M116S163AST12 [MOTOROLA]

Synchronous DRAM, 1MX16, 9ns, CMOS, PDSO50, 0.400 INCH, 0.80 MM PITCH, TSOP-50;
M116S163AST12
型号: M116S163AST12
厂家: MOTOROLA    MOTOROLA
描述:

Synchronous DRAM, 1MX16, 9ns, CMOS, PDSO50, 0.400 INCH, 0.80 MM PITCH, TSOP-50

时钟 动态存储器 光电二极管 内存集成电路
文件: 总48页 (文件大小:755K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MC16S044T3B/D  
SEMICONDUCTOR  
TECHNICAL DATA  
2 x 2M x 4  
MC16S044T3B  
Product Preview  
2 x 1M x 8  
x4, x8, x16  
MC16S084T3B  
The family of 16M Synchronous Dynamic RAMs is fabricated using 0.45µ  
CMOS high–speed silicon gate process technology. It includes devices  
organized as 2 banks x 2,097,152 words x 4 bits, 2 banks x 1,048,576 words  
x 8 bits, and 2 banks x 524,288 words x 16 bits. Advanced circuit design and  
fine line processing provide high performance, improved reliability, and low  
cost.  
Fully synchronous operations are referenced to the rising edge of the clock  
input and can achieve data transfer rates up to 100 MHz. These devices are  
ideal for main memory in applications such as workstations, microcomputers,  
and refresh memory in CRTs.  
These devices are packaged in a standard 400 mil thin small outline  
package (TSOP).  
T PACKAGE  
400 MIL TSOP  
CASE 924B–01  
Single 3.3 V ± 0.3 V Power Supply  
Clock Frequency 100 MHz/83 MHz  
Fully Synchronous Operation Referenced to Clock Rising Edge  
Dual Bank Operation Controlled by Bank Address (BA)  
CAS Latency Programmable to 1/2/3  
2 x 512K x 16  
M116S163AST  
Burst Length Programmable to 1/2/4/8/Page  
Burst Type Programmable to Sequential/Interleaved  
Auto Precharge: All Bank Precharge Controlled by A10 and BA  
Auto–Refresh and Self–Refresh  
4096 Refresh Cycles: 64 ms  
LVTTL Interface  
T PACKAGE  
400 MIL TSOP  
CASE 985C–01  
Package:  
MC16S044T3B: 400 mil, 44–Pin TSOP (0.8 mm Pitch)  
MC16S084T3B: 400 mil, 44–Pin TSOP (0.8 mm Pitch)  
M116S163AST: 400 mil, 50–Pin TSOP (0.8 mm Pitch)  
This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.  
REV 1  
4/4/97  
Motorola, Inc. 1997  
PIN ASSIGNMENTS  
400 MIL TSOP  
44–PIN  
400 MIL TSOP  
50–PIN  
V
1
2
44  
43  
V
V
1
2
50  
49  
V
SS  
V
V
CC  
SS  
CC  
SS  
CC  
DQ0  
DQ7  
DQ0  
DQ1  
DQ15  
DQ14  
NC  
NC  
Q
V
V
Q
3
4
5
6
7
42  
41  
40  
39  
38  
V
Q
3
4
5
6
7
48  
47  
46  
45  
44  
V
Q
V
V
SS  
SS  
SS  
SS  
DQ1  
Q
DQ6  
V
V
Q
V
Q
DQ3  
DQ0  
Q
SS  
SS  
V
Q
DQ2  
DQ3  
Q
DQ13  
DQ12  
V
Q
CC  
CC  
CC  
CC  
DQ2  
DQ5  
NC  
NC  
V
Q
V
Q
V
Q
V
Q
V
Q
SS  
SS  
CC  
CC  
SS  
SS  
DQ3  
8
37  
DQ4  
DQ4  
8
43  
DQ11  
DQ10  
DQ2  
DQ1  
Q
V
Q
9
36  
35  
V
Q
DQ5  
9
42  
41  
V
Q
V
CC  
CC  
CC  
CC  
NC  
NC  
WE  
10  
NC  
NC  
V
Q
10  
V
Q
NC  
NC  
NC  
SS  
SS  
11  
12  
34  
33  
DQ6  
DQ7  
11  
12  
40  
39  
DQ9  
DQ8  
NC  
DQM  
DQM  
WE  
CAS  
RAS  
CS  
13  
14  
15  
32  
31  
30  
CLK  
CKE  
NC  
V
Q
13  
14  
15  
38  
37  
36  
V
Q
CLK  
CKE  
NC  
CAS  
RAS  
CS  
CC  
CC  
LDQM  
WE  
NC  
UDQM  
CLK  
BA  
A10  
A0  
16  
17  
18  
29  
28  
27  
A9  
A8  
A7  
CAS  
16  
35  
A9  
BA  
A10  
A0  
RAS  
CS  
17  
18  
34  
33  
CKE  
NC  
A8  
A7  
A1  
A2  
A3  
19  
20  
21  
22  
26  
A6  
BA  
A10  
A0  
19  
20  
21  
22  
23  
32  
A9  
A6  
A1  
A2  
A3  
25  
24  
23  
A5  
A4  
31  
30  
29  
28  
27  
26  
A8  
A7  
A6  
A5  
A4  
A5  
A4  
V
A1  
V
V
V
CC  
CC  
SS  
SS  
A2  
A3  
24  
25  
x8  
x4  
V
V
CC  
SS  
x16  
PIN NAMES  
A0 – A10 . . . . . . . . . . . . . . . . . Address Inputs DQM (x4, x8) . . . Output Disable/Write Mask  
BA . . . . . . . . . . . . . . . . . . . . . . . Bank Address UDQM/ . . . . . . . . Output Disable/Write Mask  
CS . . . . . . . . . . . . . . . . . . . . . . . . . Chip Select  
CAS . . . . . . . . . . . . . . Column Address Strobe  
DQ0 – DQ15 . . . . . . . . . . . . Data Input/Output  
RAS . . . . . . . . . . . . . . . . Row Address Strobe  
WE . . . . . . . . . . . . . . . . . . . . . . . . Write Enable  
LDQM (x16)  
(Upper/Lower Byte)  
V
V
V
V
. . . . . . . . . . . . . . . . . . . . . Power (+ 3.3 V)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . Ground  
Q . . . . . . Power (+ 3.3 V) (for I/O Buffer)  
CC  
SS  
CC  
Q . . . . . . . . . . . . . Ground (for I/O Buffer)  
SS  
CKE . . . . . . . . . . . . . . . . . . . . . . . Clock Enable NC . . . . . . . . . . . . . . . . . . . . . . . No Connection  
CLK . . . . . . . . . . . . . . . . . . . . . . . . . Clock Input  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
2
BLOCK DIAGRAM  
CLOCK  
BUFFER  
CLK  
CKE  
CONTROL  
SIGNAL  
GENERATOR  
CS  
RAS  
CAS  
WE  
COLUMN DECODER  
COMMAND  
DECODER  
2048 x 512 x 8*  
CELL ARRAY  
BANK 0  
SENSE AMPLIFIER  
A10  
MODE  
REGISTER  
DQ  
BUFFER  
DATA CONTROL  
ADDRESS  
BUFFER  
DQ0 – DQ7*  
CIRCUIT  
A0 – A9,  
BA  
DQM  
SENSE AMPLIFIER  
COLUMN  
COUNTER  
REFRESH  
COUNTER  
2048 x 512 x 8*  
CELL ARRAY  
BANK 1  
COLUMN DECODER  
* This figure is for the MC16S084T3B (2 x 1M x 8) device.  
Refer to the following table for differences in addressing, array size, and DQ width.  
Row  
Address  
Column  
Address  
Device  
Array Size  
DQ Width  
MC16S044T3B  
MC16S084T3B  
M116S163AST  
A0 – A10  
A0 – A10  
A0 – A10  
A0 – A9  
A0 – A8  
A0 – A7  
2048 x 1024 x 4  
2048 x 512 x 8  
2048 x 256 x 16  
DQ0 – DQ3  
DQ0 – DQ7  
DQ0 – DQ15  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
3
ABSOLUTE MAXIMUM RATINGS (See Note)  
This device contains circuitry to protect the  
inputs against damage due to high static volt-  
ages or electric fields; however, it is advised  
that normal precautions be taken to avoid  
application of any voltage higher than maxi-  
mum rated voltages to this high–impedance  
circuit.  
Rating  
Symbol  
Value  
Unit  
V
Power Supply Voltage (to V  
)
V
CC  
– 0.3 to + 4.6  
– 0.3 to + 4.6  
SS  
Power Supply Voltage for Output  
V
CC  
Q
V
(to V Q)  
SS  
Input Voltage (Relative to V  
)
V
in  
– 0.3 to + 4.6  
– 0.3 to + 4.6  
50  
V
V
SS  
Output Voltage (Relative to V Q)  
SS  
V
out  
out  
Output Current  
I
mA  
mW  
°C  
Power Dissipation  
P
D
1000  
Operating Temperature Range  
Storage Temperature Range  
T
A
0 to + 70  
– 55 to + 150  
T
stg  
°C  
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are  
exceeded. Functional operation should be restricted to RECOMMENDED OPER-  
ATING CONDITIONS. Exposure to higher than recommended voltages for  
extended periods of time could affect device reliability.  
DC OPERATING CONDITIONS AND CHARACTERISTICS  
(V  
= 3.3 V ± 0.3 V, T = 0 to 70°C, Unless Otherwise Noted)  
CC  
A
RECOMMENDED OPERATING CONDITIONS (All Voltages Referenced to V  
)
SS  
Parameter  
Symbol  
Min  
3.0  
0
Typ  
3.3  
0
Max  
3.6  
0
Unit  
Supply Voltage (Operating Voltage Range)  
V
CC  
V
V
SS  
Supply Voltage for Output (Operating Voltage Range)  
V
Q
3.0  
0
3.3  
0
3.6  
0
V
CC  
V
Q
SS  
Logic High Voltage, All Inputs  
Logic Low Voltage, All Inputs  
V
2.0  
– 0.3  
2.4  
V
CC  
+ 0.3  
V
V
IH  
V
0.8  
0.4  
5
IL  
High Level Output Voltage (I  
= – 2 mA)  
= 2 mA)  
V
OH  
V
OH  
Low Level Output Voltage (I  
V
OL  
V
OL  
Input Leakage Current (0 V V < V , All Other Pins Not Under  
Test = 0 V)  
I
I
– 5  
µA  
in CC  
lkg(1)  
Output Leakage Current (0 V V  
< V , Output Disable)  
CC  
– 5  
5
µA  
out  
lkg(0)  
NOTE: V (Max) = V /V Q + 1.2 V for pulse width 5 ns. V (Min) = V /V Q – 1.2 V for pulse width 5 ns.  
IH  
CC CC  
IL  
SS SS  
CAPACITANCE  
(f = 1.0 MHz @ 25 mV rms, V  
= V Q = 3.3 V ± 0.3 V, V  
= V Q = 0 V, T = 25°C, Periodically Sampled Rather Than 100% Tested)  
SS  
DD  
DD  
SS  
A
Parameter  
Symbol  
Max  
Unit  
Input Capacitance  
All Non–CLK Inputs  
C
4
6
5
pF  
in  
CLK  
I/O Capacitance  
DQ0 – DQ15  
C
pF  
I/O  
NOTE: Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: C = I t/V.  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
4
AVERAGE SUPPLY CURRENT  
Max (x4/x8/x16)  
Characteristic  
Symbol  
Unit  
mA  
mA  
mA  
mA  
Notes  
–10  
–12  
Operating Current  
= Min, t  
Single Bank  
I
90  
80  
1
1
1
CC1  
t
= Min  
CLK  
RC  
Dual Bank Interleaved  
Clock Enabled (CKE = H)  
I
130  
30  
2
115  
28  
2
CC1B  
Standby Current  
Both Banks Idle, t  
I
CC2  
= Min  
CLK  
Clock Disabled (CKE = L)  
(Power Down Mode)  
I
I
CC2P  
Standby Current  
Clock Enabled (CKE = H)  
13  
2
13  
2
mA  
mA  
CC2S  
Both Banks Idle, CLK = L  
Active Standby Current  
Clock Disabled (CKE = L)  
(Power Down Mode)  
I
CC2PS  
Clock Enabled (CKE = H)  
I
75  
3
70  
3
mA  
mA  
2
CC3  
Both Banks Active, t  
= Min, CS = H  
CLK  
Clock Disabled (CKE = L)  
(Power Down Mode)  
I
CC3P  
Burst Current  
Both Banks Active, t  
Read Cycle  
Write Cycle  
I
135  
125  
65  
125  
115  
60  
mA  
mA  
mA  
1, 2  
1
CC4R  
= Min  
CLK  
I
CC4W  
Auto–Refresh Current  
I
1
CC5  
t
= Min, t  
= Min  
CLK  
RC  
Self–Refresh Current  
CKE = 0.2 V  
I
2
2
mA  
CC6  
NOTES:  
1. These parameters depend on the specified cycle rate and are measured at minimum t  
during CLK.  
and t . Input signals are changed one time  
RC  
CK  
2. These parameters depend on output loading. Specified values are obtained with the output open.  
AC OPERATING CONDITIONS AND CHARACTERISTICS  
(V  
= V Q = 3.3 V ± 0.3 V, V  
= V Q = 0 V, V = 0.4 V, V = 2.0 V,  
SS SS IL IH  
CC  
CC  
T = 0 to 70°C, Input and Output Timing Reference Level = 1.4 V, Unless Otherwise Noted)  
A
ALL DEVICES: READ, WRITE, AND READ–WRITE CYCLES (See Notes 1, 2, 3, and 4)  
–10  
–12  
Parameter  
Symbol  
Unit  
Notes  
Min  
Max  
Min  
Max  
Clock Cycle Time  
(CL = 1)  
(CL = 2)  
(CL = 3)  
t
30  
15  
10  
1000  
1000  
1000  
36  
18  
12  
1000  
1000  
1000  
ns  
CLK  
Clock High Pulse Width  
Clock Low Pulse Width  
Transition Time of CLK  
Data Input Setup Time  
Data Input Hold Time  
Address Setup Time  
NOTES:  
t
3
3
1
3
1
3
10  
4
4
1
3
1
3
10  
ns  
ns  
ns  
ns  
ns  
ns  
5
CH  
t
CL  
t
T
t
DS  
DH  
t
t
AS  
1. See Figure 1 for input and output reference levels and output load conditions.  
2. Transition time (rise and fall) of input signals is 2 ns.  
3. Transition times are measured between V and V . Transition times (rise and fall) of input signals are fixed slope.  
IH IL  
4. Power up must be performed in the following sequence:  
(1) With the device in the no–operation state, simultaneously apply power to V  
(2) Pause for a minimum of 200 µs.  
and V Q, and start the CLK signal.  
CC  
CC  
(3) Set DQM and CKE signals to V to ensure high impedance at the DQ outputs.  
IH  
(4) Precharge both banks.  
(5) Initialize the mode register with the mode register set command.  
(6) Issue a minimum of eight auto–refresh dummy commands to stabilize the internal device circuitry.  
Steps 5 and 6 may be interchanged.  
5. t  
is the pulse width of CLK measured from the positive edge to the negative edge referenced to V (Min). t  
is the pulse width of CLK  
CL  
CH  
IH  
measured from the negative edge to the positive edge referenced to V (Max).  
IL  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
5
ALL DEVICES: READ, WRITE, AND READ–WRITE CYCLES (continued)  
–10  
–12  
Parameter  
Symbol  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Min  
1
Max  
Min  
1
Max  
Address Hold Time  
CKE Setup Time  
CKE Hold Time  
t
AH  
t
3
3
CKS  
CKH  
CMS  
CMH  
t
1
1
Command Setup Time  
Command Hold Time  
Row Cycle Time  
t
3
3
t
1
1
t
100  
30  
10  
60  
30  
120  
36  
12  
72  
36  
6
6
6
6
6
RC  
Row to Column Delay  
Column to Column Delay  
Row Active Time  
t
t
RCD  
CCD  
t
100000  
100000  
RAS  
Row Precharge Time  
Write Recovery Time  
t
RP  
(CL = 1)  
(CL = 2)  
(CL = 3)  
t
30  
15  
36  
18  
WR  
1 CLK + 10  
1 CLK + 12  
Act to Act Delay Time  
t
20  
20  
0
10  
64  
24  
24  
0
12  
64  
ns  
ns  
ns  
ms  
ns  
6
6
RRD  
Mode Register Set Cycle Time  
Power Down Mode Entry Time  
Refresh Interval Time  
t
RSC  
t
SB  
t
REF  
Access Time from CLK  
(CL = 1)  
(CL = 2)  
(CL = 3)  
t
24  
9
8.5  
27.5  
9.5  
9
AC  
Column Access Time  
t
24  
3
10  
27.5  
12  
ns  
ns  
ns  
ns  
CAC  
Output Hold Time from CLK  
t
3
0
3
OH  
Delay Time, Output Low Impedance from CLK  
t
0
LZ  
Delay Time, Output High Impedance from CLK  
NOTES:  
t
3
7
HZ  
6. These parameters account for the number of clock cycle and depend on the operating frequency of the clock, as follows:  
the number of clock cycle = specified value of timing/clock period  
(count fractions as a whole number)  
See the Latency Relationship to Frequency table.  
7. t  
defines the time at which the outputs achieve the open circuit condition and is not a reference level.  
HZ  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
6
CLK  
1.4 V  
1.4 V  
V
= 1.4 V  
TT  
SIGNAL  
50  
V
= 1.4 V  
REF  
V
OUT  
50 pF  
CLK  
DQ  
1.4 V  
1.4 V  
Output Load Condition  
t
t
OHZ  
AC  
t
OH  
NOTE: Any AC timing isreferenced  
to the input signal crossing  
through 1.4 V.  
Figure 1.  
LATENCY RELATIONSHIP TO FREQUENCY*  
–10 Version (Calculation with t = 10 ns – 30 ns)  
CLK  
t
t
t
t
t
t
t
RRD  
(20 ns)  
RC  
RAS  
RP  
CAC  
RCD  
RSC  
(100 ns)  
(60 ns)  
(30 ns)  
(24 ns)  
(30 ns)  
(20 ns)  
CLK Period (t  
30 ns  
)
CLK  
4
5
2
3
4
4
5
5
6
1
2
2
2
3
3
3
1
2
2
2
3
3
3
1
2
2
2
3
3
3
1
1
2
2
2
2
2
1
1
2
2
2
2
2
20 ns  
18 ns  
6
15 ns  
7
13 ns  
8
12 ns  
9
10 ns  
10  
–12 Version (Calculation with t  
CLK  
= 12 ns – 36 ns)  
t
t
t
t
t
t
t
RRD  
(24 ns)  
RC  
RAS  
RP  
CAC  
RCD  
RSC  
(120 ns)  
(72 ns)  
(36 ns)  
(27.5 ns)  
(36 ns)  
(24 ns)  
CLK Period (t  
36 ns  
)
CLK  
4
5
2
3
4
4
5
6
6
1
2
2
2
3
3
3
1
2
2
2
3
3
3
1
2
2
2
3
3
3
1
1
2
2
2
2
2
1
1
2
2
2
2
2
24 ns  
20 ns  
6
18 ns  
7
15 ns  
8
14 ns  
9
12 ns  
10  
* Units: clock cycles.  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
7
COMMAND INPUT TIMING  
t
t
t
CH  
CLK  
CL  
V
V
IH  
IL  
CLK  
t
t
t
T
T
t
t
t
t
t
t
t
t
t
t
CMS  
CMS  
CMS  
CMS  
CMS  
CMH  
CMH  
CMH  
CMH  
AH  
CMH  
CS  
RAS  
CAS  
WE  
t
AS  
A0 – A10,  
BA  
t
t
t
CKH  
CKH  
CKH  
t
t
t
CKS  
CKS  
CKS  
CKE  
COMMAND ISSUED  
THIS CYCLE  
COMMAND IGNORED THIS CYCLE  
SINCE CKE LOW PREVIOUS CYCLE  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
8
READ TIMING  
READ CAS LATENCY  
CLK  
CS  
RAS  
CAS  
WE  
A0 – A10,  
BA  
t
t
t
AC  
AC  
OH  
HZ  
OH  
t
t
t
CAC  
t
LZ  
DQ  
DATA OUT  
DATA OUT  
BURST LENGTH  
READ COMMAND  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
9
CONTROL TIMING OF INPUT DATA (MC16S044T3B/MC16S084T3B)  
WORD MASK  
CLK  
t
t
CMS  
CMS  
t
t
CMH  
CMH  
DQM  
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DQ0 – DQ7  
DATA IN  
DATA IN  
DATA IN  
DATA IN  
CLOCK MASK  
CLK  
t
t
CKS  
CKS  
t
t
CKH  
CKH  
CKE  
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DQ0 – DQ7  
DATA IN  
DATA IN  
DATA IN  
DATA IN  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
10  
CONTROL TIMING OF OUTPUT DATA (MC16S044T3B/MC16S084T3B)  
OUTPUT ENABLE  
CLK  
t
t
CMS  
CMS  
t
t
CMH  
CMH  
DQM  
t
t
t
t
t
AC  
AC  
HZ  
AC  
AC  
t
t
t
t
LZ  
t
OH  
OH  
OH  
OH  
DQ0 – DQ7  
DATA OUT  
DATA OUT  
DATA OUT  
OPEN  
CLOCK MASK  
CLK  
t
t
CKS  
CKS  
t
t
CKH  
CKH  
CKE  
t
t
t
t
AC  
AC  
AC  
AC  
t
t
t
t
OH  
OH  
OH  
OH  
DQ0 – DQ7  
DATA OUT  
DATA OUT  
DATA OUT  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
11  
CONTROL TIMING OF INPUT DATA (M116S163AST)  
WORD MASK  
CLK  
t
t
CMS  
CMS  
t
t
CMH  
CMH  
LDQM  
t
t
CMS  
CMS  
t
t
CMH  
CMH  
UDQM  
t
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DQ0 – DQ7  
DATA IN  
t
DATA IN  
t
DATA IN  
DATA IN  
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DATA IN  
DATA IN  
DATA IN  
DQ8 – DQ15  
DATA IN  
CLOCK MASK  
CLK  
t
t
CKS  
CKS  
t
t
CKH  
CKH  
CKE  
t
t
t
t
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DQ0 – DQ7  
DATA IN  
DATA IN  
DATA IN  
DATA IN  
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DQ8 – DQ15  
DATA IN  
DATA IN  
DATA IN  
DATA IN  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
12  
CONTROL TIMING OF OUTPUT DATA (M116S163AST)  
OUTPUT ENABLE  
CLK  
t
t
CMS  
CMS  
t
t
t
CMH  
CMH  
LDQM  
UDQM  
t
t
CMS  
CMS  
t
CMH  
CMH  
t
t
t
t
t
AC  
AC  
HZ  
AC  
AC  
t
t
t
t
t
OH  
OH  
OH  
LZ  
OPEN  
OH  
DQ0 – DQ7  
DATA OUT  
DATA OUT  
DATA OUT  
t
t
t
t
t
AC  
AC  
AC  
AC  
HZ  
t
t
t
t
t
LZ  
OH  
OH  
OH  
OH  
OPEN  
DQ8 – DQ15  
DATA OUT  
DATA OUT  
DATA OUT  
CLOCK MASK  
CLK  
t
t
CKS  
CKS  
t
t
CKH  
CKH  
CKE  
DQ0 – DQ7  
DQ8 – DQ15  
t
t
t
t
AC  
AC  
AC  
AC  
t
t
t
t
t
OH  
OH  
OH  
OH  
DATA OUT  
DATA OUT  
DATA OUT  
DATA OUT  
t
t
t
t
AC  
AC  
AC  
AC  
t
t
t
OH  
OH  
OH  
OH  
DATA OUT  
DATA OUT  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
13  
MODE REGISTER SET CYCLE  
t
RSC  
CLK  
t
CMH  
t
CMS  
CS  
t
CMH  
CMH  
t
CMS  
RAS  
t
t
CMS  
CAS  
t
CMH  
t
CMS  
WE  
t
AH  
t
AS  
A0 – A10,  
BA  
REGISTER SET DATA  
NEXT COMMAND  
Burst Length  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
BA  
A2  
0
A1  
0
A0 Sequential  
Interleave  
Burst Length  
0
1
0
1
0
1
0
1
1
2
4
8
1
2
4
8
Addressing Mode  
CAS Latency  
0
0
0
1
0
1
1
0
0
0
1
0
Reserved  
Full Page  
(Test Mode)  
Reserved  
1
1
Reserved  
1
1
Write Mode  
0
0
Reserved  
A3  
0
Addressing Mode  
Sequential  
Interleave  
1
A6  
0
A5  
0
A4  
0
CAS Latency  
Reserved  
0
0
1
1
0
1
0
2
3
0
1
1
1
x
x
Reserved  
A9  
0
Single Write Mode  
Burst Read and Burst Write  
Burst Read and Single Write  
1
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
14  
OPERATING TIMING EXAMPLES (–10 VERSION) (CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
t
RC  
RC  
t
RC  
RAS  
t
t
t
RAS  
t
RP  
RAS  
RP  
t
t
RAS  
RP  
CAS  
WE  
BA  
RAa  
RAa  
RAb  
RAb  
RAc  
RAc  
RAd  
RAe  
A10  
t
RCD  
t
t
t
RCD  
RCD  
RCD  
A0 – A9  
CAw  
CBx  
CAy  
RAd  
CBz  
RAe  
DQM  
CKE  
t
t
CAC  
t
CAC  
t
CAC  
CAC  
DQ  
AW0  
AW1  
AW2 AW3  
BX0 BX1  
BX2  
BX3  
CY0  
CY1  
CY2  
CY3  
t
t
t
t
RRD  
RRD  
RRD  
RRD  
BANK 0  
BANK 1  
ACTIVE  
READ  
PRECHARGE  
READ  
ACTIVE  
READ  
PRECHARGE  
PRECHARGE  
READ  
ACTIVE  
ACTIVE  
ACTIVE  
Figure 2. Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
15  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
t
RC  
RC  
t
RC  
RAS  
t
t
t
RAS  
t
RP  
RAS  
RP  
t
t
RP  
RAS  
CAS  
WE  
BA  
t
RCD  
t
RCD  
t
RCD  
t
RCD  
RAa  
RAa  
RBb  
RBb  
RAc  
RAc  
RBd  
RAe  
RAe  
A10  
A0 – A9  
CBx  
RBd  
CAw  
CAy  
CBz  
DQM  
CKE  
t
t
t
t
CAC  
CAC  
CAC  
CAC  
BX3  
DQ  
CY0  
CY1  
CY2  
t
CY3  
AW0  
AW1 AW2  
AW3  
BX0  
BX1 BX2  
DZ0  
t
t
t
RRD  
RRD  
RRD  
RRD  
BANK 0  
BANK 1  
ACTIVE  
READ  
AP*  
ACTIVE  
READ  
AP*  
AP*  
ACTIVE  
ACTIVE  
READ  
ACTIVE  
READ  
* AP is internal precharge start timing.  
Figure 3. Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto Precharge)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
16  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
RC  
RAS  
t
t
RP  
RAS  
t
t
RAS  
RP  
CAS  
WE  
BA  
t
RCD  
t
t
RCD  
RCD  
RAa  
RAa  
RBb  
RBb  
RAc  
A10  
A0 – A9  
CBy  
RAc  
CAx  
CAz  
DQM  
CKE  
t
CAC  
t
t
CAC  
CAC  
CZ0  
AX0  
AX1  
AX2  
AX3  
AX4  
AX5  
AX6  
BY0  
BY1  
BY4  
BY5  
BY6  
BY7  
DQ  
t
t
RRD  
RRD  
BANK 0  
BANK 1  
ACTIVE  
READ  
PRECHARGE  
PRECHARGE  
ACTIVE  
READ  
ACTIVE  
READ  
PRECHARGE  
Figure 4. Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
17  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
t
RC  
CS  
RAS  
t
t
RP  
RAS  
t
RAS  
CAS  
WE  
BA  
t
RCD  
t
t
RCD  
RCD  
RAa  
RAa  
RBb  
RBb  
RAc  
A10  
A0 – A9  
RAc  
CAx  
CBy  
CAz  
DQM  
CKE  
t
CAC  
t
t
CAC  
CAC  
CZ0  
DQ  
AX0  
AX1  
AX2  
AX3  
AX4  
AX5  
t
AX6  
AX7  
BY0  
BY1  
BY4  
BY5  
BY6  
t
RRD  
RRD  
BANK 0  
BANK 1  
ACTIVE  
READ  
AP*  
ACTIVE  
READ  
ACTIVE  
READ  
AP*  
* AP is internal precharge start timing.  
Figure 5. Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto Precharge)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
18  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
RC  
RAS  
t
RAS  
t
RP  
t
RAS  
CAS  
WE  
BA  
t
RCD  
t
t
RCD  
RCD  
RAa  
RAa  
RBb  
RBb  
RAc  
RAc  
A10  
A0 – A9  
CAz  
CAx  
CBy  
DQM  
CKE  
DQ  
AX0  
AX1  
AX4  
AX5  
AX6  
AX7  
BY0  
BY1  
BY2  
BY3  
BY4  
BY5  
BY6  
BY7  
CZ0  
CZ1  
CZ2  
t
t
RRD  
RRD  
BANK 0  
BANK 1  
ACTIVE  
WRITE  
PRECHARGE  
WRITE  
ACTIVE  
WRITE  
ACTIVE  
PRECHARGE  
Figure 6. Interleaved Bank Write (Burst Length = 8)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
19  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
RC  
RAS  
t
RAS  
t
RP  
t
RAS  
CAS  
WE  
BA  
t
RCD  
t
t
RCD  
RCD  
RAa  
RAa  
RBb  
RBb  
RAc  
RAc  
A10  
A0 – A9  
CAz  
CAx  
CBy  
DQM  
CKE  
CZ2  
DQ  
AX0  
AX1  
AX4  
AX5  
AX6  
AX7  
BY0  
BY1  
AP*  
BY2  
BY3  
BY4  
BY5  
BY6  
BY7  
CZ0  
CZ1  
t
t
RRD  
RRD  
BANK 0  
BANK 1  
ACTIVE  
WRITE  
ACTIVE  
WRITE  
ACTIVE  
WRITE  
AP*  
* AP is internal precharge start timing.  
Figure 7. Interleaved Bank Write (Burst Length = 8, Auto Precharge)  
MC16S044T3BMC16S084T3BM116S163AST  
20  
MOTOROLA DRAM  
0
1
2
3
4
5
6
7
8
9
10  
t
11  
12  
13  
t
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
t
CCD  
CCD  
CCD  
CS  
t
RAS  
t
RAS  
RAS  
CAS  
WE  
BA  
t
RCD  
t
RCD  
RAa  
RAa  
RBb  
RBb  
A10  
A0 – A9  
CBx  
CAm  
CBz  
CAl  
CAy  
DQM  
CKE  
t
CAC  
t
t
t
t
CAC  
CAC  
CAC  
CAC  
AY1  
DQ  
AL0  
AL1  
AL2  
AL3  
BX0 BX1  
AY0  
AY2  
AM0  
AM1  
AM2  
BZ0  
BZ1  
BZ2  
BZ3  
t
RRD  
BANK 0  
BANK 1  
ACTIVE  
READ  
READ  
READ  
PRECHARGE  
ACTIVE  
READ  
READ  
AP*  
* AP is internal precharge start timing.  
Figure 8. Page Mode Read (Burst Length = 4, CAS Latency = 3)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
21  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
RAS  
t
RAS  
CAS  
WE  
BA  
t
RCD  
RAa  
RAa  
A10  
A0 – A9  
CAx  
CBy  
DQM  
CKE  
t
CAC  
t
WR  
DQ  
AX0  
AX1  
AX2  
AX3  
AX4  
AX5  
AY0  
AY1  
AY2  
AY3  
AY4  
Q
Q
Q
Q
Q
Q
D
D
D
D
D
BANK 0  
BANK 1  
ACTIVE  
READ  
WRITE  
PRECHARGE  
NOTE: See Figures 17 and 20.  
Figure 9. Page Mode Read/Write (Burst Length = 8, CAS Latency = 3)  
MC16S044T3BMC16S084T3BM116S163AST  
22  
MOTOROLA DRAM  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
RC  
RAS  
t
t
t
RAS  
RAS  
RP  
CAS  
WE  
BA  
t
RCD  
t
RCD  
A10  
RAa  
RAa  
RAb  
RAb  
CAw  
A0 – A9  
CAx  
DQM  
CKE  
t
t
CAC  
CAC  
AW0  
AW1 AW2  
AW3  
DQ  
BX1  
BX0  
BX2  
AP*  
BX3  
BANK 0  
BANK 1  
ACTIVE  
READ  
AP*  
ACTIVE  
READ  
* AP is internal precharge start timing.  
NOTE: See Figure 15.  
Figure 10. Auto Precharge Read (Burst Length = 4, CAS Latency = 3)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
23  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
t
RC  
RC  
RAS  
t
t
t
RAS  
t
RP  
RAS  
RP  
CAS  
WE  
BA  
t
t
RCD  
RCD  
RAa  
RAa  
RAb  
RAb  
RAc  
A10  
CAw  
CAx  
RAc  
A0 – A9  
DQM  
CKE  
AW0  
AW1 AW2  
AW3  
DQ  
BX0  
BX1  
BX2  
BX3  
BANK 0  
BANK 1  
ACTIVE  
WRITE  
AP*  
ACTIVE  
WRITE  
AP*  
ACTIVE  
* AP is internal precharge start timing.  
NOTE: See Figure 16.  
Figure 11. Auto Precharge Write (Burst Length = 4)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
24  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
t
19  
20  
21  
22  
23  
CLK  
t
t
RC  
RP  
RC  
CS  
RAS  
CAS  
WE  
BA  
A10  
A0 – A9  
DQM  
CKE  
DQ  
AUTO–REFRESH  
(ARBITRARY CYCLE)  
BOTH BANKS  
PRECHARGE  
AUTO–  
REFRESH  
Figure 12. Auto–Refresh Cycle  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
25  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
RP  
RAS  
CAS  
WE  
BA  
A0 – A10  
DQM  
CKE  
t
t
CKS  
t
CKS  
SB  
t
CKS  
DQ  
t
RC  
NO OPERATION CYCLE  
BOTH BANKS PRECHARGE  
SELF–REFRESH CYCLE  
SELF–REFRESH  
ENTRY  
ARBITRARY  
CYCLE  
Figure 13. Self–Refresh Cycle  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
26  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
RAS  
CAS  
WE  
BA  
RAa  
RAa  
RAa  
A10  
A0 – A9  
CAa  
RAa  
CAa  
DQM  
CKE  
t
t
SB  
SB  
t
t
CKS  
t
CKS  
t
CKS  
CKS  
DQ  
AX0  
AX1  
AX2  
AX3  
ACTIVE  
NOP  
PRECHARGE  
NOP  
ACTIVE  
ACTIVE STANDBY  
POWER DOWN MODE  
PRECHARGE STANDBY  
POWER DOWN MODE  
NOTES:  
1. The Power Down mode is entered by asserting CKE low.  
2. All input/output buffers (except CKE buffers) are turned off in the Power Down mode.  
3. When CKE goes high, command input must be No Operation at next CLK rising edge.  
Figure 14. Power Down Mode  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
27  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
RAS  
CAS  
t
RCD  
WE  
BS  
RBa  
RBa  
A10  
A0 – A9  
CBw  
CBx  
CBy  
CBz  
CBv  
DQM  
CKE  
DQ  
t
t
CAC  
CAC  
AV0  
AV1  
AV2  
AV3  
AW0  
AZ0  
AZ1  
AZ2  
AZ3  
AX0  
AY0  
Q
Q
Q
Q
D
D
D
Q
Q
Q
Q
SINGLE WRITE  
ACTIVE  
READ  
READ  
Figure 15. Burst Read and Single Write (Burst Length = 4, CAS Latency = 3)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
28  
positive edges of CLK. When RAS and CS are asserted low  
and CAS is asserted high, either the Bank Activate command  
or the Precharge command is selected by the WE signal.  
When WE is asserted high, the Bank Activate command is  
selected and the bank designated by BA is turned on to the  
active state. When WE is asserted low, the Precharge com-  
mand is selected and the bank designated by BA is switched  
to the idle state after precharge operation.  
PIN FUNCTION  
CLOCK INPUT (CLK)  
The CLK input is used as the reference for SDRAM opera-  
tions. All operations are synchronized to the positive edges  
of CLK.  
CLOCK ENABLE (CKE)  
The CKE input is used to suspend the internal CLK. When  
the CKE signal is asserted low, the internal CLK is sus-  
pended and output data is held intact while CKE is asserted  
low. When the device is not operating in the burst cycle, the  
CKE input controls the entry to the Power Down mode.  
COLUMN ADDRESS STROBE (CAS)  
The CAS input defines the operation commands in con-  
junction with the RAS and WE inputs, and is latched at the  
positive edges of CLK. When RAS is held high and CS is  
asserted low, the column access is started by asserting CAS  
low. Then, the Read or Write command is selected by assert-  
ing WE low or high.  
BANK ACTIVATE (BA)  
The 16M SDRAM family devices are organized as two  
bank memory cell arrays. The BA input is latched at the time  
of assertion of the operation commands and selects the bank  
to be used for the operation. Whe BA is asserted low, bank 0  
is selected. When BA is asserted high, bank 1 is selected.  
WRITE ENABLE (WE)  
The WE input defines the operation commands in conjunc-  
tion with the RAS and CAS inputs, and is latched at the posi-  
tive edges of CLK. The WE input is used to select the Bank  
Activate or Precharge command and Read or Write com-  
mand.  
ADDRESS INPUTS (A0 – A10)  
The A0 – A10 inputs are addressed to access the memory  
cell array, as in the following table.  
DATA INPUT/OUTPUT MASK (DQM OR LDQM, UDQM)  
Part Number  
M116S163AST  
MC16S084T3B  
MC16S044T3B  
Row Address  
A0 – A10  
Column Address  
A0 – A7  
The DQM input functions as the output enable in a read  
cycle and as the input data mask in a write cycle. When DQM  
is asserted high at the positive edges of CLK, output data is  
disabled after two clock cycles during a read cycle, and input  
data is masked at the same clock cycle during a write cycle.  
In the M116S163AST, the LDQM and UDQM input func-  
tions as byte data control. The LDQM input can control DQ0  
– DQ7 in a read or write cycle and the UDQM can control  
DQ8 – DQ15 in a read or write cycle.  
A0 – A10  
A0 – A8  
A0 – A10  
A0 – A9  
The row address bits are latched at the Bank Activate  
command and column address bits are latched at the Read  
or Write command. Also, the A0 – A10 inputs are used to set  
the data in the Mode register during a mode register set  
cycle.  
DATA INPUT/OUTPUT (DQ0 – DQ15)  
CHIP SELECT (CS)  
The DQ0 – DQ15 input and output data are synchronized  
with the positive edges of CLK. In the MC16S044T3B and  
MC16S084T3B, these pins are DQ0 – DQ3 and DQ0 – DQ7.  
The CS input controls the latching of the commands at the  
positive edges of CLK when CS is asserted low. No com-  
mands are latched as long as CS is held high.  
OPERATION MODE  
ROW ADDRESS STROBE (RAS)  
Fully synchronous operations are performed to latch the  
commands at the positive edges of CLK. See the following  
Truth Table for operation commands.  
The RAS input defines the operation commands in con-  
junction with the CAS and WE input and is latched at the  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
29  
TRUTH TABLE (See Notes 1 and 2)  
DQM  
(Note 3)  
Command  
Bank Activate  
Device State CKE  
CKE  
BA  
A10  
A9 – A0  
CS  
RAS  
CAS  
WE  
n–1  
n
Idle  
H
X
X
V
V
V
L
L
H
H
(Note 4)  
Bank Precharge  
Precharge All  
Write  
Any  
Any  
H
H
H
X
X
X
X
X
X
V
X
V
L
H
L
X
X
V
L
L
L
L
L
H
H
L
L
L
L
Active  
H
(Note 4)  
Write with Auto Precharge  
Read  
Active  
(Note 4)  
H
H
H
X
X
X
X
X
X
V
V
V
H
L
V
V
V
L
L
L
H
H
H
L
L
L
L
H
H
Active  
(Note 4)  
Read with Auto Precharge  
Active  
H
(Note 4)  
Mode Register Set  
No–Operation  
Burst Stop  
Idle  
Any  
H
H
H
X
X
X
X
X
X
V
X
X
V
X
X
V
X
X
L
L
L
L
H
H
L
H
H
L
H
L
Active  
(Note 5)  
Device Deselect  
Auto–Refresh  
Any  
Idle  
H
H
H
L
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
L
X
L
X
L
X
H
H
X
X
X
X
X
X
X
X
X
X
Self–Refresh Entry  
Self–Refresh Exit  
Idle  
L
L
L
Idle  
H
H
L
X
H
X
X
H
X
X
H
X
X
X
H
X
X
H
X
X
H
X
X
(Self–Refresh)  
Active  
Clock Suspend Mode Entry  
Power Down Mode Entry  
H
H
L
L
X
X
X
X
X
X
X
X
X
H
L
Any  
(Note 6)  
Clock Suspend Mode Exit  
Power Down Mode Exit  
Active  
Any  
L
L
H
H
X
X
X
X
X
X
X
X
X
H
L
(Power Down)  
Active  
Data Write/Output Enable  
Data Write/Output Disable  
NOTES:  
H
H
X
X
L
X
X
X
X
X
X
X
X
Active  
H
1. V = valid, X = don’t care, L = low level, H = high level.  
2. CKE signal is input level when commands are provided. CKE  
n
signal is input level one clock cycle before the commands are provided.  
n–1  
3. These are state of bank designated by BA signal.  
4. Device state is full page burst operation.  
5. LDQM, UDQM (M116S163AST).  
6. Device state is not burst operation.  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
30  
COMMAND FUNCTION  
Read with Auto Precharge  
(RAS = H, CAS = L, WE = H, BA = Bank, A10 = H,  
A0 – A9 = Column Address)  
Bank Activate  
(RAS = L, CAS = H, WE = H, BA = Bank,  
A0 – A10 = Row Address)  
The Read with Auto Precharge command automatically  
performs the precharge operation after the read operation.  
This command must not be interrupted by any other com-  
mand.  
The A9 input is a don’t care for the MC16S084T3B and the  
A8, A9 inputs are don’t care for the M116S163AST.  
The Bank Activate command activates the bank desig-  
nated by the BA (Bank Activate) signal.  
Row addresses are latched on A0 to A10 at the time of this  
command and the cell data is read out of the sense ampli-  
fiers. The maximum time that each bank can be held in the  
active state is specified as t  
(max).  
Mode Register Set  
RAS  
(RAS = L, CAS = L, WE = L,  
BA, A0 – A10 = Register Data)  
Bank Precharge  
(RAS = L, CAS = H, WE = L, BA = Bank, A10 = L,  
A0 – A9 = Don’t Care)  
The Mode Register Set command programs the values of  
CAS latency, Addressing mode, and burst length in the Mode  
register. The default values of the Mode register after power–  
up are undefined, therefore this command must be issued at  
the power–up sequence.  
The Bank Precharge command precharges the bank des-  
ignated by BA. The precharged bank is switched from the  
active state to the idle state.  
Also, this command can be issued while both banks are in  
the idle state.  
Precharge All  
(RAS = L, CAS = H, WE = L, BA = Don’t Care, A10 = H,  
A0 – A9 = Don’t Care)  
No–Operation  
(RAS = H, CAS = H, WE = H)  
The Precharge All command precharges both banks  
simultaneously. Both banks are then switched to the idle  
state.  
The No–Operation command simply performs no opera-  
tion (same command as Device Deselect).  
Burst Stop  
(RAS = H, CAS = H, WE = L)  
Write  
(RAS = H, CAS = L, WE = L, BA = Bank, A10 = L,  
A0 – A9 = Column Address)  
The Burst Stop command is used to stop the burst opera-  
tion. This command is effective in full page burst operation.  
This command assertion in any other burst length operation  
is illegal.  
The Write command performs the write operation to the  
bank designated by BA. The write data is latched to be syn-  
chronized to the positive edges of CLK. The length of the  
write data (burst length) and column access sequence  
(addressing mode) must be programmed in the Mode regis-  
ter at power–up prior to the write operation.  
Device Deselect  
(CS = H)  
The Device Deselect command disables the command de-  
coder so that the RAS, CAS, WE, and Address inputs are  
ignored. This command is similar to the No–Operation com-  
mand.  
The A9 input is a don’t care for the MC16S084T3B and the  
A8, A9 inputs are don’t care for the M116S163AST.  
Write with Auto Precharge  
(RAS = H, CAS = L, WE = L, BA = Bank, A10 = H,  
A0 – A9 = Column Address)  
Auto–Refresh  
(RAS = L, CAS = L, WE = H, CKE = H,  
BA, A0 – A10 = Don’t Care)  
The Write with Auto Precharge command performs the  
precharge operation automatically after the write operation.  
This command must not be interrupted by any other com-  
mand.  
The A9 input is a don’t care for the MC16S084T3B and the  
A8, A9 inputs are don’t care for the M116S163AST.  
The Auto–Refresh command is used to refresh the row ad-  
dress provided by the internal refresh counter. Both banks (0  
and 1) are refreshed alternately by the Auto–Refresh com-  
mand and the refresh counter is automatically incremented.  
The refresh operation must be performed 4096 times within  
64 ms and the next command can be issued after t  
from  
RC  
Read  
the end of the Auto–Refresh command. To provide the Auto–  
Refresh command, both banks have need to be in the idle  
state. The Auto–Refresh operation is equivalent to the CAS  
before RAS operation of the conventional DRAM.  
(RAS = H, CAS = L, WE = H, BA = Bank, A10 = L,  
A0 – A9 = Column Address)  
The Read command performs the read operation to the  
bank designated by BA. The read data is issued sequentially,  
synchronized to the positive edges of CLK. The length of  
read data (burst length), Addressing mode, and CAS latency  
(access time from CAS command in clock cycle) must be  
programmed in the Mode register at power–up prior to the  
write operation.  
Self–Refresh Entry  
(RAS = L, CAS = L, WE = H, CKE = L,  
BA, A0 – A10 = Don’t Care)  
The Self–Refresh Entry command is used to enter the  
Self–Refresh mode. While the device is in Self–Refresh  
mode, all input and output buffers (except the CKE buffer)  
are disabled and the refresh operation is automatically  
The A9 input is a don’t care for the MC16S084T3B and the  
A8, A9 inputs are don’t care for the M116S163AST.  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
31  
performed. The Self–Refresh mode is exited by taking CKE  
high (Self–Refresh Exit command).  
When the precharge operation is performed in a bank dur-  
ing a burst read operation, the burst operation is terminated  
(Figure 22).  
When the burst length is full page, column data is repeat-  
edly read out until the Burst Stop command or Precharge  
command is issued.  
Self–Refresh Exit  
(CKE = H, CS = H or CKE = H, RAS = H, CAS = H)  
This command is used to exit from the Self–Refresh mode.  
Any subsequent commands can be issued after t  
end of this command.  
from the  
RC  
WRITE OPERATION  
By providing the Write command after t  
from the Bank  
RCD  
Clock Suspend Mode Entry/PowerDown Mode Entry  
(CKE = L)  
Activate command, the input data is latched sequentially to  
synchronize to the positive edges of CLK from the Write  
command (burst write operation). The burst length of write  
data (burst length) and Addressing mode must be set in the  
Mode register at power–up.  
When the Write with Auto Precharge command is issued,  
the precharge operation is performed automatically after the  
write cycle and then the bank is switched to the idle state.  
This command can not be interrupted by any other command  
for the full length of the burst data. Also, when the burst  
The internal CLK is suspended from the subsequent cycle  
by issuing this command (asserting CKE low). The device  
operation is held intact while CLK is suspended. On the other  
hand, when the device is not operating in the burst cycle, this  
command performs entry into the Power Down mode. All  
input and output buffers (except the CKE buffer) are turned  
off in the Power Down mode.  
Clock Suspend Mode Exit/PowerDown Mode Exit  
(CKE = H)  
length is one and t  
(min), the timing from the RAS com-  
RCD  
mand to the Auto Precharge operation is shorter than t  
RAS  
RCD  
(min). Then, t  
RAS  
(Figures 11 and 18).  
(min) must be satisfied by extending t  
When the internal CLK has been suspended, the operation  
of the internal CLK is resumed by providing this command  
(asserting CKE high). When the device is in the Power Down  
mode, the device exits this mode and all disabled buffers are  
turned on to the active state. Any subsequent commands  
can be issued after one clock cycle from the end of this com-  
mand.  
When the precharge operation is performed in a bank dur-  
ing a burst write operation, the burst operation is terminated  
(Figure 22).  
When the burst length is full page, the input data is repeat-  
edly latched until the Burst Stop command or the Precharge  
command is issued.  
When the Burst Read and Single Write mode is selected,  
the write burst length is one, regardless of the read burst  
length.  
Data Write/Output Enable, Data Mask/Output Disable  
(DQM = L/H or LDQM/UDQM = L/H)  
During a write cycle, the DQM or LDQM/UDQM signal  
functions as Data Mask and can control every word of the in-  
put data. During a read cycle, the DQM or LDQM/UDQM  
functions as the control of output buffers.  
The LDQM signal controls DQ0 – DQ7 and the UDQM sig-  
nal controls DQ8 – DQ15.  
PRECHARGE  
The precharge operation is performed by two commands,  
Bank Precharge and Precharge All. When the Bank Pre-  
charge command is issued to the active bank, the bank is  
precharged and then switched to the idle state. The Bank  
Precharge command can precharge one bank independently  
from the other bank or hold the unprecharged bank in the  
active state. The maximum time each bank can be held in the  
READ OPERATION  
By providing the Bank Activate command to the idle bank,  
the bank is turned on to the active state. When the Read  
active state is specified as t  
bank must be precharged within t  
Activate command.  
(max). Therefore, each  
RAS  
command is issued after t  
from the Bank Activate com-  
RCD  
(max) from the Bank  
RAS  
mand, the data is sequentially read out synchronized to the  
positive edges of CLK (burst read operation). The initial read  
The Precharge All command can be used to precharge  
both banks simultaneously. Even if both banks are not in the  
active state, the Precharge All command can be issued. In  
this case, the precharge operation is performed only for the  
active bank and the precharged bank is then switched to the  
idle state.  
data becomes available after a time of t  
from the issuance of the Read command. The value of t  
in clock cycles  
CAC  
CAC  
in clock cycles (CAS latency) must be set in the Mode regis-  
ter at power–up. In addition, the burst length of read data and  
Addressing mode must be programmed. Each bank is held in  
the active state unless the Precharge command is asserted  
so that the sense amplifiers can be used as a secondary  
cache.  
PAGE MODE  
When the Read with Auto Precharge command is issued,  
the precharge operation is performed automatically after the  
read cycle and then the bank is switched to the idle state.  
This command can not be interrupted by any other com-  
The Read or Write command can be issued at any clock  
cycle.  
Whenever a read operation is to be interrupted by a Write  
command, the output data must be masked by DQM to avoid  
I/O contention. Also, when a write operation is to be inter-  
rupted by the Read command, only the input data before the  
Read command is enabled and the input data after the Read  
command is disabled.  
mand. Also, when the burst length is one and t  
(min), the  
RCD  
timing from the RAS command to the Auto Precharge opera-  
tion is shorter than t (min). Then, t (min) must be sa-  
RAS  
tisfied by extending t  
RAS  
(Figures 10 and 17).  
RCD  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
32  
BURST TERMINATION  
A2  
0
A1  
0
A0  
0
Burst Length  
1 word  
When the Precharge command is issued for the bank in a  
burst cycle, the burst operation is terminated. When the burst  
read cycle is interrupted by the Precharge command, read  
operation is disabled after clock cycle of (CAS latency – 1)  
from the Precharge command (Figure 22). When the burst  
write cycle is interrupted by the Precharge command, the in-  
put circuit is reset at the same clock cycle at which the Pre-  
charge command is issued. In this case, the DQM signal  
must be asserted high to prevent writing the invalid data to  
the cell array (Figure 22).  
0
0
1
2 words  
0
1
0
4 words  
0
1
1
8 words  
1
1
1
Full Page  
Addressing Mode Select (A3)  
The Addressing mode can be one of two modes: Inter-  
leave mode or Sequential mode (Table 1). When the A3 bit is  
0, Sequential mode is selected. When the A3 bit is 1, Inter-  
leave mode is selected. Both addressing modes support  
burst lengths of 1, 2, 4, and 8. Additionally, the Sequential  
mode supports full page burst.  
When the Burst Stop command is issued for the bank in a  
full page burst cycle, the burst operation is terminated. When  
the Burst Stop command is issued during full page burst read  
cycle, read operation is disabled after clock cycle of (CAS  
latency – 1) from the Burst Stop command. When the Burst  
Stop command is issued during full page burst write cycle,  
the write operation is disabled at the same clock cycle at  
which the Burst Stop command is issued (Figure 21).  
A3  
0
Addressing Mode  
Sequential  
MODE REGISTER OPERATION  
1
Interleave  
The Mode register designates the operation mode at the  
read or write cycle. This register is divided into three fields: a  
Burst Length field to set the length of burst data, an Addres-  
sing Mode Selected Bits field to designate the column  
access sequence in a burst cycle, and a CAS Latency field to  
set the access time at clock cycle.  
The Mode register is programmed by the Mode Register  
Set command when both banks are in the idle state. The  
data to be set in the Mode register is transferred using A0 –  
A10 address inputs. The default value of the Mode register  
after power–up is undefined; therefore, the Mode Register  
Set command must be issued before proper operation.  
CAS Latency Field (A6 – A4)  
This field specifies the number of clock cycles from the  
assertion of the Read command to first read data. The mini-  
mum values of CAS latency depend on the frequency of  
CLK. The minimum value satisfying the following formula  
must be programmed in this field.  
t
(min)  
CAS Latency x t  
CLK  
CAC  
A6  
0
A5  
0
A4  
1
CAS Latency  
1 clock  
Burst Length Field (A2 – A0)  
This field specifies the data length of column access using  
the A2 – A0 pins and selects the burst length to be 1, 2, 4, 8,  
or full page.  
0
1
0
2 clock  
0
1
1
3 clock  
Table 1.  
Burst Length Starting Address (A2 A1 A0)  
Sequential Addressing (Decimal)  
0, 1  
Interleave Addressing (Decimal)  
0, 1  
2
xx0  
xx1  
x00  
x01  
x10  
x11  
000  
001  
010  
011  
100  
101  
110  
111  
1, 0  
1, 0  
4
0, 1, 2, 3  
0, 1, 2, 3  
1, 2, 3, 0  
1, 0, 3, 2  
2, 3, 0, 1  
2, 3, 0, 1  
3, 0, 1, 2  
3, 2, 1, 0  
8
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
33  
Test Mode Entry Bit (A7)  
The Self–Refresh mode is entered by providing the Self–  
Refresh command (CKE asserted low) when both banks are  
in the idle state. The device is in the Self–Refresh mode  
while CKE is held low. By entering the Self–Refresh mode,  
all input/output buffers (except CKE buffer) are disabled, re-  
sulting in lower power dissipation (Figure 13).  
This bit is used to enter the test mode and must be pro-  
grammed to 0 in normal operation.  
Reserved Bits (A8, A10, BA)  
These bits are reserved for future operations. They must  
be set to 0 in normal operation.  
POWER DOWN MODE  
Single Write Mode (A9)  
When the device enters the Power Down mode, all input/  
output buffers (except CKE buffer) are disabled, resulting in  
lower power dissipation in standby. The Power Down mode  
is entered by asserting CKE low when the device is not oper-  
ating the burst cycle. Exit from this mode is performed by tak-  
ing CKE high. When CKE goes high, command input must  
be No–Operation at next CLK rising edge (Figure 14).  
This bit is used to select the write mode. When the A9 bit is  
0, Burst Read and Burst Write mode is selected. When the  
A9 bit is 1, Burst Read and Single Write mode is selected.  
A9  
0
Write Mode  
Burst Read and Burst Write  
Burst Read and Single Write  
CLK SUSPENSION AND INPUT/OUTPUT MASK  
1
While the device is operating in the burst cycle, the internal  
CLK is suspended by asserting CKE low and is frozen from  
the next cycle. A Read/Write operation is held intact until the  
CKE signal is taken high.  
The output disable/write mask signal (DQM) has two func-  
tions: controlling the output data in a read cycle and perform-  
ing word mask in a write cycle. When the DQM is asserted  
high at the positive edge of CLK, the output data is disabled  
after two clock cycles for a read and the output data is  
masked at the same clock cycle for a write. The timing rela-  
tion of CKE to DQM is described in Figures 16a and 16b.  
REFRESH OPERATION  
Two types of refresh can be performed on the device:  
Auto–Refresh and Self–Refresh. Auto–Refresh is similar to  
the CAS before RAS Refresh of conventional DRAMs and is  
performed by issuing the Auto–Refresh command when both  
banks are in the idle state. By repeating the Auto–Refresh  
cycle, each bank is in turn, refreshed automatically. The re-  
fresh operation must be performed 4096 times (rows) within  
64 ms (Figure 12). The period between the Auto–Refresh  
command and the next command is specified by t  
.
RC  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
34  
CLK  
CYCLE NO.  
1
1
1
2
3
4
5
6
7
EXTERNAL  
INTERNAL  
CKE  
CLK  
CLK  
CLK  
DQM  
DQ  
D1  
D1  
D1  
D2  
D3  
D5  
D6  
DQM MASK  
CKE MASK  
(1)  
CLK  
CYCLE NO.  
2
3
4
5
6
7
EXTERNAL  
INTERNAL  
CKE  
DQM  
DQ  
D2  
D3  
D5  
D6  
DQM MASK  
CKE MASK  
(2)  
CLK  
CYCLE NO.  
2
3
4
5
6
7
EXTERNAL  
INTERNAL  
CKE  
DQM  
DQ  
D2  
D3  
D4  
D5  
D6  
CKE MASK  
(3)  
(a) Write Cycle  
Figure 16. CKE/DQM Input Timing  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
35  
CLK  
CYCLE NO.  
1
2
3
4
5
6
7
EXTERNAL  
INTERNAL  
CKE  
CLK  
DQM  
DQ  
Q1  
Q2  
Q3  
Q4  
Q6  
OPEN  
OPEN  
(1)  
CLK  
CYCLE NO.  
1
2
3
4
5
6
7
EXTERNAL  
INTERNAL  
CKE  
CLK  
DQM  
DQ  
Q1  
Q2  
Q3  
Q4  
Q6  
OPEN  
(2)  
CLK  
CYCLE NO.  
1
2
3
4
5
6
7
EXTERNAL  
INTERNAL  
CKE  
CLK  
DQM  
DQ  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
(3)  
(b) Read Cycle  
Figure 16. CKE/DQM Input Timing (continued)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
36  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
1. CAS LATENCY = 1  
(A) BURST LENGTH = 1  
COMMAND  
READ  
AP  
Q0  
ACT  
t
RP  
DQ  
(B) BURST LENGTH = 2  
COMMAND  
READ  
READ  
READ  
AP  
Q1  
ACT  
t
RP  
Q0  
Q0  
DQ  
DQ  
(C) BURST LENGTH = 4  
COMMAND  
AP  
Q3  
ACT  
t
RP  
Q1  
Q1  
Q2  
Q2  
(D) BURST LENGTH = 8  
COMMAND  
AP  
Q7  
ACT  
t
RP  
Q0  
AP  
Q3  
Q4  
Q5  
Q6  
DQ  
DQ  
2. CAS LATENCY = 2  
(A) BURST LENGTH = 1  
COMMAND  
ACT  
READ  
t
RP  
Q0  
(B) BURST LENGTH = 2  
COMMAND  
AP  
Q0  
ACT  
READ  
READ  
READ  
t
RP  
Q1  
DQ  
DQ  
DQ  
(C) BURST LENGTH = 4  
COMMAND  
AP  
Q2  
ACT  
t
RP  
Q0  
Q0  
Q1  
Q1  
Q3  
(D) BURST LENGTH = 8  
COMMAND  
AP  
Q6  
ACT  
t
RP  
Q2  
Q3  
Q4  
Q5  
Q7  
NOTES:  
READ  
1.  
2.  
3.  
shows the Read with Auto Precharge command.  
shows internal precharge start timing.  
shows the Bank Activate command.  
AP  
ACT  
4. When the Auto Precharge command is asserted, the period to internal precharge start from the Bank Activate command  
must satisfy t  
(min).  
RAS  
Figure 17. Auto Precharge Timing (Read Cycle)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
37  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
3. CAS LATENCY = 3  
(A) BURST LENGTH = 1  
COMMAND  
READ  
AP  
ACT  
t
RP  
Q0  
DQ  
(B) BURST LENGTH = 2  
COMMAND  
READ  
READ  
AP  
Q0  
ACT  
t
RP  
Q1  
Q1  
DQ  
DQ  
(C) BURST LENGTH = 4  
COMMAND  
AP  
Q2  
ACT  
t
RP  
Q3  
Q3  
Q0  
Q0  
(D) BURST LENGTH = 8  
COMMAND  
READ  
AP  
Q6  
ACT  
t
RP  
Q1  
Q2  
Q4  
Q5  
Q7  
DQ  
NOTES:  
READ  
AP  
1.  
2.  
3.  
shows the Read with Auto Precharge command.  
shows internal precharge start timing.  
shows the Bank Activate command.  
ACT  
4. When the Auto Precharge command is asserted, the period to internal precharge start from the Bank Activate command  
must satisfy t (min).  
RAS  
Figure 17. Auto Precharge Timing (Read Cycle) (continued)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
38  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
1. CAS LATENCY = 1  
(A) BURST LENGTH = 1  
COMMAND  
WRITE  
AP  
ACT  
t
t
WR  
RP  
DQ  
D0  
(B) BURST LENGTH = 2  
COMMAND  
WRITE  
t
AP  
ACT  
t
WR  
RP  
D0  
D1  
D1  
DQ  
DQ  
(C) BURST LENGTH = 4  
COMMAND  
WRITE  
D0  
AP  
ACT  
t
t
WR  
RP  
D2  
D2  
D3  
(D) BURST LENGTH = 8  
COMMAND  
WRITE  
D0  
AP  
ACT  
t
t
RP  
WR  
D7  
D1  
AP  
D3  
D4  
D5  
D6  
DQ  
DQ  
2. CAS LATENCY = 2  
(A) BURST LENGTH = 1  
COMMAND  
ACT  
WRITE  
t
t
RP  
WR  
D0  
(B) BURST LENGTH = 2  
COMMAND  
WRITE  
t
AP  
ACT  
AP  
t
RP  
WR  
D0  
D1  
D1  
D1  
DQ  
DQ  
DQ  
(C) BURST LENGTH = 4  
COMMAND  
ACT  
WRITE  
D0  
t
t
RP  
WR  
D2  
D3  
D3  
(D) BURST LENGTH = 8  
COMMAND  
WRITE  
D0  
AP  
ACT  
t
t
WR  
RP  
D2  
D4  
D5  
D6  
D7  
NOTES:  
WRITE  
AP  
1.  
2.  
3.  
shows the Write with Auto Precharge command.  
shows internal precharge start timing.  
shows the Bank Activate command.  
ACT  
4. When the Auto Precharge command is asserted, the period to internal precharge start from the Bank Activate command  
must satisfy t  
(min).  
RAS  
Figure 18. Auto Precharge Timing (Write Cycle)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
39  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
3. CAS LATENCY = 3  
(A) BURST LENGTH = 1  
COMMAND  
WRITE  
D0  
AP  
ACT  
t
t
RP  
WR  
DQ  
(B) BURST LENGTH = 2  
COMMAND  
WRITE  
D0  
AP  
ACT  
t
t
RP  
WR  
DQ  
DQ  
D1  
(C) BURST LENGTH = 4  
COMMAND  
AP  
WRITE  
D0  
ACT  
t
t
RP  
WR  
D1  
D1  
D2  
D2  
D3  
D3  
(D) BURST LENGTH = 8  
COMMAND  
WRITE  
D0  
AP  
ACT  
t
t
RP  
WR  
D4  
D5  
D6  
D7  
DQ  
NOTES:  
WRITE  
AP  
1.  
2.  
3.  
shows the Write with Auto Precharge command.  
shows internal precharge start timing.  
shows the Bank Activate command.  
ACT  
4. When the Auto Precharge command is asserted, the period to internal precharge start from the Bank Activate command  
must satisfy t (min).  
RAS  
Figure 18. Auto Precharge Timing (Write Cycle) (continued)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
40  
BURST LENGTH = 4  
1. CAS LATENCY = 1  
(A) COMMAND  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
READ WRITE  
DQM  
DQ  
D0  
D1  
D2  
D3  
WRITE  
READ  
(B) COMMAND  
DQM  
DQ  
D0  
D1  
D2  
D3  
Q0  
2. CAS LATENCY = 2  
(A) COMMAND  
WRITE  
D0  
READ  
DQM  
DQ  
D1  
D2  
D3  
(B) COMMAND  
READ  
WRITE  
DQM  
DQ  
D1  
D2  
D3  
D0  
3. CAS LATENCY = 3  
(A) COMMAND  
READ WRITE  
DQM  
DQ  
D0  
D1  
D2  
D3  
READ  
(B) COMMAND  
WRITE  
DQM  
DQ  
D0  
D1  
D2  
D3  
NOTE: The output data must be masked by DQM to avoid I/O contention.  
Figure 19. Timing Chart of Read to Write Cycle  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
41  
BURST LENGTH = 4  
1. CAS LATENCY = 1  
(A) COMMAND  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
WRITE READ  
DQM  
DQ  
D0  
Q0  
Q1  
Q2  
Q3  
WRITE  
READ  
(B) COMMAND  
DQM  
DQ  
D1  
Q0  
Q1  
D0  
Q2  
Q3  
2. CAS LATENCY = 2  
(A) COMMAND  
WRITE READ  
DQM  
DQ  
D0  
Q0  
Q1  
Q2  
Q3  
(B) COMMAND  
WRITE  
READ  
DQM  
DQ  
D1  
D0  
Q0  
Q1  
Q2  
Q3  
3. CAS LATENCY = 3  
(A) COMMAND  
WRITE READ  
DQM  
DQ  
D0  
Q0  
Q1  
Q2  
Q3  
READ  
(B) COMMAND  
WRITE  
DQM  
DQ  
D0  
D1  
Q0  
Q1  
Q2  
Q3  
Figure 20. Timing Chart of Write to Read Cycle  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
42  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
BURST LENGTH = 8  
1. READ CYCLE  
A. CAS LATENCY = 1  
COMMAND  
READ  
BST  
Q4  
Q0  
Q1  
Q2  
Q1  
Q0  
Q3  
Q2  
Q1  
DQ  
B. CAS LATENCY = 2  
COMMAND  
READ  
READ  
BST  
Q3  
Q0  
Q4  
DQ  
C. CAS LATENCY = 3  
COMMAND  
BST  
Q2  
DQ  
Q3  
Q4  
2. WRITE CYCLE  
COMMAND  
WRITE  
D0  
BST  
D4  
D1  
D2  
D3  
DQ  
NOTES:  
1.  
BST  
shows the Burst Stop command.  
2. Burst Stop command is effective in full page cycle.  
Figure 21. Timing Chart of Burst Stop Cycle (Burst Stop Command)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
43  
BURST LENGTH = 8  
1. READ CYCLE  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
A. CAS LATENCY = 1  
COMMAND  
READ  
PRCG  
Q4  
Q0  
Q1  
Q0  
Q2  
Q3  
DQ  
B. CAS LATENCY = 2  
COMMAND  
PRCG  
Q3  
READ  
READ  
Q1  
Q0  
Q2  
Q1  
Q4  
Q3  
DQ  
C. CAS LATENCY = 3  
COMMAND  
PRCG  
Q2  
DQ  
2. WRITE CYCLE  
A. CAS LATENCY = 1  
COMMAND  
WRITE  
PRCG  
t
WR  
DQM  
DQ  
D4  
D1  
D2  
D3  
D0  
B. CAS LATENCY = 2  
COMMAND  
WRITE  
PRCG  
PRCG  
t
WR  
DQM  
DQ  
D4  
D0  
D1  
D2  
D3  
C. CAS LATENCY = 3  
COMMAND  
WRITE  
t
WR  
DQM  
DQ  
D0  
D1  
D2  
D3  
Figure 22. Timing Chart of Burst Stop Cycle (Precharge Command)  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
44  
ORDERING INFORMATION  
(Order by Full Part Number)  
x4, x8 DEVICE NUMBERS  
MC 16Sxx4T3BTN XX  
X
Motorola Memory Prefix  
Shipping Method (R = Tape and Reel,  
T = Trays)  
Part Number (xx: 04 for x4, 08 for x8)  
Speed (10 = 10 ns, 12 = 12 ns)  
Full Part Numbers — MC16S044T3BTN10T  
MC16S044T3BTN12T  
MC16S044T3BTN10R  
MC16S044T3BTN12R  
MC16S084T3BTN10T  
MC16S084T3BTN12T  
MC16S084T3BTN10R  
MC16S084T3BTN12R  
x16 DEVICE NUMBERS  
M1  
16S163AST  
XX  
X
Motorola Memory Prefix  
Part Number  
Shipping Method (R = Tape and Reel,  
Blank = Trays)  
Speed (10 = 10 ns, 12 = 12 ns)  
Full Part Numbers — M116S163AST10  
M116S163AST12  
M116S163AST10R  
M116S163AST12R  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
45  
PACKAGE DIMENSIONS  
400 MIL  
THIN SMALL OUTLINE  
CASE 924B–01  
H
VIEW A  
B
44  
23  
4X  
0.13  
H
A2  
E
E1  
L
A
A
VIEW A  
E /2  
ROTATED 90 CLOCKWISE  
2X 22 TIPS  
0.2  
1
22  
A1  
A
C
B
NOTES:  
A
D
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS IN MILLIMETERS.  
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE MOLD PROTRUSION  
IS 0.15 PER SIDE.  
4. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSIONS. DAMBAR PROTRUSIONS SHALL  
NOT ALLOW THE b DIMENSION TO EXCEED 0.53.  
44X  
c
0.1  
C
MILLIMETERS  
DIM  
A
A1  
A2  
b
c
D
e
E
MIN  
–––  
0.90  
0.05  
0.23  
0.13  
MAX  
1.20  
1.10  
0.20  
0.40  
0.20  
SEATING  
PLANE  
b
4X e /2  
M
0.2  
C A  
C
42X  
e
SECTION A–A  
18.41 BSC  
44 PLACES  
0.80 BSC  
11.76 BSC  
10.16 BSC  
0.40  
0
E1  
L
0.60  
10  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
46  
400 MIL  
THIN SMALL OUTLINE  
CASE 985C–01  
VIEW A  
B
50  
26  
E1  
A A  
1
25  
D
A
A
25X E  
M
0.2 (0.800)  
C B  
C
0.1 (0.004)  
C
A2  
L
SEATING  
PLANE  
48X e  
C
NOTES:  
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS IN MILLIMETERS.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE MOLD PROTRUSION  
IS 0.15 (0.006) PER SIDE.  
4. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSIONS. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE LEAD WIDTH TO EXCEED 0.48  
(0.019).  
R (R1)  
R (R2)  
MILLIMETERS  
INCHES  
DIM  
A
A1  
A2  
b
MIN  
–––  
MAX  
1.20  
0.15  
1.05  
0.40  
0.20  
21.05  
MIN  
MAX  
0.047  
0.006  
0.041  
0.016  
0.008  
0.829  
–––  
0.002  
0.037  
0.009  
0.005  
0.821  
c
0.05  
0.95  
0.24  
0.12  
20.85  
c
D
A1  
b
L
e
0.80 BSC  
0.0315 BSC  
M
E
E1  
L
R1  
R2  
11.56  
10.06  
0.40  
11.96  
10.26  
0.60  
0.455  
0.396  
0.016  
0.471  
0.404  
0.024  
0.13 (0.005)  
C A  
VIEW A  
ROTATED 90 CW  
SECTION A–A  
0.10 REF  
0.10 REF  
10  
0.004 REF  
0.004 REF  
10  
50 PLACES  
0
0
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
MC16S044T3BMC16S084T3BM116S163AST  
MOTOROLA DRAM  
47  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado, 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://www.mot.com/SPS/  
MC16S044T3B/D  

相关型号:

M116S163AST12R

1MX16 SYNCHRONOUS DRAM, PDSO50, 0.400 INCH, 0.80 MM PITCH, TSOP-50
MOTOROLA

M116TAN

5x7 mm, 5.0 Volt, HCMOS/TTL, Clock Oscillator
MTRONPTI

M116TAN01.5000MHZ

HCMOS/TTL Output Clock Oscillator,
MTRONPTI

M116TAN1.5000MHZ

Oscillator, 1.5MHz Min, 50MHz Max, 1.5MHz Nom,
MTRONPTI

M116TAN50.0000MHZ

HCMOS/TTL Output Clock Oscillator, 1.5MHz Min, 50MHz Max, 50MHz Nom,
MTRONPTI

M116TANFREQ

HCMOS/TTL Output Clock Oscillator, 1.5MHz Min, 50MHz Max, ROHS COMPLIANT, CERAMIC, LEADLESS PACKAGE-4
MTRONPTI

M116TANFREQ1

HCMOS/TTL Output Clock Oscillator,
MTRONPTI

M116TANXX.XXXXMHZ

Quartz Crystal,
MTRONPTI

M116TCN

5x7 mm, 5.0 Volt, HCMOS/TTL, Clock Oscillator
MTRONPTI

M116TCN01.5000MHZ

HCMOS/TTL Output Clock Oscillator,
MTRONPTI

M116TCN1.5000MHZ

Oscillator, 1.5MHz Min, 50MHz Max, 1.5MHz Nom,
MTRONPTI

M116TCN125.0000MHZ

HCMOS/TTL Output Clock Oscillator,
MTRONPTI