CNY17-3SV [MOTOROLA]

1 CHANNEL TRANSISTOR OUTPUT OPTOCOUPLER, CASE 730C-04, 6 PIN;
CNY17-3SV
型号: CNY17-3SV
厂家: MOTOROLA    MOTOROLA
描述:

1 CHANNEL TRANSISTOR OUTPUT OPTOCOUPLER, CASE 730C-04, 6 PIN

输出元件
文件: 总6页 (文件大小:290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by CNY17–1/D  
SEMICONDUCTOR TECHNICAL DATA  
[CTR = 4080%]  
[CTR = 63125%]  
GlobalOptoisolator  
[CTR = 100200%]  
The CNY17–1, CNY17–2 and CNY17–3 devices consist of a gallium  
arsenide infrared emitting diode optically coupled to a monolithic silicon  
phototransistor detector.  
*Motorola Preferred Devices  
Closely Matched Current Transfer Ratio (CTR) to Minimize Unit–to–Unit Variation  
Guaranteed 70 Volt V Minimum  
STYLE 1 PLASTIC  
(BR)CEO  
To order devices that are tested and marked per VDE 0884 requirements, the  
suffix ”V” must be included at end of part number. VDE 0884 is a test option.  
Applications  
6
1
Feedback Control Circuits, Open Loop Gain Control in Power Supplies  
Interfacing and coupling systems of different potentials and impedances  
General Purpose Switching Circuits  
STANDARD THRU HOLE  
CASE 730A–04  
Monitor and Detection Circuits  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
SCHEMATIC  
Rating  
Symbol  
Value  
Unit  
1
2
3
6
INPUT LED  
Reverse Voltage  
V
I
6
Volts  
mA  
A
R
5
4
Forward Current — Continuous  
Forward Current — Pk (PW = 1 µs, 330 pps)  
60  
F
I (pk)  
F
1.5  
120  
LED Power Dissipation @ T = 25°C  
with Negligible Power in Output Detector  
Derate above 25°C  
P
D
mW  
A
PIN 1. LED ANODE  
2. LED CATHODE  
3. N.C.  
1.41  
mW/°C  
OUTPUT TRANSISTOR  
Collector–Emitter Voltage  
Emitter–Base Voltage  
4. EMITTER  
5. COLLECTOR  
6. BASE  
V
V
V
70  
7
Volts  
Volts  
Volts  
mA  
CEO  
EBO  
CBO  
Collector–Base Voltage  
Collector Current — Continuous  
70  
I
C
100  
150  
Detector Power Dissipation @ T = 25°C  
with Negligible Power in Input LED  
P
D
mW  
A
Derate above 25°C  
1.76  
mW/°C  
TOTAL DEVICE  
(1)  
Isolation Surge Voltage  
(Peak ac Voltage, 60 Hz, 1 sec Duration)  
V
ISO  
7500  
Vac(pk)  
Total Device Power Dissipation @ T = 25°C  
Derate above 25°C  
P
D
250  
2.94  
mW  
mW/°C  
A
(2)  
Ambient Operating Temperature Range  
T
55 to +100  
55 to +150  
260  
°C  
°C  
°C  
A
(2)  
Storage Temperature Range  
T
stg  
Soldering Temperature (10 sec, 1/16from case)  
T
L
1. Isolation surge voltage is an internal device dielectric breakdown rating.  
1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.  
2. Refer to Quality and Reliability Section in Opto Data Book for information on test conditions.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
GlobalOptoisolator is a trademark of Motorola, Inc.  
REV 1  
Motorola, Inc. 1995  
(1)  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
INPUT LED  
Symbol  
Min  
Typ  
Max  
Unit  
Forward Voltage (I = 60 mA)  
T
= 25°C  
= –55°C  
= 100°C  
V
F
1.35  
1.5  
1.25  
1.65  
Volts  
F
A
T
A
T
A
Reverse Leakage Current (V = 6 V)  
R
I
10  
µA  
R
Capacitance (V = 0, f = 1 MHz)  
C
18  
pF  
J
OUTPUT TRANSISTOR  
Collector–Emitter Dark Current  
CNY17–1,2  
CNY17–3  
5
5
50  
100  
nA  
ICEO  
ICEO  
(V  
CE  
= 10 V, T = 25°C)  
A
(V  
CE  
= 10 V, T = 100°C)  
All devices  
70  
70  
7
1.6  
0.5  
120  
120  
7.8  
400  
8
µA  
nA  
A
Collector–Base Dark Current (V  
= 10 V)  
Collector–Emitter Breakdown Voltage (I = 1 mA)  
I
CBO  
CB  
V
V
V
Volts  
Volts  
Volts  
C
(BR)CEO  
(BR)CBO  
Collector–Base Breakdown Voltage (I = 100 µA)  
C
Emitter–Base Breakdown Voltage (I = 100 µA)  
E
(BR)EBO  
hFE  
DC Current Gain (I = 2 mA, V  
= 5 V) (Typical Value)  
Collector–Emitter Capacitance (f = 1 MHz, V = 0)  
C
CE  
C
CE  
C
CB  
C
EB  
pF  
CE  
= 0)  
Collector–Base Capacitance (f = 1 MHz, V  
CB  
21  
pF  
Emitter–Base Capacitance (f = 1 MHz, V  
= 0)  
8
pF  
EB  
COUPLED  
(2)  
(CTR)  
Output Collector Current  
CNY17–1  
CNY17–2  
CNY17–3  
I
C
4 (40)  
6.3 (63)  
10 (100)  
6 (60)  
10 (100)  
15 (150)  
8 (80)  
12.5 (125)  
20 (200)  
mA (%)  
(I = 10 mA, V  
CE  
= 5 V)  
F
Collector–Emitter Saturation Voltage (I = 2.5 mA, I = 10 mA)  
V
CE(sat)  
0.18  
1.6  
1.6  
0.7  
2.3  
0.4  
5.6  
4
Volts  
µs  
C
F
Delay Time (I = 10 mA, V  
CC  
= 5 V, R = 75 , Figure 11)  
t
d
F
L
Rise Time (I = 10 mA, V  
CC  
= 5 V, R = 75 , Figure 11)  
t
r
µs  
F
L
Storage Time (I = 10 mA, V  
CC  
= 5 V, R = 75 , Figure 11)  
t
s
4.1  
3.5  
µs  
F
L
Fall Time (I = 10 mA, V  
F
= 5 V, R = 75 , Figure 11)  
t
f
µs  
CC  
L
Delay Time  
t
d
µs  
(3)  
(3)  
(I = 20 mA, V  
= 5 V, R = 1 k)  
CNY17–1  
CNY17–2,3  
1.2  
1.8  
5.5  
8
F
CC  
CC  
L
(I = 10 mA, V  
F
= 5 V, R = 1 k)  
L
Rise Time  
t
µs  
µs  
µs  
r
(3)  
(3)  
(I = 20 mA, V  
= 5 V, R = 1 k)  
CNY17–1  
CNY17–2,3  
3.3  
5
4
6
F
CC  
CC  
L
(I = 10 mA, V  
F
= 5 V, R = 1 k)  
L
Storage Time  
t
s
(3)  
(3)  
(I = 20 mA, V  
= 5 V, R = 1 k)  
CNY17–1  
CNY17–2,3  
4.4  
2, 7  
34  
39  
F
CC  
CC  
L
(I = 10 mA, V  
F
= 5 V, R = 1 k)  
L
Fall Time  
t
f
(3)  
(3)  
(I = 20 mA, V  
= 5 V, R = 1 k)  
CNY17–1  
CNY17–2,3  
9.7  
9.4, 20  
20  
24  
F
CC  
CC  
L
(I = 10 mA, V  
= 5 V, R = 1 k)  
F
L
(4)  
Isolation Voltage (f = 60 Hz, t = 1 sec)  
V
ISO  
R
ISO  
C
ISO  
7500  
Vac(pk)  
(4)  
Isolation Resistance (V = 500 V)  
11  
10  
(4)  
Isolation Capacitance (V = 0, f = 1 MHz)  
0.2  
0.5  
pF  
1. Always design to the specified minimum/maximum electrical limits (where applicable).  
2. Current Transfer Ratio (CTR) = I /I x 100%.  
C F  
3. For test circuit setup and waveforms, refer to Figure 11.  
4. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.  
2
Motorola Optoelectronics Device Data  
TYPICAL CHARACTERISTICS  
2
10  
PULSE ONLY  
PULSE OR DC  
NORMALIZED TO:  
= 10 mA  
1.8  
I
F
1
1.6  
1.4  
1.2  
1
0.1  
T
= –55°C  
A
25°C  
100°C  
0.01  
1
10  
100  
1000  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50 100  
I , LED FORWARD CURRENT (mA)  
I , LED INPUT CURRENT (mA)  
F
F
Figure 1. LED Forward Voltage versus Forward Current  
Figure 2. Output Current versus Input Current  
14  
12  
7
5
NORMALIZED TO T = 25°C  
A
I
= 10 mA  
10  
8
F
2
1
0.7  
0.5  
6
4
5 mA  
2
0
2 mA  
1 mA  
0.2  
0.1  
0
1
2
3
4
5
6
7
8
9
10  
–60 –40 –20  
0
20  
40  
60  
80  
100  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
T , AMBIENT TEMPERATURE (°C)  
CE  
A
Figure 3. Collector Current versus  
Collector–Emitter Voltage  
Figure 4. Output Current versus  
Ambient Temperature  
100  
50  
V
= 5 V  
CC  
NORMALIZED TO:  
= 10 V  
V
= 70 V  
CE  
3
2
1
0
10  
10  
10  
10  
V
CE  
= 25°C  
T
A
30 V  
10 V  
20  
10  
5
t
f
R
= 1000  
L
{
{
t
r
R
= 100  
L
t
f
2
1
t
r
–1  
10  
0
20  
40  
60  
80  
100  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50 100  
T , AMBIENT TEMPERATURE (  
°C)  
I , LED INPUT CURRENT (mA)  
F
A
Figure 5. Dark Current versus  
Ambient Temperature  
Figure 6. Rise and Fall Times  
CNY17–1 and CNY17–2  
Motorola Optoelectronics Device Data  
3
100  
50  
100  
50  
V
= 5 V  
CC  
V
= 5 V  
CC  
20  
10  
70  
10  
5
R
= 1000  
100  
L
R
= 1000  
L
5
100  
10  
10  
2
1
2
1
0.1  
0.2  
0.5  
1
2
5
10  
20  
50 100  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
I , LED INPUT CURRENT (mA)  
I , LED INPUT CURRENT (mA)  
F
F
Figure 7. Turn–On Switching Times  
Figure 8. Turn–Off Switching Times  
CNY17–1 and CNY17–2  
20  
18  
4
3
2
1
I
= 8  
µ
A
I
= 0  
B
F
f = 1 MHz  
16  
7
6
5
4
µA  
µA  
µA  
µA  
14  
12  
C
LED  
10  
8
C
CB  
C
CE  
3
2
µ
A
A
C
EB  
6
µ
4
2
0
1
µA  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0.5  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
V, VOLTAGE (VOLTS)  
CE  
Figure 9. DC Current Gain (Detector Only)  
TEST CIRCUIT  
Figure 10. Capacitances versus Voltage  
WAVEFORMS  
V
= 5 V  
CC  
INPUT PULSE  
R
= 100  
10%  
I
I
L
F
C
OUTPUT PULSE  
90%  
t
INPUT  
t
OUTPUT  
t
s
d
t
t
f
r
t
on  
off  
Figure 11. Switching Time Test Circuit and Waveforms  
4
Motorola Optoelectronics Device Data  
PACKAGE DIMENSIONS  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
6
4
3
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
–B–  
1
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
MAX  
0.350  
0.260  
0.200  
0.020  
0.070  
0.014  
MIN  
8.13  
6.10  
2.93  
0.41  
1.02  
0.25  
MAX  
8.89  
6.60  
5.08  
0.50  
1.77  
0.36  
C
F 4 PL  
L
0.320  
0.240  
0.115  
0.016  
0.040  
0.010  
N
F
–T–  
SEATING  
PLANE  
K
G
J
K
L
M
N
0.100 BSC  
2.54 BSC  
0.008  
0.100  
0.012  
0.150  
0.21  
2.54  
0.30  
3.81  
J 6 PL  
G
0.300 BSC  
7.62 BSC  
M
M
M
0.13 (0.005)  
T
B
A
M
0
15  
0
15  
E 6 PL  
0.015  
0.100  
0.38  
2.54  
D 6 PL  
M
M
M
0.13 (0.005)  
T
A
B
STYLE 1:  
PIN 1. ANODE  
2. CATHODE  
3. NC  
4. EMITTER  
5. COLLECTOR  
6. BASE  
CASE 730A–04  
ISSUE G  
–A–  
6
4
3
NOTES:  
–B–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
1
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
MAX  
0.350  
0.260  
0.200  
0.020  
0.070  
0.014  
MIN  
8.13  
6.10  
2.93  
0.41  
1.02  
0.25  
MAX  
8.89  
6.60  
5.08  
0.50  
1.77  
0.36  
L
F 4 PL  
0.320  
0.240  
0.115  
0.016  
0.040  
0.010  
H
C
F
–T–  
SEATING  
PLANE  
G
H
J
K
L
0.100 BSC  
2.54 BSC  
G
J
0.020  
0.008  
0.006  
0.320 BSC  
0.332  
0.025  
0.012  
0.035  
0.51  
0.20  
0.16  
8.13 BSC  
8.43  
0.63  
0.30  
0.88  
K 6 PL  
0.13 (0.005)  
M
E 6 PL  
M
M
M
T
B
A
D 6 PL  
S
0.390  
9.90  
M
M
0.13 (0.005)  
T
A
B
*Consult factory for leadform  
option availability  
CASE 730C–04  
ISSUE D  
Motorola Optoelectronics Device Data  
5
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
–A–  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
6
4
3
–B–  
INCHES  
MILLIMETERS  
1
DIM  
A
B
C
D
E
MIN  
MAX  
0.350  
0.260  
0.200  
0.020  
0.070  
0.014  
MIN  
8.13  
6.10  
2.93  
0.41  
1.02  
0.25  
MAX  
8.89  
6.60  
5.08  
0.50  
1.77  
0.36  
0.320  
0.240  
0.115  
0.016  
0.040  
0.010  
L
N
F 4 PL  
F
C
G
J
K
L
0.100 BSC  
2.54 BSC  
0.008  
0.100  
0.400  
0.015  
0.012  
0.150  
0.425  
0.040  
0.21  
2.54  
0.30  
3.81  
–T–  
SEATING  
PLANE  
10.16  
0.38  
10.80  
1.02  
N
G
J
K
D 6 PL  
0.13 (0.005)  
E 6 PL  
M
M
M
T
A
B
*Consult factory for leadform  
option availability  
CASE 730D–05  
ISSUE D  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
CNY17–1/D  

相关型号:

CNY17-3SVM

Phototransistor Optocouplers
FAIRCHILD

CNY17-3T

Transistor Output Optocoupler, 1-Element, 7500V Isolation, PLASTIC, DIP-6
MOTOROLA

CNY17-3T-M

1 CHANNEL TRANSISTOR OUTPUT OPTOCOUPLER, DIP-6
FAIRCHILD

CNY17-3TM

Phototransistor Optocouplers
FAIRCHILD

CNY17-3TV

1 CHANNEL TRANSISTOR OUTPUT OPTOCOUPLER, PLASTIC, DIP-6
MOTOROLA

CNY17-3TVM

Phototransistor Optocouplers
FAIRCHILD

CNY17-3V

1 CHANNEL TRANSISTOR OUTPUT OPTOCOUPLER, PLASTIC, DIP-6
MOTOROLA

CNY17-3V-M

1 CHANNEL TRANSISTOR OUTPUT OPTOCOUPLER, DIP-6
FAIRCHILD

CNY17-3VM

Phototransistor Optocouplers
FAIRCHILD

CNY17-3W

Phototransistor Optocouplers
FAIRCHILD

CNY17-3X

OPTICALLY COUPLED ISOLATOR
ISOCOM

CNY17-3X-SM

暂无描述
ISOCOM