BUL45F [MOTOROLA]

POWER TRANSISTOR 5.0 AMPERES 700 VOLTS 35 and 75 WATTS; 功率晶体管5.0安培700伏35和75瓦
BUL45F
型号: BUL45F
厂家: MOTOROLA    MOTOROLA
描述:

POWER TRANSISTOR 5.0 AMPERES 700 VOLTS 35 and 75 WATTS
功率晶体管5.0安培700伏35和75瓦

晶体 晶体管 功率双极晶体管 开关 局域网
文件: 总10页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BUL45/D  
SEMICONDUCTOR TECHNICAL DATA  
*Motorola Preferred Device  
High Voltage SWITCHMODE Series  
POWER TRANSISTOR  
5.0 AMPERES  
Designed for use in electronic ballast (light ballast) and in Switchmode Power  
supplies up to 50 Watts. Main features include:  
700 VOLTS  
35 and 75 WATTS  
Improved Efficiency Due to:  
— Low Base Drive Requirements (High and Flat DC Current Gain h  
— Low Power Losses (On–State and Switching Operations)  
)
FE  
— Fast Switching: t = 100 ns (typ) and t = 3.2 µs (typ)  
fi si  
— Fast Switching: @ I = 2.0 A, I = I = 0.4 A  
C
B1 B2  
Full Characterization at 125°C  
Tight Parametric Distributions Consistent Lot–to–Lot  
BUL45F, Case 221D, is UL Recognized at 3500 V  
: File #E69369  
RMS  
MAXIMUM RATINGS  
Rating  
Symbol  
BUL45  
BUL45F  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Sustaining Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
CEO  
400  
700  
9.0  
BUL45  
CASE 221A–06  
TO–220AB  
V
CES  
EBO  
V
Collector Current — Continuous  
— Peak(1)  
I
C
5.0  
10  
I
CM  
Base Current  
I
B
2.0  
Adc  
RMS Isolated Voltage(2)  
(for 1 sec, R.H. < 30%,  
Test No. 1 Per Fig. 22a  
Test No. 2 Per Fig. 22b  
Test No. 3 Per Fig. 22c  
V
ISOL  
4500  
3500  
1500  
Volts  
T
C
= 25°C)  
Total Device Dissipation  
Derate above 25°C  
(T = 25°C)  
C
P
D
75  
0.6  
35  
0.28  
Watts  
W/°C  
Operating and Storage Temperature  
T , T  
J stg  
– 65 to 150  
°C  
THERMAL CHARACTERISTICS  
Rating  
BUL45F  
CASE 221D–02  
ISOLATED TO–220 TYPE  
UL RECOGNIZED  
Symbol MJE18006 MJF18006  
Unit  
Thermal Resistance — Junction to Case  
R
θJC  
R
θJA  
1.65  
62.5  
3.55  
62.5  
°C/W  
— Junction to Ambient  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage (I = 100 mA, L = 25 mH)  
V
400  
Vdc  
µAdc  
µAdc  
C
CEO(sus)  
Collector Cutoff Current (V  
Collector Cutoff Current (V  
= Rated V  
, I = 0)  
I
CEO  
100  
CE  
CEO  
B
= Rated V  
, V  
= 0)  
I
10  
100  
CE  
CES EB  
CES  
(T = 125°C)  
C
Emitter Cutoff Current (V  
EB  
= 9.0 Vdc, I = 0)  
I
100  
µAdc  
C
EBO  
(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle 10%.  
(continued)  
(2) Proper strike and creepage distance must be provided.  
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 2  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS — continued (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
Base–Emitter Saturation Voltage (I = 1.0 Adc, I = 0.2 Adc)  
V
0.84  
0.89  
1.2  
1.25  
Vdc  
Vdc  
C
B
BE(sat)  
(I = 2.0 Adc, I = 0.4 Adc)  
C
B
Collector–Emitter Saturation Voltage  
V
CE(sat)  
(I = 1.0 Adc, I = 0.2 Adc)  
0.175  
0.150  
0.25  
C
B
(T = 125°C)  
C
Collector–Emitter Saturation Voltage  
(I = 2.0 Adc, I = 0.4 Adc)  
V
Vdc  
CE(sat)  
0.25  
0.275  
0.4  
C
B
(T = 125°C)  
C
DC Current Gain (I = 0.3 Adc, V  
C
= 5.0 Vdc)  
= 1.0 Vdc)  
h
FE  
14  
7.0  
5.0  
10  
32  
14  
12  
22  
34  
CE  
(T = 125°C)  
C
DC Current Gain (I = 2.0 Adc, V  
C
CE  
(T = 125°C)  
C
DC Current Gain (I = 10 mAdc, V  
C
= 5.0 Vdc)  
CE  
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth (I = 0.5 Adc, V  
= 10 Vdc, f = 1.0 MHz)  
= 10 Vdc, I = 0, f = 1.0 MHz)  
f
12  
50  
75  
MHz  
pF  
C
CE  
T
Output Capacitance (V  
CB  
C
E
ob  
Input Capacitance (V  
EB  
= 8.0 Vdc)  
C
920  
1200  
pF  
ib  
Dynamic Saturation Voltage:  
1.75  
4.4  
1.0 µs  
3.0 µs  
1.0 µs  
3.0 µs  
(I = 1.0 Adc  
(T = 125°C)  
C
C
I
V
= 100 mAdc  
Determined 1.0 µs and  
3.0 µs respectively after  
B1  
0.5  
1.0  
= 300 V)  
CC  
(T = 125°C)  
C
V
rising I reaches 90%  
B1  
CE  
(Dyn sat)  
Vdc  
of final I  
(see Figure 18)  
B1  
1.85  
6.0  
(I = 2.0 Adc  
(T = 125°C)  
C
C
I
= 400 mAdc  
= 300 V)  
B1  
0.5  
1.0  
V
CC  
(T = 125°C)  
C
SWITCHING CHARACTERISTICS: Resistive Load  
Turn–On Time  
Turn–Off Time  
(I = 2.0 Adc, I = I = 0.4 Adc  
Pulse Width = 20 µs,  
Duty Cycle < 20%  
t
t
75  
120  
110  
ns  
C
B1 B2  
on  
(T = 125°C)  
C
2.8  
3.5  
3.5  
µs  
V
CC  
= 300 V)  
off  
(T = 125°C)  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
CC  
= 15 Vdc, L = 200 µH, V  
clamp  
= 300 Vdc)  
C
Fall Time  
(I = 2.0 Adc, I = 0.4 Adc  
t
70  
200  
170  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
C
B1  
fi  
I
= 0.4 Adc)  
(T = 125°C)  
B2  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
2.6  
4.2  
3.8  
(T = 125°C)  
C
t
c
230  
400  
350  
(T = 125°C)  
C
(I = 1.0 Adc, I = 100 mAdc  
t
fi  
110  
100  
150  
C
B2  
B1  
I
= 0.5 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.1  
1.5  
1.7  
(T = 125°C)  
C
t
c
170  
170  
250  
(T = 125°C)  
C
(I = 2.0 Adc, I = 250 mAdc  
t
fi  
80  
0.6  
175  
120  
C
B2  
B1  
I
= 2.0 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
t
si  
0.9  
(T = 125°C)  
C
t
c
300  
(T = 125°C)  
C
2
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
100  
100  
V
= 1 V  
V
= 5 V  
CE  
CE  
T
= 25°C  
T
= 25°C  
J
J
T
= 125°C  
T = 125°C  
J
J
T
= 20°C  
T
= 20°C  
J
J
10  
10  
1
0.01  
1
0.01  
0.10  
1.00  
10.00  
0.10  
I , COLLECTOR CURRENT (AMPS)  
C
1.00  
10.00  
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain at @ 5 Volts  
2.0  
1.5  
1.0  
10  
T
= 25°C  
J
1.0  
1.5  
A
1 A  
2A  
3 A  
4 A 5 A  
6 A  
I
/I = 10  
C B  
0.1  
0.5  
0
T
T
= 25°C  
= 125°C  
J
J
I
/I = 5  
C B  
I
= 0.5 A  
C
0.01  
0.01  
0.10  
1.00  
10.00  
0.01  
0.10  
I , COLLECTOR CURRENT (AMPS)  
C
1.00  
10.00  
I
, BASE CURRENT (AMPS)  
B
Figure 3. Collector–Emitter Saturation Region  
Figure 4. Collector–Emitter Saturation Voltage  
1.1  
10000  
1000  
T
= 25°C  
J
1.0  
0.9  
f = 1 MHz  
C
ib  
0.8  
0.7  
C
ob  
100  
10  
1
T
J
= 25°C  
J
0.6  
0.5  
0.4  
T
= 125°C  
I
/I = 10  
C B  
I
/I = 5  
C B  
0.01  
0.10  
1.00  
10.00  
1
10  
100  
1000  
I
, COLLECTOR CURRENT (AMPS)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
C
CE  
Figure 5. Base–Emitter Saturation Region  
Figure 6. Capacitance  
3
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
(I  
= I /2 for all switching)  
B2  
C
1200  
1000  
800  
3000  
2500  
2000  
I
V
= I /2  
C
B(off)  
CC  
T
T
= 25  
= 125  
°
C
I
V
= I /2  
= 300 V  
J
J
B(off) C  
CC  
T
T
= 25°C  
= 125°C  
= 300 V  
J
J
°C  
I
/I = 5  
C B  
PW = 20 µs  
PW = 20 µs  
I
/I = 10  
C B  
I
/I = 10  
C B  
600  
1500  
1000  
400  
200  
0
500  
0
I
/I = 5  
C B  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
I , COLLECTOR CURRENT (AMPS)  
C
6
7
8
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 7. Resistive Switching, t  
Figure 8. Resistive Switching, t  
off  
on  
3500  
3000  
2500  
2000  
1500  
1000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
I
L
V
V
= I /2  
B(off)  
= 200  
C
T
T
= 25°C  
= 125°C  
V
= 300 V  
= 15 V  
J
J
Z
µH  
C
V
I
L
CC  
B(off)  
= 300 V  
= 15 V  
Z
CC  
= I /2  
I
/I = 5  
C
C B  
= 200 µH  
C
I
= 1 A  
C
T
T
= 25°C  
= 125°C  
J
J
500  
0
I
= 2 A  
7
I
/I = 10  
C
C B  
0
1
2
3
4
5
3
4
5
6
8
9
10  
11 12  
13  
14 15  
I
, COLLECTOR CURRENT (AMPS)  
h
, FORCED GAIN  
C
FE  
Figure 9. Inductive Storage Time, t  
Figure 10. Inductive Storage Time, t (h  
si FE  
)
si  
300  
250  
200  
150  
100  
200  
150  
100  
t
t
c
c
I = I /2  
B(off) C  
V
I
= 15 V  
= I /2  
CC  
B(off)  
50  
0
V
V
L
= 15 V  
CC  
t
C
fi  
50  
0
t
= 300 V  
fi  
T
T
= 25  
= 125  
°
C
T
T
= 25  
= 125°C  
°
C
L
V
= 200  
µH  
Z
J
J
J
J
C
= 200  
µ
H
°C  
= 300 V  
C
Z
0
1
2
3
4
5
0
1
2
3
4
5
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 11. Inductive Switching, t & t , I /I = 5  
fi C B  
Figure 12. Inductive Switching, t & t , I /I = 10  
fi C B  
c
c
4
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
(I  
= I /2 for all switching)  
B2  
C
150  
140  
130  
120  
110  
100  
90  
300  
V
V
I
= 15 V  
CC  
Z
I
= I /2  
C
CC  
= 300 V  
T
T
= 25°C  
B(off)  
J
J
= 300 V  
= I /2  
V
V
L
= 15 V  
= 125°C  
250  
200  
150  
B(off)  
C
Z
C
L
= 200 µH  
C
= 200 µH  
I
= 1 A  
I
= 1 A  
C
C
100  
50  
I
= 2 A  
6
T
T
= 25°C  
80  
C
J
J
I
= 2 A  
9
C
= 125°C  
70  
3
4
5
7
8
9
10  
11  
12  
13  
14  
15  
3
4
5
6
7
8
10 11  
12  
13  
14 15  
h
, FORCED GAIN  
h
, FORCED GAIN  
FE  
FE  
Figure 13. Inductive Fall Time, t (h  
fi FE  
)
Figure 14. Crossover Time  
GUARANTEED SAFE OPERATING AREA INFORMATION  
6
100  
10  
T
125°C  
/I 4  
= 500 µH  
DC (BUL45)  
5 ms  
C
I
L
5
C B  
1 ms  
50  
µs  
10  
µs  
1 µs  
C
4
3
2
EXTENDED  
SOA  
1.0  
DC (BUL45F)  
0.1  
–5 V  
1
0
V
= 0 V  
–1.5 V  
BE(off)  
400  
V , COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
0.01  
10  
100  
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
1000  
300  
500  
600  
700  
800  
V
CE  
Figure 15. Forward Bias Safe Operating Area  
Figure 16. Reverse Bias Switching Safe Operating Area  
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
1.0  
down. Safe operating area curves indicate I – V  
limits of  
C
CE  
the transistor that must be observed for reliable operation;  
i.e., the transistor must not be subjected to greater dissipation  
SECOND BREAKDOWN  
DERATING  
0.8  
0.6  
0.4  
than the curves indicate. The data of Figure 15 is based on T  
C
= 25°C; T  
is variable depending on power level. Second  
J(pk)  
breakdown pulse limits are valid for duty cycles to 10% but  
must be derated when T 25°C. Second breakdown limita-  
C
tions do not derate the same as thermal limitations. Allowable  
current at the voltages shown in Figure 15 may be found at  
any case temperature by using the appropriate curve on Fig-  
THERMAL DERATING  
ure 17. T  
may be calculated from the data in Figures 20  
J(pk)  
0.2  
0
and 21. At any case temperatures, thermal limitations will re-  
duce the power that can be handled to values less than the  
limitations imposed by second breakdown. For inductive  
loads, high voltage and current must be sustained simulta-  
neously during turn–off with the base–to–emitter junction re-  
verse–biased. The safe level is specified as a reverse–biased  
safe operating area (Figure 16). This rating is verified under  
clamped conditions so that the device is never subjected to  
an avalanche mode.  
20  
40  
60  
80  
100  
120  
C)  
140  
160  
T
, CASE TEMPERATURE (  
°
C
Figure 17. Forward Bias Power Derating  
5
Motorola Bipolar Power Transistor Device Data  
10  
5
4
V
CE  
90% I  
I
C
9
8
7
6
5
C
t
fi  
3
dyn 1 µs  
t
si  
2
dyn 3 µs  
1
t
10% I  
C
c
V
I
10% V  
0
CLAMP  
CLAMP  
–1  
–2  
–3  
–4  
–5  
4
90% I  
B
90% I  
B
1
B
3
2
1
0
1 µs  
3 µs  
I
B
0
1
2
3
4
5
6
7
8
TIME  
TIME  
Figure 18. Dynamic Saturation Voltage Measurements  
Figure 19. Inductive Switching Measurements  
+15 V  
I
PEAK  
C
100 µF  
1
µ
F
MTP8P10  
MUR105  
MJE210  
100  
3 W  
150  
3 W  
V
PEAK  
CE  
V
CE  
MTP8P10  
MPF930  
R
R
B1  
I
1
B
I
MPF930  
+10 V  
out  
I
B
A
I
2
B
50  
B2  
V(BR)CEO(sus)  
L = 10 mH  
INDUCTIVE SWITCHING  
RBSOA  
L = 500  
COMMON  
MTP12N10  
150  
L = 200  
µH  
µH  
3 W  
RB2 =  
RB2 = 0  
RB2 = 0  
500 µF  
V
= 20 VOLTS  
V
= 15 VOLTS  
V
= 15 VOLTS  
CC  
(pk) = 100 mA  
CC  
RB1 SELECTED FOR  
DESIRED I  
CC  
RB1 SELECTED  
FOR DESIRED I  
I
C
1 µF  
1
1
B
B
–V  
off  
Table 1. Inductive Load Switching Drive Circuit  
6
Motorola Bipolar Power Transistor Device Data  
TYPICAL THERMAL RESPONSE  
1.00  
D = 0.5  
0.2  
0.1  
R
R
(t) = r(t) R  
θ
θ
θ
JC  
JC  
JC  
°C/W MAX  
0.10  
0.01  
P
(pk)  
= 2.5  
D CURVES APPLY FOR  
POWER PULSE TRAIN  
SHOWN READ TIME AT t  
0.05  
0.02  
t
t
1
2
1
(t)  
T
– T = P R  
SINGLE PULSE  
J(pk)  
C
(pk) θJC  
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.10  
1.00  
10.00  
100.00  
1000.00  
t, TIME (ms)  
Figure 20. Typical Thermal Response (Z  
θJC  
(t)) for BUL45  
1.00  
D = 0.5  
0.2  
0.1  
R
R
(t) = r(t) R  
θ
0.10  
0.01  
θ
θ
JC  
JC  
JC  
°C/W MAX  
P
(pk)  
= 5.0  
D CURVES APPLY FOR  
POWER PULSE TRAIN  
SHOWN READ TIME AT t  
t
t
1
0.05  
0.02  
2
1
T
– T = P R (t)  
(pk) θJC  
J(pk)  
C
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.10  
0.01  
1.00  
10.00  
100.00  
1000.00  
10000.00  
100000.00  
t, TIME (ms)  
Figure 21. Typical Thermal Response (Z  
θJC  
(t)) for BUL45F  
7
Motorola Bipolar Power Transistor Device Data  
The BUL45/BUL45F Bipolar Power Transistors were  
specially designed for use in electronic lamp ballasts. A  
circuit designed by Motorola applications was built to  
demonstrate how well these devices operate. The circuit and  
detailed component list are provided below.  
COLLECTOR CURRENT SENSE  
(USE EXTERNAL STRAPS)  
C5 400 V  
Q1  
D5  
I
C
0.1 µF  
MUR150  
22  
µ
F
385 V  
1000 V  
47  
D3  
C1  
15 µF  
470 k  
1
T1A  
D10  
D9  
D7  
TUBE  
C4  
T1B  
Q2  
1N4007  
D1  
D8  
D6  
47  
I
FUSE  
C
C3 1000 V  
400 V  
0.1  
MUR150  
D4  
C2  
C6  
10 nF  
µ
F
L
5.5 mH  
CTN  
0.1  
µF  
100 V  
D2  
1N5761  
AC LINE  
220 V  
1
Components Lists  
Q1 = Q2 = BUL45 Transistor  
D1 = 1N4007 Rectifier  
D2 = 1N5761 Rectifier  
D3 = D4 = MUR150  
D5 = D6 = MUR105  
D7 = D8 = D9 = D10 = 1N400  
All resistors are 1/4 Watt, ±5%  
R1 = 470 kΩ  
R2 = R3 = 47 Ω  
R4 = R5 = 1 (these resistors are optional, and  
might be replaced by a short circuit)  
C1 = 22 µF/385 V  
CTN = 47 @ 25°C  
C2 = 0.1 µF  
L = RM10 core, A1 = 400, B51 (LCC) 75 turns,  
wire = 0.6 mm  
C3 = 10 nF/1000 V  
C4 = 15 nF/1000 V  
T1 = FT10 toroid, T4A (LCC)  
Primary: 4 turns  
C5 = C6 = 0.1 µF/400 V  
Secondaries: T1A: 4 turns  
Secondaries: T1B: 4 turns  
NOTES:  
1. Since this design does not include the line input filter, it cannot be used “as–is” in a practical industrial circuit.  
2. The windings are given for a 55 Watt load. For proper operation they must be re–calculated with any other loads.  
Figure 22. Application Example  
8
Motorola Bipolar Power Transistor Device Data  
TEST CONDITIONS FOR ISOLATION TESTS*  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
MOUNTED  
FULLY ISOLATED  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
CLIP  
CLIP  
0.107  
MIN  
0.107MIN  
PACKAGE  
LEADS  
LEADS  
LEADS  
HEATSINK  
0.110 MIN  
HEATSINK  
HEATSINK  
Figure 22a. Screw or Clip Mounting Position Figure 22b. Clip Mounting Position  
for Isolation Test Number 1 for Isolation Test Number 2  
Figure 22c. Screw Mounting Position  
for Isolation Test Number 3  
* Measurement made between leads and heatsink with all leads shorted together.  
MOUNTING INFORMATION**  
4–40 SCREW  
CLIP  
PLAIN WASHER  
HEATSINK  
COMPRESSION WASHER  
HEATSINK  
NUT  
Figure 23a. Screw–Mounted  
Figure 23b. Clip–Mounted  
Figure 23. Typical Mounting Techniques  
for Isolated Package  
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw  
.
torque of 6 to 8 in lbs is sufficientto provide maximum power dissipation capability. The compression washer helps to maintain a constant  
pressure on the package over time and during large temperature excursions.  
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in lbs will  
.
cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.  
.
Additionaltests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in lbs without adversely affectingthepackage.  
.
However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10 in lbs  
of mounting torque under any mounting conditions.  
**For more information about mounting power semiconductors see Application Note AN1040.  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
9
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
1
2
3
U
H
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
L
R
J
3. EMITTER  
4. COLLECTOR  
V
G
T
U
V
D
N
Z
0.080  
2.04  
BUL45  
CASE 221A–06  
TO–220AB  
ISSUE Y  
SEATING  
–T–  
PLANE  
–B–  
C
NOTES:  
F
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
S
Q
H
U
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MIN  
MAX  
0.629  
0.402  
0.189  
0.034  
0.129  
MIN  
15.78  
10.01  
4.60  
MAX  
15.97  
10.21  
4.80  
A
K
0.621  
0.394  
0.181  
0.026  
0.121  
1
2 3  
0.67  
0.86  
STYLE 2:  
3.08  
3.27  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
–Y–  
0.100 BSC  
2.54 BSC  
0.123  
0.018  
0.500  
0.045  
0.129  
0.025  
0.562  
0.060  
3.13  
0.46  
3.27  
0.64  
12.70  
1.14  
14.27  
1.52  
G
N
J
0.200 BSC  
5.08 BSC  
R
0.126  
0.107  
0.096  
0.259  
0.134  
0.111  
0.104  
0.267  
3.21  
2.72  
2.44  
6.58  
3.40  
2.81  
2.64  
6.78  
L
D 3 PL  
U
M
M
0.25 (0.010)  
B
Y
BUL45F  
CASE 221D–02  
(ISOLATED TO–220 TYPE)  
ISSUE D  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BUL45/D  

相关型号:

BUL45G

NPN Silicon Power Transistor
ONSEMI

BUL45L

Power Bipolar Transistor, 5A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL45N

Power Bipolar Transistor, 5A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL45S

5 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45T

Power Bipolar Transistor, 5A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL45U

5 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45U2

5 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45UA

5A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45W

5 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45WD

5A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL45_06

NPN Silicon Power Transistor
ONSEMI

BUL46

POWER TRANSISTORS
ANALOGICTECH