DSP56001RC27 [MOTOROLA]

24-Bit General Purpose Digital Signal Processor; 24位通用数字信号处理器
DSP56001RC27
型号: DSP56001RC27
厂家: MOTOROLA    MOTOROLA
描述:

24-Bit General Purpose Digital Signal Processor
24位通用数字信号处理器

数字信号处理器
文件: 总64页 (文件大小:843K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by DSP56001/D  
MOTOROLA  
SEMICONDUCTOR  
TECHNICAL DATA  
24-Bit General Purpose  
Digital Signal Processor  
DSP56001  
Pin Grid Array (PGA)  
Available in an 88 pin ceramic  
through-hole package.  
Ceramic Quad Flat Pack (CQFP)  
Available in a 132 pin, small footprint,  
surface mount package.  
The DSP56001 is a member of Motorola’s family of  
HCMOS, low-power, general purpose Digital Signal  
Processors. The DSP56001 features 512 words of full  
speed, on-chip program RAM (PRAM) memory, two  
256 word data RAMs, two preprogrammed data  
ROMs, and special on-chip bootstrap hardware to per-  
mit convenient loading of user programs into the pro-  
gram RAM. It is an off-the-shelf part since the program  
Plastic Quad Flat Pack (PQFP)  
Available in a 132 pin, small footprint,  
surface mount package.  
memory is user programmable. The core of the processor consists of three execution units operating in parallel — the data ALU,  
the address generation unit, and the program controller. The DSP56001 has MCU-style on-chip peripherals, program and data  
memory, as well as a memory expansion port. The MPU-style programming model and instruction set make writing efficient, com-  
pact code, straightforward.  
The high throughput of the DSP56001 makes it well-suited for communication, high-speed control, numeric processing, computer  
and audio applications. The key features which facilitate this throughput are:  
Speed  
At 16.5 million instructions per second (MIPS) with a 33 MHz clock, the DSP56001 can execute  
a 1024 point complex Fast Fourier Transform in1.98 milliseconds (66,240 clock cycles).  
Precision  
Parallelism  
The data paths are 24 bits wide thereby providing 144 dB of dynamic range; intermediate results  
held in the 56-bit accumulators can range over 336 dB.  
The data ALU, address arithmetic units, and program controller operate in parallel so that an in-  
struction prefetch, a 24x24-bit multiplication, a 56-bit addition, two data moves, and two address  
pointer updates using one of three types of arithmetic (linear, modulo, or reverse carry) can be  
executed in a single instruction cycle. This parallelism allows a four coefficient Infinite Impulse Re-  
sponse (IIR) filter section to be executed in only four cycles, the theoretical minimum for a single  
multiplier architecture.  
Integration  
In addition to the three independent execution units, the DSP56001 has six on-chip memories,  
three on-chip MCU style peripherals (Serial Communication Interface, Synchronous Serial Inter-  
face, and Host Interface), a clock generator and seven buses (three address and four data), mak-  
ing the overall system functionally complete and powerful, but also very low cost, low power, and  
compact.  
Invisible Pipeline  
Instruction Set  
The three-stage instruction pipeline is essentially invisible to the programmer thus allowing  
straightforward program development in either assembly language or a high-level language such  
as ANSI C.  
The 62 instruction mnemonics are MCU-like making the transition from programming micropro-  
cessors to programming the DSP56001 digital signal processor as easy as possible. The orthog-  
onal syntax supports control of the parallel execution units. This syntax provides 12,808,830 dif-  
ferent instruction variations using the 62 instruction mnemonics. The no-overhead DO instruction  
and the REPEAT (REP) instruction make writing straight-line code obsolete.  
DSP56000/DSP56001  
Compatibility  
The DSP56001 is identical to the DSP56000 except that it has 512x24-bits of on-chip program  
RAM instead of 3.75K of program ROM; a 32x24-bit bootstrap ROM for loading the program RAM  
from either a byte-wide memory mapped ROM or via the Host Interface; and the on-chip X and Y  
Data ROMs have been preprogrammed as positive Mu- and A-Law to linear expansion tables and  
a full, four quadrant sine wave table, respectively.  
Low Power  
As a CMOS part, the DSP56001 is inherently very low power; however, three other features can  
reduce power consumption to an exceptionally low level.  
— The WAIT instruction shuts off the clock in the central processor portion of the DSP56001.  
— The STOP instruction halts the internal oscillator.  
— Power increases linearly (approximately) with frequency; thus, reducing the clock frequency  
reduces power consumption.  
This document contains information on a new product. Specifications and information herein are subject to change without notice.  
Rev. 3  
May 4, 1998  
MOTOROLA INC., 1992  
YAB  
XAB  
PAB  
ADDRESS  
EXTERNAL  
ADDRESS  
BUS  
ADDRESS  
GENERATION  
UNIT  
SWITCH  
X MEMORY  
Y MEMORY  
RAM  
PROGRAM  
RAM  
512X24  
RAM  
BOOTSTRAP  
ROM  
32X24  
PORT B  
OR HOST  
15  
256X24  
µ/A ROM  
256X24  
256X24  
SINE ROM  
256X24  
ON-CHIP  
PERIPHERALS:  
HOST, SSI,  
SCI, PI/O  
BUS  
CONTROL  
7
9
PORT C  
AND/OR  
SSI, SCI  
YDB  
XDB  
PDB  
GDB  
INTERNAL DATA  
BUS SWITCH  
AND BIT  
MANIPULATION  
UNIT  
EXTERNAL  
DATA BUS  
SWITCH  
DATA  
DATA ALU  
24X24 56 56-BIT MAC  
TWO 56-BIT ACCUMULATORS  
PROGRAM  
ADDRESS  
GENERATOR  
PROGRAM  
INTERRUPT  
CONTROLLER  
PROGRAM  
DECODE  
CONTROLLER  
+
CLOCK  
GENERATOR  
MODB/IRQB  
16 BITS  
24 BITS  
EXTAL XTAL  
MODA/IRQA  
RESET  
Figure 1. DSP56001 Block Diagram  
In the USA:  
For technical assistance call:  
DSP Applications Helpline (512) 891-3230  
For availability and literature call your local Motorola Sales Office or Authorized Motorola Distributor.  
For free application software and information call the Dr. BuB electronic bulletin board:  
9600/4800/2400/1200/300 baud  
(512) 891-3771  
(8 data bits, no parity, 1 stop)  
In Europe, Japan and Asia Pacific  
Contact your regional sales office or Motorola distributor.  
DSP56001  
MOTOROLA  
2
Read Enable (RD)  
SIGNAL DESCRIPTION  
This three-state output is asserted to read external memory on the  
data bus D0-D23. This pin is three-stated during RESET.  
The DSP56001 is available in 132 pin surface mount (CQFP and  
PQFP) or an 88-pin pin-grid array packaging. Its input and output sig-  
nals are organized into seven functional groups which are listed below  
and shown in Figure 1.  
Write Enable (WR)  
This three-state output is asserted to write external memory on the  
data bus D0-D23. This pin is three-stated during RESET.  
Port A Address and Data Buses  
Port A Bus Control  
Interrupt and Mode Control  
Power and Clock  
Host Interface or Port B I/O  
Bus Request (BR/WT)  
The bus request input BR allows another device such as a processor  
or DMA controller to become the master of external data bus D0-D23  
and external address bus A0-A15. When operating mode register  
(OMR) bit 7 is clear and BR is asserted, the DSP56001 will always re-  
lease the external data bus D0-D23, address bus A0-A15, and bus  
control pins PS, DS, X/Y, RD, and WR (i. e., Port A), by placing these  
pins in the high-impedance state after execution of the current instruc-  
tion has been completed. The BR pin should be pulled up when not  
in use.  
Serial Communications Interface or Port C I/O  
Synchronous Serial Interface or Port C I/O  
PORT A ADDRESS AND DATA BUS  
Address Bus (A0-A15)  
These three-state output pins specify the address for external program  
and data memory accesses. To minimize power dissipation, A0-A15  
do not change state when external memory spaces are not being ac-  
cessed.  
If OMR bit 7 is set, this pin is an input that allows an external device to  
force wait states during an external Port A operation for as long as WT  
is asserted.  
Bus Grant (BG/BS)  
Data Bus (D0-D23)  
If OMR bit 7 is clear, this output is asserted to acknowledge an external  
bus request after Port A has been released. If OMR bit 7 is set, this pin  
is bus strobe and is asserted when the DSP accesses Port A. This pin  
is three-stated during RESET.  
These pins provide the bidirectional data bus for external program and  
data memory accesses. D0-D23 are in the high-impedance state when  
the bus grant signal is asserted.  
PORT A BUS CONTROL  
Program Memory Select (PS)  
INTERRUPT AND MODE CONTROL  
Mode Select A/External Interrupt Request A (MODA/IRQA),  
Mode Select B/External Interrupt Request B (MODB/IRQB)  
This three-state output is asserted only when external program mem-  
ory is referenced. This pin is three-stated during RESET.  
These two inputs have dual functions: 1) to select the initial chip oper-  
ating mode and 2) to receive an interrupt request from an external  
source. MODA and MODB are read and internally latched in the DSP  
when the processor exits the RESET state. Therefore these two pins  
should be forced into the proper state during reset. After leaving the  
RESET state, the MODA and MODB pins automatically change to ex-  
ternal interrupt requests IRQA and IRQB. After leaving the reset state  
the chip operating mode can be changed by software. IRQA and IRQB  
may be programmed to be level sensitive or negative edge triggered.  
When edge triggered, triggering occurs at a voltage level and is not di-  
rectly related to the fall time of the interrupt signal, however, the prob-  
ability of noise on IRQA or IRQB generating multiple interrupts increas-  
es with increasing fall time of the interrupt signal. These pins are inputs  
during RESET.  
Data Memory Select (DS)  
This three-state output is asserted only when external data memory is  
referenced. This pin is three-stated during RESET.  
X/Y Select (X/Y)  
This three-state output selects which external data memory space (X  
or Y) is referenced by data memory select (DS). This pin is three-stat-  
ed during RESET.  
HOST CONTROL  
HOST DATA  
BUS  
Reset (RESET)  
This Schmitt trigger input pin is used to reset the DSP56001. When  
RESET is asserted, the DSP56001 is initialized and placed in the reset  
state. When the RESET signal is deasserted, the initial chip operating  
mode is latched from the MODA and MODB pins. When coming out of  
reset, deassertion occurs at a voltage level and is not directly related  
to the rise time of the reset signal; however, the probability of noise on  
RESET generating multiple resets increases with increasing rise time  
of the reset signal.  
RXD  
TXD  
SCLK  
SC0  
SC1  
SCK  
SRD  
STD  
A0-A15  
D0-D23  
PS  
ADDRESS  
DATA  
PORT B  
SCI  
SSI  
DS  
PORT C  
PORT A  
RD  
BUS  
CONTROL  
WR  
DSP56001  
X/Y  
POWER AND CLOCK  
Power (Vcc), Ground (GND)  
BR/WT  
BG/BS  
There are five sets of power and ground pins used for the four groups  
of logic on the chip, two pairs for internal logic, one power and two  
ground for Port A address and control pins, one power and two ground  
for Port A data pins, and one pair for peripherals. Refer to the pin as-  
signments in the LAYOUT PRACTICES section.  
Figure 2. Functional Signal Groups  
DSP56001  
MOTOROLA  
3
External Clock/Crystal Input (EXTAL)  
Transmit Data (TXD)  
EXTAL may be used to interface the crystal oscillator input to an exter-  
nal crystal or an external clock.  
This output transmits serial data from the SCI Transmit Shift Register.  
Data changes on the negative edge of the transmit clock. This output  
is stable on the positive edge of the transmit clock. TXD may be pro-  
grammed as a general purpose I/O pin called PC1 when the SCI is not  
being used. This pin is configured as a GPIO input pins during hard-  
ware reset.  
Crystal Output (XTAL)  
This output connects the internal crystal oscillator output to an external  
crystal. If an external clock is used, XTAL should not be connected.  
SCI Serial Clock (SCLK)  
HOST INTERFACE  
Host Data Bus (H0-H7)  
This bidirectional pin provides an input or output clock from which the  
transmit and/or receive baud rate is derived in the asynchronous mode  
and from which data is transferred in the synchronous mode. SCLK  
may be programmed as a general purpose I/O pin called PC2 when  
the SCI is not being used. This pin is configured as a GPIO input pins  
during hardware reset.  
This bidirectional data bus is used to transfer data between the host  
processor and the DSP56001. This bus is an input unless enabled by  
a host processor read. H0-H7 may be programmed as general pur-  
pose parallel I/O pins called PB0-PB7 when the Host Interface is not  
being used. These pins are configured as a GPIO input pins during  
hardware reset.  
SYNCHRONOUS SERIAL INTERFACE (SSI)  
Host Address (HA0-HA2)  
Serial Control Zero (SC0)  
These inputs provide the address selection for each Host Interface  
register. HA0-HA2 may be programmed as general purpose parallel  
I/O pins called PB8-PB10 when the Host Interface is not being used.  
These pins are configured as a GPIO input pins during hardware reset.  
This bidirectional pin is used for control by the SSI. SC0 may be pro-  
grammed as a general purpose I/O pin called PC3 when the SSI is not  
being used. This pin is configured as a GPIO input pins during hard-  
ware reset.  
Host Read/Write (HR/W)  
Serial Control One (SC1)  
This input selects the direction of data transfer for each host processor  
access. HR/W may be programmed as a general purpose I/O pin  
called PB11 when the Host Interface is not being used. This pin is con-  
figured as a GPIO input pins during hardware reset.  
This bidirectional pin is used for control by the SSI. SC1 may be pro-  
grammed as a general purpose I/O pin called PC4 when the SSI is not  
being used. This pin is configured as a GPIO input pins during hard-  
ware reset.  
Host Enable (HEN)  
Serial Control Two (SC2)  
This input enables a data transfer on the host data bus. When HEN is  
asserted and HR/W is high, H0-H7 become outputs, and DSP56001  
data may be read by the host processor, When HEN is asserted and  
HR/W is low, H0-H7 become inputs and host data is latched inside the  
DSP when HEN is deasserted. Normally a chip select signal, derived  
from host address decoding and an enable clock, is used to generate  
HEN. HEN may be programmed as a general purpose I/O pin called  
PB12 when the Host Interface is not being used. This pin is configured  
as a GPIO input pins during hardware reset.  
This bidirectional pin is used for control by the SSI. SC2 may be pro-  
grammed as a general purpose I/O pin called PC5 when the SSI is not  
being used. This pin is configured as a GPIO input pins during hard-  
ware reset.  
SSI Serial Clock (SCK)  
This bidirectional pin provides the serial bit rate clock for the SSI when  
only one clock is used. SCK may be programmed as a general pur-  
pose I/O pin called PC6 when the SSI is not being used. This pin is  
configured as a GPIO input pins during hardware reset.  
Host Request (HREQ)  
SSI Receive Data (SRD)  
This open-drain output signal is used by the DSP56001 Host Interface  
to request service from the host processor, DMA controller, or simple  
external controller. HREQ may be programmed as a general purpose  
I/O pin (not open-drain) called PB13 when the Host interface is not be-  
ing used. HREQ should be pulled high when not in use. This pin is con-  
figured as a GPIO input pins during hardware reset.  
This input pin receives serial data into the SSI Receive Shift Register.  
SRD may be programmed as a general purpose I/O pin called PC7  
when the SSI is not being used. This pin is configured as a GPIO input  
pins during hardware reset.  
SSI Transmit Data (STD)  
Host Acknowledge (HACK)  
This output pin transmits serial data from the SSI Transmit Shift Reg-  
ister. STD may be programmed as a general purpose I/O pin called  
PC8 when the SSI is not being used. This pin is configured as a GPIO  
input pins during hardware reset.  
This input has two functions: 1) to receive a Host Acknowledge hand-  
shake signal for DMA transfers and, 2) to receive a Host Interrupt Ac-  
knowledge compatible with MC68000 Family processors. HACK may  
be programmed as a general purpose I/O pin called PB14 when the  
Host Interface is not being used. This pin is configured as a GPIO input  
pins during hardware reset. HACK should be pulled high when not  
in use.  
SERIAL COMMUNICATIONS INTERFACE (SCI)  
Receive Data (RXD)  
This input receives byte-oriented data into the SCI Receive Shift Reg-  
ister. Input data is sampled on the positive edge of the Receive Clock.  
RXD may be programmed as a general purpose I/O pin called PC0  
when the SCI is not being used. This pin is configured as a GPIO input  
pins during hardware reset.  
DSP56001  
MOTOROLA  
4
DSP56001 Electrical Characteristics  
Electrical Specifications  
The DSP is fabricated in high density CMOS with TTL compatible inputs and outputs.  
Maximum Ratings (VSS = 0 Vdc)  
Rating  
Symbol  
Value  
-0.3 to +7.0  
- 0.5 to Vcc + 0.5  
10  
Unit  
V
Supply Voltage  
Vcc  
Vin  
I
All Input Voltages  
V
V
SS  
Current Drain per Pin  
mA  
excluding Vcc and V  
SS  
Operating Temperature Range  
Storage Temperature  
T
-40 to +105  
-55 to +150  
°C  
°C  
J
Tstg  
Maximum Electrical Ratings  
Thermal Characteristics - PGA Package  
Characteristics  
Symbol  
Value  
Rating  
Thermal Resistance - Ceramic  
Junction to Ambient  
Θ
Θ
27  
°C/W  
°C/W  
JA  
JC  
Junction to Case (estimated)  
6.5  
Thermal Characteristics - CQFP Package  
Characteristics  
Symbol  
Value  
Rating  
Thermal Resistance - Ceramic  
Junction to Ambient  
Junction to Case (estimated)  
Θ
Θ
40  
7.0  
°C/W  
°C/W  
JA  
JC  
Thermal Characteristics - PQFP Package  
Characteristics  
Symbol  
Value  
Rating  
Thermal Resistance - Plastic  
Junction to Ambient  
Θ
Θ
38  
°C/W  
°C/W  
JA  
JC  
Junction to Case (estimated)  
13.0  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal  
precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability  
of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either Gnd or Vcc).  
DSP56001  
MOTOROLA  
5
DSP56001 Electrical Characteristics  
Power Considerations  
The average chip-junction temperature, T , in °C can be obtained from:  
J
T = T + (P × Θ  
)
(1)  
J
A
D
JA  
Where:  
T
= Ambient Temperature, °C  
A
Θ
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
JA  
P
= P  
+ P  
D
INT I/O  
P
P
= I × Vcc, Watts - Chip Internal Power  
INT  
I/O  
CC  
= Power Dissipation on Input and Output Pins - User Determined  
For most applications P << P  
and can be neglected; however, P + P  
must not exceed P . An appropriate relationship  
I/O  
INT  
I/O  
INT d  
between P and T (if P is neglected) is:  
D
J
I/O  
P
= K/(T + 273° C)  
(2)  
(3)  
D
J
Solving equations (1) and (2) for K gives:  
2
K = P × (T + 273° C) + Θ × P  
D
D
A
JA  
Where K is a constant pertaining to the particular part. K can be determined from equation (2) by measuring P (at equilibrium) for a  
D
known T . Using this value of K, the values of P and T can be obtained by solving equations (1) and (2) iteratively for any value of  
A
D
J
T . The total thermal resistance of a package (Θ ) can be separated into two components, Θ and C , representing the barrier to  
A
JA  
JC  
A
heat flow from the semiconductor junction to the package (case) surface (Θ ) and from the case to the outside ambient (C ). These  
JC  
A
terms are related by the equation:  
= Θ + C  
Θ
(4)  
JA  
JC  
A
Θ
is device related and cannot be influenced by the user. However, C is user dependent and can be minimized by such thermal  
JC  
A
management techniques as heat sinks, ambient air cooling, and thermal convection. Thus, good thermal management on the part of  
the user can significantly reduce C so that Θ approximately equals Θ . Substitution of Θ for Θ in equation (1) will result in a  
A
JA  
JC  
JC  
JA  
lower semiconductor junction temperature. Values for thermal resistance presented in this document, unless estimated, were derived  
using the procedure described in Motorola Reliability Report 7843, “Thermal Resistance Measurement Method for MC68XX  
Microcomponent Devices”, and are provided for design purposes only. Thermal measurements are complex and dependent on  
procedure and setup. User-derived values for thermal resistance may differ.  
Layout Practices  
Each Vcc pin on the DSP56001 should be provided with a low-impedance path to + 5 volts. Each GND pin should likewise be provided  
with a low-impedance path to ground. The power supply pins drive four distinct groups of logic on chip. They are:  
Vcc  
GND  
Function  
G12,C6  
G11,B7  
Internal Logic supply pins  
L8  
L6,L9  
D3,J3  
E11  
Address bus output buffer supply pins  
Data bus output buffer supply pins  
Port B and C output buffer supply pins  
G3  
C9  
Power and Ground Connections for PGA  
Vcc  
GND  
Function  
35, 36, 128, 129 33, 34, 130, 131  
Internal Logic supply pins  
63, 64  
55, 56, 73, 74  
90, 91, 111, 112  
23, 24  
Address bus output buffer supply pins  
Data bus output buffer supply pins  
Port B and C output buffer supply pins  
100, 101  
12, 13  
Power and Ground Connections for CQFP and PQFP  
DSP56001  
MOTOROLA  
6
DSP56001 Electrical Characteristics  
Power and Ground Connections  
The Vcc power supply should be bypassed to ground using at least four 0.1 uF by- pass capacitors located either underneath the chip  
or as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip  
Vcc and Gnd should be kept to less than 1/2" per capacitor lead. A four-layer board is recommended, employing two inner layers as  
Vcc and Gnd planes. All output pins on the DSP56001 have fast rise and fall times — typically less than 3 ns. with a 10 pf. load. Printed  
circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast  
output switching times. This recommendation particularly applies to the address and data buses as well as the RD, WR, IRQA, IRQB,  
and HEN pins. Maximum PC trace lengths on the order of 6" are recommended. Capacitance calculations should consider all device  
loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical  
in systems with higher capacitive loads because these loads create higher transient currents in the Vcc and GND circuits. Pull up/down  
all unused inputs or signals that will be inputs during reset.  
Signal Stability  
When designing hardware to interface with the Host Interface, it is important to ensure that all signals be clean and free from noise.  
Particular attention should be given to the quality of the Host Enable (HEN). All inputs to the port should be stable when HEN is  
asserted and should remain stable until HEN has fully returned to the deasserted state. It is important to note that such phenomena  
as ground-bounce and cross-talk can inadvertently cause HEN to temporarily rise above Vil max. Should this occur without completing  
the full logic transition to V  
, the DSP56001 Host Port may not correctly update the port status information which can result in  
ih min  
storing two or more copies of a single down loaded data word. Of course, if a full logic transition occurs, the part will complete a normal  
data transfer operation.  
DSP56001  
MOTOROLA  
7
DSP56001 Electrical Characteristics  
DC Electrical Characteristics (Vcc = 5.0 Vdc + 10%; T = -40 to +105° C at 20.5 MHz and 27 MHz)  
J
(Vcc = 5.0 Vdc + 5%; T = -40 to +105° C at 33 MHz)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Supply Voltage  
20, 27 MHz  
33 MHz  
Vcc  
4.5  
4.75  
5.0  
5.5  
5.25  
V
Input High Voltage  
V
V
2.0  
Vcc  
V
V
IH  
Except EXTAL, RESET, MODA/IRQA, MODB/IRQB  
Input Low Voltage  
-0.5  
0.8  
IL  
Except EXTAL, MODA/IRQA, MODB/IRQB  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
EXTAL  
EXTAL  
V
4.0  
-0.5  
2.5  
3.5  
-0.5  
-1  
Vcc  
0.6  
Vcc  
Vcc  
2.0  
1
V
IHC  
V
V
V
V
V
ILC  
IHR  
IHM  
ILM  
RESET  
V
MODA/IRQA and MODB/IRQB  
MODA/IRQA and MODB/IRQB  
V
V
I
uA  
in  
EXTAL, RESET, MODA/IRQA, MODB/IRQB, BR  
Three-State (Off-State) Input Current  
(@2.4 V/0.4 V)  
I
-10  
10  
uA  
TSI  
Output High Voltage  
Output Low Voltage  
(I = -0.4 mA)  
V
V
2.4  
V
V
OH  
OH  
(I = 1.6 mA;  
0.4  
OL  
OL  
RD, WR I = 1.6 mA; Open Drain  
OL  
HREQ I = 6.7 mA, TXD IOL = 6.7 mA)  
OL  
Total Supply Current  
5.25 V, 33 MHz  
5 . 5 V, 27 MHz  
5 . 5 V, 20 MHz  
I
I
I
I
I
160  
130  
100  
10  
185  
155  
115  
25  
mA  
mA  
mA  
mA  
µA  
DD33  
DD27  
DD20  
DDW  
DDS  
in WAIT Mode (see Note 1)  
in STOP Mode (see Note 1)  
100  
2000  
Input Capacitance  
(see Note 2)  
Cin  
10  
pf  
Notes:  
1. In order to obtain these results all inputs must be terminated (i.e., not allowed to float).  
2. Periodically sampled and not 100% tested.  
DSP56001  
MOTOROLA  
8
DSP56001 Electrical Characteristics  
AC Electrical Characteristics  
The timing waveforms in the AC Electrical Characteristics are tested with a V maximum of 0.5 V and a V minimum of 2.4 V for  
IL  
IH  
all pins, except EXTAL, RESET, MODA, and MODB. These four pins are tested using the input levels set forth in the DC Electrical  
Characteristics. AC timing specifications which are referenced to a device input signal are measured in production with respect to the  
50% point of the respective input signal’s transition. DSP56001 output levels are measured with the production test machine V and  
OL  
V
reference levels set at 0.8 V and 2.0 V respectively.  
OH  
AC Electrical Characteristics - Clock Operation  
The DSP56001 system clock may be derived from the on-chip crystal oscillator as shown in Clock Figure 1, or it may be externally  
supplied. An externally supplied square wave voltage source should be connected to EXTAL, leaving XTAL physically unconnected  
(see Clock Figure 2) to the board or socket. The rise and fall time of this external clock should be 5 ns maximum.  
Num  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Unit  
Min  
Max  
20.5  
150  
Min  
Max  
27.0  
150  
Min  
Max  
33.0  
150  
4.0  
22  
4.0  
17  
4.0  
MHz  
ns  
Frequency of Operation (EXTAL Pin)  
External Clock Input High (tch) —  
1
2
13.5  
EXTAL Pin  
(see Note 1 and 2)  
22  
150  
17  
150  
13.5  
150  
ns  
External Clock Input Low (tcl) —  
EXTAL Pin  
(see Note 1 and 2)  
3
4
48.75  
97.5  
250  
500  
37  
74  
250  
500  
30.33  
60  
250  
500  
ns  
ns  
Clock Cycle Time = cyc = 2T  
Instruction Cycle Time = Icyc = 4T  
Notes:  
1. External Clock Input High and External Clock Input Low are measured at 50% of the  
input transition. tch and tcl are dependent on the duty cycle.  
2. T = Icyc / 4 is used in the electrical characteristics. T represents an average which is  
independent of the duty cycle.  
DSP56001  
MOTOROLA  
9
DSP56001 Electrical Characteristics  
EXTAL  
EXTAL  
XTAL  
XTAL  
R
R2  
R1  
C1  
C
C
L1  
XTAL1*  
XTAL1  
C2  
C3  
rd Overtone  
Crystal Oscillator  
Fundamental Frequency  
Crystal Oscillator  
3
Suggested Component Values  
For f = 4 MHz:  
Suggested Component Values  
R1 = 470 K+ 10%  
osc  
R = 680 K+ 10%  
R2 = 330 + 10%  
C = 20 pf + 20%  
C1 = 0.1 µf + 20%  
C2 = 26 pf + 20%  
For f  
= 30 MHz:  
C3 = 20 pf + 10%  
osc  
R = 680 K+ 10%  
L1 = 2.37 µH + 10%  
C = 20 pf + 20%  
XTAL =33 MHz, AT cut, 20 pf load,  
50max series resistance  
Notes:  
Notes:  
(1) *3 overtone crystal.  
(2) The suggested crystal source is ICM, # 471163 - 33.00 (33  
MHz 3 overtone, 20 pf load).  
(3) R2 limits crystal current  
rd  
(1) The suggested crystal source is ICM,  
# 433163 - 4.00 (4MHz fundamental, 20  
pf load) or # 436163 - 30.00 (30 MHz fun-  
damental, 20 pf load).  
rd  
(4) Reference Benjamin Parzen, The Design of Crystal and  
Other Harmonic Oscillators, John Wiley& Sons, 1983  
Clock Figure 1. Crystal Oscillator Circuits  
VIHC  
Midpoint  
EXTAL  
VILC  
1
2
3
4
Note: The midpoint is VILC + 0.5 (VIHC - VILC).  
Clock Figure 2. External Clock Timing  
DSP56001  
MOTOROLA  
10  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - Reset, Stop, Mode Select and Interrupt Timing  
(Vcc = 5.0 Vdc +10%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 20.5 MHz and 27 MHz)  
J
(Vcc = 5.0 Vdc + 5%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz)  
J
(See Control Figure 1 through 8)  
cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles  
WS = Number of wait states (1 WS = 1 cyc = 2T) programmed into external bus access  
using BCR (WS = 0 - 15)  
tch = Clock high period  
tcl = Clock low period  
Num  
9
Unit  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Min  
Max  
Min  
Max  
Min  
Max  
Delay from RESET Assertion to  
Address High Impedance (periodically  
sampled and not 100% tested)  
50  
38  
31  
ns  
10  
Minimum Stabilization Duration  
Internal Osc. (see Note 1)  
75000 cyc  
75000*cyc  
75000*cyc  
ns  
ns  
*
25 cyc  
25 cyc  
25 cyc  
External Clock (see Note 2)  
*
*
*
11  
12  
13  
Delay from Asynchronous RESET  
Deassertion to First External Address  
Output (Internal Reset Negation)  
8 cyc  
*
9 cyc+40  
*
8*cyc  
15  
9*cyc+31  
cyc-8  
8*cyc  
13  
9*cyc+25  
cyc-7  
ns  
ns  
ns  
Synchronous Reset Setup Time from  
RESET Deassertion to Falling Edge of  
External Clock  
20  
cyc-10  
Synchronous Reset Delay Time from  
the Synchronous Falling Edge of Exter-  
nal Clock to the First External Address  
Output  
8 cyc+5  
*
8 cyc+30  
*
8*cyc+5  
8*cyc+23  
8*cyc+5  
8*cyc+19  
14  
15  
16  
Mode Select Setup Time  
Mode Select Hold Time  
100  
0
77  
0
62  
0
ns  
ns  
Edge-Triggered Interrupt Request  
assertion  
25  
15  
17  
10  
16  
10  
ns  
ns  
16a  
deassertion  
VIHR  
RESET  
10  
11  
9
A0-A15  
First Fetch  
Control Figure 1. Reset Timing  
DSP56001  
MOTOROLA  
11  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - Reset, Stop, Mode Select, and Interrupt Timing  
(Continued)  
NOTE  
When using fast interrupts and IRQA and IRQB are defined as level-sensitive, then timings 19 through 22 apply  
to prevent multiple interrupt service. To avoid these timing restrictions, the negative edge-triggered mode is rec-  
ommended when using fast interrupt. Long interrupts are recommended when using level-sensitive mode.  
Num  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
17  
Delay from IRQA, IRQB Assertion to  
External Memory Access Address Out  
Valid Caused by First Interrupt  
Instruction Fetch  
5 cyc+tch  
5 cyc+tch  
5 cyc+tch  
ns  
ns  
*
9 cyc+tch  
*
*
Instruction Execution  
9 cyc+tch  
9 cyc+tch  
*
*
*
18  
19  
Delay from IRQA, IRQB Assertion to  
General Purpose Transfer Output Valid  
Caused by First Interrupt Instruction  
Execution  
11+cyc  
+tch  
11 cyc  
+tch  
11 cyc  
+tch  
ns  
ns  
ns  
*
*
Delay from Address Output Valid  
Caused by First Interrupt Instruction  
Execution to Interrupt Request  
Deassertion for Level Sensitive Fast  
Interrupts  
2 cyc+tcl+  
2 cyc+tcl+  
2 cyc+tcl+  
*
*
*
(cyc WS)  
(cyc WS)  
(cyc WS)  
*
*
*
-44  
-34  
-27  
20  
21  
Delay from RD Assertion to Interrupt  
Request Deassertion for Level  
Sensitive Fast Interrupts  
2 cyc+  
2 cyc+  
2 cyc+  
*
*
*
(cyc WS)  
(cyc WS)  
(cyc WS)  
*
*
*
-40  
-31  
-25  
Delay from WR Assertion to WS=0  
Interrupt Request Deassertion for  
WS>0 Level Sensitive Fast Interrupts  
2 cyc-40  
cyc+tcl+  
2 cyc-31  
cyc+tcl+  
2 cyc-25  
cyc+tcl+  
ns  
ns  
*
*
*
(cyc WS)  
(cyc WS)  
(cyc WS)  
*
*
*
-40  
-31  
-25  
22  
Delay from General-Purpose Output  
Valid to Interrupt Request Deassertion  
for Level Sensitive Fast Interrupts  
- If Second Interrupt Instruction is:  
Single Cycle  
Two Cycle  
tcl-60  
tcl-46  
tcl-37  
ns  
ns  
(2 cyc)+tcl  
(2 cyc)+tcl  
(2 cyc)+tcl  
*
*
*
-60  
-46  
-37  
DSP56001  
MOTOROLA  
12  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - Reset, Stop, Mode Select, and Interrupt Timing  
(Continued)  
Num  
Unit  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Min  
Max  
Min  
Max  
Min  
Max  
23  
Synchronous Interrupt Setup Time  
from IRQA, IRQB Assertion to the  
Synchronous Rising Edge of External  
Clock (see Notes 5, 6)  
25  
cyc-10  
19  
cyc-8  
16  
cyc-7  
ns  
ns  
24  
Synchronous Interrupt Delay Time  
from the Synchronous Rising Edge of  
External Clock to the First External  
Address Output Valid Caused by the  
First Instruction Fetch after Coming out  
of Wait State (see Notes 3, 5)  
13 cyc+  
13 cyc+  
13 cyc+  
13 cyc+  
13 cyc+  
13 cyc+  
*
*
*
*
*
*
tch+8  
tch+30  
tch+6  
tch+23  
tch+5  
tch+19  
25  
26  
Duration for IRQA Assertion to  
Recover from Stop State (see Note 4)  
25  
19  
16  
ns  
Delay from IRQA Assertion to Fetch of  
First Instruction (for Stop) for  
Internal Osc / OMR bit 6 = 0 65545 cyc  
65545 cyc  
65545 cyc  
ns  
ns  
*
*
*
External Clock / OMR bit 6 = 1  
(see Notes 1, 2, and 7)  
17 cyc  
17 cyc  
17 cyc  
*
*
*
27  
28  
Duration for Level Sensitive IRQA  
Assertion to Fetch of First Interrupt  
Instruction (for Stop) for  
Internal Osc / OMR bit 6 = 0 65533 cyc  
65533 cyc  
65533 cyc  
ns  
ns  
*
*
*
+tcl  
+tcl  
+tcl  
External Clock / OMR bit 6 = 1 5 cyc+tcl  
(see Notes 1, 2, and 7)  
5 cyc+tcl  
5 cyc+tcl  
*
*
*
Delay from Level Sensitive IRQA  
Assertion to Fetch of First Interrupt  
Instruction (for Stop) for  
Internal Osc / OMR bit 6 = 0  
External Clock / OMR bit 6 = 1  
(see Notes 1, 2, and 7)  
65545 cyc  
65545 cyc  
65545 cyc  
ns  
ns  
*
*
*
17 cyc  
17 cyc  
17 cyc  
*
*
*
Notes:  
1. A clock stabilization delay is required when using the on-chip crystal oscillator in  
two cases:  
1) after power-on reset, and  
2) when recovering from Stop mode.  
During this stabilization period, T will not be constant. Since this stabilization period  
varies, a delay of 150,000T is typically allowed to assure that the oscillator is stabilized  
before executing programs. While it is possible to set OMR bit 6 = 1 when using  
the internal crystal oscillator, it is not recommended and these specifications do not  
guarantee timings for that case. See Section 8.5 in the DSP56000/DSP56001 User’s Manual for  
additional information.  
2. Circuit stabilization delay is required during reset when using an external clock in  
two cases:  
1) after power-on reset, and  
2) when recovering from Stop mode.  
3. For Revision B silicon, the min and max numbers are 12cyc+Tch+8 and 12cyc+Tch+30, respec-  
tively.  
4. The minimum is specified for the duration of an edge triggered IRQA interrupt required to recover  
from the STOP state without having the IRQA interrupt accepted.  
5. Timing #23 is for all IRQx interrupts while timing #24 is only when exiting WAIT.  
6. Timing #23 triggers off T1 in the normal state and off T1/T3 when exiting the WAIT state.  
7. The timings in the table are for Rev. C parts. The timings for Rev. C parts are shorter by 1 cyc than  
the Rev. B parts when OMR6=0.  
DSP56001  
MOTOROLA  
13  
DSP56001 Electrical Characteristics  
EXTAL  
RESET  
12  
13  
11  
A0-A15,  
DS, PS  
X/Y  
Control Figure 2. Synchronous Reset Timing  
VIHR  
RESET  
14  
15  
VIHM  
VIH  
VIL  
MODA, MODB  
IRQA, IRQB  
VILM  
Control Figure 3. Operating Mode Select Timing  
IRQA, IRQB  
16a  
16  
Control Figure 4. External Interrupt Timing (Negative Edge-Triggered)  
DSP56001  
MOTOROLA  
14  
DSP56001 Electrical Characteristics  
A0-A15  
RD  
First Interrupt Instruction Execution  
20  
21  
WR  
17  
19  
IRQA  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O  
18  
22  
IRQA  
IRQB  
b) General Purpose I/O  
Control Figure 5. External Level-Sensitive Fast Interrupt Timing  
DSP56001  
MOTOROLA  
15  
DSP56001 Electrical Characteristics  
T0, T2  
T1, T3  
EXTAL  
23  
IRQA, IRQB  
24  
A0-A15, DS  
PS, X/Y  
Control Figure 6. Synchronous Interrupt and Synchronous Wait State Timing  
25  
IRQA  
26  
A0-A15, DS,  
PS, X/Y  
First Instruction Fetch  
Control Figure 7. Recovery from Stop State Using IRQA  
27  
28  
IRQA  
A0-A15, DS,  
PS, X/Y  
First IRQA Interrupt  
Instruction Fetch  
Control Figure 8. Recovery from Stop State Using IRQA Interrupt Service  
DSP56001  
MOTOROLA  
16  
DSP56001 Electrical Characteristics  
HOST PORT USAGE CONSIDERATIONS  
Careful synchronization is required when reading multibit registers that are written by another asynchronous system. This is a common  
problem when two asynchronous systems are connected. The situation exists in the Host port. The considerations for proper operation  
are discussed below.  
Host Programmer Considerations  
1. Unsynchronized Reading of Receive Byte Registers  
When reading receive byte registers, RXH, RXM, or RXL, the Host programmer should use interrupts or poll the RXDF flag which  
indicates that data is available. This assures that the data in the receive byte registers will be stable.  
2. Overwriting Transmit Byte Registers  
The Host programmer should not write to the transmit byte registers, TXH, TXM, or TXL, unless the TXDE bit is set indicating that  
the transmit byte registers are empty. This guarantees that the transmit byte registers will transfer valid data to the HRX register.  
3. Synchronization of Status Bits from DSP to Host  
HC, HREQ, DMA, HF3, HF2, TRDY, TXDE, and RXDF (refer to DSP56000/DSP56001 User’s Manual, I/O Interface section, Host/  
DMA Interface Programming Model for descriptions of these status bits) status bits are set or cleared from inside the DSP and  
read by the Host processor. The Host can read these status bits very quickly without regard to the clock rate used by the DSP,  
but the possibility exists that the state of the bit could be changing during the read operation. This is generally not a system  
problem, since the bit will be read correctly in the next pass of any Host polling routine.  
However, if the Host asserts the HEN for more than timing number 31a (T31a), with a minimum cycle time of timing number 32a  
(T32a), then the status is guaranteed to be stable.  
A potential problem exists when reading status bits HF3 and HF2 as an encoded pair. If the DSP changes HF3 and HF2 from 00  
to 11, there is a small probability that the Host could read the bits during the transition and receive 01 or 10 instead of 11. If the  
combination of HF3 and HF2 has significance, the Host could read the wrong combination.  
Solution:  
a. Read the bits twice and check for consensus.  
b. Assert HEN access for T31a so that status bit transitions are stabilized.  
4. Overwriting the Host Vector  
The Host programmer should change the Host Vector register only when the Host Command bit (HC) is clear. This change will  
guarantee that the DSP interrupt control logic will receive a stable vector.  
5. Cancelling a Pending Host Command Exception  
The Host processor may elect to clear the HC bit to cancel the Host Command Exception request at any time before it is  
recognized by the DSP. Because the Host does not know exactly when the exception will be recognized (due to exception  
processing synchronization and pipeline delays), the DSP may execute the Host exception after the HC bit is cleared. For these  
reasons, the HV bits must not be changed at the same time the HC bit is cleared.  
DSP Programmer Considerations  
1. Reading HF0 and HF1 as an Encoded Pair  
DMA, HF1, HF0, and HCP, HTDE, and HRDF (refer to DSP56000/DSP56001 User’s Manual, I/O Interface section, Host/DMA  
Interface Programming Model for descriptions of these status bits) status bits are set or cleared by the Host processor side of the  
interface. These bits are individually synchronized to the DSP clock.  
A potential problem exists when reading status bits HF1 and HF2 as an encoded pair, i.e., the four combinations 00, 01, 10, and  
11 each have significance. A very small probability exists that the DSP will read the status bits synchronized during transition.  
The solution to this potential problem is to read the bits twice for consensus.  
DSP56001  
MOTOROLA  
17  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - Host I/O Timing  
(Vcc = 5.0 Vdc + 10%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 20.5 MHz and 27 MHz)  
J
(Vcc = 5.0 Vdc + 5%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz)  
J
(see Host Figures 1 through 6)  
cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles  
tHSDL = Host Synchronization Delay Time  
Active low lines should be “pulled up” in a manner consistent with the AC and DC specifications  
Num  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
30  
31  
Host Synchronous Delay (see Note 1)  
tcl  
cyc+tcl  
tcl  
cyc+tcl  
tcl  
cyc+tcl  
ns  
HEN/HACK Assertion Width  
(see Note 2)  
a.CVR, ICR, ISR Read (see Note 4)  
b.Read  
c.Write  
cyc+60  
50  
25  
cyc+46  
39  
19  
cyc+37  
31  
16  
ns  
ns  
ns  
32  
HEN/HACK Deassertion Width  
(see Note 2 and 5)  
25  
19  
16  
ns  
32a Minimum Cycle Time Between Two  
HEN Assertion for Consecutive CVR,  
ICR, and ISR Reads (see Note 2)  
2 cyc+60  
*
50  
2 cyc+46  
*
39  
2 cyc+37  
*
31  
ns  
ns  
ns  
ns  
ns  
33  
34  
35  
36  
Host Data Input Setup Time Before  
HEN/HACK Deassertion  
5
5
4
4
4
4
Host Data Input Hold Time After HEN/  
HACK Deassertion  
HEN/HACK Assertion to Output Data  
Active from High Impedance  
0
0
0
HEN/HACK Assertion to Output Data  
Valid (periodically sampled, and not  
100% tested)  
37  
38  
39  
40  
41  
42  
43  
44  
45  
HEN/HACK Deassertion to Output  
Data High Impedance  
5
0
5
0
5
0
5
5
35  
60  
4
0
4
0
4
0
4
4
27  
46  
4
0
4
0
4
0
4
4
22  
49  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Data Hold Time After HEN/  
HACK Deassertion  
HR/W Low Setup Time Before HEN  
Assertion  
HR/W Low Hold Time After HEN  
Deassertion  
HR/W High Setup Time to HEN  
Assertion  
HR/W High Hold Time After HEN/  
HACK Deassertion  
HA0-HA2 Setup Time Before HEN  
Assertion  
HA0-HA2 Hold Time After HEN  
Deassertion  
DMA HACK Assertion to HREQ  
Deassertion  
(see Note 3)  
DSP56001  
MOTOROLA  
18  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - Host I/O Timing (Continued)  
(Vcc = 5.0 Vdc + 10%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 20.5 MHz and 27 MHz  
J
(Vcc = 5.0 Vdc + 5%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz,  
J
see Host Figures 1 through 6)  
cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles  
tHSDL = Host Synchronization Delay Time  
Active low lines should be “pulled up” in a manner consistent with the AC and DC specifications  
Num  
Characteristics  
20.5 MHz  
27 MHz  
Min  
33 MHz  
Min  
Unit  
Min  
Max  
Max  
Max  
46  
DMA HACK Deassertion to HREQ  
Assertion  
(see Note 3)  
for DMA RXL Read tHSDL+cyc  
+tch+5  
tHSDL+cyc  
+tch+4  
tHSDL+cyc  
+tch+4  
ns  
for DMA TXL Write tHSDL+cyc+5  
tHSDL+cyc+4  
4
tHSDL+cyc+4  
4
ns  
ns  
for All Other Cases  
5
47  
48  
49  
Delay from HEN Deassertion to HREQ  
Assertion for RXL Read (see Note 3)  
tHSDL+cyc  
+tch+5  
tHSDL+cyc  
+tch+4  
tHSDL+cyc  
+tch+4  
ns  
Delay from HEN Deassertion to HREQ tHSDL+cyc+5  
Assertion for TXL Write (see Note 3)  
tHSDL+cyc+4  
tHSDL+cyc+4  
ns  
Delay from HEN Assertion to HREQ  
DeassertionforRXLRead,TXLWrite  
(see Note 3)  
5
75  
4
70  
4
65  
ns  
Notes:  
1. “Host synchronization delay (tHSDL)” is the time period required for the  
DSP56001 to sample any external asynchronous input signal, determine  
whether it is high or low, and synchronize it to the DSP56001 internal clock.  
2. See HOST PORT USAGE CONSIDERATIONS.  
3. HREQ is pulled up by a 1kresistor.  
4. This timing must be adhered to only if two consecutive reads from one of these registers are executed.  
5. It is recommended that timing #32 be 2cyc+tch+10 minimum for 20.5 MHz, 2cyc+tch+7 minimum for 27 MHz,  
and 2cyc+tch+6 minimum for 33 MHz if two consecutive writes to TXL are executed without polling TXDE or  
HREQ.  
EXTERNAL  
30  
30  
INTERNAL  
Host Figure 1. Host Synchronization Delay  
DSP56001  
MOTOROLA  
19  
DSP56001 Electrical Characteristics  
HREQ  
(OUTPUT)  
31  
32  
HACK  
(INPUT)  
41  
42  
HR/W  
(INPUT)  
36  
37  
35  
38  
Valid  
H0-H7  
(OUTPUT)  
Data  
Host Figure 2. Host Interrupt Vector Register (IVR) Read  
DSP56001  
MOTOROLA  
20  
DSP56001 Electrical Characteristics  
HREQ  
(OUTPUT)  
49  
47  
RXL  
32A  
HEN  
RXH  
RXM  
Read  
(INPUT)  
Read  
Read  
31  
43  
32  
44  
HA2-HA0  
(INPUT)  
Address  
Valid  
Address  
Valid  
Address  
Valid  
41  
42  
HR/W  
(INPUT)  
36  
35  
37  
38  
H0-H7  
(OUTPUT)  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Host Figure 3. Host Read Cycle (Non-DMA Mode)  
DSP56001  
MOTOROLA  
21  
DSP56001 Electrical Characteristics  
HREQ  
(OUTPUT)  
49  
48  
TXH  
TXM  
TXL  
HEN  
Write  
Write  
Write  
(INPUT)  
31  
43  
32  
44  
Address  
Valid  
Address  
Valid  
Address  
Valid  
HA2-HA0  
(INPUT)  
39  
40  
34  
HR/W  
(INPUT)  
33  
H0-H7  
(INPUT)  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Host Figure 4. Host Write Cycle (Non-DMA Mode)  
HREQ  
(OUTPUT)  
45  
46  
46  
46  
31  
32  
HACK  
(INPUT)  
RXH  
Read  
RXM  
Read  
RXL  
Read  
36  
35  
37  
38  
H0-H7  
(OUTPUT)  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Host Figure 5. Host DMA Read Cycle  
DSP56001  
MOTOROLA  
22  
DSP56001 Electrical Characteristics  
HREQ  
(OUTPUT)  
46  
45  
33  
46  
46  
31  
32  
HACK  
(INPUT)  
TXH  
Write  
TXM  
Write  
TXL  
Write  
34  
H0-H7  
(INPUT)  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Host Figure 6. Host DMA Write Cycle  
DSP56001  
MOTOROLA  
23  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - SCI Timing  
(Vcc = 5.0 Vdc + 10%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 20.5 MHz and 27 MHz,  
J
Vcc = 5.0 Vdc + 5%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz,  
J
see SCI Figures 1 and 2)  
cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles  
tSCC = Synchronous Clock Cycle Time (for internal clock tSCC is determined by the SCI clock control register and Icyc.)  
SCI Synchronous Mode Timing  
Num  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
55  
56  
57  
59  
Synchronous Clock Cycle — tSCC  
Clock Low Period  
8 cyc  
*
8 cyc  
*
8 cyc  
*
ns  
ns  
ns  
ns  
4 cyc-20  
4 cyc-15  
4 cyc-13  
*
*
*
Clock High Period  
4 cyc-20  
*
4 cyc-15  
*
4 cyc-13  
*
Output Data Setup to Clock Falling  
Edge (Internal Clock)  
2 cyc  
2 cyc  
2 cyc  
*
*
*
+tcl-50  
+tcl-39  
+tcl-31  
60  
61  
62  
63  
64  
65  
66  
Output Data Hold After Clock Rising  
Edge (Internal Clock)  
2 cyc  
-tcl-15  
2 cyc  
-tcl-11  
2 cyc  
-tcl-9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
*
*
*
Input Data Setup Time Before Clock  
Rising Edge (Internal Clock)  
2 cyc  
2 cyc  
2 cyc  
*
*
*
+tcl+45  
+tcl+35  
+tcl+28  
Input Data Not Valid Before Clock Ris-  
ing Edge (Internal Clock)  
2 cyc  
2 cyc  
2 cyc  
*
*
*
+tcl-10  
+tcl-8  
+tcl-6  
Clock Falling Edge to Output Data  
Valid (External Clock)  
63  
48  
39  
Output Data Hold After Clock Rising  
Edge (External Clock)  
cyc+12  
30  
cyc+9  
23  
cyc+8  
19  
Input Data Setup Time Before Clock  
Rising Edge (External Clock)  
Input Data Hold Time After Clock Ris-  
ing Edge (External Clock)  
40  
31  
25  
DSP56001  
MOTOROLA  
24  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - SCI Timing  
(Vcc = 5.0 Vdc + 10%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 20.5 MHz and 27 MHz,  
J
Vcc = 5.0 Vdc + 5%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz,  
J
see SCI Figures 1 and 2)  
cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles  
tACC = Asynchronous clock cycle time  
tACC = Asynchronous Clock Cycle Time (for internal clock tACC is determined by the SCI clock control register and Icyc)  
SCI Asynchronous Mode Timing - 1X Clock  
Num  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
67  
68  
69  
71  
Asynchronous Clock Cycle  
Clock Low Period  
64 cyc  
*
64 cyc  
*
64 cyc  
*
ns  
ns  
ns  
ns  
32 cyc-20  
32 cyc-15  
32 cyc-13  
*
*
*
Clock High Period  
32 cyc-20  
*
32 cyc-15  
*
32 cyc-13  
*
Output Data Setup to Clock Rising  
Edge (Internal Clock)  
32 cyc  
32 cyc  
32 cyc  
*
*
*
-100  
-77  
-61  
72  
Output Data Hold After Clock Rising  
Edge (Internal Clock)  
32 cyc  
-100  
32 cyc  
-77  
32 cyc  
-61  
ns  
*
*
*
DSP56001  
MOTOROLA  
25  
DSP56001 Electrical Characteristics  
INTERNAL CLOCK  
55  
58  
56  
57  
58  
SCLK  
(OUTPUT)  
59  
60  
TXD  
RXD  
DATA VALID  
61  
62  
DATA  
VALID  
EXTERNAL CLOCK  
55  
57  
56  
SCLK  
(INPUT)  
63  
64  
TXD  
RXD  
DATA  
VALID  
65  
66  
DATA VALID  
SCI Figure 1. SCI Synchronous Mode Timing  
DSP56001  
MOTOROLA  
26  
DSP56001 Electrical Characteristics  
67  
70  
68  
69  
72  
70  
1X SCK  
(OUTPUT)  
71  
TXD  
DATA VALID  
Note: In the wire-OR mode, TXD can be pulled up by 1KΩ  
SCI Figure 2. SCI Asynchronous Mode Timing  
DSP56001  
MOTOROLA  
27  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - SSI Timing  
(Vcc = 5.0 Vdc + 10%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 20.5 MHz and 27 MHz,  
J
Vcc = 5.0 Vdc + 5%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz,  
J
see SSI Figures 1 and 2)  
cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles  
tSSICC = SSI clock cycle time  
TXC (SCK Pin) = Transmit Clock  
RXC (SC0 or SCK Pin) = Receive Clock  
FST (SC2 Pin) = Transmit Frame Sync  
FSR (SC1 or SC2 Pin) = Receive Frame Sync  
i ck = Internal Clock  
x ck = External Clock  
g ck = Gated Clock  
i ck a = Internal Clock, Asynchronous Mode (Asynchronous implies that TXC and  
RXC are two different clocks)  
i ck s = Internal Clock, Synchronous Mode (Synchronous implies that TXC and  
RXC are the same clock)  
bl = bit length  
wl = word length  
Num  
Unit  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Min  
Max  
Min  
Max  
Min  
Max  
80  
81  
82  
84  
Clock Cycle (see Note 1)  
Clock High Period  
4 cyc  
*
4 cyc  
*
4 cyc  
*
ns  
ns  
ns  
2 cyc-20  
2 cyc-15  
2 cyc-13  
*
*
*
Clock High Period  
2 cyc-20  
*
2 cyc-15  
*
2 cyc-13  
*
RXC Rising Edge to FSR Out (bl) High  
x ck  
i ck a  
80  
50  
61  
38  
48  
31  
ns  
ns  
85  
86  
87  
88  
RXC Rising Edge to FSR Out (bl) Low  
x ck  
i ck a  
70  
40  
54  
31  
43  
25  
ns  
ns  
RXC Rising Edge to FSR Out (wl) High  
x ck  
i ck a  
70  
40  
54  
31  
43  
25  
ns  
ns  
RXC Rising Edge to FSR Out (wl) Low  
x ck  
i ck a  
70  
40  
54  
31  
43  
25  
ns  
ns  
Data In Setup Time Before RXC (SCK  
in Synchronous Mode) Falling Edge  
x ck  
i ck a  
i ck s  
15  
35  
25  
12  
27  
19  
10  
22  
16  
ns  
ns  
ns  
89  
90  
91  
92  
Data In Hold Time After RXC Falling  
Edge  
x ck  
i ck a  
35  
5
27  
4
22  
4
ns  
ns  
FSR Input (bl) High Before RXC Falling  
Edge  
x ck  
15  
35  
12  
27  
10  
23  
ns  
ns  
i ck a  
FSR Input (wl) High Before RXC  
Falling Edge  
x ck  
i ck a  
20  
55  
15  
42  
13  
34  
ns  
ns  
FSR Input Hold Time After RXC Falling  
Edge x ck  
i ck a  
35  
5
27  
4
22  
4
ns  
ns  
DSP56001  
MOTOROLA  
28  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - SSI Timing (Continued)  
Num  
Unit  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Min  
Max  
Min  
Max  
Min  
Max  
93  
94  
95  
96  
97  
98  
99  
Flags Input Setup Before RXC Falling  
Edge  
x ck  
30  
50  
23  
39  
19  
31  
ns  
nss  
i ck a  
Flags Input Hold Time After RXC  
Falling Edge  
x ck  
35  
5
27  
4
22  
4
ns  
ns  
i ck a  
TXC Rising Edge to FST Out (bl) High  
x ck  
i ck a  
70  
30  
54  
23  
43  
19  
ns  
ns  
TXC Rising Edge to FST Out (bl) Low  
x ck  
i ck a  
65  
35  
50  
27  
40  
22  
ns  
ns  
TXC Rising Edge to FST Out (wl) High  
x ck  
i ck a  
65  
35  
50  
27  
40  
22  
ns  
ns  
TXC Rising Edge to FST Out (wl) Low  
x ck  
i ck a  
65  
35  
50  
27  
40  
22  
ns  
ns  
TXC Rising Edge to Data Out Enable  
from High Impedance  
x ck  
i ck a  
65  
40  
50  
31  
40  
25  
ns  
ns  
100 TXC Rising Edge to Data Out Valid  
x ck  
i ck a  
65  
40  
50  
31  
40  
25  
ns  
ns  
101 TXC Rising Edge to Data Out High  
Impedance (periodically sampled, and  
not 100% tested)  
x ck  
i ck a  
70  
40  
54  
31  
43  
25  
ns  
ns  
101a TXC Falling Edge to Data Out High  
Impedance for Gated Clock Mode Only  
g ck cyc+tch  
cyc+tch  
cyc+tch  
ns  
102 FST Input (bl) Setup Time Before TXC  
Falling Edge  
x ck  
i ck a  
15  
35  
12  
27  
10  
23  
ns  
ns  
103 FST Input (wl) to Data Out Enable from  
High Impedance  
60  
46  
37  
ns  
104 FST Input (wl) Setup Time Before TXC  
Falling Edge  
x ck  
i ck a  
20  
55  
15  
42  
13  
34  
ns  
ns  
105 FST Input Hold Time After TXC Falling  
Edge x ck  
i ck a  
35  
5
27  
4
22  
4
ns  
ns  
106 Flag Output Valid After TXC Rising  
Edge  
x ck  
i ck a  
70  
40  
54  
31  
43  
25  
ns  
ns  
Note:  
1. For internal clock, External Clock Cycle is defined by Icyc and SSI control register.  
DSP56001  
MOTOROLA  
29  
DSP56001 Electrical Characteristics  
80  
81  
83  
83  
82  
RXC  
(Input/Output)  
84  
85  
FSR (Bit)  
OUT  
86  
87  
FSR (Word)  
OUT  
88  
89  
DATA IN  
First Bit  
Last Bit  
90  
92  
FSR (Bit)  
IN  
91  
92  
FSR (Word)  
IN  
93  
94  
FLAGS IN  
SSI Figure 1. SSI Receiver Timing  
DSP56001  
MOTOROLA  
30  
DSP56001 Electrical Characteristics  
80  
83  
82  
83  
81  
TXC  
(Input/Output)  
95  
96  
FST (Bit)  
OUT  
98  
97  
FST (Word)  
OUT  
100  
99  
100  
101  
101a  
DATA OUT  
First Bit  
Last Bit  
102  
105  
104  
FST (Bit)  
IN  
103  
105  
FST (Word)  
IN  
106  
(See Note 1)  
FLAGS OUT  
Note:  
1. In the Network mode, output flag transitions can occur at the start of each time slot within  
the frame. In the Normal mode, the output flag state is asserted for the entire frame  
period.  
SSI Figure 2. SSI Transmitter Timing  
DSP56001  
MOTOROLA  
31  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics —  
Capacitance Derating — External Bus Asynchronous Timing  
Vcc = 5.0 Vdc + 10%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 20.5 MHz and 27 MHz,  
J
Vcc = 5.0 Vdc + 5%, T = -40 to +105° C, CL = 50 pf + 1 TTL Load at 33 MHz, see Bus Figures 1 and 2  
J
cyc = Clock cycle = 1/2 instruction cycle = 2 T cycles  
WS = Number of Wait States, Determined by BCR Register (WS = 0 to 15)  
The DSP56001 External Bus Timing Specifications are designed and tested at the maximum capacitive load of 50 pf, including  
stray capacitance. Typically, the drive capability of the External Bus pins (A0-A15, D0-D23, PS, DS, RD, WR, X/Y) derates  
linearly at 1 ns per 12 pf of additional capacitance from 50 pf to 250 pf of loading. Port B and C pins derate linearly at 1 ns per  
5 pf of additional capacitance from 50 pf to 250 pf of loading.  
Active low inputs should be “pulled up” in a manner consistent with the AC and DC specifications.  
To conserve power, when an internal memory access follows an external memory access, the RD and WR strobes remain  
deasserted and A0-A15 and X/Y do not change from their previous state. Both PS and DS will be deasserted (they do not  
change between two external accesses to the same memory space) indicating that no external memory access is occurring.  
If BR has been asserted, then the bus signals will be three-stated according to the timing information in this data sheet.  
Num  
Characteristics  
20.5 MHz  
Min Max  
27 MHz  
Min Max  
33 MHz  
Min Max  
Unit  
115 Delay from BR Assertion to BG  
Assertion (see Note 1) 2 cyc+tch 4*cyc+tch+ 2 cyc+tch 4*cyc+tch+ 2 cyc+tch 4*cyc+tch+  
ns  
ns  
ns  
*
*
*
20  
cyc+tch 4*cyc+tch+ cyc+tch 4*cyc+tch+ cyc+tch 4*cyc+tch+  
cyc*WS+20 cyc*WS+15 cyc*WS+13  
cyc+tch 6*cyc+tch+ cyc+tch 6*cyc+tch+ cyc+tch 6*cyc+tch+  
15  
13  
(see Note 2)  
(see Note 3)  
2*cyc*WS+  
2*cyc*WS+  
2*cyc*WS+  
20  
15  
13  
(see Note 4)  
(see Note 5)  
Infinity  
tch+4  
Infinity  
tch+3  
Infinity  
tch+3  
ns  
ns  
cyc+tch+30  
cyc+tch+23  
cyc+tch+19  
116 Flags Input Hold Time After RXC  
Falling Edge Deassertion  
2*cyc  
4*cyc+20  
2*cyc  
4*cyc+15  
2*cyc  
4*cyc+13  
ns  
117 BG Deassertion Duration  
2*cyc-10  
0
2*cyc-8  
0
2*cyc-6  
0
ns  
ns  
118 Delay from Address, Data, and Control  
Bus High Impedance to BG Assertion  
119 Delay from BG Deassertion to  
Address, Data, and Control Bus  
Enabled  
tch-10  
tch-8  
tch-6  
ns  
120 Address Valid to WR Assertion WS=0  
tcl-9  
tcl+5  
cyc+5  
tcl-7  
cyc-7  
tcl+5  
cyc+5  
tcl-5.5  
cyc-5.5  
tcl+5  
cyc+5  
ns  
ns  
WS>0 cyc-9  
121 WR Assertion Width  
WS=0 cyc-9  
WS>0 WS*cyc  
+tcl-9  
cyc-7  
WS*cyc  
+tcl-7  
cyc-5.0  
WS*cyc  
+tcl-5.0  
ns  
ns  
122 WR Deassertion to Address Not Valid  
tch-12  
tch-9  
tch-7.5  
ns  
123 WR Assertion to Data Out Valid WS=0  
WS>0  
tch-9  
0
tch+10  
10  
tch-7  
0
tch+8  
8
tch-5.5  
0
tch+6.5  
6.5  
ns  
ns  
124 Data Out Hold Time from WR  
Deassertion (The maximum specifica-  
tion is periodically sampled, and not  
100% tested.)  
tch-9  
tch+7  
tch-7  
tch+6  
tch-5.5  
tch+4.5  
ns  
125 Data Out Setup Time to WR  
Deassertion (see Note 6)  
WS=0  
WS>0 WS*cyc  
+tcl-5  
tcl-5  
tcl-5  
WS*cyc  
+tcl-5  
tcl-5  
WS*cyc  
+tcl-5  
ns  
ns  
126 RD Deassertion to Address Not Valid  
tch-9  
tch-7  
tch-5.5  
ns  
DSP56001  
MOTOROLA  
32  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - External Bus Asynchronous Timing  
(Continued)  
Num  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
127 Address Valid to  
RD deassertion  
WS = 0  
WS > 0 ((WS+1)  
cyc+tcl-8  
cyc+tcl-6  
((WS+1)  
cyc)+tcl-6  
cyc+tcl-6  
((WS+1)  
cyc)+tcl-6  
ns  
ns  
*
*
*
cyc)+tcl-8  
0
128 Input Data Hold Time to RD  
Deassertion  
0
0
ns  
129 RD Assertion Width  
WS = 0  
WS > 0 ((WS+1)*  
cyc)-9  
cyc-9  
cyc-7  
((WS+1)*  
cyc)-7  
cyc-5.5  
((WS+1)*  
cyc)-5.5  
ns  
ns  
130 Address Valid to  
Input Data Valid  
WS = 0  
WS > 0  
cyc+tcl-18  
((WS+1)  
cyc)+tcl-18  
cyc+tcl-14  
((WS+1)  
cyc)+tcl-14  
cyc+tcl-11  
((WS+1)  
cyc)+tcl-11  
ns  
ns  
*
*
*
131 Address Valid to RD Assertion  
tcl-9  
tcl+5  
tcl-7  
tcl+5  
tcl-5.5  
tcl+5  
ns  
132 RD Assertion to  
Input Data Valid  
WS=0  
WS>0  
cyc-14  
((WS+1)*  
cyc)-14  
cyc-11  
((WS+1)*  
cyc)-11  
cyc-9  
((WS+1)*  
cyc)-9  
ns  
ns  
133 WR Deassertion to RD Assertion  
134 RD Deassertion to RD Assertion  
cyc-15  
cyc-10  
cyc-15  
cyc-12  
cyc-8  
cyc-10  
cyc-6.5  
ns  
ns  
135 WR Deassertion to  
WR Assertion  
WS=0  
cyc-12  
cyc+tch-12  
cyc-10  
cyc+tch-10  
ns  
ns  
WS>0 cyc+tch-15  
136 RD Deassertion to  
WR Assertion  
WS=0  
WS>0 cyc+tch-10  
cyc-10  
cyc-8  
cyc+tch-8  
cyc-6.5  
cyc+tch-  
6.5  
ns  
ns  
Notes:  
1. With no external access from the DSP.  
2. During external read or write access.  
3. During external read-modify-write access.  
4. During the STOP mode the external bus will not be released and BG will not go low. However,  
if the bus is released (BG = 0) and the STOP instruction is executed while BG = 0 then the bus will remain  
released while the DSP is in the stop state and BG will remain low.  
5. During the WAIT mode the BR/BG circuits remain active.  
6. Typical values at 5V are: at 20.5 MHz and WS=0,  
at 20.5 MHz and WS>0,  
Min =  
Min = WS cyc+tcl-4  
tcl-4  
*
at 27  
at 27  
MHz and WS=0,  
MHz and WS>0,  
Min =  
Min = WS cyc+tcl-3  
tcl-3  
*
at 33  
at 33  
MHz and WS=0,  
MHz and WS>0,  
Min =  
tcl-2.5  
Min = WS cyc+tcl-2.5  
*
DSP56001  
MOTOROLA  
33  
DSP56001 Electrical Characteristics  
BR  
BG  
115  
116  
119  
117  
118  
A0-A15, PS,  
DS, X/Y,  
RD, WR  
D0-D23  
Async. Bus Figure 1. Bus Request / Bus Grant Timing  
A0-A15, DS,  
PS, X/Y  
(See Note 1)  
126  
127  
129  
131  
134  
RD  
122  
121  
120  
135  
123  
133  
136  
132  
WR  
130  
124  
128  
125  
DATA  
IN  
D0-D23  
DATA OUT  
Note:  
1. During Read-Modify-Write instructions and internal instructions,  
the address lines do not change state.  
Async. Bus Figure 2. External Bus Asynchronous Timing  
DSP56001  
MOTOROLA  
34  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - External Bus Synchronous Timing  
Vcc = 5.0 Vdc + 10%; T = -40 to 105° C at 20.5 MHz 27 MHz  
J
Vcc = 5.0 Vdc + 5%; T = -40 to 105° C at 33 MHz  
J
Num  
Unit  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Min  
Max  
Min  
Max  
Min  
Max  
140  
24  
19  
19  
ns  
Clk Low Transition To Address Valid  
141 Clk High Transition To WR  
Assertion (see Note 2)  
WS = 0  
WS > 0  
0
0
19  
tch+19  
0
0
15  
tch+15  
0
0
17  
tch+17  
ns  
ns  
142 Clk High Transition To WR  
Deassertion  
5
21  
5
16  
5
13  
ns  
143 Clk High Transition To RD Assertion  
144 Clk High Transition To RD Deassertion  
145 Clk Low Transition To Data-Out Valid  
0
5
19  
17  
25  
0
5
15  
13  
19  
0
16  
10.5  
19  
ns  
ns  
ns  
ns  
4.5  
5
4
146 Clk Low Transition To Data-Out Invalid  
(see Note 3)  
3.5  
147 Data-In Valid To Clk High Transition  
(Setup)  
0
12  
3
0
12  
3
0
13  
3
ns  
148 Clk High Transition To Data-In Invalid  
(Hold)  
ns  
ns  
149 Clk Low To Address Invalid  
(see Note 3)  
ns  
Notes:  
1. AC timing specifications which are referenced to a device input signal are  
measured in production with respect to the 50% point of the respective input  
signal’s transition.  
2. WS are wait state values specified in the BCR.  
3. Clk low to data-out invalid (spec. 146) and Clk low to address invalid (spec.  
149) indicate the time after which data/address are no longer guaranteed to  
be valid.  
DSP56001  
MOTOROLA  
35  
DSP56001 Electrical Characteristics  
T0  
T1  
T2  
T3  
T0  
T1  
T2  
T3  
T0  
CLK in  
A0-A15  
DS,PS  
X/Y  
149  
140  
143  
144  
RD  
141  
142  
WR  
147  
148  
D0-D23  
Data Out  
Data In  
145  
146  
Sync. Bus Figure 1. DSP56001 Synchronous Bus Timing  
Note: During Read-Modify-Write Instructions, the address lines do not change states.  
DSP56001  
MOTOROLA  
36  
DSP56001 Electrical Characteristics  
AC Electrical Characteristics - Bus Strobe / Wait Timing  
Num  
Unit  
Characteristics  
20.5 MHz  
27 MHz  
33 MHz  
Min  
Max  
Min  
Max  
Min  
Max  
150  
4
4
24  
3
3
19  
2.5  
2.5  
19  
ns  
Clk Low Transition To BS Assertion  
151 WT Assertion To Clk Low Transition  
(setup time)  
ns  
ns  
152 Clk Low Transition To WT Deassertion  
For Minimum Timing  
14  
8
cyc-8  
11  
6
cyc-6  
12  
5
cyc-5  
ns  
153 WT Deassertion To Clk Low Transition  
For Maximum Timing (2 wait states  
ns  
154 Clk High Transition To BS Deassertion  
155 BS Assertion To Address Valid  
5
-2  
0
26  
10  
4
-2  
0
20  
8
3.5  
-2  
0
19  
6.5  
ns  
ns  
ns  
156 BS Assertion To WT Assertion  
(see Note 2)  
cyc-15  
cyc-11  
cyc-10  
157 BS Assertion To WT Deassertion  
(See Note 2 and Note 4)  
WS < 2  
WS> 2  
cyc  
(WS-1)  
2*cyc-15  
WS*cyc  
-15  
cyc  
(WS-1)  
2*cyc-11  
WS*cyc  
-11  
cyc+4  
(WS-1)  
2*cyc-10  
WS*cyc  
-10  
ns  
ns  
cyc  
cyc  
cyc+4  
*
*
*
158 WT Deassertion To BS Deassertion  
cyc+tcl  
tch-7  
tch-10  
16  
2 cyc+tcl  
cyc+tcl  
tch-6  
tch-8  
12  
2 cyc+tcl  
cyc+tcl  
tch-4.5  
tch-6.5  
10  
2 cyc+tcl  
*
*
*
+23  
+17  
+15  
ns  
ns  
159 Minimum BS Deassertion Width For  
Consecutive External Accesses  
160 BS Deassertion To Address Invalid  
(see Note 3)  
161 Data-In Valid to RD Deassertion  
(Set Up)  
ns  
Note:  
1. AC timing specifications which are referenced to a device input signal are measured in production with  
respect to the 50% point of the respective input signal’s transition.  
2. If wait states are also inserted using the BCR and if the number of wait states is greater than 2, then  
specification numbers 156 and 157 can be increased accordingly.  
3. BS deassertion to address invalid indicates the time after which the address are no longer guaranteed  
to be valid.  
4. The minimum number of wait states when using BS/WT is two (2).  
5. For read-modify-write instructions, the address lines will not change states between the read and the  
write cycle. However, BS will deassert before asserting again for the write cycle. If wait states are de-  
sired for each of the read and write cycle, the WT pin must be asserted once for each cycle.  
DSP56001  
MOTOROLA  
37  
DSP56001 Electrical Characteristics  
T0  
T1  
T2  
Tw  
T2  
Tw  
T2  
T3  
T0  
EXTAL  
140  
150  
149  
A0-A15,  
PS, DS,  
X/Y  
154  
BS  
152  
153  
151  
WT  
RD  
143  
144  
148  
147  
D0-D23  
WR  
Data In  
141  
142  
145  
146  
Data Out  
D0-D23  
Bus Arbitration Figure 1. DSP56001 Synchronous BS / WT Timings  
Note:During Read-Modify-Write Instructions, the address lines do not change state.  
However, BS will deassert before asserting again for the write cycle.  
DSP56001  
MOTOROLA  
38  
DSP56001 Electrical Characteristics  
A0-A15,  
PS, DS,  
X/Y  
160  
155  
BS  
159  
157  
158  
156  
WT  
RD  
126  
131  
128  
161  
D0-D23  
WR  
Data In  
120  
122  
124  
123  
125  
Data Out  
D0-D23  
Bus Arbitration Figure 2. DSP56001 Asynchronous BS / WT Timings  
Note:  
During Read-Modify-Write Instructions, the address lines will not change states.  
However, BS will deassert before asserting again for the write cycle.  
DSP56001  
MOTOROLA  
39  
DSP56001 Electrical Characteristics  
DSP56001  
MOTOROLA  
40  
APPENDIX A  
ORDERING INFORMATION  
DSP56001FE 33  
Frequency  
20 = 20.5 MHz.  
27 = 27 MHz  
33 = 33 MHz.  
Pack age Type  
RC = Pin Grid Array  
FE = Ceramic Quad  
Flat Pack (CQFP)  
DSP Type  
56001 = RAM Part  
FC = Plastic Quad  
Flat Pack (PQFP)  
DSP56001 SOCKET INFORMATION  
PGA  
Supplier  
Telephone  
Socket Type  
Part Number  
Comment  
Advanced Interconnections  
(401) 823-5200  
AMP  
2
Standard 88 Pin  
Standard 88 Pin  
Standard 128 Pin  
Custom Pinout  
4CS088-01TG  
Includes Cutout in Center  
(717) 564-0100  
1-916223-3  
1-55283-9  
1-55383-4  
Low Insertion Force  
ZIF Production  
ZIF Burn-In and Test  
Robinson Nugent  
Samtec  
3
(812) 945-0211  
(812) 944-6733  
PGA-088CM3P-S-TG  
PGA-088CHP3-SL-TG  
3
High Temp, Longer Leads  
1
Standard 120 Pin  
Custom 88 Pin  
MVAS-120-ZSTT-13  
CPAS-88-ZSTT-13BF  
Includes Cutout in Center  
No Cutout  
1
NOTES:  
1. Please specify wirewrap and plating options. The part numbers shown specify low profile solder tail pins having a tin contact  
and tin shell.  
2. Please specify wirewrap and plating options. The part number shown specifies gold contact and tin shell.  
3. Cutout in the center, unused holes are plugged, solder tail.  
CQFP  
Supplier  
Telephone  
Socket Type  
Part Number  
Comment  
AMP  
1
(717)564-0100  
822054-2  
Converts CQFP to fit AMP’s  
132 position PQFP “Micro-Pitch  
Socket”.  
NOTES:  
1. This part is not a socket. It is a converter that allows a CQFP part to be used in the PQFP socket described below.  
PQFP  
Supplier  
Telephone  
Socket Type  
Part Number  
Comment  
AMP  
1
(717)564-0100  
132 Pin  
821949-5  
821942-1  
Housing Sub-Assembly and  
Cover for 132 position PQFP  
“Micro-Pitch Socket”.  
1
NOTES:  
1. One housing sub-assembly and one cover are required for each socket.  
DSP56001  
MOTOROLA  
A-41  
PIN ASSIGNMENT  
N
M
L
D0  
A14  
D1  
D2  
D5  
D7  
A13  
A15  
A12  
A10  
A8  
A7  
A6  
A4  
A2  
A1  
A0  
PS  
X/Y  
D3  
A11  
A9  
A5  
A3  
DS  
WR  
BR  
D4  
GND  
VCC  
GND  
RD  
BG  
SRD  
K
J
D6  
SC1  
STD  
SC2  
SCK  
SCLK  
TXD  
RXD  
H1  
D8  
GND  
VCC  
H
G
F
D9  
BOTTOM VIEW  
D10  
D11  
D13  
D14  
D15  
D17  
GND VCC  
D12  
SC0  
E
D
C
B
A
GND  
D16  
D18  
D20  
GND  
H0  
VCC  
VCC  
H2  
D23  
IRQA  
EXTAL GND  
HA0  
HREQ H7  
H4  
H3  
D19  
D21  
D22  
IRQB  
RESET XTAL HA2  
HA1  
HACK HEN  
HR/W H6  
H5  
1
2
3
4
5
6
7
8
9
10 11 12 13  
RC SUFFIX  
CERAMIC  
CASE 789D-01  
–T–  
–X–  
K
G
N
G
M
L
K
J
H
G
F
–A–  
E
D
C
B
A
1 2 3 4 5 6 7 8 9 10 1112 13  
–B–  
C
D 88 PL  
O 0.76 (0.030) T A S B S MATRIX  
O 0.25 (0.010) X  
PINS  
MILLIMETERS  
DIM MIN MAX MIN  
INCHES  
MAX  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M. 1982.  
A
B
C
D
G
K
34.04 35.05 1.340 1.380  
34.04 35.05 1.340 1.380  
2.16  
0.44  
2.54 BSC  
3.04  
0.55  
0.085 0.120  
0.017 0.022  
0.100 BSC  
2. CONTROLLING DIMENSION: INCH.  
4.20  
5.08  
0.165 0.200  
Mechanical Specification Figure A-1. Pin Grid Array Mechanical Specification  
MOTOROLA  
A-42  
DSP56001  
Mechanical Specification Table A-1. CQFP and PQFP Pin Out  
PIN # FUNCTION  
PIN # FUNCTION  
PIN # FUNCTION  
PIN # FUNCTION  
17 NO CONNECT  
16 H4  
116 NO CONNECT  
115 D20  
83 NO CONNECT  
82 D1  
50 NO CONNECT  
49 DS  
15 H5  
114 D19  
81 D0  
48 X/Y  
14 H6  
113 D18  
80 A15  
47 RD  
13 PERIPHERAL VCC  
12 PERIPHERAL VCC  
11 H7  
112 DATA BUS GND  
111 DATA BUS GND  
110 NO CONNECT  
109 D17  
79 A14  
78 NO CONNECT  
77 A13  
46 WR  
45 BR  
44 NO CONNECT  
43 BG  
10 HREQ  
76 A12  
9
8
7
6
5
4
3
2
1
HR/W  
HEN  
NO CONNECT  
HACK  
HA0  
NO CONNECT  
NO CONNECT  
HA1  
108 D16  
107 NO CONNECT  
106 D15  
105 D14  
104 D13  
103 NO CONNECT  
102 D12  
101 DATA BUS VCC  
100 DATA BUS VCC  
99 D11  
98 NO CONNECT  
97 D10  
96 D9  
75 A11  
42 SRD  
41 NO CONNECT  
40 SC1  
39 STD  
38 NO CONNECT  
37 SC2  
36 INTERNAL LOGIC VCC  
35 INTERNAL LOGIC VCC  
34 INTERNAL LOGIC GND  
33 INTERNAL LOGIC GND  
32 SCK  
31 SC0  
30 NO CONNECT  
29 SCLK  
74 ADDRESS BUS GND  
73 ADDRESS BUS GND  
72 NO CONNECT  
71 A10  
70 A9  
69 NO CONNECT  
68 A8  
67 A7  
66 NO CONNECT  
65 A6  
64 ADDRESS BUS VCC  
63 ADDRESS BUS VCC  
62 NO CONNECT  
61 A5  
HA2  
132 NO CONNECT  
131 INTERNAL LOGIC GND  
130 INTERNAL LOGIC GND  
129 INTERNAL LOGIC VCC  
128 INTERNAL LOGIC VCC  
127 EXTAL  
95 NO CONNECT  
94 D8  
28 TXD  
126 XTAL  
93 D7  
60 A4  
27 RXD  
125 NO CONNECT  
124 RESET  
123 MODA/IRQA  
122 NO CONNECT  
121 NMI/MODB/IRQB  
120 D23  
92 D6  
59 NO CONNECT  
58 A3  
57 A2  
56 ADDRESS BUS GND  
55 ADDRESS BUS GND  
54 A1  
26 NO CONNECT  
25 H0  
24 PERIPHERAL GND  
23 PERIPHERAL GND  
22 H1  
91 DATA BUS GND  
90 DATA BUS GND  
89 NO CONNECT  
88 D5  
87 D4  
86 D3  
21 NO CONNECT  
20 H2  
119 D22  
53 A0  
118 D21  
85 D2  
52 PS  
19 H3  
117 NO CONNECT  
84 NO CONNECT  
51 NO CONNECT  
18 NO CONNECT  
Note: Do not connect to “NO CONNECT” pins.  
“NO CONNECT” pins are reserved for future enhancements.  
DSP56001  
MOTOROLA  
A-43  
Mechanical Specification Figure A-2. Ceramic Quad Flat Pack  
MOTOROLA  
A-44  
DSP56001  
Mechanical Specification Figure A-2. Ceramic Quad Flat Pack (Continued)  
DSP56001  
MOTOROLA  
A-45  
Mechanical Specification Figure A-3. Plastic Quad Flat Pack  
MOTOROLA  
A-46  
DSP56001  
Mechanical Specification Figure A-3. Plastic Quad Flat Pack (Continued)  
DSP56001  
MOTOROLA  
A-47  
APPENDIX B  
APPLICATION EXAMPLES  
The lowest cost DSP56001 based system is shown in Figure B-  
A system with external data RAM memory requires no glue logic  
to select the external EPROM from bootstrap mode. PS is used  
to enable the EPROM and DS is used to enable the high speed  
data memories as shown in Figure B-2.  
1. It uses no run time external memory and requires only two  
chips, the DSP56001 and a low cost EPROM. The EPROM read  
access time should be less than 780 nanoseconds when the  
DSP56001 is operating at a clock rate of 20.5 MHz.  
+5 V  
+5 V  
+5 V  
+5 V  
Note: When in RESET,  
IRQA and IRQB must  
be deasserted by external  
peripherals.  
15K  
15K  
15K 15K  
15K  
15K  
DSP56001  
BR  
D23  
FROM OPEN  
COLLECTOR  
BUFFER  
MODA/IRQA  
HACK  
2716  
PS  
CE  
MBD301*  
MBD301*  
11  
8
A0-A10  
D0-D7  
A0-A10  
D0-D7  
FROM  
RESET  
FUNCTION  
RESET  
Note *: These diodes must be Schottky diodes.  
FROM OPEN  
COLLECTOR  
BUFFER  
MODB/IRQB  
Figure B-1. No Glue Logic, Low Cost Memory Port Bootstrap — Mode 1  
+5 V  
15K  
15K 15K 15K 15K  
BR  
DSP56001RD  
WR  
DS  
HACK  
FROM OPEN  
COLLECTOR  
BUFFER  
MODA/IRQA  
X/Y  
11  
10  
A0-A10  
PS  
MBD301*  
MBD301*  
A0-A9 A10 CS WE OE  
FROM  
RESET  
FUNCTION  
CE  
A0-A10  
RESET  
2018-55 (3)  
2716  
D0-D7  
D0-D23  
+5 V  
FROM OPEN  
COLLECTOR  
BUFFER  
8
15K  
24  
MODB/IRQB  
D23  
D0-D23  
Note *: These diodes must be Schottky diodes.  
Figure B-2. Port A Bootstrap with External Data RAM — Mode 1  
MOTOROLA  
B-48  
DSP56001  
Figure B-3 shows the DSP56001 bootstrapping via the Host Port  
from an MC68000.  
DSP56001 is operated in mode 2 with external program memory  
at location $E000. The programmer can overlay the high speed  
on-chip PRAM with DSP algorithms by using the MOVEM in-  
struction.  
Systems with external program memory can load the on-chip  
PRAM without using the bootstrap mode. In Figure B-4, the  
+5 V  
15K  
15K 15K 15K 15K  
BR  
DSP56001  
HACK  
MODA/IRQA  
LDS  
FROM OPEN  
COLLECTOR  
BUFFER  
HEN  
F32  
F32  
AS  
ADDRESS  
DECODE  
A4-A23  
MBD301*  
MBD301*  
MC68000  
+5 V  
1K  
(12.5MHz)  
FROM  
RESET  
FUNCTION  
RESET  
LS09  
DTACK  
R/W  
F32  
HR/W  
F32  
FROM OPEN  
COLLECTOR  
BUFFER  
MODB/IRQB  
D23  
8
3
H0-H7  
D0-D7  
A1-A3  
HA0-HA2  
Note *: These diodes must be Schottky diodes.  
15K  
Figure B-3. DSP56001 Host Bootstrap Example — Mode 1  
+5 V  
15K  
15K 15K  
DSP56001RD  
FROM OPEN  
COLLECTOR  
BUFFER  
PS  
MODA/IRQA  
15  
A0-A14  
+5V  
MBD301*  
MBD301*  
A0-A14  
CS  
OE  
15 ΚΩ  
FROM  
RESET  
FUNCTION  
RESET  
HACK  
2756-30 (3)  
+5V  
15 ΚΩ  
D0-D23  
FROM OPEN  
COLLECTOR  
BUFFER  
BR  
MODB/IRQB  
D0-D23  
24  
Note *: These diodes must be Schottky diodes.  
Figure B-4. 32K Words of External Program ROM — Mode 2  
DSP56001  
MOTOROLA  
B-49  
Figure B-5 shows an alternative clock oscillator circuit used in  
the Graphic Equalizer application note (APR2). The 330resis-  
tor provides additional current limiting in the crystal. Figure B-6  
shows a circuit which waits until Vcc on the DSP is at least 4.5 V  
before initiating a 3.75 ms minimum (150,000T) oscillator stabili-  
zation delay required for the on-chip oscillator (only 50T is re-  
quired for an external oscillator). This insures that the DSP is op-  
erational and stable before releasing the reset signal.  
330 Ω  
XTAL  
470KΩ  
EXTAL  
10 pf  
10 pf  
20.5  
MHz  
Figure B-5. Alternative Clock Circuit from the Graphic Equalizer (APR2)  
+5V  
R
1 (1)  
RESET  
2 (2)  
C
DLY  
MC34064  
MC33064  
-
+
1
V
t
= RC  
In  
DLY  
th  
U1  
DLY  
1.2 V  
ref  
1 -  
V
- V  
ol  
in  
3 (4)  
Where:  
t
= 150,000T min.  
= 5 V  
V
V
= 2.5 V  
= 0.4 V  
DLY  
th  
V
ol  
in  
C
= 1 µf + 20%  
R = 8.2K + 5%  
= 20.5 MHz  
DLY  
LOGIC  
RESET  
f
T = 25 ns  
osc  
Notes: 1. IRQA and IRQB must  
be hardwired.  
2. MODA and MODB  
must be hard wired.  
Figure B-6. Reset Circuit Using MC34064/MC33064  
MOTOROLA  
B-50  
DSP56001  
Figure 7 illustrates how to connect a 20 ns static RAM with a 33  
MHz. DSP56001. The important parameters are T < 10 ns,  
into the ranges X:$1000-1FFF and Y:$1000-1FFF. The PLD  
equation is:  
DW  
T
< 10 ns, and T = 20 ns maximum. A 7.5 ns PLD is used  
DOE  
AA  
RAM_ENABLE = PS & !DS & !A15 & !A14 & !A13 & !A12  
to minimize decoding delays. This example maps the static RAM  
MCM6264D  
(8K X 8) 20 ns  
DSP56001  
27 MHZ  
DATA  
DATA  
16L8-7  
7.5ns PLD  
ADDRESS  
ADDRESS  
4
A12  
5
A13  
6
RAM_ENABLE  
A14  
A15  
7
8
9
E
12  
DS  
PS  
DS  
PS  
RD  
OE  
WR  
WR  
CS  
Figure B-7. 27 MHz DSP56001 with 20 ns SRAM  
DSP56001  
MOTOROLA  
B-51  
Figure B-8 shows the DSP56001 connected to the bus of an  
IBM-PC computer. The PAL equations and other details of this  
circuit are available in “An ISA BUS INTERFACE FOR THE  
DSP56001” which is provided on request by the Motorola DSP  
Marketing Department (512-891-2030).  
NOTE:  
CONNECTOR is J1 of ISA BUS  
All Series Resistors 15K OHMS  
IRQA  
IRQB  
+5v  
1
OSC  
B30  
L13  
BR  
2
3
23  
13  
A04  
A05  
A06  
A07  
A08  
A09  
A14  
AEN  
IOR  
IOW  
A27  
A26  
A25  
A24  
A23  
A22  
A17  
A11  
B14  
B13  
B10  
HREQ  
HACK  
A9  
4
A10  
5
17  
HEN  
6
A11  
16  
14  
HR/W  
MODA/IRQA  
7
B5  
8
A4  
22  
21  
15  
MODB/IRQB  
9
A5  
RESET  
10  
11  
B4  
D23  
19  
OE DIR  
DSP56001  
1
9
8
D07  
D06  
D05  
D04  
D03  
D02  
D01  
D00  
11  
12  
B11  
H7  
A02  
A12  
H6  
A03  
A04  
A05  
7
13  
A13  
H5  
6
5
4
14  
15  
16  
B12  
B13  
C12  
H4  
H3  
H2  
H1  
H0  
A06  
A07  
A08  
A09  
3
2
17  
18  
C13  
D12  
A00  
A01  
A02  
B8  
HA0  
HA1  
HA2  
A31  
A30  
A29  
A8  
A7  
Figure B-8. DSP56001-to-ISA Bus Interface Schematic  
MOTOROLA  
B-52  
DSP56001  
APPENDIX C  
MU-LAW / A-LAW EXPANSION TABLES  
ORG X:$100  
M_3F  
M_40  
M_41  
M_42  
M_43  
M_44  
M_45  
M_46  
M_47  
M_48  
M_49  
M_4A  
M_4B  
M_4C  
M_4D  
M_4E  
M_4F  
M_50  
M_51  
M_52  
M_53  
M_54  
M_55  
M_56  
M_57  
M_58  
M_59  
M_5A  
M_5B  
M_5C  
M_5D  
M_5E  
M_5F  
M_60  
M_61  
M_62  
M_63  
M_64  
M_65  
M_66  
M_67  
M_68  
M_69  
M_6A  
M_6B  
M_6C  
M_6D  
M_6E  
M_6F  
M_70  
M_71  
M_72  
M_73  
M_74  
M_75  
M_76  
M_77  
M_78  
M_79  
M_7A  
M_7B  
M_7C  
M_7D  
M_7E  
M_7F  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
$07BC00  
$075C00  
$071C00  
$06DC00  
$069C00  
$065C00  
$061C00  
$05DC00  
$059C00  
$055C00  
$051C00  
$04DC00  
$049C00  
$045C00  
$041C00  
$03DC00  
$039C00  
$036C00  
$034C00  
$032C00  
$030C00  
$02EC00  
$02CC00  
$02AC00  
$028C00  
$026C00  
$024C00  
$022C00  
$020C00  
$01EC00  
$01CC00  
$01AC00  
$018C00  
$017400  
$016400  
$015400  
$014400  
$013400  
$012400  
$011400  
$010400  
$00F400  
$00E400  
$00D400  
$00C400  
$00B400  
$00A400  
$009400  
$008400  
$007800  
$007000  
$006800  
$006000  
$005800  
$005000  
$004800  
$004000  
$003800  
$003000  
$002800  
$002000  
$001800  
$001000  
$000800  
$000000  
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
495  
471  
455  
439  
423  
407  
391  
375  
359  
343  
327  
311  
295  
279  
263  
247  
231  
219  
211  
203  
195  
187  
179  
171  
163  
155  
147  
139  
131  
123  
115  
107  
99  
93  
89  
85  
81  
77  
73  
69  
65  
61  
57  
53  
49  
45  
41  
37  
33  
;
M_00  
M_01  
M_02  
M_03  
M_04  
M_05  
M_06  
M_07  
M_08  
M_09  
M_0A  
M_0B  
M_0C  
M_0D  
M_0E  
M_0F  
M_10  
M_11  
M_12  
M_13  
M_14  
M_15  
M_16  
M_17  
M_18  
M_19  
M_1A  
M_1B  
M_1C  
M_1D  
M_1E  
M_1F  
M_20  
M_21  
M_22  
M_23  
M_24  
M_25  
M_26  
M_27  
M_28  
M_29  
M_2A  
M_2B  
M_2C  
M_2D  
M_2E  
M_2F  
M_30  
M_31  
M_32  
M_33  
M_34  
M_35  
M_36  
M_37  
M_38  
M_39  
M_3A  
M_3B  
M_3C  
M_3D  
M_3E  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
$7D7C00 ; 8031  
$797C00 ; 7775  
$757C00 ; 7519  
$717C00 ; 7263  
$6D7C00 ; 7007  
$697C00 ; 6751  
$657C00 ; 6495  
$617C00 ; 6239  
$5D7C00 ; 5983  
$597C00 ; 5727  
$557C00 ; 5471  
$517C00 ; 5215  
$4D7C00 ; 4959  
$497C00 ; 4703  
$457C00 ; 4447  
$417C00 ; 4191  
$3E7C00 ; 3999  
$3C7C00 ; 3871  
$3A7C00 ; 3743  
$387C00 ; 3615  
$367C00 ; 3487  
$347C00 ; 3359  
$327C00 ; 3231  
$307C00 ; 3103  
$2E7C00 ; 2975  
$2C7C00 ; 2847  
$2A7C00 ; 2719  
$287C00 ; 2591  
$267C00 ; 2463  
$247C00 ; 2335  
$227C00 ; 2207  
$207C00 ; 2079  
$1EFC00 ; 1983  
$1DFC00 ; 1919  
$1CFC00 ; 1855  
$1BFC00 ; 1791  
$1AFC00 ; 1727  
$19FC00 ; 1663  
$18FC00 ; 1599  
$17FC00 ; 1535  
$16FC00 ; 1471  
$15FC00 ; 1407  
$14FC00 ; 1343  
$13FC00 ; 1279  
$12FC00 ; 1215  
$11FC00 ; 1151  
$10FC00 ; 1087  
$0FFC00 ; 1023  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
$0F3C00  
$0EBC00  
$0E3C00  
$0DBC00  
$0D3C00  
$0CBC00  
$0C3C00  
$0BBC00  
$0B3C00  
$0ABC00  
$0A3C00  
$09BC00  
$093C00  
$08BC00  
$083C00  
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
975  
943  
911  
879  
847  
815  
783  
751  
719  
687  
655  
623  
591  
559  
527  
Figure C-1. Mu-Law/A-Law Expansion Table Contents (Sheet 1 of 2)  
DSP56001  
MOTOROLA  
C-53  
A_80  
A_81  
A_82  
A_83  
A_84  
A_85  
A_86  
A_87  
A_88  
A_89  
A_8A  
A_8B  
A_8C  
A_8D  
A_8E  
A_8F  
A_90  
A_91  
A_92  
A_93  
A_94  
A_95  
A_96  
A_97  
A_98  
A_99  
A_9A  
A_9B  
A_9C  
A_9D  
A_9E  
A_9F  
A_A0  
A_A1  
A_A2  
A_A3  
A_A4  
A_A5  
A_A6  
A_A7  
A_A8  
A_A9  
A_AA  
A_AB  
A_AC  
A_AD  
A_AE  
A_AF  
A_B0  
A_B1  
A_B2  
A_B3  
A_B4  
A_B5  
A_B6  
A_B7  
A_B8  
A_B9  
A_BA  
A_BB  
A_BC  
A_BD  
A_BE  
A_BF  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
$158000  
$148000  
$178000  
$168000  
$118000  
$108000  
$138000  
$128000  
$1D8000  
$1C8000  
;
;
;
;
;
;
;
;
;
;
688  
656  
752  
720  
560  
528  
624  
592  
944  
912  
A_C0  
A_C1  
A_C2  
A_C3  
A_C4  
A_C5  
A_C6  
A_C7  
A_C8  
A_C9  
A_CA  
A_CB  
A_CC  
A_CD  
A_CE  
A_CF  
A_D0  
A_D1  
A_D2  
A_D3  
A_D4  
A_D5  
A_D6  
A_D7  
A_D8  
A_D9  
A_DA  
A_DB  
A_DC  
A_DD  
A_DE  
A_DF  
A_E0  
A_E1  
A_E2  
A_E3  
A_E4  
A_E5  
A_E6  
A_E7  
A_E8  
A_E9  
A_EA  
A_EB  
A_EC  
A_ED  
A_EE  
A_EF  
A_F0  
A_F1  
A_F2  
A_F3  
A_F4  
A_F5  
A_F6  
A_F7  
A_F8  
A_F9  
A_FA  
A_FB  
A_FC  
A_FD  
A_FE  
A_FF  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
$015800  
$014800  
$017800  
$016800  
$011800  
$010800  
$013800  
$012800  
$01D800  
$01C800  
$01F800  
$01E800  
$019800  
$018800  
$01B800  
$01A800  
$005800  
$004800  
$007800  
$006800  
$001800  
$000800  
$003800  
$002800  
$00D800  
$00C800  
$00F800  
$00E800  
$009800  
$008800  
$00B800  
$00A800  
$056000  
$052000  
$05E000  
$05A000  
$046000  
$042000  
$04E000  
$04A000  
$076000  
$072000  
$07E000  
$07A000  
$066000  
$062000  
$06E000  
$06A000  
$02B000  
$029000  
$02F000  
$02D000  
$023000  
$021000  
$027000  
$025000  
$03B000  
$039000  
$03F000  
$03D000  
$033000  
$031000  
$037000  
$035000  
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
43  
41  
47  
45  
35  
33  
39  
37  
59  
57  
63  
61  
51  
49  
55  
53  
11  
9
15  
13  
3
1
7
5
27  
25  
31  
29  
19  
17  
23  
21  
172  
164  
188  
180  
140  
132  
156  
148  
236  
228  
252  
244  
204  
196  
220  
212  
86  
82  
94  
90  
70  
66  
78  
74  
$1F8000 ; 1008  
$1E8000  
$198000  
$188000  
$1B8000  
$1A8000  
$0AC000  
$0A4000  
$0BC000  
$0B4000  
$08C000  
$084000  
$09C000  
$094000  
$0EC000  
$0E4000  
$0FC000  
$0F4000  
$0CC000  
$0C4000  
$0DC000  
$0D4000  
$560000 ; 2752  
$520000 ; 2624  
$5E0000 ; 3008  
$5A0000 ; 2880  
$460000 ; 2240  
$420000 ; 2112  
$4E0000 ; 2496  
$4A0000 ; 2368  
$760000 ; 3776  
$720000 ; 3648  
$7E0000 ; 4032  
$7A0000 ; 3904  
$660000 ; 3264  
$620000 ; 3136  
$6E0000 ; 3520  
$6A0000 ; 3392  
$2B0000 ; 1376  
$290000 ; 1312  
$2F0000 ; 1504  
$2D0000 ; 1440  
$230000 ; 1120  
$210000 ; 1056  
$270000 ; 1248  
$250000 ; 1184  
$3B0000 ; 1888  
$390000 ; 1824  
$3F0000 ; 2016  
$3D0000 ; 1952  
$330000 ; 1632  
$310000 ; 1568  
$370000 ; 1760  
$350000 ; 1696  
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
976  
816  
784  
880  
848  
344  
328  
376  
360  
280  
264  
312  
296  
472  
456  
504  
488  
408  
392  
440  
424  
118  
114  
126  
122  
102  
98  
110  
106  
Figure C-1. Mu-Law/A-Law Expansion Table Contents (Sheet 2 of 2)  
MOTOROLA  
C-54  
DSP56001  
APPENDIX D  
SINE WAVE TABLE  
This sine wave table is normally used by FFT routines which use bit reversed address pointers. This table can be used as it is for up  
to 512 point FFTs; however, for larger FFTs, the table must be copied to a different memory location to allow the reverse-carry address-  
ing mode to be used (see Section 5.3.2.3 REVERSE-CARRY MODIFIER (Mn=$0000) in the DSP56000/DSP56001 Digital Signal  
Processor User’s Manual for additional information).  
S_38  
S_39  
S_3A  
S_3B  
S_3C  
S_3D  
S_3E  
S_3F  
S_40  
S_41  
S_42  
S_43  
S_44  
S_45  
S_46  
S_47  
S_48  
S_49  
S_4A  
S_4B  
S_4C  
S_4D  
S_4E  
S_4F  
S_50  
S_51  
S_52  
S_53  
S_54  
S_55  
S_56  
S_57  
S_58  
S_59  
S_5A  
S_5B  
S_5C  
S_5D  
S_5E  
S_5F  
S_60  
S_61  
S_62  
S_63  
S_64  
S_65  
S_66  
S_67  
S_68  
S_69  
S_6A  
S_6B  
S_6C  
S_6D  
S_6E  
S_6F  
S_70  
S_71  
S_72  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
$7D8A5F ; +0.9807853103  
$7E1D94 ; +0.9852777123  
$7E9D56 ; +0.9891765118  
$7F0992 ; +0.9924796224  
$7F6237 ; +0.9951847792  
$7FA737 ; +0.9972904921  
$7FD888 ; +0.9987955093  
$7FF622 ; +0.9996988773  
$7FFFFF ; +0.9999998808  
$7FF622 ; +0.9996988773  
$7FD888 ; +0.9987955093  
$7FA737 ; +0.9972904921  
$7F6237 ; +0.9951847792  
$7F0992 ; +0.9924796224  
$7E9D56 ; +0.9891765118  
$7E1D94 ; +0.9852777123  
$7D8A5F ; +0.9807853103  
$7CE3CF ; +0.9757022262  
$7C29FC ; +0.9700313210  
$7B5D04 ; +0.9637761116  
$7A7D05 ; +0.9569402933  
$798A24 ; +0.9495282173  
$788484 ; +0.9415441155  
$776C4F ; +0.9329928160  
$7641AF ; +0.9238795042  
$7504D3 ; +0.9142097235  
$73B5EC ; +0.9039893150  
$72552D ; +0.8932244182  
$70E2CC ; +0.8819212914  
$6F5F03 ; +0.8700870275  
$6DCA0D ; +0.8577286005  
$6C2429 ; +0.8448535204  
$6A6D99 ; +0.8314697146  
$68A69F ; +0.8175848722  
$66CF81 ; +0.8032075167  
$64E889 ; +0.7883464098  
$62F202 ; +0.7730104923  
$60EC38 ; +0.7572088242  
$5ED77D ; +0.7409511805  
$5CB421 ; +0.7242470980  
$5A827A ; +0.7071068287  
$5842DD ; +0.6895405054  
$55F5A5 ; +0.6715589762  
$539B2B ; +0.6531729102  
$5133CD ; +0.6343932748  
$4EBFE9 ; +0.6152315736  
$4C3FE0 ; +0.5956993103  
$49B415 ; +0.5758082271  
$471CED ; +0.5555701852  
$447ACD ; +0.5349975824  
$41CE1E ; +0.5141026974  
$3F174A ; +0.4928981960  
$3C56BA ; +0.4713967144  
$398CDD ; +0.4496113062  
$36BA20 ; +0.4275551140  
$33DEF3 ; +0.4052414000  
$30FBC5 ; +0.3826833963  
$2E110A ; +0.3598949909  
$2B1F35 ; +0.3368898928  
ORG Y:$100  
$000000 ; +0.0000000000  
;
S_00  
S_01  
S_02  
S_03  
S_04  
S_05  
S_06  
S_07  
S_08  
S_09  
S_0A  
S_0B  
S_0C  
S_0D  
S_0E  
S_0F  
S_10  
S_11  
S_12  
S_13  
S_14  
S_15  
S_16  
S_17  
S_18  
S_19  
S_1A  
S_1B  
S_1C  
S_1D  
S_1E  
S_1F  
S_20  
S_21  
S_22  
S_23  
S_24  
S_25  
S_26  
S_27  
S_28  
S_29  
S_2A  
S_2B  
S_2C  
S_2D  
S_2E  
S_2F  
S_30  
S_31  
S_32  
S_33  
S_34  
S_35  
S_36  
S_37  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
$03242B ; +0.0245412998  
$0647D9 ; +0.0490676016  
$096A90 ; +0.0735644996  
$0C8BD3 ; +0.0980170965  
$0FAB27 ; +0.1224106997  
$12C810 ; +0.1467303932  
$15E214 ; +0.1709619015  
$18F8B8 ; +0.1950902939  
$1C0B82 ; +0.2191012055  
$1F19F9 ; +0.2429800928  
$2223A5 ; +0.2667128146  
$25280C ; +0.2902846038  
$2826B9 ; +0.3136816919  
$2B1F35 ; +0.3368898928  
$2E110A ; +0.3598949909  
$30FBC5 ; +0.3826833963  
$33DEF3 ; +0.4052414000  
$36BA20 ; +0.4275551140  
$398CDD ; +0.4496113062  
$3C56BA ; +0.4713967144  
$3F174A ; +0.4928981960  
$41CE1E ; +0.5141026974  
$447ACD ; +0.5349975824  
$471CED ; +0.5555701852  
$49B415 ; +0.5758082271  
$4C3FE0 ; +0.5956993103  
$4EBFE9 ; +0.6152315736  
$5133CD ; +0.6343932748  
$539B2B ; +0.6531729102  
$55F5A5 ; +0.6715589762  
$5842DD ; +0.6895405054  
$5A827A ; +0.7071068287  
$5CB421 ; +0.7242470980  
$5ED77D ; +0.7409511805  
$60EC38 ; +0.7572088242  
$62F202 ; +0.7730104923  
$64E889 ; +0.7883464098  
$66CF81 ; +0.8032075167  
$68A69F ; +0.8175848722  
$6A6D99 ; +0.8314697146  
$6C2429 ; +0.8448535204  
$6DCA0D ; +0.8577286005  
$6F5F03 ; +0.8700870275  
$70E2CC ; +0.8819212914  
$72552D ; +0.8932244182  
$73B5EC ; +0.9039893150  
$7504D3 ; +0.9142097235  
$7641AF ; +0.9238795042  
$776C4F ; +0.9329928160  
$788484 ; +0.9415441155  
$798A24 ; +0.9495282173  
$7A7D05 ; +0.9569402933  
$7B5D04 ; +0.9637761116  
$7C29FC ; +0.9700313210  
$7CE3CF ; +0.9757022262  
Figure D-1. Sine Wave Table Contents (Sheet 1 of 3)  
DSP56001  
MOTOROLA  
D-55  
S_73  
S_74  
S_75  
S_76  
S_77  
S_78  
S_79  
S_7A  
S_7B  
S_7C  
S_7D  
S_7E  
S_7F  
S_80  
S_81  
S_82  
S_83  
S_84  
S_85  
S_86  
S_87  
S_88  
S_89  
S_8A  
S_8B  
S_8C  
S_8D  
S_8E  
S_8F  
S_90  
S_91  
S_92  
S_93  
S_94  
S_95  
S_96  
S_97  
S_98  
S_99  
S_9A  
S_9B  
S_9C  
S_9D  
S_9E  
S_9F  
S_A0  
S_A1  
S_A2  
S_A3  
S_A4  
S_A5  
S_A6  
S_A7  
S_A8  
S_A9  
S_AA  
S_AB  
S_AC  
S_AD  
S_AE  
S_AF  
S_B0  
S_B1  
S_B2  
S_B3  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
$2826B9 ; +0.3136816919  
$25280C ; +0.2902846038  
$2223A5 ; +0.2667128146  
$1F19F9 ; +0.2429800928  
$1C0B82 ; +0.2191012055  
$18F8B8 ; +0.1950902939  
$15E214 ; +0.1709619015  
$12C810 ; +0.1467303932  
$0FAB27 ; +0.1224106997  
$0C8BD3 ; +0.0980170965  
$096A90 ; +0.0735644996  
$0647D9 ; +0.0490676016  
$03242B ; +0.0245412998  
$000000 ; +0.0000000000  
$FCDBD5 ; -0.0245412998  
$F9B827 ; -0.0490676016  
$F69570 ; -0.0735644996  
$F3742D ; -0.0980170965  
$F054D9 ; -0.1224106997  
$ED37F0 ; -0.1467303932  
$EA1DEC ; -0.1709619015  
$E70748 ; -0.1950902939  
$E3F47E ; -0.2191012055  
$E0E607 ; -0.2429800928  
$DDDC5B ; -0.2667128146  
$DAD7F4 ; -0.2902846038  
$D7D947 ; -0.3136816919  
$D4E0CB ; -0.3368898928  
$D1EEF6 ; -0.3598949909  
$CF043B ; -0.3826833963  
$CC210D ; -0.4052414000  
$C945E0 ; -0.4275551140  
$C67323 ; -0.4496113062  
$C3A946 ; -0.4713967144  
$C0E8B6 ; -0.4928981960  
$BE31E2 ; -0.5141026974  
$BB8533 ; -0.5349975824  
$B8E313 ; -0.5555701852  
$B64BEB ; -0.5758082271  
$B3C020 ; -0.5956993103  
$B14017 ; -0.6152315736  
$AECC33 ; -0.6343932748  
$AC64D5 ; -0.6531729102  
$AA0A5B ; -0.6715589762  
$A7BD23 ; -0.6895405054  
$A57D86 ; -0.7071068287  
$A34BDF ; -0.7242470980  
$A12883 ; -0.7409511805  
$9F13C8 ; -0.7572088242  
$9D0DFE ; -0.7730104923  
$9B1777 ; -0.7883464098  
$99307F ; -0.8032075167  
$975961 ; -0.8175848722  
$959267 ; -0.8314697146  
$93DBD7 ; -0.8448535204  
$9235F3 ; -0.8577286005  
$90A0FD ; -0.8700870275  
$8F1D34 ; -0.8819212914  
$8DAAD3 ; -0.8932244182  
$8C4A14 ; -0.9039893150  
$8AFB2D ; -0.9142097235  
$89BE51 ; -0.9238795042  
$8893B1 ; -0.9329928160  
$877B7C ; -0.9415441155  
$8675DC ; -0.9495282173  
S_B4  
S_B5  
S_B6  
S_B7  
S_B8  
S_B9  
S_BA  
S_BB  
S_BC  
S_BD  
S_BE  
S_BF  
S_C0  
S_C1  
S_C2  
S_C3  
S_C4  
S_C5  
S_C6  
S_C7  
S_C8  
S_C9  
S_CA  
S_CB  
S_CC  
S_CD  
S_CE  
S_CF  
S_D0  
S_D1  
S_D2  
S_D3  
S_D4  
S_D5  
S_D6  
S_D7  
S_D8  
S_D9  
S_DA  
S_DB  
S_DC  
S_DD  
S_DE  
S_DF  
S_E0  
S_E1  
S_E2  
S_E3  
S_E4  
S_E5  
S_E6  
S_E7  
S_E8  
S_E9  
S_EA  
S_EB  
S_EC  
S_ED  
S_EE  
S_EF  
S_F0  
S_F1  
S_F2  
S_F3  
S_F4  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
$8582FB ; -0.9569402933  
$84A2FC ; -0.9637761116  
$83D604 ; -0.9700313210  
$831C31 ; -0.9757022262  
$8275A1 ; -0.9807853103  
$81E26C ; -0.9852777123  
$8162AA ; -0.9891765118  
$80F66E ; -0.9924796224  
$809DC9 ; -0.9951847792  
$8058C9 ; -0.9972904921  
$802778 ; -0.9987955093  
$8009DE ; -0.9996988773  
$800000 ; -1.0000000000  
$8009DE ; -0.9996988773  
$802778 ; -0.9987955093  
$8058C9 ; -0.9972904921  
$809DC9 ; -0.9951847792  
$80F66E ; -0.9924796224  
$8162AA ; -0.9891765118  
$81E26C ; -0.9852777123  
$8275A1 ; -0.9807853103  
$831C31 ; -0.9757022262  
$83D604 ; -0.9700313210  
$84A2FC ; -0.9637761116  
$8582FB ; -0.9569402933  
$8675DC ; -0.9495282173  
$877B7C ; -0.9415441155  
$8893B1 ; -0.9329928160  
$89BE51 ; -0.9238795042  
$8AFB2D ; -0.9142097235  
$8C4A14 ; -0.9039893150  
$8DAAD3 ; -0.8932244182  
$8F1D34 ; -0.8819212914  
$90A0FD ; -0.8700870275  
$9235F3 ; -0.8577286005  
$93DBD7 ; -0.8448535204  
$959267 ; -0.8314697146  
$975961 ; -0.8175848722  
$99307F ; -0.8032075167  
$9B1777 ; -0.7883464098  
$9D0DFE ; -0.7730104923  
$9F13C8 ; -0.7572088242  
$A12883 ; -0.7409511805  
$A34BDF ; -0.7242470980  
$A57D86 ; -0.7071068287  
$A7BD23 ; -0.6895405054  
$AA0A5B ; -0.6715589762  
$AC64D5 ; -0.6531729102  
$AECC33 ; -0.6343932748  
$B14017 ; -0.6152315736  
$B3C020 ; -0.5956993103  
$B64BEB ; -0.5758082271  
$B8E313 ; -0.5555701852  
$BB8533 ; -0.5349975824  
$BE31E2 ; -0.5141026974  
$C0E8B6 ; -0.4928981960  
$C3A946 ; -0.4713967144  
$C67323 ; -0.4496113062  
$C945E0 ; -0.4275551140  
$CC210D ; -0.4052414000  
$CF043B ; -0.3826833963  
$D1EEF6 ; -0.3598949909  
$D4E0CB ; -0.3368898928  
$D7D947 ; -0.3136816919  
$DAD7F4 ; -0.2902846038  
Figure D-1. Sine Wave Table Contents (Sheet 2 of 3)  
MOTOROLA  
D-56  
DSP56001  
S_F5  
S_F6  
S_F7  
S_F8  
S_F9  
S_FA  
DC  
DC  
DC  
DC  
DC  
DC  
$DDDC5B ; -0.2667128146  
$E0E607 ; -0.2429800928  
$E3F47E ; -0.2191012055  
$E70748 ; -0.1950902939  
$EA1DEC ; -0.1709619015  
$ED37F0 ; -0.1467303932  
S_FB  
S_FC  
S_FD  
S_FE  
S_FF  
DC  
DC  
DC  
DC  
DC  
$F054D9 ; -0.1224106997  
$F3742D ; -0.0980170965  
$F69570 ; -0.0735644996  
$F9B827 ; -0.0490676016  
$FCDBD5 ; -0.0245412998  
Figure D-1. Sine Wave Table Contents (Sheet 3 of 3)  
DSP56001  
MOTOROLA  
D-57  
APPENDIX E  
BOOTSTRAP MODE — OPERATING MODE 1  
The bootstrap feature of the DSP56001 consists of four special  
through the Host Interface. The particular method used is select-  
ed by the level of program memory location $C000, bit 23. If lo-  
cation P:$C000, bit 23 is read as a one, the external bus version  
of the bootstrap program will be selected. Typically, a byte wide  
EPROM will be connected to the DSP56001 Address and Data  
Bus as shown in Figure B-1 of the applications examples given  
in APPENDIX B APPLICATIONS EXAMPLES. The data con-  
tents of the EPROM must be organized as shown below.  
on-chip modules: the 512 words of PRAM, a 32-word bootstrap  
ROM, the bootstrap control logic, and the bootstrap firmware  
program.  
BOOTSTRAP ROM  
This 32-word on-chip ROM has been factory programmed to per-  
form the actual bootstrap operation from the memory expansion  
port (Port A) or from the Host Interface. You have no access to  
the bootstrap ROM other than through the bootstrap process.  
Control logic will disable the bootstrap ROM during normal oper-  
ations.  
Address of External  
Byte Wide P Memory  
P:$C000  
Contents Loaded  
to Internal PRAM at:  
P:$0000 low byte  
P:$C001  
P:$0000 mid byte  
P:$C002  
P:$0000 high byte  
BOOTSTRAP CONTROL LOGIC  
The bootstrap mode control logic is activated when the  
DSP56001 is placed in Operating Mode 1. The control logic  
maps the bootstrap ROM into program memory space as long as  
the DSP56001 remains in Operating Mode 1. The bootstrap firm-  
ware changes operating modes when the bootstrap load is com-  
pleted. When the DSP56001 exits the reset state in Mode 1, the  
following actions occur.  
P:$C5FD  
P:$C5FE  
P:$C5FF  
P:$01FF low byte  
P:$01FF mid byte  
P:$01FF high byte  
If location P:$C000, bit 23 is read as a zero, the Host Interface  
version of the bootstrap program will be selected. Typically a  
host microprocessor will be connected to the DSP56001 Host In-  
terface. The host microprocessor must write the Host Interface  
registers THX, TXM, and then TSL with the desired contents of  
PRAM from location P:$0000 up to P:$01FF. If less than 512  
words are to be loaded, the host programmer can exit the boot-  
strap program and force the DSP56001 to begin executing at lo-  
cation P:$0000 by setting HF0=1 in the Host Interface during the  
bootstrap load. In most systems, the DSP56001 responds so  
fast that handshaking between the DSP56001 and the host is not  
necessary.  
1.  
The control logic maps the bootstrap ROM into the inter-  
nal DSP program memory space starting at location  
$0000. This P: space is read-only.  
2.  
The control logic forces the entire P: space to be write-  
only memory during the bootstrap loading process. At-  
tempts to read from this space will result in fetches from  
the read-only bootstrap ROM.  
3.  
4.  
Program execution begins at location $0000 in the boot-  
strap ROM. The bootstrap ROM program is able to per-  
form the PRAM load through either the memory expan-  
sion port from a byte-wide external memory, or through  
the Host Interface.  
The bootstrap ROM program executes the following se-  
quence to end the bootstrap operation and begin your  
program execution.  
The bootstrap program is shown in flowchart form in Figure E-1  
and in assembler listing format in Figure E-2.  
A. Enter Operating Mode 2 by writing to the OMR.  
This action will be timed to remove the bootstrap  
ROM from the program memory map and re-en-  
able read/write access to the PRAM.  
B. The change to Mode 2 is timed exactly to allow  
the boot program to execute a single cycle in-  
struction then a JMP #00 and begin execution of  
the program at location $0000.  
You may also select the bootstrap mode by writing Operating  
Mode 1 into the OMR. This initiates a timed operation to map the  
bootstrap ROM into the program address space after a delay to  
allow execution of a single cycle instruction and then a JMP  
#<00 (e.g., see Bootstrap code for DSP56001) to begin the boot-  
strap process as described above in steps 1-4. This technique  
allows the DSP56001 user to reboot the system (with a different  
program if desired).  
BOOTSTRAP FIRMWARE PROGRAM  
Bootstrap ROM contains the bootstrap firmware program that  
performs initial loading of the DSP56001 PRAM. The program is  
written in DSP56000/DSP56001 assembly language. It contains  
two separate methods of initializing the PRAM: loading from a  
byte-wide memory starting at location P:$C000 or loading  
MOTOROLA  
E-58  
DSP56001  
START  
LOAD FROM  
HOST  
ENABLE  
HOST INTERFACE  
LOGIC  
INTERFACE  
IS  
L FLAG  
=0?  
INITIALIZE ADDRESS  
REGISTERS  
R0=0  
Y
R1=$C000  
R2=$FFE9  
LOAD FROM  
EXTERNAL  
MEMORY  
N
IS  
HOST FLAG 0  
=0?  
N
DO 3 TIMES  
(GET 8-BIT DATA  
AND SHIFT INTO  
24-BIT WORD)  
GET P:$C000 BIT 23  
AND PUT IT IN THE  
CARRY FLAG  
CONTINUE  
LOADING  
Y
ENDDO  
HOST  
GET 8-BIT DATA  
FROM P MEMORY  
PUT I N A2,  
INTERFACE  
STOP BOOT  
LOAD  
IS THE  
HOST RECEIVE  
FLAG = 0?  
WAS  
Y
Y
P:$C000 BIT 23  
=0?  
INCREMENT R1  
WAIT FOR  
HOST TO FILL  
INPUT REGISTER  
DATA AVAILABLE  
N
EXTERNAL  
MEMORY  
N
SHIFT 8 BITS  
FROM A3 INTO  
ACCUMULATOR  
A1’S 8 MSBS  
PUT DATA FROM  
HOST RECEIVE  
DATA REGISTER  
INTO  
SET L FLAG = 1  
(INDICATES A BOOT  
FROM EXTERNAL  
MEMORY WAS  
ACCUMULATOR A1  
SELECTED)  
N
FINISHED  
3 LOOPS?  
REPEAT UNTIL  
24-BIT DATA IS IN A1  
START DO  
LOOP, 512  
ITERATIONS  
Y
MOVE A1 INTO  
NEXT INTERNAL  
P MEMORY LOCATION.  
INCREMENT R0  
POINTER.  
N
FINISHED  
512 LOOPS?  
REPEAT UNTIL  
512 PROGRAM WORDS  
HAVE BEEN LOADED  
Y
CLEAR  
STATUS  
REGISTER  
SET OPERATING  
MODE TO  
JUMP TO P:0  
MODE 2  
Figure E-1. Bootstrap Program Flowchart  
DSP56001  
MOTOROLA  
E-59  
Motorola DSP56000 Macro Cross Assembler Version 2.00 87-08-23 09:57:46 bootcode.asm Page 1  
1
PAGE 132,50,0,10  
2
; BOOTSTRAP SOURCE CODE FOR DSP56001 - (C) Copyright 1986 Motorola Inc.  
; Host algorithm / AND / external bus method  
4
6
; This is the Bootstrap source code contained in the DSP56001 32 word boot ROM.  
; This program can load the internal program memory from one of two external sources.  
; The program reads P:$C000 bit 23 to decide which external source to access. If  
; P:$C000 bit 23 = 0 then it loads internal PRAM from H0-H7, using the Host Interface  
; logic. If P:$C000 bit 23 = 1 then it loads from 1,536 consecutive byte-wide P:  
; memory locations (starting at P:$C000).  
7
8
9
10  
11  
13 0000C000  
BOOT  
EQU  
$C000  
; The location in P: memory  
14  
; where the external byte-wide  
; EPROM is expected to be mapped.  
15  
16  
17 p:0000  
18  
ORG  
PL:$0  
; Bootstrap code starts at P:$0  
; R2 = address of the Host  
19 P:0000  
62F400  
00FFE9  
START  
MOVE  
#$FFE9,R2  
#BOOT,R1  
#0,R0  
20  
; Interface status register.  
21 P:0002  
61F400  
00C000  
MOVE  
MOVE  
; R1 = starting P: address of  
22  
; external bootstrap byte-wide ROM.  
; R0 = starting P: address of  
; internal memory where program  
; will begin loading.  
23 P:0004  
300000  
24  
25  
26  
27 P:0005  
07E18C  
200037  
0E0009  
MOVE  
ROL  
P:(R1),Al  
; Get the data at P:$C000  
; Shift bit 23 into the Carry flag  
; Perform load from Host Interface  
; if carry is zero.  
28 P:0006  
A
29 P:0007  
JCC  
<INLOOP  
30  
31  
32  
33  
34  
; IMPORTANT NOTE: This routine assumes that the L bit has been cleared before entering  
; this program and that M0 and M1 have been preloaded with $FFFF (linear addressing).  
; This would be the case after a reset. If this program is entered by changing the OMR  
Figure E-2. Assembler Listing for Bootstrap Program (Sheet 1 of 3)  
MOTOROLA  
E-60  
DSP56001  
Motorola DSP56000 Macro Cross Assembler Version 2.00 87-08-23 09:57:46 bootcode.asm Page 2  
35  
; to bootstrap operating mode, make certain that the L bit is cleared and registers M0  
; and M1have been set to $FFFF. Also, make sure the BCR is set to $xxFx since  
; EPROMS are slow and BCR is set to $FFFF after a reset. If the L bit was set before  
; changing modes, the program will load from external program memory.  
36  
37  
38  
39  
40 P:0008  
0040F9  
ORI  
#$40,CCR  
; Set the L bit to indicate  
; that the bootstrap program  
; is being loaded from the  
; external P: space.  
41  
42  
43  
44  
45  
; The first routine will load 1,536 bytes from the external P: memory space beginning  
; at P:$C000 (bits 7-0). These will be packed into 512 24-bit words and stored in  
; contiguous internal PRAM memory locations starting at P:$0.  
46  
47  
48  
49  
; The shifter moves the 8-bit input data from register A2 into register A1 eight bits  
; at a time. After assembling one 24-bit word (this takes three loops) it stores the  
; result in internal PRAM and continues until internal PRAM is filled. Note that the  
; first routine loads data starting with the least significant byte of P:$0 first.  
50  
51  
52  
53  
54  
; The second routine loads the internal PRAM using the Host Interface logic.  
; If the host only wants to load a portion of the PRAM, the Host Interface bootstrap  
; load program can be aborted and execution of the loaded program started, by setting  
; the Host Flag (HF0) = 1 at any time during the load from the Host Processor.  
55  
56  
57  
58  
59 P:0009  
060082  
00001B  
INLOOP  
D0  
#512,_LOOP1  
; Load 512 instruction words.  
60  
61  
; This is the context switch  
JLC < _HOSTLD  
62  
63 P:000B  
64  
0E6012  
; Load from the Host Interface  
; if the Limit flag is clear.  
65  
66  
; This is the first routine. It loads from external P: memory.  
DO #3, _LOOP2 ; Each instruction has 3 bytes.  
67  
68 P:000C  
060380  
000010  
Figure E-2. Assembler Listing for Bootstrap Program (Sheet 2 of 3)  
DSP56001  
MOTOROLA  
E-61  
Motorola DSP56000 Macro Cross Assembler Version 2.00 87-08-23 09:57:46 bootcode.asm Page 3  
69 P:000E  
70  
07D98A  
MOVE  
P:(R1)+,A2  
; Get the 8 LSB from external  
; P: memory.  
71 P:000F  
72 P:0010  
73  
0608A0  
200022  
REP  
ASR  
#8  
A
; Shift 8 bit data into A1  
_LOOP2  
; Get another byte  
74 P:0011  
75  
0C001B  
JMP  
< _STORE  
; then put the word in PRAM.  
76  
; This is the second routine. It loads from the Host Interface pins.  
77  
78 P:0012  
79 P:0013  
0AA020  
0AA983  
000017  
00008C  
0C001C  
_HOSTLD  
_LBLA  
BSET  
JCLR  
#0,X:$FFE0  
#3,X:$FFE9, _LBLB  
; Configure Port B as Host Interface  
; If HF0=1, stop loading data.  
80 P:0015  
81 P:0016  
82  
ENDDO  
JMP  
; Must terminate the DO loop  
; Wait for HRDF to go high  
<_BOOTEND  
83 P:0017  
0A6280  
000013  
_LBLB  
JCLR  
#0,X:(R2), _LBLA  
84  
; (meaning 24-bit data is present)  
; Put 24-bit host data in A1  
85 P:0019  
54F000  
00FFEB  
MOVE  
MOVE  
X:$FFEB,A1  
86  
87 P:001B  
88  
89  
07588C  
_STORE  
_LOOP1  
A1,P:(R0)+  
; Store 24-bit result in PRAM.  
; and return for another 24-bit word  
90  
91  
92  
; This is the exit handler that returns execution to normal expanded mode  
; and jumps to the RESET location.  
93  
94 P:001C  
95  
96  
0502BA  
_BOOTEND MOVEC  
#2,0MR  
; Set the operating mode to 2  
; (and trigger an exit from  
; bootstrap mode).  
97 P:001D  
98  
99  
100 P:001E  
101  
0000B9  
0C0000  
ANDI  
JMP  
#$0,CCR  
<$0  
; Clear SR as if RESET and  
; introduce delay needed for  
; Op. Mode change.  
; Start fetching from PRAM P:$0000  
Motorola DSP56000 Macro Cross Assembler Version 2.00 87-08-23 09:57:46 bootcode.asm Page 4  
0 Errors  
0 Warnings  
Figure E-2. Assembler Listing for Bootstrap Program (Sheet 3 of 3)  
MOTOROLA  
E-62  
DSP56001  
DSP56001  
MOTOROLA  
E-63  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different ap-  
plications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not  
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems  
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola  
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unau-  
thorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,  
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and M a
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
Literature Distribution Centers:  
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.  
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.  
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.  
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbor Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po,N.T.,  
Hong Kong.  

相关型号:

DSP56001RC33

24-Bit General Purpose Digital Signal Processor
MOTOROLA

DSP56002

24-bit Digital Signal Processor
MOTOROLA

DSP56002DS

DSP56002 24- Bit Digital Signal Processor Data Sheet
ETC

DSP56002EVMSCHEM

DSP56002EVMSCHEM DSP56002 EVM Board - Main
ETC

DSP56002EVMUM

DSP56002EVM Evaluation Module Users Manual
ETC

DSP56002FC40

24-BIT DIGITAL SIGNAL PROCESSOR
MOTOROLA

DSP56002FC66

24-BIT DIGITAL SIGNAL PROCESSOR
MOTOROLA

DSP56002FC80

24-BIT DIGITAL SIGNAL PROCESSOR
MOTOROLA

DSP56002FD40

Digital Signal Processor, 24-Bit Size, CMOS, PQFP132
MOTOROLA

DSP56002PV40

24-BIT DIGITAL SIGNAL PROCESSOR
MOTOROLA

DSP56002PV66

24-BIT DIGITAL SIGNAL PROCESSOR
MOTOROLA

DSP56002PV80

24-BIT DIGITAL SIGNAL PROCESSOR
MOTOROLA