LF442CD [MOTOROLA]

LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS; 低功耗JFET输入运算放大器
LF442CD
型号: LF442CD
厂家: MOTOROLA    MOTOROLA
描述:

LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS
低功耗JFET输入运算放大器

运算放大器 输入元件
文件: 总10页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by LF441C/D  
These JFET input operational amplifiers are designed for low power  
applications. They feature high input impedance, low input bias current and  
low input offset current. Advanced design techniques allow for higher slew  
rates, gain bandwidth products and output swing. The LF441C device  
provides for the external null adjustment of input offset voltage.  
LOW POWER  
JFET INPUT  
OPERATIONAL AMPLIFIERS  
These devices are specified over the commercial temperature range. All  
are available in plastic dual in–line and SOIC packages.  
SEMICONDUCTOR  
TECHNICAL DATA  
Low Supply Current: 200 µA/Amplifier  
Low Input Bias Current: 5.0 pA  
High Gain Bandwidth: 2.0 MHz  
High Slew Rate: 6.0 V/µs  
High Input Impedance: 10  
8
12  
8
1
1
Large Output Voltage Swing: ±14 V  
Output Short Circuit Protection  
N SUFFIX  
PLASTIC PACKAGE  
CASE 626  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751  
(SO–8)  
Representative Schematic Diagram  
(Each Amplifier)  
PIN CONNECTIONS  
1
2
3
4
8
Offset Null  
Inputs  
NC  
V
+
7
CC  
V
CC  
6
5
Output  
V
EE  
Offset Null  
Q7  
(Single, Top View)  
J1  
J2  
D2  
R3  
D1  
R4  
Inputs  
Output  
1
2
3
4
8
7
6
5
Output 1  
Inputs 1  
V
CC  
Output 2  
+
1
+
C1  
Q5  
+
Q4  
2
Inputs 2  
Q3  
V
EE  
C2  
Q1  
Q2  
(Dual, Top View)  
Q6  
R1  
R2  
R5  
*
V
EE  
1
5
*
14  
14  
+
1
5
1.5 k  
1
*Null adjustment pins for LF441 only.  
1
V
EE  
N SUFFIX  
PLASTIC PACKAGE  
CASE 646  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A  
100 k  
LF441C input offset voltage  
null adjust circuit  
(SO–14)  
PIN CONNECTIONS  
ORDERING INFORMATION  
Operating  
1
14  
13  
12  
11  
10  
9
Output 4  
Inputs 4  
Output 1  
2
Inputs 1  
Temperature Range  
Device  
Function  
Package  
3
1
4
3
+
+
LF441CD  
LF441CN  
Single  
SO–8  
Plastic DIP  
V
4
V
CC  
EE  
+
+
5
LF442CD  
LF442CN  
Dual  
SO–8  
Plastic DIP  
Inputs 2  
Inputs 3  
Output 3  
2
T
A
= 0° to +70°C  
6
7
8
Output 2  
LF444CD  
LF444CN  
Quad  
SO–14  
Plastic DIP  
(Quad, Top View)  
Motorola, Inc. 1996  
Rev 0  
LF441C LF442C LF444C  
MAXIMUM RATINGS  
Rating  
Supply Voltage (from V to V  
Symbol  
Value  
+36  
Unit  
V
)
V
S
CC  
EE  
Input Differential Voltage Range (Note 1)  
Input Voltage Range (Notes 1 and 2)  
Output Short Circuit Duration (Note 3)  
Operating Junction Temperature (Note 3)  
Storage Temperature Range  
V
±30  
V
IDR  
V
±15  
V
IR  
t
Indefinite  
+150  
sec  
°C  
°C  
SC  
T
J
T
–60 to +150  
stg  
NOTES: 1. Differential voltages are at the noninverting input terminal with respect to the inverting  
input terminal.  
2. The magnitude of the input voltage must never exceed the magnitude of the supply  
or 15 V, whichever is less.  
3. Power dissipation must be considered to ensure maximum junction temperature (T )  
J
is not exceeded (see Figure 1).  
DC ELECTRICAL CHARACTERISTICS (V  
= +15 V, V  
= –15 V, T = 0° to 70°C, unless otherwise noted.)  
EE A  
CC  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage (R = 10 k, V = 0 V)  
V
IO  
mV  
S
O
Single:  
T
= +25°C  
= 0° to +70°C  
= +25°C  
= 0° to +70°C  
= +25°C  
3.0  
3.0  
3.0  
5.0  
7.5  
5.0  
7.5  
10  
A
T
A
Dual:  
T
A
T
A
Quad:  
T
A
T
A
= 0° to +70°C  
12  
Average Temperature Coefficient of Offset Voltage  
(R = 10 k, V = 0 V)  
V /T  
IO  
10  
µV/°C  
S
O
Input Offset Current (V  
= 0 V, V = 0 V)  
I
IO  
CM  
O
T
T
A
= +25°C  
= 0° to +70°C  
0.5  
50  
1.5  
pA  
nA  
A
Input Bias Current (V  
CM  
= 0 V, V = 0 V)  
I
IB  
O
T
A
= +25°C  
3.0  
100  
3.0  
pA  
nA  
T
A
= 0° to +70°C  
Common Mode Input Voltage Range (T = +25°C)  
V
ICR  
–11  
+14.5  
–12  
+11  
V
A
Large Signal Voltage Gain (V = ±10 V, R = 10 k)  
A
VOL  
V/mV  
O
L
T
T
A
= +25°C  
= 0° to +70°C  
25  
15  
60  
A
Output Voltage Swing (R = 10 k)  
V
O
V
O
+
+12  
+14  
–14  
–12  
V
L
Common Mode Rejection (R 10 kΩ, V  
= V  
, V = 0 V)  
CMR  
PSR  
70  
70  
86  
84  
dB  
dB  
µA  
S
CM  
ICR  
O
Power Supply Rejection (R = 100 Ω, V  
CM  
= 0 V, V = 0 V)  
O
S
Power Supply Current (No Load, V = 0 V)  
O
I
D
Single  
Dual  
Quad  
200  
400  
800  
250  
500  
1000  
2
MOTOROLA ANALOG IC DEVICE DATA  
LF441C LF442C LF444C  
AC ELECTRICAL CHARACTERISTICS (V  
= +15 V, V  
= –15 V, T = +25°C, unless otherwise noted.)  
EE A  
CC  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
V/ µs  
µs  
Slew Rate (V = –10 V to +10 V, R = 10 k, C = 10 pF, A = +1.0)  
SR  
0.6  
6.0  
in  
L
L
V
Settling Time  
(A = –1.0, R = 10 k, V = 0 V to +10 V)  
To within 10 mV  
To within 1.0 mV  
t
s
1.6  
2.2  
V
L
O
Gain Bandwidth Product (f = 200 kHz)  
GBW  
0.6  
2.0  
47  
MHz  
Equivalent Input Noise Voltage (R = 100 , f = 1.0 kHz)  
e
n
nV/Hz  
pA/Hz  
S
Equivalent Input Noise Current (f = 1.0 kHz)  
i
n
0.01  
12  
10  
Input Resistance  
R
i
Channel Separation (f = 1.0 Hz to 20 kHz)  
CS  
120  
dB  
Figure 1. Maximum Power Dissipation versus  
Temperature for Package Variations  
Figure 2. Input Bias Current versus  
Input Common Mode Voltage  
20  
15  
10  
2400  
V
V
T
= +15 V  
= –15 V  
CC  
EE  
A
2000  
= 25  
°C  
8 & 14 Pin Plastic  
Package  
1600  
1200  
SO–14  
SO–8  
800  
5.0  
0
400  
0
–55 –40 –20  
0
20  
40  
60  
80 100 120 140 160  
C)  
–10  
–5.0  
0
5.0  
10  
T , AMBIENT TEMPERATURE (  
°
V
, INPUT COMMON MODE VOLTAGE (V)  
A
ICR  
Figure 3. Input Bias Current versus Temperature  
Figure 4. Supply Current versus Supply Voltage  
1000  
100  
10  
300  
260  
220  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
CM  
125°C  
25°C  
1.0  
0.1  
180  
140  
100  
55°C  
0.01  
0.001  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
0
5.0  
10  
15  
, SUPPLY VOLTAGE (V)  
20  
25  
T , AMBIENT TEMPERATURE (  
°
V
,
V
EE  
A
CC  
3
MOTOROLA ANALOG IC DEVICE DATA  
LF441C LF442C LF444C  
Figure 5. Positive Input Common Mode Voltage  
Range versus Positive Supply Voltage  
Figure 6. Negative Input Common Mode Voltage  
Range versus Negative Supply Voltage  
20  
15  
–20  
–15  
–55°C  
T
125°C  
–55°C  
T
125°C  
A
A
10  
–10  
5.0  
–5.0  
0
0
0
5.0  
10  
15  
20  
0
–5.0  
V , NEGATIVE SUPPLY VOLTAGE (V)  
EE  
–10  
–15  
–20  
V
, POSITIVE SUPPLY VOLTAGE (V)  
CC  
Figure 7. Output Voltage versus Output  
Source Current  
Figure 8. Output Voltage versus  
Output Sink Current  
–20  
–15  
20  
15  
V
V
= +15 V  
= –15 V  
V
V
= +15 V  
= –15 V  
CC  
EE  
CC  
EE  
55°C  
125°C  
25°C  
55°C  
–10  
–5.0  
0
125°C  
25°C  
10  
5.0  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0
2.0  
4.0 6.0  
8.0  
10  
12  
14  
16  
18  
20  
I
, OUTPUT SOURCE CURRENT (mA)  
–I , OUTPUT SINK CURRENT (mA)  
O
O
Figure 9. Output Voltage Swing  
versus Supply Voltage  
Figure 10. Output Voltage Swing  
versus Load Resistance  
40  
35  
30  
25  
20  
15  
10  
28  
26  
24  
22  
R
–55  
= 10 kΩ  
L
°C  
T
125°C  
A
20  
18  
V
V
= +15 V  
= –15 V  
CC  
EE  
T
= 25  
°C  
A
5.0  
0
16  
0
2.0  
4.0  
6.0  
8.0  
10  
12  
14  
16  
1.0 k  
2.0 k  
3.0 k  
4.0 k  
6.0 k  
8.0 k 10 k  
V
,
V
, SUPPLY VOLTAGE (V)  
R , LOAD RESISTANCE ()  
CC  
EE  
L
4
MOTOROLA ANALOG IC DEVICE DATA  
LF441C LF442C LF444C  
Figure 11. Normalized Gain Bandwidth  
Product versus Temperature  
Figure 12. Open Loop Voltage Gain and  
Phase versus Frequency  
1.4  
V
V
R
C
= +15 V  
= –15 V  
CC  
EE  
L
L
20  
10  
0
90  
1.3  
1.2  
= 10 k  
Phase  
= 100 pF  
135  
180  
225  
270  
1.1  
1.0  
0.9  
V
V
= +15 V  
= –15 V  
CC  
EE  
L
L
Gain  
–10  
–20  
R
C
T
= 10 k  
0.8  
= 100 pF  
= 25°C  
0.7  
0.6  
A
–75  
–50  
–25  
0
25  
50  
75  
C)  
100  
125  
0.1  
1.0  
f, FREQUENCY (MHz)  
10  
T , AMBIENT TEMPERATURE (  
°
A
Figure 14. Total Output Distortion  
versus Frequency  
Figure 13. Slew Rate versus Temperature  
8.0  
7.0  
6.0  
2.5  
V
V
= +15 V  
= –15 V  
= 25°C  
CC  
EE  
2.0  
T
A
1.5  
1.0  
A
= 100  
V
V
V
R
= +15 V  
= –15 V  
5.0  
4.0  
CC  
EE  
L
0.5  
0
A
= 10  
V
= 10 k  
A
= +1.0  
V
–75  
–50  
–25  
0
25  
50  
75  
C)  
100  
125  
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
T , AMBIENT TEMPERATURE (  
°
A
Figure 15. Output Voltage Swing  
versus Frequency  
Figure 16. Open Loop Voltage  
Gain versus Frequency  
100  
80  
30  
20  
60  
40  
V
V
= +15 V  
= –15 V  
= 10 kΩ  
= +1.0  
CC  
EE  
L
10  
0
R
A
V
V
= +15 V  
= –15 V  
= 10 kΩ  
CC  
EE  
L
V
20  
0
1% THD  
= 25°C  
R
T
T
= 25°C  
A
A
100 k  
f, FREQUENCY (Hz)  
1.0 M  
10 k  
0.1  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M 10 M  
1.0 k  
f, FREQUENCY (Hz)  
5
MOTOROLA ANALOG IC DEVICE DATA  
LF441C LF442C LF444C  
Figure 17. Common Mode Rejection  
versus Frequency  
Figure 18. Power Supply Rejection  
versus Frequency  
140  
120  
100  
140  
V
V
T
= +15 V  
= –15 V  
CC  
EE  
A
V
CC  
A
+
120  
100  
V
A
+
V  
= 25  
°C  
V
CM  
DM  
DM  
O
O
V  
+PSR  
EE  
V  
CM  
CMR = 20 Log  
x A  
DM  
(
)
V
80  
60  
–PSR  
80  
60  
O
(∆  
V
= ±1.5 V)  
CC  
(
V  
=±1.5 V)  
EE  
V
/A  
V
V
V
= +15 V  
= –15 V  
= 0 V  
O DM  
V
CC  
EE  
CM  
+PSR = 20 Log  
–PSR = 20 Log  
40  
20  
0
40  
20  
(
(
)
)
CC  
/A  
V  
O
DM  
V
=
°
±
C
1.5 V  
CM  
= 25  
V
EE  
T
A
0
100  
1.0 k  
10 k  
100 k  
1.0 M  
100  
1.0 k  
10 k  
f, FREQUENCY (Hz)  
100 k  
1.0 M  
f, FREQUENCY (Hz)  
Figure 20. Open Loop Voltage  
Gain versus Supply Voltage  
Figure 19. Input Noise Voltage versus Frequency  
70  
1.0 M  
100 k  
60  
50  
40  
30  
20  
10  
0
R
= 10 k  
L
25°C  
125°C  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
CM  
–55°C  
T
= 25°C  
A
10 k  
10  
100  
1.0 k  
10 k  
100 k  
0
5.0  
10  
15  
SUPPLY VOLTAGE (V)  
,
20  
25  
f, FREQUENCY (Hz)  
V
,
V
CC  
EE  
Figure 21. Output Impedance versus Frequency  
Figure 22. Inverter Settling Time  
350  
300  
V
V
= +15 V  
= –15 V  
V
V
= +15 V  
= –15 V  
CC  
EE  
CC  
EE  
10  
5.0  
0
10 mV  
T
= 25  
°C  
T
= 25  
°C  
A
A
1.0 mV  
250  
200  
150  
100  
50  
A
= 100  
A
= 10  
A = 1.0  
V
V
V
–5.0  
–10  
1.0 mV  
10 mV  
0
100  
1.0k  
10k  
f, FREQUENCY (Hz)  
100k  
1.0M  
0.1  
1.0  
t , SETTLING TIME (  
10  
µs)  
s
6
MOTOROLA ANALOG IC DEVICE DATA  
LF441C LF442C LF444C  
SMALL SIGNAL RESPONSE  
Figure 23. Inverting  
Figure 24. Noninverting  
V
V
R
C
= +15 V  
= –15 V  
= 10 kΩ  
= 10 pF  
= +1.0  
= 25°C  
V
V
R
C
= +15 V  
= –15 V  
CC  
EE  
L
L
CC  
EE  
L
L
= 10 k  
= 10 pF  
= –1.0  
A
A
V
A
V
A
T
T
= 25  
°C  
0
0
t, TIME (0.5  
µs/DIV)  
t, TIME (0.5 µs/DIV)  
LARGE SIGNAL RESPONSE  
Figure 25. Inverting  
Figure 26. Noninverting  
V
V
= +15 V  
= –15 V  
= 10 kΩ  
= 10 pF  
= –1.0  
= 25°C  
V
V
R
C
A
= +15 V  
= –15 V  
CC  
EE  
L
L
CC  
EE  
L
L
V
R
C
A
= 10 k  
= 10 pF  
= +1.0  
= 25°C  
V
A
T
T
A
0
0
t, TIME (2.0  
µs/DIV)  
t, TIME (2.0 µs/DIV)  
7
MOTOROLA ANALOG IC DEVICE DATA  
LF441C LF442C LF444C  
OUTLINE DIMENSIONS  
N SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
1
4
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
0.370  
0.240  
0.155  
0.015  
0.040  
F
–A–  
NOTE 2  
L
G
H
J
K
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
C
7.62 BSC  
0.300 BSC  
M
N
–––  
0.76  
10  
1.01  
–––  
0.030  
10  
0.040  
J
–T–  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
(SO–8)  
ISSUE R  
NOTES:  
D
A
E
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS ARE IN MILLIMETERS.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
C
8
1
5
M
M
0.25  
B
H
4
h X 45  
MILLIMETERS  
B
C
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.18  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
8
MOTOROLA ANALOG IC DEVICE DATA  
LF441C LF442C LF444C  
OUTLINE DIMENSIONS  
N SUFFIX  
PLASTIC PACKAGE  
CASE 646–06  
ISSUE L  
NOTES:  
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE  
POSITION AT SEATING PLANE AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
14  
1
8
7
B
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
4. ROUNDED CORNERS OPTIONAL.  
A
F
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.260  
0.185  
0.021  
0.070  
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
0.715  
0.240  
0.145  
0.015  
0.040  
L
C
G
H
J
K
L
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.095  
0.015  
0.135  
1.32  
0.20  
2.92  
2.41  
0.38  
3.43  
J
N
SEATING  
PLANE  
K
0.300 BSC  
7.62 BSC  
M
N
0
10  
0
10  
H
G
D
M
0.015  
0.039  
0.39  
1.01  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A–03  
(SO–14)  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–A–  
14  
1
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
0.25 (0.010)  
B
MILLIMETERS  
INCHES  
G
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
8.55  
3.80  
1.35  
0.35  
0.40  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
0.337  
0.150  
0.054  
0.014  
0.016  
–T–  
SEATING  
PLANE  
J
M
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T
B
A
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
R
9
MOTOROLA ANALOG IC DEVICE DATA  
LF441C LF442C LF444C  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
LF441C/D  

相关型号:

LF442CDR2

DUAL OP-AMP, 7500uV OFFSET-MAX, 2MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
MOTOROLA

LF442CH

IC DUAL OP-AMP, 5000 uV OFFSET-MAX, 1 MHz BAND WIDTH, MBCY8, Operational Amplifier
NSC

LF442CH/A+

Voltage-Feedback Operational Amplifier
ETC

LF442CJ

Voltage-Feedback Operational Amplifier
ETC

LF442CJ/A+

Voltage-Feedback Operational Amplifier
ETC

LF442CM

IC,OP-AMP,DUAL,BIPOLAR/JFET,SOP,8PIN,PLASTIC
TI

LF442CN

LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS
ONSEMI

LF442CN

LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

LF442CN

Dual Low Power JFET Input Operational Amplifier
NSC

LF442CN/A+

IC,OP-AMP,DUAL,BIPOLAR/JFET,DIP,8PIN,PLASTIC
NSC

LF442CN/B+

IC,OP-AMP,DUAL,BIPOLAR/JFET,DIP,8PIN,PLASTIC
TI

LF442CN/NOPB

IC DUAL OP-AMP, 7500 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, DIP-8, Operational Amplifier
NSC