MC14536 [MOTOROLA]

Programmable Timer; 可编程定时器
MC14536
型号: MC14536
厂家: MOTOROLA    MOTOROLA
描述:

Programmable Timer
可编程定时器

文件: 总13页 (文件大小:333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
L SUFFIX  
CERAMIC  
CASE 620  
The MC14536B programmable timer is a 24–stage binary ripple counter  
with 16 stages selectable by a binary code. Provisions for an on–chip RC  
oscillator or an external clock are provided. An on–chip monostable circuit  
incorporating a pulse–type output has been included. By selecting the  
appropriate counter stage in conjunction with the appropriate input clock  
frequency, a variety of timing can be achieved.  
P SUFFIX  
PLASTIC  
CASE 648  
0
24  
24 Flip–Flop Stages — Will Count From 2 to 2  
Last 16 Stages Selectable By Four–Bit Select Code  
8–Bypass Input Allows Bypassing of First Eight Stages  
Set and Reset Inputs  
DW SUFFIX  
SOIC  
CASE 751G  
Clock Inhibit and Oscillator Inhibit Inputs  
On–Chip RC Oscillator Provisions  
On–Chip Monostable Output Provisions  
ORDERING INFORMATION  
Clock Conditioning Circuit Permits Operation With Very Long Rise and  
Fall Times  
MC14XXXBCP  
MC14XXXBCL  
MC14XXXBDW  
Plastic  
Ceramic  
SOIC  
Test Mode Allows Fast Test Sequence  
Supply Voltage Range = 3.0 Vdc to 18 Vdc  
Capable of Driving Two Low–power TTL Loads or One Low–power  
Schottky TTL Load Over the Rated Temperature Range  
T
A
= – 55° to 125°C for all packages.  
MAXIMUM RATINGS* (Voltages Referenced to V  
)
SS  
Symbol  
Parameter  
DC Supply Voltage  
Value  
Unit  
V
V
– 0.5 to + 18.0  
DD  
V , V  
Input or Output Voltage (DC or Transient)  
– 0.5 to V  
DD  
+ 0.5  
V
in out  
I , I  
Input or Output Current (DC or Transient),  
per Pin  
± 10  
mA  
in out  
P
Power Dissipation, per Package†  
Storage Temperature  
500  
mW  
C
D
T
stg  
– 65 to + 150  
260  
T
Lead Temperature (8–Second Soldering)  
C
L
* Maximum Ratings are those values beyond which damage to the device may occur.  
Temperature Derating:  
Plastic “P and D/DW” Packages: – 7.0 mW/ C From 65 C To 125 C  
Ceramic “L” Packages: – 12 mW/ C From 100 C To 125 C  
BLOCK DIAGRAM  
CLOCK INH.  
7
RESET SET 8 BYPASS  
2
1
6
OSC. INHIBIT 14  
STAGES 9 THRU 24  
STAGES  
1 THRU 8  
IN  
1
Q
9
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
3
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
4
OUT  
5
A
B
C
9
10  
11  
OUT  
2
1
DECODER  
D
12  
V
V
= PIN 16  
= PIN 8  
DD  
SS  
DECODE  
OUT  
MONOSTABLE  
MULTIVIBRATOR  
MONO–IN 15  
13  
REV 3  
1/94  
Motorola, Inc. 1995  
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V  
)
SS  
– 55 C  
25 C  
Typ #  
125 C  
V
Vdc  
DD  
Characteristic  
Output Voltage  
Symbol  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
“0” Level  
“1” Level  
“0” Level  
V
OL  
5.0  
10  
15  
0.05  
0.05  
0.05  
0
0
0
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
Vdc  
V
in  
= V  
DD  
or 0  
V
OH  
5.0  
10  
15  
4.95  
9.95  
14.95  
4.95  
9.95  
14.95  
5.0  
10  
15  
4.95  
9.95  
14.95  
Vdc  
Vdc  
V
in  
= 0 or V  
DD  
Input Voltage  
(V = 4.5 or 0.5 Vdc)  
V
IL  
5.0  
10  
15  
1.5  
3.0  
4.0  
2.25  
4.50  
6.75  
1.5  
3.0  
4.0  
1.5  
3.0  
4.0  
O
(V = 9.0 or 1.0 Vdc)  
O
(V = 13.5 or 1.5 Vdc)  
O
“1” Level  
V
IH  
Vdc  
(V = 0.5 or 4.5 Vdc)  
5.0  
10  
15  
3.5  
7.0  
11  
3.5  
7.0  
11  
2.75  
5.50  
8.25  
3.5  
7.0  
11  
O
(V = 1.0 or 9.0 Vdc)  
O
(V = 1.5 or 13.5 Vdc)  
O
Output Drive Current  
I
mAdc  
OH  
(V  
OH  
(V  
OH  
(V  
OH  
(V  
OH  
= 2.5 Vdc)  
= 4.6 Vdc)  
= 9.5 Vdc)  
= 13.5 Vdc)  
Source  
Pins 4 & 5  
5.0  
5.0  
10  
– 1.2  
– 0.25  
– 0.62  
– 1.8  
– 1.0  
– 0.25  
– 0.5  
– 1.5  
– 1.7  
– 0.36  
– 0.9  
– 3.5  
– 0.7  
– 0.14  
– 0.35  
– 1.1  
15  
(V  
(V  
(V  
(V  
= 2.5 Vdc)  
= 4.6 Vdc)  
= 9.5 Vdc)  
= 13.5 Vdc)  
Source  
Pin 13  
5.0  
5.0  
10  
– 3.0  
– 0.64  
– 1.6  
– 4.2  
– 2.4  
– 0.51  
– 1.3  
– 4.2  
– 0.88  
– 2.25  
– 8.8  
– 1.7  
– 0.36  
– 0.9  
– 2.4  
mAdc  
mAdc  
OH  
OH  
OH  
OH  
15  
– 3.4  
(V  
OL  
(V  
OL  
(V  
OL  
= 0.4 Vdc)  
= 0.5 Vdc)  
= 1.5 Vdc)  
Sink  
I
5.0  
10  
15  
0.64  
1.6  
4.2  
0.51  
1.3  
3.4  
0.88  
2.25  
8.8  
0.36  
0.9  
2.4  
OL  
Input Current  
I
15  
±0.1  
±0.00001  
±0.1  
±1.0  
µAdc  
in  
Input Capacitance  
C
5.0  
7.5  
pF  
in  
(V = 0)  
in  
Quiescent Current  
(Per Package)  
I
5.0  
10  
15  
5.0  
10  
20  
0.010  
0.020  
0.030  
5.0  
10  
20  
150  
300  
600  
µAdc  
µAdc  
DD  
Total Supply Current**†  
I
T
5.0  
10  
15  
I
I
I
= (1.50 µA/kHz) f + I  
= (2.30 µA/kHz) f + I  
= (3.55 µA/kHz) f + I  
T
T
T
DD  
DD  
DD  
(Dynamic plus Quiescent,  
Per Package)  
(C = 50 pF on all outputs, all  
L
buffers switching)  
#Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
**The formulas given are for the typical characteristics only at 25 C.  
To calculate total supply current at loads other than 50 pF:  
I (C ) = I (50 pF) + (C – 50) Vfk  
T
L
T
L
where: I is in µA (per package), C in pF, V = (V  
– V ) in volts, f in kHz is input frequency, and k = 0.003.  
SS  
T
L
DD  
MC14536B  
2
MOTOROLA CMOS LOGIC DATA  
SWITCHING CHARACTERISTICS* (C = 50 pF, T = 25 C)  
L
A
Characteristic  
Symbol  
V
DD  
Min  
Typ #  
Max  
Unit  
Output Rise and Fall Time (Pin 13)  
t
t
,
ns  
TLH  
t
t
t
, t  
= (1.5 ns/pF) C + 25 ns  
5.0  
10  
15  
100  
50  
40  
200  
100  
80  
TLH THL  
L
THL  
, t  
= (0.75 ns/pF) C + 12.5 ns  
L
TLH THL  
, t  
TLH THL  
= (0.55 ns/pF) C + 9.5 ns  
L
Propagation Delay Time  
Clock to Q1, 8–Bypass (Pin 6) High  
t
,
ns  
PLH  
t
PHL  
t
t
t
, t  
= (1.7 ns/pF) C + 1715 ns  
= (0.66 ns/pF) C + 617 ns  
L
= (0.5 ns/pF) C + 425 ns  
5.0  
10  
15  
1800  
650  
450  
3600  
1300  
1000  
PLH PHL  
L
, t  
PLH PHL  
, t  
PLH PHL  
L
Clock to Q1, 8–Bypass (Pin 6) Low  
t
t
,
µs  
µs  
ns  
PLH  
t
t
t
, t  
= (1.7 ns/pF) C + 3715 ns  
5.0  
10  
15  
3.8  
1.5  
1.1  
7.6  
3.0  
2.3  
PLH PHL  
L
PHL  
, t  
= (0.66 ns/pF) C + 1467 ns  
PLH PHL  
L
, t  
PLH PHL  
= (0.5 ns/pF) C + 1075 ns  
L
Clock to Q16  
t
t
,
PLH  
t
t
t
, t  
= (1.7 ns/pF) C + 6915 ns  
5.0  
10  
15  
7.0  
3.0  
2.2  
14  
6.0  
4.5  
PHL PLH  
L
PHL  
, t  
= (0.66 ns/pF) C + 2967 ns  
PHL PLH  
L
, t  
PHL PLH  
= (0.5 ns/pF) C + 2175 ns  
L
Reset to Q  
t
n
PHL  
t
t
t
= (1.7 ns/pF) C + 1415 ns  
5.0  
10  
15  
1500  
600  
450  
3000  
1200  
900  
PHL  
PHL  
PHL  
L
= (0.66 ns/pF) C + 567 ns  
L
= (0.5 ns/pF) C + 425 ns  
L
Clock Pulse Width  
t
5.0  
10  
15  
600  
200  
170  
300  
100  
85  
ns  
MHz  
WH  
Clock Pulse Frequency  
(50% Duty Cycle)  
f
cl  
5.0  
10  
15  
1.2  
3.0  
5.0  
0.4  
1.5  
2.0  
Clock Rise and Fall Time  
Reset Pulse Width  
t
t
,
5.0  
10  
15  
TLH  
THL  
No Limit  
t
5.0  
10  
15  
1000  
400  
300  
500  
200  
150  
ns  
WH  
* The formulas given are for the typical characteristics only at 25 C.  
#Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
PIN ASSIGNMENT  
This device contains protection circuitry to guard against damage  
due to high static voltages or electric fields. However, precautions must  
be taken to avoid applications of any voltage higher than maximum rated  
SET  
RESET  
1
2
16  
15  
V
DD  
MONO IN  
voltages to this high-impedance circuit. For proper operation, V and  
in  
V
out  
should be constrained to the range V  
SS  
(V or V ) V .  
in out DD  
IN 1  
3
4
5
6
7
8
14  
13  
12  
11  
10  
9
OSC INH  
Unused inputs must always be tied to an appropriate logic voltage  
level (e.g., either V or V ). Unused outputs must be left open.  
OUT 1  
DECODE  
SS DD  
OUT 2  
D
C
B
A
8–BYPASS  
CLOCK INH  
V
SS  
MOTOROLA CMOS LOGIC DATA  
MC14536B  
3
PIN DESCRIPTIONS  
INPUTS  
SET (Pin 1) — A high on Set asynchronously forces  
Decode Out to a high level. This is accomplished by setting  
an output conditioning latch to a high level while at the same  
time resetting the 24 flip–flop stages. After Set goes low  
(inactive), the occurrence of the first negative clock transition  
OSC INHIBIT (Pin 14) — A high level on this pin stops the  
RC oscillator which allows for very low–power standby op-  
eration. May also be used, in conjunction with an external  
clock, with essentially the same results as the Clock Inhibit  
input.  
MONO–IN (Pin 15) — Used as the timing pin for the on–  
chip monostable multivibrator. If the Mono–In input is con-  
on IN causes Decode Out to go low. The counter’s flip–flop  
stages begin counting on the second negative clock transi-  
nected to V  
, the monostable circuit is disabled, and  
1
SS  
Decode Out is directly connected to the selected Q output.  
The monostable circuit is enabled if a resistor is connected  
between Mono–In and V  
ternal capacitance will determine the minimum output pulse  
widths. With the addition of an external capacitor to V , the  
pulse width range may be extended. For reliable operation  
the resistor value should be limited to the range of 5 kto  
100 kand the capacitor value should be limited to a maxi-  
mum of 1000 pf. (See figures 3, 4, 5, and 10).  
A, B, C, D (Pins 9, 10, 11, 12) — These inputs select the  
flip–flop stage to be connected to Decode Out. (See the truth  
tables.)  
tion of IN . When Set is high, the on–chip RC oscillator is  
1
disabled. This allows for very low–power standby operation.  
RESET (Pin 2) — A high on Reset asynchronously forces  
Decode Out to a low level; all 24 flip–flop stages are also  
reset to a low level. Like the Set input, Reset disables the  
on–chip RC oscillator for standby operation.  
. This resistor and the device’s in-  
DD  
SS  
IN (Pin 3) — The device’s internal counters advance on  
1
the negative–going edge of this input. IN may be used as an  
1
external clock input or used in conjunction with OUT and  
1
OUT to form an RC oscillator. When an external clock is  
2
used, both OUT and OUT may be left unconnected or  
1
2
used to drive 1 LSTTL or several CMOS loads.  
OUTPUTS  
8–BYPASS (Pin 6) — A high on this input causes the first  
8 flip–flop stages to be bypassed. This device essentially be-  
comes a 16–stage counter with all 16 stages selectable.  
Selection is accomplished by the A, B, C, and D inputs. (See  
the truth tables.)  
CLOCK INHIBIT (Pin 7) — A high on this input discon-  
nects the first counter stage from the clocking source. This  
holds the present count and inhibits further counting. How-  
ever, the clocking source may continue to run. Therefore,  
when Clock Inhibit is brought low, no oscillator start–up time  
is required. When Clock Inhibit is low, the counter will start  
counting on the occurrence of the first negative edge of the  
OUT , OUT (Pin 4, 5) — Outputs used in conjunction with  
1
2
IN to form an RC oscillator. These outputs are buffered and  
1
0
may be used for 2 frequency division of an external clock.  
DECODE OUT (Pin 13) — Output function depends on  
configuration. When the monostable circuit is disabled, this  
output is a 50% duty cycle square wave during free run.  
TEST MODE  
The test mode configuration divides the 24 flip–flop stages  
into three 8–stage sections to facilitate a fast test sequence.  
The test mode is enabled when 8–Bypass, Set and Reset  
are at a high level. (See Figure 8.)  
clocking source at IN .  
1
MC14536B  
4
MOTOROLA CMOS LOGIC DATA  
TRUTH TABLES  
Input  
Input  
Stage Selected  
for Decode Out  
Stage Selected  
for Decode Out  
8–Bypass  
D
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
C
B
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
8–Bypass  
D
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
C
B
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
FUNCTION TABLE  
Clock  
Inh  
OSC  
Inh  
Decode  
Out  
In  
1
Set  
Reset  
Out 1  
Out 2  
0
0
0
0
No  
Change  
0
0
0
0
Advance to  
next state  
X
1
0
0
0
1
0
0
0
1
0
0
0
0
0
1
1
1
0
X
X
No  
Change  
X
0
1
0
0
0
0
0
0
0
0
0
1
0
0
1
1
No  
Change  
X
No  
Change  
Advance to  
next state  
X = Don’t Care  
MOTOROLA CMOS LOGIC DATA  
MC14536B  
5
LOGIC DIAGRAM  
MC14536B  
6
MOTOROLA CMOS LOGIC DATA  
TYPICAL RC OSCILLATOR CHARACTERISTICS  
(For Circuit Diagram See Figure 11 In Application)  
8.0  
4.0  
100  
V
= 10 V  
DD  
V
= 15 V  
DD  
50  
f AS A FUNCTION  
OF R  
TC  
(C = 1000 pF)  
20  
10  
0
(R  
2R )  
TC  
S
10 V  
5.0  
4.0  
f AS A FUNCTION  
OF C  
2.0  
1.0  
0.5  
8.0  
12  
16  
(R  
= 56 k  
)  
TC  
5.0 V  
(R = 120 k)  
S
0.2  
0.1  
R
= 56 k  
,  
R
R
= 0, f = 10.15 kHz @ V  
= 10 V, T = 25°C  
A
DD  
TC  
C = 1000 pF  
S
S
DD  
, f = 7.8 kHz @ V  
= 120 k  
= 10 V, T = 25°C  
A
55 25  
0
25  
50  
75  
100  
125  
1.0 k  
10 k  
100 k  
1.0 M  
0.1  
R
, RESISTANCE (OHMS)  
TC  
0.001  
C, CAPACITANCE (  
* Device Only.  
T , AMBIENT TEMPERATURE (°C)*  
A
0.0001  
0.01  
F)  
µ
Figure 1. RC Oscillator Stability  
Figure 2. RC Oscillator Frequency as a  
Function of R  
and C  
TC  
MONOSTABLE CHARACTERISTICS  
(For Circuit Diagram See Figure 10 In Application)  
100  
100  
FORMULA FOR CALCULATING t IN  
MICROSECONDS IS AS FOLLOWS:  
FORMULA FOR CALCULATING t IN  
MICROSECONDS IS AS FOLLOWS:  
W
W
t
= 0.00247 R  
WHERE R IS IN k  
C
0.85  
t
= 0.00247 R C 0.85  
WHERE R IS IN k, C IN pF.  
X
W
X
X
W X X  
, C IN pF.  
X
10  
10  
R
= 100 k  
X
R
= 100 k  
X
50 k  
50 k  
1.0  
0.1  
1.0  
0.1  
10 k  
5 k  
10 k  
T
V
= 25  
°
C
T = 25°C  
A
DD  
A
5 k  
= 5 V  
V
= 10 V  
DD  
1.0  
10  
100  
1000  
1.0  
10  
100  
1000  
C
, EXTERNAL CAPACITANCE (pF)  
C , EXTERNAL CAPACITANCE (pF)  
X
X
Figure 3. Typical C versus Pulse Width  
Figure 4. Typical C versus Pulse Width  
X
X
@ V  
= 5.0 V  
@ V  
= 10 V  
DD  
DD  
100  
FORMULA FOR CALCULATING t IN  
W
MICROSECONDS IS AS FOLLOWS:  
t
= 0.00247 R C 0.85  
W
X X  
WHERE R IS IN k, C IN pF.  
X
10  
R
= 100 k  
X
50 k  
1.0  
0.1  
10 k  
5 k  
T
= 25°C  
= 15 V  
A
V
DD  
1.0  
10  
100  
1000  
C
, EXTERNAL CAPACITANCE (pF)  
X
Figure 5. Typical C versus Pulse Width  
X
DD  
@ V  
= 15 V  
MOTOROLA CMOS LOGIC DATA  
MC14536B  
7
V
DD  
0.01 µF  
CERAMIC  
I
500 µF  
D
SET  
20 ns  
20 ns  
IN  
RESET OUT 1  
8–BYPASS  
C
L
V
DD  
50%  
1
PULSE  
IN  
1
C INH  
GENERATOR  
t
t
WH  
WL  
SET  
OUT 1  
OUT  
2
MONO IN  
RESET  
90%  
10%  
50%  
t
OUT  
t
OSC INH  
C
L
8–BYPASS  
PULSE  
GENERATOR  
A
B
IN  
1
PHL  
PLH  
t
t
THL  
C INH  
MONO IN  
OSC INH  
A
TLH  
C
D
DECODE  
OUT  
OUT  
2
C
L
V
SS  
B
C
D
DECODE  
OUT  
20 ns  
20 ns  
C
L
V
90%  
10%  
SS  
50%  
50%  
DUTY CYCLE  
Figure 6. Power Dissipation Test  
Circuit and Waveform  
Figure 7. Switching Time Test Circuit and Waveforms  
V
FUNCTIONAL TEST SEQUENCE  
DD  
SET  
Test function (Figure 8) has been included for the reduc-  
tion of test time required to exercise all 24 counter stages.  
This test function divides the counter into three 8–stage  
sections and 255 counts are loaded in each of the 8–stage  
sections in parallel. All flip–flops are now at a “1”. The count-  
er is now returned to the normal 24–stages in series configu-  
RESET OUT 1  
PULSE  
8–BYPASS  
GENERATOR  
IN  
1
C INH  
MONO IN  
OSC INH  
A
OUT  
2
ration. One more pulse is entered into In which will cause  
1
the counter to ripple from an all “1” state to an all “0” state.  
B
C
D
DECODE  
OUT  
V
SS  
Figure 8. Functional Test Circuit  
FUNCTIONAL TEST SEQUENCE  
Inputs  
Outputs  
Comments  
Decade Out  
Q1 thru Q24  
In  
Set  
0
Reset  
8–Bypass  
1
All 24 stages are in Reset mode.  
1
1
0
1
1
1
1
1
1
0
0
0
1
Counter is in three 8 stage sections in parallel mode.  
First “1” to “0” transition of clock.  
1
1
0
1
1
1
255 “1” to “0” transitions are clocked in the counter.  
0
0
1
0
1
0
1
0
1
1
The 255 “1” to “0” transition.  
Counter converted back to 24 stages in series mode.  
Set and Reset must be connected together and simultaneously  
go from “1” to “0”.  
1
0
0
0
0
0
0
0
1
0
In Switches to a “1”.  
1
Counter Ripples from an all “1” state to an all “0” state.  
MC14536B  
8
MOTOROLA CMOS LOGIC DATA  
+V  
16  
V
6
9
DD  
8–BYPASS  
4
5
A
OUT 1  
OUT 2  
10  
11  
12  
2
B
C
D
RESET  
OSC INH  
MONO–IN  
SET  
14  
15  
1
PULSE  
GEN.  
7
CLOCK INH  
3
13  
DECODE OUT  
IN  
1
PULSE  
GEN.  
V
SS  
8
CLOCK  
IN  
1
SET  
CLOCK INH  
DECODE OUT  
POWER UP  
NOTE: When power is first applied to the device, Decode Out can be either at a high or low state.  
On the rising edge of a Set pulse the output goes high if initially at a low state. The output  
remains high if initially at a high state. Because Clock Inh is held high, the clock source on  
the input pin has no effect on the output. Once Clock Inh is taken low, the output goes low  
on the first negative clock transition. The output returns high depending on the 8–Bypass,  
n
A, B, C, and D inputs, and the clock input period. A 2 frequency division (where n = the  
0
number of stages selected from the truth table) is obtainable at Decode Out. A 2 –divided  
output of IN can be obtained at OUT and OUT .  
1
1
2
Figure 9. Time Interval Configuration Using an External Clock, Set,  
and Clock Inhibit Functions  
(Divide–by–2 Configured)  
MOTOROLA CMOS LOGIC DATA  
MC14536B  
9
+V  
16  
V
6
9
DD  
8–BYPASS  
R
4
5
X
A
OUT 1  
OUT 2  
10  
11  
12  
2
B
C
D
PULSE  
GEN.  
RESET  
SET  
1
7
CLOCK INH  
MONO–IN  
CLOCK INH  
15  
14  
3
13  
DECODE OUT  
IN  
1
CLOCK  
V
SS  
8
C
X
IN  
1
RESET  
*t .00247 R C 0.85  
w
X
X
t
R
C
in µsec  
w
DECODE OUT  
in kΩ  
X
X
in pF  
*t  
w
POWER UP  
NOTE: When Power is first applied to the device with the Reset input going high, Decode Out initializes low. Bringing the Reset  
n
input low enables the chip’s internal counters. After Reset goes low, the 2 /2 negative transition of the clock input causes  
Decode Out to go high. Since the Mono–In input is being used, the output becomes monostable. The pulse width of the  
n
output is dependent on the external timing components. The second and all subsequent pulses occur at 2 x (the clock  
period) intervals where n = the number of stages selected from the truth table.  
Figure 10. Time Interval Configuration Using an External Clock, Reset,  
and Output Monostable to Achieve a Pulse Output  
(Divide–by–4 Configured)  
MC14536B  
10  
MOTOROLA CMOS LOGIC DATA  
+V  
R
R
S
16  
V
6
9
DD  
8–BYPASS  
4
5
A
OUT 1  
OUT 2  
10  
11  
12  
2
C
B
C
TC  
D
PULSE  
GEN.  
RESET  
SET  
14  
15  
CLOCK INH  
MONO–IN  
CLOCK INH  
1
7
3
13  
DECODE OUT  
IN  
1
V
SS  
8
RESET  
OUT 1  
OUT 2  
1
f
osc  
2.3R  
C
tc  
DECODE OUT  
tc  
R  
R
s
= Hz  
F
R
C
t
w
= Ohms  
= FARADS  
POWER UP  
NOTE: This circuit is designed to use the on–chip oscillation function. The oscillator frequency is deter-  
mined by the external R and C components. When power is first applied to the device, Decode Out  
initializes to a high state. Because this output is tied directly to the Osc–Inh input, the oscillator is  
disabled.Thisputsthedeviceinalow–currentstandbycondition.TherisingedgeoftheResetpulse  
will cause the output to go low. This in turn causes Osc–Inh to go low. However, while Reset is high,  
the oscillator is still disabled (i.e.: standy condition). After Reset goes low, the output remains low  
n
for 2 /2 of the oscillator’s period. After the part times out, the output again goes high.  
Figure 11. Time Interval Configuration Using On–Chip RC Oscillator and  
Reset Input to Initiate Time Interval  
(Divide–by–2 Configured)  
MOTOROLA CMOS LOGIC DATA  
MC14536B  
11  
OUTLINE DIMENSIONS  
L SUFFIX  
CERAMIC DIP PACKAGE  
CASE 620–10  
ISSUE V  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
4. DIMENSION F MAY NARROW TO 0.76 (0.030)  
WHERE THE LEAD ENTERS THE CERAMIC  
BODY.  
16  
1
9
8
–B–  
C
L
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
MIN  
MAX  
0.785  
0.295  
0.200  
0.020  
MIN  
19.05  
6.10  
–––  
MAX  
19.93  
7.49  
5.08  
0.50  
0.750  
0.240  
–––  
–T–  
SEATING  
PLANE  
0.015  
0.39  
K
N
E
0.050 BSC  
1.27 BSC  
F
0.055  
0.065  
1.40  
1.65  
G
H
K
L
M
N
0.100 BSC  
2.54 BSC  
M
E
0.008  
0.125  
0.015  
0.170  
0.21  
3.18  
0.38  
4.31  
F
J
16 PL  
0.25 (0.010)  
G
0.300 BSC  
7.62 BSC  
M
S
T
B
0
15  
0
15  
D 16 PL  
0.25 (0.010)  
0.020  
0.040  
0.51  
1.01  
M
S
T
A
P SUFFIX  
PLASTIC DIP PACKAGE  
CASE 648–08  
ISSUE R  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
8
B
S
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
SEATING  
–T–  
G
H
J
K
L
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
PLANE  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
0.25 (0.010)  
M
S
0.020  
0.040  
0.51  
1.01  
M
M
T
A
MC14536B  
12  
MOTOROLA CMOS LOGIC DATA  
OUTLINE DIMENSIONS  
DW SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751G–02  
ISSUE A  
–A–  
16  
9
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
–B–  
8X P  
0.010 (0.25)  
M
M
B
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
1
8
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
J
16X D  
M
S
S
0.010 (0.25)  
T
A
B
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
R X 45  
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
M
SEATING  
14X G  
K
PLANE  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided  
in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent  
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application,  
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and  
trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
are registered  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC14536B/D  

相关型号:

MC14536B

Programmable Timer
ONSEMI

MC14536B

PROGRAMMABLE TIMER
MOTOROLA

MC14536BAL

0 TIMER(S), PROGRAMMABLE TIMER, CDIP16, 620-09
MOTOROLA

MC14536BALD

0 TIMER(S), PROGRAMMABLE TIMER, CDIP16, 620-09
MOTOROLA

MC14536BALDS

暂无描述
MOTOROLA

MC14536BALS

Analog Waveform Generation Function, CMOS, CDIP16
MOTOROLA

MC14536BCL

Programmable Timer
MOTOROLA

MC14536BCLD

Programmable Timer, 0 Timer(s), CMOS, CDIP16, 620-09
MOTOROLA

MC14536BCLDS

0 TIMER(S), PROGRAMMABLE TIMER, CDIP16, 620-09
MOTOROLA

MC14536BCLS

Analog Waveform Generation Function, CMOS, CDIP16
MOTOROLA

MC14536BCP

Programmable Timer
MOTOROLA

MC14536BCP

Programmable Timer
ONSEMI