BCW61BLT1 [MOTOROLA]

General Purpose Transistors; 通用晶体管
BCW61BLT1
型号: BCW61BLT1
厂家: MOTOROLA    MOTOROLA
描述:

General Purpose Transistors
通用晶体管

晶体 小信号双极晶体管
文件: 总8页 (文件大小:397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BCW61BLT1/D  
SEMICONDUCTOR TECHNICAL DATA  
PNP Silicon  
COLLECTOR  
3
1
BASE  
3
2
EMITTER  
1
MAXIMUM RATINGS  
2
Rating  
CollectorEmitter Voltage  
CollectorBase Voltage  
Symbol  
Value  
Unit  
Vdc  
V
CEO  
–32  
–32  
CASE 31808, STYLE 6  
SOT23 (TO236AB)  
V
Vdc  
CBO  
EBO  
EmitterBase Voltage  
V
–5.0  
–100  
Vdc  
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
C
mAdc  
Symbol  
Max  
Unit  
(1)  
Total Device Dissipation FR5 Board  
P
225  
mW  
D
T
= 25°C  
A
Derate above 25°C  
1.8  
556  
300  
mW/°C  
°C/W  
mW  
Thermal Resistance Junction to Ambient  
Total Device Dissipation  
R
JA  
D
P
(2)  
Alumina Substrate,  
T
A
= 25°C  
Derate above 25°C  
2.4  
417  
mW/°C  
°C/W  
°C  
Thermal Resistance Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
JA  
T , T  
J stg  
55 to +150  
BCW61BLT1 = BB, BCW61CLT1 = BC, BCW61DLT1 = BD  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
OFF CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
CollectorEmitter Breakdown Voltage  
V
–32  
Vdc  
Vdc  
(BR)CEO  
(I = –2.0 mAdc, I = 0)  
C
B
EmitterBase Breakdown Voltage  
(I = –1.0 Adc, I = 0)  
V
–5.0  
(BR)EBO  
E
C
Collector Cutoff Current  
I
CES  
(V  
CE  
(V  
CE  
= –32 Vdc)  
= –32 Vdc, T = 150°C)  
–20  
–20  
nAdc  
µAdc  
A
1. FR5 = 1.0  
0.75 0.062 in.  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
Thermal Clad is a trademark of the Bergquist Company  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
ON CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
DC Current Gain  
(I = –10 µAdc, V  
C CE  
h
FE  
= –5.0 Vdc)  
BCW61B  
BCW61C  
BCW61D  
30  
40  
100  
(I = –2.0 mAdc, V  
= –5.0 Vdc)  
= –1.0 Vdc)  
BCW61B  
BCW61C  
BCW61D  
140  
250  
380  
310  
460  
630  
C
CE  
(I = –50 mAdc, V  
C
BCW61B  
BCW61C  
BCW61D  
80  
100  
100  
CE  
AC Current Gain  
h
fe  
(V  
CE  
= –5.0 Vdc, I = –2.0 mAdc, f = 1.0 kHz)  
BCW61B  
BCW61C  
BCW61D  
175  
250  
350  
350  
500  
700  
C
CollectorEmitter Saturation Voltage  
(I = –50 mAdc, I = –1.25 mAdc)  
V
V
Vdc  
Vdc  
Vdc  
CE(sat)  
–0.55  
–0.25  
C
B
(I = –10 mAdc, I = –0.25 mAdc)  
C
B
BaseEmitter Saturation Voltage  
(I = –50 mAdc, I = –1.25 mAdc)  
BE(sat)  
–0.68  
–0.6  
–1.05  
–0.85  
C
C
B
B
(I = –10 mAdc, I = –0.25 mAdc)  
BaseEmitter On Voltage  
(I = –2.0 mAdc, V = –5.0 Vdc)  
V
BE(on)  
–0.6  
–0.75  
C
CE  
SMALLSIGNAL CHARACTERISTICS  
Output Capacitance  
C
pF  
dB  
obo  
(V  
CE  
= –10 Vdc, I = 0, f = 1.0 MHz)  
6.0  
6.0  
C
Noise Figure  
(V = –5.0 Vdc, I = –0.2 mAdc, R = 2.0 k, f = 1.0 kHz, BW = 200 Hz)  
NF  
CE  
C
S
SWITCHING CHARACTERISTICS  
Turn–On Time  
(I = –10 mAdc, I = –1.0 mAdc)  
C
t
t
ns  
ns  
on  
150  
800  
B1  
Turn–Off Time  
(I = –1.0 mAdc, V  
B2  
off  
= –3.6 Vdc, R = R = 5.0 k, R = 990 )  
1 2 L  
BB  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL NOISE CHARACTERISTICS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
10  
7.0  
5.0  
1.0  
7.0  
5.0  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
R
0  
S
R
≈∞  
S
I = 1.0 mA  
C
I
= 10  
µA  
3.0  
2.0  
C
300  
100  
µA  
30  
100  
300  
µA  
1.0  
3.0  
2.0  
µA  
0.7  
0.5  
µA  
µA  
1.0 mA  
0.3  
0.2  
30  
10  
µ
A
A
µ
1.0  
0.1  
10  
20  
50  
100  
200  
500 1.0 k 2.0 k  
5.0 k 10 k  
10  
20  
50  
100 200  
500  
1.0 k 2.0 k  
5.0 k 10 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 1. Noise Voltage  
Figure 2. Noise Current  
NOISE FIGURE CONTOURS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
1.0 M  
500 k  
1.0 M  
500 k  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
200 k  
100 k  
50 k  
200 k  
100 k  
50 k  
20 k  
10 k  
20 k  
10 k  
0.5 dB  
0.5 dB  
5.0 k  
2.0 k  
5.0 k  
2.0 k  
1.0 dB  
1.0 dB  
2.0 dB  
2.0 dB  
1.0 k  
500  
1.0 k  
500  
3.0 dB  
5.0 dB  
3.0 dB  
200  
100  
200  
100  
5.0 dB  
500 700 1.0 k  
10  
20 30  
50 70 100  
200 300  
A)  
500 700 1.0 k  
10  
20 30  
50 70 100  
200 300  
I
, COLLECTOR CURRENT (  
µ
I , COLLECTOR CURRENT (µ  
C
A)  
C
Figure 3. Narrow Band, 100 Hz  
Figure 4. Narrow Band, 1.0 kHz  
1.0 M  
500 k  
10 Hz to 15.7 kHz  
200 k  
100 k  
Noise Figure is Defined as:  
50 k  
2
R
n S  
2
1 2  
2
e
n
4KTR  
4KTR  
I
S
20 k  
10 k  
NF  
20 log  
10  
S
0.5 dB  
e
= Noise Voltage of the Transistor referred to the input. (Figure 3)  
= Noise Current of the Transistor referred to the input. (Figure 4)  
n
5.0 k  
2.0 k  
I
n
1.0 dB  
2.0 dB  
–23  
= Boltzman’s Constant (1.38 x 10  
K
T
R
j/°K)  
1.0 k  
500  
= Temperature of the Source Resistance (°K)  
= Source Resistance (Ohms)  
S
3.0 dB  
5.0 dB  
200  
100  
20  
30  
50 70 100  
200 300  
500 700 1.0 k  
10  
I
, COLLECTOR CURRENT (µA)  
C
Figure 5. Wideband  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
TYPICAL STATIC CHARACTERISTICS  
1.0  
0.8  
100  
I
B
= 400 µA  
T
= 25°C  
T
= 25  
BCW61  
°
C
A
A
PULSE WIDTH = 300  
DUTY CYCLE 2.0%  
µ
s
350 µA  
80  
60  
300 µA  
250  
200  
µA  
I
= 1.0 mA  
10 mA  
50 mA  
100 mA  
C
0.6  
0.4  
0.2  
0
µA  
150 µA  
40  
20  
0
100  
50  
µA  
µA  
0.002 0.005 0.01 0.02 0.05 0.1 0.2  
0.5 1.0 2.0  
5.0 10 20  
0
5.0  
10  
15  
20  
25  
30  
35  
40  
I
, BASE CURRENT (mA)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
B
CE  
Figure 6. Collector Saturation Region  
Figure 7. Collector Characteristics  
1.4  
1.2  
1.6  
0.8  
0
T
= 25°C  
J
*APPLIES for I /I  
C B  
h
/2  
FE  
1.0  
0.8  
0.6  
0.4  
25°C to 125°C  
*
for V  
CE(sat)  
VC  
55°C to 25°C  
V
@ I /I = 10  
C B  
BE(sat)  
0.8  
1.6  
2.4  
V
@ V = 1.0 V  
CE  
BE(on)  
25°C to 125°C  
55°C to 25°C  
for V  
BE  
0.2  
0
VB  
V
@ I /I = 10  
C B  
CE(sat)  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50 100  
0.1  
0.2  
0.5  
I
1.0  
2.0  
5.0  
10  
20  
50  
100  
I
, COLLECTOR CURRENT (mA)  
, COLLECTOR CURRENT (mA)  
C
C
Figure 8. “On” Voltages  
Figure 9. Temperature Coefficients  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL DYNAMIC CHARACTERISTICS  
500  
1000  
V
I
= 3.0 V  
/I = 10  
= I  
= 25°C  
V
I
= 3.0 V  
CC  
C B  
CC  
/I = 10  
700  
500  
300  
200  
C B  
I
T
T
= 25°C  
B1 B2  
J
t
s
300  
200  
J
100  
70  
50  
100  
70  
50  
30  
20  
t
r
t
f
30  
20  
t
@ V  
BE(off)  
= 0.5 V  
10  
d
10  
7.0  
5.0  
1.0  
10  
–1.0  
2.0 3.0  
5.0 7.0  
20  
30  
50 70 100  
2.0 3.0  
–10  
20 30  
, COLLECTOR CURRENT (mA)  
C
–100  
50 70  
5.0 7.0  
I
, COLLECTOR CURRENT (mA)  
I
C
Figure 10. Turn–On Time  
Figure 11. Turn–Off Time  
500  
10  
7.0  
5.0  
T
J
= 25°C  
T
= 25°C  
J
V
= 20 V  
300  
200  
CE  
C
ib  
5.0 V  
3.0  
2.0  
100  
70  
C
ob  
50  
1.0  
0.05 0.1  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
20  
30  
50  
0.2  
0.5  
V , REVERSE VOLTAGE (VOLTS)  
R
1.0  
2.0  
5.0  
10  
20  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 12. Current–Gain — Bandwidth Product  
Figure 13. Capacitance  
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
0.1  
0.1  
0.07  
0.05  
FIGURE 19  
1
0.05  
DUTY CYCLE, D = t /t  
1 2  
P
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
(pk)  
0.02  
0.01  
0.03  
0.02  
t
READ TIME AT t (SEE AN–569)  
1
θ
(pk)  
Z
T
= r(t)  
R
SINGLE PULSE  
θ
J(pk)  
JA(t)  
JA  
t
2
– T = P  
Z
θJA(t)  
A
0.01  
0.01 0.02  
0.05 0.1 0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100 200  
500 1.0 k 2.0 k  
5.0 k 10 k 20 k  
100 k  
50 k  
t, TIME (ms)  
Figure 14. Thermal Response  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
4
10  
10  
10  
DESIGN NOTE: USE OF THERMAL RESPONSE DATA  
V
= 30 V  
CC  
A train of periodical power pulses can be represented by the model  
as shown in Figure 15. Using the model and the device thermal  
response the normalized effective transient thermal resistance of  
Figure 14 was calculated for various duty cycles.  
3
2
I
CEO  
To find Z  
steady state value R  
, multiply the value obtained from Figure 14 by the  
θJA(t)  
.
1
θJA  
10  
10  
I
CBO  
Example:  
AND  
The MPS3905 is dissipating 2.0 watts peak under the following  
conditions:  
I
@ V  
= 3.0 V  
0
CEX  
BE(off)  
t
= 1.0 ms, t = 5.0 ms (D = 0.2)  
1
2
–1  
10  
10  
Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the reading of  
r(t) is 0.22.  
–2  
The peak rise in junction temperature is therefore  
–4  
0
–2  
0
0
+20 +40 +60 +80 +100 +120 +140 +160  
T , JUNCTION TEMPERATURE ( C)  
T = r(t) x P  
(pk)  
x R  
= 0.22 x 2.0 x 200 = 88°C.  
θJA  
°
J
For more information, see AN–569.  
Figure 15. Typical Collector Leakage Current  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
B
1
2
INCHES  
MIN MAX  
MILLIMETERS  
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
C
K
L
S
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 318–08  
ISSUE AE  
SOT–23 (TO–236AB)  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BCW61BLT1/D  

相关型号:

BCW61BLT1_15

PNP TRANSISTOR
WINNERJOIN

BCW61BLT3

Small Signal Bipolar Transistor, 0.1A I(C), 32V V(BR)CEO, 1-Element, PNP, Silicon, TO-236AB
MOTOROLA

BCW61BLX

Small Signal Bipolar Transistor, 32V V(BR)CEO, 1-Element, PNP, Silicon, TO-236AB
ALLEGRO

BCW61BMTF

PNP外延硅晶体管
ONSEMI

BCW61BR

Small Signal Bipolar Transistor, 0.2A I(C), PNP
ALLEGRO

BCW61BRL

TRANSISTOR SMALL SIGNAL TRANSISTOR, TO-236AB, TO-236AB, 3 PIN, BIP General Purpose Small Signal
VISHAY

BCW61BRLK

Small Signal Bipolar Transistor, 32V V(BR)CEO, 1-Element, PNP, Silicon, TO-236AB
ALLEGRO

BCW61BRLO

Small Signal Bipolar Transistor, 32V V(BR)CEO, 1-Element, PNP, Silicon, TO-236AB
ALLEGRO

BCW61BRLT

Small Signal Bipolar Transistor, 32V V(BR)CEO, 1-Element, PNP, Silicon, TO-236AB
ALLEGRO

BCW61BRLX

Small Signal Bipolar Transistor, 32V V(BR)CEO, 1-Element, PNP, Silicon, TO-236AB
ALLEGRO

BCW61BRTA

暂无描述
DIODES

BCW61BRTC

暂无描述
DIODES