MC10H642FN [MOTOROLA]

68030/040 PECL-TTL CLOCK DRIVER; 68030/040 PECL -TTL时钟驱动器
MC10H642FN
型号: MC10H642FN
厂家: MOTOROLA    MOTOROLA
描述:

68030/040 PECL-TTL CLOCK DRIVER
68030/040 PECL -TTL时钟驱动器

时钟驱动器
文件: 总9页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
The MC10H/100H642 generates the necessary clocks for the 68030,  
68040 and similar microprocessors. It is guaranteed to meet the clock  
specifications required by the 68030 and 68040 in terms of part–to–part  
skew, within–part skew and also duty cycle skew.  
The user has a choice of using either TTL or PECL (ECL referenced to  
+5.0V) for the input clock. TTL clocks are typically used in present MPU  
systems. However, as clock speeds increase to 50MHz and beyond, the  
inherent superiority of ECL (particularly differential ECL) as a means of  
clock signal distribution becomes increasingly evident. The H642 also  
uses differential PECL internally to achieve its superior skew  
characteristic.  
68030/040  
PECL–TTL CLOCK  
DRIVER  
The H642 includes divide–by–two and divide–by–four stages, both to  
achieve the necessary duty cycle skew and to generate MPU clocks as  
required. A typical 50MHz processor application would use an input clock  
running at 100MHz, thus obtaining output clocks at 50MHz and 25MHz  
(see Logic Diagram).  
The 10H version is compatible with MECL 10H ECL logic levels,  
while the 100H version is compatible with 100K levels (referenced to  
+5.0V).  
11  
26  
4
5
Generates Clocks for 68030/040  
Meets 030/040 Skew Requirements  
TTL or PECL Input Clock  
FN SUFFIX  
PLASTIC PACKAGE  
CASE 776–02  
Extra TTL and PECL Power/Ground Pins  
Asynchronous Reset  
Single +5.0V Supply  
Function  
Reset(R):  
LOW on RESET forces all Q outputs LOW.  
Select(SEL): LOW selects the ECL input source (DE/DE).  
HIGH selects the TTL input source (DT).  
The H642 also contains circuitry to force a stable input state of the ECL differential input pair, should both sides be left open. In  
this Case, the DE side of the input is pulled LOW, and DE goes HIGH.  
Power Up:  
The device is designed to have positive edges of the ÷2 and ÷4 outputs synchronized at Power Up.  
VT  
25  
VT  
24  
Q1  
23  
GT  
22  
GT  
21  
Q0  
20  
VT  
19  
18  
17  
16  
15  
Q2  
GT  
GT  
Q3  
VT  
VT  
Q4  
26  
27  
28  
V
BB  
DE  
DE  
VE  
Pinout: 28–Lead PLCC  
1
2
(Top View)  
14  
13  
12  
R
3
4
GE  
DT  
5
6
7
8
9
10  
11  
Q5  
GT  
GT  
Q6  
Q7  
VT  
SEL  
9/96  
Motorola, Inc. 1996  
REV 4  
MC10H642 MC100H642  
LOGIC DIAGRAM  
TTL Outputs  
Q7  
Q6  
Q5  
TTL/ECL Clock Inputs  
V
BB  
DE  
Q4  
Q3  
÷4  
DE  
DT  
MUX  
SEL  
Q2  
TTL Control Inputs  
Q1  
Q0  
÷2  
R
PIN NAMES  
Pin  
Symbol  
Description  
Pin  
Symbol  
Description  
ECL V (+5.0V)  
ECL Signal Input (Non–Inverting)  
ECL Signal Input (Inverting)  
81  
82  
83  
84  
85  
86  
87  
88  
89  
10  
11  
12  
13  
14  
Q3  
VT  
VT  
Q4  
Q5  
GT  
GT  
Q6  
Q7  
VT  
SEL  
DT  
GE  
R
Signal Output (TTL)**  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VE  
DE  
DE  
CC  
TTL V  
TTL V  
(+5.0V)  
(+5.0V)  
CC  
CC  
Signal Output (TTL)**  
Signal Output (TTL)**  
TTL Ground (0V)  
V
BB  
V
Reference Output  
BB  
TTL V  
VT  
Q0  
GT  
GT  
Q1  
VT  
VT  
Q2  
GT  
GT  
(+5.0V)  
CC  
Signal Output (TTL)*  
TTL Ground (0V)  
TTL Ground (0V)  
Signal Output (TTL)**  
Signal Output (TTL)**  
TTL Ground (0V)  
Signal Output (TTL)*  
TTL V  
(+5.0V)  
TTL V  
TTL V  
(+5.0V)  
(+5.0V)  
CC  
CC  
CC  
Input Select (TTL)  
TTL Signal Input  
ECL Ground (0V)  
Reset (TTL)  
Signal Output (TTL)**  
TTL Ground (0V)  
TTL Ground (0V)  
**Divide by 2  
**Divide by 4  
MOTOROLA  
2–2  
MC10H642 MC100H642  
AC CHARACTERISTICS (VT = VE = 5.0V ±5%)  
T
A
= 0°C  
T
A
= 25°C  
T = 85°C  
A
Symbol  
Characteristic  
Propagation Delay  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Condition  
CL = 25pF  
t
Q2–Q7  
C ECL  
C TTL  
ns  
PLH  
D to Output  
4.70  
4.70  
5.70  
5.70  
4.75  
4.75  
5.75  
5.75  
4.60  
4.50  
5.60  
5.50  
tskpp  
Part–to–Part Skew  
Within–Device Skew  
1.0  
0.5  
1.0  
0.5  
1.0  
0.5  
ns  
ns  
ns  
tskwd*  
t
Propagation Delay  
D to Output  
Q0, Q1  
C ECL  
C TTL  
CL = 25pF  
CL = 25pF  
PLH  
4.30  
4.30  
5.30  
5.30  
4.50  
4.50  
5.50  
5.50  
4.25  
4.25  
5.25  
5.25  
tskpp  
tskwd  
Part–to–Part Skew  
All  
Outputs  
2.0  
2.0  
2.0  
ns  
Within–Device Skew  
1.0  
6.3  
1.0  
6.0  
1.0  
6.5  
ns  
ns  
CL = 25pF  
CL = 25pF  
t
Propagation Delay  
R to Output  
All  
Outputs  
4.3  
4.0  
4.5  
PD  
t
t
Output Rise/Fall Time  
0.8 V to 2.0 V  
All  
Outputs  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
ns  
CL = 25pF  
CL = 25pF  
R
F
f
**  
Maximum Input Frequency  
Reset Pulse Width  
100  
1.5  
100  
1.5  
100  
1.5  
MHz  
ns  
MAX  
RPW  
RRT  
Reset Recovery Time  
1.25  
1.25  
1.25  
ns  
* Within–Device Skew defined as identical transactions on similar paths through a device.  
** NOTE: MAX Frequency is 135MHz.  
10H PECL CHARACTERISTICS (VT = VE = 5.0V ±5%)  
T
A
= 0°C  
T
A
= 25°C  
T = 85°C  
A
Symbol  
Characteristic  
Input HIGH Current  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Condition  
I
IH  
I
IL  
225  
175  
175  
µA  
Input LOW Current  
0.5  
0.5  
0.5  
* NOTE  
V
V
Input HIGH Voltage  
Input LOW Voltage  
3.83  
3.05  
4.16  
3.52  
3.87  
3.05  
4.19  
3.52  
3.94  
3.05  
4.28  
3.555  
V
V
V = 5.0V  
EE  
IH  
IL  
* NOTE  
V
BB  
Output Reference Voltage  
3.62  
3.73  
3.65  
3.75  
3.69  
3.81  
100H PECL CHARACTERISTICS (VT = VE = 5.0V ±5%)  
T
A
= 0°C  
T
A
= 25°C  
T = 85°C  
A
Symbol  
Characteristic  
Input HIGH Current  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Condition  
I
IH  
I
IL  
225  
175  
175  
µA  
Input LOW Current  
0.5  
0.5  
0.5  
* NOTE  
V
IH  
V
IL  
Input HIGH Voltage  
Input LOW Voltage  
3.835  
3.190  
4.120  
3.525  
3.835  
3.190  
4.120  
3.525  
3.835  
3.190  
4.120  
3.525  
V
V = 5.0V  
EE  
* NOTE  
V
BB  
Output Reference Voltage  
3.620  
3.740  
3.620  
3.740  
3.620  
3.740  
V
*NOTE: PECL LEVELS are referenced to V  
and will vary 1:1 with the power supply. The VALUES shown are for V  
= 5.0V.  
CC  
CC  
2–3  
MOTOROLA  
MC10H642 MC100H642  
10H/100H DC CHARACTERISTICS (VT = VE = 5.0V ±5%)  
T
A
= 0°C  
T
A
= 25°C  
T = 85°C  
A
Symbol  
Characteristic  
Power Supply Current  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
mA  
mA  
mA  
Condition  
VE Pin  
I
I
I
PECL  
TTL  
57  
30  
30  
57  
30  
30  
57  
30  
30  
EE  
Total All VT Pins  
CCH  
CCL  
10H/100H TTL DC CHARACTERISTICS (VT = VE = 5.0V ±5%)  
T
A
= 0°C  
T
A
= 25°C  
T = 85°C  
A
Symbol  
Characteristic  
Input HIGH Voltage  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Condition  
V
IH  
V
IL  
2.0  
2.0  
2.0  
V
Input LOW Voltage  
0.8  
0.8  
0.8  
I
IH  
Input HIGH Current  
20  
100  
20  
100  
20  
100  
µA  
V
IN  
V
IN  
= 2.7V  
= 7.0V  
I
Input LOW Current  
–0.6  
–0.6  
–0.6  
mA  
V
V
= 0.5V  
IL  
IN  
V
Output HIGH Voltage  
2.5  
2.0  
2.5  
2.0  
2.5  
2.0  
I
I
= –3.0mA  
= –15mA  
OH  
OH  
OH  
V
V
Output LOW Voltage  
0.5  
0.5  
0.5  
V
V
I
= 24mA  
OL  
OL  
Input Clamp Voltage  
–1.2  
–225  
–1.2  
–225  
–1.2  
–225  
I = –18mA  
IN  
IK  
I
Output Short Circuit Current  
–100  
–100  
–100  
mA  
V
= 0V  
OS  
OUT  
10/100H642  
DUTY CYCLE CONTROL  
To maintain a duty cycle of ±5% at 50 MHz, limit the load capacitance and/or power supply variation as shown in Figures 1 and 2.  
Fora±2.5%dutycyclelimit, seeFigures3and4. Figures5and6showdutycyclevariationwithtemperature. Figure7showstypical  
TPD versus load. Figure 8 shows reset recovery time. Figure 9 shows output states after power up.  
Best duty cycle control is obtained with a single µP load and minimum line length.  
MOTOROLA  
2–4  
MC10H642 MC100H642  
11  
10  
9
11  
10  
9
4.75  
5.00  
5.25  
4.75  
5.00  
5.25  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 1. MC10H642 Positive PW versus Load  
Figure 2. MC10H642 Negative PW versus  
Load  
@ ±5% V , T = 25°C  
CC  
A
@ ±5% V , T = 25°C  
CC  
A
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
10.6  
10.4  
10.2  
10.0  
9.8  
4.875  
5.00  
4.875  
5.00  
5.125  
5.125  
9.6  
9.6  
9.4  
9.4  
9.2  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 4. MC10H642 Negative PW versus Load  
Figure 3. MC10H642 Positive PW versus Load  
@ ±2.5% V , T = 25°C  
@ ±2.5% V , T = 25°C  
CC  
A
CC  
A
10.5  
10.3  
10.1  
9.9  
10.4  
10.2  
10.0  
9.8  
0 pF  
0 pF  
25 pF  
50 pF  
25 pF  
50 pF  
9.7  
9.6  
9.5  
9.4  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
TEMPERATURE (  
°C)  
TEMPERATURE (°C)  
Figure 5. MC10H642 Positive PW versus Temperature,  
= 5.0V  
Figure 6. MC10H642 Negative PW versus  
Temperature, V = 5.0V  
V
CC  
CC  
2–5  
MOTOROLA  
MC10H642 MC100H642  
6.2  
6.0  
5.8  
5.6  
5.4  
5.2  
4.75  
5.00  
5.25  
0
10  
20  
30  
40  
50  
60  
CAPACITIVE (pF)  
Figure 7. MC10H642 + Tpd versus Load, V  
(Overshoot at 50 MHz with no load makes graph non linear)  
±5%, T = 25°C  
A
CC  
DT  
RESET, R  
R
t
rec  
R
t
pw  
Q0  
Q2  
Q1  
Q7  
MC10/100H642  
Figure 8. Clock Phase and Reset Recovery Time After Reset Pulse  
MC10/100H642  
D
in  
Q0.Q1  
Q4 & Q5  
Q2  
Q7  
After Power Up  
Figure 9. Outputs Q2  
Q7 will Synchronize with Pos Edges of D & Q0  
in  
Q1  
MOTOROLA  
2–6  
MC10H642 MC100H642  
SWITCHING CIRCUIT AND WAVEFORMS  
Switching Circuit PECL:  
PECL  
V
EE  
V
& V  
CCO  
CC  
TTL  
USE 0.1  
µF CAPACITORS  
FOR DECOUPLING.  
+7 V  
OPEN  
50  
COAX  
DEVICE  
UNDER  
TEST  
IN  
OUT  
ALL  
OTHERS  
PULSE  
GENERATOR  
450  
t
, t  
PZL PLZ  
R1  
OC  
500  
DEVICE  
UNDER  
TEST  
R2  
50 pF  
500  
CH A  
CH B  
USE OSCILLOSCOPE  
INTERNAL 50 LOAD  
FOR TERMINATION.  
OSCILLOSCOPE  
WAVEFORMS: Rise and Fall Times  
PECL/TTL  
Propagation Delay — Single Ended  
PECL/TTL  
50%/1.5 V  
V
in  
80%/2.0 V  
20%/0.8 V  
V
out  
T
T
pd––  
pd++  
50%/1.5 V  
T
T
fall  
rise  
V
out  
2–7  
MOTOROLA  
MC10H642 MC100H642  
OUTLINE DIMENSIONS  
FN SUFFIX  
PLASTIC PLCC PACKAGE  
CASE 776–02  
ISSUE D  
M
S
S
0.007 (0.180)  
T
L–M  
N
B
Y BRK  
D
–N–  
M
S
S
0.007 (0.180)  
T
L–M  
N
U
Z
–M–  
–L–  
W
D
S
S
S
0.010 (0.250)  
T
L–M  
N
X
G1  
V
28  
1
VIEW D–D  
M
S
S
S
A
0.007 (0.180)  
0.007 (0.180)  
T
L–M  
L–M  
N
M
S
S
0.007 (0.180)  
T
L–M  
N
H
Z
M
S
T
N
R
K1  
C
E
0.004 (0.100)  
SEATING  
PLANE  
G
K
–T–  
VIEW S  
J
M
S
S
0.007 (0.180)  
T
L–M  
N
F
G1  
S
S
S
0.010 (0.250)  
T
L–M  
N
VIEW S  
NOTES:  
INCHES  
MILLIMETERS  
1. DATUMS –L–, –M–, AND –N– DETERMINED  
WHERE TOP OF LEAD SHOULDER EXITS  
PLASTIC BODY AT MOLD PARTING LINE.  
2. DIMENSION G1, TRUE POSITION TO BE  
MEASURED AT DATUM –T–, SEATING PLANE.  
3. DIMENSIONS R AND U DO NOT INCLUDE  
MOLD FLASH. ALLOWABLE MOLD FLASH IS  
0.010 (0.250) PER SIDE.  
DIM  
A
B
C
E
F
G
H
J
K
R
U
V
W
X
Y
Z
G1  
K1  
MIN  
MAX  
0.495  
0.495  
0.180  
0.110  
0.019  
MIN  
12.32  
12.32  
4.20  
MAX  
12.57  
12.57  
4.57  
0.485  
0.485  
0.165  
0.090  
0.013  
2.29  
2.79  
0.33  
0.48  
0.050 BSC  
1.27 BSC  
4. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
0.026  
0.020  
0.025  
0.450  
0.450  
0.042  
0.042  
0.042  
–––  
0.032  
–––  
–––  
0.456  
0.456  
0.048  
0.048  
0.056  
0.020  
10  
0.66  
0.51  
0.64  
11.43  
11.43  
1.07  
1.07  
1.07  
–––  
0.81  
–––  
–––  
11.58  
11.58  
1.21  
1.21  
1.42  
0.50  
10  
5. CONTROLLING DIMENSION: INCH.  
6. THE PACKAGE TOP MAY BE SMALLER THAN  
THE PACKAGE BOTTOM BY UP TO 0.012  
(0.300). DIMENSIONS R AND U ARE  
DETERMINED AT THE OUTERMOST  
EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, TIE BAR  
BURRS, GATE BURRS AND INTERLEAD  
FLASH, BUT INCLUDING ANY MISMATCH  
BETWEEN THE TOP AND BOTTOM OF THE  
PLASTIC BODY.  
2
2
0.410  
0.040  
0.430  
–––  
10.42  
1.02  
10.92  
–––  
7. DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE GREATER THAN 0.037  
(0.940). THE DAMBAR INTRUSION(S) SHALL  
NOT CAUSE THE H DIMENSION TO BE  
SMALLER THAN 0.025 (0.635).  
MOTOROLA  
2–8  
MC10H642 MC100H642  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC10H642/D  

相关型号:

MC10H642FNG

68030/040 PECL to TTL Clock Driver
ONSEMI

MC10H642FNR2

68030/040 PECL to TTL Clock Driver
ONSEMI

MC10H642FNR2G

68030/040 PECL to TTL Clock Driver
ONSEMI

MC10H642_06

68030/040 PECL to TTL Clock Driver
ONSEMI

MC10H643

DUAL SUPPLY ECL-TTL 1:8 CLOCK DRIVER
ONSEMI

MC10H643FN

DUAL SUPPLY ECL-TTL 1:8 CLOCK DRIVER
MOTOROLA

MC10H643FN

Dual Supply ECL to TTL 1:8 Clock Driver
ONSEMI

MC10H643FN

10H SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLATIC, LCC-28
ROCHESTER

MC10H643FNG

Dual Supply ECL to TTL 1:8 Clock Driver
ONSEMI

MC10H643FNG

10H SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, LEAD FREE, PLATIC, LCC-28
ROCHESTER

MC10H643FNR2

Dual Supply ECL to TTL 1:8 Clock Driver
ONSEMI

MC10H643FNR2

10H SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC28, PLATIC, LCC-28
ROCHESTER