I
Maximum Input Leakage Current  
ON/OFF Control Inputs  
V
= V  
or GND  
12.0  
± 0.1  
± 1.0  
± 1.0  
µA  
µA  
in  
in  
CC  
CC  
I
Maximum Quiescent Supply  
Current (per Package)  
V
V
= V  
= 0 V  
or GND  
6.0  
12.0  
2
4
20  
40  
40  
160  
CC  
in  
IO  
MOTOROLA  
2
MC74VHC4066  
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)  
Guaranteed Limit  
V
CC  
V
– 55 to  
25 C  
Symbol  
Parameter  
Test Conditions  
Unit  
85 C  
125 C  
R
Maximum “ON” Resistance  
V
V
= V  
= V  
2.0†  
3.0†  
4.5  
9.0  
12.0  
120  
70  
160  
85  
200  
100  
100  
on  
in  
IS  
IH  
CC  
to GND  
I
S
2.0 mA (Figures 1, 2)  
70  
85  
V
V
= V  
2.0  
3.0  
4.5  
9.0  
12.0  
70  
50  
30  
85  
60  
60  
100  
80  
in  
IS  
IH  
= V  
or GND (Endpoints)  
CC  
2.0 mA (Figures 1, 2)  
I
S
80  
R  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package  
V
V
= V  
= 1/2 (V  
2.0 mA  
2.0  
4.5  
9.0  
20  
15  
15  
25  
20  
20  
30  
25  
25  
on  
in  
IS  
IH  
– GND)  
CC  
I
S
12.0  
I
I
Maximum Off–Channel Leakage  
Current, Any One Channel  
V
V
= V  
12.0  
12.0  
0.1  
0.5  
1.0  
µA  
µA  
off  
in  
IL  
= V  
or GND  
CC  
IO  
Switch Off (Figure 3)  
Maximum On–Channel Leakage  
Current, Any One Channel  
V
V
= V  
IH  
= V  
0.1  
0.5  
1.0  
on  
in  
IS  
or GND  
CC  
(Figure 4)  
†At supply voltage (V ) approaching 3 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage  
CC  
operation, it is recommended that these devices only be used to control digital signals.  
AC ELECTRICAL CHARACTERISTICS (C = 50 pF, ON/OFF Control Inputs: t = t = 6 ns)  
L
r
f
Guaranteed Limit  
– 55 to  
V
CC  
V
Symbol  
Parameter  
25 C  
Unit  
85 C  
125 C  
t
t
,
Maximum Propagation Delay, Analog Input to Analog Output  
(Figures 8 and 9)  
2.0  
3.0  
4.5  
40  
30  
5
50  
40  
7
60  
50  
8
ns  
PLH  
PHL  
9.0  
5
7
8
12.0  
5
7
8
t
t
,
Maximum Propagation Delay, ON/OFF Control to Analog Output  
(Figures 10 and 11)  
2.0  
3.0  
4.5  
9.0  
12.0  
80  
60  
20  
20  
20  
90  
70  
25  
25  
25  
110  
80  
35  
35  
35  
ns  
ns  
pF  
PLZ  
PHZ  
t
t
,
Maximum Propagation Delay, ON/OFF Control to Analog Output  
(Figures 10 and 1 1)  
2.0  
3.0  
4.5  
9.0  
12.0  
80  
45  
20  
20  
20  
90  
50  
25  
25  
25  
100  
60  
30  
30  
30  
PZL  
PZH  
C
Maximum Capacitance  
ON/OFF Control Input  
10  
10  
10  
Control Input = GND  
Analog I/O  
35  
1.0  
35  
1.0  
35  
1.0  
Feedthrough  
Typical @ 25°C, V  
= 5.0 V  
CC  
C
Power Dissipation Capacitance (Per Switch) (Figure 13)*  
pF  
15  
PD  
2
* Used to determine the no–load dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
3
MOTOROLA  
MC74VHC4066  
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)  
Limit*  
25 C  
74HC  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
= 1 MHz Sine Wave  
Unit  
BW  
Maximum On–Channel Bandwidth or  
Minimum Frequency Response  
(Figure 5)  
f
in  
4.5  
9.0  
12.0  
150  
160  
160  
MHz  
Adjust f Voltage to Obtain 0 dBm at V  
in  
OS  
Increase f Frequency Until dB Meter Reads – 3 dB  
in  
R
= 50 , C = 10 pF  
L
L
Off–Channel Feedthrough Isolation  
(Figure 6)  
4.5  
9.0  
12.0  
– 50  
– 50  
– 50  
dB  
f
Sine Wave  
in  
Adjust f Voltage to Obtain 0 dBm at V  
in IS  
f
in  
= 10 kHz, R = 600 , C = 50 pF  
L
L
f
in  
= 1.0 MHz, R = 50 , C = 10 pF  
4.5  
9.0  
12.0  
– 40  
– 40  
– 40  
L
L
Feedthrough Noise, Control to  
Switch  
(Figure 7)  
V
1 MHz Square Wave (t = t = 6 ns)  
4.5  
9.0  
12.0  
60  
130  
200  
mV  
PP  
in  
r
f
Adjust R at Setup so that I = 0 A  
L
S
R
= 600 , C = 50 pF  
L
L
R
= 10 k, C = 10 pF  
4.5  
9.0  
30  
65  
L
L
12.0  
100  
Crosstalk Between Any Two Switches  
(Figure 12)  
4.5  
9.0  
12.0  
– 70  
– 70  
– 70  
dB  
f
Sine Wave  
in  
Adjust f Voltage to Obtain 0 dBm at V  
in IS  
f
in  
= 10 kHz, R = 600 , C = 50 pF  
L
L
f
in  
= 1.0 MHz, R = 50 , C = 10 pF  
4.5  
9.0  
12.0  
– 80  
– 80  
– 80  
L
L
THD  
Total Harmonic Distortion  
(Figure 14)  
f
= 1 kHz, R = 10 k, C = 50 pF  
%
in  
THD = THD  
L
L
– THD  
Measured  
Source  
V
IS  
V
IS  
= 4.0 V  
sine wave  
sine wave  
sine wave  
4.5  
9.0  
12.0  
0.10  
0.06  
0.04  
PP  
PP  
PP  
= 8.0 V  
= 11.0 V  
V
IS  
* Guaranteed limits not tested. Determined by design and verified by qualification.  
MOTOROLA  
4
MC74VHC4066  
TBD  
TBD  
Figure 1a. Typical On Resistance, V  
= 2.0 V  
= 6.0 V  
= 12 V  
Figure 1b. Typical On Resistance, V  
= 4.5 V  
CC  
CC  
TBD  
TBD  
Figure 1c. Typical On Resistance, V  
Figure 1d. Typical On Resistance, V  
= 9.0 V  
CC  
CC  
PLOTTER  
PROGRAMMABLE  
MINI COMPUTER  
DC ANALYZER  
POWER  
SUPPLY  
TBD  
+
V
CC  
DEVICE  
UNDER TEST  
ANALOG IN  
COMMON OUT  
GND  
Figure 1e. Typical On Resistance, V  
Figure 2. On Resistance Test Set–Up  
CC  
5
MOTOROLA  
MC74VHC4066  
V
CC  
V
V
V
CC  
CC  
V
14  
14  
GND  
CC  
N/C  
A
ON  
A
OFF  
GND  
V
CC  
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
IL  
IH  
7
7
Figure 3. Maximum Off Channel Leakage Current,  
Any One Channel, Test Set–Up  
Figure 4. Maximum On Channel Leakage Current,  
Test Set–Up  
V
V
V
OS  
V
OS  
V
CC  
14  
CC  
14  
IS  
f
in  
f
ON  
OFF  
in  
dB  
METER  
dB  
METER  
0.1µF  
0.1µF  
C *  
C *  
L
R
L
L
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
CC  
7
7
*Includes all probe and jig capacitance.  
*Includes all probe and jig capacitance.  
Figure 5. Maximum On–Channel Bandwidth  
Test Set–Up  
Figure 6. Off–Channel Feedthrough Isolation,  
Test Set–Up  
V
V
CC  
V
CC/2  
CC/2  
14  
R
S
R
L
L
V
OS  
I
OFF/ON  
V
CC  
C *  
L
50%  
ANALOG IN  
SELECTED  
CONTROL  
INPUT  
GND  
7
V
1 MHz  
t
t
PHL  
in  
PLH  
t = t = 6 ns  
r
f
V
CC  
GND  
CONTROL  
50%  
ANALOG OUT  
*Includes all probe and jig capacitance.  
Figure 7. Feedthrough Noise, ON/OFF Control to  
Analog Out, Test Set–Up  
Figure 8. Propagation Delays, Analog In to  
Analog Out  
MOTOROLA  
6
MC74VHC4066  
V
t
t
f
CC  
r
14  
V
CC  
90%  
50%  
10%  
CONTROL  
ANALOG IN  
ANALOG OUT  
C *  
TEST  
POINT  
ON  
GND  
L
t
t
t
PLZ  
PZL  
HIGH  
IMPEDANCE  
50%  
50%  
SELECTED  
CONTROL  
INPUT  
V
CC  
10%  
90%  
V
OL  
ANALOG  
OUT  
7
t
PZH  
PHZ  
V
OH  
HIGH  
IMPEDANCE  
*Includes all probe and jig capacitance.  
Figure 9. Propagation Delay Test Set–Up  
Figure 10. Propagation Delay, ON/OFF Control  
to Analog Out  
V
1
2
POSITION  
POSITION  
WHEN TESTING t  
AND t  
IS  
PHZ  
AND t  
PLZ  
PZH  
V
CC  
WHEN TESTING t  
1
2
PZL  
14  
R
V
L
OS  
V
f
in  
ON  
CC  
V
0.1 µF  
CC  
1 kΩ  
14  
1
2
TEST  
POINT  
OFF  
ON/OFF  
V
OR GND  
CC  
R
C *  
R
C *  
L
L
L
L
C *  
L
R
L
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
V
CC/2  
CC/2  
7
7
V
CC/2  
*Includes all probe and jig capacitance.  
*Includes all probe and jig capacitance.  
Figure 11. Propagation Delay Test Set–Up  
Figure 12. Crosstalk Between Any Two Switches,  
Test Set–Up  
V
CC  
A
V
IS  
V
CC  
V
OS  
14  
0.1 µF  
TO  
N/C  
N/C  
OFF/ON  
f
ON  
DISTORTION  
METER  
in  
C *  
L
R
L
V
SELECTED  
CONTROL  
INPUT  
CC/2  
7
SELECTED  
CONTROL  
INPUT  
V
CC  
7
ON/OFF CONTROL  
*Includes all probe and jig capacitance.  
Figure 13. Power Dissipation Capacitance  
Test Set–Up  
Figure 14. Total Harmonic Distortion, Test Set–Up  
7
MOTOROLA  
MC74VHC4066  
0
10  
20  
30  
40  
FUNDAMENTAL FREQUENCY  
50  
60  
70  
80  
90  
DEVICE  
SOURCE  
1.0  
2.0  
FREQUENCY (kHz)  
3.0  
Figure 15. Plot, Harmonic Distortion  
below, the difference between V  
and GND is twelve volts.  
APPLICATION INFORMATION  
CC  
Therefore, using the configuration in Figure 16, a maximum  
analog signal of twelve volts peak–to–peak can be con-  
trolled.  
The ON/OFF Control pins should be at V  
or GND logic  
being recognized as logic high and GND being  
CC  
levels, V  
CC  
recognized as a logic low. Unused analog inputs/outputs  
may be left floating (not connected). However, it is advisable  
When voltage transients above V  
and/or below GND  
CC  
are anticipated on the analog channels, external diodes (Dx)  
are recommended as shown in Figure 17. These diodes  
should be small signal, fast turn–on types able to absorb the  
maximum anticipated current surges during clipping. An  
alternate method would be to replace the Dx diodes with  
MO sorbs (Motorola high current surge protectors).  
MO sorbs are fast turn–on devices ideally suited for precise  
DC protection with no inherent wear out mechanism.  
to tie unused analog inputs and outputs to V  
or GND  
CC  
through a low value resistor. This minimizes crosstalk and  
feedthrough noise that may be picked–up by the unused I/O  
pins.  
The maximum analog voltage swings are determined by  
the supply voltages V  
voltage should not exceed V . Similarly, the negative peak  
analog voltage should not go below GND. In the example  
and GND. The positive peak analog  
CC  
CC  
V
V
CC  
CC  
V
= 12 V  
CC  
D
D
D
D
14  
x
16  
x
+ 12 V  
0 V  
+ 12 V  
0 V  
ANALOG I/O  
ANALOG O/I  
ON  
ON  
x
x
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
CC  
OTHER CONTROL  
INPUTS  
OR GND)  
OTHER CONTROL  
INPUTS  
7
7
(V  
CC  
(V  
OR GND)  
CC  
Figure 16. 12 V Application  
Figure 17. Transient Suppressor Application  
MOTOROLA  
8
MC74VHC4066  
+5 V  
+5 V  
14  
14  
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
VHCT  
BUFFER  
R* R* R* R*  
VHC4066  
VHC4066  
LSTTL/  
NMOS  
LSTTL/  
NMOS  
5
6
5
6
CONTROL  
INPUTS  
CONTROL  
INPUTS  
14  
15  
14  
15  
7
7
R* = 2 TO 10 k  
a. Using Pull-Up Resistors  
b. Using HCT Buffer  
Figure 18. LSTTL/NMOS to HCMOS Interface  
V
= 5 V  
V
= 5 TO 12 V  
DD  
CC  
1
16  
14  
13  
3
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
VHC4066  
5
7
2
5
6
MC14504  
9
4
CONTROL  
INPUTS  
11  
14  
6
14  
15  
10  
8
7
Figure 19. TTL/NMOS–to–CMOS Level Converter  
Analog Signal Peak–to–Peak Greater than 5 V  
(Also see VHC4316)  
1 OF 4  
SWITCHES  
CHANNEL 4  
CHANNEL 3  
CHANNEL 2  
CHANNEL 1  
1 OF 4  
SWITCHES  
COMMON I/O  
1 OF 4  
SWITCHES  
+
1 OF 4  
SWITCHES  
OUTPUT  
1 OF 4  
INPUT  
LF356 OR  
EQUIVALENT  
SWITCHES  
0.01  
µF  
1
2
3
4
CONTROL INPUTS  
Figure 20. 4–Input Multiplexer  
Figure 21. Sample/Hold Amplifier  
9
MOTOROLA  
MC74VHC4066  
OUTLINE DIMENSIONS  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751A–03  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
ISSUE F  
–A–  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
14  
8
7
P 7 PL  
–B–  
M
M
0.25 (0.010)  
B
1
MILLIMETERS  
INCHES  
G
F
R X 45°  
DIM  
A
B
C
D
F
G
J
MIN  
8.55  
3.80  
1.35  
0.35  
0.40  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
C
0.337  
0.150  
0.054  
0.014  
0.016  
J
M
SEATING  
PLANE  
K
D 14 PL  
1.27 BSC  
0.050 BSC  
0.19  
0.10  
0.25  
0.25  
0.008  
0.004  
0.009  
0.009  
M
S
S
0.25 (0.010)  
T
B
A
K
M
P
R
0
5.80  
0.25  
°
7
6.20  
0.50  
°
0
°
7°  
0.244  
0.019  
0.228  
0.010  
MOTOROLA  
10  
MC74VHC4066  
OUTLINE DIMENSIONS  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948G–01  
ISSUE O  
NOTES:  
14X K REF  
0.10 (0.004)  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
M
S
S
T
U
V
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
S
0.15 (0.006) T  
U
N
0.25 (0.010)  
14  
8
7
2X L/2  
M
B
L
N
–U–  
PIN 1  
IDENT.  
F
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
DETAIL E  
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE –W–.  
S
K
0.15 (0.006) T  
U
A
MILLIMETERS  
INCHES  
K1  
DIM  
A
B
C
D
F
G
H
J
J1  
K
MIN  
4.90  
4.30  
–––  
0.05  
0.50  
MAX  
5.10  
4.50  
1.20  
0.15  
0.75  
MIN  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
–V–  
0.193  
0.169  
–––  
0.002  
0.020  
J J1  
SECTION N–N  
0.65 BSC  
0.026 BSC  
0.50  
0.09  
0.09  
0.19  
0.19  
0.60  
0.20  
0.16  
0.30  
0.25  
0.020  
0.004  
0.004  
0.007  
0.007  
0.024  
0.008  
0.006  
0.012  
0.010  
–W–  
C
K1  
L
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
M
0
8
0
8
SEATING  
PLANE  
–T–  
H
G
DETAIL E  
D
11  
MOTOROLA  
MC74VHC4066  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.  
– http://sps.motorola.com/mfax/  
852–26668334  
HOME PAGE: http://motorola.com/sps/  
MC74VHC4066/D  

相关型号:

74VHC4066M

Quad Analog Switch
FAIRCHILD

74VHC4066MTC

Quad Analog Switch
FAIRCHILD

74VHC4066MTCX

SPST Analog Switch
FAIRCHILD

74VHC4066MTCX_NL

Quad Analog Switch
FAIRCHILD

74VHC4066MX

SPST Analog Switch
FAIRCHILD

74VHC4066MX_NL

Quad Analog Switch
FAIRCHILD

74VHC4066N

Quad Analog Switch
FAIRCHILD

74VHC4066WM

SPST, 4 Func, 1 Channel, CMOS, PDSO14, 0.300 INCH, MS-013, SOIC-14
FAIRCHILD

74VHC4066WMX

SPST, 4 Func, 1 Channel, CMOS, PDSO14, 0.300 INCH, MS-013, SOIC-14
FAIRCHILD

74VHC4066_05

Quad Analog Switch
FAIRCHILD

74VHC4316

Quad Analog Switch with Level Translator
FAIRCHILD

74VHC4316M

Quad Analog Switch with Level Translator
FAIRCHILD