MC145443BDW [MOTOROLA]

Single-Chip 300-Baud Modem; 单芯片300波特率的调制解调器
MC145443BDW
型号: MC145443BDW
厂家: MOTOROLA    MOTOROLA
描述:

Single-Chip 300-Baud Modem
单芯片300波特率的调制解调器

调制解调器 电信集成电路 电信电路 光电二极管
文件: 总12页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MC145442B/D  
SEMICONDUCTOR TECHNICAL DATA  
The MC145442B and MC145443B silicon–gate CMOS single–chip low–  
speed modems contain a complete frequency shift keying (FSK) modulator,  
demodulator, and filter. These devices are compatible with CCITT V.21  
(MC145442B) and Bell 103 (MC145443B) specifications. Both devices provide  
full–duplex or half–duplex 300–baud data communication over a pair of  
telephone lines. They also include a carrier detect circuit for the demodulator  
section and a duplexer circuit for direct operation on a telephone line through a  
simple transformer.  
P SUFFIX  
PLASTIC DIP  
CASE 738  
20  
1
DW SUFFIX  
SOG PACKAGE  
CASE 751D  
MC145442B Compatible with CCITT V.21  
MC145443B Compatible with Bell 103  
Low–Band and High–Band Band–Pass Filters On–Chip  
Simplex, Half–Duplex, and Full–Duplex Operation  
Originate and Answer Mode  
Analog Loopback Configuration for Self Test  
Hybrid Network Function On–Chip  
Carrier Detect Circuit On–Chip  
Adjustable Transmit Level and CD Delay Timing  
On–Chip Crystal Oscillator (3.579 MHz)  
Single +5 V Power Supply Operation  
Internal Mid–Supply Generator  
Power–Down Mode  
Pin Compatible with MM74HC943  
20  
1
ORDERING INFORMATION  
MC145442BP  
MC145443BP  
Plastic DIP  
Plastic DIP  
MC145442BDW  
MC145443BDW  
SOG Package  
SOG Package  
PIN ASSIGNMENT  
DSI  
LB  
1
2
20 TLA  
19  
V
AG  
Capable of Driving –9 dBm into a 600 Load  
CD  
3
4
18 Exl  
CDT  
17 TxA  
RxD  
5
6
7
8
9
16 RxA1  
15 RxA2  
14 SQT  
13 MODE  
V
DD  
CDA  
X
out  
X
in  
12  
V
SS  
FB 10  
11 TxD  
REV 1  
9/00  
Motorola,Inc.2000  
BLOCK DIAGRAM  
4
7
CDT  
CDA  
LOWBAND  
15  
16  
BPF  
RxA2  
RxA1  
3
CARRIER  
DETECT  
CD  
AAF  
S/H  
+
5
AC AMP  
RxD  
DEMOD  
*
HIGH–BAND  
BPF  
10  
1
FB  
DSI  
SMOOTHING  
FILTER  
2
17  
18  
LB  
TxA  
ExI  
13  
MODE  
CONTROL  
+
MODE  
14  
11  
20  
SQT  
TxD  
TLA  
MODULATOR  
ANALOG  
GROUND  
19  
6
INTERNAL  
V
AG  
V
AG  
GENERATOR  
8
9
V
DD  
X
out  
X
in  
SAMPLING CLOCK: 77.82 kHz  
SAMPLING CLOCK: 19.46 kHz  
CLOCK  
DIVIDER  
OSCILLATOR  
12  
V
SS  
* Refer to the FB pin description.  
ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V  
)
SS  
This device contains circuitry to protect the  
Rating  
Symbol  
Value  
Unit  
V
inputs against damage due to high static volt-  
ages or electric fields; however, it is advised that  
normalprecautions be taken to avoid application  
of any voltage higher than maximum rated  
voltages to this high impedance circuit. For  
Supply Voltage  
V
DD  
–0.5 to 7.0  
DC Input Voltage  
V
in  
–0.5 to V  
+ 0.5  
V
DD  
DC Output Voltage  
V
out  
–0.5 to V  
+ 0.5  
V
DD  
proper operation it is recommended that V and  
in  
Clamp Diode Current, per Pin  
DC Output Current, per Pin  
Power Dissipation  
I , I  
IK OK  
±20  
mA  
mA  
mW  
°C  
°C  
V
V
be constrained to the range V  
(V or  
SS in  
out  
I
±28  
) V ).  
out  
out  
DD  
Unused inputs must always be tied to an  
P
D
500  
appropriate logic voltage level (e.g., either V  
or V ).  
DD  
SS  
Operating Temperature Range  
Storage Temperature Range  
T
A
–40 to 85  
T
stg  
–65 to 150  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Supply Voltage  
Symbol  
Min  
4.5  
0
Max  
Unit  
V
V
DD  
5.5  
DC Input or Output Voltage  
Input Rise or Fall Time  
Crystal Frequency*  
V , V  
in out  
V
DD  
V
t , t  
r f  
500  
5.0  
ns  
f
3.2  
MHz  
crystal  
* Changing the crystal frequency from 3.579 MHz will change the output frequencies. The  
change in output frequency will be proportional to the change in crystal frequency.  
MC145442BMC145443B  
MOTOROLA  
2
DC ELECTRICAL CHARACTERISTICS (V  
Characteristic  
= 5.0 V ±10%, T = –40° to 85°C)  
DD  
A
Symbol  
Min  
– 0.8  
DD  
Typ  
Max  
Unit  
High–Level Input Voltage  
LB  
V
IH  
V
V
X , TxD, Mode, SQT  
in  
3.15  
Low–Level Input Voltage  
High–Level Output Voltage  
LB  
V
0.8  
1.1  
V
V
IL  
X , TxD, Mode, SQT  
in  
V
OH  
I
I
I
= 20 µA  
= 2 mA  
= 20 µA  
CD, RxD  
CD, RxD  
V
– 0.1  
OH  
OH  
OH  
DD  
3.7  
X
V
– 0.05  
out  
DD  
Low–Level Output Voltage  
V
OL  
V
I
I
I
= 20 µA  
= 2 mA  
= 20 µA  
CD, RxD  
CD, RxD  
0.05  
0.1  
0.4  
OL  
OL  
OL  
X
out  
Input Current  
LB, TxD, Mode, SQT  
I
in  
10  
±1.0  
±12  
±20  
±10  
µA  
RxA1, RxA2 (0°  
RxA1, RxA2 (–40°  
T
A
T
A
85°C)  
< 0°C)  
X
in  
Quiesent Supply Current (X or f  
in  
= 3.579 MHz)  
I
7
10  
mA  
µA  
pF  
crystal  
DD  
Power–Down Supply Current  
Input Capacitance  
200  
300  
X
C
10  
10  
in  
in  
All Other Inputs  
V
Output Voltage (I = ±10 µA)  
V
2.4  
1.1  
10  
2.5  
1.2  
20  
2.6  
1.3  
30  
V
V
AG  
O
AG  
CDA Output Voltage (I = ±10 µA)  
V
CDA  
O
Line Driver Feedback Resistor  
R
kΩ  
f
AC ELECTRICAL CHARACTERISTICS  
(V  
DD  
= 5.0 V ±10%, T = –40° to 85°C, Crystal Frequency = 3.579 MHz ±0.1%; See Figure 1)  
A
Characteristic  
Min  
Typ  
Max  
Unit  
TRANSMITTER  
Power Output on TxA  
dBm  
–13  
–10  
–12  
–9  
–11  
–8  
R
R
= 1.2 k, R  
= 1.2 k, R  
= ∞  
L
L
TLA  
TLA  
= 5.5 kΩ  
Second Harmonic Power  
= 1.2 kΩ  
– 56  
dBm  
R
L
RECEIVE FILTER AND HYBRID  
Hybrid Input Impedance RxA1, RxA2  
FB Output Impedance  
40  
50  
16  
kΩ  
kΩ  
Adjacent Channel Rejection  
DEMODULATOR  
–48  
dBm  
Receive Carrier Amplitude  
Dynamic Range  
–48  
36  
100  
5
–12  
dBm  
dB  
Bit Jitter (S/N = 30 dB, Input = –38 dBm, Bit Rate = 300 baud)  
Bit Bias  
µs  
%
Carrier Detect Threshold  
(CDA = 1.2 V or CDA grounded through a 0.1 µF capacitor)  
On to Off  
Off to On  
–44  
–47  
dBm  
MOTOROLA  
MC145442BMC145443B  
3
3.579 MHz ± 0.1%  
Table 1. Bell 103 and CCITT V.21  
Frequency Characteristics  
Originate Mode  
Answer Mode  
8
9
R
X
TLA  
X
out  
in  
TxD  
Data  
Bell 103 (MC145443B)  
Transmit  
Receive  
Transmit  
Receive  
11  
20  
17  
15  
TLA  
TxA  
RxA2  
D
in  
V
DD  
Space  
Mark  
1070 Hz  
1270 Hz  
2025 Hz  
2225 Hz  
2025 Hz  
2225 Hz  
1070 Hz  
1270 Hz  
MC145442B  
MC145443B  
600 Ω  
600 Ω  
CCITT V.21 (MC145442B)  
16  
5
RxA1  
CDT  
4
RxD  
FB  
10  
D
out  
Space  
Mark  
1180 Hz  
980 Hz  
1850 Hz  
1650 Hz  
1850 Hz  
1650 Hz  
1180 Hz  
980 Hz  
TEST  
OUTPUT  
0.1 µF  
TEST  
INPUT  
0.1 µF  
NOTE: Actual frequencies may be ±5 Hz assuming 3.579545 MHz  
crystal is used.  
C
CDT  
C
FB  
MAXIMUM LEVEL OF OUT–OF–BAND ENERGY  
RELATIVE TO THE TRANSMIT CARRIER LEVEL INTO 600 (kHz)  
Figure 1. AC Characteristics Evaluation Circuit  
0
2
3.4 4  
16  
64  
256  
PIN DESCRIPTIONS  
0
V
DD  
–20  
–25  
Positive Power Supply (Pin 6)  
This pin is normally tied to 5.0 V.  
15 dB/OCTAVE  
V
SS  
Negative Power Supply (Pin 12)  
–55  
–60  
This pin is normally tied to 0 V.  
V
Figure 2. Out–of–Band Energy  
AG  
Analog Ground (Pin 19)  
ExI  
External Input (Pin 18)  
Analog ground is internally biased to (V  
pin must be decoupled by a capacitor from V  
– V )/2. This  
SS  
AG  
DD  
to V  
and a  
SS  
The external input is the non–inverting input to the line  
driver. It is provided to combine an auxiliary audio signal or  
speech signal to the phone line using the line driver. This pin  
capacitor from V  
to V . Analog ground is the common  
AG  
DD  
bias line used in the switched capacitor filters, limiter, and  
slicer in the demodulation circuitry.  
should be connected to V  
if not used. The average level  
to maintain proper operation. (See  
AG  
must be the same as V  
AG  
TLA  
Applications Information.)  
Transmit Level Adjust (Pin 20)  
DSI  
This pin is used to adjust the transmit level. Transmit level  
adjustment range is typically from –12 dBm to –9 dBm. (See  
Applications Information.)  
Driver Summing Input (Pin 1)  
The driver summing input may be used to connect an ex-  
ternal signal, such as a DTMF dialer, to the phone line. A  
TxD  
series resistor, R  
A (see Applications Information and Figure 6). When ap-  
V
, is needed to define the voltage gain  
DSI  
Transmit Data (Pin 11)  
plying a signal to the DSI pin, the modulator should be  
squelched by bringing SQT (pin 14) to a logic high level. The  
Binary information is input to the transmit data pin. Data  
entered for transmission is modulated using FSK techniques.  
A logic high input level represents a mark and a logic low  
represents a space (see Table 1).  
voltage gain, A , is calculated by the formula A = –R /R  
V
V
f
DSI  
DSI  
(where R 20 k). For example, a 20 kresistor for R  
f
will provide unity gain (A = –20 k/20 k= –1). This pin  
V
must be left open if not used.  
TxA  
Transmit Carrier (Pin 17)  
RxD  
Receive Data (Pin 6)  
This is the output of the line driver amplifier. The transmit  
carrier is the digitally synthesized sine wave output of the  
modulator derived from a crystal oscillator reference. When a  
3.579 MHz crystal is used the frequency outputs shown in  
Table 1 apply. (See Applications Information.)  
The receive data output pin presents the digital binary data  
resulting from the demodulation of the receive carrier. If no  
carrier is present, CD high, the receive data output (RxD) is  
clamped high.  
MC145442BMC145443B  
MOTOROLA  
4
RxA2, RxA1  
Receive Carrier (Pins 15, 16)  
by CDT, pin 4). This pin is held at the logic low level until the  
signal falls below the maximum threshold level for longer  
than the turn off time. (See Applications Information and  
Figure 5.)  
The receive carrier is the FSK input to the demodulator  
through the receive band–pass filter. RxA1 is the non–invert-  
ing input and RxA2 is the inverting input of the receive hybrid  
(duplexer) operational amplifier.  
CDA  
Carrier Detect Adjust (Pin 7)  
An external voltage may be applied to this pin to adjust the  
carrier detect threshold. The threshold hysteresis is internally  
fixed at 3 dB (see Applications Information).  
LB  
Analog Loopback (Pin 2)  
When a high level is applied to this pin (SQT must be low),  
the analog loopback test is enabled. The analog loopback  
test connects the TxA pin to the RxA2 pin and the RxA1 to  
analog ground. In loopback, the demodulator frequencies  
are switched to the modulation frequencies for the selected  
mode. (See Tables 1 and 2 and Figures 4c and 4d.)  
X
, X  
out in  
Crystal Oscillator (Pins 8, 9)  
A crystal reference oscillator is formed when a 3.579 MHz  
crystal is connected between these two pins. X  
(pin 8) is  
out  
the output of the oscillator circuit, and X (pin 9) is the input  
in  
When LB is connected to analog ground (V ), the modu-  
AG  
to the oscillator circuit. When using an external clock, apply  
lator generates an echo cancellation tone of 2100 Hz for  
MC145442B CCITT V.21 and 2225 Hz for MC145443B Bell  
103 systems. For normal operation, this pin should be at a  
logic low level (V ).  
The power–down mode is enabled when both LB and SQT  
are connected to a logic high level (see Table 2).  
the clock to the X (pin 9) pin and leave X  
internal 10 Mresistor and internal capacitors, typically  
(pin 8) open. An  
in  
out  
10 pF on X and 16 pF on X , allow the crystal to be con-  
in out  
SS  
nected without any other external components. Printed cir-  
cuit board layout should keep external stray capacitance to a  
minimum.  
Table 2. Functional Table  
FB  
MODE  
Pin 13  
SQT  
LB  
Filter Bias (Pin 10)  
Pin 14  
Pin 2  
Operating Mode  
Originate Mode  
Answer Mode  
This is the negative input to the ac amplifier. In normal op-  
eration, this pin is connected to analog ground through a  
0.1 µF bypass capacitor in order to cancel the input offset  
voltage of the limiter. It has a nominal input impedance of  
16 k(see Figure 3).  
1
0
0
0
0
0
1
1
1
0
0
X
X
X
X
X
V
(V /2) Echo Tone  
AG DD  
1
0
Analog Loopback  
Squelch Mode  
SQT  
Transmit Squelch (Pin 14)  
V
(V /2) Squelch Mode  
AG DD  
When this input pin is at a logic high level, the modulator is  
disabled. The line driver remains active if LB is at a logic low  
level (see Table 2).  
1
Power Down  
When both LB and SQT are connected to a logic high level  
(see Table 2), the entire chip is in a power down state and all  
circuitry except the crystal oscillator is disabled. Total power  
supply current decreases from 10 mA (max) to 300 µA  
(max).  
MODE  
Mode (Pin 13)  
This input selects the pair of transmit and frequencies  
used during modulation and demodulation. When a logic  
high level is placed on this input, originate (Bell) or channel 1  
(CCITT) is selected. When a low level is placed on this input,  
answer (Bell) or channel 2 (CCITT) is selected. (See  
Tables 1 and 2 and Figure 4.)  
FROM  
TO  
BANDPASS  
FILTER  
+
CARRIER DETECT CIRCUIT  
AND DEMODULATOR  
CDT  
Carrier Detect Timing (Pin 4)  
490 kΩ  
A capacitor on this pin to V  
SS  
carrier must be present before CD goes low (see Applica-  
tions Information for the capacitor values).  
sets the amount of time the  
16 kΩ  
10  
FB  
CD  
Carrier Detect Output (Pin 3)  
0.1 µF  
This output is used to indicate when a carrier has been  
sensed by the carrier detect circuit. This output goes to a  
logic low level when a valid signal above the maximum  
threshold level (defined by CDA, pin 7) is maintained on the  
input to the hybrid circuit longer then the response (defined  
Figure 3. AC Amplifier Circuit  
MOTOROLA  
MC145442BMC145443B  
5
In the answer or channel 2 mode, a logic low level is  
placed on MODE (pin 13) and on LB (pin 2). In this mode, the  
data follows the same path except the FSK signal is routed to  
the high–band band–pass filter and the sample–and–hold  
signal is routed through the low–band band–pass filter (see  
Figure 4b).  
In the analog loopback originate or channel 1 mode, a logic  
high level is placed on MODE (pin 13) and on LB (pin 2). This  
mode is used for a self check of the modulator, demodulator,  
and low–band pass–band filter circuit. The modulator side is  
configured exactly like the originate mode above except the  
line driver output (TxA, pin 17) is switched to the negative in-  
put of the hybrid op–amp. The RxA2 input pin is open in this  
mode and the non–inverting input of the hybrid circuit is con-  
GENERAL DESCRIPTION  
The MC145442B and MC145443B are full–duplex low–  
speed modems. They provide a 300–baud FSK signal for bi-  
directional data transmission over the telephone network.  
They can be operated in one of four basic configurations as  
determined by the state of MODE (pin 13) and LB (pin 2).  
The normal (non–loopback) and self test (loopback) modes  
in both answer and originate modes will be discussed.  
For an originate or channel 1 mode, a logic high level is  
placed on MODE (pin 13) and a logic low level is placed on  
LB (pin 2). In this mode, transmit data is input on TxD, where  
it is converted to a FSK signal and routed through a low–  
band band–pass filter. The filtered output signal is then buff-  
ered by the Tx op–amp line driver, which is capable of driving  
–9 dBm onto a 600 line. The receive signal is connected  
through a hybrid duplexer circuit on pins 15 and 16, RxA2  
and RxA1. The signal then passes through the anti–aliasing  
filter, the sample–and–hold circuit, is switched into the high–  
band band–pass filter, and then switched into the ac amplifier  
circuit. The output of the ac amplifier circuit is routed to the  
demodulator circuit and demodulated. The resulting digital  
data is then output through RxD (pin 5). The carrier detect  
circuit receives its signal from the output of the ac amplifier  
circuit and goes low when the incoming signal is detected  
(see Figure 4a).  
nected to V . The sample–and–hold output bypasses the  
AG  
filter so that the demodulator receives the modulated Tx data  
(see Figure 4c). This test checks all internal device compo-  
nents except the high–band band–pass filter, which can be  
checked in the answer or channel 2 mode test.  
In the analog loopback or channel 2 mode, a logic low level  
is placed on MODE (pin 13) and a logic high level on LB  
(pin 2). This mode is used for a self check of the modulator,  
demodulator, and high–band pass–band filter circuit. This  
configuration is exactly like the originate loopback mode  
above, except the signal is routed through the high–band  
pass–band filter (see Figure 4d).  
MC145442BMC145443B  
MOTOROLA  
6
15  
16  
RxA2  
RxA1  
CARRIER  
DETECT  
3
CD  
AC  
AMP  
LOWBAND  
BPF  
AAF  
S/H  
+
5
1
DEMOD  
RxD  
DSI  
11  
HIGH–BAND  
BPF  
SMOOTHING  
FILTER  
TxD  
MODULATOR  
17  
18  
TxA  
Exl  
+
(a) Originate/Channel 1 Mode (MODE = High, LB = Low)  
15  
16  
RxA2  
RxA1  
CARRIER  
DETECT  
3
CD  
AC  
AMP  
LOWBAND  
BPF  
AAF  
S/H  
+
5
1
DEMOD  
RxD  
DSI  
11  
HIGH–BAND  
BPF  
SMOOTHING  
FILTER  
TxD  
MODULATOR  
17  
18  
TxA  
Exl  
+
(b) Answer/Channel 2 Mode (MODE = Low, LB = Low)  
15  
16  
RxA2  
RxA1  
CARRIER  
DETECT  
3
CD  
AC  
AMP  
AAF  
S/H  
+
LOWBAND  
BPF  
5
1
DEMOD  
RxD  
DSI  
11  
HIGH–BAND  
BPF  
SMOOTHING  
FILTER  
TxD  
MODULATOR  
17  
18  
TxA  
Exl  
+
(c) Originate/Channel 1 Mode and Analog Loopback State (MODE = High, LB = Low)  
15  
16  
RxA2  
RxA1  
CARRIER  
DETECT  
3
CD  
AC  
AMP  
AAF  
S/H  
+
LOWBAND  
BPF  
5
1
RxD  
DSI  
DEMOD  
11  
HIGH–BAND  
BPF  
SMOOTHING  
FILTER  
MODULATOR  
TxD  
17  
18  
TxA  
Exl  
+
(d) Answer/Channel 2 Mode and Analog Loopback State (MODE = Low, LB = Low)  
Figure 4. Basic Operating Modes  
MOTOROLA  
MC145442BMC145443B  
7
(pin 20) to V  
DD  
(pin 6). Table 3 shows the R  
the corresponding power output for a 600 load. The volt-  
values and  
APPLICATIONS INFORMATION  
TLA  
CARRIER DETECT TIMING ADJUSTMENT  
age at TxA is twice the value of that at ring and tip because  
TxA feeds the signal through a 600 resistor R to a 600 Ω  
line transformer (see Figure 7). When choosing resistor  
Tx  
The value of a capacitor, C  
CDT  
at CDT (pin 4) determines  
how long a received modem signal must be present above  
the minimum threshold level before CD (pin 3) goes low. The  
R
TLA  
, keep in mind that –9 dBm is the maximum output level  
allowed from a modem onto the telephone line (in the U.S.).  
In addition, keep in mind that maximizing the power output  
from the modem optimizes the signal–to–noise ratio, improv-  
ing accurate data transmission.  
C
capacitor also determines how long the CD pin stays  
CDT  
low after the received modem signal goes below the mini-  
mum threshold. The CD pin is used to distinguish a strong  
modem signal from random noise. The following equations  
show the relationship between t  
, the time in seconds re-  
CDL  
Table 3. Transmit Level Adjust  
Output Transmit Level  
quired for CD to go low; t  
for CD to go high; and C  
, the time in seconds required  
CDH  
, the capacitor value in µF.  
CDT  
(Typical into 600 )  
R
Valid signal to CD response time: t  
6.4 × C  
CDT  
TLA  
CDL  
Invalid signal to CD off time:  
t
0.54 × C  
CDT  
–12 dBm  
–11 dBm  
–10 dBm  
–9 dBm  
CDH  
19.8 kΩ  
9.2 kΩ  
5.5 kΩ  
Example: t  
t
6.4 × 0.1 µF 0.64 seconds  
0.54 × 0.1 µF 0.054 seconds  
CDL  
CDH  
CARRIER DETECT THRESHOLD ADJUSTMENT  
THE LINE DRIVER  
The carrier detect threshold is set by internal resistors to  
activate CD with a typical –44 dBm (into 600 ) signal and  
deactivate CD with a typical –47 dBm signal applied to the  
input of the hybrid circuit. The carrier detect threshold level  
can be adjusted by applying an external voltage on CDA  
(pin 7). The following equations may be used to find the CDA  
voltage required for a given threshold voltage. (V and V  
The line driver is a power amplifier used for driving a tele-  
phone line. Both the inverting and noninverting input to the  
line driver are available for transmitting externally generated  
tones.  
Exl (pin 18) is the noninverting input to the line driver and  
gives a fixed gain of 2 (R = 50 k). The average signal level  
must be the same as V  
pin should be connected to V  
AG  
The driver summing input (DSI, pin 1) may be used to con-  
nect an external signal, such as a DTMF dialer, to the phone  
line. When applying a signal to the DSI pin, the modulator  
should be squelched by bringing SQT (pin 14) to a logic high  
level. DSI must be left open if not used.  
on  
off  
are in Vrms.)  
i
to maintain proper operation. This  
if not used.  
V
CDA  
V
CDA  
= 244 × V  
on  
= 345 × V  
off  
AG  
Example (Internally Set)  
V
V
= 4.9 mV –44 dBm: V  
= 3.5 mV –47 dBm: V  
= 244 × 4.9 mV = 1.2 V  
= 345 × 3.5 mV = 1.2 V  
on  
CDA  
CDA  
off  
In addition, the DSI pin is the inverting side of the line driv-  
Example (Externally Set)  
er and allows adjustable gain with a series resistor R  
(see  
DSI  
V
V
= 7.7 mV –40 dBm: V  
= 5.4 mV –43 dBm: V  
= 244 × 7.7 mV = 1.9 V  
= 345 × 5.4 mV = 1.9 V  
on  
CDA  
CDA  
Figure 6). The voltage gain, A , is determined by the  
V
off  
equation:  
The CDA pin has an approximate Thevenin equivalent  
voltage of 1.2 V and an output impedance of 100 k. When  
using the internal 1.2 V reference, a 0.1 µF capacitor should  
R
f
A = –  
V
R
DSI  
be connected between this pin and V  
(see Figure 5).  
SS  
where R 20 kΩ.  
f
TRANSMIT LEVEL ADJUSTMENT  
Example: A resistor value of 20 kfor RDSI will provide  
unity gain.  
The power output at TxA (pin 17) is determined by the  
value of resistor R that is connected between TLA  
A = – (20 k/20 k) = –1 .  
V
TLA  
MC145442BMC145443B  
MOTOROLA  
8
V
DD  
ac  
AMP  
AUTO–NULLED  
COMPARATOR  
HYBRID  
16  
7
6 ms  
3
RxA1  
CDA  
RETRIGGERABLE  
ONE–SHOT  
CD  
V
ref  
V
CDA  
1.2 V  
SAMPLING  
CLOCK  
THRESHOLD  
CONTROL  
4
CDT  
C
CDA  
0.1 µF  
C
CDT  
0.1 µF  
Figure 5. Carrier Detect Circuit  
MODULATOR  
OUTPUT  
R = R  
0
f
R
0
DSI  
1
R
DSI  
R
f
TxA  
17  
ExI  
18  
+
R
i
V
AG  
19  
Figure 6. Line Driver Using the DSI Input  
MOTOROLA  
MC145442BMC145443B  
9
+5 V  
0.1 µF  
0.1 µF  
0.1 µF  
17  
19  
6
EIA–232–D  
DB–25  
CONNECTOR  
9
8
V
V
CC  
V
DD  
DD  
1
X
in  
20  
20  
1
C1+  
3.58  
MHz  
C1+  
C1–  
TLA  
C
DSI  
3
R
DSI  
R
TLA  
18  
10  
6
DTMF  
C1–  
DI2  
X
out  
DSI  
TxA  
RxA2  
INPUT  
8
11  
17  
15  
20 kΩ  
MMBZ15VDLT1 X 3  
0.1 µF  
CD  
TxD  
RxD  
Tx2  
Rx1  
Tx1  
15  
13  
R
DO1  
DI1  
Tx  
2
3
600 Ω  
+
10 µF  
10 Ω  
16  
10 kΩ  
10 kΩ  
TIP  
RxA1  
MC145442B/3B  
MC145407  
SQT  
LB  
8
*
TxEN  
STBY  
RING  
18  
10  
19  
Exl  
V
DD  
C
FB  
7
9
Rx2  
Rx3  
7
10 kΩ  
FB  
V
0.1 µF  
0.1 µF  
0.1 µF  
MODE  
AG  
V
CDT  
4
GND  
12  
CDA  
7
GND  
SS  
2
4
C
C
CDA  
0.1 µF  
CDT  
0.1 µF  
* Line Protection Circuit.  
Figure 7. Typical MC145442B/MC145443B Applications Circuit  
MC145442BMC145443B  
MOTOROLA  
10  
PACKAGE DIMENSIONS  
P SUFFIX  
PLASTIC DIP  
CASE 738–03  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
B
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
C
L
INCHES  
DIM MIN MAX  
1.010 1.070 25.66 27.17  
MILLIMETERS  
MIN MAX  
A
B
C
D
E
F
G
J
K
L
M
N
0.240 0.260  
0.150 0.180  
0.015 0.022  
0.050 BSC  
0.050 0.070  
0.100 BSC  
0.008 0.015  
0.110 0.140  
0.300 BSC  
6.10  
3.81  
0.39  
1.27 BSC  
1.27  
2.54 BSC  
0.21  
2.80  
7.62 BSC  
6.60  
4.57  
0.55  
-T-  
SEATING  
PLANE  
K
M
1.77  
E
N
0.38  
3.55  
G
F
J 20 PL  
D 20 PL  
M
M
0.25 (0.010)  
T B  
0°  
15°  
0°  
0.51  
15°  
1.01  
0.020 0.040  
M
M
0.25 (0.010)  
T A  
DW SUFFIX  
SOG PACKAGE  
CASE 751D–05  
D
A
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
20  
11  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION SHALL  
BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
E
1
10  
MILLIMETERS  
DIM MIN  
MAX  
2.65  
0.25  
0.49  
0.32  
12.95  
7.60  
A
A1  
B
C
D
E
2.35  
0.10  
0.35  
0.23  
12.65  
7.40  
B
20X B  
M
S
S
T
0.25  
A
B
e
1.27 BSC  
H
h
L
10.05  
0.25  
0.50  
0
10.55  
0.75  
0.90  
7
A
SEATING  
PLANE  
18X e  
A1  
C
T
MOTOROLA  
MC145442BMC145443B  
11  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center,  
P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569  
TECHNICAL INFORMATION CENTER: 1-800-521-6274  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T., Hong Kong.  
852-26668334  
HOME PAGE: http://motorola.com/semiconductors/  
MC145442B/D  

相关型号:

MC145443BP

Single-Chip 300-Baud Modem
MOTOROLA

MC145443BP

Single-Chip 300-Baud Modem
LANSDALE

MC145443DW

Single-Chip 300-Baud Modem
MOTOROLA

MC145443DWR2

0.3kbps DATA, MODEM, PDSO20, SOG-20
MOTOROLA

MC145443P

Single-Chip 300-Baud Modem
MOTOROLA

MC145444

Single-Chip 300-Baud Modem
MOTOROLA

MC145444DW

Single-Chip 300-Baud Modem
MOTOROLA

MC145444DWR2

Modem, 0.3kbps Data, CMOS, PDSO20, SOG-20
MOTOROLA

MC145444H

Modem, 0.3kbps Data, CMOS, PDIP20, PLASTIC, DIP-20
MOTOROLA

MC145444P

Single-Chip 300-Baud Modem
MOTOROLA

MC145446

Single-Chip 300-Baud Modem with DTMF Transceiver
MOTOROLA

MC145446A

Single-Chip 300-Baud Modem with DTMF Transceiver
MOTOROLA