BC849BLT1 [MOTOROLA]

CASE 318-08, STYLE 6 SOT-23 (TO-236AB); CASE 318-08 ,风格6 SOT- 23 ( TO- 236AB )
BC849BLT1
型号: BC849BLT1
厂家: MOTOROLA    MOTOROLA
描述:

CASE 318-08, STYLE 6 SOT-23 (TO-236AB)
CASE 318-08 ,风格6 SOT- 23 ( TO- 236AB )

文件: 总6页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BC846ALT1/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Silicon  
COLLECTOR  
3
1
BASE  
BC846, BC847 and BC848 are  
Motorola Preferred Devices  
2
EMITTER  
MAXIMUM RATINGS  
BC847 BC848  
BC850 BC849  
Rating  
Symbol BC846  
Unit  
V
3
CollectorEmitter Voltage  
CollectorBase Voltage  
EmitterBase Voltage  
V
V
V
65  
80  
45  
50  
30  
30  
CEO  
CBO  
EBO  
1
V
2
6.0  
100  
6.0  
100  
5.0  
100  
V
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
C
mAdc  
CASE 31808, STYLE 6  
SOT23 (TO236AB)  
Symbol  
Max  
Unit  
Total Device Dissipation FR5 Board, (1)  
= 25°C  
Derate above 25°C  
P
D
T
A
225  
1.8  
mW  
mW/°C  
Thermal Resistance, Junction to Ambient  
Total Device Dissipation  
R
556  
°C/W  
JA  
D
P
Alumina Substrate, (2) T = 25°C  
300  
2.4  
mW  
mW/°C  
A
Derate above 25°C  
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
417  
°C/W  
°C  
JA  
T , T  
J stg  
55 to +150  
BC846ALT1 = 1A; BC846BLT1 = 1B; BC847ALT1 = 1E; BC847BLT1 = 1F;  
BC847CLT1 = 1G; BC848ALT1 = 1J; BC848BLT1 = 1K; BC848CLT1 = 1L  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
OFF CHARACTERISTICS  
Symbol  
Min  
Typ  
Max  
Unit  
CollectorEmitter Breakdown Voltage BC846A,B  
V
65  
45  
30  
V
(BR)CEO  
(I = 10 mA)  
BC847A,B,C, BC850A,B,C  
BC848A,B,C, BC849A,B,C  
C
CollectorEmitter Breakdown Voltage BC846A,B  
V
80  
50  
30  
V
V
V
(BR)CES  
(BR)CBO  
(BR)EBO  
(I = 10 µA, V  
C EB  
= 0)  
BC847A,B,C, BC850A,B,C  
BC848A,B,C, BC849A,B,C  
CollectorBase Breakdown Voltage  
BC846A,B  
V
V
80  
50  
30  
(I = 10 A)  
C
BC847A,B,C, BC850A,B,C  
BC848A,B,C, BC849A,B,C  
EmitterBase Breakdown Voltage  
BC846A,B  
6.0  
6.0  
5.0  
(I = 1.0 A)  
E
BC847A,B,C  
BC848A,B,C, BC849A,B,C, BC850A,B,C  
Collector Cutoff Current (V  
(V  
= 30 V)  
= 30 V, T = 150°C)  
I
15  
5.0  
nA  
µA  
CB  
CB  
CBO  
A
1. FR–5 = 1.0 x 0.75 x 0.062 in  
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.  
Thermal Clad is a trademark of the Bergquist Company.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
DC Current Gain  
(I = 10 µA, V  
BC846A, BC847A, BC848A  
BC846B, BC847B, BC848B  
BC847C, BC848C  
h
FE  
90  
150  
270  
= 5.0 V)  
CE  
C
(I = 2.0 mA, V  
C CE  
= 5.0 V)  
BC846A, BC847A, BC848A, BC849A, BC850A  
BC846B, BC847B, BC848B, BC849B, BC850B  
BC847C, BC848C, BC849C, BC850C  
110  
200  
420  
180  
290  
520  
220  
450  
800  
CollectorEmitter Saturation Voltage (I = 10 mA, I = 0.5 mA)  
V
V
0.25  
0.6  
V
V
C
B
CE(sat)  
CollectorEmitter Saturation Voltage (I = 100 mA, I = 5.0 mA)  
C
B
BaseEmitter Saturation Voltage (I = 10 mA, I = 0.5 mA)  
0.7  
0.9  
C
B
BE(sat)  
BaseEmitter Saturation Voltage (I = 100 mA, I = 5.0 mA)  
C
B
BaseEmitter Voltage (I = 2.0 mA, V  
= 5.0 V)  
= 5.0 V)  
V
580  
660  
700  
770  
mV  
C
CE  
CE  
BE(on)  
BaseEmitter Voltage (I = 10 mA, V  
C
SMALLSIGNAL CHARACTERISTICS  
CurrentGain — Bandwidth Product  
f
100  
MHz  
T
(I = 10 mA, V  
= 5.0 Vdc, f = 100 MHz)  
= 10 V, f = 1.0 MHz)  
Noise Figure (I = 0.2 mA, BC846A, BC847A, BC848A  
C
CE  
Output Capacitance (V  
CB  
C
4.5  
pF  
dB  
obo  
NF  
C
V
= 5.0 Vdc, R = 2.0 k,  
BC846B, BC847B, BC848B  
BC847C, BC848C  
CE  
S
f = 1.0 kHz, BW = 200 Hz)  
10  
4.0  
BC849A,B,C, BC850A,B,C  
2.0  
1.5  
1.0  
0.9  
V
= 10 V  
= 25°C  
T
= 25°C  
CE  
A
T
A
0.8  
0.7  
V
@ I /I = 10  
C B  
BE(sat)  
1.0  
0.8  
V
@ V  
= 10 V  
0.6  
0.5  
0.4  
BE(on) CE  
0.6  
0.4  
0.3  
0.3  
0.2  
0.1  
V
@ I /I = 10  
C B  
CE(sat)  
0.2  
0
0.2  
0.5  
1.0  
2.0  
5.0 10  
20  
50  
100  
200  
0.1  
0.2 0.3 0.5 0.7 1.0  
2.0 3.0 5.0 7.0 10  
20 30 50 70 100  
I
, COLLECTOR CURRENT (mAdc)  
I , COLLECTOR CURRENT (mAdc)  
C
C
Figure 1. Normalized DC Current Gain  
Figure 2. “Saturation” and “On” Voltages  
2.0  
1.6  
1.2  
0.8  
0.4  
0
1.0  
1.2  
1.6  
2.0  
2.4  
2.8  
T
= 25  
°
C
–55°C to +125°C  
A
I
= 200 mA  
C
I
=
I
=
I
= 50 mA  
I = 100 mA  
C
C
C
C
10 mA 20 mA  
0.02  
0.1  
1.0  
, BASE CURRENT (mA)  
10 20  
0.2  
1.0  
I , COLLECTOR CURRENT (mA)  
C
10  
100  
I
B
Figure 3. Collector Saturation Region  
Figure 4. Base–Emitter Temperature Coefficient  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
BC847/BC848  
10  
7.0  
5.0  
400  
300  
T
= 25°C  
A
200  
C
ib  
V
T
= 10 V  
CE  
= 25  
100  
80  
°C  
3.0  
2.0  
A
C
ob  
60  
40  
30  
1.0  
20  
0.4 0.6 0.8 1.0  
2.0  
4.0 6.0 8.0 10  
20  
40  
0.5 0.7 1.0  
2.0  
I , COLLECTOR CURRENT (mAdc)  
C
3.0  
5.0 7.0 10  
20  
30  
50  
100 200  
100 200  
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 5. Capacitances  
Figure 6. Current–Gain – Bandwidth Product  
1.0  
0.8  
T
= 25°C  
A
V
= 5 V  
CE  
= 25  
T
°C  
A
V
@ I /I = 10  
C B  
BE(sat)  
2.0  
1.0  
0.5  
0.6  
0.4  
0.2  
V
@ V  
CE  
= 5.0 V  
BE  
0.2  
V
@ I /I = 10  
C B  
CE(sat)  
0
0.1 0.2  
1.0  
10  
100  
0.2  
0.5  
1.0  
2.0  
I , COLLECTOR CURRENT (mA)  
C
5.0  
10  
20  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 7. DC Current Gain  
Figure 8. “On” Voltage  
2.0  
1.6  
1.2  
0.8  
0.4  
0
–1.0  
–1.4  
–1.8  
–2.2  
–2.6  
–3.0  
T
= 25°C  
A
100 mA  
200 mA  
20 mA  
50 mA  
θ
for V  
BE  
VB  
–55°C to 125°C  
I
=
C
10 mA  
0.02  
0.05 0.1  
0.2  
0.5  
1.0 2.0  
5.0  
10  
20  
0.2  
0.5  
1.0  
2.0  
I , COLLECTOR CURRENT (mA)  
C
5.0  
10  
20  
50  
I
, BASE CURRENT (mA)  
B
Figure 9. Collector Saturation Region  
Figure 10. Base–Emitter Temperature Coefficient  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
BC846  
40  
T
= 25°C  
V
= 5 V  
A
CE  
= 25°C  
500  
T
A
20  
10  
C
ib  
200  
100  
50  
6.0  
4.0  
C
ob  
20  
2.0  
0.1 0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
1.0  
5.0 10  
I , COLLECTOR CURRENT (mA)  
C
50 100  
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 11. Capacitance  
Figure 12. Current–Gain – Bandwidth Product  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
B
1
2
INCHES  
MIN MAX  
MILLIMETERS  
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
C
K
L
S
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 318–08  
ISSUE AE  
SOT–23 (TO–236AB)  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BC846ALT1/D  

相关型号:

BC849BLT1G

General Purpose Transistors
ONSEMI

BC849BLT3

General Purpose Transistors(NPN Silicon)
ONSEMI

BC849BLT3

100mA, 30V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-236AB
MOTOROLA

BC849BLT3G

General Purpose Transistors
ONSEMI

BC849BMTF

NPN Epitaxial Silicon Transistor
FAIRCHILD

BC849BMTF

100mA, 30V, NPN, Si, SMALL SIGNAL TRANSISTOR, LEAD FREE PACKAGE-3
ROCHESTER

BC849BMTF_11

NPN Epitaxial Silicon Transistor
FAIRCHILD

BC849BR

TRANSISTOR 100 mA, 30 V, NPN, Si, SMALL SIGNAL TRANSISTOR, BIP General Purpose Small Signal
NXP

BC849BR-TAPE-13

TRANSISTOR 100 mA, 30 V, NPN, Si, SMALL SIGNAL TRANSISTOR, BIP General Purpose Small Signal
NXP

BC849BR-TAPE-7

TRANSISTOR 100 mA, 30 V, NPN, Si, SMALL SIGNAL TRANSISTOR, BIP General Purpose Small Signal
NXP

BC849BS62Z

Small Signal Bipolar Transistor, 0.1A I(C), 30V V(BR)CEO, 1-Element, NPN, Silicon
FAIRCHILD

BC849BT

NPN Silicon AF Transistors
INFINEON