MAC7100CVF [MOTOROLA]

MAC7100 Microcontroller Family Hardware Specifications; MAC7100单片机系列硬件规格
MAC7100CVF
型号: MAC7100CVF
厂家: MOTOROLA    MOTOROLA
描述:

MAC7100 Microcontroller Family Hardware Specifications
MAC7100单片机系列硬件规格

微控制器
文件: 总48页 (文件大小:1503K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
Advance Information  
MAC7100EC/D  
Rev. 0.1, 10/2003  
MAC7100 Microcontroller  
Family Hardware  
Specifications  
32-bit Embedded  
This document provides electrical specifications, pin assignments, and package diagrams for  
MAC7100 family of microcontroller devices. For functional characteristics of the family,  
refer to the MAC7100 Microcontroller Family Reference Manual (MAC7100RM/D).  
Controller Division  
This document contains the following topics:  
Topic  
Page  
Section 1, “Overview”  
1
2
Section 2, “Ordering Information”  
Section 3, “Electrical Characteristics”  
Section 4, “Device Pin Assignments”  
Section 5, “Mechanical Information”  
3
36  
41  
1 Overview  
The MAC7100 Family of microcontrollers (MCUs) are members of a pin-compatible family  
of 32-bit Flash-memory-based devices developed specifically for embedded automotive  
applications. The pin-compatible family concept enables users to select between different  
memory and peripheral options for scalable designs. All MAC7100 Family members are  
composed of a 32-bit central processing unit (ARM7TDMI-S), up to 512Kbytes of embedded  
Flash EEPROM for program storage, up to 32Kbytes of embedded Flash for data and/or  
program storage, and up to 32Kbytes of RAM. The family is implemented with an enhanced  
DMA (eDMA) controller to improve performance for transfers between memory and many of  
the on-chip peripherals. The peripheral set includes asynchronous serial communications  
interfaces (eSCI), serial peripheral interfaces (DSPI), inter-integrated circuit (I2C) bus  
controllers, FlexCAN interfaces, an enhanced modular I/O subsystem (eMIOS), 10-bit  
analog-to-digital converter (ATD) channels, general-purpose timers (PIT) and two  
special-purpose timers (RTI and SWT). The peripherals share a large number of general  
purpose input-output (GPIO) pins, all of which are bidirectional and available with interrupt  
capability to trigger wake-up from low-power chip modes.  
The inclusion of a PLL circuit allows power consumption and performance to be adjusted to  
suit operational requirements. The operating frequency of devices in the family is up to a  
maximum of 50 MHz. The internal data paths between the CPU core, eDMA, memory and  
peripherals are all 32 bits wide, further improving performance for 32-bit applications. The  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Ordering Information  
MAC7111 and MAC7131 also offer a 16-bit wide external data bus with 22 address lines. The family of  
devices is capable of operating over a junction temperature range of -40° C to 150° C.  
Table 1 provides a comparison of members of the MAC7100 Family and the availability of peripheral  
modules on the various devices.  
Table 1. MAC7100 Family Device Derivatives  
Module Options  
MAC7101  
MAC7111  
MAC7121  
MAC7131  
MAC7141  
Program Flash  
Data Flash  
512Kbytes  
512Kbytes  
512Kbytes  
512Kbytes  
512Kbytes  
32Kbytes  
32Kbytes  
32Kbytes  
32Kbytes  
32Kbytes  
SRAM  
32Kbytes  
32Kbytes  
32Kbytes  
32Kbytes  
32Kbytes  
External Bus  
ATD Modules  
CAN Modules  
eSCI Modules  
DSPI Modules  
I2C Modules  
eMIOS Module  
No  
2
Yes  
1
No  
1
Yes  
2
No  
1
4
4
4
4
2
4
4
4
4
2
2
2
2
2
2
1
1
1
1
1
16 channels,  
16-bit  
16 channels,  
16-bit  
16 channels,  
16-bit  
16 channels,  
16-bit  
16 channels,  
16-bit  
Timer Module  
10 channels,  
24-bit  
10 channels,  
24-bit  
10 channels,  
24-bit  
10 channels,  
24-bit  
10 channels,  
24-bit  
GPIO Pins (max.)  
Package  
111  
111  
84  
127  
71  
144 LQFP  
144 LQFP  
112 LQFP  
208 MAP BGA  
100 LQFP  
2 Ordering Information  
M AC 7 1 0 1 C PV 50 xx  
MC Status  
Core Code  
Core Number  
Temperature Option  
C = –40° C to 85° C  
V = –40° C to 105° C  
M = –40° C to 125° C  
Generation / Family  
Package Option  
Device Number  
Package Option  
FU = 100 QFP  
PV = 112 / 144 LQFP  
VF = 208 MAP BGA  
Temperature Range  
Package Identifier  
Speed (MHz)  
Optional Package Identifiers  
Figure 1. Order Part Number Example  
2
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ElectricalCharacteristics  
3 Electrical Characteristics  
This section contains electrical information for MAC7100 Family microcontrollers. The information is  
preliminary and subject to change without notice.  
MAC7100 Family devices are specified and tested over the 5 V and 3.3 V ranges. For operation at any  
voltage within that range, the 3.3 V specifications generally apply. However, no production testing is done  
to verify operation at intermediate supply voltage levels.  
3.1 Parameter Classification  
The electrical parameters shown in this appendix are derived by various methods. To provide a better  
understanding to the designer, the following classification is used. Parameters are tagged accordingly in in  
the column labeled “C” of the parametric tables, as appropriate.  
Table 2. Parametric Value Classification  
P
C
Parameters guaranteed during production testing on each individual device.  
Parameters derived by the design characterization and by measuring a statistically relevant  
sample size across process variations.  
T
Parameters derived by design characterization on a small sample size from typical devices  
under typical conditions (unless otherwise noted). All values shown in the typical column  
are within this classification, even if not so tagged.  
D
Parameters derived mainly from simulations.  
3.2 Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only. Functional operation outside these maximums is not  
guaranteed. Stress beyond these limits may affect reliability or cause permanent damage to the device.  
MAC7100 Family devices contain circuitry protecting against damage due to high static voltage or  
electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages  
higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if  
unused inputs are tied to an appropriate logic voltage level (for example, either VSS5 or VDD5).  
Table 3. Absolute Maximum Ratings  
Num  
Rating  
Symbol  
VDD  
Min  
Max  
Unit  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
I/O, Regulator and Analog Supply Voltage  
Digital Logic Supply Voltage 1  
PLL Supply Voltage 1  
5
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–6.5  
–0.3  
+6.0  
+3.0  
+3.0  
+6.5  
+6.0  
+0.3  
+0.3  
+6.5  
+6.5  
+6.0  
V
V
V
V
V
V
V
V
V
V
VDD2.5  
VDDPLL  
ATD Supply Voltage  
VDDA  
Analog Reference  
VRH, VRL  
Voltage difference VDDX to VDD  
A
VDDX  
Voltage difference VSSX to VSS  
Voltage difference VRH – VRL  
Voltage difference VDDA – VRH  
A
VSSX  
VRH – VRL  
VDDA – VRH  
VIN  
A10 Digital I/O Input Voltage  
MOTOROLA  
MAC7100 Microcontroller Family Hardware Specifications  
3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
Table 3. Absolute Maximum Ratings (continued)  
Num  
Rating  
Symbol  
Min  
Max  
Unit  
A11 XFC, EXTAL, XTAL inputs  
VILV  
–0.3  
–0.3  
+3.0  
V
V
A12 TEST input  
VTEST  
+10.0  
Instantaneous Maximum Current 2  
A13  
A14  
A15  
A16  
Single pin limit for XFC, EXTAL, XTAL 3  
Single pin limit for all digital I/O pins 4  
Single pin limit for all analog input pins 4  
IDL  
ID  
–25  
–25  
+25  
+25  
+25  
0
mA  
mA  
mA  
mA  
°C  
IDA  
IDT  
Tstg  
–25  
5
Single pin limit for TEST  
–0.25  
–65  
A17 Storage Temperature Range  
+155  
1
2
The device contains an internal voltage regulator to generate the logic and PLL supply from the I/O supply. The  
absolute maximum ratings apply when the device is powered from an external source.  
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values using VPOSCLAMP = VDDA + 0.3 V and VNEGCLAMP = –0.3 V, then use the larger of the  
calculated values.  
These pins are internally clamped to VSSPLL and VDDPLL.  
All I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.  
This pin is clamped low to VSSX, but not clamped high, and must be tied low in applications.  
3
4
5
3.3 ESD Protection and Latch-up Immunity  
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade  
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body  
Model (HBM), the Machine Model (MM) and the Charge Device Model.  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless specified otherwise.  
Table 4. ESD and Latch-up Test Conditions  
Model  
Description  
Symbol  
Value  
Unit  
Human Body  
Series Resistance  
R1  
C
1500  
100  
Ohm  
pF  
Storage Capacitance  
Number of Pulses per pin  
positive  
3
negative  
3
Machine  
Latch-up  
Series Resistance  
R1  
C
0
Ohm  
pF  
Storage Capacitance  
200  
Number of Pulse per pin  
positive  
negative  
3
3
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
V
4
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ElectricalCharacteristics  
Table 5. ESD and Latch-Up Protection Characteristics  
Num  
C
Rating  
Symbol  
Min  
Max  
Unit  
B1  
B2  
B3  
B4  
C Human Body Model (HBM)  
C Machine Model (MM)  
VHBM  
VMM  
VCDM  
ILAT  
2000  
200  
V
V
C Charge Device Model (CDM)  
500  
V
C Latch-up Current at TA = 125°C  
mA  
positive  
negative  
+100  
–100  
B5  
C Latch-up Current at TA = 27°C  
ILAT  
mA  
positive  
negative  
+200  
–200  
3.4 Operating Conditions  
Unless otherwise noted, the following conditions apply to all parametric data. Refer to the temperature  
rating of the device (C, V, M) with respect to ambient temperature (TA) and junction temperature (TJ). For  
power dissipation calculations refer to Section 3.5, “Power Dissipation and Thermal Characteristics.”  
Table 6. MAC7100 Family Device Operating Conditions  
Num  
Rating  
Symbol  
VDD  
DD2.5  
VDDPLL  
VDDX  
Min  
Typ  
Max  
Unit  
C1 I/O, Regulator and Analog Supply Voltage  
C2 Digital Logic Supply Voltage 1  
C3 PLL Supply Voltage 1  
5
4.5  
2.35  
2.35  
–0.1  
–0.1  
0.5  
5
2.5  
2.5  
0
5.5  
2.75  
2.75  
0.1  
0.1  
16  
V
V
V
V
C4 Voltage Difference VDDX to VDD  
A
V
C5 Voltage Difference VSSX to VSS  
C6 Oscillator Frequency  
C7 Bus Frequency  
A
VSSX  
fosc  
fbus  
TJ  
0
V
MHz  
MHz  
°C  
0.5  
50  
C8a MAC7100C Operating Junction Temperature Range  
–40  
110  
2
C8b  
C9a MAC7100V Operating Junction Temperature Range  
Operating Ambient Temperature Range 2  
TA  
TJ  
–40  
–40  
25  
85  
°C  
°C  
130  
2
C9b  
C10a MAC7100M Operating Junction Temperature Range  
Operating Ambient Temperature Range 2  
TA  
TJ  
–40  
–40  
25  
105  
150  
°C  
°C  
2
C10b  
Operating Ambient Temperature Range 2  
TA  
–40  
25  
125  
°C  
1
The device contains an internal voltage regulator to generate the logic and PLL supply from the I/O supply. The  
absolute maximum ratings apply when this regulator is disabled and the device is powered from an external source.  
Please refer to Section 3.5, “Power Dissipation and Thermal Characteristics,” for more details about the relation  
between ambient temperature TA and device junction temperature TJ.  
2
MOTOROLA  
MAC7100 Microcontroller Family Hardware Specifications  
5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.4.1 5 V I/O Pins  
The I/O pins operate at a nominal level of 5 V. This class of pins is comprised of the clocks, control and general  
purpose/peripheral pins. The internal structure of these pins is identical; however, some functionality may be  
disabled (for example, for analog inputs the output drivers, pull-up/down resistors are permanently disabled).  
3.4.2 Oscillator Pins  
The pins XFC, EXTAL, XTAL are dedicated to the oscillator and operate at a nominal level of 2.5 V.  
3.5 Power Dissipation and Thermal Characteristics  
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum  
operating junction temperature is not exceeded.  
Note that the JEDEC specification reserves the symbol R  
or θJA (Theta-JA) strictly for junction-to-  
ambient thermal resistance on a 1s test board in naturθaJlAconvection environment. RθJMA or θJMA  
(Theta-JMA) will be used for both junction-to-ambient on a 2s2p test board in natural convection and for  
junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is anticipated that the generic  
name, θJA, will continue to be commonly used.  
The average chip-junction temperature (TJ) in °C is obtained from:  
TJ = TA + JA  
)
TJ = Junction Temperature ( C)  
°
TA = Ambient Temperature ( C)  
°
PD = Total Chip Power Dissipation (W)  
ΘJA = Package Thermal Resistance ( C/W)  
°
The total power dissipation is calculated from:  
PD = PINT + PIO  
PINT = Chip Internal Power Dissipation (W)  
PINT = (IDD × VDD) + (IDDPLL × VDDPLL) + (IDDA × VDDA)  
Two cases for PIO, with the internal voltage regulator enabled and disabled, must be considered:  
1. Internal Voltage Regulator disabled:  
2
PIO  
=
RDSON ⋅ (IIO )  
i
i
P
IO is the sum of all output currents on I/O ports associated with VDDX and VDDR.  
VOL  
---------  
(for outputs driven low)  
RDSON  
=
=
IOL  
or  
VDD5 VOH  
-------------------------------  
IOL  
RDSON  
(for outputs driven high)  
2. Internal voltage regulator enabled:  
PINT = (IDDR × VDDR) + (IDDA × VDDA)  
I
DDR is the current shown in Table 12 and not the overall current flowing into VDDR, which  
additionally contains the current flowing into the external loads with output high.  
6
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ElectricalCharacteristics  
3.5.1 Power Dissipation Simulation Details  
1
Table 7. Thermal Resistance for 100 lead 14x14 mm LQFP, 0.5 mm Pitch  
Rating  
Value  
44  
34  
37  
29  
18  
7
Unit  
Comments  
Junction to Ambient (Natural Convection)  
Junction to Ambient (Natural Convection)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
R
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
4
θJA  
R
R
R
θJMA  
θJMA  
θJMA  
R
θJB  
θJC  
Junction to Case  
R
5
Junction to Package Top  
Natural Convection  
Ψ
2
6
JT  
1
100 LQFP, Case Outline: 983–02  
1
Table 8. Thermal Resistance for 112 lead 20x20 mm LQFP, 0.65 mm Pitch  
Rating  
Value  
42  
34  
35  
30  
22  
7
Unit  
Comments  
Junction to Ambient (Natural Convection)  
Junction to Ambient (Natural Convection)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
R
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
4
θJA  
R
R
R
θJMA  
θJMA  
θJMA  
R
θJB  
θJC  
Junction to Case  
R
5
Junction to Package Top  
Natural Convection  
Ψ
2
6
JT  
1
112 LQFP, Case Outline: 987–01  
1
Table 9. Thermal Resistance for 144 lead 20x20 mm LQFP, 0.5 mm Pitch  
Rating  
Value  
42  
34  
35  
30  
22  
7
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Comments  
Junction to Ambient (Natural Convection)  
Junction to Ambient (Natural Convection)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
R
1, 2  
1, 3  
1, 3  
1, 3  
4
θJA  
R
R
R
θJMA  
θJMA  
θJMA  
R
θJB  
Junction to Case  
R
θJC  
5
Junction to Package Top  
Natural Convection  
Ψ
2
6
JT  
1
144 LQFP, Case Outline: 918–03  
1
Table 10. Thermal Resistance for 208 lead 17x17 mm MAP, 1.0 mm Pitch  
Rating  
Value  
46  
29  
38  
26  
19  
7
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Comments  
Junction to Ambient (Natural Convection)  
Junction to Ambient (Natural Convection)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Ambient (@ 200 ft./min.)  
Junction to Board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
R
1, 2  
1, 3  
1, 3  
1, 3  
4
θJA  
R
R
R
θJMA  
θJMA  
θJMA  
R
θJB  
θJC  
Junction to Case  
R
5
Junction to Package Top  
Natural Convection  
Ψ
2
6
JT  
1
208 MAP BGA, Case Outline: 1159A-01  
Comments:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.  
3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top  
surface of the board at the center lead. For fused lead packages, the adjacent lead is used.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and junction temperature per JEDEC  
JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
MOTOROLA  
MAC7100 Microcontroller Family Hardware Specifications  
7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
Table 11. Power Dissipation 1/8 Simulation Model Packaging Parameters  
Component  
Mold Compound  
Leadframe (Copper)  
Die Attach  
Conductivity  
0.9 W/m K  
263 W/m K  
1.7 W/m K  
3.6 Power Supply  
The MAC7100 Family utilizes several pins to supply power to the oscillator, PLL, digital core, I/O ports  
and ATD. In the context of this section, VDD5 is used for VDDA, VDDR or VDDX; VSS5 is used for VSSA,  
VSSR or VSSX unless otherwise noted. IDD5 denotes the sum of the currents flowing into the VDDA, VDDX,  
and VDDR. VDD is used for VDD2.5, and VDDPLL, VSS is used for VSS2.5 and VSSPLL. IDD is used for the  
sum of the currents flowing into VDD2.5 and VDDPLL.  
3.6.1 Current Injection  
The power supply must maintain regulation within the VDD5 or VDD2.5 operating range during  
instantaneous and operating maximum current conditions. If positive injection current (V > VDD5) is  
in  
greater than IDD5, the injection current may flow out of VDD5 and could result in the external power supply  
going out of regulation. It is important to ensure that the external VDD5 load will shunt current greater than  
the maximum injection current. The greatest risk will be when the MCU is consuming very little power (for  
example, if no system clock is present, or if the clock rate is very low).  
3.6.2 Power Supply Pins  
The VDDR – VSSR pair supplies the internal voltage regulator. The VDDA – VSSA pair supplies the A/D  
converter and the reference circuit of the internal voltage regulator. The VDDX – VSSX pair supplies the I/O  
pins. VDDPLL – VSSPLL pair supplies the oscillator and PLL.  
All VDDX pins are internally connected by metal. All VSSX pins are internally connected by metal. All  
VSS2.5 pins are internally connected by metal. VDDA, VDDX and VDDR as well as VSSA, VSSX and VSSR  
are connected by anti-parallel diodes for ESD protection.  
3.6.3 Supply Currents  
All current measurements are without output loads. Unless otherwise noted the currents are measured in  
single chip mode, internal voltage regulator enabled and at 40MHz bus frequency using a 4MHz oscillator  
in low power mode. Production testing is performed using a square wave signal at the EXTAL input.  
In expanded modes, the currents flowing in the system are highly dependent on the load at the address, data  
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be  
given. A good estimate is to take the single chip currents and add the currents due to the external loads.  
8
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ElectricalCharacteristics  
Table 12. Supply Current Characteristics  
Num  
C
Rating  
Symbol  
IDDRcore  
Typ  
Max  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1
1
D1a C Run Supply Current  
–40° C 2  
25° C 2  
85° C 2  
105° C 2  
125° C 2  
–40° C 2  
25° C 2  
1
1
Single Chip  
1
1
1
1
1
1
1
1
D1b  
D1c  
C
C
IDDRreg  
1
1
1
1
85° C 2  
1
1
105° C 2  
125° C 2  
–40° C 2  
25° C 2  
85° C 2  
105° C 2  
125° C 2  
1
1
1
1
IDDRpins  
1
1
1
1
1
1
1
1
D2 C Doze Supply Current  
Run Doze Pseudo Stop  
1
1
D3a C Psuedo Stop Current  
–40° C 2  
25° C 2  
85° C 2  
105° C 2  
125° C 2  
–40° C 2  
25° C 2  
IDDPScore  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
1
1
1
1
1
1
PLL on  
1
1
1
1
D3b  
D3c  
C
C
IDDPSreg  
IDDPSpins  
IDDScore  
IDDSreg  
278 / 327 3  
1
1
1
85° C 2  
1
1
105° C 2  
125° C 2  
–40° C 2  
25° C 2  
1
1
1
1
4 / 5 3  
1
1
1
85° C 2  
1
1
105° C 2  
125° C 2  
–40° C 2  
25° C 2  
1
1
1
1
D4a C Stop Current  
1
1
TJ = TA assumed  
1
1
85° C 2  
1
1
105° C 2  
125° C 2  
–40° C 2  
25° C 2  
1
1
1
1
D4b  
D4c  
C
C
1
68  
1
1
85° C 2  
1
1
105° C 2  
125° C 2  
–40° C 2  
25° C 2  
85° C 2  
105° C 2  
125° C 2  
1
1
1
1
IDDSpins  
1
4
1
1
1
1
1
1
1
2
3
At the time of publication, this value is yet to be determined, and will be supplied when device characterization is complete.  
85°C, 105°C, and 125°C refer to the "C", "V", and "M" Temperature Options, respectively.  
RTI disabled / enabled.  
MOTOROLA  
MAC7100 Microcontroller Family Hardware Specifications  
9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.6.4 Voltage Regulator Characteristics  
Table 13. VREG Operating Conditions  
Num  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
E1  
E2  
P Input Voltages  
VVDDRA  
IREG  
2.97  
5.5  
V
P Regulator Current  
Reduced Power Mode  
Shutdown Mode  
TBD  
TBD  
50  
40  
µA  
µA  
E3  
E4  
P Output Voltage Core  
VDD  
Full Performance Mode  
Reduced Power Mode  
Shutdown Mode  
2.45  
1.60  
2.5  
2.5  
2.75  
2.75  
V
V
V
1
P Output Voltage PLL  
VDDPLL  
Full Performance Mode  
Reduced Power Mode 2  
Reduced Power Mode 3  
Shutdown Mode  
2.35  
2.00  
1.60  
2.5  
2.5  
2.5  
2.75  
2.75  
2.75  
V
V
V
V
1
E5  
P Low Voltage Interrupt 4  
Assert Level  
VLVIA  
VLVID  
4.10  
4.25  
4.37  
4.52  
4.66  
4.77  
V
V
Deassert Level  
E6  
E7  
P Low Voltage Reset 5  
Assert Level  
P Power On Reset 6  
Assert Level  
VLVRA  
2.25  
2.35  
V
VPORA  
VPORD  
0.97  
2.05  
V
V
Deassert Level  
1
2
3
4
High Impedance Output.  
Current IDDPLL = 1mA (Low Power Oscillator).  
Current IDDPLL = 3mA (Standard Oscillator).  
Monitors V A, active only in full performance mode. Indicated I/O and ATD performance degradation due to low supply  
DD  
voltage.  
5
6
Monitors VDD2.5, active only in full performance mode. Only POR is active in reduced performance mode.  
Monitors VDD2.5, active in all modes.  
10  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ElectricalCharacteristics  
3.6.5 Chip Power Up and Voltage Drops  
The VREG sub-modules LVI (low voltage interrupt), POR (power on reset) and LVR (low voltage reset)  
handle chip power-up or drops of the supply voltage. Refer to Figure 2.  
Voltage  
VDDA  
VLVID  
VLVIA  
VDD2.5  
VLVRD  
VLVRA  
VPORD  
Time  
LVI Disabled  
due to LVR  
LVI Enabled  
LVI  
POR  
LVR  
Note: Not to scale.  
Figure 2. VREG Chip Power-up and Voltage Drops  
3.6.6 Output Loads  
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external DC  
load is allowed. Capacitive loads are specified in Table 14. Capacitors with X7R dielectricum are required.  
Table 14. VREG Recommended Load Capacitances  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Load Capacitance on each VDD2.5 pin  
Load Capacitance on VDDPLL pin  
CLVDD  
200  
90  
440  
220  
12000  
5000  
nF  
nF  
CLVDDfcPLL  
MOTOROLA  
MAC7100 Microcontroller Family Hardware Specifications  
11  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.7 I/O Characteristics  
This section describes the characteristics of all I/O pins in both 3.3 V and 5 V operating conditions. All  
parameters are not always applicable; for example, not all pins feature pull up/down resistances.  
Table 15. 5 V I/O Characteristics  
Conditions shown in Table 6 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
F1a P Input High Voltage  
VIH  
0.65 ×  
V
VDD5  
F1b T Input High Voltage  
F2a P Input Low Voltage  
F2b T Input Low Voltage  
F3 C Input Hysteresis  
VIH  
VIL  
VIL  
VDD5 +  
0.3  
V
V
V
0.35 ×  
VDD  
5
VSS5 –  
0.3  
VHYS  
Iin  
250  
mV  
1
F4  
P
Input Leakage Current (pins in high impedance input mode)  
Vin = VDD5 or VSS  
TBD  
TBD  
µA  
5
F5 P Output High Voltage (pins in output mode)  
Partial Drive I = –2mA  
VOH  
VDD5 –  
0.8  
V
V
OH  
= –10mA  
Full Drive I  
OH  
F6 P Output Low Voltage (pins in output mode)  
Partial Drive I = +2mA  
VOL  
0.8  
OL  
= +10mA  
Full Drive I  
OL  
F7 P Internal Pull Up Device Current,  
tested at VIL Max.  
IPUL  
IPUH  
IPDH  
IPDL  
Cin  
–10  
–130  
µA  
µA  
µA  
µA  
F8 P Internal Pull Up Device Current,  
tested at VIH Min.  
F9 P Internal Pull Down Device Current,  
tested at VIH Min.  
130  
F10 P Internal Pull Down Device Current,  
tested at VIL Max.  
10  
F11 D Input Capacitance  
6
pF  
F12 T Injection current 2  
Single Pin limit  
µA  
IICS  
IICP  
–2.5  
–25  
2.5  
25  
Total Device Limit. Sum of all injected currents  
F13 P Port Interrupt Input Pulse filtered 3  
F14 P Port Interrupt Input Pulse passed 3  
tPULSE  
tPULSE  
3
µs  
µs  
10  
1
Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half  
for each 8°C to 12°C in the temperature range from 50°C to 125°C.  
Refer to Section 3.6.1, “Current Injection,” for more details  
2
3
Parameter only applies in STOP or Pseudo STOP mode.  
12  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 16. 3.3 V I/O Characteristics  
Conditions shown in Table 6, with V X = 3.3 V ±10% and a temperature maximum of +140°C unless otherwise noted.  
DD  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
G1a P Input High Voltage  
VIH  
0.65 ×  
V
VDD5  
G1b T Input High Voltage  
G2a P Input Low Voltage  
G2b T Input Low Voltage  
G3 C Input Hysteresis  
VIH  
VIL  
VIL  
VDD5 +  
0.3  
V
V
V
0.35 ×  
VDD  
5
VSS5 –  
0.3  
VHYS  
Iin  
250  
mV  
1
G4  
P
Input Leakage Current (pins in high impedance input mode)  
Vin = VDD5 or VSS  
TBD  
TBD  
µA  
5
G5 P Output High Voltage (pins in output mode)  
Partial Drive I = –0.75mA  
VOH  
VDD5 –  
0.4  
V
V
OH  
= –4.5mA  
Full Drive I  
OH  
G6 P Output Low Voltage (pins in output mode)  
Partial Drive I = +0.9mA  
VOL  
0.4  
OL  
= +5.5mA  
Full Drive I  
OL  
G7 P Internal Pull Up Device Current,  
tested at VIL Max.  
IPUL  
IPUH  
IPDH  
IPDL  
Cin  
–6  
6
–60  
µA  
µA  
µA  
µA  
G8 P Internal Pull Up Device Current,  
tested at VIH Min.  
G9 P Internal Pull Down Device Current,  
tested at VIH Min.  
60  
G10 P Internal Pull Down Device Current,  
tested at VIL Max.  
G11 D Input Capacitance  
6
pF  
G12 T Injection current 2  
Single Pin limit  
µA  
IICS  
IICP  
–2.5  
–25  
2.5  
25  
Total Device Limit. Sum of all injected currents  
G13 P Port Interrupt Input Pulse filtered 3  
G14 P Port Interrupt Input Pulse passed 3  
tPULSE  
tPULSE  
3
µs  
µs  
10  
1
Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half  
for each 8°C to 12°C in the temperature range from 50°C to 125°C.  
Refer to Section 3.6.1, “Current Injection,” for more details  
2
3
Parameter only applies in STOP or Pseudo STOP mode.  
MOTOROLA  
MAC7100 Microcontroller Family Hardware Specifications  
13  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.8 Clock and Reset Generator Electrical  
Characteristics  
This section describes the electrical characteristics for the oscillator, phase-locked loop, clock monitor and  
reset generator.  
3.8.1 Oscillator Characteristics  
The MAC7100 Family features an internal low power loop controlled Pierce oscillator and a full swing Pierce  
oscillator/external clock mode. The selection of loop controlled Pierce oscillator or full swing Pierce  
oscillator/external clock depends on the level of the XCLKS signal at the rising edge of the RESET signal.  
Before asserting the oscillator to the internal system clock distribution subsystem, the quality of the  
oscillation is checked for each start from either power on, STOP or oscillator fail. t  
specifies the  
CQOUT  
maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is  
not detected. The quality check also determines the minimum oscillator start-up time t . The device also  
UPOSC  
features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal  
is below the Clock Monitor Assert Frequency f  
.
CMFA  
Table 17. Oscillator Characteristics  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
H1a C Crystal oscillator range (loop controlled Pierce)  
fOSC  
fOSC  
4.0  
0.5  
100  
16  
40  
MHz  
MHz  
µA  
ms  
s
1, 2  
H1b C Crystal oscillator range (full swing Pierce)  
H2 P Startup Current  
IOSC  
H3 C Oscillator start-up time (loop controlled Pierce)  
H4 D Clock Quality check time-out  
tUPOSC  
tCQOUT  
fCMFA  
fEXT  
TBD 3  
50 4  
2.5  
200  
40  
0.45  
50  
H5 P Clock Monitor Failure Assert Frequency  
H6 P External square wave input frequency 2  
H7 D External square wave pulse width low  
H8 D External square wave pulse width high  
H9 D External square wave rise time  
H10 D External square wave fall time  
100  
KHz  
MHz  
ns  
0.5  
9.5  
9.5  
tEXTL  
tEXTH  
tEXTR  
tEXTF  
CIN  
ns  
1
ns  
1
ns  
H11 D Input Capacitance (EXTAL, XTAL pins)  
7
pF  
H12 C EXTAL pin DC Operating Bias in loop controlled  
mode  
VDCBIAS  
TBD  
V
1
2
3
4
Depending on the crystal; a damping series resistor might be necessary  
XCLKS negated during reset  
fosc = 4 MHz, C = 22 pF.  
Maximum value is for extreme cases using high Q, low frequency crystals  
14  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.8.2 PLL Filter Characteristics  
The oscillator provides the reference clock for the PLL. The voltage controlled oscillator (VCO) of the PLL  
is also the system clock source in self clock mode. In order to operate reliably, care must be taken to select  
proper values for external loop filter components.  
VDDPLL  
CS  
CP  
Phase  
Detector  
VCO  
KV  
R
fREF  
1
fOSC  
fVCO  
K
φ
REFDV+1  
fCMP  
Loop Divider  
1
1
2
SYNR+1  
Figure 3. Basic PLL Functional Diagram  
The procedure described below can be used to calculate the resistance and capacitance values using typical  
values for K1, f1 and ich from Table 18. First, the VCO Gain at the desired VCO output frequency is  
approximated by:  
(f1 fVCO  
-------------------------  
K1 1V  
)
KV = K1 e  
The phase detector relationship is given by:  
KΦ = – ich KV  
ich is the current in tracking mode. The loop bandwidth fC should be chosen to fulfill the Gardner’s stability  
criteria by at least a factor of 10, typical values are 50. ζ = 0.9 ensures a good transient response.  
2 ⋅ ζ ⋅ fref  
π ⋅ (ζ + 1 + ζ2)  
fref  
fC < ------------- ;= 0.9)  
1
50  
------  
fC < ----------------------------------------  
4 50  
And finally the frequency relationship is defined as  
fVCO  
n = ----------- = 2 ⋅ (synr + 1)  
fref  
With the above inputs the resistance can be calculated as:  
2 ⋅ π ⋅ n fC  
R = ---------------------------  
KΦ  
The capacitance CS can now be calculated as:  
2 ⋅ ζ2  
0.516  
---------------------  
CS  
=
-------------;= 0.9)  
π ⋅ fC R  
fC R  
The capacitance CP should be chosen in the range of:  
CS ÷ 20 CP CS ÷ 10  
The stabilization delays shown in Table 18 are dependant on PLL operational settings and external  
component selection (for example, crystal, XFC filter).  
15  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.8.2.1 Jitter Information  
The basic functionality of the PLL is shown in Figure 3. With each transition of the clock f , the deviation  
cmp  
from the reference clock f is measured and input voltage to the VCO is adjusted accordingly. The adjustment  
ref  
is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and  
other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real  
minimum and maximum clock periods as illustrated in Figure 4. It is important to note that the pre-scaler used  
by timers and serial modules will eliminate the effect of PLL jitter to a large extent.  
0
1
2
3
N–1  
N
tMIN1  
tNOM  
tMAX1  
tMIN(N)  
tMAX(N)  
Figure 4. Jitter Definitions  
The relative deviation of tNOM is at its maximum for one clock period, and decreases towards zero for larger  
number of clock periods (N). Thus, jitter is defined as:  
t
MAX(N)  
tMIN(N)  
J(N) = max 1 – --------------------- , 1 – ---------------------  
N tNOM  
N tNOM  
For N < 100, the following equation is a good fit for the maximum jitter:  
j1  
J(N) = ------- + j2  
N
J(N)  
0 1  
5
10  
15  
20  
N
Figure 5. Maximum Bus Clock Jitter Approximation  
16  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.8.3 PLL Characteristics  
Table 18. PLL Characteristics  
Num C  
Rating  
Symbol  
fREF  
Min  
0.5  
1
Typ  
Max  
16  
Unit  
MHz  
MHz  
MHz  
J1  
PLL reference frequency, crystal oscillator range 1  
J2 P Self Clock Mode frequency  
J3 D VCO locking range  
fSCM  
5.5  
40  
fVCO  
8
2
J4  
D
Lock Detector transition from Acquisition to Tracking mode  
|∆trk  
|∆Lock  
|∆unl  
|
3
4
%
2
J5 D Lock Detection  
|
0
1.5  
2.5  
8
%
2
J6 D Un-Lock Detection  
|
0.5  
6
%
2
J7  
D
Lock Detector transition from Tracking to Acquisition mode |∆unt  
|
%
J8 C PLLON Total Stabilization delay (Auto Mode) 3  
J9 D PLLON Acquisition mode stabilization delay 3  
J10 D PLLON Tracking mode stabilization delay 3  
J11 D Charge pump current acquisition mode  
J12 D Charge pump current tracking mode  
J13 D Jitter fit VCO loop gain parameter  
J14 D Jitter fit VCO loop frequency parameter  
J15 C Jitter fit parameter 1  
tstab  
tacq  
tal  
0.5 4  
0.3 5  
0.2 5  
38.5  
3.5  
–100  
60  
3 5  
1 4  
2 4  
ms  
ms  
ms  
| ich  
| ich  
K1  
f1  
|
|
µA  
µA  
MHz/V  
MHz  
4
j1  
TBD  
TBD  
%
4
J16 C Jitter fit parameter 2  
j2  
%
1
2
3
VDDPLL at 2.5 V.  
Percentage deviation from target frequency  
PLL stabilization delay is highly dependent on operational requirement and external component values (for  
example, crystal and XFC filter component values). Notes 4 and 5 show component values for a typical  
configurations. Appropriate XFC filter values should be chosen based on operational requirement of system.  
fREF = 4 MHz, fSYS = 25 MHz (REFDV = 0x03, SYNR = 0x01), CS = 4.7 nF, CP = 470 pF, RS = 10 K.  
fREF = 4 MHz, fSYS = 8 MHz (REFDV = 0x00, SYNR = 0x01), CS = 33 nF, CP = 3.3 nF, RS = 2.7 K.  
4
5
3.8.4 Crystal Monitor Time-out  
The time-out Table 19 shows the delay for the crystal monitor to trigger when the clock stops, either at the high  
or at the low level. The corresponding clock period with an ideal 50% duty cycle is twice this time-out value.  
Table 19. Crystal Monitor Time-Outs  
Min  
Typ  
Max  
Unit  
6
10  
18.5  
µs  
3.8.5 Clock Quality Checker  
The timing for the clock quality check is derived from the oscillator and the VCO frequency range in  
Table 18. These numbers define the upper time limit for the individual check windows to complete.  
Table 20. CRG Maximum Clock Quality Check Timings  
Clock Check Windows  
Value  
Unit  
Check Window  
9.1 to 20.0  
0.46 to 1.0  
ms  
s
Timeout Window  
17  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.8.6 Startup  
Table 21 summarizes several startup characteristics explained in this section. Refer to the MAC7100  
Microcontroller Family Reference Manual (MAC7100RM/D) for a detailed description of the startup  
behavior.  
Table 21. CRG Startup Characteristics  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
K1 T POR release level  
K2 T POR assert level  
VPORR  
VPORA  
PWRSTL  
nRST  
0.97  
2
2.07  
V
V
K3 D Reset input pulse width, minimum input time  
K4 D Startup from Reset  
tosc  
nosc  
ns  
192  
20  
196  
K5 D Interrupt pulse width, IRQ edge-sensitive mode  
K6 D Wait recovery startup time  
PWIRQ  
tWRS  
14  
tcyc  
3.8.6.1 Power On and Low Voltage Reset (POR and LVR)  
The release level VPORR and the assert level VPORA are derived from the VDD2.5 supply. The assert level  
VLVRA is derived from the VDD2.5 supply. They are also valid if the device is powered externally. After  
releasing the POR or LVR reset, the oscillator and the clock quality check are started. If after a time tCQOUT  
no valid oscillation is detected, the MCU will start using the internal self-generated clock. The fastest startup  
time possible is given by tuposc (refer to Table 17).  
3.8.6.2 SRAM Data Retention  
The SRAM contents integrity is guaranteed if the PORF bit in the CRGFLG register is not set following a  
reset operation.  
3.8.6.3 External Reset  
When external reset is asserted for a time greater than PWRSTL, the CRG module generates an internal reset  
and the CPU starts fetching the reset vector without doing a clock quality check, if there was stable  
oscillation before reset.  
3.8.6.4 Stop Recovery  
The MCU can be returned to run mode from the stop mode by an external interrupt. A clock quality check  
is performed in the same manner as for POR before releasing the clocks to the system.  
3.8.6.5 Pseudo Stop and Doze Recovery  
Recovery from pseudo stop and doze modes are essentially the same, since the oscillator is not stopped in  
either mode. The controller is returned to run mode by internal or external interrupts or other wakeup events  
in the system. After twrs, the CPU fetches an interrupt vector if the wakeup event was an interrupt, or  
continues to execute code if the wakeup event was not an interrupt.  
18  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.9 External Bus Timing Specifications  
Table 22 lists processor bus input timings, which are shown in Figure 6, Figure 7 and Figure 8.  
NOTE  
All processor bus timings are synchronous; that is, input setup/hold and  
output delay with respect to the rising edge of a reference clock. The  
reference clock is the CLKOUT output.  
All other timing relationships can be derived from these values.  
Table 22. External Bus Input Timing Specifications  
Num  
C
Rating 1  
Symbol Min Max Unit  
L1  
CLKOUT  
tCYC  
23  
ns  
Control Inputs  
L2a  
L3a  
Control input valid to CLKOUT high 2  
CLKOUT high to control inputs invalid 2  
tCVCH  
tCHCII  
13  
0
ns  
ns  
Data Inputs  
L4  
L5  
Data input (DATA[15:0]) valid to CLKOUT high  
CLKOUT high to data input (DATA[15:0]) invalid  
tDIVCH  
tCHDII  
9
0
ns  
ns  
1
2
Timing specifications have been indicated taking into account the full drive strength for the pads.  
TA pins are being referred to as control inputs.  
CLKOUT(45MHz)  
Input Setup & Hold  
Input Rise Time  
Input Fall Time  
CLKOUT  
1.5 V  
tSETUP  
Invalid  
tHOLD  
1.5 V Valid 1.5 V  
Invalid  
tRISE = 1.5 ns  
VH = VIH  
VL = VIL  
tFALL = 1.5 ns  
VH = VIH  
VL = VIL  
L4  
L5  
Inputs  
Figure 6. General Input Timing Requirements  
19  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.9.1 Read and Write Bus Cycles  
Table 23 lists processor bus output timings. Read/write bus timings listed in Table 23 are shown in Figure 7  
and Figure 8.  
Table 23. External Bus Output Timing Specifications  
Num  
C
Rating  
Symbol  
Min  
Max  
Unit  
Control Outputs  
1
L6a  
L6b  
CLKOUT high to chip selects valid  
tCHCV  
tCHBV  
0.5tCYC + 10  
0.5tCYC + 10  
ns  
ns  
CLKOUT high to byte select (BS[1:0]) valid 2  
L6c  
CLKOUT high to output select (OE) valid 3  
tCHOV  
0.5tCYC + 10  
ns  
L7a  
L7b  
CLKOUT high to control output (BS[1:0], OE) invalid  
CLKOUT high to chip selects invalid  
tCHCOI 0.5tCYC + 2  
ns  
ns  
tCHCI  
0.5tCYC + 2  
Address and Attribute Outputs  
L8  
L9  
CLKOUT high to address (ADDR[21:0]) and control  
(R/W) valid  
tCHAV  
2
10  
ns  
ns  
CLKOUT high to address (ADDR[21:0]) and control  
(R/W) invalid  
tCHAI  
Data Outputs  
CLKOUT high to data output (DATA[15:0]) valid  
CLKOUT high to data output (DATA[15:0]) invalid  
L10  
L11  
L12  
tCHDOV  
tCHDOI  
2
13  
9
ns  
ns  
ns  
CLKOUT high to data output (DATA[15:0]) high impedance tCHDOZ  
1
2
3
CSn transitions after the falling edge of CLKOUT.  
BSn transitions after the falling edge of CLKOUT.  
OE transitions after the falling edge of CLKOUT.  
20  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
S0  
S1  
S2  
S3  
S4  
S5  
S0  
S1  
S2  
S3  
S4  
S5  
CLKOUT  
CSn  
L6a  
L8  
L6a  
L7b  
L7b  
L8  
L9  
ADDR[21:0]  
OE  
L1  
L6c  
L7a  
L8  
L9  
R/W  
L6b  
L6b  
L7a  
L7a  
BS[1:0]  
DATA[15:0]  
TA (H)  
L10  
L4  
L11  
L12  
L5  
Figure 7. Read/Write (Internally Terminated) Bus Timing  
21  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
S0  
S1  
S2  
S3  
S4  
S5  
S0  
S1  
CLKOUT  
CSn  
L6a  
L8  
L7b  
L7a  
L7a  
L9  
ADDR[21:0]  
OE  
L6c  
R/W  
L6b  
BS[1:0]  
DATA[15:0]  
TA  
L4  
L5  
L2a  
L3a  
Figure 8. Read Bus Cycle Terminated by TA  
22  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.10 Analog-to-Digital Converter Characteristics  
Table 24 and Table 25 show conditions under which the ATD operates. The following constraints exist to  
obtain full-scale, full range results: VSSA VRL VIN VRH VDDA. This constraint exists because the  
sample buffer amplifier cannot drive beyond the ATD power supply levels. If the input level goes outside  
of this range it will effectively be clipped.  
Table 24. ATD Operating Characteristics in 5 V Range  
Conditions shown in Table 6 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
M1 D Reference Potential  
Low  
High  
VRL  
VRH  
VSS  
VDDA ÷ 2  
A
V
DDA ÷ 2  
VDDA  
V
V
M2 C Differential Reference Voltage 1  
M3 D ATD Clock Frequency  
VRH – VRL  
fATDCLK  
4.50  
0.5  
5.00  
5.25  
2.0  
V
MHz  
M4 D ATD 10-bit Conversion PeriodClock Cycles 2  
NCONV10  
14  
7
28  
14  
Cycles  
µs  
@ 2.0MHz fATDCLK TCONV10  
M5 D ATD 8-bit Conversion PeriodClock Cycles 2  
NCONV8  
12  
6
26  
13  
Cycles  
µs  
@ 2.0MHz fATDCLK TCONV8  
M6 D Recovery Time (VDDA = 5.0 V)  
tREC  
20  
µs  
M7  
M8  
P
P
Reference Supply current 1 ATD module enabled  
Reference Supply current 2 ATD modules enabled  
IREF  
IREF  
0.375  
0.750  
mA  
mA  
1
2
Full accuracy is not guaranteed when differential voltage is less than 4.50 V  
Minimum time assumes final sample period of 2 ATD clocks; maximum time assumes final sample period of 16 ATD clocks.  
Table 25. ATD Operating Characteristics in 3.3 V Range  
Conditions shown in Table 6, with VDDX = 3.3 V ±10% and a temperature maximum of +140°C unless otherwise noted.  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
N1 D Reference Potential  
Low  
High  
VRL  
VRH  
VSS  
VDDA ÷ 2  
A
V
DDA ÷ 2  
VDDA  
V
V
N2 C Differential Reference Voltage 1  
N3 D ATD Clock Frequency  
V
RH–VRL  
3.0  
0.5  
3.3  
3.6  
2.0  
V
fATDCLK  
MHz  
N4 D ATD 10-bit Conversion PeriodClock Cycles 2  
NCONV10  
14  
7
28  
14  
Cycles  
µs  
Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10  
N5 D ATD 8-bit Conversion PeriodClock Cycles 2  
NCONV8  
12  
6
26  
13  
Cycles  
µs  
Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV8  
N6 D Recovery Time (VDDA=5.0 V)  
tREC  
IREF  
IREF  
20  
µs  
N7  
N8  
P
P
Reference Supply current 1 ATD module enabled  
Reference Supply current 2 ATD modules enabled  
0.375  
0.250  
mA  
mA  
1
2
Full accuracy is not guaranteed when differential voltage is less than 3.0 V  
Minimum time assumes final sample period of 2 ATD clocks; maximum time assumes final sample period of 16 ATD clocks.  
3.10.1 Factors Influencing Accuracy  
Three factors — source resistance, source capacitance and current injection have an influence on the  
accuracy of the ATD.  
23  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.10.1.1 Source Resistance  
Due to the input pin leakage current as specified in Table 15 in conjunction with the source resistance there  
will be a voltage drop from the signal source to the ATD input. The maximum specified source resistance R ,  
S
results in an error of less than 1/2 LSB (2.5 mV) at the maximum leakage current. If the device or operating  
conditions are less than the worst case, or leakage-induced errors are acceptable, larger values of source  
resistance are allowed.  
3.10.1.2 Source Capacitance  
When sampling, an additional internal capacitor is switched to the input. This can cause a voltage drop due  
to charge sharing with the external capacitance and the pin capacitance. For a maximum sampling error of  
the input voltage 1 LSB, then the external filter capacitor must be calculated as,  
C
1024  
×
(C  
C
).  
f
INS  
INN  
3.10.1.3 Current Injection  
There are two cases to consider:  
1. A current is injected into the channel being converted. The channel being stressed has conversion  
values of 0x3FF (0xFF in 8-bit mode) for analog inputs greater than VRH and 0x000 for values less  
than VRL unless the current is higher than specified as disruptive condition.  
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this  
current is picked up by the channel (coupling ratio K), This additional current impacts the  
accuracy of the conversion depending on the source resistance. The additional input voltage error  
on the converted channel can be calculated as VERR = K × RS × IINJ, with IINJ being the sum of the  
currents injected into the two pins adjacent to the converted channel.  
Table 26. ATD Electrical Characteristics  
Conditions are shown in Table 6 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
P1 C Max input Source Resistance  
RS  
1
KΩ  
P2 T Total Input Capacitance  
Non Sampling  
CINN  
CINS  
10  
22  
pF  
pF  
Sampling  
P3 C Disruptive Analog Input Current  
INA  
Kp  
Kn  
–2.5  
2.5  
mA  
A/A  
A/A  
P4 C Coupling Ratio positive current injection  
P5 C Coupling Ratio negative current injection  
TBD  
TBD  
24  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.10.2 ATD Accuracy  
Table 27 and Table 28 specify the ATD conversion performance excluding any errors due to current  
injection, input capacitance and source resistance.  
Table 27. ATD Conversion Performance in 5 V Range  
Conditions shown in Table 6 unless otherwise noted.  
VREF = VRH – VRL = 5.12 V, resulting in one 8 bit count = 20 mV and one 10 bit count = 5 mV  
fATDCLK = 2.0 MHz, 4.5 V VDDA 5.5 V  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Q1 P 10-bit Resolution  
LSB  
DNL  
INL  
AE  
–1  
5
1
mV  
Q2 P 10-bit Differential Nonlinearity  
Q3 P 10-bit Integral Nonlinearity  
Q4 P 10-bit Absolute Error 1  
Q5 P 8-bit Resolution  
Counts  
Counts  
Counts  
mV  
–2.5  
–3  
±1.5  
±2.0  
20  
2.5  
3
LSB  
DNL  
INL  
AE  
Q6 P 8-bit Differential Nonlinearity  
Q7 P 8-bit Integral Nonlinearity  
Q8 P 8-bit Absolute Error 1  
–0.5  
–1.0  
–1.5  
0.5  
1.0  
1.5  
Counts  
Counts  
Counts  
±0.5  
±1.0  
1
These values include the quantization error which is inherently 1/2 count for any A/D converter.  
Table 28. ATD Conversion Performance in 3.3 V Range  
Conditions shown in Table 6 unless otherwise noted.  
VREF = VRH – VRL = 5.12 V, resulting in one 8 bit count = 20 mV and one 10 bit count = 5 mV  
fATDCLK = 2.0 MHz, 4.5 V VDDA 5.5 V  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
R1 P 10-bit Resolution  
LSB  
DNL  
INL  
AE  
3.25  
1.5  
3.5  
5
mV  
R2 P 10-bit Differential Nonlinearity  
R3 P 10-bit Integral Nonlinearity  
R4 P 10-bit Absolute Error 1  
R5 P 8-bit Resolution  
–1.5  
–3.5  
–5  
Counts  
Counts  
Counts  
mV  
±1.5  
±2.0  
13  
LSB  
DNL  
INL  
AE  
R6 P 8-bit Differential Nonlinearity  
R7 P 8-bit Integral Nonlinearity  
R8 P 8-bit Absolute Error 1  
–0.5  
–1.5  
–1.5  
0.5  
1.5  
1.5  
Counts  
Counts  
Counts  
±1.0  
±1.0  
1
These values include the quantization error which is inherently 1/2 count for any A/D converter.  
For the following definitions see also Figure 8.  
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.  
Vi Vi 1  
DNL(i) = ----------------------- 1  
1 LSB  
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:  
n
Vn V0  
INL(n) =  
DNL(i) = ------------------- n  
1 LSB  
i = 1  
25  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
10-bit Absolute Error Boundary  
0x3FF  
8-bit Absolute Error Boundary  
0x3FE  
0x3FD  
0x3FC  
0x3FB  
0x3FA  
0x3F9  
0x3F8  
0x3F7  
0x3F6  
0x3F5  
0x3F4  
0x3F3  
DNL  
VI–1  
0xFF  
0xFE  
0xFD  
2
LSB  
VI  
9
8
7
6
5
4
3
2
1
0
Ideal Transfer Curve  
10-bit Transfer Curve  
1
8-bit Transfer Curve  
VIN  
mV  
0
10  
20  
30  
40 50  
5055 5065 5075 5085 5095 5105 5115  
5060 5070 5080 5090 5100 5110 5120  
5
15  
25  
35  
Figure 9. ATD Accuracy Definitions  
NOTE  
Figure 8 shows only definitions, for specification values refer to Table 27.  
26  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.10.3 ATD Electrical Specifications  
Table 29 lists the DC electrical characteristics for the ATD module. Table 27 lists the analog-to-digital  
conversion performance specifications.  
1
Table 29. ATD Electrical Characteristics (Operating)  
Num C  
Rating  
Reference Potential 2Low  
Symbol  
Min  
Typ  
Max  
Unit  
S1  
S2  
VRL  
VRH  
VSSA  
VDDA ÷ 2  
VDDA  
V
V
High  
VDDA ÷ 2  
3
S3  
S4  
Voltage Difference VRH – VRL  
Analog Input Voltage  
V
RH – VRL  
4.5  
5.5  
V
V
VINDC  
–0.3  
VDDA + 0.3  
S5  
S6  
Digital Input  
Voltage  
High  
Low  
VIH  
VIL  
0.7 × VDD  
VSSA – 0.3  
A
V
DDA + 0.3  
V
V
0.2 × VDDA  
S7  
S8  
S9  
Analog Supply  
Current  
Run  
–40°C 4  
25°C 4  
85°C 4  
105°C 4  
125°C 4  
–40°C 4  
25°C 4  
85°C 4  
105°C 4  
125°C 4  
–40°C 4  
IDDArun  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
17  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
250  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
nA  
Pseudo  
Stop  
I
A
DD pseudo_stop  
TBD  
TBD  
TBD  
TBD  
17  
Stop  
IDDAstop  
(low power) 25°C 4  
85°C 4  
TBD  
TBD  
TBD  
200  
105°C 4  
125°C 4  
S10  
S11  
S12  
Reference Supply Current  
Input Injection Current 5  
Input Current, Off Channel 6  
IREF  
IINJ  
2
IOFF  
–200  
200  
S13  
S14  
Total Input  
Capacitance  
Not Sampling  
Sampling  
CINN  
CINS  
10  
15  
pF  
pF  
S15  
S16  
S17  
Disruptive Analog Input Current 7  
Coupling Ratio 8  
INA  
K
–3  
3
10–4  
mA  
A/A  
Incremental Error due to injection current  
±1  
Counts  
(All channels with 10k < Rs < 100k)9  
S18  
S19  
Incremental Error due to injection current  
±1  
Counts  
pF  
9
(
Channel under test Rs=10k, I  
=±3mA)  
INJ  
Incremental Capacitance during  
Sampling 10  
CSAMP  
5
1
2
All voltages referred to VSSA, –40 to 125oC, VDDA = 5.0 V ±10% and 2.0 MHz conversion rate unless otherwise  
noted. Refer to Table 6 for additional operating conditions.  
To obtain full-scale, full-range results, VSSA < VRL < VINDC < VRH < VDDA. Sample buffer amp cannot drive beyond  
the power supply levels. If the input level goes outside of this range, it will effectively be clipped.  
Full accuracy is not guaranteed when the differential reference voltage is less than 4.5 V.  
85°C, 105°C, and 125°C refer to the "C", "V", and "M" Temperature Options, respectively.  
The input injection current is specified to 1 count of error.  
3
4
5
27  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
6
Maximum leakage occurs at maximum operating temperature. Current decreases by approximately one-half for  
each 8 to 12 °C, in the ambient temperature range of 50 to 125 °C.  
7
Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog inputs  
greater than VRH and 0x000 for values less than VRL. This assumes that VDDA AVRH and VRL VSSA due to the  
presence of the sample amplifier. Other channels are not affected by non-disruptive conditions.  
8
Coupling Ratio, K, is defined as the ratio of the output current, IOUT, measured on the pin under test to the injection  
current, IINJ, when both adjacent pins are overstressed with the specified injection current. K = IOUT ÷ IINJ. The input  
voltage error on the channel under test is calculated as Verr = IINJ x K x RS.  
9
Total injection current is determined by the number of channels injecting (for example, 15), external injection voltage  
(VINJ – VPOSCLAMP, or VINJ – VNEGCLAMP), and the external source impedance, Rs, wherein all input channels have  
the same values. To determine the error voltage on the converted channel, only the two adjacent channels are  
expected to contribute to the error voltage: Verrj = (VINJ – VCLAMP) × K × 2.  
10  
For a maximum sampling error of the input voltage 1LSB, then the external filter capacitor, Cf 1024 × CSAMP. The  
value of CSAMP in the new design may be reduced, or increased slightly.  
1
Table 30. ATD Performance Specifications  
Num C  
T1 D 10-bit Resolution  
T2 D 10-bit Differential Nonlinearity 2  
T3 D 10-bit Integral Nonlinearity 2  
T4 D 10-bit Absolute Error 2, 3  
Rating  
Symbol  
LSB  
DNL  
INL  
Min  
Typ  
5
Max  
Unit  
mV  
–1  
1
Counts  
Counts  
Counts  
kΩ  
–2  
2
AE  
–2.5  
2.5  
100  
T5 D Max input Source Impedance 4  
RS  
1
2
3
4
All voltages referred to VSSA, VDDA = 5.0 V±10%, ATD clock = 2.1 Mhz., –40 to 125 °C.  
Note: 1 LSB = 1 Count (At VREF = 5.12 V, one 8 bit count = 20 mV, one 10-bit count = 5 mV)  
These values include quantization error which is inherently 1/2 count for any A/D converter.  
This value is based on error attributed to the specified leakage value of TBD nA resulting in an error of less than 1/2  
LSB (2.5 mV). If operating conditions are less than worst case or leakage-induced error is acceptable, larger values  
of source resistance is allowable.  
3.10.4 ATD Timing Specifications  
Table 31. ATD Timing Specifications  
Num C  
Rating  
Symbol  
Fclk  
Min  
Typ  
Max  
25.0  
2.0  
28*  
14  
Unit  
MHz  
MHz  
Cycles*  
µsec  
U1 D ATD Module Clock Frequency  
U2 D ATD Conversion Clock Frequency  
U3 D ATD 10-bit Conversion Period*  
Fatdclk  
0.5  
14*  
7
*
Clock Cycles NCONV10  
TCONV10  
Conv. Time  
U4 D Stop Recovery Time (VDDA = 5.0 V)  
TSR  
100  
µsec  
Table 32. ATD External Trigger Timing Specifications  
Num  
C
Parameter  
Symbol  
Min  
Max  
Unit  
V1  
D ETRIG Minimum Period  
TPERIOD  
1 sample +  
1 conv. +  
CYCLE  
1 ATD clock  
V2  
V3  
V4  
D ETRIG Minimum Pulse Width  
D ETRIG Level Recovery 1  
D Conversion Start Delay  
tPW  
tLR  
2
1
2
SYS CLK  
SYS CLK  
SYS CLK  
tDLY  
1
Time prior to end of conversion that the ETRIG pin must be deactivated so that another conversion sequence does  
not start.  
28  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
tPW  
tPERIOD  
Edge Sensitive  
Falling Edge Active ETRIG  
tDLY  
tDLY  
Coversion Activity  
ADx  
Max Frequency  
tPW  
Level Sensitive  
Low Active ETRIG  
Sequence  
ASCIF  
Complete Flag  
tDLY  
tDLY  
Coversion Activity  
ADx  
Max Frequency  
Level Sensitive  
Low Active ETRIG  
tLR  
Sequence  
ASCIF  
Complete Flag  
tDLY  
Coversion Activity  
ADx  
Figure 10. ATD External Trigger Timing Diagram  
29  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.11 Serial Peripheral Interface Electrical  
Specifications  
3.11.1 Master Mode  
Figure 11 and Figure 12 illustrate master mode timing. Timing values are shown in Table 33.  
1
Table 33. SPI Master Mode Timing Characteristics  
Conditions are shown in Table 6 unless otherwise noted, CLOAD = 200pF on all outputs  
Num C  
W1a P Operating Frequency  
Rating  
Symbol  
fop  
Min  
DC  
Typ  
Max  
1/4  
Unit  
fbus  
tbus  
tsck  
tsck  
ns  
W1b P SCK Period tsck = 1/fop  
W2 D Enable Lead Time  
tsck  
tlead  
tlag  
twsck  
tsu  
4
2048  
1/2  
W3 D Enable Lag Time  
1/2  
W4 D Clock (SCK) High or Low Time  
W5 D Data Setup Time (Inputs)  
W6 D Data Hold Time (Inputs)  
W9 D Data Valid (after Enable Edge)  
W10 D Data Hold Time (Outputs)  
W11 D Rise Time Inputs and Outputs  
W12 D Fall Time Inputs and Outputs  
tbus 30  
1024 tbus  
25  
0
ns  
thi  
ns  
tv  
0
25  
ns  
tho  
ns  
tr  
25  
ns  
tf  
25  
ns  
1
The numbers 7, 8 in the column labeled “Num” are missing. This has been done on purpose to be consistent  
between the Master and the Slave timing shown in Table 34.  
3.11.2 Slave Mode  
Figure 13 and Figure 14 illustrate the slave mode timing. Timing values are shown in Table 34.  
Table 34. SPI Slave Mode Timing Characteristics  
Conditions are shown in Table 6 unless otherwise noted, CLOAD = 200pF on all outputs  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
X1a P Operating Frequency  
fop  
tsck  
tlead  
tlag  
twsck  
tsu  
thi  
DC  
1/4  
2048  
fbus  
tbus  
tcyc  
tcyc  
ns  
X1b P SCK Period tsck = 1/fop  
X2 D Enable Lead Time  
4
1
X3 D Enable Lag Time  
1
tcyc 30  
25  
X4 D Clock (SCK) High or Low Time  
X5 D Data Setup Time (Inputs)  
X6 D Data Hold Time (Inputs)  
X7 D Slave Access Time  
ns  
25  
ns  
ta  
1
tcyc  
tcyc  
ns  
X8 D Slave SIN Disable Time  
X9 D Data Valid (after SCK Edge)  
X10 D Data Hold Time (Outputs)  
X11 D Rise Time Inputs and Outputs  
X12 D Fall Time Inputs and Outputs  
tdis  
tv  
tho  
tr  
1
25  
0
ns  
25  
25  
ns  
tf  
ns  
30  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
PCSx  
(OUTPUT)  
W2  
W11  
W12  
W1b  
W3  
SCK  
(CPOL = 0)  
(OUTPUT)  
W4  
W4  
SCK  
(CPOL = 1)  
(OUTPUT)  
W5  
W6  
SIN  
(INPUT)  
MSB In 2  
Bit 6 ... 1  
LSB In  
W9  
W9  
W10  
SOUT  
(OUTPUT)  
MSB Out 2  
Bit 6 ... 1  
LSB Out  
1 If configured as output.  
2 LSBFE = 0. For LSBFE = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 11. SPI Master Timing (CPHA = 0)  
PCSx  
(OUTPUT)  
W2  
W11  
W12  
W1b  
W12  
W11  
W3  
SCK  
(CPOL = 0)  
(OUTPUT)  
W4  
W5  
W4  
W6  
SCK  
(CPOL = 1)  
(OUTPUT)  
SIN  
(INPUT)  
MSB In 2  
Bit 6 ... 1  
LSB In  
W9  
W10  
SOUT  
(OUTPUT)  
Port Data  
Master MSB Out 2  
Bit 6 ... 1  
Master LSB Out  
Port Data  
1 If configured as output.  
2 LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 12. SPI Master Timing (CPHA =1)  
31  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
SS  
(INPUT)  
X2  
X11  
X12  
X1b  
X12  
X11  
X3  
SCK  
(CPOL = 0)  
(INPUT)  
X4  
X4  
SCK  
(CPOL = 1)  
(INPUT)  
X7  
X10  
X8  
X9  
X10  
SOUT  
(OUTPUT)  
Slave MSB Out  
Bit 6 ... 1  
Slave LSB Out  
X5  
X6  
SIN  
(INPUT)  
MSB In  
Bit 6 ... 1  
LSB In  
Figure 13. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
X2  
X11  
X12  
X1b  
X12  
X11  
X3  
SCK  
(CPOL = 0)  
(INPUT)  
X4  
X4  
SCK  
(CPOL = 1)  
(INPUT)  
X9  
X8  
X7  
X10  
SOUT  
(OUTPUT)  
Slave MSB Out  
Bit 6 ... 1  
Slave LSB Out  
LSB In  
X5  
X6  
SIN  
(INPUT)  
MSB In  
Bit 6 ... 1  
Figure 14. SPI Slave Timing (CPHA =1)  
32  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.12 FlexCAN Electrical Specifications  
Table 35. FlexCAN Wake-up Pulse Characteristics  
Conditions are shown in Table 6 unless otherwise noted  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Y1 P FlexCAN Wake-up dominant pulse filtered  
Y2 P FlexCAN Wake-up dominant pulse passed  
tWUP  
tWUP  
5
2
µs  
µs  
3.13 Program Flash and Data Flash Timing  
Characteristics  
NOTE  
Unless otherwise noted the abbreviation NVM (Non-Volatile Memory) is  
used for both program Flash and data Flash.  
3.13.1 NVM timing  
The time base for all NVM program or erase operations is derived from the system clock divided by two  
(Fsys/2). A minimum system frequency fNVMfsys is required for performing program or erase operations.  
The NVM modules do not have any means to monitor the frequency and will not prevent program or erase  
operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM  
modules at a lower frequency a full program or erase transition is not assured.  
The Flash and Data Flash program and erase operations are timed using a clock derived from the system  
frequency using the CFMCLKD register. The frequency of this clock must be set within the limits specified  
as fNVMOP. The minimum program and erase times shown in Table 36 are calculated for maximum fNVMOP  
and maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2 MHz.  
3.13.1.1 Single Word Programming  
The programming time for single word programming is dependant on the bus frequency as a well as on the  
frequency fNVMOP and can be calculated according to the following formula.  
1
1
fbus  
-----------------  
--------  
tswpgm = 9 ⋅  
+ 25 ⋅  
fNVMOP  
3.13.1.2 Burst Programming  
This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst  
programming by keeping the command pipeline filled. The time to program a consecutive word can be  
calculated as:  
1
1
fbus  
-----------------  
--------  
tbwpgm = 4 ⋅  
+ 9 ⋅  
fNVMOP  
The time to program a whole row is:  
tbrpgm = tswpgm + 31 tbwpgm  
Burst programming is more than 2 times faster than single word programming.  
33  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.13.1.3 Sector Erase  
Erasing a 4k byte Flash sector takes:  
1
-----------------  
tera 4000 ⋅  
fNVMOP  
The setup time can be ignored for this operation.  
3.13.1.4 Mass Erase  
Erasing a NVM block takes:  
1
-----------------  
tmass 20000 ⋅  
fNVMOP  
The setup time can be ignored for this operation.  
3.13.1.5 Blank Check  
The time it takes to perform a blank check on the Flash or Data Flash is dependant on the location of the  
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup  
of the command.  
tcheck location tcyc + 10 tcyc  
1
Table 36. NVM Timing Characteristics  
Num C  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Z1 D System Clock/2  
fNVMfsys  
0.5  
1
50 2  
MHz  
MHz  
kHz  
µs  
Z2  
D Bus frequency for Programming or Erase Operations fNVMBUS  
Z3 D Operating Frequency  
fNVMOP  
tswpgm  
tbwpgm  
tbrpgm  
tera  
150  
200  
Z4 P Single Word Programming Time  
Z5 D Flash Burst Programming consecutive word  
Z6 D Flash Burst Programming Time for 32 Words  
Z7 P Sector Erase Time  
46 3  
74.5 4  
31 4  
20.4 3  
678.4 3  
20 5  
µs  
1035.5 4  
26.7 4  
133 4  
32778 7  
2058 7  
µs  
ms  
Z8 P Mass Erase Time  
tmass  
100 5  
ms  
6
Z9 D Blank Check Time Flash per block  
Z10 D Blank Check Time Data Flash per block  
tcheck  
tcheck  
11  
tcyc  
tcyc  
11 6  
1
2
3
4
Conditions are shown in Table 6 unless otherwise noted  
Restrictions for oscillator in crystal mode apply!  
Minimum programming times are achieved under maximum NVM operating frequency f  
and maximum bus frequency f  
.
NVMOP  
bus  
Maximum erase and programming times are achieved under particular combinations of fNVMOP and bus frequency  
fbus. Refer to formulae in Section 3.13.1.1, “Single Word Programming,” through Section 3.13.1.4, “Mass Erase,” for  
more information.  
5
6
7
Minimum erase times are achieved under maximum NVM operating frequency fNVMOP  
Minimum time, if first word in the array is not blank  
Maximum time to complete check on an erased block  
.
34  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Electrical Characteristics Freescale Semiconductor, Inc.  
3.13.2 NVM Reliability  
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process  
monitors and burn-in to screen early life failures. The failure rates for data retention and program/erase  
cycling are specified at the operating conditions noted. The program/erase cycle count on the sector is  
incremented every time a sector or mass erase event is executed.  
Table 37. NVM Reliability Characteristics  
Conditions shown in Table 6 unless otherwise noted.  
Num  
C
Rating  
Min  
Unit  
Z10  
Z11  
C Program/Data Flash Program/Erase endurance (–40C to +125C)  
C Program/Data Flash Data Retention Lifetime  
10,000  
15  
Cycles  
Years  
NOTE  
All values shown in Table 37 are target values and subject to  
characterization.  
For Flash cycling performance, each Program operation must be preceded  
by an erase.  
35  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Device Pin Assignments  
4 Device Pin Assignments  
The MAC7100 Family is available in 208-pin ball grid array (MAP BGA), 144-pin low profile quad flat  
(LQFP), 112-pin LQFP, and 100-pin LQFP package options. The family of devices offer pin-compatible  
packaged devices to assist with system development and accommodate a direct application enhancement  
path. Refer to Table 1 for a comparison of the peripheral sets and package options for each device.  
Most pins perform two or more functions, which is described in more detail in the MAC7100  
Microcontroller Family Reference Manual (MAC7100RM/D). Figure 15, Figure 16, Figure 17, Figure 18,  
and Figure 19 show the pin assignments for the various packages.  
4.1 MAC7141PV Pin Assignments  
CNTX_A / PG4  
CNRX_A / PG5  
CNTX_B / PG6  
CNRX_B / PG7  
PE9 / AN9_A  
PE8 / AN8_A  
PE7 / AN7_A  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PE6 / AN6_A / RDY'  
PE5 / AN5_A / MSEO'  
PE4 / AN4_A / MDO1'  
PE3 / AN3_A / MDO0'  
PE2 / AN2_A / EVTI'  
PE1 / AN1_A / EVTO'  
PE0 / AN0_A / MCKO'  
PA7  
V
V
X
X
SS  
DD  
N/C  
/ PB0  
SDA  
SCL  
SIN_A  
/ PB1  
/ PB2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SOUT_A / PB3  
SCK_A / PB4  
/ PCS0_A / PB5  
PCS1_A / PB6  
PCS2_A / PB7  
PA8  
PA9  
MAC7141  
100 LQFP  
SS_A  
V
V
X
X
DD  
SS  
PCSS_A / PCS5_A / PB8  
eMIOS15 / PF15  
eMIOS14 / PF14  
eMIOS13 / PF13  
eMIOS12 / PF12  
eMIOS11 / PF11  
eMIOS10 / PF10  
eMIOS9 / PF9  
PD4 / IRQ  
PD3 / XIRQ  
CLKOUT  
PB15 / SIN_B  
PB14 / SOUT_B  
PB13 / SCK_B  
PB12 / PCS1_B  
PB11 / PCS2_B  
/ XCLKS  
eMIOS8 / PF8  
eMIOS7 / PF7  
PB10 / PCS5_B / PCSS_B  
PB9 / PCS0_B / SS_B  
Figure 15. Pin Assignments for MAC7141 in 100-pin LQFP  
MAC7100 Microcontroller Family Hardware Specifications  
36  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Device Pin Assignments  
4.2 MAC7121PV Pin Assignments  
CNTX_A / PG4  
CNRX_A / PG5  
CNTX_C / PG8  
CNRX_C / PG9  
CNTX_D / PG10  
CNRX_D / PG11  
CNTX_B / PG6  
CNRX_B / PG7  
PE9 / AN9_A  
PE8 / AN8_A  
PE7 / AN7_A  
PE6 / AN6_A / RDY'  
PE5 / AN5_A / MSEO'  
PE4 / AN4_A / MDO1'  
PE3 / AN3_A / MDO0'  
PE2 / AN2_A / EVTI'  
PE1 / AN1_A / EVTO'  
PE0 / AN0_A / MCKO'  
PA7  
PA8  
PA9  
PA10  
PA11  
PA12  
PD5  
PC15  
1
2
3
4
5
6
7
8
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
V
X
9
SS  
V
X
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DD  
SDA  
/ PB0  
SCL  
SIN_A  
/ PB1  
/ PB2  
SOUT_A / PB3  
SCK_A / PB4  
MAC7121  
112 LQFP  
SS_A  
/ PCS0  
/ PB5  
PCS1_A / PB6  
PCS2_A / PB7  
PCSS_A / PCS5_A / PB8  
V
X
DD  
eMIOS15 / PF15  
eMIOS14 / PF14  
eMIOS13 / PF13  
eMIOS12 / PF12  
eMIOS11 / PF11  
eMIOS10 / PF10  
eMIOS9 / PF9  
eMIOS8 / PF8  
eMIOS7 / PF7  
V
X
SS  
PD4 / IRQ  
PD3 / XIRQ  
CLKOUT  
/ XCLKS  
PB15 / SIN_B  
PB14 / SOUT_B  
PB13 / SCK_B  
PB12 / PCS1_B  
PB11 / PCS2_B  
Figure 16. Pin Assignments for MAC7121 in 112-pin LQFP  
37  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Device Pin Assignments  
4.3 MAC7101PV Pin Assignments  
CNTX_A /PG4  
CNRX_A /PG5  
PH10 / AN10_B  
PE9 / AN9_A  
PH9 / AN9_B  
PE8 / AN8_A  
PH8 / AN8_B  
PE7 / AN7_A  
PH7 / AN7_B  
PE6 / AN6_A / RDY'  
PH6 / AN6_B  
PE5 / AN5_A / MSEO'  
PH5 / AN5_B  
PE4 / AN4_A / MDO1'  
PH4 / AN4_B  
PE3 / AN3_A / MDO0'  
PH3 / AN3_B  
PE2 / AN2_A / EVTI'  
PH2 / AN2_B  
PE1 / AN1_A / EVTO'  
PH1 / AN1_B  
PE0 / AN0_A / MCKO'  
PH0 / AN0_B  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
/
CNTX_C PG8  
/
CNRX_C PG9  
/
CNTX_D PG10  
/
CNRX_D PG11  
/
CNTX_B PG6  
/
CNRX_B PG7  
/PC0  
/PC1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
/
/
PC2  
PC3  
V
DD  
PB0  
X
SS  
V
X
/
/
/
SDA  
SCL  
SIN_A  
PB1  
PB2  
/
SOUT_A PB3  
MAC7101  
144 LQFP  
/
SCK_A  
PB4  
SS_A  
PCS0_A PB5  
/
/
PCS1_A PB6  
/
PCS2_A PB7  
/
V
V
PD15  
X
X
SS  
DD  
PCSS_A PCS5_A PB8  
/
/
eMIOS15 PF15  
/
eMIOS14 PF14  
/
PD14  
PD13  
PD4 / IRQ  
PD3 / XIRQ  
CLKOUT  
eMIOS13 PF13  
/
eMIOS12 PF12  
/
PC4  
/
PC5  
/
/ XCLKS  
PC6  
/
V
X
SS  
PC7  
/
PB15 / SIN_B  
eMIOS11 PF11  
/
PB14 / SOUT_B  
PB13 / SCK_B  
PB12 / PCS1_B  
PB11 / PCS2_B  
eMIOS10 PF10  
/
eMIOS9 PF9  
/
eMIOS8 /PF8  
eMIOS7 /PF7  
PB10 / PCS5_B / PCSS_B  
Figure 17. Pin Assignments for MAC7101 in 144-pin LQFP  
38  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Device Pin Assignments  
4.4 MAC7111PV Pin Assignments  
CNTX_A / PG4  
CNRX_A / PG5  
CNTX_C / PG8  
CNRX_C / PG9  
CNTX_D / PG10  
CNRX_D / PG11  
CNTX_B / PG6  
CNRX_B / PG7  
ADDR0 / PC0  
ADDR1 / PC1  
ADDR2 / PC2  
ADDR3 / PC3  
PE9 / AN9_A  
PE8 / AN8_A  
PE7 / AN7_A  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
PE6 / AN6_A / RDY'  
PE5 / AN5_A / MSEO'  
PE4 / AN4_A / MDO1'  
PE3 / AN3_A / MDO0'  
PE2 / AN2_A / EVTI'  
PE1 / AN1_A / EVTO'  
PE0 / AN0_A / MCKO'  
PA7 / DATA7  
PA8 / DATA8  
PA9 / DATA9  
PA10 / DATA10  
PA11 / DATA11  
PA12 / DATA12  
PD5 / ADDR16  
PC15 / ADDR15  
PC14 / ADDR14  
PC13 / ADDR13  
PC12 / ADDR12  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
V
V
/ PB0  
/ PB1  
X
SS  
DD  
X
SDA  
SCL  
SIN_A / PB2  
SOUT_A / PB3  
SCK_A / PB4  
/ PCS0_A / PB5  
PCS1_A / PB6  
PCS2_A / PB7  
MAC7111  
144 LQFP  
SS_A  
V
V
X
X
DD  
SS  
PCSS_A / PCS5_A / PB8  
eMIOS15/ PF15  
eMIOS14/ PF14  
eMIOS13/ PF13  
eMIOS12/ PF12  
ADDR4 / PC4  
ADDR5 / PC5  
ADDR6 / PC6  
ADDR7 / PC7  
eMIOS11/ PF11  
eMIOS10/ PF10  
eMIOS9 / PF9  
eMIOS8 / PF8  
eMIOS7 / PF7  
PD15 / R/W  
PD14 / CS0  
PD13 / CS1  
PD4 / IRQ  
PD3 / XIRQ  
CLKOUT  
/ XCLKS  
TA  
PB15 / SIN_B  
PB14 / SOUT_B  
PB13 / SCK_B  
PB12 / PCS1_B  
PB11 / PCS2_B  
PB10 / PCS5_B / PCSS_B  
Figure 18. Pin Assignments for MAC7111 in 144-pin LQFP  
39  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Device Pin Assignments  
4.5 MAC7131VF Pin Assignments  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A
B
C
D
E
F
VSS  
X
VSS  
X
PG0 PG14 PA2  
PG2 PG15 PA0  
PA5 TCLK TDI  
PE15 PE14 PH14 PE12 PH11  
VRL  
VRH VDDA  
VSSX VSS  
X
PA4  
PA3  
TMS TDO  
PD9 PH15 PE13 PH12 PE10 PH9 VDD  
A
PH8  
PG5  
PG3 VSS  
X
PG1  
PA1  
PA6 VSS2.5 VDD  
X
PD6 PH13 PE11 VDD  
A
PE8  
PE7  
PH7  
PH6  
PH4  
PH2  
PE0  
PG9  
PG8  
PG4 VSS  
X
X
X
X
VSSX  
VSS2.5 VSS2.5 PD10 PD8  
PD7 VSS  
A
VSS  
A
PH10 PE9  
PE6  
PH5  
PH3  
PE1  
PG6 PG11 PG10 VSS  
PE4  
PE2  
PH0  
PA8  
PE5  
PE3  
PH1  
PA9  
PC0  
PB0  
PB3  
PB5  
PB7  
PG7  
PC2  
PB2  
PB6  
PC1 VSS  
PC3 VSS  
G
H
J
VSS  
VSS  
VSS  
VSS  
X
X
X
X
VSS  
VSS  
VSS  
VSS  
X
X
X
X
VSS  
VSS  
VSS  
VSS  
X
X
X
X
VSS  
VSS  
VSS  
VSS  
X
X
X
X
PB1 VDD  
X
PA7 PA10  
PB4 VSS  
X
X
X
X
X
PD5 PA12 PA11 PC15  
K
L
PB8 PF15 VSS  
PC13 PC12 PC14 VDDX  
PF14 PF13 PC4 VSS  
PD13 PD14 PD15 PD4  
M
N
P
R
T
PF12 PC5  
PC6 VSS  
VSS  
VSS  
X
X
TA  
PD3 CLKOUT  
PF11 PF10 PC7 VSS  
VSSR  
VSSR  
VSS2.5 VSS2.5  
V
PLL VSSPLL VSS  
X
VSS  
X
PB11 PB14 PB15  
SS  
PF9  
PF8 VSS  
X
PF5  
PC8 PC10 VDD  
X
VSS2.5 VDD  
R
VDDX  
PA15 PD11 PD12 VSS  
X
PB12 PB13  
PF7 VSS  
X
PF6  
PF3  
PF2  
PF1  
PC9 PG12 PG13 VSS  
X
VSSX  
TEST PA13 PD1 PB10 VSS  
X
X
VSS  
VSS  
X
X
VSSX  
VSSX  
PF4  
PF0 PC11 RESET VSSPLL XFC EXTAL XTAL PA14 PD0  
PB9 VSS  
Figure 19. Pin Assignments for MAC7131 in 208-pin MAP BGA  
40  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Mechanical Information  
5 Mechanical Information  
5.1 100-Pin LQFP Package  
L
60  
41  
61  
40  
B
B
P
-A-  
-B-  
L
V
B
-A-,-B-,-D-  
DETAIL A  
DETAIL A  
-D-  
21  
80  
F
1
20  
A
M
S
S
0.20  
H A-B  
D
0.05 A-B  
J
N
S
M
S
S
0.20  
C A-B  
D
D
M
E
DETAIL C  
M
S
S
0.20  
C A-B  
D
SECTION B-B  
C
DATUM  
PLANE  
VIEW ROTATED 90  
-H-  
°
-C-  
0.10  
H
SEATING  
PLANE  
M
G
NOTES:  
MILLIMETERS  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
DIM MIN MAX  
A
B
C
D
E
F
13.90 14.10  
13.90 14.10  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE  
LEAD WHERE THE LEAD EXITS THE PLASTIC  
BODY AT THE BOTTOM OF THE PARTING LINE.  
4. DATUMS -A-, -B- AND -D- TO BE  
2.15  
0.22  
2.00  
0.22  
2.45  
0.38  
2.40  
0.33  
U
T
G
H
J
0.65 BSC  
DETERMINED AT DATUM PLANE -H-.  
5. DIMENSIONS S AND V TO BE DETERMINED  
AT SEATING PLANE -C-.  
DATUM  
---  
0.13  
0.65  
0.25  
0.23  
0.95  
-H-  
PLANE  
R
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
K
L
M
N
P
12.35 REF  
10  
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS  
A AND B DO INCLUDE MOLD MISMATCH  
AND ARE DETERMINED AT DATUM PLANE -H-.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION. DAMBAR CANNOT  
BE LOCATED ON THE LOWER RADIUS OR  
THE FOOT.  
5
°
°
0.13  
0.17  
0.325 BSC  
K
Q
R
S
0
7
°
Q
°
W
0.13  
0.30  
16.95 17.45  
X
T
U
V
W
X
0.13  
0
---  
---  
DETAIL C  
°
16.95 17.45  
0.35  
0.45  
1.6 REF  
Figure 20. 100-Pin LQFP Mechanical Dimensions (Case No. 983)  
MAC7100 Microcontroller Family Hardware Specifications  
41  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Mechanical Information  
5.2 112-Pin LQFP Package  
4X  
0.20 T L-M N  
4X 28 TIPS  
0.20 T L-M N  
4X  
P
J1  
J1  
PIN 1  
112  
85  
IDENT  
C
1
84  
L
VIEW Y  
X
108X  
G
X=L, M OR N  
VIEW Y  
V
B
L
M
AA  
J
B1  
V1  
28  
57  
BASE  
F
D
METAL  
29  
56  
M
0.13  
T L-M N  
N
SECTION J1-J1  
A1  
S1  
ROTATED 90 COUNTERCLOCKWISE  
°
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
A
S
2. DIMENSIONS IN MILLIMETERS.  
3. DATUMS L, MAND N TO BE DETERMINEDAT  
SEATING PLANE, DATUM T.  
4. DIMENSIONS S AND V TO BE DETERMINED  
AT  
SEATING PLANE, DATUM T.  
5. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS  
A AND B INCLUDE MOLD MISMATCH.  
6. DIMENSION D DOES NOT INCLUDE  
C2  
VIEW AB  
0.10  
θ2  
C
0.050  
112X  
T
SEATING  
PLANE  
MILLIMETERS  
DIM MIN MAX  
θ3  
A
A1  
B
20.000 BSC  
10.000 BSC  
20.000 BSC  
10.000 BSC  
--- 1.600  
T
B1  
C
C1 0.050 0.150  
C2 1.350 1.450  
θ
D
E
F
G
J
0.270 0.370  
0.450 0.750  
0.270 0.330  
0.650 BSC  
0.090 0.170  
0.500 REF  
R R2  
K
P
0.325 BSC  
R1 0.100 0.200  
R2 0.100 0.200  
0.25  
R R1  
S
S1  
V
22.000 BSC  
11.000 BSC  
22.000 BSC  
11.000 BSC  
0.250 REF  
1.000 REF  
GAGE PLANE  
V1  
Y
Z
(K)  
C1  
θ1  
AA 0.090 0.160  
E
8 °  
7 °  
13 °  
13 °  
0 °  
3 °  
11 °  
11 °  
θ
θ1  
θ2  
θ3  
(Y)  
(Z)  
VIEW AB  
Figure 21. 112-Pin LQFP Mechanical Dimensions (Case No. 987)  
42  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Mechanical Information  
5.3 144-Pin LQFP Package  
0.20 T L-M N  
0.20 T L-M N  
4X  
4X 36 TIPS  
PIN 1  
144  
109  
IDENT  
1
108  
4X  
P
J1  
J1  
L
M
C
L
V
B
X
X=L, M OR N  
140X  
G
B1  
V1  
VIEW Y  
VIEW Y  
36  
73  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS IN MILLIMETERS.  
37  
72  
N
3. DATUMS L, M, N TO BE DETERMINED AT THE  
SEATING PLANE, DATUM T.  
A1  
S1  
4. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE, DATUM T.  
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
A
S
0.25 PER SIDE. DIMENSIONS  
A
AND  
B
DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE H.  
6. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION.  
ALLWABLE  
DAMBAR  
PROTRUSION SHALL NOT CAUSE THE  
DIMENSION TO EXCEED 0.35.  
D
VIEW AB  
C
144X  
MILLIMETERS  
0.1 T  
θ2  
θ2  
DIM MIN MAX  
A
A1  
B
20.00 BSC  
10.00 BSC  
20.00 BSC  
10.00 BSC  
SEATING  
PLANE  
B1  
C
1.40  
0.05  
1.35  
0.17  
0.45  
0.17  
1.60  
T
C1  
C2  
D
0.15  
1.45  
0.27  
0.75  
0.23  
E
PLATING  
F
G
0.50 BSC  
J
C2  
AA  
F
J
0.09  
0.20  
0.05  
K
0.50 REF  
P
0.25 BSC  
R2  
R1  
R2  
S
0.13  
0.13  
0.20  
0.20  
θ
R1  
22.00 BSC  
11.00 BSC  
22.00 BSC  
11.00 BSC  
0.25 REF  
1.00 REF  
S1  
V
BASE  
0.25  
V1  
Y
D
METAL  
GAGE PLANE  
Z
M
0.08  
T L-M N  
AA  
θ
0.09  
0.16  
0
0
°
°
°
SECTION J1-J1  
(K)  
E
θ1  
θ2  
7
°
°
(ROTATED 90  
144 PL  
)
°
11  
13  
C1  
θ 1  
(Y)  
VIEW AB  
(Z)  
Figure 22. 144-Pin LQFP Mechanical Dimensions (Case No. 918)  
43  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Mechanical Information  
5.4 208-Pin MAP BGA Package  
IDENTIFICATION IN THIS AREA  
LASER MARK FOR PIN A1  
M
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
K
2. INTERPRET DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994.  
3. DIMENSION b IS MEASURED AT THE MAXIMUM  
SOLDER BALL DIAMETER, PARALLEL TO DATUM  
PLANE Z.  
4. DATUM Z (SEATING PLANE) IS DEFINED BY THE  
SPHERICAL CROWNS OF THE SOLDER BALLS.  
5. PARALLELISM MEASEMENT SHALL EXCLUDE ANY  
EFFECT OF MARK ON TOP SURFACE OF PACKAGE.  
E
MILLIMETERS  
DIM  
A
A1  
A2  
b
MIN  
---  
0.40  
1.00  
0.50  
MAX  
2.00  
0.60  
1.30  
0.70  
M
X
D
X
4X  
0.2  
D
17.00 BSC  
E
e
S
17.00 BSC  
1.00 BSC  
0.50 BSC  
15X  
e
METALIZED MARK FOR PIN A1  
IDENTIFICATION IN THIS AREA  
S
3
208X  
b
A
B
C
D
E
F
M
M
0.3  
0.1  
X
Z
Y
Z
5
0.2  
Z
G
H
J
A2  
A
15X  
e
K
L
M
N
P
R
T
A1  
208X  
Z
0.2  
S
4
Z
16 15 14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
VIEW K  
(ROTATED 90˚ CLOCKWISE)  
VIEW M M  
Figure 23. 208-Pin MAP BGA Mechanical Dimensions (Case No. 1159A-01)  
44  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Mechanical Information  
THIS PAGE INTENTIONALLY LEFT BLANK  
45  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
HOW TO REACH US:  
USA / EUROPE / Locations Not Listed:  
Motorola Literature Distribution  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
JAPAN:  
Motorola Japan Ltd.  
SPS, Technical Information Center  
3-20-1, Minami-Azabu Minato-ku  
Tokyo, 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.  
Silicon Harbour Centre  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
HOME PAGE:  
http://motorola.com/semiconductors  
Information in this document is provided solely to enable system and software implementers to  
use Motorola products. There are no express or implied copyright licenses granted hereunder to  
design or fabricate any integrated circuits or integrated circuits based on the information in this  
document.  
Motorola reserves the right to make changes without further notice to any products herein.  
Motorola makes no warranty, representation or guarantee regarding the suitability of its products  
for any particular purpose, nor does Motorola assume any liability arising out of the application  
or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be provided in  
Motorola data sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. Motorola does not  
convey any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other  
application in which the failure of the Motorola product could create a situation where personal  
injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,  
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,  
and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that Motorola was negligent regarding the design or manufacture of the part.  
MOTOROLA and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.  
All other product or service names are the property of their respective owners. Motorola, Inc. is  
an Equal Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2003  
MAC7100EC/D, Rev. 0.1,  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
HOW TO REACH US:  
USA / EUROPE / Locations Not Listed:  
Motorola Literature Distribution  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
JAPAN:  
Motorola Japan Ltd.  
SPS, Technical Information Center  
3-20-1, Minami-Azabu Minato-ku  
Tokyo, 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.  
Silicon Harbour Centre  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
HOME PAGE:  
http://motorola.com/semiconductors  
Information in this document is provided solely to enable system and software implementers to  
use Motorola products. There are no express or implied copyright licenses granted hereunder to  
design or fabricate any integrated circuits or integrated circuits based on the information in this  
document.  
Motorola reserves the right to make changes without further notice to any products herein.  
Motorola makes no warranty, representation or guarantee regarding the suitability of its products  
for any particular purpose, nor does Motorola assume any liability arising out of the application  
or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be provided in  
Motorola data sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. Motorola does not  
convey any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other  
application in which the failure of the Motorola product could create a situation where personal  
injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,  
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,  
and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that Motorola was negligent regarding the design or manufacture of the part.  
MOTOROLA and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.  
All other product or service names are the property of their respective owners. Motorola, Inc. is  
an Equal Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2003  
MAC7100EC/D, Rev. 0.1,  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Mechanical Information  
48  
MAC7100 Microcontroller Family Hardware Specifications  
MOTOROLA  
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MAC7100D

MAC7100 Microcontroller Family Hardware Specifications
MOTOROLA

MAC7100EC

MAC7100 Microcontroller Family Hardware Specifications
MOTOROLA

MAC7100MFU

MAC7100 Microcontroller Family Hardware Specifications
MOTOROLA

MAC7100MPV

MAC7100 Microcontroller Family Hardware Specifications
MOTOROLA

MAC7100MVF

MAC7100 Microcontroller Family Hardware Specifications
MOTOROLA

MAC7100VFU

MAC7100 Microcontroller Family Hardware Specifications
MOTOROLA

MAC7100VPV

MAC7100 Microcontroller Family Hardware Specifications
MOTOROLA

MAC7100VVF

MAC7100 Microcontroller Family Hardware Specifications
MOTOROLA

MAC7100_04

Microcontroller Family Reference Manual
FREESCALE

MAC7100_0410

Microcontroller Family Reference Manual
FREESCALE

MAC7101

MAC7100 Microcontroller Family Hardware Specifications
MOTOROLA

MAC7101

Microcontroller Family Hardware Specifications
FREESCALE