LM833D [MOTOROLA]

DUAL OPERATIONAL AMPLIFIER; 双路运算放大器
LM833D
型号: LM833D
厂家: MOTOROLA    MOTOROLA
描述:

DUAL OPERATIONAL AMPLIFIER
双路运算放大器

运算放大器 放大器电路 光电二极管
文件: 总8页 (文件大小:137K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by LM833/D  
The LM833 is a standard low–cost monolithic dual general–purpose  
operational amplifier employing Bipolar technology with innovative  
high–performance concepts for audio systems applications. With high  
frequency PNP transistors, the LM833 offers low voltage noise  
(4.5 nV/ Hz ), 15 MHz gain bandwidth product, 7.0 V/µs slew rate, 0.3 mV  
input offset voltage with 2.0 µV/°C temperature coefficient of input offset  
voltage. The LM833 output stage exhibits no deadband crossover distortion,  
large output voltage swing, excellent phase and gain margins, low open loop  
high frequency output impedance and symmetrical source/sink AC  
frequency response.  
DUAL OPERATIONAL  
AMPLIFIER  
SEMICONDUCTOR  
TECHNICAL DATA  
The LM833 is specified over the automotive temperature range and is  
available in the plastic DIP and SO–8 packages (P and D suffixes). For an  
improved performance dual/quad version, see the MC33079 family.  
8
Low Voltage Noise: 4.5 nV/ Hz  
High Gain Bandwidth Product: 15 MHz  
High Slew Rate: 7.0 V/µs  
Low Input Offset Voltage: 0.3 mV  
Low T.C. of Input Offset Voltage: 2.0 µV/°C  
Low Distortion: 0.002%  
1
N SUFFIX  
PLASTIC PACKAGE  
CASE 626  
Excellent Frequency Stability  
Dual Supply Operation  
8
1
D SUFFIX  
PLASTIC PACKAGE  
CASE 751  
(SO–8)  
PIN CONNECTIONS  
1
2
8
7
V
CC  
Output 1  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
+36  
Unit  
V
1
Output 2  
Inputs 2  
Supply Voltage (V  
to V  
CC  
)
V
S
Inputs 1  
EE  
3
6
5
Input Differential Voltage Range (Note 1)  
Input Voltage Range (Note 1)  
V
IDR  
30  
V
2
V
IR  
±15  
V
4
V
EE  
Output Short Circuit Duration (Note 2)  
Operating Ambient Temperature Range  
Operating Junction Temperature  
Storage Temperature  
t
Indefinite  
–40 to +85  
+150  
SC  
(Top View)  
T
A
°C  
°C  
T
J
T
stg  
–60 to +150  
500  
°C  
ORDERING INFORMATION  
Operating  
Maximum Power Dissipation (Notes 2 and 3)  
P
D
mW  
Temperature Range  
Device  
LM833N  
LM833D  
Package  
NOTES: 1. Either or both input voltages must not exceed the magnitude of V  
or V  
.
EE  
CC  
2. Power dissipation must be considered to ensure maximum junction temperature  
Plastic DIP  
SO–8  
(T ) is not exceeded (see power dissipation performance characteristic).  
J
T
= – 40° to +85°C  
A
3. Maximum value at T 85°C.  
A
Motorola, Inc. 1996  
Rev 0  
LM833  
ELECTRICAL CHARACTERISTICS (V  
= +15 V, V  
= –15 V, T = 25°C, unless otherwise noted.)  
EE A  
CC  
Characteristic  
Symbol  
Min  
Typ  
0.3  
2.0  
Max  
5.0  
Unit  
mV  
Input Offset Voltage (R = 10 , V = 0 V)  
V
IO  
S
O
Average Temperature Coefficient of Input Offset Voltage  
= 10 , V = 0 V, T = T to T  
V /T  
µV/°C  
IO  
R
S
O
A
low  
high  
Input Offset Current (V  
= 0 V, V = 0 V)  
I
IO  
10  
200  
nA  
nA  
V
CM  
O
Input Bias Current (V  
= 0 V, V = 0 V)  
I
IB  
300  
1000  
CM  
O
Common Mode Input Voltage Range  
V
ICR  
–12  
+14  
–14  
+12  
Large Signal Voltage Gain (R = 2.0 k, V = ±10 V  
A
VOL  
90  
110  
dB  
V
L
O
Output Voltage Swing:  
R
R
R
R
= 2.0 kV = 1.0 V  
ID  
V
10  
12  
13.7  
–14.1  
13.9  
–10  
L
L
L
L
,
O+  
O–  
O+  
O–  
= 2.0 kV = 1.0 V  
V
V
V
,
ID  
= 10 kV = 1.0 V  
,
ID  
= 10 k, V = 1.0 V  
–14.7  
–12  
ID  
Common Mode Rejection (V = ±12 V)  
in  
CMR  
PSR  
80  
80  
100  
115  
4.0  
dB  
dB  
Power Supply Rejection (V = 15 V to 5.0 V, 15 V to –5.0 V)  
S
Power Supply Current (V = 0 V, Both Amplifiers)  
I
D
8.0  
mA  
O
AC ELECTRICAL CHARACTERISTICS (V  
= +15 V, V  
= –15 V, T = 25°C, unless otherwise noted.)  
EE A  
CC  
Characteristic  
Symbol  
Min  
5.0  
10  
Typ  
7.0  
15  
Max  
Unit  
V/µs  
MHz  
MHz  
Deg  
Slew Rate (V = –10 V to +10 V, R = 2.0 k, A = +1.0)  
in  
S
R
L
V
Gain Bandwidth Product (f = 100 kHz)  
Unity Gain Frequency (Open Loop)  
Unity Gain Phase Margin (Open Loop)  
GBW  
f
U
9.0  
60  
θ
m
Equivalent Input Noise Voltage (R = 100 , f = 1.0 kHz)  
e
n
4.5  
S
nV Hz  
Equivalent Input Noise Current (f = 1.0 kHz)  
i
0.5  
n
pA Hz  
kHz  
%
Power Bandwidth (V = 27 V , R = 2.0 k, THD 1.0%)  
pp  
BWP  
THD  
120  
0.002  
–120  
O
L
Distortion (R = 2.0 k, f = 20 Hz to 20 kHz, V = 3.0 V  
, A = +1.0)  
V
L
O
rms  
Channel Separation (f = 20 Hz to 20 kHz)  
C
dB  
S
Figure 1. Maximum Power Dissipation  
versus Temperature  
Figure 2. Input Bias Current versus Temperature  
800  
1000  
800  
600  
400  
200  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
CM  
600  
400  
200  
0
0
–50  
0
50  
100  
C)  
150  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°
A
A
2
MOTOROLA ANALOG IC DEVICE DATA  
LM833  
Figure 3. Input Bias Current versus  
Supply Voltage  
Figure 4. Supply Current versus  
Supply Voltage  
800  
600  
400  
10  
V
CC  
R
= ∞  
= 25°C  
I
L
S
T
= 25°C  
A
8.0  
T
A
V
6.0  
O
+
V
EE  
4.0  
2.0  
0
200  
0
5.0  
10  
15  
20  
0
5.0  
10  
15  
20  
V
, |V |, SUPPLY VOLTAGE (V)  
V , |V |, SUPPLY VOLTAGE (V)  
CC EE  
CC EE  
Figure 5. DC Voltage Gain  
versus Temperature  
Figure 6. DC Voltage Gain versus  
Supply Voltage  
110  
105  
100  
110  
100  
V
V
R
= +15 V  
= –15 V  
= 2.0 kΩ  
CC  
EE  
L
R
T
= 2.0 kΩ  
L
A
= 25  
°C  
90  
80  
95  
90  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
5.0  
10  
15  
20  
T , AMBIENT TEMPERATURE (  
°
V , |V |, SUPPLY VOLTAGE (V)  
CC EE  
A
Figure 7. Open Loop Voltage Gain and  
Phase versus Frequency  
Figure 8. Gain Bandwidth Product  
versus Temperature  
120  
0
20  
15  
10  
100  
80  
45  
90  
Phase  
60  
40  
V
V
R
= +15 V  
= –15 V  
V
V
= +15 V  
= –15 V  
CC  
EE  
L
CC  
EE  
5.0  
0
Gain  
135  
180  
= 2.0 kΩ  
f = 100 kHz  
20  
0
T
= 25°C  
A
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
f, FREQUENCY (Hz)  
T , AMBIENT TEMPERATURE (  
°
A
3
MOTOROLA ANALOG IC DEVICE DATA  
LM833  
Figure 9. Gain Bandwidth Product versus  
Supply Voltage  
Figure 10. Slew Rate versus Temperature  
30  
10  
f = 100 kHz  
T
= 25°C  
A
8.0  
Falling  
Rising  
20  
10  
6.0  
V
V
R
= +15 V  
= –15 V  
CC  
EE  
L
+
V
O
V
in  
4.0  
2.0  
= 2.0 kΩ  
R
L
A
= +1.0  
V
0
5.0  
10  
15  
20  
–55  
–25  
0
25  
50  
75  
100  
125  
V
, |V |, SUPPLY VOLTAGE (V)  
T , AMBIENT TEMPERATURE (  
°C)  
CC EE  
A
Figure 11. Slew Rate versus Supply Voltage  
Figure 12. Output Voltage versus Frequency  
10  
8.0  
6.0  
4.0  
2.0  
0
35  
30  
R
= 2.0k  
= +1.0  
= 25°C  
L
A
V
A
T
Falling  
Rising  
25  
20  
15  
V
V
R
= +15 V  
= –15 V  
CC  
EE  
L
+
V
O
= 2.0 kΩ  
V
10  
THD  
1.0%  
= 25°C  
in  
R
L
T
A
5.0  
0
5.0  
10  
15  
20  
10  
100  
1.0 k  
10 k  
1.0 M  
10 M  
100 k  
V
, |V |, SUPPLY VOLTAGE (V)  
f, FREQUENCY (Hz)  
CC EE  
Figure 13. Maximum Output Voltage  
versus Supply Voltage  
Figure 14. Output Saturation Voltage  
versus Temperature  
15  
14  
13  
20  
15  
10  
5.0  
V
+
R
= 10 kΩ  
= 25°C  
O
L
+V  
sat  
T
A
–V  
sat  
0
–5.0  
V
V
R
= +15 V  
= –15 V  
= 10 kΩ  
CC  
EE  
L
–10  
V
O
–15  
–20  
5.0  
10  
15  
20  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
V
, |V |, SUPPLY VOLTAGE (V)  
T , AMBIENT TEMPERATURE (  
°
CC EE  
A
4
MOTOROLA ANALOG IC DEVICE DATA  
LM833  
Figure 15. Power Supply Rejection  
versus Frequency  
Figure 16. Common Mode Rejection  
versus Frequency  
160  
140  
120  
140  
120  
V
V
T
= +15 V  
= –15 V  
V
DM  
CC  
EE  
A
V
CM  
CC  
A
+
A
V  
O
= 25  
°C  
DM  
V
+
O
100  
80  
V
CM  
V  
EE  
A
DM  
CMR = 20 Log  
×
V
0
100  
80  
–PSR  
+PSR  
60  
V
V
V
T
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
CM  
V /A  
O DM  
40  
60  
+PSR = 20 Log  
(
)
V
CC  
/A  
V
=
°
±
C
1.5 V  
CM  
= 25  
V
20  
0
O
V
DM  
40  
20  
A
–PSR = 20 Log  
1.0 k  
(
)
EE  
10 k  
f, FREQUENCY (Hz)  
100  
100 k  
1.0 M  
10 M  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
f, FREQUENCY (Hz)  
Figure 17. Total Harmonic Distortion  
versus Frequency  
Figure 18. Input Referred Noise Voltage  
versus Frequency  
1.0  
0.1  
10  
V
V
= +15 V  
= –15 V  
= 2.0 kΩ  
CC  
EE  
L
+
V
L
O
R
T
R
5.0  
= 25°C  
A
V
V
R
= +15 V  
= –15 V  
= 100 Ω  
CC  
EE  
S
0.01  
0.001  
V
= 1.0 V  
rms  
O
2.0  
1.0  
T
= 25°C  
A
V
= 3.0 V  
rms  
O
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
Figure 19. Input Referred Noise Current  
versus Frequency  
Figure 20. Input Referred Noise Voltage  
versus Source Resistance  
2.0  
100  
10  
V
V
T
= +15 V  
= –15 V  
V
V
= +15 V  
= –15 V  
CC  
EE  
A
CC  
EE  
2
2
+
= 25  
°C  
V (total) = (i R  
)
+e  
n
n
A
n
S
4KTRS  
T
= 25°C  
1.0  
0.7  
0.5  
0.4  
0.3  
1.0  
1.0  
0.2  
10  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
100  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
R
, SOURCE RESISTANCE ()  
S
5
MOTOROLA ANALOG IC DEVICE DATA  
LM833  
Figure 21. Inverting Amplifier  
Figure 22. Noninverting Amplifier Slew Rate  
V
V
R
C
= +15 V  
= –15 V  
V
V
R
C
= +15 V  
= –15 V  
CC  
EE  
L
L
CC  
EE  
L
L
= 2.0 k  
= 0 pF  
= –1.0  
= 2.0 k  
= 0 pF  
= +1.0  
A
A
V
A
V
T
= 25  
°C  
T = 25°C  
A
t, TIME (2.0  
µs/DIV)  
t, TIME (2.0 µs/DIV)  
Figure 23. Noninverting Amplifier Overshoot  
V
V
R
C
= +15 V  
= –15 V  
CC  
EE  
L
L
= 2.0 k  
= 0 pF  
= +1.0  
A
V
A
T
= 25°C  
t, TIME (200 ns/DIV)  
6
MOTOROLA ANALOG IC DEVICE DATA  
LM833  
OUTLINE DIMENSIONS  
N SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
8
5
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
–B–  
1
4
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
MILLIMETERS  
INCHES  
F
DIM  
A
B
C
D
F
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
0.370  
0.240  
0.155  
0.015  
0.040  
–A–  
NOTE 2  
L
G
H
J
K
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
C
J
–T–  
SEATING  
PLANE  
7.62 BSC  
0.300 BSC  
M
N
–––  
0.76  
10  
1.01  
–––  
0.030  
10  
0.040  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
(SO–8)  
ISSUE R  
NOTES:  
D
A
E
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS ARE IN MILLIMETERS.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
C
8
1
5
4
M
M
0.25  
B
H
h X 45  
MILLIMETERS  
B
C
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.18  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
7
MOTOROLA ANALOG IC DEVICE DATA  
LM833  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
LM833/D  

相关型号:

LM833DG

Low Noise, Audio Dual Operational Amplifier
ONSEMI

LM833DGKR

DUAL HIGH-SPEED AUDIO OPERATIONAL AMPLIFIER
TI

LM833DGKT

DUAL HIGH-SPEED AUDIO OPERATIONAL AMPLIFIER
TI

LM833DR

DUAL HIGH-SPEED AUDIO OPERATIONAL AMPLIFIER
TI

LM833DR2

Low Noise, Audio Dual Operational Amplifier
ONSEMI

LM833DR2G

Low Noise, Audio Dual Operational Amplifier
ONSEMI

LM833DT

Low noise dual operational amplifier
STMICROELECTR

LM833G-S08-R

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833G-S08-T

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833L-S08-R

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833L-S08-T

DUAL OPERATIONAL AND LOW VOLTAGE NOISE AMPLIFIER
UTC

LM833M

Dual Audio Operational Amplifier
NSC