BDW46 [MOTOROLA]

Darlington Complementary Silicon Power Transistors; 达林顿互补硅功率晶体管
BDW46
型号: BDW46
厂家: MOTOROLA    MOTOROLA
描述:

Darlington Complementary Silicon Power Transistors
达林顿互补硅功率晶体管

晶体 晶体管 功率双极晶体管
文件: 总6页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BDW42/D  
SEMICONDUCTOR TECHNICAL DATA  
. . . designed for general purpose and low speed switching applications.  
High DC Current Gain – h = 2500 (typ.) @ I = 5.0 Adc.  
FE C  
Collector Emitter Sustaining Voltage @ 30 mAdc:  
*Motorola Preferred Device  
V
V
= 80 Vdc (min.) — BDW46  
= 100 Vdc (min.) — BDW42/BDW47  
CEO(sus)  
CEO(sus)  
DARLINGTON  
15 AMPERE  
COMPLEMENTARY  
SILICON  
POWER TRANSISTORS  
80100 VOLTS  
85 WATTS  
Low Collector Emitter Saturation Voltage  
V
V
= 2.0 Vdc (max.) @ I = 5.0 Adc  
CE(sat)  
CE(sat)  
C
= 3.0 Vdc (max.) @ I = 10.0 Adc  
C
Monolithic Construction with Built–In Base Emitter Shunt resistors  
TO–220AB Compact Package  
MAXIMUM RATINGS  
BDW42  
BDW47  
Rating  
Symbol  
BDW46  
80  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Adc  
Collector–Emitter Voltage  
Collector–Base Voltage  
Emitter–Base Voltage  
Collector Current — Continuous  
Base Current  
V
CEO  
100  
100  
V
CB  
80  
V
EB  
5.0  
15  
I
C
I
B
0.5  
Total Device Dissipation  
P
D
@ T = 25 C  
85  
0.68  
Watts  
W/ C  
C
Derate above 25 C  
CASE 221A–06  
TO–220AB  
Operating and Storage Junction  
Temperature Range  
T , T  
55 to +150  
C
J
stg  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
Unit  
Thermal Resistance, Junction to Case  
R
1.47  
C/W  
θJC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25  
50  
75  
100  
125  
150  
T
, CASE TEMPERATURE (°C)  
C
Figure 1. Power Temperature Derating Curve  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 7  
Motorola, Inc. 1995  
ELECTRICAL CHARACTERISTICS (T = 25 C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Max  
Unit  
OFF CHARACTERISTICS  
Collector Emitter Sustaining Voltage (1)  
V
Vdc  
CEO(sus)  
(I = 30 mAdc, I = 0)  
BDW46  
BDW42/BDW47  
80  
100  
C
B
Collector Cutoff Current  
I
I
mAdc  
mAdc  
mAdc  
CEO  
CBO  
(V  
CE  
(V  
CE  
= 40 Vdc, I = 0)  
BDW46  
BDW42/BDW47  
2.0  
2.0  
B
= 50 Vdc, I = 0)  
B
Collector Cutoff Current  
(V  
CB  
(V  
CB  
= 80 Vdc, I = 0)  
BDW41/BDW46  
BDW42/BDW47  
1.0  
1.0  
E
= 100 Vdc, I = 0)  
E
Emitter Cutoff Current  
(V = 5.0 Vdc, I = 0)  
I
2.0  
EBO  
BE  
C
ON CHARACTERISTICS (1)  
DC Current Gain  
h
FE  
(I = 5.0 Adc, V  
= 4.0 Vdc)  
= 4.0 Vdc)  
1000  
250  
C
CE  
CE  
(I = 10 Adc, V  
C
Collector–Emitter Saturation Voltage  
(I = 5.0 Adc, I = 10 mAdc)  
V
Vdc  
Vdc  
CE(sat)  
2.0  
3.0  
C
B
(I = 10 Adc, I = 50 mAdc)  
C
B
Base–Emitter On Voltage  
(I = 10 Adc, V = 4.0 Vdc)  
V
3.0  
BE(on)  
C
CE  
SECOND BREAKDOWN (2)  
Second Breakdown Collector  
Current with Base Forward Biased  
BDW42  
I
Adc  
S/b  
V
CE  
V
CE  
V
CE  
V
CE  
= 28.4 Vdc  
= 40 Vdc  
= 22.5 Vdc  
= 36 Vdc  
3.0  
1.2  
3.8  
1.2  
BDW46/BDW47  
DYNAMIC CHARACTERISTICS  
Magnitude of common emitter small signal short circuit current transfer ratio  
(I = 3.0 Adc, V = 3.0 Vdc, f = 1.0 MHz)  
f
4.0  
MHz  
pF  
T
C
CE  
Output Capacitance  
(V = 10 Vdc, I = 0, f = 0.1 MHz)  
C
ob  
BDW42  
200  
300  
CB  
E
BDW46/BDW47  
Small–Signal Current Gain  
(I = 3.0 Adc, V = 3.0 Vdc, f = 1.0 kHz)  
h
fe  
300  
C
CE  
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.  
(2) Pulse Test non repetitive: Pulse Width = 250 ms.  
5.0  
V
t
CC  
s
3.0  
2.0  
R
AND R VARIED TO OBTAIN DESIRED CURRENT LEVELS  
C
B
– 30 V  
D
MUST BE FAST RECOVERY TYPES, e.g.:  
1
1N5825 USED ABOVE I  
100 mA  
100 mA  
B
R
C
t
f
MSD6100 USED BELOW I  
B
1.0  
SCOPE  
TUT  
0.7  
0.5  
R
V
B
2
APPROX  
+ 8.0 V  
0.3  
0.2  
D
t
r
51  
1
8.0 k  
150  
0
V
= 30 V  
/I = 250  
CC  
I
I
C B  
= I  
V
+ 4.0 V  
1
0.1  
0.07  
0.05  
B1 B2  
= 25  
APPROX  
– 12 V  
25  
µ
s
for t and t , D id disconnected  
and V = 0  
For NPN test circuit reverse all polarities  
T
°C  
t
d
@ V = 0 V  
BE(off)  
d
r
1
J
2
t , t  
r
10 ns  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
f
DUTY CYCLE = 1.0%  
I
, COLLECTOR CURRENT (AMP)  
C
Figure 2. Switching Times Test Circuit  
Figure 3. Switching Times  
3–213  
Motorola Bipolar Power Transistor Device Data  
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
0.1  
P
(pk)  
0.05  
0.02  
0.1  
0.07  
0.05  
R
R
(t) = r(t) R  
θ
θ
θ
JC  
JC  
JC  
°C/W  
= 1.92  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
t
1
0.03  
0.02  
t
2
SINGLE PULSE  
1
0.01  
T
– T = P  
C
R
(t)  
JC  
J(pk)  
(pk)  
θ
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.01  
0.02 0.03 0.05  
0.1  
0.2 0.3  
0.5  
1.0  
2.0 3.0  
5.0  
10  
20  
30  
50  
100  
200 300  
500  
1000  
t, TIME OR PULSE WIDTH (ms)  
Figure 4. Thermal Response  
ACTIVE–REGION SAFE OPERATING AREA  
50  
50  
0.1 ms  
0.1 ms  
0.5 ms  
20  
10  
20  
T
= 25  
°
C
T = 25°C  
J
J
10  
1.0 ms  
dc  
1.0 ms  
dc  
0.5 ms  
5.0  
5.0  
SECOND BREAKDOWN LIMIT  
BONDING WIRE LIMIT  
THERMAL LIMITED  
SECOND BREAKDOWN LIMIT  
BONDING WIRE LIMIT  
THERMAL LIMITED  
2.0  
1.0  
0.5  
2.0  
1.0  
0.5  
@ T = 25  
°
C (SINGLE PULSE)  
@ T = 25  
°
C (SINGLE PULSE)  
C
C
0.2  
0.1  
0.2  
0.1  
BDW46  
BDW47  
BDW42  
20  
0.05  
0.05  
1.0  
2.0 3.0  
5.0 7.0 10  
30  
50 70 100  
1.0  
2.0 3.0  
5.0 7.0 10  
20  
30  
50 70 100  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
CE  
Figure 5. BDW42  
Figure 6. BDW46 and BDW47  
down pulse limits are valid for duty cycles to 10% provided  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
T
J(pk)  
200 C. T may be calculated from the data in  
J(pk)  
down. Safe operating area curves indicate I – V  
limits of the  
Fig. 4. At high case temperatures, thermal limitations will re-  
duce the power that can be handled to values less than the li-  
mitations imposed by second breakdown.  
C
CE  
transistor that must be observed for reliable operation; i.e., the  
transistor must not be subjected to greater dissipation than the  
curves indicate. The data of Fig. 5 and 6 is based on T  
200 C; T is variable depending on conditions. Second break-  
C
=
* Linear extrapolation  
J(pk)  
10,000  
300  
T
= + 25°C  
J
5000  
3000  
2000  
200  
1000  
500  
300  
200  
C
100  
70  
ob  
T
= 25°C  
J
V
I
= 3.0 V  
CE  
= 3.0 A  
C
ib  
100  
C
50  
50  
BDW46, 47 (PNP)  
BDW42 (NPN)  
BDW46, 47 (PNP)  
BDW42 (NPN)  
30  
20  
10  
30  
1.0  
2.0  
5.0  
10  
20  
50  
100 200  
500 1000  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50 100  
V
, REVERSE VOLTAGE (VOLTS)  
f, FREQUENCY (kHz)  
R
Figure 7. Small–Signal Current Gain  
Figure 8. Capacitance  
3–214  
Motorola Bipolar Power Transistor Device Data  
BDW40, 41, 42 (NPN)  
BDW45, 46, 47 (PNP)  
20,000  
10,000  
20,000  
10,000  
V
= 3.0 V  
V
= 3.0 V  
CE  
CE  
7000  
5000  
T
= 150°C  
5000  
J
T
= 150°C  
J
3000  
2000  
3000  
2000  
25°C  
25°C  
1000  
500  
1000  
55°C  
700  
500  
55°C  
300  
200  
300  
200  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
I
, COLLECTOR CURRENT (AMP)  
I
, COLLECTOR CURRENT (AMP)  
C
C
Figure 9. DC Current Gain  
3.0  
2.6  
2.2  
3.0  
T
J
= 25°C  
T
= 25°C  
J
2.6  
2.2  
I
= 2.0 A  
4.0 A  
6.0 A  
I
= 2.0 A  
4.0 A  
6.0 A  
C
C
1.8  
1.8  
1.4  
1.4  
1.0  
1.0  
0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
20 30  
0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
20 30  
I
, BASE CURRENT (mA)  
I , BASE CURRENT (mA)  
B
B
Figure 10. Collector Saturation Region  
BDW40, 41, 42 (NPN)  
BDW45, 46, 47 (PNP)  
3.0  
2.5  
3.0  
T
J
= 25°C  
T
= 25  
°
C
J
2.5  
2.0  
2.0  
1.5  
V
@ I /I = 250  
C B  
BE(sat)  
V
@ V = 4.0 V  
CE  
1.5  
1.0  
0.5  
BE  
V
@ V = 4.0 V  
CE  
BE  
V
@ I /I = 250  
C B  
BE(sat)  
1.0  
0.5  
V
@ I /I = 250  
C B  
CE(sat)  
V
@ I /I = 250  
C B  
CE(sat)  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
0.1  
0.2 0.3  
0.5 0.7 1.0  
, COLLECTOR CURRENT (AMP)  
C
2.0 3.0  
5.0 7.0 10  
I
, COLLECTOR CURRENT (AMP)  
I
C
Figure 11. “On” Voltages  
3–215  
Motorola Bipolar Power Transistor Device Data  
+5.0  
+5.0  
+4.0  
+3.0  
+2.0  
+1.0  
+4.0  
+3.0  
+2.0  
+1.0  
*I /I  
C B  
250  
*I /I  
C B  
250  
+25°C to 150°C  
25°C to 150°C  
55°C to 25°C  
0
1.0  
2.0  
0
*θ  
for V  
1.0  
VC  
CE(sat)  
*
θ
for V  
VC CE(sat)  
2.0  
3.0  
4.0  
5.0  
55°C to +25°C  
25  
°
C to 150°C  
θ
for V  
BE  
VB  
+25°C to 150°C  
3.0  
4.0  
55°C to +25  
°C  
θ
for V  
BE  
VB  
55°C to 25°C  
5.0  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
0.1  
0.2 0.3  
0.5  
I , COLLECTOR CURRENT (AMP)  
C
1.0  
2.0 3.0  
5.0  
10  
I
, COLLECTOR CURRENT (AMP)  
C
Figure 12. Temperature Coefficients  
5
4
3
5
4
3
2
10  
10  
10  
10  
10  
10  
10  
FORWARD  
REVERSE  
= 30 V  
REVERSE  
= 30 V  
FORWARD  
V
V
CE  
CE  
2
1
0
10  
10  
10  
T
= 150°C  
J
T
= 150°C  
J
1
0
10  
100°C  
100°C  
10  
25°C  
25  
°C  
–1  
–1  
10  
10  
+0.6 +0.4 +0.2  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
0.6 0.4 0.2  
0
+0.2 +0.4 +0.6 +0.8 +1.0 +1.2 + 1.4  
V
, BASE–EMITTER VOLTAGE (VOLTS)  
V , BASE–EMITTER VOLTAGE (VOLTS)  
BE  
BE  
Figure 13. Collector Cut–Off Region  
NPN  
COLLECTOR  
PNP  
COLLECTOR  
BDW42  
BDW46  
BDW47  
BASE  
BASE  
8.0 k  
60  
8.0 k  
60  
EMITTER  
EMITTER  
Figure 14. Darlington Schematic  
3–216  
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
1
2
3
U
H
L
R
J
V
G
T
U
V
D
N
Z
0.080  
2.04  
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
CASE 221A–06  
TO–220AB  
ISSUE Y  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BDW42/D  

相关型号:

BDW4616

15A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BDW4616A

Power Bipolar Transistor, 15A I(C), 80V V(BR)CEO, 1-Element, PNP, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BDW46A

15A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BDW46AF

15A, 80V, PNP, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BDW46AF

15A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BDW46AJ

15A, 80V, PNP, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BDW46AJ

15A, 80V, PNP, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BDW46AK

15A, 80V, PNP, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BDW46AN

TRANSISTOR 15 A, 80 V, PNP, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

BDW46AS

15A, 80V, PNP, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BDW46AU

15A, 80V, PNP, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN
ONSEMI

BDW46BA

TRANSISTOR 15 A, 80 V, PNP, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI