MC145574AEGR2 [MOTOROLA]

DATACOM, DIGITAL SLIC, PDSO28, 0.600 INCH, PLASTIC, SOIC-28;
MC145574AEGR2
型号: MC145574AEGR2
厂家: MOTOROLA    MOTOROLA
描述:

DATACOM, DIGITAL SLIC, PDSO28, 0.600 INCH, PLASTIC, SOIC-28

光电二极管
文件: 总167页 (文件大小:671K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC145574/D  
REV 6  
MC145574  
ISDN S/T-Interface Transceiver  
Coming through loud and clear.  
m
This page intentionally left blank.  
MC145574  
ISDN S/T-Interface Transceiver  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Motorola, Inc. 1999  
MC145574 TABLE OF CONTENTS  
MC145574 ISDN S/T-INTERFACE TRANSCEIVER  
SECTION 1  
INTRODUCTION  
1.1  
1.2  
1.3  
1.4  
1.5  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ORGANIZATION OF DATA SHEET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PACKAGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1–1  
1–1  
1–2  
1–3  
1–3  
SECTION 2  
WIRING CONFIGURATIONS  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
POINT–TO–POINT OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SHORT PASSIVE BUS OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
EXTENDED PASSIVE BUS OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BRANCHED PASSIVE BUS OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NT1 STAR MODE OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2–1  
2–1  
2–2  
2–2  
2–3  
2–3  
SECTION 3  
ACTIVATION/DEACTIVATION OF S/T TRANSCEIVER  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TRANSMISSION STATES FOR NT MODE S/T TRANSCEIVER . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TRANSMISSION STATES FOR TE MODE S/T TRANSCEIVER . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ACTIVATION OF S/T LOOP BY NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ACTIVATION OF S/T LOOP BY TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ACTIVATION PROCEDURES IGNORED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3–1  
3–1  
3–1  
3–1  
3–2  
3–2  
3.7  
3.7.1  
3.7.2  
FRAME SYNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3–2  
3–2  
3–2  
3.8  
ACTIVATION INDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NR1(2) — ERROR INDICATION (EI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DEACTIVATION PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3–2  
3–2  
3–3  
3.9  
3.10  
3.11  
3.11.1  
3.11.2  
INITIAL STATE OF B1 AND B2 CHANNELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3–3  
3–3  
3–3  
3.12  
ADDITIONAL NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
M and N Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Echo Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Indication of Transmit and Receive States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3–3  
3–3  
3–3  
3–4  
3–4  
3–4  
3.12.1  
3.12.2  
3.12.3  
3.12.4  
3.12.5  
MOTOROLA  
MC145574  
Contents–i  
MC145574 TABLE OF CONTENTS  
SECTION 4  
THE INTERCHIP DIGITAL LINK  
4.1  
4.2  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4–1  
4–1  
4.3  
IDL2 STANDARD MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NT IDL2 Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NT IDL2 Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TE IDL2 Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TE IDL2 Master Free Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TE IDL2 Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Additional Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Phase Relationship of the NT Transmit Signal with Respect to FSC/FSR . . . . . . . . . . . . . . . . . . . .  
Phase Relationship of the TE Transmit Signal with Respect to FSC/FSR, When in the IDL2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Operation of Multiple MC145574s in TE Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Independent Tx/Rx Frame Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Timeslot Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Short and Long Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TSEN Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IDL2 Waveform Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4–2  
4–2  
4–3  
4–3  
4–3  
4–3  
4–4  
4–4  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.6.1  
4.3.6.2  
4–4  
4–4  
4–4  
4–4  
4–8  
4–9  
4–9  
4–9  
4.3.6.3  
4.3.6.4  
4.3.6.5  
4.3.6.6  
4.3.6.7  
4.3.6.8  
4.3.6.9  
SECTION 5  
SERIAL CONTROL PORT  
5.1  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5–1  
5.2  
SCP TRANSACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Nibble Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Nibble Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Byte Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Byte Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Merged Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5–1  
5–1  
5–2  
5–3  
5–4  
5–5  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.3  
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Tx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCPCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IRQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5–6  
5–6  
5–6  
5–6  
5–7  
5–7  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.4  
SCP HIGH–IMPEDANCE DIGITAL OUTPUT MODE (SCP HIDOM) . . . . . . . . . . . . . . . . . . . . . . . .  
5–7  
5.5  
5.5.1  
5.5.2  
ADDITIONAL NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Independent of Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5–7  
5–7  
5–7  
SECTION 6  
GENERAL CIRCUIT INTERFACE  
6.1  
6.2  
6.3  
6.4  
OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
GCI FRAME STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ENABLING THE GCI MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
GCI INDIRECT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6–1  
6–1  
6–1  
6–4  
6.5  
6.5.1  
GCI DIRECT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6–6  
6–6  
Contents–ii  
MC145574  
MOTOROLA  
MC145574 TABLE OF CONTENTS  
SECTION 6 (continued)  
6.5.2  
6.6  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2B+D CHANNELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6–6  
6–7  
6.7  
6.7.1  
M AND A/E CHANNELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Monitor Channel Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6–7  
6–8  
6.8  
MONITOR CHANNEL MESSAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6–8  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
Monitor Channel Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–10  
Monitor Channel Response Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–10  
Monitor Channel Status Indication Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–10  
Accessible Monitor Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–11  
SCP/GCI Register Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–12  
6.9  
COMMAND INDICATE CHANNEL OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–12  
GCI ACTIVATION AND DEACTIVATION TIMING DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–14  
6.10  
SECTION 7  
PIN DESCRIPTIONS  
7.1  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7–1  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ISET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RxN, RxP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TE/NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
M/S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
T_IN/TFSC/TCLK/FIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7–1  
7–1  
7–1  
7–2  
7–2  
7–2  
7–2  
7–2  
7–2  
7–3  
7–3  
7–3  
7–3  
7–3  
7–3  
7–3  
7–3  
7–3  
7–3  
7–4  
7–4  
7–4  
7–4  
7–4  
7–4  
7–4  
7–4  
V
SS  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SG/DGRANT/ANDOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DREQUEST/ANDIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CLASS/ECHO_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FSC/FSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2.8  
7.2.9  
7.2.10  
7.2.11  
7.2.12  
7.2.13  
7.2.14  
7.2.15  
7.2.16  
7.2.17  
7.2.18  
7.2.19  
7.2.20  
7.2.21  
7.2.22  
7.2.23  
7.2.24  
7.2.25  
7.2.26  
D
D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
in  
out  
SCP Tx/S0/M0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Rx/S1/M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCPCLK/S2/M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCPEN/GCIEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TSEN/FST/BCL/LBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IRQ/IND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
DD  
V
DD  
V
DD  
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
EXTAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
XTAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TxN, TxP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.3  
ADDITIONAL NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Output Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP HIDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7–5  
7–5  
7–5  
7–5  
7.3.1  
7.3.2  
7.3.3  
MOTOROLA  
MC145574  
Contents–iii  
MC145574 TABLE OF CONTENTS  
SECTION 8  
NIBBLE REGISTER MAP DEFINITION  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NR5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NR6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NR7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8–1  
8–2  
8–3  
8–3  
8–4  
8–5  
8–6  
8–7  
8–8  
SECTION 9  
BYTE REGISTER MAP DEFINITION  
9.1  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BR10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9–1  
9–3  
9–3  
9–3  
9–3  
9–4  
9–5  
9–5  
9–6  
9–8  
9–8  
9–9  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
9.10  
9.11  
9.12  
9.13  
9.14  
9.15  
9.16  
9.17  
BR11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10  
BR12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–12  
BR13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–12  
BR14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13  
BR15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13  
SECTION 10  
OVERLAY REGISTER MAP DEFINITION  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
10.9  
10.10  
10.11  
10.12  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–1  
OR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–2  
OR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–2  
OR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–2  
OR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–3  
OR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–3  
OR5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–3  
OR6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–4  
OR7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5  
OR8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–6  
OR9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7  
OR15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7  
Contents–iv  
MC145574  
MOTOROLA  
MC145574 TABLE OF CONTENTS  
SECTION 11  
D CHANNEL OPERATION  
11.1  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1  
11.2  
IDL2 D CHANNEL OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2  
Gaining Access to the D Channel in the TE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2  
Setting the Class for TE Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2  
Generation of an Interrupt in the TE Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–3  
Gaining Access to the D Channel in the NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–3  
GCI D Channel Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–3  
11.2.1  
11.2.2  
11.2.3  
11.2.4  
11.2.5  
SECTION 12  
MULTIFRAMING  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
12.9  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–1  
ACTIVATION/DETECTION OF MULTIFRAMING IN THE MC145574 . . . . . . . . . . . . . . . . . . . . . . . 12–1  
WRITING S CHANNEL DATA TO AN NT–CONFIGURED MC145574 . . . . . . . . . . . . . . . . . . . . . . 12–1  
MULTIFRAME INTERRUPTS IN AN NT–CONFIGURED MC145574 . . . . . . . . . . . . . . . . . . . . . . . 12–2  
READING Q CHANNEL DATA FROM AN NT–CONFIGURED MC145574 . . . . . . . . . . . . . . . . . . . 12–3  
WRITING Q CHANNEL DATA TO A TE–CONFIGURED MC145574 . . . . . . . . . . . . . . . . . . . . . . . . 12–3  
MULTIFRAME INTERRUPTS IN A TE–CONFIGURED MC145574 . . . . . . . . . . . . . . . . . . . . . . . . . 12–3  
READING S SUBCHANNEL DATA FROM A TE–CONFIGURED MC145574 . . . . . . . . . . . . . . . . 12–3  
MULTIFRAMING IN GCI MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–3  
SECTION 13  
DEVICE CONFIGURATIONS  
13.1  
NT CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–1  
NT Fixed or Adaptive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–1  
NT Master or Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–1  
NT1 Star and NT Terminal Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–2  
13.1.1  
13.1.2  
13.1.3  
13.1.3.1 NT1 Star Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–2  
13.1.3.2 NT Terminal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–4  
13.2  
13.2.1  
13.2.2  
TE CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–4  
TE Master Mode (TEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–5  
TE Slave Mode (TES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–5  
SECTION 14  
CLOCK INTERFACE  
SECTION 15  
INTERRUPTS  
15.1  
15.2  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–1  
IRQ7 NR3(0) — NT : D CHANNEL COLLISION  
TE : NOT APPLICABLE  
NR4(0) — ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–1  
15.3  
15.4  
IRQ1 NR3(1) — TE: D CHANNEL COLLISION  
NT: NOT APPLICABLE  
NR4(1) — ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–1  
IRQ2 NR3(2) — MULTIFRAME RECEPTION  
NR4(2) — ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–1  
MOTOROLA  
MC145574  
Contents–v  
MC145574 TABLE OF CONTENTS  
SECTION 15 (continued)  
15.5  
15.6  
IRQ3 NR3(3) — CHANGE IN Rx INFO STATE  
NR4(3) — ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–2  
IRQ6 NR3(1) — NT: FAR–END CODE VIOLATION (FECV) DETECTION  
TE: NOT APPLICABLE  
NR4(1) — ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–2  
15.7  
GCI MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–2  
SECTION 16  
TRANSMISSION LINE INTERFACE CIRCUITRY  
16.1  
16.2  
16.3  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–1  
TRANSMIT LINE INTERFACE CIRCUITRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–1  
RECEIVE LINE INTERFACE CIRCUITRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–1  
16.4  
ADDITIONAL NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–3  
Sources of Line Interface Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–3  
Termination Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–3  
Protection Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–3  
16.4.1  
16.4.2  
16.4.3  
SECTION 17  
POWER MODE OPERATION  
17.1  
POWER SUPPLY STRATEGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–1  
17.2  
POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–1  
Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–1  
Transmit Power–Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–1  
Absolute Minimum Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–2  
Sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–2  
17.2.1  
17.2.2  
17.2.3  
17.2.4  
SECTION 18  
ELECTRICAL SPECIFICATIONS  
18.1  
18.2  
18.3  
18.4  
MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–1  
DIGITAL DC ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–1  
ANALOG CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–2  
POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–2  
18.5  
18.5.1  
18.5.2  
IDL2 TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–3  
IDL2 Master Timing, 8– and 10–Bit Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–3  
IDL2 Slave Timing, 8– and 10–Bit Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–4  
18.6  
18.7  
18.8  
18.9  
GCI TIMING FOR MASTER AND SLAVE MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–6  
SCP TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–8  
NT1 STAR MODE TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–9  
D CHANNEL TIMING CHARACTERISTICS (IDL2 MODE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–9  
Contents–vi  
MC145574  
MOTOROLA  
MC145574 TABLE OF CONTENTS  
SECTION 19  
MECHANICAL DATA  
19.1  
19.2  
PIN ASSIGNMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19–1  
PACKAGE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19–2  
SECTION 20  
F57J4 MASK SET DIFFERENCES  
20.1  
FUNCTIONAL DIFFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20–1  
Differences in Section 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20–1  
Differences in Section 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20–1  
Differences in Section 13.1.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20–1  
20.1.1  
20.1.2  
20.1.3  
APPENDIX A  
MC145574EVK ISDN S/T–INTERFACE TRANSCEIVER EVALUATION KIT  
A.1  
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A–1  
A.2  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A–2  
A–2  
A–2  
A–2  
A.2.1  
A.2.2  
A.2.3  
A.3  
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A–3  
APPENDIX B  
GLOSSARY OF TERMS AND ABBREVIATIONS  
MOTOROLA  
MC145574  
Contents–vii  
MC145574 LIST OF FIGURES  
Figure 1–1.  
Figure 2–1.  
Figure 2–2.  
Figure 2–3.  
Figure 2–4.  
Figure 4–1.  
Figure 4–2.  
Figure 4–3.  
Figure 4–4.  
Figure 4–5.  
Figure 4–6.  
Figure 4–7.  
Figure 4–8.  
Figure 5–1.  
Figure 5–2.  
Figure 5–3.  
Figure 5–4.  
Figure 5–5.  
Figure 5–6.  
Figure 5–7.  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Point–to–Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Short Passive Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Extended Passive Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Branched Passive Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Phase Relationship of NT Transmit Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Two–Baud Turnaround in TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Phase Relationship of TE Transmit Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Example Architecture of an NT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1–3  
2–1  
2–2  
2–2  
2–3  
4–5  
4–6  
4–7  
4–8  
Standard IDL2 10–Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
Standard IDL2 8–Bit Mode with Long Frame Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
Standard IDL2 8–Bit Slave Mode with Independent Frame Syncs . . . . . . . . . . . . . . . . . . . . . 4–10  
Timeslot Operation with Independent Slave Frame Syncs, TSEN . . . . . . . . . . . . . . . . . . . . . . 4–11  
Serial Control Port Nibble Register Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Serial Control Port Nibble Register Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Serial Control Port Byte Register Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Serial Control Port Byte Register Read Operation Double 8–Bit Transaction . . . . . . . . . . . .  
Serial Control Port Byte Register Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Serial Control Byte Register Write Operation Double 8–Bit Transaction . . . . . . . . . . . . . . . .  
Merged Serial Control Port Nibble Register Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . .  
5–2  
5–2  
5–3  
5–4  
5–4  
5–5  
5–5  
6–2  
6–3  
6–4  
6–9  
Figure 6–1. a. Relative Channel Positions (GCI Slave Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 6–1. b. Relative Channel Positions (GCI Master Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 6–2.  
Figure 6–3.  
Figure 6–4.  
Figure 6–5.  
Figure 6–6.  
Figure 7–1.  
Figure 11–1.  
Figure 13–1.  
Figure 13–2.  
Figure 13–3.  
Figure 14–1.  
Figure 14–2.  
Figure 16–1.  
Figure 16–2.  
Figure 18–1.  
Figure 18–2.  
Figure 18–3.  
Figure 18–4.  
Figure 18–5.  
Figure 18–6.  
Figure 18–7.  
Figure 19–1.  
Figure 19–2.  
Figure A–1.  
Figure A–2.  
GCI Indirect Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Monitor Channel Access Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Activation from TE End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–14  
Deactivation from NT End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–15  
Activation from NT End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–15  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7–1  
SCIT Terminal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4  
NT Family Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–1  
NT1 Star Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–3  
NT2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–6  
Typical Crystal Oscillator Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–1  
Connection with External Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–1  
Transmit Line Interface Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–2  
Receive Line Interface Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–2  
IDL2 Master Timing, 8– and 10–Bit Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–3  
IDL2 Slave Timing, 8– and 10–Bit Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–5  
GCI Timing For Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–7  
SCP Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–8  
NT1 Star Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–9  
D Channel Request Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–9  
D Channel Grant Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–9  
MC145574DW Pin Assignment (SOIC 28–Pin Package, Case 751F) . . . . . . . . . . . . . . . . . . 19–1  
MC145574PB Pin Assignment (TQFP 32–Pin Package, Case 873A) . . . . . . . . . . . . . . . . . . 19–1  
Motorola Silicon Applications and the MC145574EVK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A–1  
A–3  
Contents–viii  
MC145574  
MOTOROLA  
MC145574 LIST OF TABLES  
Table 3–1.  
Table 3–2.  
Table 4–1.  
Table 6–1.  
Table 6–2.  
Table 6–3.  
Table 6–4.  
Table 6–5.  
Table 6–6.  
Table 6–7.  
Table 6–8.  
Table 6–9.  
Table 8–1.  
Table 8–2.  
Table 8–3.  
Table 9–1.  
Table 9–2.  
Table 9–3.  
Table 9–4.  
Table 9–5.  
Table 9–6.  
Table 10–1.  
Table 10–2.  
Table 10–3.  
Table 10–4.  
Table 11–1.  
Table 11–2.  
Table 11–3.  
Table 12–1.  
Table 12–2.  
Table 12–3.  
Table 13–1.  
Table 13–2.  
NT Mode Transmission States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TE Mode Transmission States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IDL2 Clock Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CLK1, CLK0 GCI Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
GCI Timeslot Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
M2, M1, and M0 Pins in GCI NT Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
M2, M1, and M0 Pins in GCI TE Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3–1  
3–1  
4–2  
6–4  
6–5  
6–6  
6–7  
Monitor Channel Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–10  
Monitor Channel Response Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–10  
Monitor Channel Status Indication Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–10  
C/I Channel Commands and Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–13  
GCI C/I Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–13  
SCP Nibble Register Map for NT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SCP Nibble Register Map for TE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Nibble Register Initialization After Any Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Byte Register Map for NT Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Byte Register Map for TE Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Byte Register Initialization After Any Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IDL2 Clock Speed Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8–1  
8–1  
8–2  
9–1  
9–2  
9–2  
9–8  
BR11(5), BR11(4) Rx INFO State Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–11  
BR11(3), BR11(2) Tx INFO State Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–11  
Overlay Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–1  
Overlay Register Initialization After Any Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–2  
S(2:0) GCI Timeslot Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–3  
S(2:0) GCI Timeslot Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–4  
Channel SCP Bit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1  
D Channel Operation Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1  
MC145574 Class Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2  
S Channel Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–2  
Multiframe Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–2  
TE Multiframe Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–3  
Pin Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–2  
Pin Operations for Master and Slave Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–4  
MOTOROLA  
MC145574  
Contents–ix  
Contents–x  
MC145574  
MOTOROLA  
1
INTRODUCTION  
1.1 INTRODUCTION  
The MC145574 is Motorola’s second generation S/T transceiver and is a follow–up to the  
MC145474/75 transceiver.  
The MC145574 provides the improved interfacing capabilities and reduced power consumption re-  
quired by today’s ISDN applications, while maintaining the functionality and extended range perfor-  
mance of the MC145474/75.  
The MC145574 provides an economical VLSI layer 1 interface for the transportation of two 64 kbps  
B channels and one 16 kbps D channel between the network termination (NT) and terminal equipment  
applications (TEs). The MC145574 conforms to CCITT I.430, ETSI ETS 300012, and ANSI T1.605  
specifications.  
The MC145574 provides the modulation/line drive and demodulation/line receive functions required  
of the interface. In addition, the MC145574 provides the activation/deactivation, error monitoring, fram-  
ing, bit, and octet timing. The MC145574 provides the control signals for the interface to the layer 2  
devices. Complete multiframe capability is provided.  
The MC145574 features the interchip digital link (IDL2) for the exchange of the 2B+D channel informa-  
tion between ISDN components and systems. The MC145574 provides an industry standard serial  
control port (SCP) to program the operation of the transceiver. As an alternative to the IDL2+SCP  
combination, a general circuit interface (GCI) is provided.  
The MC145574 is not pin compatible with the MC145474/75, but it does have a compatible register  
set. However, to make full use of the additional MC145574 features, software enhancements are re-  
quired.  
1.2 ORGANIZATION OF DATA SHEET  
This data sheet is comprised of 20 sections. Section 1 is an introduction, serving to outline the features,  
package types, and pin assignments of the MC145574. Section 2 describes the various wiring configu-  
rations which are applicable to the MC145574, and the operational distances as recommended by  
CCITT I.430, ETSI ETS 300012, and ANSI T1.605. Section 3 addresses the activation and deactivation  
procedures of the MC145574.  
The MC145574 incorporates the IDL2. This is a four–wire interface used for full–duplex communication  
between ICs on the board level. Two 64 kbps B channels and one 16 kbps D channel are transmitted  
and received over this interface. Section 4 is a detailed description of the IDL2.  
The MC145574 incorporates an SCP interface. The SCP is a four–wire interface conforming to an  
industry standard multi–drop serial link. The SCP is compatible with Motorola’s serial peripheral inter-  
face (SPI). The SCP makes use of seven nibble registers, 16 byte registers and 10 overlay registers.  
Section 5 is a description of the SCP. A per bit description of the nibble, byte, and overlay registers  
is provided in Sections 8, 9, and 10, respectively. When the MC145574 is configured as a TE, it is  
equipped with five interrupt modes. When configured as an NT, it is equipped with four interrupt modes.  
Section 15 describes these interrupts.  
The MC145574 also features a GCI interface. This is a standard four–wire interface which allows full–  
duplex transmission of two 64 kbps B channels and one 16 kbps D channel, multiplexed with control  
and maintenance information channels. Section 6 is a description of the GCI.  
MOTOROLA  
MC145574  
1–1  
Section 7 contains pin descriptions of the MC145574. The pin descriptions differentiate between the  
device configured for NT mode or TE mode of operation, and GCI and IDL2+SCP.  
As mentioned previously, the MC145574 is used for the transmission of two 64 kbps B channels and  
one 16 kbps D channel. Access to the B channels is determined by the network. The TEs gain access  
to the D channel in accordance with CCITT I.430, ETSI ETS 300012, and ANSI T1.605 recommenda-  
tions. A description of the D channel operation is contained in Section 11.  
In addition to the 2B+D channels, the S/T transceiver has a multiframing capability. Multiframing is  
a layer 1 signalling channel for use between the NT and the TE(s). The multiframing operation is de-  
scribed in Section 12.  
The MC145574 can be configured in several different operating modes depending on the application.  
Section 13 describes all the possible configurations, whether in the NT or TE mode.  
Section 16 describes how to interface the MC145574 to the S/T bus. Section 17 describes the various  
power modes of operation. Section 18 contains electrical specifications, and Section 19 contains me-  
chanical data relevant to the MC145574. Section 20 describes the differences between this data book  
and the F57J4 mask version of the MC145574.  
1.3 FEATURES  
The features of the MC145574 are described below.  
Conforms to CCITT I.430, ETSI ETS 300012, and ANSI T1.605 Specifications  
Register Compatible With the First Generation MC145474/75  
Exceeds Q.502 Jitter Requirements for TE Slave Applications  
Pin Selectable NT or TE Modes of Operation  
Incorporates the IDL2, With Timeslot Assigner  
Industry Standard Microprocessor SCP  
GCI Interface  
Uses 2.5:1 Transformers for Transmit and Receive  
Exceeds the Recommended Range of Operation in All Configurations  
Complete Multiframing Capability Supported (SC1 – SC5 and Q Channel)  
Optional B Channel Idle, Invert, or Exchange  
Supports Full Range of S/T and IDL2 Loopbacks  
Supports Transmit Power–Down, Listening, and Absolute Minimum Power Modes  
Supports Crystal or External Clock Input Mode  
NT Star and NT Terminal Modes Supported  
Low Power Consumption  
Compatible with 3 V Devices  
1–2  
MC145574  
MOTOROLA  
1.4 BLOCK DIAGRAM  
TxP TxN  
DGRANT DREQUEST  
RxP RxN  
Rx  
CORE  
BLOCK  
ISET  
Tx  
3 V REG  
D CHANNEL  
CONTROL  
DEMODULATOR AND  
TIMING RECOVERY  
ACT/DEACT  
LOGIC  
MODULATOR  
S AND Q  
HANDLER  
2B+D  
2B+D  
SCP CONTROL AND STATUS  
EXTALOUT  
XTALIN  
CLK  
LOGIC  
SYSTEM BLOCK  
VOLTAGE  
REG  
V
DD  
IDL2 + SCP + GCI  
INTERFACE  
CONTROL AND DATA INTERFACE SIGNALS  
Figure 1–1. Block Diagram  
1.5 PACKAGING  
The MC145574 comes in the following packages:  
28–Pin, 600 mil Wide, Plastic SOIC  
32–Pin, 700 mil Square, TQFP  
The pin assignments for the MC145574 are described in Section 7. Package dimensions are in  
Section 19.  
MOTOROLA  
MC145574  
1–3  
1–4  
MC145574  
MOTOROLA  
2
WIRING CONFIGURATIONS  
2.1 INTRODUCTION  
The MC145574 ISDN S/T transceiver conforms to CCITT I.430, ETSI ETS 300012, and ANSI T1.605  
specifications. It is a layer 1 transceiver designed for use at the ISDN S and T reference points. It  
is designed for both point–to–point and multipoint operation. The S/T transceiver is designed for use  
in either the network terminating (NT) mode or in the terminal endpoint (TE) applications. Two 64 kpbs  
B channels and one 16 kbps D channel are transmitted in a full–duplex fashion across the interface.  
Sections 2.2 through 2.6 contain suggested wiring configurations for use. These configurations are  
deemed to be the most common but by no means the only wiring configurations. Section 16 specifies  
the recommended circuitry for interfacing the MC145574 to the S/T bus. Note that when operating  
in the TE mode, only one TE has the 100 termination resistors in the transmit and receive paths.  
Figures 2–1 through 2–4 illustrate where to connect the termination resistors for the described loop  
configurations.  
A description of the most commonly used loop configurations is as described below.  
2.2 POINT-TO-POINT OPERATION  
In the point–to–point mode of operation, one NT communicates with one TE. As such, 100 termina-  
tion resistors must be connected across the transmit and receive paths of both the NT and TE transceiv-  
ers. Figure 2–1 illustrates this wiring configuration.  
When using the MC145574 in this configuration, the NT must be in adaptive timing. This is accom-  
plished by holding the FIX pin low; i.e., connecting it to V . Refer to Section 6 for a more detailed  
SS  
description of this pin function. CCITT I.430, ETSI ETS 300012, and ANSI T1.605 specify that the  
S/T transceiver must be able to operate up to a distance of 1 km in the point–to–point mode. This  
is the distance D1 as shown in Figure 2–1.  
<
>
NT  
D1  
TE  
TxP  
RxP  
TR  
TR  
TR  
TR  
TxN  
RxN  
MC145574  
MC145574  
RxP  
TxP  
RxN  
TxN  
Figure 2–1. Point–to–Point  
MOTOROLA  
MC145574  
2–1  
2.3 SHORT PASSIVE BUS OPERATION  
The short passive bus is intended for use when up to eight TEs are required to communicate with  
one NT. The TEs can be distributed at any point along the passive bus, the only requirement being  
that the termination resistors be located at the end of the passive bus. Figure 2–2 illustrates this wiring  
configuration. CCITT I.430, ETSI ETS 300012, and ANSI T1.605 specify a maximum operational dis-  
tance from the NT of 200 meters. This corresponds to the distance D2 as shown in Figure 2–2.  
<
>
D2  
NT  
TxP  
TR  
TR  
TR  
TR  
TxN  
MC145574  
RxP  
RxN  
TxP TxN RxP RxN  
TxP TxN RxP RxN  
TxP TxN RxP RxN  
MC145574  
MC145574  
MC145574  
TE  
TE  
TE  
Figure 2–2. Short Passive Bus  
2.4 EXTENDED PASSIVE BUS OPERATION  
A wiring configuration whereby the TEs are restricted to a grouping at the far end of the cable, distant  
from the NT, is shown as the “Extended Passive Bus.” This configuration is shown in Figure 2–3. The  
termination resistors are to be positioned as shown in Figure 2–3.  
<
>
D4  
NT  
TxP  
TR  
TR  
TR  
TR  
TxN  
MC145574  
RxP  
RxN  
TxP TxN RxP RxN  
TxP TxN RxP RxN  
MC145574  
MC145574  
TE  
TE  
<
>
D3  
Figure 2–3. Extended Passive Bus  
MC145574  
2–2  
MOTOROLA  
The essence of this configuration is that a restriction is placed on the distance between the TEs. The  
distance, D3 (as shown in Figure 2–3), corresponds to the maximum distance between the grouping  
of TEs. CCITT I.430, ETSI ETS 300012, and ANSI T1.605 specify a distance of 25 – 50 meters for  
the separation between the TEs, and a distance of 500 meters for the total length. These distances  
correspond to the distances D3 and D4 as shown in Figure 2–3.  
Note that the “NT configured” MC145574 should be placed in the adaptive timing mode for this configu-  
ration. This is achieved by holding the FIX pin low.  
2.5 BRANCHED PASSIVE BUS OPERATION  
A wiring configuration which has somewhat similar characteristics to those of the “extended passive  
bus” is known as the “branched passive bus” and is shown in Figure 2–4. In this configuration the  
branching occurs at the end of the bus. The branching occurs after a distance D1 from the NT. The  
distance D5 corresponds to the maximum separation between the TEs.  
<
><  
>
TE  
D5  
D1  
NT  
RxP  
TxP  
TR  
TR  
TR  
TR  
RxN  
TxN  
MC145574  
MC145574  
TxP  
RxP  
TxN  
RxN  
TxP TxN RxP RxN  
MC145574  
TE  
Figure 2–4. Branched Passive Bus  
2.6 NT1 STAR MODE OF OPERATION  
A wiring configuration which may be used to support multiple T interfaces is known as the “NT1 Star  
mode of operation.” This mode of operation is supported by the MC145574. This mode is described  
in Section 11. Note that the NT1 Star mode contains multiple NTs. Each of these NTs can be connected  
to either a passive bus (short, extended, or branched) or to a single TE.  
MOTOROLA  
MC145574  
2–3  
2–4  
MC145574  
MOTOROLA  
3
ACTIVATION/DEACTIVATION OF S/T TRANSCEIVER  
3.1 INTRODUCTION  
CCITT I.430, ETSI ETS 300012, and ANSI T1.605 define five information states for the S/T transceiver.  
When the NT is in the fully operational state, it transmits INFO 4. When the TE is in the fully operational  
state, it transmits INFO 3. INFO 1 is transmitted by the TE when it wants to wake up the NT. INFO 2  
is transmitted by the NT when it wants to wake up the TE, or in response to the TE’s transmitted  
INFO 1. These states cause unique patterns of symbols to be transmitted over the S/T–interface.  
Only when the S/T loop is in the fully activated state are the 2B+D channels of data transmitted over  
the interface.  
3.2 TRANSMISSION STATES FOR NT MODE S/T TRANSCEIVER  
When configured as an NT, an S/T transceiver can be in any of the following transmission states shown  
in Table 3–1.  
Table 3–1. NT Mode Transmission States  
Information State  
INFO 0  
Description  
The NT transmits 1s in every bit position. This corresponds to no signal being transmitted.  
INFO 2  
The NT sets its B1, B2, D, and E channels to 0. The A bit is set to 0. (See Sections 3.12.1 and  
3.12.2.)  
INFO 4  
INFO 4 corresponds to frames containing operational data on the B1, B2, D, and E channels.  
The A bit is set to 1.  
3.3  
TRANSMISSION STATES FOR TE MODE S/T TRANSCEIVER  
When configured as a TE, an S/T transceiver can be in any of the following transmission states shown  
in Table 3–2.  
Table 3–2. TE Mode Transmission States  
Information State  
INFO 0  
Description  
The TE transmits 1s in every bit position. This corresponds to no signal being transmitted.  
INFO 1  
The TE transmits a continuous signal with the following pattern: positive 0, negative 0, six 1s.  
This signal is asynchronous to the NT.  
INFO 3  
INFO 3 corresponds to frames containing operational data on the B1, B2, and D channels. If  
INFO 4 or INFO 2 is being received, INFO 3 will be synchronized to it.  
3.4 ACTIVATION OF S/T LOOP BY NT  
The NT activates the loop by transmitting INFO 2 to the TE(s). This is accomplished in the MC145574  
by setting NR2(3) to a 1 (see Section 3.12.3). Note that this bit is internally reset to 0 after the internal  
activation state machine has recognized its active transition.  
The TE on receiving INFO 2 synchronizes to it and transmits back INFO 3 to the NT. The NT, on  
receiving INFO 3 from the TE, responds with INFO 4, thus activating the loop.  
MOTOROLA  
MC145574  
3–1  
3.5 ACTIVATION OF S/T LOOP BYTE  
The TE activates an inactive loop by transmitting INFO 1 to the NT. This is accomplished in the  
MC145574 by setting NR2(3) to a 1. Note that this bit is internally reset to 0 after the internal activation  
state machine has recognized its active transition.  
The NT, upon detecting INFO 1 from the TE, responds with INFO 2. The TE, upon receiving a signal  
from the NT, ceases transmission of INFO 1, reverting to transmitting INFO 0. After synchronizing  
to the received signal and having fully verified that it is INFO 2, the TE responds with INFO 3, thus  
activating the loop.  
3.6  
ACTIVATION PROCEDURES IGNORED  
The MC145574 has the capability of being forced into the highest transmission state. This is accom-  
plished by setting BR7(7) to a 1. Thus when this bit is set in the NT, it forces the NT to transmit INFO 4.  
Correspondingly, in the TE, setting this bit to 1 forces the TE to transmit INFO 3.  
Note that CCITT I.430, ETSI ETS 300012, and ANSI T1.605 specifications allow a TE to be activated  
by reception of INFO 4, without having to go through the intermediate handshaking. This is to allow  
for the situation where a TE is connected to an already active loop.  
However, an NT can not be activated by a TE sending it INFO 3, without going through the intermediate  
INFO 1, INFO 2, INFO 3, and INFO 4 states.  
This “Activation Procedures Ignored” feature is provided for test purposes, allowing the NT to forcibly  
activate the TE(s). In the TE, the forced transmission of INFO 3 enables verification of the TEs opera-  
tion.  
3.7 FRAME SYNC  
3.7.1  
NT Mode  
When the S/T transceiver in the NT mode is receiving INFO 3 from the TE(s) and has achieved frame  
synchronization, it sets the FSYNC status bit NR1(0) high.  
3.7.2  
TE Mode  
When the TE is receiving either INFO 2 or INFO 4 from the NT, and has achieved frame synchronization,  
the MC145574 internally sets the SCP nibble bit, NR1(0). NR1(0) performs this function in both the  
NT and TE modes, for the MC145574.  
3.8  
ACTIVATION INDICATION  
NR1(3), the activation indication bit, is used to signify that the loop is fully active. When the MC145574  
is configured as an NT, this corresponds to the NT transmitting INFO 4 and receiving INFO 3. When  
the MC145574 is configured as a TE, this corresponds to it transmitting INFO 3 and receiving INFO 4.  
When the loop is in the fully active state, NR1(3) is internally set high.  
3.9  
NR1(2) Ċ ERROR INDICATION (EI)  
NR1(2) is set by the MC145574 S/T transceiver to indicate an error condition has been detected by  
the activation state machine of the transceiver, as outlined in CCITT I.430, ETSI ETS 300012, and  
ANSI T1.605. The low–to–high level transition of the EI bit corresponds to the EI1 error indication  
reporting, while the high–to–low level transition of the EI bit corresponds to the EI2 error indication  
reporting recovery. Note that NR1(2) is a read only bit.  
3–2  
MC145574  
MOTOROLA  
3.10 DEACTIVATION PROCEDURES  
CCITT I.430, ETSI ETS 300012, and ANSI T1.605 specifications dictate that only an NT can deactivate  
the S/T loop. Intuitively, this has to be the case because in a passive bus if one TE sends INFO 0,  
seeking to deactivate the loop, the other TE’s INFO 3 simply overrides it.  
An NT transmits INFO 0 to the TE(s) when it wishes to deactivate the S/T loop. This is done by setting  
NR2(2) (Deactivation Request) to a 1. Note that this bit is internally reset to 0 after the internal activation  
state machine has recognized its active transition.  
3.11 INITIAL STATE OF B1 AND B2 CHANNELS  
3.11.1 NT  
When the MC145574 is configured as an NT, NR5(3:2) corresponds to “IDLE B1 channel on S/T loop”,  
and “IDLE B2 channel on S/T loop”, respectively. The device comes out of a hardware or software  
reset with these two bits reset to 0. Thus, the NT comes out of reset with the B1 and B2 channels  
enabled. When the NT is transmitting INFO 4, data on the B1 and B2 IDL2 timeslots will be modulated  
onto the S/T loop. Setting either of these nibble bits in the NT mode will idle the corresponding B  
channel on the S/T loop. Note that putting a B channel in the idle mode affects only the transmitted  
B channel. The demodulated B data is still transmitted out on IDL2 Tx, in accordance with the IDL2  
specification.  
3.11.2 TE  
When the MC145574 is configured as a TE, NR5(3:2) corresponds to “ENABLE B1 channel on S/T  
loop,” and “ENABLE B2 channel on S/T loop,” respectively. The device comes out of a hardware or  
software reset with these two bits reset to 0. Thus, the TE comes out of reset with the B1 and B2  
channels disabled. When the TE is transmitting INFO 3, data on the B1 and B2 IDL2 timeslots is not  
modulated onto the S/T loop. Setting either of these bits enables the modulation of the corresponding  
B channel onto the S/T loop.  
Note that although the TE comes out of reset with both B channels in the idle mode, this only affects  
the modulation path. Demodulated data is still transmitted on D  
.
out  
3.12 ADDITIONAL NOTES  
3.12.1 M and N Parameters  
For conformance qualification procedures, it is often necessary to state the values of M and N, where:  
M is the number of successive good S0 frames for frame synchronization, and  
N is the number of successive bad S0 frames for frame loss.  
For the MC145574, M = 5 and N = 3.  
3.12.2 Echo Channel  
The NT demodulates the 2B+D data received from the TE(s). In addition to passing this data onto  
the network, the NT echoes the D channel data back to the TE(s) using the echo channel. This echo  
channel is monitored by the TEs and used in the D channel contention algorithm. For a detailed descrip-  
tion, refer to Section 11.  
MOTOROLA  
MC145574  
3–3  
3.12.3  
A Bit  
An S/T frame consists of 48 bauds. In the NT to TE direction, one of these bauds is for the A bit.  
The A bit is set to 1 when the S/T loop is in the fully activated state and is set to 0 at all other times.  
Thus, when the NT is transmitting INFO 2, the A bit is set to 0. When the NT is transmitting INFO 4,  
the A bit is set to 1.  
3.12.4 SCP Nomenclature  
There are seven nibble registers, 16 byte registers, and 10 overlay registers in the MC145574. These  
registers are accessed by means of the SCP. NR1(2) refers to nibble register 1, bit 2. Likewise, BR3(4)  
refers to byte register 3, bit 4, and OR5(6) refers to overlay register 5, bit 6.  
The overlay registers are a second bank of registers available when the overlay register control bit  
BR15(7) is set to logic 1.  
3.12.5 SCP Indication of Transmit and Receive States  
Note that there are two SCP bits, BR11(5:4), used to signify what INFO state the MC145574 is receiv-  
ing. In addition to this, BR11(3:2) are used to signify what INFO state the MC145574 is transmitting.  
Refer to Tables 9–2 and 9–3 for a detailed description of these bits.  
3–4  
MC145574  
MOTOROLA  
4
THE INTERCHIP DIGITAL LINK  
4.1 INTRODUCTION  
The Interchip Digital Link (IDL2) of the MC145574 is backwards compatible with the IDL of the  
MC145474/75 S/T transceiver of first generation. In addition to the standard operating mode, this en-  
hanced interface features new modes that are programmable through the SCP.  
The IDL2 is a four–wire interface used for full–duplex communication between ICs on the board level.  
The interface consists of a transmit path, a receive path, an associated clock, and a sync signal. These  
signals are known as D , D , DCL, andFSC, respectively. Theclockdeterminestherateofexchange  
out in  
of data in both the transmit and receive directions, and the sync signal controls when this exchange  
is to take place. Three channels of data are exchanged every 8 kHz. These channels consist of two  
64 kbps B channels and one 16 kbps D channel used for full–duplex communication between the  
NT and TE.  
There are two modes of operation for an IDL2 device: IDL2 master and IDL2 slave. If an IDL2 device  
is configured as an IDL2 master, then FSC and DCL are outputs from the device. Conversely, if an  
IDL2 device is configured as an IDL2 slave, then FSC and DCL are inputs to the device. Ordinarily  
the MC145574 should be configured as an IDL2 slave when acting as an NT, and as an IDL2 master  
when acting as a TE. The exception to this rule is the option to configure the NT as an IDL2 master.  
The TE configured MC145574 also features the new option of operating in the IDL2 slave mode. These  
operation modes are described in Section 4.3.  
4.2 SIGNAL DESCRIPTION  
There are six pins associated with the IDL2 interface.  
FSC/FSR  
This pin is normally FSC and is an input/output pin to which all serial interface events are synchronized.  
This pin is periodic at 8 kHz. In the master mode, the pin is an output and is either derived from the  
S/T frame or from the XTAL. In the slave mode, this pin is an input.  
FSC can be reconfigured through the SCP to be FSR. In this mode, the IDL2 operates with two indepen-  
dent frame syncs, one for the Tx direction (FST) and one for the Rx direction (FSR). FSR is bidirectional,  
the direction depending on whether the IDL2 is a master or a slave. See Register OR7 description.  
DCL  
This is an input/output pin that provides the clock to the serial interface. In the master mode, this pin  
is an output. In the slave mode, this pin is an input. The clock is continuous and the edges are synchro-  
nous with the frame sync.  
When DCL is an output, the clock rate can be programmed through the SCP to be 2.56 MHz,  
2.048 MHz, 1.536 MHz, or 512 kHz. When DCL is an input, the clock rate can be between 512 kHz  
and 4096 kHz (DCL should be a multiple of FSC.) Selection of the clock frequency is accomplished  
in the same manner as used in MC145474, through the bits BR7(2) and BR13(5). See Table 4–1  
for IDL2 clock speeds.  
MOTOROLA  
MC145574  
4–1  
Table 4–1. IDL2 Clock Speeds  
BR13(5)  
BR7(2)  
DCL  
0
0
1
1
0
1
0
1
2.56 MHz  
2.048 MHz  
1.536 MHz  
512 kHz  
D
in  
This pin is always an input. Data to be output on the S/T–interface is input on this pin.  
D
out  
This pin is a three–state output. Data received on the S/T–interface is output on this pin during pro-  
grammed timeslots and is high impedance at all other times.  
TSEN/FST  
This pin is normally three–state, but it can be reconfigured through the SCP to be used as TSEN  
or FST. See Register OR7 description.  
TSEN is an open drain output. TSEN can be used to enable an external bus driver and pulses low  
when data is being output on the D  
driver in applications where the D  
wire–OR’d with other devices and share the same driver.  
pin. This signal can be used to control a high drive bus/backplane  
data is going off–board. Since TSEN is open drain, it can be  
out  
out  
This pin can also be reconfigured through the SCP to be used as FST. In this mode, the IDL2 interface  
operates with two independent frame syncs, one for the Tx direction (FST) and one for the Rx direction  
(FSR). FST is bidirectional, the direction depending on whether the IDL2 is a master or a slave.  
TFSC/TCLK/T_IN/FIX  
This pin is the FIX input in NT modes, but in the TE slave mode it is reconfigured to be used as TFSC  
and outputs an 8 kHz signal that is synchronized to the incoming S/T–interface frames. The TFSC  
can be used in NT2 applications where the TE slave mode is utilized. The TFSC can be used to synchro-  
nize the TE slaves to the network. Alternatively, this pin can output TCLK, selected via the SCP. TCLK  
is a clock whose frequency can be chosen via the SCP, which is also synchronized to the received  
S/T–interface. TCLK can be used as an alternative to TFSC in the NT2 slave–slave mode. Refer to  
the slave–slave mode section for further details on TFSC and TCLK. See Register OR7 description.  
In the NT Terminal mode (NTTERM), this pin is T_IN. See the section on NT Terminal mode. See  
description for Register OR8.  
4.3 IDL2 STANDARD MODE  
4.3.1  
NT IDL2 Slave  
This is the normal mode of operation for the MC145574, when active as an NT. In this mode FSC  
and DCL are inputs to the device, and the outgoing S/T frame is synchronized to the IDL2 frame sync.  
Typically the MC145574, when configured as an NT, is situated on a line card or an NT1 box. As  
an IDL2 slave, this allows the S/T chip to derive its timing from the backplane or from the  
MC14LC5472/MC145572 U–chips. As mentioned previously, FSC must be 8 kHz, while DCL can be  
input to the device with any frequency from 512 kHz to 4.096 MHz.  
When the MC145574 is configured as an NT, then BR7(3) determines whether the NT is acting as  
an IDL2 master or as an IDL2 slave. When BR7(3) is a 0, the MC145574, when acting as an NT,  
is behaving as an IDL2 slave. Conversely, when BR7(3) or OR8(3) is set to a 1, or when pulling high  
the M/S pin, the chip acting as an NT behaves as an IDL2 timing master.  
4–2  
MC145574  
MOTOROLA  
4.3.2  
NT IDL2 Master  
As mentioned previously, the normal configuration for the MC145574, when configured as an NT, is  
as an IDL2 slave. However, in order to facilitate testing of the environment in which the MC145574  
resides, the capability exists to configure the chip as an NT IDL2 master. In this mode of operation,  
the chip outputs FSC and DCL. These signals are divided down from the 15.36 MHz crystal input  
XTALIN and hence are synchronous with it. The NT IDL2 master mode also finds use in testing PC–  
based local area networks or in passive bus configurations. In these environments, it may be required  
to configure one of the TEs to act as an NT. The NT IDL2 master enables the user to do this. Writing  
a 1 to BR7(3) or OR8(3), or pulling high the M/S pin, puts the NT into the IDL2 master mode. Note  
that a software or a hardware reset reconfigures the NT as an IDL2 slave.  
When the MC145574 is acting as an NT IDL2 master, the DCL can be programmed to output one  
of four frequencies. The DCL rate is determined by BR7(2) and BR13(5). In the NT IDL2 master mode,  
the DCL is obtained by dividing down from the 15.36 MHz crystal. Application of a software or a hard-  
ware reset will reset BR7(2) and BR13(5) to 0. Note that these bits have no application when the  
MC145574 is an NT IDL2 slave.  
4.3.3  
TE IDL2 Master  
This is the normal mode of operation for the MC145574 when active as an NT. In this mode, the  
MC145574 derives its timing from the inbound data from the NT. When the TE is receiving either INFO 2  
or INFO 4 from the NT, it adaptively phase–locks onto it. The TE sets the FSYNC bit (NR1(0)) high  
when this frame synchronization has been achieved. When this occurs, the TE outputs FSC, DCL,  
and D  
synchronous with the inbound INFO 2 or INFO 4. If the TE is receiving INFO 2, it outputs  
“idle 1s” on D in the B1, B2, and D channel timeslots. If the TE is receiving INFO 4, it outputs valid  
out  
out  
data in these timeslots.  
Note that when the TE has reached its fully active state, it internally sets the activate indication bit  
(NR1(3)). (The active state for a TE is when it is receiving INFO 4 from the NT, has phase–locked  
onto it, and is transmitting back INFO 3 to the NT.) In the TE IDL2 master mode, BR7(2) and BR7(3)  
determine the output DCL rate. See description of BR7 bits 1 and 2 in Section 9.9.  
4.3.4  
TE IDL2 Master Free Run  
The capability exists in the MC145574 to configure the chip as a TE operating in the IDL2 master  
free run mode. This is done by setting BR7(3) to a 1. In this mode, the TE sends out a DCL and FSC  
regardless of the state of the frame synchronization bit (NR1(0)). If NR1(0) is low, then FSC and DCL  
are derived from the crystal in the same way as in the NT IDL2 master mode. Upon achieving frame  
synchronization (i.e., the TE is receiving either INFO 2 or INFO 4 from the NT, has phase–locked  
onto it, and has set NR1(0)), FSC and DCL will become synchronous to the inbound INFO 2 or  
INFO 4 from the NT. The TE IDL2 master mode has the capability of providing four clock rates:  
2.56 MHz, 2.048 MHz, 1.536 MHz, and 512 kHz.  
4.3.5  
TE IDL2 Slave  
The TE slave–slave mode should be selected when the device is to be used on the T–interface of  
an NT2. In this mode, the IDL2 is in the slave mode, and D channel data is continuously transmitted/re-  
ceived to/from the T–interface. The D channel access algorithm is disabled in this mode.  
In this mode, the frame sync and serial clock are inputs. The IDL2 circuitry incorporates buffering  
to accommodate any phase relationship between the frame sync and the received S/T frame. The  
buffering is able to absorb low–frequency wander between the IDL2 frame sync and the S/T frame.  
The wander absorption capability exceeds the requirement of Q.502, which defines wander as 18 µs  
peak–to–peak at frequencies below 10 Hz over a 24–hour period.  
MOTOROLA  
MC145574  
4–3  
4.3.6  
Additional Notes  
4.3.6.1  
Phase Relationship of the NT Transmit Signal with Respect to FSC/FSR  
The MC145574 operating as an NT behaves as an IDL2 slave, FSC/FSR and DCL being inputs to  
the device. FSC/FSR is a single positive polarity pulse, one DCL cycle in duration, and is periodic  
at an 8 kHz rate. The MC145574 operating as an NT uses FSC/FSR to correctly position its outbound  
waveform. Thus, the FSC/FSR input to the NT and the NT’s outbound INFO 2 or INFO 4 are synchro-  
nous. The phase relationship of these signals is shown in Figure 4–1 with a “close–up shot” included.  
4.3.6.2  
Phase Relationship of the TE Transmit Signal with Respect to FSC/FSR, When in  
the IDL2 Master Mode  
The MC145574 operating as a TE behaves as an IDL2 master; FSC/FSR and DCL are outputs from  
the device. The TE derives its timing from the inbound INFO 2 or INFO 4 from the NT. There is a  
two–baud turnaround in the TE in accordance with CCITT I.430, ETSI ETS 300012, and ANSI T1.605  
specifications; i.e., the time between the TE’s received “F bit” and its transmitted “F bit” is equivalent  
to two bauds. This is indicated in Figure 4–2. The TE outputs FSC/FSR, DCL, and D  
achieved frame synchronization. The phase relationship of the TE’s transmitted INFO 3 and FSC/FSR  
is as shown in Figure 4–3 with a “close–up shot” included.  
when it has  
out  
4.3.6.3  
Operation of Multiple MC145574s in TE Slave Mode  
When the MC145574 is configured for TE slave mode in NT2 applications, the T_IN/TFSC/TCLK/FIX  
pin defaults to the TFSC function. As TFSC, this pin outputs an 8 kHz frame sync that is synchronized  
to recovered timing from the network.  
In TE slave mode, the T_IN/TFSC/TCLK/FIX pin function can be changed to TCLK, which outputs  
a network synchronized high frequency clock. This is done by setting OR7(5) to a 1. The clock frequen-  
cy of TCLK is selected in the same manner as programming the DCL clock in IDL2 master mode.  
Elasticbuffers are included in TE slave mode to allow the MC145574 to operate with any phase relation-  
ship between the IDL2 frame sync and the network. This buffer also allows the frame sync to wander  
with respect to the network, up to 60 µs peak–to–peak. This exceeds the requirements of Q.502, which  
states that wander up to 18 µs peak–to–peak may arise over a 24–hour period.  
An example architecture of an NT2 is shown in Figure 4–4. The TFSC or TCLK signal supplied by  
the TE is used to synchronize the entire NT2 to the network. The TFSC/TCLK pins can be wire OR’d  
together and connected to V  
via a pull–up resistor. Each TE looks at the TFSC/TCLK pin during  
DD  
its programmed B1 channel timeslot. If there is no signal present and the TE is activated, it outputs  
a synchronized signal on TFSC/TCLK. It is important for all TEs to have their B and D channels config-  
ured using the timeslot assigner, and no two devices can share a timeslot.  
4.3.6.4  
Independent Tx/Rx Frame Syncs  
Via the SCP, two pins (FST and FSR) are available to handle the transmit and receive frames indepen-  
dently on the IDL2 interface. These pins must operate synchronously with the DCL clock. Operation  
of FST and FSR is dependent on the master or slave mode. Separate frame syncs are enabled by  
setting OR7(4) to a 1.  
In the slave mode, FST and FSR may assume any relationship with respect to each other.  
In the master mode, both FST and FSR are operational and locked together in time. Long frame format  
can not be used with independent Tx/Rx frame syncs.  
4.3.6.5  
Timeslot Assignment  
The MC145574 contains a timeslot assigner. The timeslot immediately following the FSC/FSR/FST  
signal is timeslot zero. Timeslots are available up to the maximum DCL rate of 4096 kHz. The timeslots  
are programmed through a group of control registers in the overlay register map. Up to 256 start times  
may be defined, corresponding to each 2–bit boundary defined by DCL.  
4–4  
MC145574  
MOTOROLA  
FSC/FSR  
125 µs  
B1  
B2  
B1  
B2  
F
L
2
E
D A F  
N
E
D M  
E
D S  
E D L F L  
A
NT TRANSMIT  
(INFO 4)  
1
3 4  
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2  
250 µs  
FSC/FSR  
DCL  
B1  
32  
B1  
33  
B1  
34  
E
NT TRANSMIT  
(INFO 4)  
35  
B1  
B2  
B1  
B2  
F
L
E
D A F  
N
E
D M  
E
D S  
E D L F L  
A
TE RECEIVED  
SIGNAL  
(INFO 4)  
B1  
B2  
B1  
B2  
D L  
F
L
L
D L F  
L
L
D L  
L D L  
L D L F L  
A
TE TRANSMITTED  
SIGNAL  
(INFO 3)  
2 BAUD TURNAROUND 10.4 µs  
FSC/FSR  
125 µs  
B1  
B2  
B1  
B2  
F
L
2
L D L F  
L
L D L  
L
D L  
L D L F L  
A
TE TRANSMIT  
(INFO 3)  
1
3 4  
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2  
250 µs  
FSC/FSR  
DCL  
B1  
32  
B1  
33  
B1  
34  
L
TE TRANSMIT  
(INFO 3)  
35  
NT  
NT  
NT  
TE  
TE  
TE  
TFSC  
CLK  
FSC SOURCE  
SELECTOR  
CLK  
S
S
S
T
T
T
SYNC  
SYNC  
DATA  
SYNC AND CLOCK  
GENERATOR  
DATA  
TSA CONTROLLER  
TFSC  
CLK  
CLK  
SYNC  
DATA  
SYNC  
DATA  
CONTROL  
BUS  
TFSC  
CLK  
CLK  
SYNC  
CLK  
FRAME SYNC  
SYNC  
DATA  
DATA  
NT  
TFSC TE  
CLK  
CLK  
S
T
SYNC  
DATA  
SYNC  
DATA  
SUBSCRIBER  
LINES  
S–INTERFACE  
TRUNK LINES  
TO CENTRAL OFFICE(S)  
T–INTERFACE  
Figure 4–4. Example Architecture of an NT2  
Independent timeslot assignment is available for the B1, B2, and D channels in both the transmit and  
receive directions. B1, B2, and D timeslots may be enabled separately. When a timeslot is enabled,  
the IDL2 automatically enters timeslot mode. If any one channel’s timeslot is not enabled, data trans-  
mitted by the framer for that channel will be filled with all ones, and the channel will not be present  
on D  
.
out  
With a DCL rate of 4096 kHz, it is possible to allocate 1 of 256 possible timeslots to each data channel.  
It is important that the software selects a timeslot consistent with the DCL rate. When a clock rate  
of 2048 kHz is being used, only 128 timeslots are available. If a timeslot out with the available range  
is chosen, then no data transfer occurs for that timeslot.  
The default values assigned to the B1, B2, and D channels are 00H, 04H, and 08H. These values  
provide an IDL2 8–bit output format as default.  
The IDL2 10–bit mode is not available when the timeslot assigner has been enabled.  
CAUTION  
Do not program overlapping timeslots even if a timeslot has not been enabled. The transmit  
and receive timeslot for a given B1, B2, or D channel can be the same.  
4.3.6.6  
Short and Long Framing  
In master timing mode, the default state is to supply a one–clock–wide FSC/FSR/FST frame sync.  
However, an option is provided to change this to long frame. The length of the long frame pulse is  
always 8–bit clocks, regardless of whether an 8– or 10–bit format is selected. In the slave mode, the  
MC145574 will automatically adjust to whichever framing method is supplied. If the frame sync is two  
or more clocks wide, the MC145574 assumes a long frame format.  
A long frame format cannot be used in timeslot assignment mode.  
4–8  
MC145574  
MOTOROLA  
4.3.6.7  
TSEN Signal  
The TSEN signal is enabled via the SCP. See description for OR7 bits 1 and 0. This pin then becomes  
an open drain output that pulls low when data is being output from D . This signal can then be used  
out  
to enable an external driver in applications where the IDL2 data goes off–board, such as PBXs, channel  
banks, etc.  
4.3.6.8  
Miscellaneous  
Clock Options  
In the slave mode, the IDL2 interface accepts any clock from 512 kHz to 4096 kHz in 8 kHz increments.  
In the master mode, the DCL has four frequency options, programmable through the SCP. The clock  
rate can be either 2.56 MHz, 2.048 MHz, 1.536 MHz, or 512 kHz. The default selection is 2.56 MHz.  
B Channel Exchange  
An option is provided to exchange the B1 and B2 channels inside the IDL2. This exchange operates  
simultaneously in both Tx and Rx directions.  
B1 and B2 Blocking  
Options are provided to independently block or force the B1 and B2 channels to all ones in both the  
transmit and receive directions.  
B1 and B2 Inversion  
Options are provided to independently invert the B1 and B2 channels in both the transmit and receive  
directions.  
B1, B2, and D Loopbacks  
Options are provided to make an individual loopback on each B1, B2, or D channel.  
4.3.6.9  
IDL2 Waveform Diagrams  
The relative timing relationships of the IDL2 signals are shown in Figures 4–5 through 4–8.  
MOTOROLA  
MC145574  
4–9  
FSC/FSR  
DCL  
B1 B1 B1 B1 B1 B1 B1 B1  
D
D
B2 B2 B2 B2 B2 B2 B2 B2  
D
D
D
in  
D
out  
B1 B1 B1 B1 B1 B1 B1 B1  
B2 B2 B2 B2 B2 B2 B2 B2  
Figure 4–5. Standard IDL2 10–Bit Mode  
FSC/FSR  
DCL  
D
in  
B1 B1 B1 B1 B1 B1 B1 B1 B2 B2 B2 B2 B2 B2 B2 B2  
B1 B1 B1 B1 B1 B1 B1 B1 B2 B2 B2 B2 B2 B2 B2 B2  
D
D
D
D
D
out  
Figure 4–6. Standard IDL2 8–Bit Mode with Long Frame Sync  
FSC/FSR  
DCL  
D
in  
B1 B1 B1 B1 B1 B1 B1 B1 B2 B2 B2 B2 B2 B2 B2 B2  
D
D
FST  
B1 B1 B1 B1 B1 B1 B1 B1 B2 B2 B2 B2 B2 B2 B2 B2  
D
D
D
out  
Figure 4–7. Standard IDL2 8–Bit Slave Mode with Independent Frame Syncs  
4–10  
MC145574  
MOTOROLA  
Figure 4–8. Timeslot Operation with Independent Slave Frame Syncs, TSEN  
MOTOROLA  
MC145574  
4–11  
4–12  
MC145574  
MOTOROLA  
5
SERIAL CONTROL PORT  
5.1 INTRODUCTION  
The MC145574 is equipped with a serial control port (SCP). This SCP is used by external devices  
(such as an MC145488 DDLC or 68302) to communicate with the S/T transceiver. The SCP is an  
industry standard serial control port and is compatible with Motorola’s SPI, which is used on several  
single–chip MCUs.  
The SCP is a five–wire bus with control and status bits, with data being passed to and from the S/T  
transceiver in a full–duplex fashion.  
The SCP interface consists of a transmit path, a receive path, an associated clock, an enable signal,  
and an interrupt indicate. These signals are known as SCP Tx, SCP Rx, SCPCLK, SCPEN, and IRQ.  
The clock determines the rate of exchange of data in both the transmit and receive directions, the  
enable signal governs when this exchange is to take place, and the interrupt signal indicates that  
an interrupt condition exists and a read operation of the interrupt status register (NR3) is required.  
The operation/configuration of the S/T transceiver is programmed by setting the state of the control  
bits within the S/T transceiver. The control, status, and data information reside in eight 4–bit–wide  
nibble registers, sixteen 8–bit–wide byte registers, and sixteen 8–bit–wide overlay registers. The nibble  
registers are accessed via an 8–bit SCP bus transaction. The 16–byte–wide registers are accessed  
by first writing to a pointer register within the eight 4–bit–wide nibble registers. This pointer register  
(NR(7)) then contains the address of the byte wide register to be read from or written to on the following  
SCP transaction. Thus, an SCP byte access is in essence a 16–bit operation. Note that this 16–bit  
operation can take place by means of two 8–bit accesses or a single 16–bit access.  
5.2 SCP TRANSACTIONS  
There are six types of SCP transactions.  
1. SCP Nibble Register Read  
2. SCP Nibble Register Write  
3. SCP Byte Register Read  
4. SCP Byte Register Write  
5. SCP Merged Read  
6. SCP Merged Write  
The following sections contain a discussion on each type of SCP transaction.  
5.2.1 SCP Nibble Register Read  
A nibble register read is an 8–bit SCP transaction. Figure 5–1 illustrates this process. To initiate an  
SCP nibble register read, the SCPEN pin is brought low. Following this, a read/write (R/W) bit, followed  
by three primary address bits (A0 – A2 = 0 to 6), are shifted (MSB first) into an intermediate buffer  
register on the first four rising edges of SCPCLK, following the high–to–low transition of SCPEN. If  
a read operation is to be performed, then R/W should be a 1. The three address bits clocked in after  
the R/W bit select which nibble register is to be read. The contents of this nibble register are shifted  
out on SCP Tx on the subsequent four falling edges of SCPCLK; i.e., the four falling edges of SCPCLK  
after the rising edge of SCPCLK, which clocked in the last address bit (LSB). SCPEN should be brought  
MOTOROLA  
MC145574  
5–1  
back high after the transaction, before another rising edge of SCPCLK is encountered. Note that  
SCP Rx is ignored during the time that SCP Tx is being driven. Also note that SCP Tx comes out  
of high impedance only when it is transmitting data.  
SCPEN  
DON’T CARE  
DON’T CARE  
SCPCLK  
SCP Rx  
SCP Tx  
R/W A2 A1 A0  
D3 D2 D1 D0  
HIGH IMPEDANCE  
Figure 5–1. Serial Control Port Nibble Register Read Operation  
5.2.2 SCP Nibble Register Write  
A nibble register write is an 8–bit SCP transaction. Figure 5–2 illustrates this process. To initiate an  
SCP nibble register write, the SCPEN pin must be brought low. Following this, an R/W bit followed  
by three primary address bits are shifted (MSB first) into an intermediate buffer register on the first  
four rising edges of SCPCLK following the high–to–low transition of SCPEN. If a write operation is  
to be performed, then R/W should be a 0. The three address bits, clocked in after the R/W bit, select  
the nibble register to be written to. The data shifted in on the next four rising edges of SCPCLK is  
then written to the selected register. Throughout this whole operation the SCP Tx pin remains in high–  
impedance state. Note that if a selected register or bit in a selected register is “read only”, then a  
write operation has no effect.  
SCPEN  
SCPCLK  
SCP Rx  
R/W A2 A1 A0 D3 D2 D1 D0  
DON’T CARE  
DON’T CARE  
SCP Tx  
HIGH IMPEDANCE  
NOTES:  
1. R/W = 0 for a read operation.  
2. Data is shifted out on SCP Tx on the falling edges of SCPCLK, MSB first.  
3. Data is shifted into the chip from SCP Rx on the rising edges of SCPCLK, MSB first.  
4. A2, A1, A0 = 0 to 6.  
Figure 5–2. Serial Control Port Nibble Register Write Operation  
5–2  
MC145574  
MOTOROLA  
5.2.3  
SCP Byte Register Read  
A byte register read is a 16–bit SCP transaction. Figure 5–3 illustrates this process. To initiate an  
SCP byte register read, the SCPEN is brought low. Following this, an R/W bit is shifted in from SCP  
Rx on the next rising edge of SCPCLK. This bit determines the operation to be performed; read or  
write.  
SCPEN  
SCPCLK  
DON’T CARE  
DON’T CARE  
SCP Rx  
R/W  
A3 A2 A1 A0  
HIGH  
IMPEDANCE  
SCP Tx  
D7 D6 D5 D4 D3 D2 D1 D0  
HIGH IMPEDANCE  
NOTES:  
1. R/W = 1 for a read operation.  
2. Data is shifted out on SCP Tx on the falling edges of SCPCLK, MSB first.  
3. Data is shifted into the chip from SCP Rx on the rising edges of SCPCLK, MSB first.  
Figure 5–3. Serial Control Port Byte Register Read Operation  
If R/W is a 1, then a read operation is selected. Conversely, if R/W is a 0, then a write operation is  
selected. The next three bits shifted in from SCP Rx on the three subsequent rising edges of  
SCPCLK are primary address bits (A0 – A2 = 7), as mentioned previously. With all three bits equal  
to 1, nibble register 7 (NR7) is selected. This is a pointer register, the selection of which informs the  
device that a byte operation is to be performed. When NR7 is selected, the following four bits shifted  
in from SCP Rx on the following four rising edges of SCPCLK are automatically written to NR7. These  
four bits are the address bits for the byte operation. In a read operation, the next eight falling edges  
of SCPCLK shift out the data from the selected byte register on SCP Tx.  
As mentioned previously, an SCP byte access is a 16–bit transaction. This can take place in one 16–bit  
exchange or two 8–bit exchanges. If the transaction is performed in two 8–bit exchanges, the SCPEN  
should be returned high after the first eight bits have been shifted into the part.  
When SCPEN comes low again, the MSB of the selected byte presents itself on SCP Tx. The following  
seven falling edges of SCPCLK shift out the remaining seven bits of the byte register. Note that the  
order in which data is written into the part and read out of the part is independent of whether the byte  
access is done in one 16–bit exchange or in two 8–bit exchanges. Figure 5–4 illustrates this process.  
MOTOROLA  
MC145574  
5–3  
SCPEN  
SCPCLK  
DON’T CARE  
DON’T CARE  
SCP Rx  
SCP Tx  
R/W  
A3 A2 A1 A0  
HIGH  
IMPEDANCE  
HIGH IMPEDANCE  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 5–4. Serial Control Port Byte Register Read Operation Double 8–Bit Transaction  
5.2.4 SCP Byte Register Write  
A byte register write is also a 16–bit SCP transaction. Figure 5–5 illustrates this process. To initiate  
an SCP byte register write, the SCPEN must be brought low. As before, the next bit determines whether  
the operation is to be read or write. If the first bit is a 0, then a write operation is selected. Again the  
next three bits read in from SCP Rx on the subsequent three rising edges of SCPCLK must all be  
1 in order to select the pointer nibble register (NR7). The following four bits shifted in are automatically  
written into NR7. As in an SCP byte register read, these bits are the address bits for the selected  
byte register operation. The next eight rising edges of SCPCLK shift in the data from the SCP Rx.  
This data is then stored in the selected byte register. Throughout this operation SCP Tx is in a high–im-  
pedance state. Note that if the selected byte is “read only”, then this operation has no effect.  
SCPEN  
SCPCLK  
SCP Rx DON’T CARE  
DON’T CARE  
R/W  
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
HIGH IMPEDANCE  
SCP Tx  
NOTES:  
1. R/W = 1 for a read operation.  
2. Data is shifted out on SCP Tx on the falling edges of SCPCLK, MSB first.  
3. Data is shifted into the chip from SCP Rx on the rising edges of SCPCLK, MSB first.  
Figure 5–5. Serial Control Port Byte Register Write Operation  
As mentioned previously, an SCP byte access is a 16–bit transaction. This can take place in one 16–bit  
exchange or two 8–bit exchanges. If the transaction is performed in two 8–bit exchanges, then SCPEN  
should be returned high after the first eight bits have been shifted into the part.  
5–4  
MC145574  
MOTOROLA  
When SCPEN comes low again, the next eight rising edges of SCPCLK shift data in from  
SCP Rx. This data is then stored in the selected byte. Figure 5–6 illustrates this process.  
SCPEN  
SCPCLK  
DON’T CARE  
DON’T CARE  
DON’T CARE  
SCP Rx  
SCP Tx  
R/W  
A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
HIGH IMPEDANCE  
Figure 5–6. Serial Control Byte Register Write Operation Double 8–Bit Transaction  
5.2.5 SCP Merged Read/Write  
Merged operations are accomplished by not taking SCPEN high between separate SCP instructions.  
The SCP bytes/nibbles are strung together in a continuous bit stream and can be a mux or read/write  
command. The device is able to extract the separate instructions and provide the appropriate response.  
The SCPEN signal goes low at the start of the bit stream and goes high again at the end.  
Figure 5–7 illustrates this process with two consecutive nibble register read operations. The merged  
instructions can be a free mix of nibble/byte/read/write operations.  
SCPEN  
SCPCLK  
SCP Rx  
R/W A2 A1 A0  
HIGH IMPEDANCE  
R/W A2 A1  
A0  
DON’T CARE  
DON’T CARE  
DON’T CARE  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
SCP Tx  
D3 D2 D1 D0  
D3 D2 D1 D0  
NOTES:  
1. R/W = 1 for a read operation.  
2. Data is shifted out on SCP Tx on the falling edges of SCPCLK, MSB first.  
3. Data is shifted into the chip from SCP Rx on the rising edges of SCPCLK, MSB first.  
Figure 5–7. Merged Serial Control Port Nibble Register Read Operation  
MOTOROLA  
MC145574  
5–5  
5.3 SIGNAL DESCRIPTION  
There are five signals which constitute the SCP bus.  
1. SCP Tx  
2. SCP Rx  
3. SCPCLK  
4. SCPEN  
5. IRQ  
A description of each signal follows.  
5.3.1  
SCP Tx  
SCP Tx is used to output control, status, and data information from the MC145574 S/T transceiver.  
The data is output in either 4–bit nibble or 8–bit byte groupings. The data is output in 4–bit nibble  
groupings during a nibble register read and in 8–bit byte groupings during a byte register read. Data  
is shifted out on SCP Tx on the falling edges of SCPCLK, MSB first.  
In a nibble register read transaction, the fourth rising edge of SCPCLK after SCPEN goes low shifts  
the LSB of the 3–bit nibble address into the MC145574. The following falling edge of SCPCLK shifts  
out the first bit of the selected nibble register (MSB) and takes SCP Tx out of the high–impedance  
state. The next three falling edges of SCPCLK shift out the other three bits of the selected nibble  
register. When the last bit (LSB) has been shifted out, SCPEN should be returned high. This action  
returns SCP Tx to a high–impedance state.  
In a byte register read transaction, the eighth rising edge of SCPCLK after SCPEN goes low shifts  
in the LSB of the 4–bit byte address. The following falling edge of SCPCLK (provided SCPEN is still  
low) shifts out the first bit (MSB) of the selected byte register and takes SCP Tx out of high impedance.  
The next seven falling edges of SCPCLK shift out the remaining seven bits of the selected byte register.  
When the last bit (LSB) has been shifted out, SCPEN should be returned high. This action returns  
SCP Tx to a high–impedance state.  
5.3.2  
SCP Rx  
SCP Rx is used to input control, status, and data information to the S/T transceiver. Data is shifted  
into the device on rising edges of SCPCLK. The format for the input of data is as follows: the first  
bit is the R/W bit (1 = read, 0 = write). This bit selects the operation to be performed on the selected  
registers within the MC145574 S/T transceiver. The next three bits address one of eight specific nibble  
registers within the MC145574 S/T transceiver on which the read or write operation is to be performed.  
The address bits are shifted in MSB first. The last four bits are either the data bits (MSB first) that  
are to be written to the S/T transceiver nibble register (NR0 through NR6), or are four additional address  
bits (if NR7 had been addressed). These address bits select one of the 16–byte–wide registers (which  
are accessed during the next eight cycles of the SCPCLK or a second 8–bit access). SCP Rx is ignored  
when data is being shifted out on SCP Tx, or when SCPEN is high.  
5.3.3  
SCPCLK  
This is an input to the device used for controlling the rate of transfer of data into and out of the SCP.  
Data is shifted into the part from SCP Rx on rising edges of SCPCLK. Data is shifted out of the part  
on SCP Tx on falling edges of SCPCLK. SCPCLK can be any frequency up to 4.096 MHz.  
An SCP transaction takes place when SCPEN is brought low. Note that SCPCLK is ignored when  
SCPEN is high; i.e., it may be continuous or it can operate in the burst mode.  
5–6  
MC145574  
MOTOROLA  
5.3.4  
SCPEN  
This signal, when held low, selects the SCP for the transfer of control, status, and data information  
into and out of the MC145574 S/T transceiver. SCPEN should be held low for 8 or 16 periods of the  
SCPCLK signal, in order for information to be transferred into or out of the MC145574 S/T transceiver.  
The phase relationship of SCPEN, with respect to SCPCLK, is as shown in Figures 5–1 through 5–6  
inclusive.  
The transition of SCPEN going high will abort any SCP operation in progress, and will force the SCP Tx  
pin into the high–impedance state.  
5.3.5  
IRQ  
IRQ is an open drain output to the device used for indicating that an interrupt condition exists. This  
pin is normally pulled high by an external resistor. When this pin goes low, it indicates a read operation  
of the interrupt status register (NR3) is required.  
5.4 SCP HIGH-IMPEDANCE DIGITAL OUTPUT MODE (SCP HIDOM)  
The MC145574 S/T transceiver has the capability of forcing all output pins of the MC145574 (both  
analog and digital) to the high–impedance state. This feature, known as the “Serial Control Port High–  
Impedance Digital Output Mode”, or SCP HIDOM, is provided to allow “in circuit” testing of other circuits  
or devices resident on the same PCB, without requiring the removal of the MC145574.  
The SCP HIDOM mode is entered by holding SCPEN low for a minimum of 33 consecutive rising  
edges of SCPCLK while SCP Rx is high. After entering this mode, if SCPEN goes high or if SCP Rx  
goes low, the device will exit the SCP HIDOM mode and return to normal operation.  
5.5 ADDITIONAL NOTES  
5.5.1 SCP Independent of Crystal  
The MC145574 S/T transceiver operates with a 15.36 MHz crystal frequency. Details of the crystal  
circuit can be found in Section 7. The SCP operates independently of the 15.36 MHz crystal; i.e.,  
the SCP can be accessed in the presence or absence of the 15.36 MHz input.  
5.5.2 SCP Slave  
The SCP in the MC145574 always operates in the SCP slave mode. The SCP slave mode is defined  
as having SCPCLK and SCPEN as inputs to the device. Thus, any device which communicates with  
the MC145574 via the SCP must be able to operate in the SCP master mode where SCPCLK and  
SCPEN are outputs. Note that the MC145488 dual data link controller (DDLC) and 68302 operate  
in the SCP master mode.  
MOTOROLA  
MC145574  
5–7  
5–8  
MC145574  
MOTOROLA  
6
GENERAL CIRCUIT INTERFACE  
6.1 OVERVIEW  
The MC145574 is able to work with a General Circuit Interface port (GCI). The GCI is a standard  
four–wire interface between devices for the subscriber access in ISDN and analog environments. The  
principle use in these applications is to control the subscriber line interface circuitry.  
The following are some of the benefits of the General Circuit Interface.  
Operation and Maintenance Features  
Activation and Deactivation Facilities (via a Control Indication (C/I) Channel)  
Well–Defined Transmission Protocols to Ensure Correct Information Transfer Between GCI Com-  
patible Devices  
Point–to–Point and Multipoint Communication Links  
Multiplexed Mode of Operation Where up to Eight GCI Channels can be Combined to Form a  
Single Data Stream  
The GCI interface consists of a transmit path, a receive path, an associated clock, and a frame sync  
signal. These signals are known as D , D , DCL, and FSC.  
out in  
The clock determines the rate of exchange of data in both the transmit and receive directions. The  
frame sync signal indicates when this exchange will start.  
6.2 GCI FRAME STRUCTURE  
In a GCI channel, information is in a 4–byte time–division based structure with a repetition rate of  
8 kHz. The four bytes are B1 and B2 channels, a monitor (M) channel, and a C/I channel.  
The two independent B channels are used to carry subscriber voice and data information. The M chan-  
nel is used for operation and maintenance facilities. The C/I channel is further subdivided into two  
bits for the D channel information, four bits for the control/indication (C/I) channel, and two bits for  
the A and E channels that are used to control the transfer of information on the Monitor channel.  
Figure 6–1 shows the relative positions of these channels.  
6.3  
ENABLING THE GCI MODES  
GCI modes can be enabled via two different methods, depending on the application requirements.  
1. The GCI mode can be enabled through the GCI control register present in the SCP. This is called  
indirect mode. See descriptions for OR6(2) and OR5.  
2. Alternatively, if the SCP port is not required or available, then the GCI mode can be enabled at  
hardware reset. This is called direct mode. This is done by connecting SCPEN/GCIEN to V  
during reset.  
SS  
MOTOROLA  
MC145574  
6–1  
125 µs  
BASIC GCI CHANNEL  
DCL = 512 kHz  
FSC  
DCL  
FSC = 8 kHz  
D
/D = 256 kbps  
out in  
B1 B1 B1 B1 B1 B1 B1 B1  
B1 B1 B1 B1 B1 B1 B1 B1  
B2  
M
M
D D  
C/I  
C/I  
A E  
A E  
D
out  
B2  
D D  
D
in  
IF S(2:0) = 3  
FSC  
DCL  
D
D
out  
in  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
125 µs  
8 CHANNEL GCI MULTIPLEX  
DCL = 4096 kHz /D = 256 kbps/CH  
D
FigurFeSC6=81k.Hz  
out in  
Figure 6–1a. Relative Channel Positions (GCI Slave Mode)  
6–2  
MC145574  
MOTOROLA  
125 µs  
BASIC GCI CHANNEL  
DCL = 512 kHz  
FSC = 8 kHz  
D
/D = 256 kbps  
out in  
FSC  
DCL  
IF M(2:0) = 7  
B1 B1 B1 B1 B1 B1 B1 B1  
B1 B1 B1 B1 B1 B1 B1 B1  
B2  
M
M
D D  
C/I  
C/I  
A E  
A E  
D
out  
B2  
D D  
D
in  
FSC  
DCL  
IF M(2:0) = 4  
D
D
out  
in  
S/G  
CH0  
CH1  
CH2  
125 µs  
3 CHANNEL GCI MULTIPLEX  
DCL = 1536 kHz /D = 256 kbps/CH  
FSC = 8 kHz  
D
out in  
FSC  
DCL  
IF M(2:0) = 0  
D
D
out  
in  
CH0  
CH1  
CH2  
CH3  
125 µs  
4 CHANNEL GCI MULTIPLEX  
DCL = 2048 kHz /D = 256 kbps/CH  
FSC = 8 kHz  
D
out in  
Figure 6–1b. Relative Channel Positions (GCI Master Mode)  
MOTOROLA  
MC145574  
6–3  
6.4 GCI INDIRECT MODE  
When control of the SCP interface is available, a pseudo GCI mode can be activated through the  
GCI control register. In the indirect mode, the SCP interface operates as normal and the IDL2 interface  
operates in a GCI type 2B+D data format mode. This means that the 2B+D data is assembled in a  
pseudo GCI frame for transmission, but the C/I, monitor, and A/E fields are high impedance. For recep-  
tion, data is recognized in the B and D channels but is ignored in the C/I, M, and A/E channels. The  
SCP interface is available as normal.  
125 µs  
BASIC GCI CHANNEL IN INDIRECT MODE  
FSC  
DCL  
FSC = 8 kHz  
DCL = 512 kHz  
D
/D = 256 kbps  
out in  
B1  
B1  
B2  
D D  
D
out  
B2  
D D  
D
in  
Figure 6–2. GCI Indirect Mode  
The following GCI control bits are located in the overlay register set, in OR5 and OR6.  
GCI_IND EN, OR6(b2)  
At reset, this bit is set to a logic zero; the inactive state (i.e., normal IDL2 mode). When set to a logic  
one, the IDL2 port is reconfigured to have the same 2B+D data format as a GCI interface. When GCI  
indirect mode is inactive, OR5(2:0) and OR6(1:0) bits are disabled.  
CLK(1:0), OR6(b1, b0)  
In master mode, these two bits control the output clock frequency of GCI_DCL. CLK(1:0)=0 is the  
default state.  
Table 6–1. CLK1, CLK0  
GCI Clock Selection  
CLK1  
CLK0  
OR6(b1)  
OR6(b0)  
GCI_DCL  
2.048 MHz  
2.048 MHz  
1.536 MHz  
512 kHz  
0
0
1
1
0
1
0
1
6–4  
MC145574  
MOTOROLA  
S(2:0), OR5(b2, b1, b0)  
These three bits select the GCI timeslot that the device will use. S(2:0)=0 is the default state, timeslot 0.  
The timeslot selected must be compatible with the DCL clock rate being used (i.e., if the clock rate  
is 2048 kHz, only the first four timeslots are available).  
Table 6–2. GCI Timeslot Assignment  
S2  
S1  
S0  
OR5(b2)  
OR5(b1)  
OR5(b0)  
Timeslot  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
FSC  
This is an input/output pin to which all serial interface events are synchronized. This pin is periodic  
at 8 kHz/125 µs. In the master mode, the pin is an output and is either derived from the S/T frame  
or from XTAL. In the slave mode, the pin is an input.  
DCL  
This is an input/output pin that provides the clock to the serial interface. In the master mode, this pin  
is an output; and in the slave mode, it is an input. The clock is continuous and is synchronous with  
the frame sync. The clock rate for GCI is double the bit rate (i.e., two clocks per data bit).  
When programmed as an input, the clock rate can be any multiple of 16 kHz between 512 and  
4096 kHz.  
When programmed as an output, the clock rate can be selected via the SCP GCI control register  
to be either 2048, 1536, or 512 kHz.  
D
in  
This pin is always an input. Data to be output on the S/T–interface is input on this pin during the pro-  
grammed timeslots. This pin is also the input for the monitor and C/I channels of the GCI frame.  
D
out  
This pin is an open drain output and requires an external pull–up resistor. This output can be wire–OR’d  
with other GCI devices. Data received on the S/T–interface is output on this pin during the programmed  
timeslot and is high impedance at all other times. This pin is also the output for the monitor and C/I  
channels of the GCI frame.  
MOTOROLA  
MC145574  
6–5  
6.5 GCI DIRECT MODE  
The alternative GCI mode is direct mode. This mode should be used when a fully–compliant GCI  
is required. In this mode, the SCP interface is not available.  
In a GCI direct mode the monitor, C/I, and A/E channels are fully active and compatible with the GCI  
standards.  
To enter a GCI direct mode, the SCPEN/GCIEN pin should be tied to V  
and a reset applied to the  
SS  
device. The GCI direct mode is selected on the rising edge of RESET. The GCIEN pin must be tied  
to V at all times when GCI direct mode is the required mode of operation. The GCIEN pin is continu-  
SS  
ously sampled internally. A “zero–to–one” transition on GCIEN will cause the MC145574 to exit from  
a GCI direct mode into IDL/SCP mode.  
In GCI direct mode, the IRQ function is not required and is internally disabled.  
On entering GCI direct mode, the pins of the MC145574 are redefined as follows.  
SCPEN changes to GCIEN (an input).  
FST changes to BCL (an output).  
SCPCLK changes to S2 (an input) in slave mode, and M2 (an input) in master mode.  
SCP Rx changes to S1 (an input) in slave mode, and M1 (an input) in master mode.  
SCP Tx changes to S0 (an input) in slave mode, and M0 (an input) in master mode.  
DGRANT changes to SG (an output) in TE master mode.  
BCL is enabled in both the slave and master mode. BCL is an output clock which is the DCL  
clock divided by two. BCL is synchronous with FSC and can be used by non–GCI devices which  
require a locked bit frequency clock to access the B and D channel slots (i.e., codec).  
6.5.1  
Slave Mode  
In the slave mode, DCL and FSC are inputs. DCL can be any frequency between 512 kHz and  
4.096 MHz. In the slave mode, S2, S1, and S0 pins control the timeslot in which the device operates.  
In the NT slave mode, it is possible to select both NT1 Star and NT Terminal modes via the Monitor  
channel. The associated pins used in the default IDL2 mode are enabled and operate in the same  
manner.  
In the TE slave mode, the TFSC/TCLK pin is enabled and it is possible to select the TCLK and its  
frequency via the Monitor channel.  
6.5.2  
Master Mode  
In the master mode, DCL and FSC are outputs. The M2, M1, and M0 pins control mode selection  
in master mode; however, these modes are defined differently for the NT and TE master.  
Table 6–3. M2, M1, and M0 Pins in GCI NT Master Mode  
M2  
M1  
M0  
GCI NT Master Mode  
0
0
0
DCL = 2.048 MHz, Channel 0  
DCL = 2.048 MHz, Channel 1  
DCL = 2.048 MHz, Channel 2  
DCL = 2.048 MHz, Channel 3  
DCL = 1.536 MHz, Channel 0  
DCL = 1.536 MHz, Channel 1  
DCL = 1.536 MHz, Channel 2  
DCL = 512 kHz, Channel 0  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
6–6  
MC145574  
MOTOROLA  
In the GCI NT master mode, it is possible to select both NT1 Star and NT Terminal modes via the  
Monitor channel. The associated pins used in the default IDL2 mode are enabled and operate in the  
same manner.  
Table 6–4. M2, M1, and M0 Pins in GCI TE Master Mode  
M2  
M1  
M0  
GCI TE Master Mode  
DCL = 2.048 MHz  
Reserved  
0
0
0
0
0
1
0
1
0
Reserved  
0
1
1
Reserved  
1
0
0
DCL = 1.536 MHz, Terminal Mode  
Reserved  
1
0
1
1
1
0
Reserved  
1
1
1
DCL = 512 kHz  
In the GCI TE master mode, only three modes of operation are available.  
When M(2:0) = 4, terminal mode is selected. In this mode, the MC145574 always operates in channel 0,  
and D channel availability is indicated in two ways:  
1. If pin SG = 1, then the D channel is currently idle and available for access. If pin SG = 0, then  
the D channel on the passive bus is being used by another TE device.  
If the SG pin toggles during the time when the device is using the D channel, then a collision  
has occurred and the device stops its D channel access. SG indicates stop/go for D channel  
access.  
2. In parallel with the SG pin, this signal is also output from the device in bit 4 of the C/I channel  
of CH2. This is compatible with the SCIT bus specification and is also compatible with the  
MC68302. This is enabled via the Monitor channel in register OR7(6).  
When M(2:0) = 7, only one GCI channel is available, and D channel availability is indicated by  
the SG pin only.  
The D channel access circuitry can be disabled by writing to a control register via the Monitor  
channel, BR7(6). When this is done, it is assumed that the device is not operating in a passive  
bus application and has sole use of the D channel. When disabled, the SG pin and bit always  
equal one, and the GCI D channel data flows transparently to the S/T loop interface.  
6.6  
2B+D CHANNELS  
In the activated state, GCI transparently transmits the information in the B and D channels in the NT  
and TE slave modes. In TE master mode, D channel flow control is operational and access to the  
D channel must be requested. Refer to the section on GCI D channel operation for further details.  
6.7 M AND A/E CHANNELS  
The GCI M (or Monitor) channel is intended to be used for the transfer of operation and maintenance  
information between management and layer 1 entities. For the MC145574, this means that the Monitor  
channel is used to access the internal registers defined for the SCP mode of operation. The A/E channel  
is used to control the transfer of the information on the Monitor channel by providing a handshake  
facility.  
MOTOROLA  
MC145574  
6–7  
6.7.1  
Monitor Channel Operation  
The Monitor channel is used to access the internal registers of the MC145574. All Monitor channel  
messages are two bytes in length. Each byte is sent twice to permit the receiving GCI device to verify  
data integrity. In ISDN applications, the Monitor channel is used for access to the S interface mainte-  
nance messages. The entire register set of the MC145574 can be accessed via the Monitor channel.  
The A and E bits in the GCI channel are used to control and acknowledge Monitor channel transfers  
between the MC145574 and another GCI device. When the Monitor channel is inactive, the A and  
E bit times from D  
are both high impedance. The A and E bits are active when they are driven  
out  
to V  
during their respective bit times. Pull–up resistors are required on D and D . The E bit indi-  
SS  
in out  
cates the transmission of a new Monitor channel byte. The A bit from the opposite direction is used  
to acknowledge the Monitor channel byte transfer.  
An idle Monitor channel is indicated by both A and E bits being inactive for two consecutive GCI frames.  
The A and E bits are high impedance when inactive. The Monitor channel data is $FF.  
The originating GCI device transmits a byte onto the Monitor channel after receiving the A and E bits  
equal to 1 for at least two consecutive GCI frames. The originating GCI device also sets its outgoing  
E bit to 0 in the same GCI frame as the byte that is transmitted. The transmitted byte is repeated  
for at least two GCI frames, or is repeated in subsequent GCI frames until the MC145574 acknowledges  
receiving two consecutive GCI frames containing the same byte.  
Once the MC145574 acknowledges the first byte, the sending device sets E to high impedance and  
transmits the first frame of the second byte. Then the second byte is repeated with the E bit low until  
it is acknowledged. See Figure 6–3 for details of Monitor channel procedure.  
The destination GCI device verifies that it has received the first byte by setting the A bit to 0 towards  
the originating GCI device for at least two GCI frames. Successive bytes are acknowledged by the  
receiving device setting A to high impedance on the first instance of the next byte followed by A being  
cleared to 0 when the second instance of the bit is received.  
If the GCI device does not receive the same Monitor channel byte in two consecutive GCI frames,  
it indicates this by leaving A = 0 until two consecutive identical bytes are received. The last byte of  
the sequence is indicated by the originating GCI device setting its E bit to 1 for two successive GCI  
frames.  
6.8  
MONITOR CHANNEL MESSAGES  
The MC145574 supports three basic types of Monitor channel messages. The first group of messages  
are commands that read or write the internal register set of the MC145574. See Sections 8, 9, and  
10 for the complete description of the MC145574 register set. The second group of messages are  
responses from the MC145574. These responses are transmitted by the MC145574 after it receives  
a register read or write command over the Monitor channel. The third type of Monitor channel message  
is the Status Indication Message. When enabled, this message indicates a change in interrupt status  
register NR3.  
6–8  
MC145574  
MOTOROLA  
FSC  
125 µs  
NULL  
E
BYTE1  
E
BYTE1  
E
BYTE2  
E
BYTE2  
E
NULL  
E
NULL  
E
NULL  
E
D
in  
B1 B2 M  
B1 B2 M  
B1 B2 M  
B1 B2 M  
B1 B2 M  
B1 B2 M  
B1 B2 M  
B1 B2 M  
A
A
A
A
A
A
A
A
D
out  
6.8.1  
Monitor Channel Commands  
A GCI device transmits Monitor channel commands to a receiving MC145574 to access its internal  
register set. The receiving MC145574 then transmits a Monitor channel response message onto the  
Monitor channel for commands that request data to be read from an internal register. Commands  
that write data to an internal MC145574 register are accepted and acted upon, but the MC145574  
does not issue a response message. The Monitor channel commands are given in Table 6–5.  
The MC145574 acknowledges all messages it receives over the Monitor channel. If an invalid message  
is received, the MC145574 acknowledges it but does not take any action.  
Table 6–5. Monitor Channel Commands  
MSB  
Byte 1  
LSB  
MSB  
Byte 2  
LSB  
7
6
0
0
0
0
0
5
0
0
1
1
0
4
0
1
0
1
0
3
ba3  
ba3  
0
2
1
0
7
6
d6  
X
5
d5  
X
4
3
d3  
X
2
d2  
X
1
0
d0  
X
Comment  
Byte Write  
0
0
0
0
1
ba2  
ba2  
na2  
na2  
0
ba1  
ba1  
na1  
na1  
0
ba0  
ba0  
na0  
na0  
0
d7  
X
d4  
X
d1  
X
Byte Read  
d3  
X
d2  
X
d1  
X
d0  
X
X
X
X
X
Nibble Write  
Nibble Read  
ID Command  
0
X
X
X
X
0
X
X
X
X
X
X
X
X
6.8.2  
Monitor Channel Response Messages  
The Monitor channel response messages are transmitted onto the GCI Monitor channel by the  
MC145574 in response to a register read command. The Monitor channel response messages are  
given in Table 6–6.  
Table 6–6. Monitor Channel Response Messages  
MSB  
Byte 1  
LSB  
MSB  
Byte 2  
LSB  
7
6
0
0
1
5
0
1
0
4
1
1
0
3
ba3  
0
2
1
0
7
6
d6  
d2  
x
5
d5  
d1  
x
4
3
d3  
x
2
d2  
x
1
0
d0  
x
Comment  
Byte Read  
0
0
0
ba2  
na2  
0
ba1  
na1  
0
ba0  
na0  
0
d7  
d3  
x
d4  
d0  
x
d1  
x
Nibble Read  
ID Response  
0
x
x
x
x
6.8.3  
Monitor Channel Status Indication Messages  
This message is automatically transmitted onto the GCI Monitor channel by the MC145574 when a  
status change has occurred within the device. This message is analogous to the interrupt in SCP  
mode. The Monitor channel status indication message is given in Table 6–7.  
The status indication message is in effect a read of the interrupt status register NR3. By default, this  
indication message is disabled. The indication message must be first enabled by writing to the Monitor  
channel register NR4.  
Table 6–7. Monitor Channel Status Indication Messages  
MSB  
Byte 1  
LSB  
MSB  
Byte 2  
LSB  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Comment  
0
0
1
1
0
0
1
1
d3  
d2  
d1  
d0  
x
x
x
x
NR3 Read  
6–10  
MC145574  
MOTOROLA  
6.8.4  
Accessible Monitor Channel Registers  
The following register maps indicate the internal SCP registers that are accessible via the Monitor  
channel. Items that are in bold print indicate functions that are different to those of the SCP version.  
See Sections 8, 9, and 10 for initial register values after a reset.  
(3)  
(2)  
(1)  
Not Applicable  
Multiframing Detection  
(0)  
NR1  
NT  
TE  
Activation Indication  
Activation Indication  
Error Indication  
Frame Sync  
Frame Sync  
Error Indication  
NR2  
NR3  
Transmit Power Down  
Return to Normal  
IRQ7 NT Term. D Ch. Coll.  
Not Applicable  
NT  
TE  
NT  
TE  
NT  
TE  
IRQ3 Rx Info  
IRQ3 Rx Info  
IRQ3 Enable  
IRQ2 Multiframe Reception IRQ6 FECV Detect  
IRQ2 Multiframe Reception IRQ1 D Channel Collision  
NR4  
NR5  
NR6  
IRQ2 Enable  
IRQ6 Enable  
IRQ7 Enable  
IRQ3 Enable  
IRQ2 Enable  
IRQ1 Enable  
Not Applicable  
Idle B1 Channel  
Enable B1 Channel  
Idle B2 Channel  
Enable B2 Channel  
Invert B1 Channel  
Invert B1 Channel  
Invert B2 Channel  
Invert B2 Channel  
Swap B1 and B2  
2B+D GCI Transparent  
Loopback  
(7)  
SC1.1  
Q.1  
(6)  
SC1.2  
Q.2  
(5)  
SC1.3  
Q.3  
(4)  
(3)  
(2)  
(1)  
(0)  
BR2  
BR3  
NT  
TE  
NT  
SC1.4  
Q.4  
Q.1  
Q.2  
Q.3  
Q.4  
Q Qual  
Int. Every  
Multiframe  
TE  
SC1.1  
SC1.2  
SC1.3  
SC1.4  
Not  
Applicable  
Int. Every  
Multiframe  
BR4  
BR5  
BR6  
FV7  
FV6  
FV5  
FV4  
FV3  
FV2  
FV1  
FV0  
BPV7  
BPV6  
BPV5  
BPV4  
BPV3  
BPV2  
BPV1  
BPV0  
B1 S/T  
Loopback  
Transparent  
B1 S/T  
Loopback  
Non–  
B2 S/T  
Loopback  
Transparent  
B2 S/T  
Loopback  
Non–  
GCI B1  
Loopback  
Transparent  
GCI B1  
Loopback  
Non–  
GCI B2  
Loopback  
Transparent  
GCI B2  
Loopback  
Non–  
Transparent  
Transparent  
Transparent  
Transparent  
BR7  
NT  
TE  
Activation  
Procedures  
Disabled  
Active Only  
NT Enable  
Enable  
Multiframing  
Invert E  
Channel  
LAPD Polarity Activation  
Control  
Timer #2  
Expired  
Activation  
Procedures  
Disabled  
D Channel  
Procedures  
Ignored  
Map E to D  
GCI  
Free Run  
LAPD Polarity  
Control  
BR9  
BR10  
BR11  
NT  
TE  
NT  
TE  
TXSC2.1  
RXSC2.1  
TXSC4.1  
RXSC4.1  
TXSC2.2  
RXSC2.2  
TXSC4.2  
RXSC4.2  
TXSC2.3  
RXSC2.3  
TXSC4.3  
RXSC4.3  
TXSC2.4  
RXSC2.4  
TXSC4.4  
RXSC4.4  
TXSC3.1  
RXSC3.1  
TXSC5.1  
RXSC5.1  
TXSC3.2  
RXSC3.2  
TXSC5.2  
RXSC5.2  
TXSC3.3  
RXSC3.3  
TXSC5.3  
RXSC5.3  
TXSC3.4  
RXSC3.4  
TXSC5.4  
RXSC5.4  
Rx INFO  
State B1  
Rx INFO  
State B0  
Tx INFO  
State B1  
Tx INFO  
State B0  
Ext. S/T  
Loopback  
Transmit 96 kHz  
Test Signal  
BR12  
BR13  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Mute B1  
Reserved  
Reserved  
Reserved  
NT  
TE  
NT1 Star  
Mode  
Mute B2  
on GCI Tx  
Force Echo  
on GCI Tx Channel to 0  
Mute B2  
on GCI Tx  
Mute B1  
on GCI Tx  
Force  
GCI Tx  
BR14  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MOTOROLA  
MC145574  
6–11  
(7)  
(6)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR15  
Overlay  
Register  
Enabled  
Rev 5  
Rev 4  
Rev 3  
Rev 2  
Rev 1  
Rev 0  
(7)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR6  
OR7  
OR8  
OR9  
TSA B1  
Enable  
TSA B2  
Enable  
TSA D  
Enable  
D
Open  
Drain  
GCI Indirect  
Mode Enable  
CLK1  
CLK0  
out  
Disable 3 V  
Regulator  
Enable  
S/G Bit  
Enable  
TCLK  
Enable BCL  
Disable XTAL  
FIX Enable  
NT Terminal  
Mode Enable  
Sleep  
Disable  
NT  
TE  
Force INFO 2  
Transmission  
T3F8 Enable T3F6 Disable  
Rev 1 Rev 0  
OR15  
Overlay  
Register  
Enable  
Rev 5  
Rev 4  
Rev 3  
Rev 2  
All these registers are detailed in the following sections of this document: Section 8 for the nibble  
registers, Section 9 for the byte registers, and Section 10 for the overlay registers.  
6.8.5  
SCP/GCI Register Differences  
When configured for GCI direct mode of operation, the following register bits have different functionality  
from SCP mode.  
OR7(6)  
Enable S/G Bit  
This bit can be enabled only in GCI 1.536 MHz clock mode. This bit provides the availability of the  
D channel on the S/T loop. “1” = Stop (no availability of the D channel) and “0” = Go (availability of  
the D channel). Refer to Section 11.  
OR8(0)  
Sleep Disable  
In GCI mode, the sleep mode is enabled by default. It can be disabled by writing to the register bit  
(i.e., by writing a logic 1). This is opposite to operation of these bits in the SCP mode.  
6.9  
COMMAND INDICATE CHANNEL OPERATION  
The command/indication (C/I) is intended to manage layer 1 procedures such as activation and deac-  
tivation of the line, test loop control, and other additional control functions. C/I codes are four bits  
in length and must be received for two consecutive GCI frames before they are acted upon.  
The C/I channel bits are numbered bit 4 through bit 1, with bit 4 being the most significant bit. The  
C/I channel command bits are transmitted starting with bit 4.  
The command channel (COM) is an input to the device in the C/I channel of the GCI frame on the  
D
pin.  
in  
The indicate channel (IND) is an output from the device in the GCI channel of the GCI frame on the  
pin.  
D
out  
In both the COM and IND cases, the four–bit word is continually input or output until superceded by  
another C/I channel word.  
The command and indicate words used by the MC145574 device are defined in Table 6–8. This table  
is fully compatible with the industry standard GCI specification.  
6–12  
MC145574  
MOTOROLA  
Table 6–8. C/I Channel Commands and Indications  
TE Master  
TE Slave  
NT  
NT Terminal  
C/I  
Code  
Indication  
Command  
Indication Command Indication Command Indication  
Command  
DR  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
DR  
TIM  
RES  
DR  
RES  
DR  
RES  
RES  
RSY  
RSY  
RSY  
RSY  
T1/T3EXP  
T1/T3EXP  
T1/T3EXP  
T1/T3EXP  
AR  
AR8  
AR10  
ARL  
AREOM  
AR  
AR  
AR  
AR  
AR  
AR8  
AR10  
ARL  
AREOM  
AI  
AR  
AR  
ARL  
AR  
ARL  
AR  
AI8  
AI10  
AI  
AI  
AI  
AI8  
AI10  
AIL  
DC  
AIL  
DC  
DI  
DC  
DI  
DI  
DI  
DC  
Table 6–9 lists the GCI C/I codes used, with all the codes coming from the GCI specification except  
for T1/T3EXP and AREOM.  
Table 6–9. GCI C/I Codes  
Command/Indication  
Abbreviation  
AI  
Activation Indication  
Activation Indication Priority 1  
Activation Indication Priority 2  
Activation Indication Local Test Loop  
Activation Request  
AI8  
AI10  
AIL  
AR  
Activation Request Priority 1  
Activation Request Priority 2  
Activation Request Local Test Loop  
Activation Request, End of Message  
Deactivation Confirmation  
Deactivation Indication  
AR8  
AR10  
ARL  
AREOM  
DC  
DI  
Deactivation Request  
DR  
Reset  
RES  
RSY  
TIM  
Resynchronization (Loss of Framing)  
Timing Request  
Activation Timer Expired — Force Deactivation  
T1/T3EXP  
MOTOROLA  
MC145574  
6–13  
6.10 GCI ACTIVATION AND DEACTIVATION TIMING DIAGRAMS  
The following diagrams (Figures 6–4 through 6–6) indicate the flow of the activation/deactivation proce-  
dure and are not intended to be exhaustive in all the possible permutations.  
TEM  
NTS  
INFO 0  
INFO 0  
I
Rx  
Tx  
DC  
DI  
Tx  
Rx  
C
I
DC  
DI  
C
START  
CLOCKS  
D = 0  
in  
C
C
INFO 1  
START  
CLOCKS  
Rx  
I
I
AR8, AR10  
Tx  
D
out = 0  
AR  
INFO 2  
INFO 3  
AR  
I
I
Rx  
Tx  
Tx  
Rx  
C
I
AR  
AI  
INFO 4  
AI8, AI10  
AI  
Rx  
Tx  
C
Figure 6–4. Activation from TE End  
6–14  
MC145574  
MOTOROLA  
TEM  
NTS  
INFO 4  
INFO 3  
I
Rx  
Tx  
AI  
AI  
AI  
Tx  
Rx  
C
I
C
AR8, AR10  
INFO 0  
INFO 0  
DR  
I
I
Rx  
Tx  
Tx  
Rx  
DR  
DI  
C
I
DI  
DC  
C
DC  
Figure 6–5. Deactivation from NT End  
TEM  
NTS  
INFO 0  
INFO 0  
I
Rx  
Tx  
Tx  
Rx  
C
I
DC  
DI  
DC  
DI  
C
INFO 2  
INFO 3  
I
Rx  
Tx  
Tx  
Rx  
C
I
AR  
AI  
AR  
INFO 4  
AI  
AI  
I
Rx  
Tx  
C
Figure 6–6. Activation from NT End  
MOTOROLA  
MC145574  
6–15  
6–16  
MC145574  
MOTOROLA  
7
PIN DESCRIPTIONS  
7.1 INTRODUCTION  
The Motorola MC145574 ISDN S/T transceiver is available in a 28–pin SOIC and a 32–pin TQFP  
package (see Figure 7–1).  
28–LEAD SOIC  
32–LEAD TQFP  
ISET  
RxN  
RxP  
1
2
3
4
5
28 RESET  
27 TxP  
32 31 30 29 28 27 26 25  
26 TxN  
25 XTAL  
24 EXTAL  
TE/NT  
M/S  
T_IN/TSFC/TCLK/FIX  
1
2
3
4
5
6
7
8
24 XTAL  
23 EXTAL  
22  
21  
20  
TE/NT  
M/S  
V 5  
DD  
V
V
DD  
I/O  
SS  
SG/DGRANT/ANDOUT  
DREQUEST/ANDIN  
CLASS/ECHO_IN  
FSC/FSR  
V 3  
DD  
T_IN/TFSC/TCLK/FIX  
6
7
8
9
23  
22  
21  
V 5  
DD  
19 IRQ/IND  
18 TSEN/FSX/BCL/LBA  
V
SS  
V
DD  
I/O  
17 SCPEN/GCIEN  
9 10 11 12 13 14 15 16  
SG/DGRANT/ANDOUT  
DREQUEST/ANDIN  
V 3  
DD  
20 IRQ/IND  
CLASS/ECHO_IN 10  
FSC/FSR 11  
DCL 12  
19 TSEN/FST/BCL/LBA  
18 SCPEN/GCIEN  
17 SCPCLK/S2/M2  
16 SCPRx/S1/M1  
15 SCPTx/S0/M0  
D
13  
14  
in  
D
out  
Figure 7–1. Pin Assignments  
7.2 PIN DESCRIPTIONS  
The following pin descriptions are not intended to be exhaustive but merely indicate the operational  
modes of the pins. For complete operational details please refer to the appropriate sections of this  
document.  
7.2.1 ISET  
In both the NT and TE modes of operation, a current programming reference resistor of value  
30 kaccurate to 5% should be connected between this pin and V . This resistor provides biasing  
SS  
and programs the current limit for the TxP and TxN driver circuit. Note that this resistor is not user  
programmable and must be 30 kfor CCITT 1.430, ETSI ETS 300012, and ANSI T1.605 compatibility.  
7.2.2 RxN, RxP  
These two pins form the differential receiver for the S/T–interface. They are connected to the S/T  
loop via a transformer. For further information, refer to Section 16.  
MOTOROLA  
MC145574  
7–1  
7.2.3  
TE/NT  
This pin allows the external selection of NT or TE mode. When this pin is held low, the NT mode  
is selected; and when it is held high, the TE mode is selected. This pin is OR’d with an SCP register  
bit, enabling TE/NT selection to be made in the software. This pin must be tied low to allow software  
selection of TE or NT mode.  
7.2.4 M/S  
This pin allows the external selection of master or slave timing mode for the IDL2/GCI interface. This  
pin functions in both NT and TE modes. When this pin is held low, the slave mode is selected; and  
when it is held high, the master mode is selected. In the slave mode FSC/DCL are inputs; in the master  
mode FSC/DCL are outputs.  
This pin is OR’d with an SCP register bit, enabling master/slave selection to be made in the software.  
This pin must be tied low to allow software selection of master or slave mode.  
7.2.5 T_IN/TFSC/TCLK/FIX  
This pin performs four functions dependent on the mode of operation. In all NT modes, except NT  
Terminal mode, this pin is the FIX input and enables the device to differentiate between fixed and  
adaptive timing modes. When this pin is held low, adaptive timing is selected, and when it is held  
high fixed timing is selected. This pin is OR’d with an SCP register bit, enabling fixed/adaptive selection  
to be made in the software.  
In the NT Terminal mode, this pin is the T_IN input; T_IN is an IDL2 input port that accepts B1, B2,  
and D channel data. Refer to the NT Terminal section for further details. In the NT Terminal mode,  
the FIX function is controlled via an SCP register bit.  
In the TE slave mode, this pin outputs TFSC. TFSC is an 8 kHz frame clock that is synchronized  
to the received S/T–interface and can be used as the synchronization source in the NT2 slave–slave  
mode.  
Alternatively, this pin can output TCLK, selected via the SCP. TCLK is a clock, whose frequency can  
be chosen via the SCP, which is synchronized to the received S/T–interface. TCLK can be used as  
an alternative to TFSC in NT2 slave–slave mode.  
In the TE master mode, this pin has no function and is a high–impedance output.  
7.2.6  
V
SS  
This is the most negative power supply and digital logic ground. It is normally 0 V.  
7.2.7 SG/DGRANT/ANDOUT  
This pin performs three functions dependent on the mode of operation. In the NT1 Star mode, it is  
the ANDOUT output function for use in NT1 Star applications. In the TE master and NT Terminal modes,  
this pin is the DGRANT output function used for gaining D channel access. In the GCI TE master  
mode, this pin is SG and indicates stop/go access to the D channel.  
7.2.8  
DREQUEST/ANDIN  
This pin performs two functions dependent on the mode of operation. In the NT1 Star mode, it is the  
ANDIN input function for use in NT1 Star applications. In the TE master and NT Terminal modes,  
this pin is the DREQUEST input used for requesting D channel access. In all other modes, this input  
has no defined function and should be tied to V  
.
SS  
7–2  
MC145574  
MOTOROLA  
7.2.9  
CLASS/ECHO_IN  
This pin performs two functions dependent on the mode of operation. In the NT1 Star mode, it is the  
ECHO_IN input function for use in NT1 Star applications. In the TE master mode, this pin is the class  
input used to determine the D channel access class. In all other modes, this input has no defined  
function and should be tied to V  
.
SS  
7.2.10 FSC/FSR  
This pin is bidirectional; the direction depending on whether the device is to be a timing master or  
a slave to the IDL2/GCI interfaces. In either case, this pin should be driven with or it generates an  
8 kHz frame sync signal. This pin is also the frame sync signal for the IDL2 receive direction (FSR)  
when independent frame syncs have been enabled via the SCP interface.  
7.2.11 DCL  
This pin is the clock pin for the IDL2/GCI interfaces and is either an input or an output depending  
on whether the interface is operating as a slave or a master.  
7.2.12  
7.2.13  
D
in  
This pin is the data input pin for the GCI and IDL2 interfaces.  
D
out  
This pin is the data output pin for the GCI and IDL2 interfaces.  
7.2.14 SCP Tx/S0/M0  
This pin has three functions. It is the data output pin (SCP Tx) in SCP mode, a timeslot select input  
pin (S0) in GCI slave mode, and a mode select pin (M0) in GCI master mode.  
7.2.15 SCP Rx/S1/M1  
This pin has three functions. It is the data input pin (SCP Rx) in SCP mode, a timeslot select input  
pin (S1) in GCI slave mode, and a mode select pin (M1) in GCI master mode.  
7.2.16 SCPCLK/S2/M2  
This pin has three functions. It is the clock input pin (SCPCLK) in SCP mode, a timeslot select input  
pin (S2) in GCI slave mode, and a mode select pin (M2) in GCI master mode.  
7.2.17 SCPEN/GCIEN  
This pin has two functions. It is the SCP enable input pin (SCPEN) in SCP mode, and the GCI enable  
input pin (GCIEN) in GCI mode. Refer to the section on GCI for details on how the device enters  
GCI mode.  
7.2.18 TSEN/FST/BCL/LBA  
This pin is initially high impedance, but can be programmed to have three separate functions. When  
the TSEN signal is enabled via the SCP, this pin becomes an open drain output that pulls low when  
data is being output from D . This signal can then be used to enable an external driver in applications  
out  
where the IDL2 2B+D data goes off–board (PBXs, etc.).  
MOTOROLA  
MC145574  
7–3  
In IDL2 mode, this pin can also be used as the 8 kHz frame sync (FST) for the transmit path. In this  
mode, the pin is bidirectional, the direction depending on whether the device is an IDL2 master or  
slave. FST only operates when dual frame sync mode has been enabled via the SCP.  
In GCI mode, this pin can be an output clock (BCL). BCL is a bit rate clock that is half the frequency  
of the DCL clock and is synchronous with FSC. This clock can be used as the data clock for standard  
devices such as a codec. BCL must be enabled via the GCI Monitor channel.  
Loopback active (LBA) is the default function for both the IDL2 and GCI modes. This pin is initially  
an output. The LBA pin is normally low but when a loopback is activated within the device, this pin  
will transition to a high during the time that the loopback is enabled. This pin can be redefined by  
writing to internal registers within the device.  
7.2.19 IRQ/IND  
This pin is an open drain output that pulls low when the device wants to inform the microprocessor  
that a status change has occurred. This pin returns to high impedance after clearing the interrupt condi-  
tion via the SCP.  
In GCI mode, this pin is GCI_IND. It is an open drain output and is driven low to indicate that GCI  
mode is enabled.  
7.2.20  
7.2.21  
V
3
DD  
This pin is the 3 V regulated supply output used to power the internal digital circuitry. This pin requires  
an external smoothing capacitor to be connected to ground (100 nF).  
V
I/O  
DD  
This is the positive supply pin for the output drivers. This pin should be connected to V 5, if 5 V  
DD  
drivers are required; or the 3 V regulator output, V 3, if 3 V drivers are required. For further informa-  
DD  
tion, refer to the section on Power Supply Strategy.  
7.2.22  
V
5
DD  
This is the positive supply pin and is normally 5 V ± 5%. It should have a capacitor of 100 nF connected  
to ground. For further information, refer to the section on Power Supply Strategy.  
7.2.23 EXTAL  
This pin is an output and should be connected to the 15.36 MHz crystal using the circuit defined in  
Section 14.  
7.2.24 XTAL  
This pin is an output and should be connected to the 15.36 MHz crystal using the circuit defined in  
Section 14, or alternatively it can be driven by an external 15.36 MHz clock source.  
7.2.25 TxN, TxP  
These two pins form a differential output driver that will connect to the S/T–interface via a transformer.  
For further information, refer to Section 16.  
7.2.26 RESET  
This pin is always an input and is the reset pin for the device. It is active low. When this pin is held  
low, a hardware reset is applied and the device is held in the deactivated state. At the initial application  
7–4  
MC145574  
MOTOROLA  
of power, the MC145574 should be reset. This pin is a Schmitt–trigger input and could have an external  
RC circuit connected to perform the power–on reset function.  
7.3 ADDITIONAL NOTES  
7.3.1  
Input Levels  
The MC145574 S/T transceiver is always TTL/CMOS level compatible on all digital input pins.  
7.3.2  
7.3.3  
Output Levels  
The MC145574 is always CMOS level compatible on all digital output pins.  
SCP HIDOM  
The MC145574 S/T transceiver has the capability of forcing all outputs (both analog and digital) to  
the high–impedance state. This feature, known as the “serial control port high–impedance digital output  
mode” is provided to allow “in–circuit” testing of other circuits or devices resident on the same PCB  
without requiring the removal of the MC145574.  
The SCP HIDOM mode is entered by holding SCPEN low for a minimum of 33 consecutive rising  
edges of the SCPCLK while SCP Rx is high. If SCPEN goes high or if SCP Rx goes low, the device  
exits the SCP HIDOM mode and returns to normal operation.  
MOTOROLA  
MC145574  
7–5  
7–6  
MC145574  
MOTOROLA  
8
NIBBLE REGISTER MAP DEFINITION  
8.1 INTRODUCTION  
There are seven nibble registers (NR0 through NR6) in the MC145574. Control and status information  
reside in these nibble registers, which are accessed via the SCP. For a detailed description of access  
procedures, refer to Section 5. The nomenclature used in this data sheet is such that NR2(3) refers  
to nibble register 2, bit 3.  
The MC145574 nibble register map is compatible to the MC145474/475 nibble register map, the only  
modification being the removal of bits NR6(2) and NR6(1), related to the IDL A/M FIFOs and the addi-  
tion of bits (NR2(0), NR3(0), and NR4(0) for NT mode only).  
Table 8–1. SCP Nibble Register Map for NT Operation  
(3)  
(2)  
(1)  
(0)  
NR0  
NR1  
NR2  
Software Reset  
Transmit Power Down  
Error Indication  
Absolute Minimum Power Return to Normal  
Activation Indication  
Activation Request  
Not Applicable  
Frame Sync  
Deactivation Request  
Activation Timer T1  
Expired  
NT Terminal Class  
NR3  
Change in Rx Info  
State IRQ3  
Multiframe Reception  
IRQ2  
IRQ6 FECV Detection  
D Channel Collision IRQ7  
NT Terminal Mode  
NR4  
NR5  
NR6  
Enable IRQ3  
Enable IRQ2  
Enable IRQ6  
Enable IRQ7  
Idle B1 Channel  
2B+D IDL2 Loopback  
Idle B2 Channel  
Invert B1 Channel  
Invert B2 Channel  
Swap B1 and B2  
Table 8–2. SCP Nibble Register Map for TE Operation  
(3)  
(2)  
(1)  
(0)  
NR0  
NR1  
NR2  
Software Reset  
Transmit Power–Down  
Error Indication  
Not Applicable  
Absolute Minimum Power Return to Normal  
Activation Indication  
Activation Request  
Multiframing Detection  
Frame Sync  
Class  
Activation Timer T3  
Expired  
NR3  
Change in Rx Info  
State IRQ3  
Multiframe Reception  
IRQ2  
D Channel Collision IRQ1 Not Applicable  
NR4  
NR5  
NR6  
Enable IRQ3  
Enable IRQ2  
Enable IRQ1  
Not Applicable  
Enable B1 Channel  
2B+D IDL2 Loopback  
Enable B2 Channel  
Invert B1 Channel  
Invert B2 Channel  
Swap B1 and B2  
MOTOROLA  
MC145574  
8–1  
Table 8–3. Nibble Register Initialization After Any Reset  
IDL TE  
IDL NT  
GCI TE  
GCI NT  
NR0  
NR1  
NR2  
NR3  
NR4  
NR5  
NR6  
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
NOTE: All values in hexadecimal unless shown otherwise.  
8.2 NR0  
This register is a read/write register and can be reset by a hardware reset. A per–bit description of  
nibble register 0 (NR0) follows.  
b3  
b2  
b1  
b0  
NR0  
Software Reset  
Transmit Power–Down  
Absolute Minimum  
Power  
Return to Normal  
rw  
rw  
rw  
rw  
NR0(3) — Software Reset  
When NR0(3) is 0, the MC145574 functions normally. When this bit is set to 1, a software reset is  
applied to the internal circuits of the S/T transceiver. The effect of the software reset is the equivalent  
of holding the external reset input low (hardware reset), except that NR0(3:0) is not reset. Thus, when  
this bit is set, all internal registers (except NR0) are returned to their initial state. Application of either  
a hardware or software reset has the effect of re–initializing all the internal registers; it does not prevent  
access to the SCP. Note that NR0(3) is a read/write bit.  
NR0(2) — Transmit Power–Down  
When NR0(2) is 0, the S/T transceiver functions normally. When NR0(2) is set to 1, the S/T transceiver  
enters a power conservation mode. In this mode the transmit section of the transceiver is held in the  
INFO 0 state and IDL2 Tx is held in the “idle 1s” condition. When NR0(2) = 1, the receive circuitry  
of the transceiver is still functional, allowing an interrupt to be generated in the event of a change  
in state of the received signal. Note that NR0(2) is a read/write bit. This bit has no effect on the operation  
of the SCP. If BR13(1) is set, the S/T transceiver outputs data on D  
.
out  
NR0(1) — Absolute Minimum Power  
When this bit is 0, the MC145574 functions normally. When this bit is set to 1, the chip enters a power  
conservation mode. In this mode a software reset is applied to the chip, all circuits are initialized, all  
clocking of the device is blocked, and the nonessential bias to the analog functions of the transceiver  
are removed such that the device consumes the absolute minimum amount of power. The transmit  
section of the chip is held in the INFO 0 state and IDL2 Tx is held in the “idle 1s” condition. Note  
that NR0(1) is a read/write bit. This bit has no effect on the operation of the SCP. In this mode, only  
the SCP can operate.  
NR0(0) — Return to Normal  
When this bit is 0, the MC145574 functions normally. When this bit is 1, the following bits are reset:  
BR11(0) 96 kHz Test Signal  
BR11(1) External S/T Loopback  
BR6(7:0)  
Note that NR0(0) is a read/write bit.  
8–2  
MC145574  
MOTOROLA  
8.3  
NR1  
This register is a read only register and can be reset by application of either a hardware or software  
reset. A per–bit description of nibble register 1 (NR1) follows.  
b3  
b2  
b1  
b0  
NR1  
Activation Indication  
Error Indication  
NT: Not Applicable  
TE: Multiframing  
Detection  
Frame Sync  
ro  
ro  
ro  
ro  
NR1(3) — Activation Indication (AI)  
This bit is set by the MC145574 when the loop is fully activated. Thus, when the MC145574 is config-  
ured as an NT, this bit is set when it is transmitting INFO 4 and receiving INFO 3. Conversely, when  
the MC145574 is configured as a TE, this bit is set when it is transmitting INFO 3 and receiving INFO  
4. Note that NR1(3) is a read only bit.  
NR1(2) — Error Indication (EI)  
NR1(2) is set by the MC145574 S/T transceiver to indicate an error condition has been detected by  
the activation state machine of the transceiver, as outlined in CCITT I.430, ETSI ETS 300012, and  
ANSI T1.605. The low–to–high level transition of the EI bit corresponds to the EI1 error indication  
reporting, while the high–to–low level transition of the EI bit corresponds to the EI2 error indication  
reporting recovery. Note that NR1(2) is a read only bit.  
NR1(1) — NT: Not Applicable  
TE: Multiframing Detection (MD)  
In the TE mode of operation, this bit is set by the MC145574 S/T transceiver whenever it detects  
multiframing from the NT. This bit will be set low if multiframing synchronization is lost and will return  
high when synchronization is re–acquired. This bit applies only to TE–configured devices. Note that  
NR1(1) is a read only bit.  
NR1(0) — Frame Sync (FS)  
NR1(0) is set high by the MC145574 S/T transceiver when frame synchronization is achieved. NR1(0)  
is reset by the MC145574 whenever frame synchronization is lost. Note that NR1(0) is a read only  
bit.  
8.4 NR2  
This register is a read/write register and can be cleared by application of either a hardware or software  
reset. A per–bit description of nibble register 2 (NR2) is as follows.  
b3  
b2  
b1  
b0  
NR2  
Activation Request  
NT: Deactivate Request  
TE: Not Applicable  
rw  
Activation Timer  
Expired  
NT: NT Terminal Class  
TE: Class  
rw  
rw  
rw  
NR2(3) — Activation Request (AR)  
When NR2(3) is set to 1, an activation request input is passed to the activate state machine within  
the MC145574 S/T transceiver, as outlined in CCITT I.430, ETSI ETS 300012, and ANSI T1.605.  
If the transceiver is in the idle state (i.e., transmitting and receiving INFO 0) and is configured as an  
NT, then AR causes INFO 2 to be sent out on the transmit side of the S/T–interface. Alternatively,  
if the chip is configured as a TE and is in the idle state, then writing a 1 to NR2(3) causes INFO 1  
to be sent out. Note that this bit will be returned low by the MC145574 S/T transceiver after its active  
MOTOROLA  
MC145574  
8–3  
transition (low–to–high) has been recognized by the activation/deactivation state machine of the trans-  
ceiver. This action indicates that the requested action has been recognized. Note that NR2(3) is a  
read/write bit.  
NR2(2) — NT: Deactivate Request DR  
TE: Not Applicable  
When NR2(2) is set to 1, a deactivate request input is passed to the activation state machine within  
the MC145574 S/T transceiver, as outlined in CCITT I.430, ETSI ETS 300012, and ANSI T1.605.  
The deactivate request input is used to initiate deactivation of the transmission loop. Note that this  
bit will be returned low by the MC145574 S/T transceiver after its active transition (low–to–high) has  
been recognized by the activation/deactivation state machine of the transceiver. This action indicates  
that the requested action has been recognized and deactivation is proceeding. Note that NR2(2) is  
a read/write bit.  
NR2(1) — Activation Timer Expired Input  
NT: Timer #1  
TE: Timer #3  
When NR2(1) is set to 1, an activation timer expired input is passed to the activation state machine  
of the MC145574 S/T transceiver. If the transceiver is configured as an NT, this bit corresponds to  
the Timer #1 expire input. If the transceiver is configured as a TE, this bit corresponds to the Timer  
#3 expire input. These timers correspond to the activation timers outlined in CCITT I.430, ETSI ETS  
300012, and ANSI T1.605. The timer expire input informs the activation/deactivation state machine  
that sufficient time has elapsed since the request to activate the loop and that attempts to do so should  
be abandoned. This bit is normally set by the controlling device and is automatically cleared when  
the MC145574 has deactivated the loop. This bit can be reset by hardware or a software reset. Note  
that NR2(1) is a read/write bit.  
NR2(0) — NT : NT Terminal Class  
TE : Class  
When the MC145574 is configured for TE mode, this bit sets the class for D channel operation. When  
this bit is 0, the chip is set for class 1 operation. Alternatively, when this bit is 1, the chip is configured  
for class 2 operation. Class 1 and class 2 operations are as per CCITT I.430, ETSI ETS 300012,  
and ANSI T1.605 (i.e., class 1 is the higher class, used for signalling information, and class 2 is the  
lower class). The class can also be chosen externally by means of the CLASS/ECHO_IN pin. In this  
case, the class is chosen by the logical ‘OR’ of the external pin and NR2(0). NR2(0) can be reset  
by a hardware or a software reset. Refer to Section 11 for a detailed description of the D channel.  
Note that NR2(0) is a read/write bit.  
In the NT Terminal mode, this bit sets the class for D channel operation idle in the TE mode.  
8.5 NR3  
This register is a read/write register and can be reset by application of either a hardware or software  
reset. A per–bit description of nibble register 3 (NR3) follows.  
b3  
b2  
b1  
b0  
NR3  
Change in RX INFO  
State IRQ3  
Multiframe Reception  
IRQ2  
NT: IRQ6 FECV  
Detection  
TE: D Channel Collision  
NT: IRQ7 NT Terminal  
D Channel Collision  
TE: Not Applicable  
IRQ1  
rw  
rw  
rw  
rw  
NR3(3) — Change in Rx INFO State IRQ3  
The interrupt request condition IRQ3 is generated whenever a change occurs in the received informa-  
tion state of the transceiver. In the NT mode, this corresponds to a change in the receiving INFO 0,  
8–4  
MC145574  
MOTOROLA  
INFO 1, INFO 3, or INFO X state. Alternatively, in the TE mode, this corresponds to a change in the  
receiving INFO 0, INFO 2, INFO 4, or INFO X state. Thus, when a change occurs in one of these  
states, the MC145574 internally sets this bit. An external interrupt will occur if “Enable IRQ3” (NR4(3))  
is set. IRQ3 can be cleared by writing a 0 to NR3(3). This bit is reset by a software or a hardware  
reset.  
Note that the transmission states for the NT (INFO 0, INFO 2, and INFO 4) and for the TE (INFO 0,  
INFO 1, and INFO 3) are as defined in Section 3. INFO X is defined as any transmission state other  
than those states. An example of such a state would be when the MC145574 is programmed to transmit  
a 96 kHz test tone (BR11(0) = 1). Note that NR3(3) is a read/write bit.  
An INFO X state interrupt is generated only when receive INFO X state has persisted for > 8 ms.  
This avoids spurious interrupts during transient INFO X changes seen during activation but allows  
indication of prolonged INFO X conditions.  
NR3(2) — Multiframe Reception IRQ2  
This bit is for multiframe detection indication. Multiframing is initiated by the NT by setting BR7(5).  
A multiframe is 20 basic frames or 5 ms in duration. If this interrupt is enabled by setting NR4(2) and  
if multiframing is in progress, then an interrupt will be generated on multiframe boundaries; i.e., every  
5 ms. Alternatively, an NT–configured MC145574 can be programmed to generate an interrupt only  
in the event of a new Q channel nibble having been received. Similarly, a TE–configured MC145574  
can be programmed to generate an interrupt only in the event of a new SC1 subchannel having been  
received. Refer to Section 12 for a detailed description of these features.  
A mutiframing interrupt is cleared by reading BR3. Reading BR3 will clear the interrupt in both the  
NT and TE modes of operation, regardless of whether the MC145574 is configured to generate an  
interrupt in the event of a new nibble or every multiframe. Note that NR3(2) is a read only bit.  
NR3(1)  
NT: IRQ6 FECV Detection — The IRQ6 status bit is set when the NT has detected a far–end code  
violation. See Section 15.6 for more details.  
TE: D Channel Collision IRQ1 — NR3(1) is an interrupt bit used to indicate to external devices  
that a collision has occurred on the D channel. A D channel collision is considered to have occurred  
when the TE is transmitting on the D channel (both DREQUEST and DGRANT being high), and the  
received E echo bit from the NT does not match the previously modulated D bit. The interrupt condition  
is cleared by writing a 0 to NR3(1). This bit is maskable by means of NR4(1). Note that NR3(1) is  
a read/write bit.  
NR3(0) — NT: D Channel Collision IRQ7 NT Terminal Mode  
TE: Not Applicable  
NR3(0) is an interrupt bit used to indicate to external devices that a collision has occurred on the  
D channel. A D channel collision is considered to have occurred when the NT is transmitting on the  
IDL2 Tx D channel via the T_IN input pin (both DREQUEST and DGRANT being high), and the trans-  
mitted E echo bit to the TE does not match the previously input T_IN bit. The interrupt condition is  
cleared by writing a 0 to NR3(0). This bit is maskable by means of NR4(0). Note that NR3(0) is a  
read/write bit.  
8.6  
NR4  
This register is a read/write register and can be reset by application of either a hardware or software  
reset. A per–bit description of nibble register 4 (NR4) follows.  
b3  
b2  
b1  
b0  
NR4  
Enable IRQ3  
Enable IRQ2  
NT: Enable IRQ6  
TE: Enable IRQ1  
NT: Enable IRQ7  
TE: Not Applicable  
rw  
rw  
rw  
rw  
MOTOROLA  
MC145574  
8–5  
NR4(3) — Enable IRQ3  
NR4(3) is an interrupt mask bit for IRQ3. When this bit is set high and IRQ3 is pending (i.e., NR3(3)  
having been internally set to a 1), an interrupt is given to an external device by holding the IRQ* pin  
low. The IRQ* pin will be held low until the interrupt condition is cleared by writing a 0 to NR3(3).  
When the interrupt mask bit NR4(3) is a 0, NR3(3) cannot cause an interrupt to the external device.  
This bit can be reset by either a software or hardware reset. Note that NR4(3) is a read/write bit.  
NR4(2) — Enable IRQ2  
NR4(2) is an interrupt mask bit for IRQ2. When this bit is set high and IRQ2 is pending (i.e., NR3(2)  
having been internally set to a 1), an interrupt is given to an external device by holding the IRQ* pin  
low. The IRQ* pin will be held low until the interrupt condition is cleared by reading BR3. When the  
interrupt mask bit (NR4(2)) is a 0, NR3(2) cannot cause an interrupt to the external device. This bit  
can be reset by either a software or a hardware reset. Note that NR4(2) is a read/write bit.  
NR4(1) — NT: Enable IRQ6  
TE: Enable IRQ1  
NR4(1) is an interrupt mask bit for IRQ1 or IRQ6. When this bit is set high and IRQ1 is pending (i.e.,  
NR3(1) having been internally set to a 1), an interrupt is given to an external device by holding the  
IRQ* pin low. The IRQ* pin will be held low until the interrupt condition is cleared by writing a 0 to  
NR3(1). When the interrupt mask bit NR4(1) is a 0, NR3(1) cannot cause an interrupt to the external  
device. This bit can be reset by either a software or a hardware reset. Note that NR4(1) is a read/write  
bit.  
NR4(0) — NT: Enable IRQ7  
TE: Not Applicable  
NR4(0) is an interrupt mask bit for IRQ7. When this bit is set high and IRQ7 is pending (i.e., NR3(0)  
having been internally set to a 1), an interrupt is given to an external device by holding the IRQ* pin  
low. The IRQ* pin will be held low until the interrupt condition is cleared by writing a 0 to NR3(0).  
When the interrupt mask bit NR4(0) is a 0, NR3(0) cannot cause an interrupt to the external device.  
This bit can be reset by either a software or a hardware reset. Note that NR4(0) is a read/write bit.  
8.7 NR5  
This register is a read/write register and can be reset by application of either a hardware or software  
reset. A per–bit description of nibble register 5 (NR5) follows.  
b3  
b2  
b1  
b0  
NR5  
NT: Idle B1 Channel  
NT: Idle B2 Channel  
Invert B1 Channel  
Invert B2 Channel  
TE: Enable B1 Channel  
TE: Enable B2 Channel  
rw  
rw  
rw  
rw  
NR5(3)  
NT: Idle B1 Channel — In the NT mode, NR5(3) functions as a B1 channel idle bit. When NR5(3)  
is 0, the MC145574 functions normally where data received in the B1 channel timeslot via the IDL2  
is modulated onto the S/T–interface in the B1 channel timeslot. When NR5(3) is 1, data input on the  
IDL2 Rx pin in the B1 channel timeslot is ignored, and the “idle 1s” condition exists on the B1 channel  
timeslot on the S/T–interface. Note that the default condition (i.e., after power–up or after a reset)  
for NR5(3) is 0, thereby allowing the data received via the IDL2 interface to be modulated onto the  
transmission loop. Note that NR5(3) is a read/write bit in the NT mode.  
TE: Enable B1 Channel — In the TE mode of operation, NR5(3) functions as a B1 channel enable  
bit. In the TE mode B1 channel data is forced to the “idle 1s” condition on the S/T transmission loop  
when NR5(3) is 0. When NR5(3) is 1 (enabled), B1 channel data input via the IDL2 interface is modu-  
lated and transmitted onto the S/T transmission loop in the B1 channel timeslot. The default condition  
(i.e., after power–up or after a reset) for TE mode devices forces the B1 channel bits to the “idle 1s”  
condition. This is to avoid B channel interference until the B channels are assigned by the network.  
8–6  
MC145574  
MOTOROLA  
This function may be used in multidrop configurations or in applications where the output B channel  
transmission must be held in the “idle 1s” condition. Note that NR5(3) is a read/write bit in the TE  
mode.  
NR5(2)  
NT: Idle B2 Channel — In the NT mode, NR5(2) functions as a B2 channel idle bit. When NR5(2)  
is 0, the MC145574 functions normally, where data received in the B2 channel timeslot via the IDL2  
is modulated onto the S/T transmission loop in the B2 channel timeslot. When NR5(2) is 1, data input  
on the IDL2 Rx pin in the B2 channel timeslot is ignored, and the “idle 1s” condition exists on the  
B2 channel timeslot on the S/T transmission loop. Note that the default condition (i.e., after power–up  
or after a reset) for NR5(2) is 0, thereby allowing the data received via the IDL2 interface to be modu-  
lated onto the transmission loop. Note that NR5(2) is a read/write bit in the NT mode.  
TE: Enable B2 Channel — In the TE mode of operation, NR5(2) functions as a B2 channel enable  
bit. In the TE mode B2 channel data is forced to the “idle 1s” condition on the S/T transmission loop  
when NR5(2) is 0. When NR5(2) is 1 (enabled), B2 channel data input via the IDL2 interface is modu-  
lated and transmitted onto the S/T transmission loop in the B2 channel timeslot. The default condition  
(i.e., after power–up or after a reset) for TE mode devices forces the B2 channel bits to the “idle 1s”  
condition. This is to avoid B channel interference until the B channels are assigned by the network.  
This function may be used in multidrop configurations or in applications where the output B channel  
transmission must be held in the “idle 1s” condition. Note that NR5(2) is a read/write bit in the TE  
mode.  
NR5(1) — Invert B1 Channel  
When NR5(1) is 0, the B1 channel data received via the IDL2 interface is transmitted normally on  
the transmission loop. When NR5(1) is set to 1, the B1 channel data received via the IDL2 interface  
is inverted before entering the modulator portion of the MC145574 S/T transceiver, prior to transmission  
on the S/T loop in the B1 timeslot. The selected B1 channel data received via the transmission loop  
is also inverted before being output on the IDL2 Tx pin when this function is invoked. This feature  
is useful in applications where it is required to use inverted data. Note that NR5(1) is a read/write  
bit.  
NR5(0) — Invert B2 Channel  
When NR5(0) is 0, the B2 channel data received via the IDL2 interface is transmitted normally on  
the transmission loop. When NR5(0) is set, the B2 channel data received via the IDL2 interface is  
inverted before entering the modulator portion of the MC145574 S/T transceiver prior to transmission  
on the S/T loop in the B2 timeslot. The selected B2 channel data received via the transmission loop  
is also inverted before being output on the IDL2 Tx pin when this function is invoked. This feature  
is useful in applications where inverted data is required. Note that NR5(0) is a read/write bit.  
8.8  
NR6  
This register is a read/write register and can be reset by application of either a hardware or software  
reset. A per–bit description of nibble register 6 (NR6) is as follows.  
b3  
b2  
b1  
b0  
NR6  
2B+D IDL2 Loopback  
Swap B1 and B2  
rw  
rw  
NR6(3) – 2B+D IDL2 Loopback  
When NR6(3) is 0, the MC145574 S/T transceiver functions normally. When NR6(3) is set to 1, the  
B1, B2, and D channel data input on the IDL2 Rx input pin are buffered and returned to the IDL2  
Tx output pin on the next IDL2 cycle. The output B1, B2, and D channel data is passed unchanged  
to the modulator portion of the transceiver and transmitted onto the S/T loop (i.e., the loopback is  
transparent). Note that NR6(3) is a read/write bit.  
MOTOROLA  
MC145574  
8–7  
NR6(0) – Swap B1 and B2  
When NR6(0) is 0, the timeslot assigned positions of the B1 and B2 channel data input and output  
via the IDL2 interface functions normally. When NR6(0) is set to 1, the timeslot positions of the B1  
and B2 channels are reversed; i.e., data entering the device on IDL2 Rx in the B1 timeslot is modulated  
onto the B2 timeslot, on the S/T loop. Data demodulated from the B2 timeslot from the S/T loop is  
output on IDL2 Tx in the B1 timeslot. The situation is analogous for B2 data entering the device on  
IDL2 Rx. This feature is useful in applications where a particular device (such as a codec filter) is  
hard–wired to a particular IDL2 timeslot and needs to gain access to the opposite B channel timeslot.  
NR6(0) has no effect during a 2B+D IDL2 loopback. Note that NR6(0) is a read/write bit.  
NOTE: When NR6(0) is set, the B channel used on the IDL bus must be enabled before being output  
on the S/T loop. For example, if data entering the device on D in the B1 channel is modulated onto  
in  
the B2 channel on the S/T loop, then NR5(3) has to be set. On the MC145474/75, this is done differently.  
For the same example, NR5(2) is set instead of NR5(3).  
8.9  
NR7  
NR7 is a pointer register used when accessing a 16–byte–wide register. This pointer register will con-  
tain the address of the byte–wide register to be read from or written to, on the following SCP transaction.  
This nibble register is not shown on the register map, as it is not programmable.  
8–8  
MC145574  
MOTOROLA  
9
BYTE REGISTER MAP DESCRIPTION  
9.1 INTRODUCTION  
There are 16 byte registers (BR0 through BR15) in the MC145574. Control, status, and maintenance  
information reside in these byte registers, which are accessed via the SCP. For a detailed description  
of access procedures, refer to Section 5. The nomenclature used in this data sheet is such that BR2(3)  
refers to byte register 2, bit 3.  
The byte register map is fully compatible with the byte register map of the MC145474, with the exception  
of:  
1. The functions that were related to the IDL2 A/M FIFOs have been removed. Writing to these registers  
has no effect, and reading them returns FFH.  
2. TheTTLinputlevelbitBR13(6)hasbeenremoved. ThedigitalinputsareCMOSandTTLcompatible.  
Writing to this bit has no effect, and reading it returns 0 or 1 depending on what value, if any, has been  
written.  
3. The only addition to the byte register map is the bit BR15(0), used for enabling the overlay registers.  
Table 9–1. Byte Register Map for NT Mode of Operation  
(7)  
SC1.1  
Q.1  
(6)  
SC1.2  
Q.2  
(5)  
SC1.3  
Q.3  
(4)  
SC1.4  
Q.4  
(3)  
(2)  
(1)  
(0)  
BR2  
BR3  
Q Qual  
Interrupt  
Every  
Multiframe  
BR4  
BR5  
BR6  
FV7  
FV6  
FV5  
FV4  
FV3  
FV2  
FV1  
FV0  
BPV7  
BPV6  
BPV5  
BPV4  
BPV3  
BPV2  
BPV1  
BPV0  
B1 S/T  
Loopback  
Transparent  
B1 S/T  
Loopback  
Non–  
B2 S/T  
Loopback  
Transparent  
B2 S/T  
Loopback  
Non–  
IDL2 B1  
Loopback  
Transparent  
IDL2 B1  
Loopback  
Non–  
IDL2 B2  
Loopback  
Transparent  
IDL2 B2  
Loopback  
Non–  
Transparent  
Transparent  
Transparent  
Transparent  
BR7  
Activation  
Procedures  
Disabled  
Active Only  
NT Enable  
Enable  
Multiframing  
Invert E  
Channel  
IDL2 Master  
Mode  
IDL2 Clock  
Speed (LSB)  
LAPD  
Polarity  
Control  
Activation  
Timer #2  
Expired  
BR9  
BR10  
BR11  
TXSC2.1  
TXSC4.1  
TXSC2.2  
TXSC4.2  
TXSC2.3  
TXSC4.3  
TXSC2.4  
TXSC4.4  
TXSC3.1  
TXSC5.1  
TXSC3.2  
TXSC5.2  
TXSC3.3  
TXSC5.3  
TXSC3.4  
TXSC5.4  
Do Not React Do Not React  
to INFO 1  
Rx INFO  
State B1  
Rx INFO  
State B0  
Tx INFO  
State B1  
Tx INFO  
State B0  
External S/T  
Loopback  
Transmit  
96 kHz  
to INFO 3  
Test Signal  
BR12  
BR13  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
NT1 Star  
Mode  
IDL2 Clock  
Speed (MSB)  
Mute B2  
on IDL2 Tx  
Mute B1  
on IDL2 Tx  
Force Echo  
Channel  
to Zero  
Not  
Applicable  
BR14  
BR15  
Reserved  
Reserved  
Reserved  
Rev 5  
Reserved  
Rev 4  
Reserved  
Rev 3  
Reserved  
Rev 2  
Reserved  
Rev 1  
Reserved  
Rev 0  
Overlay  
Register  
Enabled  
MOTOROLA  
MC145574  
9–1  
Table 9–2. Byte Register Map for TE Mode of Operation  
(7)  
Q.1  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR2  
BR3  
Q.2  
Q.3  
Q.4  
SC1.1  
SC1.2  
SC1.3  
SC1.4  
Not  
Applicable  
Interrupt  
Every  
Multiframe  
BR4  
BR5  
BR6  
FV7  
FV6  
FV5  
FV4  
FV3  
FV2  
FV1  
FV0  
BPV7  
BPV6  
BPV5  
BPV4  
BPV3  
BPV2  
BPV1  
BPV0  
B1 S/T  
Loopback  
Transparent  
B1 S/T  
Loopback  
Non–  
B2 S/T  
Loopback  
Transparent  
B2 S/T  
Loopback  
Non–  
IDL2 B1  
Loopback  
Transparent  
IDL2 B1  
Loopback  
Non–  
IDL2 B2  
Loopback  
Transparent  
IDL2 B2  
Loopback  
Non–  
Transparent  
Transparent  
Transparent  
Transparent  
BR7  
Activation  
Procedures  
Disabled  
D Channel  
Procedures  
Ignored  
Not  
Applicable  
Map E  
to D  
IDL2  
Free Run  
IDL2 Clock  
Speed (LSB)  
LAPD  
Polarity  
Control  
BR9  
BR10  
BR11  
RXSC2.1  
RXSC4.1  
RXSC2.2  
RXSC4.2  
RXSC2.3  
RXSC4.3  
RXSC2.4  
RXSC4.4  
RXSC3.1  
RXSC5.1  
RXSC3.2  
RXSC5.2  
RXSC3.3  
RXSC5.3  
RXSC3.4  
RXSC5.4  
Not  
Applicable  
Not  
Applicable  
Rx INFO  
State B1  
Rx INFO  
State B0  
Tx INFO  
State B1  
Tx INFO  
State B0  
External S/T  
Loopback  
Transmit  
96 kHz  
Test Signal  
BR12  
BR13  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Not  
IDL2 Clock  
Mute B2  
Mute B1  
Not  
Force  
Applicable  
Speed (MSB)  
on IDL2 Tx  
on IDL2 Tx  
Applicable  
IDL2 Tx  
BR14  
BR15  
Reserved  
Reserved  
Reserved  
Rev 5  
Reserved  
Rev 4  
Reserved  
Rev 3  
Reserved  
Rev 2  
Reserved  
Rev 1  
Reserved  
Rev 0  
Overlay  
Register  
Enabled  
Table 9–3. Byte Register Initialization After Any Reset  
IDL TE  
IDL NT  
GCI TE  
GCI NT  
BR0  
FF  
FF  
FF  
FF  
BR1  
BR2  
FF  
FF  
FF  
FF  
F0  
00  
F0  
00  
BR3  
00  
F0  
00  
F0  
BR4  
00  
00  
00  
00  
BR5  
00  
00  
00  
00  
BR6  
00  
00  
00  
00  
BR7  
00  
00  
00  
00  
BR8  
00  
00  
00  
00  
BR9  
00  
00  
00  
00  
BR10  
BR11  
BR12  
BR13  
BR14  
BR15  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00XX XXXX  
00XX XXXX  
00XX XXXX  
00XX XXXX  
NOTES:  
1. All values in hexadecimal unless shown otherwise.  
2. BR15 and OR15 are the same register.  
3. BR0, BR1, and BR8 are reserved registers. Do not use.  
9–2  
MC145574  
MOTOROLA  
9.2 BR0  
The functions that were related to the IDL2 M FIFO of the MC145474 have been removed; writing  
to this register has no effect, and reading it returns FFH. (No register shown.)  
9.3  
BR1  
The functions that were related to the IDL2 A FIFO of the MC145474 have been removed; writing  
to this register has no effect, and reading it returns FFH. (No register shown.)  
9.4 BR2  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR2  
NT: SC1.1  
TE: Q.1  
NT: SC1.2  
TE: Q.2  
NT: SC1.3  
TE: Q.3  
NT: SC1.4  
TE: Q.4  
BR2(7:4)  
NT: Subchannel 1 (SC1) to S/T Loop — BR2(7:4) are used for multiframing. In the NT mode of opera-  
tion, these four bits correspond to subchannel 1 for transmission to the TE(s). Multiframing is initiated  
by the NT by setting BR7(5). When multiframing is enabled, the NT will transmit the bits in BR2(7:4)  
as subchannel 1, in accordance with CCITT I.430, ETSI ETS 300012, and ANSI T1.605. BR2(7:4),  
is internally polled at the start of every multiframe (this occurs every 5 ms and the device can be pro-  
grammed to give an interrupt at the start of every multiframe), and its contents are interpreted as  
subchannel 1. If multiframing is enabled and the contents of BR2(7:4) have not been updated, then  
the subchannel is re–transmitted as is. BR2(7:4) can be updated any time between the 5 ms interrupts.  
BR2(7:4) are read/write bits. Application of either a software or hardware reset resets these bits to  
all 0s. Note that BR2(7) is the MSB of SC1 and BR2(4) is the LSB. Refer to Section 10 for a more  
detailed description of this feature.  
TE: Q Nibble to S/T Loop — BR2(7:4) are used for multiframing. In the TE mode of operation these  
four bits correspond to the Q channel data for transmission to the NT. When multiframing is enabled,  
the TE will transmit the bits in BR2(7:4), as Q channel data, in accordance with CCITT I.430, ETSI  
ETS 300012, and ANSI T1.605. BR2(7:4) is internally polled at the start of every multiframe (this occurs  
every 5 ms and the device can be programmed to give an interrupt at the start of every multiframe),  
and its contents are interpreted as Q channel data. If multiframing is enabled and the contents of  
BR2(7:4) have not been updated then the Q channel is re–transmitted as is. BR2(7:4) can be updated  
any time between the 5 ms interrupts. BR2(7:4) are read/write bits. Application of either a software  
or hardware reset sets these bits to all 1s. Note that BR2(7) is the MSB of the Q channel and BR2(4)  
is the LSB. Refer to Section 10 for a more detailed description of this feature.  
9.5 BR3  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR3  
NT: Q.1  
TE: SC1.1  
NT: Q.2  
TE: SC1.2  
NT: Q.3  
TE: SC1.3  
NT: Q.4  
TE: SC1.4  
NT: Q Qual  
TE: Not  
Interrupt  
Every  
Applicable  
Multiframe  
BR3(7:4)  
NT: Q Nibble from S/T Loop — BR3(7:4) are used in the multiframing mode of operation. When  
the device is configured as an NT and multiframing has been enabled, these bits correspond to the  
received Q channel nibble from the TE(s). These bits are updated once every multiframe. The NT–con-  
figured device can give an interrupt once every multiframe (see BR3(2) and NR4(2)) or every time  
a new Q channel nibble is received. BR3(7:4) are read only bits. Application of either a hardware  
MOTOROLA  
MC145574  
9–3  
or software reset sets these bits to all 1s. Note that BR3(7) is the MSB of the received Q channel  
nibble, and BR3(4) is the LSB. Refer to Section 12 for a more detailed description of this feature.  
Reading BR3 clears the multiframe interrupt.  
TE: SC1 FROM S/T LOOP — BR3(7:4) are used in the multiframing mode of operation. When the  
device is configured as a TE and multiframing has been enabled, these bits correspond to the received  
subchannel 1 nibble from the NT. These bits are updated once every multiframe. The TE–configured  
device can give an interrupt once every multiframe, or every time a new subchannel nibble (SC1)  
is received (see BR3(2) and NR4(2)). BR3(7:4) are read only bits. Application of either a hardware  
or software reset resets these bits to all 0s. Note that BR3(7) is the MSB of the received SC1 subchannel  
nibble and BR3(4) is the LSB. Refer to Section 12 for a more detailed description of this feature.  
BR3(3) — NT: Q Bit Quality Indicate  
TE: Not Applicable  
In the NT mode, this bit corresponds to the Q bit quality indication. When multiframing has been initiated  
by the NT, the TE(s) will respond by sending Q data once every five frames. This Q data will be trans-  
mitted in the Fa bit position. During the other four frames (i.e., when the TE(s) are not transmitting  
Q data), the Fa bit should be a 0. BR3(3) being high indicates that the Fa bits in the frames where  
multiframing data was not being transmitted were 0s. This bit is a read only bit and is reset to 0 by  
application of either a hardware or software reset.  
BR3(2)  
NT: Interrupt Every Multiframe — Programming of BR3(2) dictates whether an interrupt will be given  
every multiframe (assuming multiframing has been enabled and IRQ2 enable, NR4(2), has been set),  
or only on the receipt of a new Q channel nibble from the TE(s). When BR3(2) is 1, an interrupt is  
given every multiframe. When BR3(2) is 0, an interrupt is given only on the receipt of a new Q channel  
nibble. Refer to Section 12 for a more detailed description. BR3(2) is a read/write bit and is reset  
to 0 by application of either a hardware or software reset.  
TE: Interrupt Every Multiframe — Programming of BR3(2) dictates whether an interrupt will be given  
every multiframe (assuming multiframing has been enabled and IRQ2 enable, NR4(2), has been set),  
or only on the receipt of a new SC1 subchannel nibble from the NT. When BR3(2) is 1, an interrupt  
is given every multiframe. When BR3(2) is 0, an interrupt is given only on the receipt of a new SC1  
subchannel nibble. Refer to Section 12 for a more detailed description. BR3(2) is a read/write bit and  
is reset to 0 by application of either a hardware or software reset.  
9.6  
BR4  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR4  
FV7  
FV6  
FV5  
FV4  
FV3  
FV2  
FV1  
FV0  
Recommendation CCITT I.430, ETSI ETS 300012, and ANSI T1.605 specifications state that there  
must be two AMI violations in every S/T frame. The F bit is the first violation and the succeeding violation  
must occur within 13 or 14 bauds, depending on the configuration of the transceiver as either an NT  
or TE. BR4(7:0) is the output of an 8–bit binary counter. This counter counts the number of frames  
which do not contain the correct number of AMI violations. Note that in multiframing, it is possible  
to have a frame which does not contain the correct number of violations (Fa = 1, B1 = 1). The  
MC145574, when in multiframe mode, does not count these frames. Thus, this counter is a “frame  
error” counter, counting the number of frames which do not contain the correct number of AMI viola-  
tions. BR4(7:0) only counts frames not containing the correct number of AMI violations after FSYNC  
has been achieved, and ceases counting whenever FSYNC is lost.  
BR4(7:0) is applicable to both NT and TE modes of operation. It is a read/write register, thereby allowing  
the user to program the counter to a predetermined value. The counter is initialized to “100” by a  
hardware/software reset. Note that the counter, upon reaching a value of “FF”, will not roll over; i.e.,  
it will remain at “FF” until the user rewrites a starting value. Note that BR4(7) is the MSB of the counter  
and BR4(0) is the LSB.  
9–4  
MC145574  
MOTOROLA  
9.7 BR5  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR5  
BPV7  
BPV6  
BPV5  
BPV4  
BPV3  
BPV2  
BPV1  
BPV0  
BR5(7:0) is the output of an 8–bit binary counter. This counter counts the number of unbalanced frames.  
A frame in which the total number of positive pulses is different from the total number of negative  
pulses constitutes an unbalanced frame. BR5(7:0) is applicable to both NT and TE modes of operation.  
It is a read/write register, thereby allowing the user to program the counter to a predetermined value.  
The counter is initialized to “100” by a hardware/software reset. Note that the counter, upon reaching  
a value of “FF”, will not roll over; i.e., it will remain at “FF” until the user rewrites a starting value.  
Note that BR5(7) is the MSB of the counter and BR5(0) is the LSB.  
9.8  
BR6  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
B1 S/T  
Loopback  
Transparent  
BR6  
B1 S/T  
Loopback  
Non–  
B2 S/T  
B2 S/T  
Loopback  
Non–  
IDL2 B1  
IDL2 B1  
Loopback  
Non–  
IDL2 B2  
IDL2 B2  
Loopback  
Non–  
Loopback  
Loopback  
Loopback  
Transparent  
Transparent  
Transparent  
Transparent  
Transparent  
Transparent  
Transparent  
BR6(7) — B1 S/T Loopback Transparent  
This bit is a read/write bit and is applicable to both NT and TE modes of operation. When this bit  
is 0, the device functions normally. When this bit is 1, the device enters a “B1 S/T Loopback Transparent  
Mode”. In this mode, data entering the device from RxP/PxN in the B1 timeslot is demodulated and  
remodulated back out on TxP/TxN in the B1 timeslot. The demodulated B1 data continues to present  
itself on IDL2 Tx in the B1 timeslot (hence, the term “transparent”). Data entering the part from IDL2  
Rx in the B1 timeslot is ignored. This bit is reset to 0 by either a software reset, a hardware reset,  
or in the “return to normal” mode (NR0(0) = 1).  
BR6(6) — B1 S/T Loopback Non–Transparent  
This bit is a read/write bit and is applicable to both NT and TE modes of operation. When this bit  
is 0 the device functions normally. When this bit is 1, the device enters a “B1 S/T Loopback Non–Trans-  
parent Mode”. In this mode, data entering the device from RxP/RxN in the B1 timeslot is demodulated  
and remodulated back out on TxP/TxN in the B1 timeslot. Data entering the part from IDL2 Rx in  
the B1 timeslot is ignored. IDL2 Tx ignores the demodulated B1 data, presenting in its stead the “idle  
1s” condition in the IDL2 Rx B1 timeslot (hence, the term “non–transparent”). This bit is reset to 0  
by either a software reset, a hardware reset, or in the “return to normal” mode (NR0(0) = 1).  
BR6(5) — B2 S/T Loopback Transparent  
This bit is a read/write bit and is applicable to both NT and TE modes of operation. When this bit  
is 0, the device functions normally. When this bit is 1, the device enters a “B2 S/T Loopback Transparent  
Mode”. In this mode, data entering the device from RxP/RxN in the B2 timeslot is demodulated and  
remodulated back out on TxP/TxN in the B2 timeslot. The demodulated B2 data continues to present  
itself on IDL2 Tx in the B2 timeslot (hence, the term “transparent”). Data entering the part from IDL2  
Rx in the B2 timeslot is ignored. This bit is reset to 0 by either a software reset, a hardware reset,  
or in the “return to normal” mode (NR0(0) = 1).  
BR6(4) — B2 S/T Loopback Non–Transparent  
This bit is a read/write bit and is applicable to both NT and TE modes of operation. When this bit  
is 0, the device functions normally. When this bit is 1, the device enters a “B2 S/T Loopback Non–Trans-  
parent Mode”. In this mode, data entering the device from RxP/RxN in the B2 timeslot is demodulated  
and remodulated back out of TxP/TxN in the B2 timeslot. Data entering the part from IDL2 Rx in the  
MOTOROLA  
MC145574  
9–5  
B2 timeslot is ignored. IDL2 Tx ignores the demodulated B2 data, presenting in its stead the “idle  
1s” condition in the IDL2 Rx B2 timeslot (hence, the term “non–transparent”). This bit is reset to 0  
by either a software reset, a hardware reset, or in the “return to normal” mode (NR0(0) = 1).  
BR6(3) — IDL2 B1 Loopback Transparent  
This bit is a read/write bit and is applicable to both NT and TE modes of operation when the MC145574  
is configured for GCI or IDL2 type interfaces. When this bit is a 0, the MC145574 operates normally.  
When this bit is a 1, the MC145574 internally loops back the data received during the B1 timeslot  
at D and transmits it onto the D  
B1 timeslot is also transmitted onto the S/T–interface. This bit is reset to 0 by either a software reset,  
a hardware reset, or in the “return to normal” mode (NR0(0) = 1).  
pin during the B1 timeslot. Data entering the D pin during the  
in out  
in  
BR6(2) — IDL2 B1 Loopback Non–Transparent  
This bit is a read/write bit and is applicable to both NT and TE modes of operation when the MC145574  
is configured for GCI or IDL2 type interfaces. When this bit is a 0, the MC145574 operates normally.  
When this bit is a 1, the MC145574 internally loops back the data received during the B1 channel  
timeslot at D and transmits it onto the D  
pin during the B1 timeslot. Data entering the D pin during  
in  
out  
in  
the B1 timeslot is not transmitted onto the S/T–interface. Instead, the MC145574 transmits idle 1s  
onto the B1 channel bits of the S/T–interface. This bit is reset to 0 by either a software reset, a hardware  
reset, or in the “return to normal” mode (NR0(0) = 1).  
BR6(1) — IDL2 B2 Loopback Transparent  
This bit is a read/write bit and is applicable to both NT and TE modes of operation when the MC145574  
is configured for GCI or IDL2 type interfaces. When this bit is a 0, the MC145574 operates normally.  
When this bit is a 1, the MC145574 internally loops back the data received during the B2 channel  
timeslot at D and transmits it onto the D  
the B2 timeslot is also transmitted onto the S/T–interface. This bit is reset to 0 by either a software  
reset, a hardware reset, or in the “return to normal” mode (NR0(0) = 1).  
pin during the B2 timeslot. Data entering the D pin during  
in  
out  
in  
BR6(0) — IDL2 B2 Loopback Non–Transparent  
This bit is a read/write bit and is applicable to both NT and TE modes of operation when the MC145574  
is configured for GCI or IDL2 type interfaces. When this bit is a 0, the MC145574 operates normally.  
When this bit is a 1, the MC145574 internally loops back the data received during the B2 channel  
timeslot at D and transmits it onto the D  
pin during the B2 timeslot. Data entering the D pin during  
in  
out  
in  
the B2 timeslot is not transmitted onto the S/T–interface. Instead, the MC145574 transmits idle 1s  
onto the B2 channel bits of the S/T–interface. This bit is reset to 0 by either a software reset, a hardware  
reset, or in the “return to normal” mode (NR0(0) = 1).  
9.9  
BR7  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR7  
Activation  
Procedures  
Disabled  
NT: Active  
Only NT  
Enable  
NT: Enable NT: Invert E  
NT: IDL2  
Master  
Mode  
TE: IDL2  
Free Run  
IDL2 Clock  
Speed  
(LSB)  
LAPD  
Polarity  
Control  
NT:  
Multi–  
framing  
TE: Not  
Channel  
TE: Map E  
To IDL2  
Activation  
Timer #2  
Expired  
TE: Not  
Applicable  
TE: D  
Channel  
Procedures  
Ignored  
Applicable  
BR7(7) — Activation Procedures Disabled  
This bit a read/write bit and is applicable to both NT and TE modes of operation. When this bit is  
0, the MC145574 functions normally. When this bit is set to 1, the transmit section of the transceiver  
is forced into the highest information state. Thus, if the device is operating as NT, INFO 4 is forced  
out on the transmit side of the device. INFO 4 is forced out regardless of what is being received on  
RxP/RxN. If the device is operating as a TE, the transceiver transmits INFO 3 on TxP/TxN.  
9–6  
MC145574  
MOTOROLA  
Note that if activation procedures are disabled as a TE, causing INFO 3 to be transmitted, then this  
state may or may not be commensurate with receiving INFO 0 from the NT. In the event that INFO 0  
is being received, the transmitted INFO 3 is transmitted asynchronously. If either INFO 2 or INFO 4  
are subsequently received, then the TE’s INFO 3 aligns itself to the received signal in accordance  
with CCITT I.430, ETSI ETS 300012, and ANSI T1.605. Note also that a TE wakes up if it receives  
either INFO 2 or INFO 4 from the NT. However, an NT transmitting INFO 0 will not wake up to the  
reception of INFO 3 from the TE. For an NT to be woken up by a TE, it must first receive INFO 1  
from the TE and then proceed to go through the subsequent handshaking. BR7(7) is reset to 0 by  
application of either a hardware or software reset.  
BR7(6) — NT: Active Only NT Enable  
TE: D Channel Procedures Ignored  
When the MC145574 is configured as a TE, this bit is used to enable/disable D channel contention  
procedures in accordance with the CCITT I.430, ETSI ETS 300012, and ANSI T1.605. When this  
bit is 0, the D channel procedures are adhered to as per the DREQUEST, DGRANT, and CLASS pin  
descriptions. When this bit is 1, the D channel procedures are ignored, allowing the data present in  
the D channel on IDL2 Rx to be modulated regardless of the status of DREQUEST and DGRANT.  
BR7(6) = 1 causes the TE to disregard the demodulated E echo bits. The TE’s D data will be modulated  
regardless. This bit is a read/write bit and is reset to 0 by application of either a software or a hardware  
reset. When configured as an NT, this bit enables the “active only NT” mode. In this mode, the NT  
is restricted to the G2 or G3 state; i.e., the device is either activated or attempting to activate. The  
device is never allowed to fully deactivate.  
BR7(5) — NT: Enable Multiframing  
TE: Not Applicable  
When the MC145574 is configured as an NT, this bit is used to enable/disable multiframing in accor-  
dance with CCITT I.430, ETSI ETS 300012, and ANSI T1.605. When this bit is 0, multiframing is dis-  
abled. In this mode the M, Fa, and S bauds transmitted from the NT will be binary 0. When this bit  
is 1, multiframing is enabled. In this mode, the M, Fa, and S bauds will adhere to the multiframing  
coding rules as outlined in CCITT I.430 and ANSI T1.605. Since the TE cannot initiate multiframing,  
this bit has no application in this mode. This bit is a read/write bit and is reset to 0 by application  
of either a software or a hardware reset.  
BR7(4)  
NT: Invert Echo Channel — When the MC145574 is configured as an NT, this bit is used to determine  
the polarity of the transmitted echo channel from the NT to the TE. When this bit is a 0, the transmitted  
E bit is the same as the previously demodulated D bit from the TE(s). When this bit is 1, the transmitted  
E bit is the logical inverse of the previously demodulated D bit. This bit is a read/write bit and is reset  
to 0 by application of either a software or hardware reset.  
TE: Map E Bits to IDL2 — With the MC145574 configured as a TE and this bit a 0, the TE outputs  
the demodulated D channel data in the D timeslot on the IDL2 Tx. When this bit is set to 1, the TE  
outputs the demodulated E channel in the D timeslot on IDL2 Tx, neglecting the demodulated D channel  
data. This bit is a read/write bit and is reset to 0 by application of either a software or a hardware  
reset.  
BR7(3)  
NT: IDL2 Master Mode — With the MC145574 configured as an NT, this bit determines whether the  
device operates in IDL2 slave or IDL2 master mode. When this bit is 0, the NT operates in the IDL2  
slave mode, where IDL2 SYNC and IDL2 CLK are inputs to the device. When this bit is 1, the NT  
operates in the NT IDL2 master mode, where IDL2 SYNC and IDL2 CLK are outputs from the device.  
This bit is a read/write bit OR’d with the M/S pin and is reset to 0 by application of either a software  
or hardware reset.  
TE: IDL2 Free Run — When the MC145574 is configured as a TE and the loop is active, the device  
will output IDL2 SYNC and IDL2 CLK synchronous to the inbound data from the NT. When the loop  
is inactive and this bit is 0, the TE does not output IDL2 SYNC or IDL2 CLK. If this bit is 1, the TE  
outputs IDL2 SYNC and IDL2 CLK regardless of the status of the loop. If the loop is inactive, these  
MOTOROLA  
MC145574  
9–7  
signals will be free–running (derived from the crystal). If the loop is active, these signals will be synchro-  
nous to the inbound data. This bit is a read/write bit and is reset to 0 by application of either a software  
or a hardware reset.  
BR7(2) — IDL2 Clock Speed (LSB)  
This bit is a read/write bit and is applicable to both NT and TE modes of operation. BR7(2), in conjunc-  
tion with BR13(5), determines the IDL2 CLK frequency when operating in the IDL2 master mode.  
BR7(2) is the LSB and BR13(5) is the MSB. The code corresponding to each IDL2 clock frequency  
is shown in Table 9–4.  
Table 9–4. IDL2 Clock Speed Codes  
IDL2 CLK  
BR13(5)  
BR7(2)  
Rate  
Duty Cycle  
50%  
0
0
1
1
0
1
0
1
2.56 MHz  
2.048 MHz  
1.536 MHz  
512 kHz  
53.3%  
50%  
50%  
Application of either a hardware or a software reset will reset this bit to 0. Refer to Section 4 for a  
more detailed description of this feature.  
BR7(1) — NT: LAPD Polarity Control (NT Terminal Mode)  
TE: LAPD Polarity Control  
When the MC145574 is configured as a TE or an NT (Terminal Mode), this bit performs the “LAPD  
Polarity Control” function. When this bit is 0, the active state of DREQUEST and DGRANT signals  
is defined to be the logic 1 or high state. When this bit is 1, the active state of these signals is defined  
to be the logic 0 or low state. This bit is a read/write bit and is reset to 0 by application of either a  
hardware or software reset.  
BR7(0) — NT: Activation Timer #2 Expired  
TE: Not Applicable  
When the MC145574 is configured as an NT, this bit performs the “Activation Timer #2 Expired” func-  
tion. When this bit is 0, the NT–configured S/T transceiver uses a value of 50 ms for the Timer #2  
value outlined in CCITT I.430, ETSI ETS 300012, and ANSI T1.605 (i.e., the device unambiguously  
detects INFO 1). When this bit is 1, a value of 100 ms is used for the value of Timer #2. This bit is  
a read/write bit and is reset to 0 by application of either a hardware or software reset.  
9.10 BR8  
The functions that were related to the IDL2 A/M FIFOs have been removed. Writing to these registers  
will have no effect, and reading them will return 00H or any value that has been written to them. (No  
register shown.)  
9.11 BR9  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR9  
NT:  
NT:  
NT:  
NT:  
NT:  
NT:  
NT:  
NT:  
TXSC2.1  
TE:  
TXSC2.2  
TE:  
TXSC2.3  
TE:  
TXSC2.4  
TE:  
TXSC3.1  
TE:  
TXSC3.2  
TE:  
TXSC3.3  
TE:  
TXSC3.4  
TE:  
RXSC2.1  
RXSC2.2  
RXSC2.3  
RXSC2.4  
RXSC3.1  
RXSC3.2  
RXSC3.3  
RXSC3.4  
9–8  
MC145574  
MOTOROLA  
BR9(7:4)  
NT: SC2 to Loop — BR9(7:4) is used for multiframing. In the NT mode of operation, these four bits  
correspond to subchannel 2 for transmission to the TE(s). Multiframing is initiated by the NT by setting  
BR7(5). When multiframing is enabled, the NT will transmit the bits in BR9(7:4) as subchannel 2, in  
accordance with CCITT I.430, ETSI ETS 300012, and ANSI T1.605. BR9(7:4), are internally polled  
at the start of every multiframe (this occurs every 5 ms and the device can be programmed to give  
an interrupt at the start of every multiframe), and the contents are interpreted as subchannel 2. If  
multiframing is enabled and the contents of BR9(7:4) have not been updated, the subchannel is re–  
transmitted as is. BR9(7:4) can be updated any time between the 5 ms interrupts. In the NT mode  
of operation, BR9(7:4) are write only bits. These bits are reset to 0 by application of either a software  
or hardware reset. Note that BR9(7) is the MSB of SC2 and BR9(4) is the LSB. Refer to Section 10  
for a detailed description of the multiframe procedure.  
TE: SC2 from Loop — BR9(7:4) are used in the multiframing mode of operation. When the device  
is configured as a TE and multiframing has been enabled, these bits correspond to the received sub-  
channel 2 nibble from the NT. These bits are updated once every multiframe. BR9(7:4) are read only  
bits and are reset to 0 by application of either a software or hardware reset. Note that BR9(7) is the  
MSB of SC2 and BR9(4) is the LSB. Refer to Section 10 for a detailed description of the multiframe  
procedure.  
BR9(3:0)  
NT: SC3 to Loop — BR9(3:0) is used for multiframing. In the NT mode of operation, these four bits  
correspond to subchannel 3 for transmission to the TE(s). When multiframing is enabled, the NT will  
transmit the bits in BR9(3:0) as subchannel 3, in accordance with CCITT I.430, ETSI ETS 300012,  
and ANSI T1.605. BR9(3:0) are internally polled at the start of every multiframe (this occurs every  
5 ms and the device can be programmed to give an interrupt at the start of every multiframe), and  
the contents are interpreted as subchannel 3. If multiframing is enabled and the contents of BR9(3:0)  
have not been updated, the subchannel is re–transmitted as is. BR9(3:0) can be updated any time  
between the 5 ms interrupts. In the NT mode of operation, BR9(3:0) are write only bits. These bits  
are reset to 0 by application of either a software or hardware reset. Note that BR9(3) is the MSB of  
SC3 and BR9(0) is the LSB. Refer to Section 12 for a detailed description of the multiframe procedure.  
TE : SC3 from Loop — BR9(3:0) are used in the multiframing mode of operation. When the device  
is configured as a TE and multiframing has been enabled, these bits correspond to the received sub-  
channel 3 nibble from the NT. These bits are updated once every multiframe. BR9(3:0) are read only  
bits and are reset to 0 by application of either a software or hardware reset. Note that BR9(3) is the  
MSB of SC2 and BR9(0) is the LSB. Refer to Section 10 for a detailed description of the multiframe  
procedure.  
9.12 BR10  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR10  
NT:  
NT:  
NT:  
NT:  
NT:  
NT:  
NT:  
NT:  
TXSC4.1  
TE:  
TXSC4.2  
TE:  
TXSC4.3  
TE:  
TXSC4.4  
TE:  
TXSC5.1  
TE:  
TXSC5.2  
TE:  
TXSC5.3  
TE:  
TXSC5.4  
TE:  
RXSC4.1  
RXSC4.2  
RXSC4.3  
RXSC4.4  
RXSC5.1  
RXSC5.2  
RXSC5.3  
RXSC5.4  
BR10(7:4)  
NT: SC4 to Loop — BR10(7:4) are used for multiframing. In the NT mode of operation, these four  
bits correspond to subchannel 4 for transmission to the TE(s). When multiframing is enabled, the NT  
will transmit the bits in BR10(7:4) as subchannel 4, in accordance with CCITT I.430, ETSI ETS 300012,  
and ANSI T1.605. BR10(7:4) are internally polled at the start of every multiframe (this occurs every  
5 ms and the device can be programmed to give an interrupt at the start of every multiframe), and  
the contents are interpreted as subchannel 4. If multiframing is enabled and the contents of BR10(7:4)  
have not been updated, the subchannel is re–transmitted as is. BR10(7:4) can be updated any time  
between the 5 ms interrupts. In the NT mode of operation, BR10(7:4) are write only bits. These bits  
MOTOROLA  
MC145574  
9–9  
are reset to 0 by application of either a software or hardware reset. Note that BR10(7) is the MSB  
of SC4 and BR10(4) is the LSB. Refer to Section 10 multiframing for a detailed description of the  
multiframing procedure.  
TE: SC4 from Loop — BR10(7:4) are used in the multiframing mode of operation. When the device  
is configured as a TE and multiframing has been enabled, these bits correspond to the received sub-  
channel 4 nibble from the NT. These bits are updated once every multiframe. BR10(7:4) are read  
only bits and are reset to 0 by either a software or hardware reset. Note that BR10(7) is the MSB  
of SC4 and BR10(4) is the LSB. Refer to Section 10 for a detailed description of multiframe procedures.  
BR10(3:0)  
NT: SC5 to Loop — BR10(3:0) are used for multiframing. In the NT mode of operation, these four  
bits correspond to subchannel 5 for transmission to the TE(s). When multiframing is enabled, the NT  
will transmit the bits in BR10(3:0) as subchannel 5, in accordance with CCITT I.430, ETSI ETS 300012,  
and ANSI T1.605. BR10(3:0) is internally polled at the start of every multiframe (this occurs every  
5 ms and the device can be programmed via NR4(2) to give an interrupt at the start of every multiframe),  
and the contents are interpreted as subchannel 5. If multiframing is enabled and the contents of  
BR10(3:0) have not been updated, the subchannel is re–transmitted as is. BR10(3:0) can be updated  
any time between the 5 ms interrupts. In the NT mode of operation, BR10(3:0) are write only bits.  
These bits are reset to 0 by application of either a software or hardware reset. Note that BR10(3)  
is the MSB of SC5 and BR10(0) is the LSB. Refer to Section 10 for a detailed description of the multi-  
frame procedure.  
TE: SC5 from Loop — BR10(3:0) are used in the multiframing mode of operation. When the device  
is configured as a TE and multiframing has been enabled, these bits correspond to the received sub-  
channel 5 nibble from the NT. These bits are updated once very multiframe. BR10(3:0) are read only  
bits and are reset to 0 by either a software or hardware reset. Note that BR10(3) is the MSB of SC5  
and BR10(0) is the LSB. Refer to Section 10 for a detailed description of the multiframe procedure.  
9.13 BR11  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR11  
NT: Do Not NT: Do Not  
Rx INFO  
State B1  
Rx INFO  
State B0  
Tx INFO  
State B1  
Tx INFO  
State B0  
External  
S/T  
Loopback  
Transmit  
96 kHz  
Test Signal  
React To  
INFO 1  
React To  
INFO 3  
TE: Not  
TE: Not  
Applicable  
Applicable  
9.13.1 BR11(7) — NT: Do Not React to INFO 1  
TE: Not Applicable  
This bit is only applicable to the NT mode of operation. When this bit is 0, the part functions normally.  
When this bit is 1, the NT will not react to INFO 1 from the TE. (Note, however, that the NT will give  
an interrupt indicating a change in received information state.) Only when the NT resets this bit to  
0 will it react to INFO 1. This feature is used in the NT in applications where it is necessary to delay  
activation of the S/T loop until the U link has reached its active state. This bit is a read/write bit and  
is reset to 0 by application of either a hardware or software reset.  
BR11(6) — NT: Do Not React to INFO 3  
TE: Not Applicable  
This bit is only applicable to the NT mode of operation. When this bit is 0, the part functions normally.  
When this bit is 1, the NT will not react to INFO 3 from the TE (this INFO 3 from the TE being the  
response of the TE to INFO 2 from the NT). Only when the NT resets this bit to 0 will it react to INFO  
3. In the meantime, the NT will continue to transmit INFO 2. This feature is used in the NT in applications  
where it is necessary to delay activation of the S/T loop until the U link has reached its active state.  
This bit is a read/write bit and is reset to 0 by application of either a hardware or software reset.  
9–10  
MC145574  
MOTOROLA  
BR11(5), BR11(4) — Rx INFO State B1 and B0  
These bits are read/write bits and are applicable to both NT and TE modes of operation. The MC145574  
internally sets these bits to indicate the status of the received signal; i.e., it is INFO 0, 1, 2, 3, 4, or  
X, where INFO X is none of the above. An example of INFO X would be when it is receiving the 96 kHz  
test signal. Another example of INFO X would be where the transceiver is not receiving INFO 0, but  
it has not yet determined whether it is INFO 1, 2, 3, or 4.  
The codes corresponding to the different states are shown in Table 9–5.  
Table 9–5. BR11(5), BR11(4) Rx INFO State Codes  
BR11(5)  
BR11(4)  
Receive Information State  
0
0
1
1
0
1
0
1
INFO 0  
INFO LOW  
INFO HIGH  
INFO X  
NOTE: When configured as an NT, receiving INFO LOW corresponds to receiving INFO 1, and receiv-  
ing INFO HIGH corresponds to receiving INFO 3. Conversely, when the device is operating as a TE,  
receiving INFO LOW corresponds to receiving INFO 2, and receiving INFO HIGH corresponds to re-  
ceiving INFO 4. The device internally sets these bits, and this internal write overrides any external  
write. These bits are reset to 0 by application of either a hardware or software reset.  
BR11(3), BR11(2) — Tx INFO State B1 and B0  
These bits are read/write bits and are applicable to both NT and TE modes of operation. The MC145574  
internally sets these bits to indicate the status of the transmitted signal; i.e., is it INFO 0, 1, 2, 3, 4,  
or X where INFO X is none of the above. An example of INFO X would be when it is transmitting  
the 96 kHz test signal. The codes corresponding to the different states is shown in Table 9–6.  
Table 9–6. BR11(3), BR11(2) Tx INFO State Codes  
BR11(3)  
BR11(2)  
Transmit Information State  
0
0
1
1
0
1
0
1
INFO 0  
INFO LOW  
INFO HIGH  
INFO X  
NOTE: When configured as an NT, transmitting INFO LOW corresponds to transmitting INFO 2, and  
transmitting INFO HIGH corresponds to transmitting INFO 4. Conversely, when the device is operating  
as a TE, transmitting INFO LOW corresponds to transmitting INFO 1, and transmitting INFO HIGH  
corresponds to transmitting INFO 3. The device internally sets these bits, and this internal write over-  
rides any external write. These bits are reset to 0 by application of either a hardware or software reset.  
BR11(1) — External S/T Loopback  
This bit is a read/write bit and is applicable to both NT and TE modes of operation. When this bit  
is 0, the MC145574 functions normally. If the transmit pair is shorted to the receive pair while this  
bit is 1, the device will perform an external or “analog” loopback. In an analog loopback, the device  
demodulates its own transmitted data. The transceiver should have its activation procedures disabled  
(BR7(7) = 1) and be configured for the IDL2 master mode (BR7(3) = 1). This feature is useful for  
test purposes. In external loopback, the B1 and B2 channels are looped back. In the NT mode, the  
D channel is also looped back. The D channel is not looped back in the TE mode. Application of a  
hardware or software reset will reset this bit to 0.  
MOTOROLA  
MC145574  
9–11  
BR11(0) — Transmit 96 kHz Test Signal  
This bit is a read/write bit and is applicable to both NT and TE modes of operation. When this bit  
is 0, the MC145574 functions normally. When this bit is 1, the device transmits a 96 kHz square wave  
test signal on TxP/TxN. This test signal can be used for test purposes. This 96 kHz test signal qualifies  
as a “Transmit INFO X” state. Correspondingly, the MC145574 receiving the 96 kHz test signal will  
be in the “Receive INFO X” state. Application of a hardware or software reset will reset this bit to 0.  
9.14 BR12  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR12  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte register 12 is reserved for Motorola use only.  
9.15 BR13  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR13  
NT: NT1  
Star Mode  
TE: Not  
Reserved  
IDL2 Clock Mute B2 on Mute B1 on  
NT: Force  
Echo  
Channel to  
Zero  
NT: Not  
Applicable  
TE: Force  
IDL2 Tx  
Reserved  
Speed  
(MSB)  
IDL2 Tx  
IDL2 Tx  
Applicable  
TE: Not  
Applicable  
BR13(7) — NT: NT1 Star Mode  
TE: Not Applicable  
This bit is a read/write bit and is only applicable to the NT mode of operation. When this bit is 0, the  
device functions normally. When this bit is 1, the device is configured for NT1 Star mode operation.  
Refer to Section 11 for a detailed description of this mode. This bit is reset to 0 by application of either  
a hardware or software reset.  
BR13(6)  
This bit has no function and is reserved for Motorola use only.  
BR13(5) — IDL2 Clock Speed (MSB)  
This bit is a read/write bit and is applicable to both NT and TE modes of operation. BR13(5), in conjunc-  
tion with BR7(2), determines the IDL2 CLK frequency when operating in the IDL2 master mode. BR7(2)  
is the LSB and BR13(5) is the MSB. The code corresponding to each IDL2 clock frequency is as shown  
in the description for BR7(2). Application of either a hardware or a software reset will reset this bit  
to 0. See Table 9–3.  
BR13(4) — Mute B2 on IDL2  
This bit is a read/write bit and is applicable to both NT and TE modes of operation. When this bit  
is 0, the device functions normally. When this bit is 1, the data transmitted on the B2 channel on IDL2  
Tx will be forced to the “idle 1s” condition. This feature is primarily used in the NT1 Star mode operation.  
Refer to Section 11 for a detailed description of this mode. Application of a hardware or software reset  
resets this bit to 0.  
BR13(3) — Mute B1 on IDL2  
This bit is a read/write bit and is applicable to both NT and TE modes of operation. When this bit  
is 0, the device functions normally. When this bit is 1, the data transmitted on the B1 channel on IDL2  
Tx will be forced to the “idle 1s” condition. This feature is primarily used in the NT1 Star mode operation.  
9–12  
MC145574  
MOTOROLA  
Refer to Section 11 for a detailed description of this mode. Application of a hardware or software reset  
resets this bit to 0.  
BR13(2) — NT: Force Echo Channel to Zero  
TE: Not Applicable  
This bit is a read/write bit and is only applicable to the NT mode of operation. When the MC145574  
is configured as an NT and this bit is 0, the device functions normally. When this bit is 1, the NT forces  
the transmitted E bits to be 0. This feature is used for test purposes when the NT wishes tocommunicate  
to the TEs on the passive bus that they should disengage from the D channel. Application of either  
a hardware or a software reset resets this bit to 0.  
BR13(1) —NT: Not Applicable  
TE: Force IDL2 Tx  
This bit is a read/write bit and is only applicable to the TE mode of operation. When the MC145574  
is configured as a TE and this bit is 0, the device functions normally. When this bit is 1, data is presented  
on IDL2 Tx in the special case where the TE is synchronized to INFO 4 incoming from the NT but  
its transmitter is not fully active (i.e., not transmitting INFO 3). This feature is useful when the MC145574  
is in the transmit power down mode (NR0(2) = 1) and it is desired to continue to process data from  
the NT. This bit has no effect when the device is fully active (transmitting INFO 3 and receiving INFO 4).  
When BR13(1) = 0 and the device is not fully active, “idle 1s” will be presented on IDL2 Tx. Application  
of either a hardware or a software reset resets this bit to 0.  
BR13(0)  
This bit is reserved.  
9.16 BR14  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR14  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte register 14 is a read/write register. It is reserved for Motorola use only.  
9.17 BR15  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
BR15  
Overlay  
Register  
Enabled  
Rev 5  
Rev 4  
Rev 3  
Rev 2  
Rev 1  
Rev 0  
BR15(7) — Overlay Register Enabled  
When the device is initialized, this bit is a logic 0. When set to a logic 0, operation of the MC145574  
register map is identical to that of the MC145474. When set to a logic 1, a second set overlay register  
is enabled. The overlay register map allows access to the TSA registers required by the IDL2 and  
also to a GCI control register.  
BR15(5:0) — Device Revision Identification, Rev (5:0)  
The Rev (5:0) bits indicate the revision status of the device. These bits are read only and can only  
be modified by altering the device mask. Rev (5:0) is set to 11H for G20R1 mask set and to 03H  
for F57J4 mask set. See Section 20 for F57J4 mask set differences.  
MOTOROLA  
MC145574  
9–13  
9–14  
MC145574  
MOTOROLA  
10  
OVERLAY REGISTER MAP DEFINITION  
10.1 INTRODUCTION  
There are eleven overlay registers (OR0 through OR9 and OR15) in the MC145574. The overlay regis-  
ters are a second bank of registers available when the overlay register control bit BR15(7) is set to  
a logic 1. These overlay registers are in the IDL2 TSA mode used to assign the timeslot used by each  
channel (B1, B2, and D) for transmission and reception; OR0 through OR5, OR6, OR7, and OR8  
are control registers used in the GCI indirect mode, and OR15 gives the revision number of the S/T  
chip.  
Table 10–1. Overlay Register Map  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR0  
OR1  
OR2  
OR3  
OR4  
OR5  
OR5  
OR6  
D
D
B1 Channel Timeslot Bits (7:0) (IDL2 Mode)  
B2 Channel Timeslot Bits (7:0) (IDL2 Mode)  
D Channel Timeslot Bits (7:0) (IDL2 Mode)  
B1 Channel Timeslot Bits (7:0) (IDL2 Mode)  
B2 Channel Timeslot Bits (7:0) (IDL2 Mode)  
in  
in  
D
in  
D
D
out  
out  
D
D Channel Timeslot Bits (7:0) (IDL2 Mode)  
out  
Time Slot Assignment for GCI Mode  
S2  
S1  
S0  
TSA B1  
Enable  
TSA B2  
Enable  
TSA D  
Enable  
D
Open  
out  
Drain  
GCI Indirect  
Mode Enable  
CLK1  
CLK0  
OR7  
Disable  
3 V  
Regulator  
Enable  
S/G Bit  
Enable  
TCLK  
Dual Frame  
Syncs  
Long  
Frame  
8/10 Bit  
Select  
TSEN B1/B2  
Enable,  
BCL Enable  
TSEN  
D Channel  
Enable  
OR8  
OR9  
Reserved  
Disable XTAL  
TE Mode  
Enable  
Master Mode  
Enable  
FIX Enable  
NT Terminal  
Mode Enable  
Sleep  
Enable  
Force  
INFO 2  
T3F8  
Enable  
T3F6  
Disable  
Transmission  
OR15  
Overlay  
Register  
Enable  
Rev 5  
Rev 4  
Rev 3  
Rev 2  
Rev 1  
Rev 0  
MOTOROLA  
MC145574  
10–1  
Table 10–2. Overlay Register Initialization After Any Reset  
IDL TE  
IDL NT  
GCI TE  
GCI NT  
OR0  
OR1  
00  
00  
00  
00  
04  
04  
00  
00  
OR2  
08  
08  
00  
00  
OR3  
00  
00  
00  
00  
OR4  
04  
04  
00  
00  
OR5  
08  
08  
00  
00  
OR6  
00  
00  
00  
00  
OR7  
00  
00  
00  
00  
00  
00  
00  
01  
OR8  
OR15  
NOTES:  
00XX XXXX  
00XX XXXX  
00XX XXXX  
00XX XXXX  
1. All values in hexadecimal unless shown otherwise.  
2. BR15 and OR15 are the same register.  
10.2 OR0  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR0  
D
B1 Channel Timeslot Bits (7:0)  
in  
OR0(7:0) — Tx B1 Channel Timeslot  
This register allows the B1 channel timeslot input to the D pin to be allocated 1 of 256 start points,  
in  
corresponding to each 2–bit boundary defined by the CLK. The timeslot can be either 8 or 10 CLKs  
wide. The default value for OR0 is 00H.  
10.3 OR1  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR1  
D
in  
B2 Channel Timeslot Bits (7:0)  
OR1(7:0) — Tx B2 Channel Timeslot  
This register allows the B2 channel timeslot input to the D pin to be allocated 1 of 256 start points,  
in  
corresponding to each 2–bit boundary defined by the CLK. The timeslot can be either 8 or 10 CLKs  
wide. The default value for OR1 is 04H.  
10.4 OR2  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR2  
D
in  
D Channel Timeslot Bits (7:0)  
OR2(7:0) — Tx D Channel Timeslot  
This register allows the D channel timeslot input to the D pin to be allocated 1 of 256 start points,  
in  
corresponding to each 2–bit boundary defined by the CLK. The default value for OR2 is 08H.  
10–2  
MC145574  
MOTOROLA  
10.5 OR3  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR3  
D
out  
B1 Channel Timeslot Bits (7:0)  
OR3(7:0) — Rx B1 Channel Timeslot  
This register allows the B1 channel timeslot output from the D  
points, corresponding to each 2–bit boundary defined by the CLK. The timeslot can be either 8 or  
10 CLKs wide. The default value for OR3 is 00H.  
pin to be allocated 1 of 256 start  
out  
10.6 OR4  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR4  
D
out  
B2 Channel Timeslot Bits (7:0)  
OR4(7:0) — Rx B2 Channel Timeslot  
This register allows the B2 channel timeslot output from the D  
points, corresponding to each 2–bit boundary defined by the CLK. The timeslot can be either 8 or  
10 CLKs wide. The default value for OR4 is 04H.  
pin to be allocated 1 of 256 start  
out  
10.7 OR5  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR5  
OR5  
D
D Channel Timeslot Bits (7:0)  
out  
(GCI Indirect Mode)  
S2  
S1  
S0  
OR5(7:0) — Rx D Channel Timeslot  
This register allows the D channel timeslot output from the D  
corresponding to each 2–bit boundary defined by the CLK. The default value for OR5 is 08H.  
pin to be allocated 1 of 256 start points,  
out  
OR5(2:0) — GCI Timeslot, S(2:0)  
In GCI indirect mode, control of the GCI timeslot is available through the S(2:0) bits. S(2:0)=0H is  
the initialized state, timeslot 0. The timeslot selected must be compatible with the GCI DCL clock rate  
being used; i.e., if the clock rate is 2048 kHz, only the first four timeslots are available. Bits 7:3 must  
be programmed as 0.  
Table 10–3. S(2:0) GCI Timeslot  
Assignment  
S2  
S1  
S0  
Timeslot  
0
0
0
0
1
2
3
4
5
6
7
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MOTOROLA  
MC145574  
10–3  
10.8 OR6  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR6  
TSA B1  
Enable  
TSA B2  
Enable  
TSA D  
Channel  
Enable  
D
GCI  
Indirect  
Mode  
CLK1  
CLK0  
out  
Open Drain  
Enable  
OR6(7) — Control Register, TSA B1 Enable  
This bit is used to enable the B1 channel in IDL2 timeslot mode. The B1 timeslot is defined through  
the OR0 and OR3 registers. Whenever any channel (B1, B2, or D) is enabled for timeslot mode, all  
channels enter timeslot mode. If in timeslot mode and TSA B1 enable is a 0, then the B1 channel  
is not present on D , and the transmit data on the S/T interface is forced to all 1s and D  
impedance.  
is high  
out  
out  
OR6(6) — Control Register, TSA B2 Enable  
This bit is used to enable the B2 channel in IDL2 timeslot mode. The B2 timeslot is defined through  
OR1 and OR4 registers. Whenever any channel (B1, B2, or D) is enabled for timeslot mode, all chan-  
nels enter timeslot mode. If in timeslot mode and TSA B2 enable is a 0, then the B2 channel is not  
presentonD ,andthetransmitdataontheS/Tinterfaceisforcedtoall1sandD  
ishighimpedance.  
out  
out  
OR6(5) — Control Register, TSA D Channel Enable  
This bit is used to enable the D channel in IDL2 timeslot mode. The D timeslot is defined through  
the OR2 and OR5 registers. Whenever any channel (B1, B2, or D) is enabled for timeslot mode, all  
channels enter timeslot mode. If in timeslot mode and TSA D enable is a 0, then the D channel is  
not present on D , and the transmit data on the S/T interface is forced to all 1s and D  
impedance.  
is high  
out  
out  
OR6(3) — Control Register, D  
out  
Open Drain  
When operating in NT Terminal mode, this bit configures the D  
a 1. When this bit is set to a 0, the D  
out  
pin as an open drain when set to  
pin goes high impedance between B and D channels.  
out  
OR6(2) — Control Register, GCI Indirect Mode Enable  
When the device is initialized, this bit is a logic 0, the inactive state; i.e., normal IDL2 mode. When  
set to a logic 1, the IDL2 port is reconfigured to behave like a GCI frame. This is called GCI indirect  
mode. When GCI indirect mode has been enabled, the GCI timeslot can be selected through the S(2:0)  
bits in OR5.  
OR6(1:0) — Control Register, CLK(1:0)  
In GCI indirect mode, these two bits control the output clock frequency of GCI DCL. CLK(1:0)=0H  
is the initialized state.  
Table 10–4. S(2:0) GCI Timeslot  
Assignment  
CLK1  
CLK0  
GCI DCL  
2.048 MHz  
2.048 MHz  
1.536 MHz  
512 kHz  
0
0
1
1
0
1
0
1
10–4  
MC145574  
MOTOROLA  
10.9 OR7  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
TSEN B1/B2  
Enable,  
BCL Enable  
OR7  
Disable  
3 V  
Regulator  
Enable  
S/G Bit  
Enable  
TCLK  
Dual Frame  
Syncs  
Long  
Frame  
8/10 Bit  
Select  
TSEN  
D Channel  
Enable  
OR7(7) — Control Register, Disable 3 V Regulator  
This bit can be used to disable the supply regulator and allow three volts to be driven from an external  
supply. This bit is reset to a logic 0 by RESET and software reset.  
OR7(6) — Enable S/G Bit  
This bit can be enabled only in GCI 1.536 MHz clock mode. This bit provides the availability of the  
D channel on the S/T loop. 1 = Stop (no availability of the D channel), and 0 = Go (availability of the  
D channel). Refer to Section 11.2.5.  
OR7(5) — Control Register, Enable TCLK  
This is available in TE IDL2 slave mode to enable TCLK instead of TFSC. Both TFSC and TCLK  
are synchronized to the received S/T frames and can be used as a source of network synchronization  
for the slave device. Refer to the section on slave–slave mode for further details.  
OR7(4) — Control Register, Dual Frame Syncs  
This bit controls whether the IDL2 operates with one– or two–frame syncs. When set to a logic 0,  
the device operates with one–frame sync, and the FSC is the sync for both the Tx and Rx directions.  
When this bit is set to a logic 1, the FST pin is activated to be the Tx frame sync, and the FSC pin  
becomes the FSR (Rx frame sync). These pins will be either an input or an output depending onwhether  
the IDL2 is a master or a slave. This bit is only functional in IDL2 mode. If dual frame syncs are enabled,  
then TSEN cannot be enabled.  
OR7(3) — Control Register, Long Frame  
This bit controls whether the FSC operates in long or short frame mode, while operating as an IDL2  
master. If this bit is set to a 1, then the IDL2 is in long frame mode. As an IDL2 slave, the MC145574  
determines the mode, based on the length of the FS. The length of the long frame is eight bit clocks,  
regardless of whether 8– or 10–bit format is selected. The long frame sync cannot be used in conjunc-  
tion with timeslot assignment.  
OR7(2) — Control Register, 8/10 Bit Select  
When the device is initialized, this bit is a logic 0. When set to a logic 0, the IDL2 will use the 10–bit  
format. When set to a logic 1, the IDL2 will use the 8–bit format. When IDL2 timeslot assigner mode  
is enabled, the 8–bit mode is set and this bit has no effect.  
OR7(1) — Control Register, TSEN B1/B2 Enable (IDL2), BCL Enable (GCI)  
After any reset, this bit is a 0. This bit controls the operation of the TSEN/BCL pin.  
IDL2: TSEN B1/B2 Enable. When this bit is set to a 1, the TSEN pin function is enabled during the  
B1 and B2 bit times. The signal goes low when B1 or B2 data is present on D . This signal can  
out  
be used to control a bus or backplane driver. Dual frame syncs cannot be enabled when this bit is  
set to a 1.  
GCI: BCL Enable. When this bit is set to a 1, the BCL pin function (the 1/2 DCL clock rate signal)  
is enabled. Dual frame syncs cannot be enabled when this bit is set to a 1.  
OR7(0) — Control Register, TSEN D Channel Enable  
When the device is initialized, this bit is logic 0. When set to a logic 1, the TSEN signal goes low  
when D channel data is being output on D . This bit is only functional in IDL2 mode. If TSEN is  
out  
MOTOROLA  
MC145574  
10–5  
enabled, dual frame syncs cannot be enabled. TSEN D channel signal can be enabled only if TSEN  
B1/B2 channel signals are enabled (OR7(1) = 1).  
10.10 OR8  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR8  
Reserved  
Reserved  
Disable  
XTAL  
TE Mode  
Enable  
Master  
Mode  
Enable  
FIX Enable  
NT  
Terminal  
Mode  
Sleep  
Enable  
Enable  
OR8(7) — Reserved  
This bit is reserved.  
OR8(6) — Reserved  
This bit is reserved.  
OR8(5) — Disable XTAL  
When an external 15.36 MHz is provided, this bit can be set to 1 to disable the internal crystal buffer,  
thereby reducing unnecessary power consumption.  
OR8(4) — Control Register, TE Mode Enable  
When the device is initialized, this bit is a logic 0. When set to a logic 0, the device operates as normal  
in all modes. This bit is OR’d with the TE/NT pin and TE mode can be selected by setting this bit  
to a 1.  
OR8(3) — Control Register, Master Mode Enable  
When the device is initialized, this bit is a logic 0. When set to a logic 0, the device operates as normal  
in all modes. This bit is OR’d with the M/S pin and the NT master bit, BR7(3), and master mode can  
be selected by setting this bit to a 1.  
OR8(2) — Control Register, FIX Enable  
When the device is initialized, this bit is a logic 0. When set to a logic 0, the device operates as normal  
in all modes. In all NT modes except NT Terminal, the FIX register bit is OR’d with the FIX pin. In  
NT Terminal mode, the FIX bit completely replaces the function of the FIX pin. Fixed timing mode  
can be selected in NT mode by setting this bit to a 1.  
OR8(1) — Control Register, NT Terminal Mode Enable  
When the device is initialized, this bit is a logic 0. When set to a logic 0, the device operates as normal  
in all modes. NT Terminal mode can be enabled by setting this bit to 1. This bit only functions when  
the device is in NT mode. NT Terminal mode allows the device to have a D channel terminal port  
enabled. Refer to the section on NT Terminal mode.  
OR8(0) — Control Register, Sleep Enable  
When the device is initialized, this bit is a logic 0. When set to a logic 0, the device operates as normal  
in all modes. Please refer to the section on power modes for further operational details.  
10–6  
MC145574  
MOTOROLA  
10.11 OR9  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR9  
Force  
INFO2  
Trans–  
mission  
T3F8  
Enable  
T3F6  
Disable  
OR9(2) — Control Register, Force INFO 2 Transmission  
When the device is initialized, this bit is logic 0. When set to a logic 0, the device operates as normal  
in all modes. This register bit is only operational in NT modes. In NT modes, the FI2 (force  
INFO 2 transmission) allows the software to force an activated NT (state G3) to transmit INFO 2 and  
reconfirm synchronization with the received INFO 3; i.e., the NT makes a G3 to G2 state jump, and  
on attaining G2 the FI2 bit is automatically reset. The NT then reconfirms INFO 3 and returns to the  
G3 state.  
OR9(1) — Control Register, T3F8 Enable  
When the device is initialized, this bit is a logic 0. When set to a logic 0, the device operates as normal  
in all modes. This bit only operates in the TE mode. By setting this bit to 1, the T3EXP control bit  
in NR2(1) is allowed to operate in F8. Hence, when in F8 and T3 expires, the device can be forced  
to go to the F3 state. This is in accordance with the ETSI ETS 300012 S/T–interface specification.  
OR9(0) — Control Register, T3F6 Disable  
When the device is initialized, this bit is logic 0. When set to a logic 0, the device operates as normal  
in all modes. This bit only operates in the TE mode. By setting this bit to a 1, the T3EXP control bit  
in NR2(1) is disabled from operating in F6. Hence, when in F6 and T3 expires, the device will not  
be forced to go to the F3 state, but will stay in F6 and transition to F7 when INFO 4 is confirmed.  
This is in accordance with the ETSI ETS 300012 S/T–interface specification.  
10.12 OR15  
(7)  
(6)  
(5)  
(4)  
(3)  
(2)  
(1)  
(0)  
OR15  
Overlay  
Register  
Enable  
Rev 5  
Rev 4  
Rev 3  
Rev 2  
Rev 1  
Rev 0  
OR15(7) — Overlay Register Enable  
When set to a logic 1, the second set of overlay registers is enabled. The overlay register map allows  
access to the TSA registers required by the IDL2 and also to a GCI control register.  
OR15(5:0) — Device Revision Identification, Rev (5:0)  
The Rev (5:0) bits indicate the revision status of the device. These bits are read only and can only  
be modified by altering the device masks. Rev (5:0) is set to 11H for G20R1 mask set, and 03H for  
F57J4 mask set.  
MOTOROLA  
MC145574  
10–7  
10–8  
MC145574  
MOTOROLA  
11  
D CHANNEL OPERATION  
11.1 INTRODUCTION  
The S/T–interface is designed for full–duplex transmission of two 64 kbps B channels and one 16 kbps  
D channel between one NT device and one or more TEs. The TEs gain access to the B channels  
by sending layer 2 frames to the network over the D channel. CCITT I.430, ETSI ETS 300012, and  
ANSI T1.605 specify a D channel access algorithm for TEs to gain access to the D channel. The  
MC145574 S/T transceiver is fully compliant with the D channel access algorithm as defined in CCITT  
I.430, ETSI ETS 300012, and ANSI T1.605. The D channel operation is handled through the SCP  
when using the S/T–interface either in IDL2 or GCI indirect mode, and handled through the C/I channel  
when using the S/T–interface GCI direct mode.  
The various bits and pins directly pertaining to D channel operation are shown in Tables 11–1 and  
11–2.  
Table 11–1. Channel SCP Bit Description  
NT Mode  
TE Mode  
SCP Bit  
NR2(0)  
NR3(0)  
Description  
SCP Bit  
NR2(0)  
NR3(1)  
Description  
NT Terminal Class  
Class  
Interrupt on D Channel  
Interrupt on D Channel Collision  
Collision in NT Terminal Mode  
NR4(0)  
BR7(4)  
BR13(2)  
BR13(7)  
OR8(1)  
Interrupt Enable for NR3(0)  
Invert the Echo Channel  
Force the Echo Channel to 0  
NT1 Star Mode Enable  
NR4(1)  
BR7(1)  
BR4(4)  
BR7(6)  
Interrupt Enable for NR3(1)  
LAPD Polarity Control  
Map Echo Bits to D Timeslots on IDL2 Tx  
D Channel Procedures Ignored  
NT Terminal Mode Enable  
Table 11–2. D Channel Operation Pin Description  
Pin  
IDL2 Mode  
DGRANT/ANDOUT  
DREQUEST/ANDIN  
GCI Mode  
TQFP Pin 5  
SOIC Pin 8  
SOIC Pin 9  
GCI_SG/ANDOUT  
TQFP Pin 6  
TQFP Pin 7  
Tie Low/DREQUEST/ANDIN  
Tie Low/CLASS/ECHO IN  
SOIC Pin 10 CLASS/ECHO IN  
D channel data is clocked into the MC145574 via D on the falling edges of DCL. Data is clocked  
in  
out onto D  
on the rising edges of DCL. For a detailed description of the above pins, refer to Sec-  
out  
tion 7. For a detailed description of the above SCP bits, refer to Sections 8 and 9.  
MOTOROLA  
MC145574  
11–1  
11.2 IDL2 D CHANNEL OPERATION  
11.2.1 Gaining Access to the D Channel in the TE Mode  
The pins DREQUEST and DGRANT are used in the TE mode of operation to request and grant access  
to the D channel. An external device wishing to send a layer 2 frame should bring DREQUEST high,  
and maintain it high for the duration of the layer 2 frame. DGRANT is an output signal used to indicate  
to an external device that the D channel is clear. Note that the DGRANT signal actually goes high  
one received E echo bit prior to the programmed priority class selection. DGRANT goes high at a  
count of (n – 1) to accommodate the delay between the input of D channel data via the IDL2 interface  
and the line transmission of those bits towards the NT. If at the time of the IDL2 SYNC pulse falling  
edge, the DGRANT and the DREQUEST signals are both detected high, the TE mode transceiver  
will begin FIFO buffering of the input D channel bits from the IDL2 interface. This FIFO is four bits  
deep. Note that DGRANT goes high on the boundaries of the demodulated E bits. In order for the  
contention algorithm to work on the D channel, HDLC data must be used. The MC145574 modulates  
the D channel data onto the S/T bus in the form that it is received from the IDL2 bus. Thus, the data  
must be presented to it in HDLC format. Note that one of the applications of the MC145488 DDLC  
is for use with the MC145574 in the terminal mode. The MC145488 performs the HDLC conversion  
and D channel handshaking.  
11.2.2 Setting the Class forTE Mode of Operation  
Recommendation CCITT I.430, ETSI ETS 300012, and ANSI T1.605 specifications mandate two  
classes of operation for a TE, with respect to D channel operation. These two classes of operation  
are class 1 and class 2. Each of these classes has two associated priorities; high priority and low  
priority. These classes and their associated priorities pertain to the number of demodulated E bits  
required to be 1, before the D channel is deemed to be clear for use. Using the MC145574 in the  
TE mode of operation, the user programs the device for class 1 or class 2 operation by either NR2(0)  
or Pin 10.  
Table 11–3 illustrates how to configure the MC145574 for either class 1 or class 2 operation. This  
table also illustrates when DGRANT will go high. Note that although DGRANT goes high one E bit  
before the required count, data will not be modulated onto the D bit timeslots in the S/T frame until  
the required number of E bits = 1 are received. Thus, data gets modulated onto the D channel if the  
E bit following the low–to–high transition of DGRANT is 1.  
Table 11–3. MC145574 Class Operations  
Number of E Bits = 1  
MC145574  
Required for DGRANT to Go High  
Class 1  
Class 2  
NR2(0) = 0  
and  
Pin 10 = 0  
DGRANT goes high after seven E bits = 1 in high  
priority, and after eight in low priority  
NR2(0) = 1  
or  
DGRANT goes high after nine E bits = 1  
in high priority, and after ten in low priority  
Pin 10 = 1  
The device automatically switches from high to low priority and back, within each class of operation,  
in accordance with CCITT I.430, ETSI ETS 300012, and ANSI T1.605.  
11–2  
MC145574  
MOTOROLA  
11.2.3 Generation of an Interrupt in the TE Mode  
The MC145574 in the TE mode of operation generates an interrupt every time a collision occurs on  
the D channel. CCITT I.430, ETSI ETS 300012, and ANSI T1.605 define a collision as having occurred  
when the demodulated E bit from the NT does not match the previously modulated D bit from the  
TE. Since the NT reflects back its received D data in the E echo channel, the TE knows that a collision  
occurring indicates that another TE has gained access to the D channel. When a collision occurs  
NR3(1) gets set. If the corresponding interrupt enable bit (NR4(1)) is set high, then IRQ goes low.  
The D channel collision interrupt is cleared by writing a 0 to NR3(1).  
11.2.4 Gaining Access to the D Channel in the NT Mode  
When configured as an NT, the MC145574 has automatic access to the D channel. This is because  
the S/T–interface is designed for communication between a single NT and one or more TEs. As such,  
the NT does not have to compete for access to the D channel. Thus, there are no DREQUEST or  
DGRANT functions associated with the NT mode of operation.  
Data present in the D bit positions of the IDL2 frame on IDL2 Rx are modulated onto the D bit timeslots  
on the S/T loop. Demodulated D channel data from the TE(s) is transmitted onto IDL2 Tx in accordance  
with the IDL2 specification.  
The ECHO function of an NT–configured S/T transceiver is performed internally in the MC145574.  
To assist in testing an S/T loop, the MC145574 features the SCP test bits BR7(4) and BR13(2). Setting  
BR7(4) in the NT mode inverts the E echo channel (i.e., the logical inverse of the demodulated D chan-  
nel data from the TE(s) is transmitted in the E channel). Setting BR13(2) to a 1 forces the E channel  
to all 0s. Refer to Section 9 for a more detailed description of these test bits. Setting BR13(7) to a  
1 puts the NT–configured MC145574 S/T transceiver into the NT1 Star mode of operation. In this  
mode, the bits to be ECHOed back to the TE(s) are obtained from the ECHO IN pin. Refer to Section 13  
for a more detailed description of this function.  
The active polarity of the DREQUEST and DGRANT signals may be reversed by setting the LAPD  
polarity control bit (BR7(1)) in the SCP. When BR7(1) is a 0, the active polarity is as described above.  
Conversely, when BR7(1) is a 1, the MC145574 will drive DGRANT to a logic 0 when DGRANT is  
active, and to a logic 1 when DGRANT is inactive. Also, when BR7(1) is 1, DREQUEST will be consid-  
ered to be active low.  
11.2.5 GCI D Channel Operation  
In GCI indirect mode, the D channel operation is identical to that of the IDL2.  
In GCI direct mode, the DREQUEST/DGRANT/CLASS pins are replaced by C/I commands. D channel  
availability is indicated by two methods using the SG nomenclature; SG meaning stop/go. The stop/go  
refers to the availability of the D channel on the S/T loop. (1 = Stop and 0 = Go.)  
The stop/go signal is available in two forms. In SCIT terminal mode, the stop/go bit is output by the  
device in CH2 bit 4 of the C/I channel. This method is compatible with the IOM–2 terminal mode and  
is also compatible with the MC68302. This mode must be enabled by selecting GCI_M(2:0) = 4H (termi-  
nal mode) and writing to OR7(6) (S/G bit enable).  
The stop/go signal is also available as a pin, SG, as an alternative to the SCIT terminal method.  
The SCIT terminal frame structure for the T2 device is as follows.  
The remaining CH1 and CH2 channels are for use by other devices in the terminal application,  
and do not form part of this specification.  
The class of message is selected using the C/I commands AR8 and AR10.  
AREOM can be used to terminate the D channel message.  
MOTOROLA  
MC145574  
11–3  
FSC  
A
E
D
B1  
B1  
B2  
B2  
M
M
D CI  
D CI  
out  
S/G BIT  
A
E
D
in  
CH0  
CH1  
CH2  
SCIT TERMINAL MODE, DCL = 1536 kHz  
Figure 11–1. SCIT Terminal Mode  
11–4  
MC145574  
MOTOROLA  
12  
MULTIFRAMING  
12.1 INTRODUCTION  
A layer 1 signalling channel between the NT and TE is provided in the MC145574 in accordance with  
CCITT I.430, ETSI ETS 300012, and ANSI T1.605. In the NT and TE direction, this layer 1 channel  
is the S channel. In the TE to NT direction, it is the Q channel. The S channel is subdivided into five  
subchannels: SC1, SC2, SC3, SC4, and SC5. In normal operation, the NT sets its Fa bit (Bit 14) to  
a binary 0 every frame. The “wrapping” action of the TE(s), as outlined in CCITT I.430, ETSI ETS  
300012, and ANSI T1.605, causes the Fa bit of the TE(s) to be a 0 also. This is to ensure the existence  
of two line code violations per frame, enabling fast synchronization.  
Multiframing is activated by the NT by setting the M bit (Bit 26) in the NT and TE frame to a binary  
1, once every 20 frames. In addition to this, the Fa bit (Bit 14) in the NT to TE direction is set to a  
binary 1, once every five frames. When multiframing is enabled, the NT sends its S channel data  
(SC1 through SC5) in the S timeslot (Bit 37) every frame. Table 10–1 shows the order in which the  
S channel data is transmitted. Note that the M bit = 1 sets the multiframe boundary. Once every five  
frames, the Fa bit is set to 1 in the NT to TE direction. This serves as a Q bit identifier for the TE(s),  
who send their Q data in their Fa bit position in the corresponding frames. In order to avoid Q data  
collision, those TEs who have not been addressed for multiframing must send 1s in the Q bit timeslots.  
12.2 ACTIVATION/DETECTION OF MULTIFRAMING IN THE MC145574  
Multiframing is initiated by the NT. Detection and compliance with the multiframe structure is mandatory  
in the TE(s), and is automatic in the MC145574. BR7(5) is set to 1 to initiate multiframing in an NT–con-  
figured MC145574. This causes the M bit to be set to 1 in the next frame. Henceforth, the M, S, and  
Fa bits will automatically comply with the structure as outlined in CCITT I.430, ETSI ETS 300012,  
and ANSI T1.605. This format is as shown in Table 12–1. When the TE–configured MC145574 has  
detected multiframing, it sets NR1(1) (multiframing detect). Henceforth, it automatically complies with  
the multiframe format.  
12.3 WRITING S CHANNEL DATA TO AN NT-CONFIGURED MC145574  
Data written to BR2(7:4), BR9(7:4), BR9(3:0), BR10(7:4), and BR10(3:0) is transmitted in subchannels  
SC1, SC2, SC3, SC4, and SC5, respectively. The NT–configured MC145574 polls these internal regis-  
ters once every 5 ms (a multiframe is 5 ms in duration). If no new data has been written to these  
registers, the old data is re–transmitted. When multiframing is disabled, the data in these registers  
is ignored and the Fa bit is 0. Note that in the NT mode, these registers come out of reset in the all–0s  
state.  
MOTOROLA  
MC145574  
12–1  
Table 12–1. S Channel Data Transmission  
NT to TE  
Fa Bit Position  
NT to TE  
M Bit  
NT to TE  
S Bit  
TE to NT  
Fa Bit Position  
Frame No.  
1
2
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
SC1.1  
SC2.1  
SC3.1  
SC4.1  
SC5.1  
SC1.2  
SC2.2  
SC3.2  
SC4.2  
SC5.2  
SC1.3  
SC2.3  
SC3.3  
SC4.3  
SC5.3  
SC1.4  
SC2.4  
SC3.4  
SC4.4  
SC5.4  
SC1.1  
SC2.1  
Q1  
0
3
0
4
0
5
0
6
Q2  
0
7
8
0
9
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
1
0
Q3  
0
0
0
0
Q4  
0
0
0
0
Q1  
0
2
12.4 MULTIFRAME INTERRUPTS IN AN NT-CONFIGURED MC145574  
The NT will generate an interrupt either once every multiframe, or only in the event of a new Q channel  
nibble having been received. A new Q channel nibble is defined as one which differs from the previous  
Q nibble.  
Table 12–2 illustrates how to configure an NT for either of these options.  
Table 12–2. Multiframe Interrupts  
BR3(2)  
Interrupt Every  
Multiframe  
NR4(2)  
Enable Multiframing  
Interrupt  
IRQ  
MC145574  
X
0
0
1
Multiframing never causes an interrupt  
An interrupt is generated on the reception of a  
new Q Channel nibble  
1
1
An interrupt is generated every multiframe  
12–2  
MC145574  
MOTOROLA  
12.5 READING Q CHANNEL DATA FROM AN NT-CONFIGURED MC145574  
The Q data nibble received from the TE(s) is obtained by reading BR3(7:4). The demodulated Q chan-  
nel data is written to this register every 5 ms. BR3(7:4) are read only bits.  
12.6 WRITING Q CHANNEL DATA TO A TE-CONFIGURED MC145574  
Data written to BR2(7:4) is transmitted in the Q channel. The TE–configured MC145574 polls this  
internal register once every 5 ms (a multiframe is 5 ms in duration). If no new data has been written  
to this register, the old data is re–transmitted. When multiframing is disabled, the data in this register  
is ignored and the Fa bit obeys the multiframing wrapping criteria as outlined in CCITT I.430, ETSI  
ETS 300012, and ANSI T1.605.  
BR2(7:4) comes out of reset in the all–1s state in the TE mode of operation. To accommodate other  
TEs on the loop, BR2(7:4) should be left in the all–1s state when the TE does not have access to  
the Q channel.  
12.7 MULTIFRAME INTERRUPTS IN A TE-CONFIGURED MC145574  
The TE will generate an interrupt either once every multiframe or only in the event of a new SC1 sub-  
channel nibble having been received. A new SC1 subchannel nibble is defined as one which differs  
from the previous SC1 nibble. Table 12–3 illustrates how to configure a TE for either of these options.  
Table 12–3. TE Multiframe Interrupts  
BR3(2)  
Interrupt Every  
Multiframe  
NR4(2)  
Enable Multiframing  
Interrupt  
IRQ  
MC145574  
X
0
0
1
Multiframing never causes an interrupt  
An interrupt is generated on the reception of a  
new SC1 subchannel nibble  
1
1
An interrupt is generated every multiframe  
12.8 READING S SUBCHANNEL DATA FROM A TE-CONFIGURED  
MC145574  
The S subchannel nibbles SC1, SC2, SC3, SC4, and SC5 received from the NT are obtained by reading  
BR3(7:4), BR9(7:4), BR9(3:0), BR10(7:4), and BR10(3:0), respectively. The demodulated S subchan-  
nel data is written to these registers every 5 ms. These registers are read only registers in the TE  
mode of operation.  
12.9 MULTIFRAMING IN GCI MODE  
Multiframing can be enabled in GCI mode by writing/reading to BR7(5) via the Monitor channel.  
MOTOROLA  
MC145574  
12–3  
12–4  
MC145574  
MOTOROLA  
13  
DEVICE CONFIGURATIONS  
The MC145574 can be configured in several different modes for different applications. The following  
sections describe the various configurations available for the NT and TE modes.  
13.1 NT CONFIGURATIONS  
To select NT mode, the TE/NT pin must be held low. The NT device can operate in a mixture of different  
configurations. How each aspect of the NT’s operation is selected is discussed separately in the follow-  
ing sections. However, for a broad view of the NT’s various flavors, the NT family tree is shown in  
Figure 13–1.  
NT  
FIXED TIMING  
ADAPTIVE TIMING  
MASTER  
SLAVE  
MASTER  
SLAVE  
NT1 STAR  
NT TERMINAL NT1 STAR  
NT TERMINAL NT1 STAR  
NT TERMINAL NT1 STAR  
NT TERMINAL  
NT (NORMAL MODE)  
NT (NORMAL MODE)  
NT (NORMAL MODE)  
NT (NORMAL MODE)  
Figure 13–1. NT Family Tree  
13.1.1 NT Fixed or Adaptive Timing  
The receiver/demodulator of the NT can operate in two different modes depending on the type of  
loop that the device is connected to. These modes are called fixed and adaptive timing modes. The  
mode of operation is chosen by the state of Pin 6. When this pin is held low the device is in adaptive  
mode, and when held high the device is in fixed timing mode. The choice of mode is dependent on  
the loop characteristics, and the intention is that fixed timing should be used for short passive bus  
configurations and adaptive timing used for all others. However, the performance of the timing recovery  
circuit employed in the MC145474/75, and also in the MC145574, allows the use of adaptive timing  
in all loop configurations. Thus, it is recommended that adaptive timing be used in all configurations.  
It is also possible to select fixed timing mode via the SCP/GCI control bit OR8(2). The FIX pin is inter-  
nally OR’d with this SCP/GCI bit, and one should note that in the NT Terminal mode, this is the only  
way to select fixed timing. The FIX pin should be held low if register programming is to be used.  
13.1.2 NT Master or Slave  
In NT mode, the IDL2/GCI interface can be selected either as a master or a slave. This selection  
is done via Pin 5. When Pin 5 is held low, slave mode is selected. When it is held high, master mode  
is selected.  
MOTOROLA  
MC145574  
13–1  
In slave mode, the IDL2/GCI interface frame sync and clock are inputs, and the S/T loop interface  
timing is slaved to these inputs. In master mode, the IDL2/GCI interface frame sync and clock are  
outputs; these signals being derived from the 15.36 MHz XTAL oscillator. The S/T loop interface timing,  
however, is always slaved to the IDL2/GCI frame sync.  
Therefore, in NT mode, the S/T loop interface timing is always slaved to the IDL2/GCI frame sync.  
The source of this timing can be selected to be from the IDL2/GCI driver (slave mode) or from the  
NT device itself (master mode).  
NT master mode will be referred to as NTM, and NT slave mode as NTS.  
It is also possible to select NTM by writing to the SCP control bit BR7(3). Or alternatively in TE or  
NT mode, master selection can be made via OR8(3). The master/slave pin is internally OR’d with  
these SCP bits and should be held low if register is to be used.  
13.1.3  
NT1 Star and NT Terminal Modes  
In NT mode, two further mode extensions can be selected via control bits accessible through the SCP.  
These NT mode extensions have no effect on the IDL2 interface, but alter the operation of other pins  
to perform the desired functions. These two modes are called NT1 Star and NT Terminal.  
Table 13–1. Pin Operations  
Pin  
NT  
NT1 Star  
NT Terminal  
T_IN  
TQFP Pin 3  
TQFP Pin 5  
TQFP Pin 6  
TQFP Pin 7  
SOIC Pin 6  
FIX  
FIX  
SOIC Pin 8  
SOIC Pin 9  
SOIC Pin 10  
High–Z  
ANDOUT  
ANDIN  
DGRANT  
DREQUEST  
CLASS  
Tie–Low  
Tie–Low  
ECHO IN  
13.1.3.1  
NT1 Star Mode  
Appendix B of ANSI T1.605 describes an example of an NT that will support multiple T interfaces.  
This is to accommodate multipoint operation with more than eight TEs. The MC145574 can be config-  
ured for NT1 Star mode of operation. This mode is for use in wire OR’ing multiple NT–configured  
S/T chips on the IDL2 side. Each NT has a common FSC, DCL, D , and D , as shown in Figure  
out in  
13–2. Each NT is then connected to its own individual S/T loop containing either a single TE or a  
group of TEs. As such, the contention for either of the B channels or for the D channel is now extended  
from a single passive bus to a grouping of passive busses.  
ISDN employs the use of HDLC data on the D channel. Access to either of the B channels is requested  
and either granted or denied by the user sending layer 2 frames on the D channel. In normal operation  
where there is only one NT, the TEs are granted access to the D channel in accordance with their  
priority and class. By counting the required number of E channel echo bits being 1, the TEs know  
when the D channel is clear. Thus, in the NT1 Star mode of operation, where there are multiple passive  
busses competing for the same B1, B2, and D channels, the same E echo channel must be transmitted  
from each NT to its passive bus. This is accomplished in the MC145574 by means of the ANDIN,  
ANDOUT, and ECHO IN pins.  
Figure 13–2 shows how to connect the multiple number of NTs in the NT1 Star mode. Successive  
connection of the ANDOUT (this is the output of an internal AND gate whose inputs are the demodu-  
lated D bits and the data on the ANDIN pin) and ANDIN pins, and the common connections of the  
ECHO IN pins, succeeds in sending the same E echo channel to each group of TE(s). To configure  
a series of NTs for NT1 Star mode, BR13(7) must be set to 1 in each NT. Data transmitted on Tx  
in NT1 Star mode will have the following format: a logic 0 is V ; a logic 1 causes D  
high–impedance state. This then permits the series wire OR’ing of the IDL2 bus. Note that one of  
the NTs must have its ANDIN pin pulled high.  
to go to a  
SS out  
NT1 Star mode is not applicable to the NT using the GCI interface.  
13–2  
MC145574  
MOTOROLA  
+ 5 V  
+ 5 V  
IC #1  
MC145574  
ANDIN  
DEMODULATED  
D CHANNEL DATA  
ANDOUT  
DATA TO BE TRANSMITTED TO TEs  
AS E CHANNEL DATA  
ECHOIN  
FSC  
FSC  
DCL  
DCL  
D
in  
D
out  
D
in  
out  
D
IC #2  
MC145574  
ANDIN  
DEMODULATED  
D CHANNEL DATA  
ANDOUT  
DATA TO BE TRANSMITTED TO TEs  
AS E CHANNEL DATA  
ECHOIN  
FSC  
DCL  
D
in  
D
out  
IC #N  
MC145574  
ANDIN  
DEMODULATED  
D CHANNEL DATA  
ANDOUT  
DATA TO BE TRANSMITTED TO TEs  
AS E CHANNEL DATA  
ECHOIN  
FSC  
DCL  
D
in  
D
out  
Figure 13–2. NT1 Star Mode of Operation  
MOTOROLA  
MC145574  
13–3  
13.1.3.2  
NT Terminal Mode  
In NT Terminal mode, another IDL2 channel data port is opened on the device. This port has four  
pins associated with it. They are DREQUEST, DGRANT, CLASS, and T_IN.  
This port has the capability of competing for access to the D channel with the TEs connected to the  
passive bus. To do this, the DREQUEST, DGRANT, and CLASS functions normally associated with  
the TE are enabled. This allows an external controlling device to request access to the D channel,  
and if the D channel is idle, be given access. The NT device monitors the received S/T loop D bits  
to determine whether the channel is busy or not (a TE device would monitor the E bits).  
Once the controlling device has been given access to the D channel, the MC145574 indicates this  
by setting DGRANT high and enabling the D slot on the T_IN pin.  
The NT device ANDs the received D bits from the S/T loop with D channel data received from the  
T_IN pin, and transmits this as the E bit on the S/T loop. The AND’d data is then passed to the D  
for output.  
out  
DGRANT is high when the S/T is not activated.  
Contention is monitored by comparing the transmitted E bit to the D channel data from the T_IN pin.  
If they are not equal then contention from a device on the S/T loop is assumed, and the D channel  
access halted. An interrupt IRQ7, NR3(0), is generated to indicate contention has occurred.  
The T_IN pin also accepts data on the B1 and B2 slots. This data is AND’d with the received B1 and  
B2 data from the S/T–interface and then output on the D  
to detect data collision on the B channels. (The B channels are enabled by default.)  
pin. There is no provision on the device  
out  
The T_IN IDL2 port is synchronized to the normal IDL2 port by FSC, and the DCL clock is used to  
sample the T_IN pin. NT Terminal mode operates in all the IDL2 modes, including TSA and dual frame  
sync modes.  
When the D  
is needed.  
pin is configured as an open drain output, a pullup resistor (between 1 k and 10 k)  
out  
The T_IN port has the same format as the IDL2 or GCI that is being used.  
Data can be input to the T_IN pin when the MC145574 is either activated or deactivated. NT Terminal  
mode operates when the MC145574 is either activated or deactivated.  
13.2 TE CONFIGURATIONS  
To select TE mode, Pin 4 (TE/NT) must be held high, or alternatively, by writing to the SCP control  
bit OR8(4). This bit is internally OR’d with the TE/NT pin. In TE mode, the device operates in two  
different configurations, these configurations being TE slave (TES) and TE master (TEM).  
The selection of slave or master is accomplished via Pin 5. When held low, slave mode is selected;  
and when held high, master mode is selected.  
Each mode is discussed separately in the following sections; however, certain shared pins have differ-  
ent functions in TES and TEM mode. (See Table 13–2.)  
Table 13–2. Pin Operations for Master and Slave  
Modes  
Pin  
TEM  
TES  
TFSC/TCLK  
High–Z  
TQFP Pin 3  
TQFP Pin 5  
TQFP Pin 6  
TQFP Pin 7  
SOIC Pin 6  
High–Z  
SOIC Pin 8  
SOIC Pin 9  
SOIC Pin 10  
DGRANT  
DREQUEST  
CLASS  
Tie V  
Tie V  
SS  
SS  
There is no fixed/adaptive timing selection to be made in TE mode. In TE mode, the MC145574 always  
uses adaptive timing.  
13–4  
MC145574  
MOTOROLA  
13.2.1 TE Master Mode (TEM)  
The TEM mode is the normal mode of operation for a TE. The two main operational features of TEM  
mode are as follows.  
The IDL2/GCI is a master of the digital interface. This means that the IDL2/GCI outputs the frame  
sync and clock. The frame sync and clock are signals derived from the received S/T loop signal (i.e.,  
timing is recovered from the received INFO transmitted by the NT and is used to generate the IDL2  
signals so the TE end can operate synchronously with the NT).  
The D channel access procedure outlined in the ANSI spec is enabled. This means that access to  
the D channel is controlled via a set of rules designed to enable secure HDLC data transmission on  
a shared channel, and provides a means for the TEM to recognize when collisions have occurred.  
This operation is fully detailed in Section 11, D Channel Operation.  
The three pins used to control the D channel access are DREQUEST, DGRANT, and CLASS.  
13.2.2 TE Slave Mode (TES)  
In TES mode, the IDL2/GCI interface operates in slave mode; i.e., the IDL2/GCI frame sync and clock  
are inputs. This mode is intended for use in NT2 applications where the IDL2/GCI interface timing  
is derived from a low jitter network synchronous source. The MC145574 has jitter/wander buffers which  
absorb the clock/frame sync jitter and prevent data loss. The MC145574 will be able to absorb 60 µs  
peak–to–peak wander, which exceeds the 18 µs peak–to–peak over 24 hours wander stated in Q.502.  
There is no D channel contention circuitry in TES mode. The device has transparent access to the  
D channel. It is intended that the TES operates in point–to–point applications only and thus does not  
need D channel contention arbitration.  
To facilitate the generation of the timing signals required by the slave IDL2/GCI interface, a pin is  
provided which outputs a frame sync or a clock. These signals are synchronized to the received INFO  
transmitted by the NT and can be used to provide network timing if no other source in the NT2 is  
available. The choice of frame sync or clock and the frequency of the clock are all selectable via the  
SCP.  
The TFSC output is to allow the NT2 to be synchronized to the network. The TFSC is an 8 kHz frame  
sync signal that is synchronized to the received network signal.  
Alternatively, TFSC can be reprogrammed via the SCP to provide TCLK. TCLK is a clock, whose fre-  
quency can be chosen via the SCP, which is also synchronized to the received S/T–interface. TCLK  
can be used as an alternative to TFSC in NT2 slave–slave mode. The frequency of TCLK is selected  
in the same manner as the DCL frequency is selected in the TE master mode.  
In both the TFSC and TCLK cases, the output pin senses if a signal is present; and if not, the output  
is enabled and the device outputs its signal. This allows the TES devices to have this pin wire OR’d  
with only one of the active devices outputting the sync clock. For this function to work correctly, the  
pin must have an external resistor connected to V  
I/O.  
DD  
BR13(5)  
BR7(2)  
TCLK  
0
0
1
1
0
1
0
1
2.56 MHz  
2.048 MHz  
1.536 MHz  
512 kHz  
MOTOROLA  
MC145574  
13–5  
An example architecture of an NT2 is shown in Figure 13–3. The TFSC signal supplied by the TE  
in slave mode is used via a clocksource selector to synchronize the whole NT2 to the network.  
NT  
NT  
NT  
TE  
TE  
TE  
TFSC  
CLK  
FSC SOURCE  
SELECTOR  
CLK  
S
S
S
T
T
T
SYNC  
SYNC  
DATA  
SYNC AND CLOCK  
GENERATOR  
DATA  
TSA CONTROLLER  
TFSC  
CLK  
CLK  
SYNC  
DATA  
SYNC  
DATA  
CONTROL  
BUS  
TFSC  
CLK  
CLK  
SYNC  
CLK  
FRAME SYNC  
SYNC  
DATA  
DATA  
NT  
TFSC TE  
CLK  
CLK  
S
T
SYNC  
DATA  
SYNC  
DATA  
SUBSCRIBER  
LINES  
S–INTERFACE  
TRUNK LINES  
TO CENTRAL OFFICE(S)  
T–INTERFACE  
Figure 13–3. NT2 Architecture  
13–6  
MC145574  
MOTOROLA  
14  
CLOCK INTERFACE  
Figure 14–1 shows the recommended crystal oscillator for connection to the MC145574.  
XTAL  
33 pF  
15.36 MHz  
(AT CUT  
10 M  
QUARTZ CRYSTAL)  
—60/+ 100 ppm  
TOLERANCE  
V
SS  
EXTAL  
33 pF  
V
SS  
Figure 14–1. Typical Crystal Oscillator Connection  
Figure 14–2 shows the connection when using an external clock.  
15.36 MHz  
EXTERNAL CLOCK  
(COULD BE THE MC145572  
OUTPUT IN THE NT1)  
XTAL  
EXTAL  
OPEN CIRCUIT  
Figure 14–2. Connection with External Clock  
MOTOROLA  
MC145574  
14–1  
14–2  
MC145574  
MOTOROLA  
15  
INTERRUPTS  
15.1 INTRODUCTION  
When the MC145574 in SCP is configured as a TE, it has three interrupt modes. When the MC145574  
is configured as an NT, it has four interrupt modes. Each of these interrupts is maskable. When an  
interrupt occurs (and if the interrupt condition is enabled), the MC145574 asserts the IRQ pin. A detailed  
description of these interrupts, and how they are cleared, follows.  
15.2 IRQ7 NR3(0) Ċ NT : D CHANNEL COLLISION  
TE : NOT APPLICABLE  
NR4(0) Ċ ENABLE  
IRQ7 is used in the NT Terminal mode of the MC145574 to indicate that a collision has occurred on  
the D channel. This bit operates in the same manner as the IRQ1 interrupt in TE mode, and likewise  
is cleared by writing a 0 to the NR3(0) bit. This action also releases the IRQ pin.  
Note that this bit is maskable by means of NR4(0). This interrupt is only applicable in the NT mode  
and is therefore not available in the TE mode.  
15.3 IRQ1 NR3(1) Ċ TE: D CHANNEL COLLISION  
NT: NOT APPLICABLE  
NR4(1) Ċ ENABLE  
IRQ1 is used in the TE mode of operation of the MC145574 to indicate to external devices that a  
collision has occurred on the D channel. A D channel collision is considered to have occurred when  
the TE is transmitting on the D channel (both DREQUEST and DGRANT being high) and the received  
E echo bit from the NT does not match the previously modulated D bit. When IRQ1 occurs, the  
MC145574 internally sets NR3(1) to a 1. If the IRQ1 ENABLE is set to 1, an interrupt to an external  
device is generated. The interrupt condition is cleared by writing a 0 to NR3(1). Note that this bit is  
maskable by means of NR4(1). This interrupt is only applicable in the TE mode and is therefore not  
available in the NT mode.  
15.4 IRQ2 NR3(2) Ċ MULTIFRAME RECEPTION  
NR4(2) Ċ ENABLE  
IRQ2 is provided for multiframing reception indication. This interrupt is applicable and available in  
both NT and TE modes of operation of the MC145574. Note that this interrupt is maskable by means  
of NR4(2). Multiframing is initiated by the NT by setting BR7(5). A multiframe is 20 basic frames, or  
5 ms in duration. If this interrupt is enabled (it is enabled by setting NR4(2)) and if multiframing is  
in progress, then an interrupt is generated on multiframe boundaries; i.e., every 5 ms. Alternatively,  
an NT–configured MC145574 can be programmed to generate an interrupt only in the event of a new  
Q channel nibble having been received. Similarly, a TE–configured MC145574 can be programmed  
to generate an interrupt only in the event of a new SC1 subchannel having been received. Refer to  
Section 12 for a detailed description of these features.  
If an interrupt is to occur, it will do so in the 47th baud of the transmitted frame of the 20th frame  
in a multiframe. Data to be transmitted in the SC1 through SC5 subchannels in the NT is internally  
latched from BR2(7:4), BR9(7:0), and BR10(7:0) during the 47th baud of the transmitted frame of  
the 20th frame in a multiframe. At this time, the received Q channel nibble is made available by internally  
MOTOROLA  
MC145574  
15–1  
latching the data to BR3(7:4). Similarly, data to be transmitted in the Q channel of the TE is internally  
latched from BR2(7:4) during the 47th baud of the transmitted INFO 3 in the 20th frame of a multiframe.  
At this time, the received SC1 through SC5 subchannel nibbles is also made available. A mutiframing  
interrupt is cleared by reading BR3. Reading BR3 clears the interrupt in both the NT and TE modes  
of operation, regardless of whether the MC145574 is configured to generate an interrupt in the event  
of a new nibble or every multiframe. Note that NR3(2) is a read only bit.  
15.5 IRQ3 NR3(3) Ċ CHANGE IN RxINFO STATE  
NR4(3) Ċ ENABLE  
IRQ3 is provided to indicate a change in the received INFO state of the transceiver. In the NT mode,  
this corresponds to a change in the receiving INFO 0, INFO 1, INFO 3, or INFO X state. Alternatively,  
in the TE mode this corresponds to a change in the receiving INFO 0, INFO 2, INFO 4, or INFO X  
state. Thus, when a change occurs in one of these states, the MC145574 internally sets NR3(3) to  
a 1. If the IRQ3 ENABLE is set to 1, an interrupt to an external device will be generated. IRQ3 can  
be cleared by writing a 0 to NR3(3). This bit is reset by a software reset or a hardware reset. Note  
that the transmission states for the NT (INFO 0, INFO 2, and INFO 4) and for the TE (INFO 0, INFO 1,  
and INFO 3) are as defined in Section 3. INFO X is defined as any transmission state other than those  
states. An example of such a state would be when the MC145574 is programmed to transmit a 96 kHz  
test signal (BR11(0) = 1). The MC145574 comes out of reset in the receiving “INFO X” state. Hence,  
IRQ3 will be generated when it recognizes either INFO 0, INFO 1, INFO 2, INFO 3, or INFO 4. Note  
that NR3(3) is a read/write bit.  
As soon as INFO 0, INFO LOW (1 or 2), or INFO HIGH (3 or 4) is detected, an interrupt is generated.  
If the INFO X state persists for > 8 ms, then an INFO X interrupt is generated.  
15.6 IRQ6 NR3(1) Ċ NT : FAR-END CODE VIOLATION (FECV)  
DETECTION  
TE : NOT APPLICABLE  
NR4(1) Ċ ENABLE  
The interrupt request condition IRQ6 is generated when the NT has detected a far–end code violation  
(FECV). An FECV occurs when a multiframe incoming to the NT from the TE(s) contains one or more  
illegal S/T line code violations. This interrupt is used to indicate to an NT when to send an FECV  
layer 1 maintenance message to the TEs as defined in ANSI T1.605. When IRQ6 occurs, the  
MC145574 internally sets NR3(1) to a 1. If the IRQ6 ENABLE is set to 1, an interrupt to an external  
device will be generated. The interrupt condition is cleared by writing a 0 to NR3(1).  
Note that this bit is maskable by means of NR4(1). This interrupt is applicable in the NT mode of opera-  
tion and only when multiframing has been enabled.  
15.7 GCI MODE  
In GCI mode, a Monitor channel message is output by the MC145574 if an equivalent SCP interrupt  
condition has occurred. This message must be enabled by writing to the NR4 register (via the Monitor  
channel). The Monitor channel message that occurs in response to an interrupt condition contains  
the content of NR3.  
15–2  
MC145574  
MOTOROLA  
16  
TRANSMISSION LINE INTERFACE CIRCUITRY  
16.1 INTRODUCTION  
The MC145574 is an ISDN S/T transceiver fully compliant with CCITT I.430, ETSI ETS 300012, and  
ANSI T1.605. As such, it is designed to interface with a four–wire transmission medium, one pair being  
the transmit path, the other pair the receive path. TxP and TxN, a fully–differential output transmit  
pair from the MC145574, are designed to interface to the transmit pair of the transmission medium  
via auxiliary discrete components and a 1:2.5 turns ratio transformer. RxP and RxN are a high–imped-  
ance differential input pair used for coupling the receive line signal through a 1:2.5 turns ratio transform-  
er.  
16.2 TRANSMIT LINE INTERFACE CIRCUITRY  
The TxP and TxN pins on the MC145574 act as a current–limited differential voltage source pair. The  
TxP and TxN pair behave as active drivers when creating logical 0 line signals (CCITT I.430, ETSI  
ETS 300012, and ANSI T1.605 define the nominal pulse amplitude to be 750 mV, zero to peak, for  
a 50 load), and are high–impedance outputs when generating logical 1 signals. The transmit circuitry  
within the S/T transceiver is designed to operate with a 1:2.5 turns ratio line interface transformer.  
The transmit transformer is similar in design to the receive transformer.  
The TxP and TxN pair operate as a 2.8 V current–limited differential voltage source on the device  
side (1.12 V on the S/T loop side). As such, two 5% series resistors should be inserted in the line  
interface circuit so that the combined resistance of these two resistors and the winding resistance  
of the transformer is 145 . The current limit value is set by circuitry within the S/T transceiver and  
is approximately 9 mA.  
The TxP and TxN transmit pair supplies a current such that a positive potential is created between  
the TxP and TxN pins, respectively, when transmitting the F frame bit of each frame. The TxP and  
TxN line drive circuit of the MC145574 S/T transceiver is designed such that the device continues  
to provide a high–impedance circuit to the transmit pair of the S/T loop when power is removed (i.e.,  
when the circuit between V  
mended line interface and protection circuitry for interfacing the MC145574 to the S/T loop.  
and V  
becomes a short circuit). Figure 16–1 illustrates the recom-  
DD  
SS  
16.3 RECEIVE LINE INTERFACE CIRCUITRY  
The RxP and RxN pins serve as a fully–differential input pair for the line signal from the S/T loop.  
The input impedance seen looking into the combination of the MC145574 and the associated receive  
line interface circuitry (as shown in Figure 16–2) exceeds the CCITT I.430, ETSI ETS 300012, and  
ANSI T1.605 requirements under all conditions. The receive line circuitry within the MC145574 S/T  
transceiver is designed to operate with a 1:2.5 turns ratio transformer. The receive transformer is similar  
in design to the transmit transformer and a list of suppliers of these transformers are included.  
The receive circuitry within the MC145574 automatically adapts to the optimum ternary detection  
thresholds for receiving the incoming line signal, regardless of the S/T loop bus configuration. The  
minimum ternary detection threshold is 90 mV, referenced to signal ground. This value then sets the  
absolute maximum attenuation that can exist, before detection of the incoming signal becomes impos-  
sible. The RxP and RxN pair are not sensitive to the polarity of their connection to the line interface  
circuitry. Figure 16–2 illustrates the recommended line interface and protection circuitry for interfacing  
the MC145574 S/T transceiver to the loop.  
MOTOROLA  
MC145574  
16–1  
V
DD  
MC145574  
THESE FOUR DIODES ARE  
OPTIONAL IN NT MODE.  
68 5%  
68 5%  
2.5:1  
1
8
6
2
4
7
5
TxP  
100 Ω  
TERMINATION  
TxN  
T2  
3
PE65857  
FOR EMI SUPPRESSION  
Figure 16–1. Transmit Line Interface Circuit  
V
DD  
MC145574  
THESE FOUR DIODES ARE  
OPTIONAL IN NT MODE.  
5.1 k5%  
2.5:1  
1
8
6
2
4
7
5
RxP  
100 Ω  
TERMINATION  
5.1 k5%  
RxN  
T1  
3
PE65857  
FOR EMI SUPPRESSION  
NOTES:  
1. Diodes are 1N4148 or MMAD1108.  
2. The MMAD1108 is a monolithic array of eight diodes and is a Motorola preferred device.  
3. All resistors are 1/4 watt.  
Figure 16–2. Receive Line Interface Circuit  
16–2  
MC145574  
MOTOROLA  
16.4 ADDITIONAL NOTES  
16.4.1 Sources of Line Interface Transformers  
Line interface transformers for use with the MC145574 S/T may be obtained from the following  
manufacturers:  
Pulse Engineering  
Secre Composants  
P.O. Box 12235  
117, rue de Cambrai  
75019 Paris, France  
Tel : (331) 44–89–48–00  
Fax : (331) 42–05–15–19  
Part # E01170, E01167  
Part # E01171 (SMD)  
San Diego, California 92112  
Tel : 619–674–8100  
Fax : 619–674–8262  
Part # PE 64998 (single)  
Part # PE 65498 (dual)  
FEE S.A.  
APC  
Zone Industrielle  
39270 Orgelet  
France  
47 Riverside, Medway City Estate  
Strood, Rochester, Kent ME2 4DP  
United Kingdom  
Tel: (33) 84–35–04–04  
Fax: (33) 84–25–46–41  
Part # FE2150  
Tel: (44) 1634–290–588  
Fax: (44) 1634–290–591  
Part # APC15103  
Motorola cannot recommend one manufacturer over another and in no way implies that this is a com-  
plete listing.  
16.4.2 Termination Resistors  
Note that the 100 termination resistors in the transmit and receive line circuitry (as shown in Fig-  
ures 16–1 and 16–2) are mandatory when operating as an NT in accordance with CCITT I.430, ETSI  
ETS 300012, and ANSI T1.605. When operating as a TE in point–to–point mode, these are also re-  
quired. However, when configured as a TE in the passive bus arrangement, only one TE has these  
termination resistors. The 100 termination resistor should also be removed for some conformance  
tests.  
16.4.3  
Protection Diodes  
CCITT I.430, ETSI ETS 300012, and ANSI T1.605 specify that the S/T–interface voltage cannot exceed  
1.6 times the nominal voltage of 750 mV (= 1.2 V). Since the MC145574 is designed to operate with  
2.5:1 turns ratio transformers, the diode structure as illustrated in Figures 16–1 and 16–2 is required  
to provide protection, while not adversely affecting the S/T–interface when power is removed from  
the device. This diode structure also protects the circuit against electrostatic discharges (ESD) and  
latch–up.  
CAUTION  
The four pins RxP, RxN, TxP, and TxN are not internally protected against ESD and caution  
must be taken during handling and mounting the devices to prevent any possible electrical  
overstress.  
MOTOROLA  
MC145574  
16–3  
16–4  
MC145574  
MOTOROLA  
17  
POWER MODE OPERATION  
17.1 POWER SUPPLY STRATEGY  
The MC145574 operates from a 5 V ± 5% supply. The MC145574 has an on–chip linear regulator.  
This regulator has an output of 3.2 V. This regulated 3 V supply powers all of the internal digital logic,  
resulting in reduced power consumption. The analog receiver/transmitter blocks are powered from  
the 5 V supply.  
The 3 V regulated output is present on the V 3 pin. A capacitor of 100 nF should be connected  
DD  
between this pin and V  
SS  
to provide filtering for the internal regulator.  
If a more efficient 3 V supply is available in the application circuit, then the V 3 pin can be driven  
DD  
directly with this external supply. The internal 3 V regulator should then be disabled via the SCP to  
gain a further improvement in device power consumption. This can be achieved by setting OR7(7).  
The 5 V supply is still required when an external 3 V supply is being used.  
The digital output drivers have a separate +ve supply pin, V  
I/O. This pin should be connected to  
DD  
5 if 5 V output drivers are required, or the V 3 pin if 3 V output drivers are required. This option  
V
DD  
DD  
allows the device to be easily interfaced to 3 V or 5 V CMOS or TTL devices. Using 3 V drivers will  
give reduced power consumption while still being able to interface to 3 V CMOS and TTL devices.  
All the digital inputs operate from the 3 V regulated supply (V 3) and are TTL and CMOS compatible.  
DD  
The input ESD protection is connected to V 5 (the 5 V supply) ensuring that the inputs are compatible  
DD  
with 3 V or 5 V CMOS and TTL input levels.  
The 15.36 MHz crystal oscillator is powered from the 3 V regulated supply (V 3) to minimize its  
DD  
power consumption. The XTAL oscillator circuit can be disabled via the SCP control bit (OR8(5)) if  
an external 15.36 MHz clock source is available, further improving power consumption.  
17.2 POWER MODES  
The MC145574 has four distinct modes in which the maximum power consumption of the device is  
specified.  
17.2.1 Normal Operation  
In this mode, the device is free to operate and activate or be activated from the S/T–interface.  
In this mode, the device consumes the maximum power when it is forced to transmit the 96 kHz test  
signal into the correctly terminated (50 ) interface circuit. The receiver should also be receiving a  
96 kHz test signal.  
17.2.2 Transmit Power-Down  
In this mode, the device has its transmit circuitry powered down. This is achieved by setting the NR0(2)  
in the SCP. The receiver is still fully active and able to respond to S/T–interface initiated activation.  
The power consumption is measured with RxINFO = INFO 0. This mode can be entered or exited  
in SCP or GCI mode.  
MOTOROLA  
MC145574  
17–1  
17.2.3 Absolute Minimum Power  
In this mode, the device is forced into the absolute minimum power state from which it cannot be  
activated from the S/T–interface. All internal circuits are disabled, including the XTAL oscillator, and  
only the SCP interface remains functional. All possible power consumption in the Tx and Rx analog  
circuitry is blocked.  
In IDL2/SCP mode, this power mode is entered/exited by writing to the NR0(1) register in the SCP.  
In GCI mode, this power reduction mode is not available.  
The characteristics of this mode are identical to that in the MC145474 except for the XTAL oscillator,  
which is disabled in the MC145574.  
17.2.4 Sleep  
In this mode, the device is in a power conservation mode where all possible power consuming circuitry  
is switched off, including the XTAL OSC.  
In SCP mode, the sleep mode is enabled by writing to OR8(0). When the device goes into the sleep  
state, only the SCP and an energy detector with receiver remain operational.  
In GCI mode, the sleep mode is enabled by default. The sleep mode can be disabled by writing the  
OR8(0) via the Monitor channel. When the device goes into the sleep state, only the GCI interface  
and an energy detector in the receiver remains operational. Sleep mode is not available with NT master  
GCI/SCP configuration.  
In both SCP and GCI modes, the device will enter the sleep state (assuming sleep mode is enabled)  
when the MC145574 detects no activity on the S/T–interface and is in the deactivated state. A timer  
is then enabled which will cause the MC145574 to enter the sleep state after a period of 2 ms.  
The sleep state is exited when a signal is detected on the S/T–interface. In this case, the device exits  
sleep mode and tries to synchronize to the signal. If successful, the device activates in the normal  
function. The sleep state can also be exited by writing an activate request via the SCP. This cause  
the device to exit the sleep state and attempt to activate in the normal function.  
In GCI slave mode, the sleep state is exited by using the AR command on the C/I channel.  
In GCI master mode (TE master only), the sleep mode is exited by first pulling the D pin low to request  
in  
that the GCI clock starts, and then issuing the TIM command (if only the GCI interface is to be activated),  
or by issuing the AR command if an activation is to be attempted.  
When the MC145574 enters the sleep state, the crystal oscillator is disabled, i.e., stopped.  
17–2  
MC145574  
MOTOROLA  
18  
ELECTRICAL SPECIFICATIONS  
18.1 MAXIMUM RATINGS  
This device contains circuitry to protect the inputs against damage due to high static voltages or electri-  
cal fields; however, it is advised that normal precautions be taken to avoid applications of any voltage  
higher than maximum rated voltages to this high–impedance circuit. For proper operation, it is recom-  
mendedthatV andV beconstrainedintherangeV (V orV )V 5.Reliabilityofoperation  
in out SS in out DD  
is enhanced if unused inputs are tied to an appropriate logic voltage (e.g., either V  
SS  
or V 5). All  
DD  
of the reliability data and the ESD results are available on request from your local sales office or your  
nearest distributor.  
MAXIMUM RATINGS (Voltages Referenced to V  
)
SS  
Symbol  
Parameter  
Supply Voltage  
Input Voltage (Any Pin to V  
Value  
Unit  
V
V
DD  
5
– 0.5 to + 7  
V
in  
)
SS  
– 0.3 to V 5 + 0.3  
DD  
V
I
DC Current (Any Pin Excluding V 5,  
DD  
± 10  
mA  
V
I/O, V 3, V , TxP, and TxN)  
DD  
DD SS  
T
Operating Temperature Range  
Storage Temperature Range  
– 40 to + 85  
°C  
°C  
A
T
stg  
– 85 to + 150  
NOTE: MaximumRatingsarethosevaluesbeyondwhichdamagetothedevicemayoccur.  
Functional operation should be restricted to the limits in the Electrical Characteris-  
tics tables or Pin Description section.  
18.2 DIGITAL DC ELECTRICAL CHARACTERISTICS  
(T = – 40 to + 85°C, V 5 = 5.0 V ± 5%, Voltages Referenced to V  
)
SS  
A
DD  
Characteristic  
Symbol  
Min  
2.0  
Max  
Unit  
V
Input High Voltage  
Input Low Voltage  
V
IH  
V
IL  
0.8  
5
V
Input Leakage Current @ 5.25 V  
High Impedance Input Current @ 4.5/0.5 V  
Input Capacitance  
l
in  
µA  
µA  
pF  
V
Ilkg(Z)  
10  
C
10  
in  
Output High Voltage (I  
= – 400 µA)  
V
OH  
2.4  
OH  
Output Low Voltage (I  
XTAL Input High level  
XTAL Input Low level  
= 5.0 mA)  
V
OL  
0.4  
V
OL  
V
IH(X)  
3.0  
V
V
IL(X)  
0.5  
– 400  
400  
2
V
EXTAL Output Current (V  
EXTAL Output Current (V  
= 4.6 V)  
I
µA  
µA  
mA  
kΩ  
OH  
OH(X)  
= 0.4 V)  
= 0.4 V)  
I
OL  
OL(X)  
IRQ Output Low Current (V  
OL  
IRQ Output Off State Impedance  
100  
MOTOROLA  
MC145574  
18–1  
18.3 ANALOG CHARACTERISTICS  
(T = – 40 to + 85°C, V  
= 5.0 V ± 5%, Voltages Referenced to V  
)
SS  
A
DD  
Characteristic  
TxP/TxN Drive Current: R = 50 Ω  
Min  
5.4  
Typ  
6.0  
Max  
6.6  
1.17  
Unit  
mA  
L
(TxP – TxN) Voltage Limit  
Vpeak  
mVpeak  
mVpeak  
V
Rx Input Sensitivity, Normal Mode (RxP – RxN)  
Rx Input Sensitivity, Sleep Mode (RxP – RxN)  
Voltage Regulator  
90  
220  
3.0  
3.2  
3.4  
18.4 POWER DISSIPATION  
(T = – 40 to + 85°C, V  
= 5.0 V ± 5%, Voltages Referenced to V  
SS  
and V  
I/O Connected to V  
)
DD  
A
DD  
DD  
Characteristic  
Min  
4.75  
Typ  
5
Max  
5.25  
90  
70  
4
Unit  
V
DC Supply Voltage  
Worst Case Power Consumption**  
Transmit Power Down  
Sleep Mode  
60*  
50*  
0.5*  
0.1*  
mW  
mW  
mW  
mW  
Absolute Minimum Power Down  
NOTES:  
2
*
These values have been measured on some sampled devices from several lots at 25°C and 5 V V  
.
DD  
** While sending and receiving 96 kHz signal on S/T–interface.  
18–2  
MC145574  
MOTOROLA  
18.5 IDL2 TIMING CHARACTERISTICS  
18.5.1 IDL2 MasterTiming, 8- and 10-Bit Formats  
Ref. No.  
Parameter  
Min  
125  
Typ  
125  
Max  
Unit  
µs  
Note  
1
2
3
4
5
FSC Period  
1
Delay From the Rising Edge of DCL to the Rising Edge of FSC  
Delay From the Rising Edge of DCL to the Falling Edge of FSC  
DCL Clock Period  
30  
ns  
30  
ns  
391  
1953  
ns  
2
3
DCL Pulse Width High, Nominal  
512 kHz  
1.536 MHz  
2.048 MHz  
2.56 MHz  
878  
293  
220  
175  
1074  
358  
265  
215  
ns  
6
7
DCL Pulse Width Low  
45  
55  
% of  
DCL  
Period  
Delay From Rising Edge of DCL to Low–Z and Valid Data on  
30  
ns  
D
out  
8
Delay From Rising Edge of DCL to Data Valid on D  
5
30  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
out  
out  
Data Valid on D Before Falling Edge of DCL (D Setup Time)  
9
10  
Delay From Rising Edge of DCL to High–Z on D  
25  
25  
in in  
11  
Data Valid on D After Falling Edge of DCL (D Hold Time)  
in  
in  
12  
Delay From Rising Edge of DCL to TSEN Low  
4
13  
Delay From Falling Edge of DCL to TSEN High  
NOTES:  
1. FSC occurs on average every 125 µs.  
2. The DCL frequency may be 512 kHz, 1.536 MHz, 2.048 MHz, or 2.56 MHz.  
3. The duty cycle of DCL is between 45% and 55% when operated in Master Timing mode.  
4. In IDL 8– and 10–bit formats, TSEN can be valid during the B1, B2, and D channel timeslots.  
1
FSC  
DCL  
4
6
3
2
5
9
8
7
D
out  
11  
10  
D
in  
13  
12  
TSEN  
Figure 18–1. IDL2 Master Timing, 8– and 10–Bit Formats  
MC145574  
MOTOROLA  
18–3  
18.5.2 IDL2 Slave Timing, 8- and 10-Bit Formats  
Ref. No.  
14  
Parameter  
Min  
125  
25  
Max  
Unit  
µs  
Note  
FSC Period  
1
15  
FSC High Before the Falling Edge of DCL (FSC Setup Time)  
FSC High After the Falling Edge of DCL (FSC Hold Time)  
Delay From Rising Edge of DCL to Low–Z and Valid Data on  
ns  
16  
25  
ns  
17  
30  
ns  
D
out  
18  
19  
20  
21  
22  
23  
Delay From Rising Edge of DCL to Data Valid on D  
5
30  
30  
ns  
ns  
ns  
ns  
ns  
out  
out  
Delay From Rising Edge of DCL to High–Z on D  
Delay From Rising Edge of DCL to TSEN Low  
Delay From Rising Edge of DCL to TSEN High  
DCL Clock Period  
30  
2
3
30  
244  
45  
1953  
55  
DCL Pulse Width High  
% of DCL  
Period  
24  
DCL Pulse Width Low  
45  
55  
% of DCL  
Period  
25  
26  
Data Valid on D Before Falling Edge of DCL (D Setup Time)  
in in  
25  
25  
ns  
ns  
Data Valid on D After Falling Edge of DCL (D Hold Time)  
in in  
NOTES:  
1. FSC occurs on average every 125 µs. FSC must occur every 125 µs with a maximum instantaneous phase titter of ± 30 µs.  
2. In IDL2 8– and 10–bit formats, TSEN is valid during the B1, B2, and D channel timeslots. TSEN will be aligned with data  
on the D  
pin.  
out  
3. In IDL2 Slave mode, DCL may be any frequency multiple of 8 kHz between 256 kHz and 4.096 MHz inclusive.  
18–4  
MC145574  
MOTOROLA  
Figure 18–2. IDL2 Slave Timing, 8– and 10–Bit Formats  
MOTOROLA  
MC145574  
18–5  
18.6 GCI TIMING FOR MASTER AND SLAVE MODE  
Ref. No.  
Parameter  
Min  
Max  
30  
Unit  
ns  
Note  
1
2
Delay From Rising Edge of DCL to FSC Output High  
Delay From Rising Edge of DCL to FSC Output Low  
FSC Input High Before the Falling Edge of DCL (FSC Setup Time)  
FSC Input High After the Falling Edge of FSC (FSC Hold Time)  
DCL Clock Period Master Mode  
30  
ns  
1
3
25  
ns  
4
25  
ns  
5a  
5b  
6
488  
244  
1953  
1953  
ns  
2
3
4
DCL Clock Period Slave Mode  
ns  
DCL Pulse Width High  
512 kHz  
2.048 kHz  
878  
210  
1074  
265  
ns  
7
DCL Pulse Width Low  
45  
55  
% of DCL  
Period  
8
9
DCL Fall Time  
DCL Rise Time  
5
5
15  
15  
30  
30  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
Delay From Rising Edge of FSC to Low–Z and Valid Data on D  
5
out  
11  
Delay From Rising Edge of DCL to Data Valid on D  
out  
12  
Delay From Rising Edge of DCL High–Z on D  
out  
13  
Data Valid on D Before Rising Edge of DCL  
in  
25  
25  
14  
Data Valid on D After Rising Edge of DCL  
in  
15  
Delay From Rising Edge of FSC to TSEN Low  
Delay From Rising Edge of DCL to TSEN High  
16  
NOTES:  
1. The FSC pulse is normally two DCL clock periods wide in GCI mode.  
2. In GCI Master mode, the MC145574 will output a 512 kHz, 1.536 MHz or 2.048 MHz clock as selected by M2, M1 and M0  
pins.  
3. In GCI Slave mode, DCL may be any frequency that is a multiple of 512 kHz and is between 512 kHz and 4.096 MHz.  
4. The duty cycle of DCL is between 45% and 55% when operated in Master Timing mode.  
18–6  
MC145574  
MOTOROLA  
Figure 18–3. GCI Timing For Master and Slave Mode  
MOTOROLA  
MC145574  
18–7  
18.7 SCP TIMING CHARACTERISTICS  
(T = – 40 to + 85°C, V  
= 5.0 V ± 5%, Voltages Referenced to V  
)
SS  
A
DD  
Ref. No.  
Characteristic  
Min  
50  
50  
20  
20  
244  
30  
30  
Max  
50  
50  
40  
50  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
12  
13  
SCPEN Active Before Rising Edge of SCPCLK  
SCP Rising Edge Before SCPEN Active  
SCP Rx Valid Before SCPCLK Rising Edge (Setup Time)  
SCP Rx Valid After SCPCLK Rising Edge (Hold Time)  
SCPCLK Period (Note 1)  
14  
15  
16  
17  
SCPCLK Width (Low)  
18  
SCPCLK Width (High)  
19  
SCP Tx Active Delay  
20  
SCPEN Active to SCP Tx Active  
21  
SCPCLK Falling Edge to SCP Tx High–Impedance  
SCPEN Inactive Before SCPCLK Rising Edge  
SCPCLK Rising Edge Before SCPEN Inactive  
SCPCLK Falling Edge to SCP Tx Valid Data  
22  
50  
50  
23  
24  
NOTE:  
1. Maximum SCP Clock Frequency is 4.096 MHz.  
22  
SCP EN  
13  
23  
16  
12  
1
2
3
4
5
6
7
8
SCPCLK  
18  
15  
21  
17  
14  
SCP Rx  
(NOTE 1)  
19  
SCP Tx  
(NOTE 2)  
24  
SCP Rx  
(NOTE 3)  
20  
SCP Tx  
(NOTE 3)  
NOTES:  
1. During a nibble read, four bits are presented on SCP Rx.  
2. During a nibble read, SCP Tx will be active for the duration of the 4–bit transmission as shown.  
3. During a byte read, eight bits are presented on SCP Rx. A byte transaction consists of two 8–bit ex-  
changes. During the second 8–bit exchange, data is either written to the byte from SCP Rx or is read  
fromthe byte. If the operation is a read operation, then data is presented onto SCP Tx. Refer to Section 5,  
“The Serial Control Port”, for a detailed description.  
Figure 18–4. SCP Timing Characteristics  
18–8  
MC145574  
MOTOROLA  
18.8 NT1 STAR MODE TIMING CHARACTERISTICS  
Ref. No.  
Characteristic  
Min  
Max  
Unit  
25  
Propagation Delay from ANDIN to ANDOUT  
35  
ns  
ANDIN  
25  
ANDOUT  
Figure 18–5. NT1 Star Mode  
18.9 D CHANNEL TIMING CHARACTERISTICS (IDL2 MODE)  
Ref. No.  
26  
Characteristic  
DREQUEST Valid Before Falling Edge of FSC  
DREQUEST Valid After Falling Edge of FSC  
DGRANT Valid Before Falling Edge of FSC  
Min  
30  
Max  
Unit  
ns  
27  
30  
ns  
28  
390  
ns  
DREQUEST  
FSC  
26  
27  
Figure 18–6. D Channel Request Timing  
DGRANT  
FSC  
28  
Figure 18–7. D Channel Grant Timing  
MOTOROLA  
MC145574  
18–9  
18–10  
MC145574  
MOTOROLA  
19  
MECHANICAL DATA  
19.1 PIN ASSIGNMENTS  
ISET  
RxN  
RxP  
1
2
3
28 RESET  
27 TxP  
26 TxN  
TE/NT  
M/S  
4
5
6
7
8
9
25 XTAL  
24 EXTAL  
T_IN/TFSC/TCLK/FIX  
23  
22  
21  
V 5  
DD  
V
SS  
V
DD  
I/O  
SG/DGRANT/ANDOUT  
DREQUEST/ANDIN  
V 3  
DD  
20 IRQ/IND  
CLASS/ECHO_IN 10  
FSC/FSR 11  
DCL 12  
19 TSEN/FST/BCL/LBA  
18 SCPEN/GCIEN  
17 SCPCLK/S2/M2  
16 SCPRx/S1/M1  
15 SCPTx/S0/M0  
D
13  
14  
in  
D
out  
Figure 19–1. MC145574DW Pin Assignment  
(SOIC 28–Pin Package, Case 751F)  
32 31 30 29 28 27 26 25  
TE/NT  
M/S  
T_IN/TFSC/TCLK/FIX  
1
2
3
4
5
6
7
8
24 XTAL  
23 EXTAL  
22  
21  
20  
19 IRQ/IND  
18 TSEN/FSX/BCL/LBA  
17 SCPEN/GCIEN  
V 5  
DD  
V
V
DD  
I/O  
SS  
SG/DGRANT/ANDOUT  
DREQUEST/ANDIN  
CLASS/ECHO_IN  
FSC/FSR  
V 3  
DD  
9 10 11 12 13 14 15 16  
Figure 19–2. MC145574PB Pin Assignment  
(TQFP 32–Pin Package, Case 873A)  
MOTOROLA  
MC145574  
19–1  
19.2 PACKAGE DIMENSIONS  
DW SUFFIX  
SOIC  
CASE 751F–04  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
–A–  
ANSI Y14.5M, 1982.  
15  
28  
1
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
14X P  
M
M
0.010 (0.25)  
B
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE  
14  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
28X D  
M
MILLIMETERS  
DIM MIN MAX  
INCHES  
M
S
S
0.010 (0.25)  
T A  
B
MIN  
MAX  
0.711  
0.299  
0.104  
0.019  
0.035  
R
X 45  
_
A
B
C
D
F
17.80  
7.40  
2.35  
0.35  
0.41  
18.05 0.701  
7.60 0.292  
2.65 0.093  
0.49 0.014  
0.90 0.016  
C
–T–  
SEATING  
PLANE  
26X G  
G
J
K
M
P
1.27 BSC  
0.050 BSC  
0.23  
0.13  
0
0.32 0.009  
0.29 0.005  
0.013  
0.011  
8
K
F
8
0
_
_
_
_
10.01  
0.25  
10.55 0.395  
0.75 0.010  
0.415  
0.029  
J
R
19–2  
MC145574  
MOTOROLA  
PB SUFFIX  
TQFP  
CASE 873A–02  
4X  
A
A1  
0.20 (0.008) AB TU Z  
32  
25  
1
–U–  
V
–T–  
B
AE  
AE  
P
B1  
DETAIL Y  
–Z–  
V1  
17  
8
DETAIL Y  
9
4X  
0.20 (0.008) AC TU Z  
9
NOTES:  
S1  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE AB– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T–, –U–, AND Z– TO BE DETERMINED  
AT DATUM PLANE AB.  
DETAIL AD  
G
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC–.  
–AB–  
–AC–  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.520 (0.020).  
SEATING  
PLANE  
0.10 (0.004) AC  
BASE  
METAL  
N
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076 (0.0003).  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
F
D
_
8X M  
MILLIMETERS  
DIM MIN MAX  
7.000 BSC  
INCHES  
MIN MAX  
0.276 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
R
J
A
A1  
B
3.500 BSC  
7.000 BSC  
3.500 BSC  
1.400 1.600 0.055 0.063  
0.300 0.450 0.012 0.018  
1.350 1.450 0.053 0.057  
0.300 0.400 0.012 0.016  
SECTION AE–AE  
E
C
B1  
C
D
E
F
W
G
H
J
K
M
N
P
0.800 BSC  
0.031 BSC  
_
Q
H
K
X
0.050 0.150 0.002 0.006  
0.090 0.200 0.004 0.008  
0.500 0.700 0.020 0.028  
_
_
12 REF  
12 REF  
DETAIL AD  
0.090 0.160 0.004 0.006  
0.400 BSC  
0.016 BSC  
Q
R
1_  
5_  
1_  
5_  
0.150 0.250 0.006 0.010  
S
9.000 BSC  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.354 BSC  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
S1  
V
V1  
W
X
MOTOROLA  
MC145574  
19–3  
19–4  
MC145574  
MOTOROLA  
20  
F57J4 MASK SET DIFFERENCES  
20.1 FUNCTIONAL DIFFERENCES  
This section refers to MC145574 S/T–interfaces marked F57F4 and with a revision number BR15  
= 03.  
This mask set of the MC145574 has some functional differences from what is presented in this data  
book.  
20.1.1 Differences in Section 6  
In GCI TE master mode, the DCL = 2.048 MHz option is not available. (See Table 6–4.)  
In GCI TE mode, B1 and B2 channels are enabled by default. NR5(3:2) bits allow the B channels  
to be set to idle 1s.  
20.1.2 Differences in Section 10  
OR6(3) is not available. In NT Terminal mode, the D  
out  
pin is always an open drain output.  
20.1.3  
Differences in Section 13.1.3.2  
In NT Terminal mode, T_IN pin is only available when the device is activated. When the device is  
not activated, 2B+D data should be sent directly to the U–interface.  
MOTOROLA  
MC145574  
20–1  
20–2  
MC145574  
MOTOROLA  
A
MC145574EVK ISDN S/T-INTERFACE  
TRANSCEIVER EVALUATION KIT  
A.1  
INTRODUCTION  
The MC145574EVK S/T–Interface Transceiver Evaluation Kit provides Motorola ISDN customers a  
convenient and efficient vehicle for evaluation of the MC145574 ISDN S/T–Interface Transceiver. The  
approach taken to demonstrate the MC145574 S/T–Interface Transceiver is to provide the user with  
a complete set of two S/T–Interfaces, either programmable for TE or NT modes. The MC145574EVK  
does not terminate any ISDN call control messages.  
The kit provides the ability to interactively manipulate status registers in the MC145574 S/T–Interface  
Transceivers with the aid of an external terminal.  
TA  
MC145488  
MC145574  
SCP  
IDL  
S/T  
S/T  
CHIP  
DDLC  
MC14LC5480  
MPU  
SYSTEM  
CODEC  
HOST BUS  
MC145574EVK  
MC145574  
MC145574  
MC145572  
IDL  
SCP  
IDL  
S/T  
CHIP  
U
CHIP  
S/T  
CHIP  
MPC  
SYSTEM  
SCP  
MC14LC5480  
RAM  
ROM  
MCU  
CODEC  
TE1  
NT1  
Figure A–1. Motorola Silicon Applications and the MC145574EVK  
MOTOROLA  
MC145574  
A–1  
A.2  
FEATURES  
General  
A.2.1  
Provides Standalone NT and TE on a Single Board  
On–Board 68HC11 Microcontroller With Resident Monitor Software  
Convenient Access to Key Signals  
NT and TE Software Development Platform  
A.2.2  
Hardware  
Only + 5 Volt Power Supply  
Gated Data Clocks Provided for Bit Error Rate Testing  
Can Be Used as an S/T–Interface Terminal Development Tool  
EIA–232 (V.28) Serial Port for Terminal Interface  
A.2.3  
Software  
Computer Operation  
Resident Firmware Monitor for User Control of Board  
Activation and Deactivation Menus  
MC68HC11 Assembly Language Source Code Available  
A–2  
MC145574  
MOTOROLA  
A.3  
BLOCK DIAGRAM  
EIA–232  
MC145407  
PROM  
SCP  
BERT  
CLK  
MC68HC11E9  
MICROCONTROLLER  
XILINX  
XC3020A  
SCP  
IDL  
IDL  
IDL  
MC145574  
ISDN  
MC145574  
ISDN  
S/T–INTERFACE  
TRANSCEIVER  
S/T–INTERFACE  
TRANSCEIVER  
LINE ANALOG  
INTERFACE  
LINE ANALOG  
INTERFACE  
S/T  
S/T  
Figure A–2. Block Diagram  
MOTOROLA  
MC145574  
A–3  
A–4  
MC145574  
MOTOROLA  
B
GLOSSARY OF TERMS AND ABBREVIATIONS  
The list contains terms found in this and other Motorola publications concerned with Motorola Semiconductor prod-  
ucts for Communications.  
A–Law — A European companding/encoding law commonly used in PCM systems.  
A/B Signaling — A special case of 8th–bit (LSB) signaling in a µ–law system that allows four logic states to be multiplexed  
with voice on PCM channels.  
A/D (analog–to–digital) converter (ADC) — A converter that uniquely represents all analog input values within a specified total  
input range by a limited number of digital output codes, each of them exclusively representing a fractional part of the total analog  
input range.  
Aliasing Noise — A distortion component that is created when frequencies present in a sampled signal are greater than one–half  
the sample rate.  
Answer Back — A signal sent by receiving data–processing device in response to a request from a transmitting device, indicating  
that the receiver is ready to accept or has received data.  
Anti–Aliasing Filter — A filter (normally low pass) that band limits an input signal before sampling to prevent aliasing noise.  
Asynchronous — A mode of data transmission in which the time occurrence of the bits within each character or block of charac-  
ters relates to a fixed time frame, but the start of each character or block of characters is not related to this fixed time frame.  
Attenuation — A decrease in magnitude of a communication signal.  
Bandwidth — The information–carrying frequencies between the limiting frequencies of a communication line or channel.  
Baseband — The frequency band occupied by information–bearing signals before combining with a carrier in the modulation  
process.  
Baud — A unit of signaling speed equal to the number of discrete signal conditions or events per second. This refers to the  
physical symbols/second used within a transmission channel.  
Bit Rate — The speed at which data bits are transmitted over a communication path, usually expressed in bits per second.  
A 9600 bps terminal is a 2400 baud system with 4 bits/baud.  
Blocking — A condition in a switching system in which no paths or circuits are available to establish a connection to the called  
party even though it is not busy, resulting in a busy tone to the calling party.  
BORS(C)HT — Battery, Overvoltage, Ringing, Supervision, (Codec), Hybrid, Test; the functions performed by a subscriber line  
card in a telephone exchange.  
Broadband — A transmission facility whose bandwidth is greater than that available on voice–grade facilities. (Also called wide  
band.)  
C Message — A frequency weighting that evaluates the effects of noise based on its annoyance to the “typical” subscriber of  
standard telephone service or the effects of noise (background and impulse) on voice–grade data service.  
Carrier — An analog signal of fixed amplitude and frequency that combines with an information–bearing signal by modulation  
to produce an output signal suitable for transmission.  
CCITT — Consultative Committee for International Telephone and Telegraph; an international standards group of European  
International Telecommunications Union.  
CCSN — Common Channel Signaling Network.  
Central Office (CO) — A main telephone office, usually within a few miles of a subscriber, that houses switching gear; commonly  
capable of handling about 10,000 subscribers.  
Channel Bank — Communication equipment commonly used for multiplexing voice–grade channels into a digital transmission  
signal (typically 24 channels in the U.S. and 30 channels in Europe).  
MOTOROLA  
MC145574  
B–1  
CIDCW — Calling Identity Delivery on Call Waiting; a subscriber feature which allows for the display of the time, date, number,  
and possible other information about the caller to the called party while the called party is off–hook.  
CLASS — Custom Local Area Signaling Service; a set of services, enhancements, provided to TELCO customers which may  
include CND, CNAM, Message Waiting, and other features.  
CLID — Calling Line IDentification; a subscriber feature which allows for the display of the time, date, number, and possible  
other information about the caller to the called party.  
CNAM — Calling Name Delivery; a subscriber feature which allows for the display of the time, date, number, and name of the  
caller to the called party.  
CND — Calling Number Delivery; a subscriber feature which allows for the display of the time, date, number, and possible other  
information about the caller to the called party.  
CODEC — COder–DECoder; the A/D and D/A function on a subscriber line card in a telephone exchange.  
COFIDEC — COder–Filter–DECoder; the combination of a codec, the associated filtering, and voltage references required to  
code and decode voice in a subscriber line card.  
Common Mode Rejection — The ability of a device having a balanced input to reject a voltage applied simultaneously to both  
differential–input terminals.  
Companding — The process in which dynamic range compression of a signal is followed by expansion in accordance with  
a given transfer characteristic (companding law) which is usually logarithmic.  
Compander — A combination of a compressor at one point in a communication path for reducing the amplitude range of signals,  
followed by an expander at another point for restoring the original amplitude range, usually to improve the signal–to–noise ratio.  
Conference Call — A call between three or more stations, in which each station can carry on a conversation simultaneously.  
CPE — Customer Premise Equipment; this could be a POTS phone, answering machine, fax machine, or any number of other  
devices connected to the PSTN.  
Crosspoint — The operating contacts or other low–impedance–path connection over which conversations can be routed.  
Crosstalk — The undesired transfer of energy from one signal path to another.  
CSN — Circuit Switched Network.  
CTS — Clear to send; a control signal between a modem and a controller used to initiate data transmission over a communication  
line.  
CVSD — Continuous Variable Slope Delta (modulation); a simple technique to converting an analog signal (like voice) into a  
serial bit stream.  
D3 — D3 channel bank; a specific generation of AT&T 24–channel PCM terminal that multiplexes 24 voice channels into a 1.544  
MHz digital bit stream. The specifications associated with D3 channel banks are the basis for all PCM device specifications.  
D/A (digital–to–analog) converter (DAC) — A converter that represents a limited number of different digital input codes by a  
corresponding number of discrete analog output values.  
Data Compression — A technique that provides for the transmission of fewer data bits than originally required without information  
loss. The receiving location expands the received data bits into the original bit sequence.  
dB (decibel) — A power or voltage measurement unit, referred to another power or voltage. It is generally computed as:  
10 x log (P1/P2) for power measurements, and  
20 x log (V1/V2) for voltage measurements.  
dBm — An indication of signal power. 1.0 mW across 600 , or 0.775 volts rms, is defined as 0 dBm. Any other voltage level  
is converted to dBm by:  
dBm = 20 x log (Vrms/0.775), or  
dBm = [20 x log (Vrms)] + 2.22.  
dBmO — Signal power measured at a point in a standard test tone level at the same point.  
i.e., dBmO = dBm = dBr  
where dBr is the relative transmission level, or level relative to the point in the system defined as the zero transmission level  
point.  
B–2  
MC145574  
MOTOROLA  
dBmOp — Relative power expressed in dBmp. (See dBmO and dBmp.)  
dBmp — Indicates dBm measurement made with a psophometric weighting filter.  
dBrn — Relative signal level expressed in decibels above reference noise, where reference noise is 1 pW. Hence, 0 dBrn =  
1 pW = – 90 dBm.  
dBrnC — Indicates dBrn measurement made with a C–message weighting filter. (These units are most commonly used in the  
U.S., where psophometric weighting is rarely used.)  
dBrnc0 — Noise measured in dBrnc referenced to zero transmission level.  
Decoding — A process in which one of a set of reconstructed analog samples is generated from the digital character signal  
representing a sample.  
Delay Distortion — Distortion that occurs on communication lines due to the different propagation speeds of signals at different  
frequencies, measured in microseconds of delay relative to the delay at 1700 Hz. (This type of distortion does not affect voice  
communication, but can seriously impair data transmission.)  
Delta Modulation — A simple digital coding technique that produces a serial bit stream corresponding to changes in analog  
input levels; usually utilized in devices employing continuously variable–slope delta (CVSD) modulation.  
Demodulator — A functional section of a modem that converts received analog line signals to digital form.  
DN — Directory Number.  
Digital Telephone — A telephone terminal that digitizes a voice signal for transmission and decodes a received digital signal  
back to a voice signal. (It will usually multiplex 64 kbps voice and separate data inputs at multiples of 8 kbps.)  
Distortion — The failure to reproduce an original signal’s amplitude, phase, delay, etc. characteristics accurately.  
DPSK — Differential Phase Shift Keying; a modulation technique for transmission where the frequency remains constant but  
phase changes will occur from 90°, 180°, and 290° to define the digital information.  
DTMF — Dual Tone Multi–Frequency. It is the “tone dialing” system based on outputting two non–harmonic related frequencies  
simultaneously to identify the number dialed. Eight frequencies have been assigned to the four rows and four columns of a typical  
keypad.  
Duplex — A mode of operation permitting the simultaneously two–way independent transmission of telegraph or data signals.  
Echo — A signal that has been reflected or returned as a result of impedance mismatches, hybrid unbalance, or time delay.  
Depending upon the location of impedance irregularities and the propagation characteristics of a facility, echo may interfere with  
the speaker/listener or both.  
Echo Suppressor — A device used to minimize the effect of echo by blocking the echo return currents; typically a voice–operated  
gate that allows communication one way at a time.  
Encoder (PCM) — A device that performs repeated sampling, compression, and A/D conversion to change an analog signal  
to a serial stream of PCM samples representing the analog signal.  
Equalizer — An electrical network in which phase delay or gain varies with frequency to compensate for an undesired amplitude  
or phase characteristic in a frequency–dependent transmission line.  
ET — Exchange Termination (C.O. Switch).  
FDM — Frequency–Division Multiplex; a process that permits the transmission of two or more signals over a common path by  
using a different frequency band for each signal.  
Four Wire Circuit — The portion of a telephone, or central office, that operates on two pairs of wires. One pair is for the transmit  
path (generally from the microphone), and one pair is for the receive path (generally from the receiver).  
Frame — A set of consecutive digit time slots in which the position of each digit slot can be identified by reference to a frame  
alignment. The frame alignment signal does not necessarily occur, in whole or in part, in each frame.  
Full Duplex — A mode of operation permitting simultaneous transmission of information between two locations in both directions.  
Gain — The change in signal amplitude (increase or decrease) after passing through an amplifier, or other circuit stage. Usually  
expressed in dB, an increase is a positive number, and a decrease is a negative number.  
Gain Tracking Error — The variation of gain from a constant level (determined at 0 dBm input level) when measuring the depen-  
dence of gain on signal level by comparing the output signal to the input signal over a range of input signals.  
HDLC — High–Level Data Link Control; a CCITT standard data communication line protocol.  
MOTOROLA  
MC145574  
B–3  
Half Duplex — A transmission system that permits communication in one direction at a time. CB ratios, with “push–to–talk”  
switches, and voice–activated speakerphones, are half duplex.  
Handset — A rigid assembly providing both telephone transmitter and receiver in a form convenient for holding simultaneously  
to mouth and ear.  
Hookswitch — A switch that connects the telephone circuit to the subscriber loop. The name derives from old telephones where  
the switch was activated by lifting the receiver off and onto a hook on the side of the phone.  
Idle Channel Noise (ICN) — The total signal energy measured at the output of a device or channel under test when the input  
of the device or channel is grounded (often a wide–band noise measurement using a C–message weighting filter to band–limit  
the output noise).  
Intermodulation — The modulation of the components of a complex wave by each other (in a nonlinear system).  
Intermodulation Distortion — An analog line impairment when two frequencies interact to create an erroneous frequency, in  
turn distorting the data signal representation.  
IRED — Infrared. Used as a wireless link for remote control or to transfer data.  
ISDN — Integrated Services Digital Network; a communication network intended to carry digitized voice and data multiplexed  
onto the public network.  
Jitter — A type of analog communication line distortion caused by abrupt, spurious signal variation from a reference timing posi-  
tion, and capable of causing data transmission errors, particularly at high speeds. (The variation canbeinamplitude, time, frequen-  
cy, or phase.)  
Key System — A miniature PABX that accepts 4 to 10 lines and can direct them to as many as 30 telsets.  
µ–law — A companding law accepted as the North American standard for PCM based systems.  
LAN — Local Area Network; a data–only communication network between data terminals using a standard interface to the net-  
work.  
Line — The portion of a circuit external to an apparatus that consists of the conductors connecting the apparatus to the exchange  
or connecting two exchanges.  
Line Length Compensation — Also referred to as loop length compensation, it involves changing the gain of the transmit and  
receive paths, within a telephone, to compensate for different signal levels at the end of different line lengths. A short line (close  
to the CO) will attenuate signals less, and therefore less gain is needed. Compensation circuits generally use the loop current  
as an indication of the line length.  
Longitudinal Balance — The common–mode rejection of a telephone circuit.  
Loop — The loop formed by the two subscriber wires (Tip and Ring) connected to the telephone at one end, and the central  
office (or PBX) at the other end. Generally it is a floating system, not referred to ground, or ac power.  
Loopback — Directing signals back toward the source at some point along a communication path.  
Loop Current — The dc current that flows through the subscriber loop. It is typically provided by the central office or PBX, and  
ranges from 20 to 120 mA.  
LT — Line Termination (Line Card).  
MCU — MicroComputer Unit (also MicroController Unit).  
MPU — MicroProcessor Unit.  
Mu–Law — A companding/encoding law commonly used in U.S. (same as µ–law).  
MUX — Multiplex or multiplexer.  
Modem — MOdulator–DEModulator; a unit that modulates and demodulates digital information from a terminal or computer  
port to an analog carrier signal for passage over an analog line.  
Multiframing — When multiframing is enabled, 20 S/T frames are grouped together to provide maintenance subchannels be-  
tween the TE and the NT. In the TE to NT direction, there is one subchannel called the Q channel. In the NT to TE direction,  
there are five subchannels called SC1 through SC5. Messages for the Q, SC1, and SC2 subchannels have been defined in  
CCITT I.430 and ANSI T1.605. Usage of the multiframing subchannels is not mandatory.  
Multiplex To simultaneously transmit two or more messages on a single channel.  
NT1 — Network Termination 1 (OSI Layer 1 Only).  
B–4  
MC145574  
MOTOROLA  
NT2 — Network Termination 2 (OSI Layers 2 and 3).  
Off–Hook — The condition when the telephone is connected to the phone system, permitting loop current to flow. The central  
office detects the dc current as an indication that the phone is busy.  
On–Hook — The condition when the telephone’s dc path is open, and no dc loop current flows. The central office regards an  
on–hook phone as available for ringing.  
PABX — Private Automatic Branch Exchange; a customer–owned, switchable telephone system providing internal and/or exter-  
nal station–to–station dialing.  
Pair — The two associated conductors that form part of a communication channel.  
Pass–Band Filter — A filter used in communication systems that allows only the frequencies within a communication channel  
to pass, and rejects all frequencies outside the channel.  
PBX — Private Branch Exchange; a class of service in standard Bell System terminology that typically provides the same service  
as PABX.  
PCM — Pulse Code Modulation; a method of transmitting data in which signals are sampled and converted to digital words  
that are then transmitted serially, typically as 8–bit words.  
Phase Jitter — Abrupt, spurious variations in an analog line, generally caused by power and communication equipment along  
the line that shifts the signal phase relationship back and forth.  
PLL — Phase–Locked Loop.  
PLL Frequency Synthesizer — Phase–locked loop frequency synthesizer. A frequency synthesizer utilizing a closed loop, as  
opposed to DDS (direct digital synthesis) which is not a closed loop.  
POTS — Plain Old Telephone Service.  
Propagation Delay — The time interval between specified reference points on the input and output voltage waveforms.  
Psophometric Weighting — A frequency weighting similar to C–Message weighting that is used as the standard for European  
telephone system testing.  
PSN — Packet Switched Network.  
PSTN — Public Switched Telephone Network.  
Pulse Dialer — A device that generates pulse trains corresponding to digits or characters used in impulse or loop–disconnect  
dialing.  
Quantizing Noise — Signal–correlated noise generally associated with the quantizing error introduced by A/D and D/A conver-  
sions in digital transmission systems.  
REN — Ringer Equivalence Number; an indication of the impedance, or loading factor, of a telephone bell or ringer circuit. An  
REN of 1.0 equals about 8 k. The Bell system typically permits a maximum of 5.0 REN (1.6 k) on an individual subscriber  
line. A minimum REN of 0.2 (40 k) is required by the Bell system.  
Repeater — An amplifier and associated equipment used in a telephone circuit to process a signal and retransmit it.  
Repertory Dialer — A dialer that stores a repertory of telephone numbers and dials any one of them automatically on request.  
Ring — One of the two wires connecting the central office to a telephone. The name derives from the ring portion of the plugs  
used by operators (in older equipment) to make the connection. Ring is traditionally negative with respect to Tip.  
RTS — Request To Send; an EIA–232 control signal between a modem and user’s digital equipment that initiates the data trans-  
mission sequence on a communication line.  
Sampling Rate — The frequency at which the amplitude of an analog signal is gated into a coder circuit. The Nyquist sampling  
theorem states that if a band–limited signal is sampled at regular intervals and at a rate equal to or greater than twice the highest  
frequency of interest, the sample contains all the information of the original signal. The frequency band of interest in telephony  
ranges from 300 to 3400 Hz, so a sampling rate of 8 kHz provides dc to 4000 Hz reproduction.  
SCU — Subscriber Channel Unit; the circuitry at a telephone exchange associated with an individual subscriber line or channel.  
Sidetone — The sound fed back to the receiver as a result of speaking into the microphone. It is a natural consequence of  
the 2–to–4 wire conversion system. Sidetone was recognized by Alexander Graham Bell as necessary for a person to be able  
to speak properly while using a handset.  
Signaling — The transmission of control or status information between switching systems in the form of dedicated bits or channels  
of information inserted on trunks with voice data.  
MOTOROLA  
MC145574  
B–5  
Signal–to–Distortion Ratio (S/D) — The ratio of the input signal level to the level of all components that are present when  
the input signal (usually a 1.020 kHz sinusoid) is eliminated from the output signal (e.g., by filtering).  
SLIC — Subscriber Line Interface Circuit; a circuit that performs the 2–to–4 wire conversion, battery feed, line supervision, and  
common mode rejection at the central office (or PBX) end of the telephone line.  
SOG Package — Small–Outline Gull–wing package; formerly SOIC with gull–wing leads. This package has leads which fold  
out from the body.  
SOJ Package — Small–Outline J–lead package; formerly SOIC with J leads. This package has leads which are tucked under  
the body.  
Speech Network — A circuit that provides 2–to–4 wire conversion, i.e., connects the microphone and receiver (or the transmit  
and receive paths) to the Tip and Ring phone lines. Additionally it provides sidetone control, and in many cases, the dc loop  
current interface.  
Subscriber Line — The system consisting of the user’s telephone, the interconnecting wires, and the central office equipment  
dedicated to that subscriber (also referred to as a loop).  
Switchhook — A synonym for hookswitch.  
Syn (Sync) — (1) A bit character used to synchronize a time frame in a time–division multiplexer. (2) A sequence used by a  
synchronous modem to perform bit synchronization or by a line controller for character synchronization.  
Synchronous Modem — A modem that uses a derived clocking signal to perform bit synchronization with incoming data.  
T1 Carrier — A PCM system operating at 1.544 MHz and carrying 24 individual voice–frequency channels.  
TA Terminal Adapter.  
Talkdown — Missed signals in the presence of speech. Commonly used to describe the performance of a DTMF receiver when  
it fails to recognize a valid DTMF tone due to cancellation of that tone by speech.  
Talkoff — False detections caused by speech. Commonly used to describe the performance of a DTMF receiver when speech,  
emulating DTMF, causes the receiver to believe it has detected a valid DTMF tone.  
Tandem Trunk — See trunk.  
Telephone Exchange — A switching center for interconnecting the lines that service a specific area.  
TE1 Terminal Equipment 1 (ISDN Terminal).  
TE2 Terminal Equipment 2 (Non–ISDN Terminal).  
TELETEX — A text communication service between entirely electronic work stations that will gradually replace TELEX with the  
introduction of the digital network. (Not to be confused with teletext.)  
TELETEXT — The name usually used for broadcast text (and graphics) for domestic television reception. (Not to be confused  
with teletex.)  
Time–Division Multiplex — A process that permits the transmission of two or more signals over a common path by using a  
different time interval for each signal.  
Tin Cans and String — A crude analog communications system commonly used to introduce voice communications to children.  
Tip — One of the two wires connecting the central office to a telephone. The name derives from the tip of the plugs used by  
operators (in older equipment) to make the connection. Tip is traditionally positive with respect to ring.  
Tone Ringer — The modern solid state equivalent of the old electromechanical bell. It provides the sound when the central  
office alerts the subscriber that someone is calling. Ringing voltage is typically 8090 volts rms, 20 Hz.  
Trunk — A telephone circuit or channel between two central offices or switching entities.  
TSAC — Time Slot Assigner Circuit; a circuit that determines when a CODEC will put its 8 bits of data on a PCM bit stream.  
TSIC — Time Slot Interchange Circuit; a device that switches digital highways in PCM based switching systems; a “digital” cross-  
point switch.  
Twist — The amplitude ratio of a pair of DTMF tones. (Because of transmission and equipment variations, a pair of tones that  
originated equal in amplitude may arrive with a considerable difference in amplitude.)  
Two Wire Circuit — Refers to the two wires connecting the central office to the subscriber’s telephone. Commonly referred  
to as Tip and Ring, the two wires carry both transmit and receive signals in a differential manner.  
B–6  
MC145574  
MOTOROLA  
UDLT — Universal Digital Loop Transceiver; a Motorola originated name for a voice/data transceiver circuit.  
VCO — Voltage–controlled oscillator. Input is a voltage; output is a sinusoidal waveform.  
VCM — Voltage–controlled multivibrator. Input is a voltage; output is a square wave.  
Voice Frequency — A frequency within that part of the audio range that is used for the transmission of speech of commercial  
quality (i.e., 3003400 Hz).  
Weighting Network — A network whose loss varies with frequency in a predetermined manner.  
MOTOROLA  
MC145574  
B–7  
B–8  
MC145574  
MOTOROLA  
INDEX  
A
E
Echo Channel, 3–3, 9–7, 9–13  
Activation, 3–1, 3–2, 6–14, 6–15, 8–3, 9–6, 9–8  
GCI, 6–14  
Error, 3–2, 8–3  
ETSI ETS 300012, 1–2, 10–7  
Adaptive Timing, 13–1  
ANSI T1.605, 1–2  
F
Fixed Timing, 13–1  
B
Frame Syncs, 4–4  
Byte Register, 5–3, 5–4, 9–1  
Initialization, 9–2  
Read, 5–3  
G
Write, 5–4  
GCI, 6–1, 15–2  
Clock Frequency, 10–4  
D Channel Operation, 11–3  
DCL, 6–5  
C
Din, 6–5  
Direct, 6–6  
CCITT I.430, 1–2  
Dout, 6–5  
CLASS, 7–3  
FSC, 6–5  
Class, 11–2  
GCI Indirect Mode Enable, 10–4  
GCI Timeslot, S(2:0), 10–3  
Indirect, 6–4  
Modes, 6–1  
Multiframing, 12–3  
Clock, 4–9, 7–4, 14–1  
Command Indicate Channel, 6–12  
Configurations, 13–1  
NT, 13–1  
NT Fixed or Adaptive Timing, 13–1  
NT Terminal Mode, 13–2, 13–4  
TE Master Mode, 13–5  
TE Slave Mode, 13–5  
I
IDL2, 4–1, 4–2, 4–3, 4–9, 4–10, 9–8, 9–12  
Clock Speed (LSB), 9–8  
Clock Speed (MSB), 9–12  
Enable TCLK, 10–5  
Crystal, 5–7, 7–4, 14–1  
INFO State, 8–4, 9–11, 15–2  
Initial State, 3–3  
D
Interrupt, 8–6, 11–3  
Multiframe, 9–4  
D Channel, 11–1, 15–1  
Deactivate, 8–4  
Interrupts, 15–1  
Deactivation, 3–3, 6–15  
GCI, 6–14  
J
DGRANT, 7–2, 11–1  
DREQUEST, 7–2, 11–1  
Jitter, 1–2  
MOTOROLA  
MC145574  
Index–9  
Pin Descriptions, 7–1  
Point–to–Point, 2–1  
L
Line Interface, 16–1  
Long Frame, 4–8  
Loopback, 8–7, 9–5  
Loopbacks, 1–2  
Power Settings, 17–1  
Absolute Minimum Power, 1–2, 8–2, 17–2  
Normal Power Operation, 17–1  
Sleep, 1–2, 17–2  
Transmit Power–Down, 1–2, 8–2, 17–1  
Power–Down, 1–2, 8–2, 17–1  
M
M and N Parameters, 3–3  
R
Master, 4–3, 7–2, 13–1  
GCI, 6–6  
Register Differences, 6–12  
Register Maps, 8–1, 9–1, 9–2, 10–1  
Reset, 7–4, 8–2  
Monitor Channel, 6–7, 6–8, 6–11  
Commands, 6–10  
Messages, 6–8  
Operation, 6–8  
Revision, 9–13  
Response Messages, 6–10  
Status Indication Messages, 6–10  
S
Multiframing, 1–2, 8–3, 8–5, 9–3, 9–7, 9–9, 12–1,  
SCP, 5–1, 5–5, 5–7, 7–3, 7–5  
15–1  
Interrupts, 12–2  
High–Impedance Digital Output Mode (SCP  
HIDOM), 5–7  
IRQ, 5–7  
Rx, 5–6  
N
SCPCLK, 5–6  
SCPEN, 5–7  
Slave, 5–7  
Tx, 5–6  
Nibble Register, 5–1, 5–2, 8–1  
Initialization, 8–2  
Read, 5–1  
Write, 5–2  
Serial Control Port, 5–1  
NT Terminal, 8–4, 10–6, 13–2  
NT Terminal Mode, 8–5, 13–4  
NT Terminal Modes, 1–2  
Slave, 4–2, 4–3, 4–11, 7–2, 10–5, 13–1  
Enable TCLK, 10–5  
GCI, 6–6  
TE Slave, 4–4  
NT1 Star, 2–3, 7–2, 9–12, 13–2  
Sleep, 10–6, 17–2  
NT2, 13–6  
Applications, 4–8  
T
Terminal Mode, 6–7  
O
Timeslot Assigner, 4–4  
Overlay Register, 9–13, 10–1  
Control Register, 10–4  
Enable, 10–7  
Rx B1 Channel Timeslot, 10–3  
Rx B2 Channel Timeslot, 10–3  
Rx D Channel Timeslot, 10–3  
Tx B1 Channel Timeslot, 10–2  
Tx B2 Channel Timeslot, 10–2  
Tx D Channel Timeslot, 10–2  
Initialization, 10–2  
P
Packages, 1–3  
Passive Bus, 2–2, 2–3  
Phase, 4–4, 4–5, 4–7  
Pin Assignments, 19–1  
Transformers, 16–3  
Transmission States, 3–1  
TSEN, 4–2, 4–9, 4–11, 7–3, 10–5  
Index–10  
MC145574  
MOTOROLA  
3/1/99  
MOTOROLA AUTHORIZED DISTRIBUTOR & WORLDWIDE SALES OFFICES  
NORTH AMERICAN DISTRIBUTORS  
UNITED STATES  
CALIFORNIA – continued  
San Jose  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (408)383–0366  
ALABAMA  
Huntsville  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (408)441–9700  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (408)428–6400  
Arrow Zeus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (408)629–4789  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (408)434–0369  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (408)434–1122  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (205)721–3500  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (205)837–6955  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (205)837–9209  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (205)830–2322  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (205)837–8700  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (205)837–9091  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (205)830–1119  
Santa Clara  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (408)727–2500  
Santa Fe Springs  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (562)929–9722  
Mobile  
Sierra Madre  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (334)476–1875  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (818)355–6775  
ARIZONA  
Sunnyvale  
Phoenix  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (408)435–3600  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (602)831–2002  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (408)730–0300  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (602)731–4661  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (602)968–7140  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (602)736–7000  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (602)804–7000  
Thousand Oaks  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (805)449–1480  
Woodland Hills  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (818)594–0404  
Tempe  
COLORADO  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (602)966–6600  
Lakewood  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (303)237–1400  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (303)232–2008  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (602)966–6340  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (602)967–1620  
Denver  
ARKANSAS  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (303)790–1664  
Little Rock  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (303)373–4540  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (501)225–8130  
Englewood  
CALIFORNIA  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (303)799–0258  
Agoura Hills  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (303)790–1662  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (303)799–7845  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (818)871–1740  
Calabassas  
Thornton  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (818)880–9686  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (303)457–9953  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (818)880–9000  
CONNECTICUT  
Culver City  
Bloomfield  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (310)558–2000  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (860)243–1731  
Irvine  
Cheshire  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (714)587–0404  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (203)272–7730  
Arrow Zeus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (714)581–4622  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (714)753–4778  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (714)453–1515  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (714)789–4100  
Wyle Laboratories Corporate . . . . . . . . . . . . . . . (714)753–9953  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (714)789–9953  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (203)250–1319  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (203)250–0083  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (203)271–5700  
Wallingford  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (203)265–7741  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (203)269–8077  
Los Angeles  
FLORIDA  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (818)879–1234  
Altamonte Springs  
Manhattan Beach  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (310)546–8953  
Orange County  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (714)727–3010  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (407)865–7900  
Clearwater  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (813)530–1665  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (813)530–1222  
Deerfield Beach  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (305)429–8200  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (954)420–0500  
Ft. Lauderdale  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (954)428–9494  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (954)426–4043  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (954)677–3500  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (954)486–1151  
Palo Alto  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (650)812–6300  
Rancho Cordova  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (916)638–5282  
Riverside  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (909)980–6522  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (909)980–2105  
Rocklin  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (916)632–4500  
Jacksonville  
Roseville  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (904)739–5920  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (916)783–9953  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (904)399–5041  
Sacramento  
Lake Mary  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (916)632–3104  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (407)333–9300  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (916)782–7882  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (916)565–1760  
Arrow Zeus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (407)333–3055  
Largo/Tampa/St. Petersburg  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (813)507–5000  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (813)287–1578  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (813)576–3004  
San Diego  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (619)279–2550  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (619)565–4800  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (619)623–2888  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (619)625–2800  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (619)571–7540  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (619)453–8211  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (619)623–9100  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (619)558–6600  
Miami  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (305)558–2511  
Maitland  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (407)740–7450  
Orlando  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (407)539–0055  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (407)865–9555  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (407)896–8350  
San Fernando Valley  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (818)598–0130  
MOTOROLA  
MC145574  
Index–11  
FLORIDA – continued  
Itasca  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (708)250–0500  
Tallahassee  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (904)668–7772  
Arrow Zeus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (630)595–9730  
Tampa  
Lombard  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (813)579–4660  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (630)317–1000  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (813)287–1578  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (813)247–7556  
Palatine  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (708)934–3700  
Winter Park  
Rockford  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (407)657–3300  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (815)636–1010  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (407)672–1114  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (815)229–0225  
Springfield  
GEORGIA  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (217)787–9972  
Atlanta  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (770)497–9544  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (404)447–4767  
Wood Dale  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (630)860–0007  
INDIANA  
Indianapolis  
Duluth  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (404)497–1300  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (317)571–1880  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (770)623–4400  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (317)299–2071  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (317)575–3500  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (317)469–0441  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (317)469–0447  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (317)844–0047  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (317)581–6152  
Norcross  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (770)441–7676  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (770)448–1300  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (770)734–9990  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (770)441–9045  
IDAHO  
Boise  
Ft. Wayne  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (208)331–1414  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (219)484–0766  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (208)376–8080  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (219)432–1277  
IOWA  
ILLINOIS  
Bettendorf  
Addison  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (319)359–3711  
Wyle Laboratories . . . . . . . . . . . . . . . . . . . . . . . . . (708)620–0969  
Arlington Heights  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (847)797–7300  
Cedar Rapids  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (319)390–5730  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (319)393–3800  
Chicago  
Allied Electronics, Inc. (North) . . . . . . . . . . . . . . . (847)548–9330  
KANSAS  
Kansas City  
Allied Electronics, Inc. (South) . . . . . . . . . . . . . . . (708)535–0038  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (708)843–0034  
Newark Electronics Corp. . . . . . . . . . . . . . . . . . . (773)784–5100  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (913)338–4372  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (913)381–6800  
Hoffman Estates  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (708)882–1255  
Lenexa  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (913)541–9542  
Index–12  
MC145574  
MOTOROLA  
3/1/99  
AUTHORIZED DISTRIBUTORS – continued  
UNITED STATES – continued  
MINNESOTA – continued  
Minneapolis  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (612)938–5633  
KANSAS – continued  
Olathe  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (612)331–6350  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (913)829–9330  
MISSISSIPPI  
Jackson  
Overland Park  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (601)956–3834  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (913)649–1531  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (913)663–7900  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (913)677–0727  
MISSOURI  
Earth City  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (314)770–6300  
KENTUCKY  
Louisville  
St. Louis  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (314)240–9405  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (502)452–2293  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (314)567–6888  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (314)469–6805  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (314)542–9922  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (314)991–0400  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (502)423–0280  
LOUISIANA  
New Orleans  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (504)466–7575  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (504)838–9771  
NEBRASKA  
Omaha  
MARYLAND  
Baltimore  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (402)697–0038  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (402)592–2423  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (410)312–0810  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (410)312–0833  
NEVADA  
Las Vegas  
Columbia  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (702)258–1087  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (301)596–7800  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (702)765–7117  
Arrow Zeus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (410)309–1541  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (410)290–0600  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (410)720–3400  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (410)290–3746  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (410)312–4844  
NEW JERSEY  
Bridgewater  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (908)575–9490  
East Brunswick  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (908)613–0828  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (732)937–6600  
Hanover  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (410)712–6922  
Fairfield  
MASSACHUSETTS  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (201)331–1133  
Bedford  
Marlton  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (781)271–9953  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (609)596–8000  
Boston  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (609)988–1500  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (609)596–4080  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (617)255–0361  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (508)658–0900  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (508)779–3111  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–800–4NEWARK  
Mt. Laurel  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (609)222–6400  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (609)439–9110  
Bolton  
Oradell  
Future Corporate . . . . . . . . . . . . . . . . . . . . . . . . . . (978)779–3000  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (201)261–3200  
Burlington  
Pinebrook  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (617)229–9100  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (201)227–7880  
Lowell  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (973)882–8358  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (978)551–4300  
Parsippany  
Peabody  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (201)299–0400  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (508)538–2401  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (201)515–1641  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (508)532–3701  
NEW MEXICO  
Albuquerque  
Wilmington  
Arrow Zeus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (978)658–4776  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (505)266–7565  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (505)293–5119  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (505)828–1878  
Worchester  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (508)229–2200  
MICHIGAN  
Detroit  
NEW YORK  
Albany  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (313)416–9300  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (518)489–1963  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (313)513–0015  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (616)698–6800  
Grand Rapids  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (616)365–9960  
Buffalo  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (716)631–2311  
Great Neck  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (516)487–5211  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (616)954–6700  
Hauppauge  
Livonia  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (516)234–0485  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (810)455–0850  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (516)231–1000  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (516)348–3700  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (516)234–4000  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (516)434–7400  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (516)567–4200  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (516)724–9580  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (516)231–7850  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (313)261–5270  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (313)416–5800  
Novi  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (248)374–9953  
Saginaw  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (517)799–0480  
Troy  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (248)583–2899  
Henrietta  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (716)334–5970  
MINNESOTA  
Bloomington  
Konkoma  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . (612)853–2280  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (516)737–0600  
Burnsville  
Pittsford  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (612)882–7630  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (716)381–4244  
Eden Prairie  
Poughkeepsie  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (914)452–1470  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (612)941–5280  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (612)947–0909  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (612)944–2200  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (612)881–2600  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (914)298–2810  
Purchase  
Arrow Zeus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (914)701–7400  
MOTOROLA  
MC145574  
Index–13  
NEW YORK – continued  
Columbus  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (614)785–1270  
Rochester  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (716)292–1670  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (614)326–0352  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (716)427–0300  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (716)387–9550  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (716)387–9600  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (716)272–2740  
Dayton  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (513)427–6090  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (513)426–0090  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (513)439–6735  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (937)294–8980  
Mayfield Heights  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (216)449–6996  
Syracuse  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (315)446–7411  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (315)451–4405  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (315)451–2371  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (315)457–4873  
Miamisburg  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (937)436–9953  
Solon  
NORTH CAROLINA  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (216)248–3990  
Charlotte  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (216)498–1100  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (440)248–9996  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (704)525–0300  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (704)548–9503  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (704)547–1107  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (704)535–5650  
Toledo  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (419)866–0404  
Worthington  
Greensboro  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (614)888–3313  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (910)294–2142  
OKLAHOMA  
Morrisville  
Oklahoma City  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (919)469–1502  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (405)943–3700  
Raleigh  
Tulsa  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (919)876–5845  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (918)250–4505  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (919)876–3132  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (919)876–0088  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (919)790–7111  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (919)872–0712  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (918)492–1500  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (918)459–6000  
OREGON  
Beaverton  
OHIO  
Centerville  
Arrow/Almac Electronics Corp. . . . . . . . . . . . . . . (503)629–8090  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (503)645–9454  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (503)526–6200  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (513)435–5563  
Cincinnati  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (513)771–6990  
Portland  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (503)626–9921  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (513)942–8700  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (503)297–5020  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (503)297–1984  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (503)646–1670  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (503)598–9953  
Cleveland  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (216)831–4900  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (216)446–0061  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (216)391–9330  
Index–14  
MC145574  
MOTOROLA  
3/1/99  
AUTHORIZED DISTRIBUTORS – continued  
UNITED STATES – continued  
UTAH  
Draper  
PENNSYLVANIA  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (801)523–2335  
Salt Lake City  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (801)261–5244  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (801)973–6913  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (801)467–9696  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (801)467–4448  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (801)266–2022  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (801)261–5660  
Allentown  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (610)434–7171  
Chadds Ford  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (610)388–8455  
Coatesville  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (610)383–9536  
Ft. Washington  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (215)654–1434  
Harrisburg  
West Valley City  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (801)974–9953  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (717)540–7101  
Philadelphia  
VIRGINIA  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (609)234–7769  
Herndon  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (703)707–9010  
Pittsburgh  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (412)931–2774  
Richmond  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (412)963–6807  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (412)788–4790  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (804)282–5671  
Springfield  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (703)644–9515  
SOUTH CAROLINA  
Greenville  
Virginia Beach  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (757)363–8662  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (864)288–8835  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (864)288–9610  
WASHINGTON  
Bellevue  
TENNESSEE  
Knoxville  
Almac Electronics Corp. . . . . . . . . . . . . . . . . . . . (206)643–9992  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (206)454–2371  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (423)588–6493  
Memphis  
Bothell  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (901)396–7970  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (206)489–3400  
Kirkland  
TEXAS  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (425)814–6230  
Austin  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (512)219–7171  
Redmond  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (206)882–7000  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (512)835–4180  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (512)502–0991  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (512)346–6426  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (512)219–3700  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (512)338–0287  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (512)346–9762  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (512)833–9953  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (425)881–1150  
Seattle  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (206)251–0240  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (206)485–6616  
Spokane  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (509)327–1935  
WISCONSIN  
Brookfield  
Benbrook  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (817)249–0442  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (414)792–0150  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (414)879–0244  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (414)879–0434  
Brownsville  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (210)548–1129  
Carrollton  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (972)380–6464  
Madison  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (608)278–0177  
Arrow Zeus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (972)380–4330  
Milwaukee  
Dallas  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (414)796–1280  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (214)341–8444  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (414)792–9778  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (972)231–7195  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (972)437–2437  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (214)553–4300  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (972)458–2528  
New Berlin  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (414)780–7200  
Wauwatosa  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (414)453–9100  
El Paso  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (915)779–6294  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (915)577–9531  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (915)772–6367  
Ft. Worth  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (817)595–3500  
Houston  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (281)446–8005  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (281)647–6868  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (713)952–7088  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (713)785–1155  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (713)781–6100  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (281)894–9334  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (713)784–9953  
Richardson  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (972)479–9215  
Wyle Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (972)235–9953  
San Antonio  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (210)738–3330  
MOTOROLA  
MC145574  
Index–15  
CANADA  
ONTARIO  
Kanata  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (613)592–6088  
ALBERTA  
Calgary  
London  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (519)685–4280  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (403)291–5333  
Mississauga  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (403)250–5550  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (800)663–5500  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (800)463–9275  
PENSTOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (905)403–0724  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (905)670–2888  
Ottawa  
Edmonton  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (613)228–1964  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (403)438–5888  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (613)226–6903  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (613)820–8244  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (613)727–1800  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (613)226–1700  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (403)438–2858  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (800)663–5500  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (800)463–9275  
Saskatchewan  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (800)663–5500  
Toronto  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (905)670–7769  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (905)612–9888  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (905)612–9200  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (905)564–6060  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (905)670–2888  
BRITISH COLUMBIA  
Vancouver  
Allied Electronics, Inc. . . . . . . . . . . . . . . . . . . . . . (604)420–9691  
QUEBEC  
Montreal  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (604)421–2333  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (604)654–1050  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (604)294–1166  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (604)420–4101  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (800)463–9275  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (514)421–7411  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (514)694–8157  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (514)694–7710  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (514)335–1000  
MANITOBA  
Mt. Royal  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (514)738–4488  
Winnipeg  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (204)786–3075  
Quebec City  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (204)944–1446  
Hamilton/Hallmark . . . . . . . . . . . . . . . . . . . . . . . . (800)663–5500  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (800)463–9275  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (418)687–4231  
FAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (418)877–1414  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (418)877–6666  
Index–16  
MC145574  
MOTOROLA  
3/1/99  
INTERNATIONAL DISTRIBUTORS  
ARGENTINA  
GREECE  
Electrocomponentes . . . . . . . . . . . . . . . . . . . . . (5–41) 375–3366  
Elko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5–41) 372–1101  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . . . (30) 13414300  
HONG KONG  
Avnet WKK Components Ltd. . . . . . . . . . . . . . . . . . . (852)2 357–8888  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (65) 788–0200  
Future Advanced Electronics Ltd. . . . . . . . . . . . . . . . (852)2 305–3633  
Nanco Electronics Supply Ltd. . . . . . . . . . . . . . . . . . (852)2 333–5121  
Qing Cheng Enterprises Ltd. . . . . . . . . . . . . . . (852)2 493–4202  
AUSTRALIA  
Avnet VSI Electronics (Aust.) . . . . . . . . . . . . . . . . . . (61)2 9878–1299  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (61)2 9645–8888  
Veltek Australia Pty. Ltd. . . . . . . . . . . . . . . . . . (61)3 9574–9300  
AUSTRIA  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . . . (43) 189152–0  
HUNGARY  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (49) 8961 393939  
SEI/Elbatex GmbH . . . . . . . . . . . . . . . . . . . . . . . . . (43) 1 866420  
Spoerle Electronic . . . . . . . . . . . . . . . . . . . . . . . . . . (43) 1 360460  
EBV Elektronik KFT . . . . . . . . . . . . . . . . . . . . . . (36) 1 4313 495  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . (36) 1 2240 510  
Macro Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . (36) 1 2030 277  
SEI/Elbatex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (36) 1 1409 194  
Spoerle Electronic . . . . . . . . . . . . . . . . . . . . . . . . (36) 1 1294 202  
BELGIUM  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . (32) 2 716 0010  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (32) 3 227 3647  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . (32) 3 780 3001  
SEI/Belgium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (32) 2 460 0747  
Spoerle Electronic . . . . . . . . . . . . . . . . . . . . . . . . (32) 2 725 4660  
INDIA  
Max India Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . 0091 11 625–0250  
INDONESIA  
P.T. Ometraco . . . . . . . . . . . . . . . . . . . . . . . . . . (62) 21 619–6166  
BRAZIL  
IRELAND  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5511) 445–7400  
Arrow Electronics . . . . . . . . . . . . . . . . . . . . . . . . (353) 14595540  
Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (019) 235–1511  
Intertek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (011) 266–2922  
Karimex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (011) 524–2366  
Masktrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (011) 3361–2766  
Panamericana . . . . . . . . . . . . . . . . . . . . . . . . . . . . (011) 223–0222  
Siletek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (011) 536–4401  
Tec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (011) 5505–2046  
Teleradio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (011) 574–0788  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . (353) 14564034  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (353) 18309277  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (353) 6541330  
Macro Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . (353) 16766904  
ISRAEL  
Future Israel Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . (972) 9 9586555  
ITALY  
Avnet EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (39) 02 381901  
BULGARIA  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . (39) 02 66096290  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (39) 02 660941  
Silverstar LTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . (39) 02 661251  
Macro Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (359) 2708140  
CHINA  
Arrow Asia/Pac Ltd . . . . . . . . . . . . . . . . . . . . . . (852)2 484–2113  
JAPAN  
Avnet WKK Components Ltd. . . . . . . . . . . . . . . . . . . (852)2 357–8888  
China El. App. Corp. Beijing . . . . . . . . . . . . . . . . . (86)10 6828–9951  
Future Advanced Electronics Ltd. . . . . . . . . . . . . . . . (852)2 305–3633  
Nanco Electronics Supply Ltd. . . . . . . . . . . . . . . (852)2 765–3025  
Qing Cheng Enterprises Ltd. . . . . . . . . . . . . . . . (852)2 493–4202  
CZECH REPUBLIC  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . (420) 2 90022101  
Spoerle Electronic . . . . . . . . . . . . . . . . . . . . . . . (420) 2 71737173  
SEI/Elbatex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (420) 2 4763707  
Macro Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . (420) 2 3412182  
AMSC Co., Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . 81–422–54–6800  
Fuji Electronics Co., Ltd. . . . . . . . . . . . . . . . . . 81–3–3814–1411  
Marubun Corporation . . . . . . . . . . . . . . . . . . . . 81–3–3639–8951  
OMRON Corporation . . . . . . . . . . . . . . . . . . . . 81–3–3779–9053  
Tokyo Electron Device Ltd. . . . . . . . . . . . . . . . 81–45–474–7030  
KOREA  
Future Electronics Korea . . . . . . . . . . . . . . . . . . 82–2–555–6736  
Jung Kwang Semiconductors Ltd. . . . . . . . . . . . . . . . 82–2–742–6681  
Liteon Korea Ltd . . . . . . . . . . . . . . . . . . . . . . . . . 82–2–650–9700  
Nasco Co. Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . 82–2–868–4988  
Sekyung Electronics . . . . . . . . . . . . . . . . . . . . . . 82–2–514–5614  
DENMARK  
Arrow Denmark A/S . . . . . . . . . . . . . . . . . . . . . . . (45) 44 508200  
LATVIA  
A/S Avnet EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . (45) 44 880800  
EBV Elektronik – Soeborg . . . . . . . . . . . . . . . . . . . (45) 39690511  
EBV Elektronik – Abyhoj . . . . . . . . . . . . . . . . . . . . (45) 86250466  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . (45) 961 00 961  
Avnet Baltronic Ltd. . . . . . . . . . . . . . . . . . . . . . . . . (371) 8821118  
Macro Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (371) 7313195  
LITHUANIA  
Macro Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (370) 7764937  
ESTONIA  
MALAYSIA  
Arrow Field Eesti . . . . . . . . . . . . . . . . . . . . . . . . . . . (372) 6503288  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (60) 3 773–8000  
Avnet Baltronic . . . . . . . . . . . . . . . . . . . . . . . . . . . . (372) 6397000  
Strong Electronics . . . . . . . . . . . . . . . . . . . . . . . . (60) 4 656–3768  
Ultro Technologies Pte. Ltd. . . . . . . . . . . . . . . . . . (65) 545–7811  
FINLAND  
Arrow Finland . . . . . . . . . . . . . . . . . . . . . . . . . . . . (358) 9 476660  
MEXICO  
Avnet Nortek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (358) 9 613181  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . (358) 9 8557730  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . (358) 9 345 5400  
Avnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3) 632–0182  
Dicopel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5) 705–7422  
Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3) 122–0043  
Semiconductores Profesionales . . . . . . . . . . . . . . . . . . . . (5) 658–6011  
Steren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5) 325–0925  
FRANCE  
Arrow Electronique . . . . . . . . . . . . . . . . . . . . . (33) 1 49 78 49 78  
Avnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (33) 1 49 65 27 00  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . (33) 1 40963000  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (33) 474 659466  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . (33) 1 69821111  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (33) 1 30954060  
Sonepar Electronique . . . . . . . . . . . . . . . . . . . (33) 1 69 19 89 00  
NETHERLANDS  
HOLLAND  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . (31) 3465 83010  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (31) 30 241 2323  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . (31) 76 544 4888  
SEI/Benelux B.V. . . . . . . . . . . . . . . . . . . . . . . . . . (31) 7657 22500  
Spoerle Electronics –  
GERMANY  
Avnet EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (49) 89 4511001  
Nieuwegen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (31) 3060 91234  
Spoerle Electronics –  
Veldhoven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (31) 4025 45430  
EBV Elektronik GmbH . . . . . . . . . . . . . . . . . . . . (49) 89 99114–0  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (49) 89 61 393939  
Future Electronics GmbH . . . . . . . . . . . . . . . . . (49) 89–957 270  
SEI/Jermyn GmbH . . . . . . . . . . . . . . . . . . . . . . . (49) 6431–5080  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (49)2154–70011  
Sasco Semiconductor . . . . . . . . . . . . . . . . . . . . . . (49) 89–46110  
Spoerle Electronic . . . . . . . . . . . . . . . . . . . . . . . (49) 6103–304–0  
NEW ZEALAND  
Arrow Components NZ Ltd . . . . . . . . . . . . . . . . (64)4 570–2260  
Avnet Pacific Ltd . . . . . . . . . . . . . . . . . . . . . . . . . (64)9 636–7801  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (64)9 357–0646  
MOTOROLA  
MC145574  
Index–17  
NORWAY  
S. AFRICA  
Arrow Tahonic A/S . . . . . . . . . . . . . . . . . . . . . . . . (47) 2237 8440  
Avnet–ASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (27) 11 4442333  
A/S Avnet EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . (47) 6677 3600  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . . (47) 2267 1780  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . (47) 2290 5800  
Reutech Components . . . . . . . . . . . . . . . . . . . . (27) 11 3972992  
SPAIN  
Amitron Arrow . . . . . . . . . . . . . . . . . . . . . . . . . . (34) 91 304 3040  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . (34) 91 804 3256  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (44) 113 231 0447  
SEI/Selco S.A. . . . . . . . . . . . . . . . . . . . . . . . . . . . (34) 1 637 10 11  
PHILIPPINES  
Alexan Commercial . . . . . . . . . . . . . . . . . . . . . . (63) 2241–9493  
Ultro Technologies Pte. Ltd . . . . . . . . . . . . . . . . . . (65) 545–7811  
POLAND  
SWEDEN  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . (48) 713 422944  
Arrow–Th:s AB . . . . . . . . . . . . . . . . . . . . . . . . . . (46) 8 56265500  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . (48) 22 61 89202  
Macro Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (48) 22 224337  
SEI/Elbatex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (48) 22 6217122  
Spoerle Electronic . . . . . . . . . . . . . . . . . . . . . . . . (48) 22 6465227  
Avnet EMG AB . . . . . . . . . . . . . . . . . . . . . . . . . . (46) 8 629 14 00  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . . (46) 405 92100  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (46) 8 730 5000  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . (46) 8 441 5470  
PORTUGAL  
SWITZERLAND  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . . (41) 1 7456161  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (41) 1204 6464  
SEI/Elbatex AG . . . . . . . . . . . . . . . . . . . . . . . . . . (41) 56 4375111  
Spoerle Electronic . . . . . . . . . . . . . . . . . . . . . . . . . (41) 1 8746262  
Amitron Arrow . . . . . . . . . . . . . . . . . . . . . . . . . . . (35) 11471 4182  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (44) 113289 0040  
SEI/Selco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (35) 12973 8203  
ROMANIA  
Macro Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (401) 6343129  
TAIWAN  
RUSSIA  
Avnet–Mercuries Co., Ltd . . . . . . . . . . . . . . . . (886)2 516–7303  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . . (7) 095 9761176  
Solomon Technology Corp. . . . . . . . . . . . . . . . (886)2 788–8989  
Strong Electronics Co. Ltd. . . . . . . . . . . . . . . . (886)2 917–9917  
Macro Group – Moscow . . . . . . . . . . . . . . . . . . (7) 095 30600266  
Macro Group – St. Petersburg . . . . . . . . . . . . . . . . . . (7) 81 25311476  
THAILAND  
SCOTLAND  
Sahapiphat Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . (662) 237–9474  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . (44) 141 4202070  
Ultro Technologies Pte. Ltd. . . . . . . . . . . . . . . . . . (65) 540–8328  
Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (44) 141 9413999  
TURKEY  
SINGAPORE  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . (90) 216 4631352  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (65) 788–0200  
UNITED KINGDOM  
Arrow Electronics (UK) Ltd . . . . . . . . . . . . . . . (44) 1 234 270027  
Future Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . (65) 479–1300  
Strong Pte. Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . . (65) 276–3996  
Uraco Technologies Pte Ltd. . . . . . . . . . . . . . . . . . (65) 545–7811  
Avnet EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . (44) 1 438 788300  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . (44) 1 628 783688  
Farnell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (44) 1 132 636311  
Future Electronics Ltd. . . . . . . . . . . . . . . . . . . (44) 1 753 763000  
Macro Group . . . . . . . . . . . . . . . . . . . . . . . . . . (44) 1 628 606000  
Newark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (44) 1 420 543333  
SLOVAKIA  
Macro Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (42) 89634181  
SEI/Elbatex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (42) 17295007  
SLOVENIA  
EBV Elektronik . . . . . . . . . . . . . . . . . . . . . . . . . (386) 611 330216  
SEI/Elbatex . . . . . . . . . . . . . . . . . . . . . . . . . . . . (386) 611 597198  
Index–18  
MC145574  
MOTOROLA  
3/1/99  
MOTOROLA WORLDWIDE SALES OFFICES  
UNITED STATES  
ALABAMA  
CANADA  
ALBERTA  
Calgary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (403)216–2190  
Huntsville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (256)464–6800  
BRITISH COLUMBIA  
Vancouver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (604)606–8502  
ALASKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (800)635–8291  
CALIFORNIA  
Calabasas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (818)878–6800  
Irvine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (949)753–7360  
Los Angeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (818)878–6800  
San Diego . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (619)541–2163  
Sunnyvale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (408)749–0510  
ONTARIO  
Ottawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (613)226–3491  
Mississauga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (905)501–3500  
QUEBEC  
Montreal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (514)333–3300  
COLORADO  
INTERNATIONAL  
Denver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (303)337–3434  
AUSTRALIA  
CONNECTICUT  
Melbourne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (61–3)9887 0711  
Wallingford . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (203)949–4100  
Sydney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (61–2)9437 8944  
FLORIDA  
BRAZIL  
Clearwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (813)524–4177  
Sao Paulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55(011)3030–5244  
Maitland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (407)628–2636  
CHINA  
GEORGIA  
Beijing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86–10–65642288  
Atlanta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (770)729–7100  
Guangzhou . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86–20–87537888  
Shanghai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86–21–63747668  
Tianjin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86–22–25325050  
CZECH REPUBLIC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (420) 2 21852222  
IDAHO  
Boise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (208)323–9413  
ILLINOIS  
Chicago/Schaumburg . . . . . . . . . . . . . . . . . . . . . . (847)413–2500  
INDIANA  
FINLAND  
Indianapolis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (317)571–0400  
Helsinki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (358) 9 6866 880  
Kokomo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (765)455–5100  
Direct Sales Lines . . . . . . . . . . . . . . . . . . . . . . (358) 9 6866 8844  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (358) 9 6866 8845  
MARYLAND  
Columbia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (410)381–1570  
FRANCE  
MASSACHUSETTS  
Marlborough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (508)357–8207  
Woburn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (781)932–9700  
Paris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33134 635900  
GERMANY  
Langenhagen/Hanover . . . . . . . . . . . . . . . . . . . . 49(511)786880  
MICHIGAN  
Munich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 89 92103–0  
Nuremberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 911 96–3190  
Sindelfingen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7031 79 710  
Wiesbaden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 611 973050  
HONG KONG  
Kwai Fong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852–2–610–6888  
Detroit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (248)347–6800  
MINNESOTA  
Minnetonka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (612)932–1500  
MISSOURI  
St. Louis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (314)275–7380  
NEW JERSEY  
Fairfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (973)808–2400  
Tai Po . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852–2–666–8333  
HUNGARY  
NEW YORK  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (36) 1 250 83 29  
Fairport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (716)425–4000  
INDIA  
Fishkill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (914)896–0511  
Hauppauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (516)361–7000  
Bangalore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91–80–5598615  
ISRAEL  
NORTH CAROLINA  
Raleigh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (919)870–4355  
Herzlia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972–9–9522333  
ITALY  
OHIO  
Milan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39(2)82201  
Cleveland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (440)349–3100  
JAPAN  
Dayton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (937)438–6800  
Kyusyu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81–92–725–7583  
OREGON  
Gotanda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81–3–5487–8311  
Nagoya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81–52–232–3500  
Osaka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81–6–305–1801  
Sendai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81–22–268–4333  
Takamatsu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81–878–37–9972  
Tokyo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81–3–3440–3311  
Portland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (503)641–3681  
PENNSYLVANIA  
Colmar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (215)997–1020  
Philadelphia/Horsham . . . . . . . . . . . . . . . . . . . . . (215)957–4100  
TENNESSEE  
Knoxville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (423)584–4841  
KOREA  
TEXAS  
Pusan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82(51)462–2977  
Austin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (512)502–2100  
Seoul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82–2–3440–7200  
Houston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (281)251–0006  
Plano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (972)516–5100  
MALAYSIA  
Penang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60(4)228–2514  
WASHINGTON  
MEXICO  
Bellevue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (425)454–4160  
Chihuahua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52(14)39–3120  
Seattle (toll free) . . . . . . . . . . . . . . . . . . . . . . . . . . (206)622–9960  
Mexico City . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52(5)282–0230  
Guadalajara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52(36)78–0750  
Zapopan Jalisco . . . . . . . . . . . . . . . . . . . . . . . . . . 52(36)78–0750  
Marketing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52(36)21–2023  
Customer Service . . . . . . . . . . . . . . . . . . . . . . . . 52(36)669–9160  
WISCONSIN  
Milwaukee/Brookfield . . . . . . . . . . . . . . . . . . . . . . (414)792–0122  
Field Applications Engineering Available  
Through All Sales Offices  
NETHERLANDS  
Best . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (31)4993 612 11  
MOTOROLA  
MC145574  
Index–19  
PHILIPPINES  
NORTH AMERICA  
FULL LINE REPRESENTATIVES  
Manila . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (63)2 807–8455  
Paranaque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (63)2 824–4551  
Salcedo Village . . . . . . . . . . . . . . . . . . . . . . . . . . (63)2 810–0762  
ARIZONA, Tempe  
S&S Technologies, Inc. . . . . . . . . . . . . . . . . . . . . (602)414–1100  
CALIFORNIA, Loomis  
Galena Technology Group . . . . . . . . . . . . . . . . . . (916)652–0268  
INDIANA, Indianapolis  
Bailey’s Electronics . . . . . . . . . . . . . . . . . . . . . . . . (317)848–9958  
NEVADA, Clark County  
S&S Technologies, Inc. . . . . . . . . . . . . . . . . . . . . (602)414–1100  
NEVADA, Reno  
Galena Tech. Group . . . . . . . . . . . . . . . . . . . . . . . (702)746–0642  
NEW MEXICO, Albuquerque  
S&S Technologies, Inc. . . . . . . . . . . . . . . . . . . . . (602)414–1100  
TEXAS, El Paso  
S&S Technologies, Inc. . . . . . . . . . . . . . . . . . . . . (915)833–5461  
UTAH, Salt Lake City  
Utah Comp. Sales, Inc. . . . . . . . . . . . . . . . . . . . . (801)572–4010  
POLAND  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (48) 34 27 55 75  
PUERTO RICO  
Rio Piedras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (787)282–2300  
RUSSIA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7) 095 929 90 25  
SCOTLAND  
East Kilbride . . . . . . . . . . . . . . . . . . . . . . . . . . . . (44)1355 565447  
SINGAPORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . (65)4818188  
SPAIN  
Madrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34(1)457–8204  
or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34(1)457–8254  
SWEDEN  
Solna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46(8)734–8800  
SWITZERLAND  
Geneva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41(22)799 11 11  
Zurich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41(1)730–4074  
WASHINGTON, Spokane  
Doug Kenley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (509)924–2322  
TAIWAN  
Taipei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886(2)27058000  
NORTH AMERICA  
HYBRID/MCM COMPONENT SUPPLIERS  
THAILAND  
Bangkok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66(2)254–4910  
Chip Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (407)298–7100  
Elmo Semiconductor . . . . . . . . . . . . . . . . . . . . . . (818)768–7400  
Minco Technology Labs Inc. . . . . . . . . . . . . . . . . (512)834–2022  
Semi Dice Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (310)594–4631  
TURKEY  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (90) 212 274 66 48  
UNITED KINGDOM  
Aylesbury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1 (296)395252  
Index–20  
MC145574  
MOTOROLA  
This page intentionally left blank.  
How to reach us:  
USA/EUROPE/Locations Not Listed:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
JAPAN:  
Motorola Japan Ltd.: SPD, Strategic Planning Office, 141,  
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan  
81-3-5487-8488  
Mfax: Motorola Fax Back System  
RMFAX0@email.sps.mot.com  
Touchtone 1-602-244-6609  
– US & Canada ONLY 1-800-774-1848  
– http://sps.motorola.com/mfax/  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
Home Page: http://motorola.com/sps/  
Customer Focus Center: 1-800-521-6274  
Mfax is a trademark of Motorola, Inc.  
For the most current information regarding this product, contact Motorola on the World Wide Web at  
http://www.motorola.com/isdn-solutions  
MC145574/D  
m
mit Q  
Search  
Motorola : Semiconductors : Networking : Products : Timing, Interconnect, Access and Datapath : Access and Datapath : ISDN : MC145574A  
MC145574A : ISDN S/T-Interface  
Page Contents  
Transceiver II  
Features  
Parametrics  
Documentation  
Development  
Tools/Boards  
Orderable Parts  
The MC145574A second-generation S/T-Interface Transceiver provides an economical VLSI  
Layer 1 interface for the transportation of two 64 kbps B channels and one 16 kbps D channel  
between the network termination (NT) and terminal equipment (TE). The MC145574A  
conforms to CCITT I.430, ANSI T1.605, and ETSI ETS 300 012 specifications.  
The device provides the modulation/line-drive and demodulation/line-receive functions  
required of the interface. In addition, it provides activation/deactivation, error monitoring,  
framing, bit, and octet timing. The MC145574A provides the control signals for the interface  
to the Layer 2 devices. Complete multiframe capability is provided.  
Other Info  
FAQs  
Literature Services  
68K/ColdFire®  
Networking  
The Interchip Digital Link (IDL2) is supported for the exchange of 2B+D channel information  
between ISDN components and systems. Transceiver operation is programmed through the  
industry standard Serial Control Port (SCP). As an alternative to IDL+SCP combination, a  
General Circuit Interface (GCI) is provided.  
3rd Party Design Help  
Link  
Block Diagram  
MC145574A Features  
Fully-Activated Power Consumption of 90 mW  
6-Channel Timeslot Assigner  
Interchip Digital Link-2 (IDL2)  
General Circuit Interface (GCI)  
Compliant with ANSI T1.605-1991, ITU-TI.430, and ETSI ETS 300 012  
Control, Status, and Maintenance Functions Accessible Through Serial Control Port (SCP)  
Pin-Selectable Network Termination (NT) or Terminal Equipment (TE) Operating Modes  
Supports 2.5:1 Transformers for Transmit and Receive  
Complete Multiframing Capability (SC1 - SC5 and Q-Channel)  
Optional B-Channel Idle, Invert, or Exchange  
Supports Full Range of S/T and IDL Loopbacks  
Transmit Power Down, Sleep, and Absolute Minimum Power Modes  
Crystal or External Clock Input Modes  
Support for NT Star and NT Terminal Modes  
Supports TE Slave-Slave Mode  
Advantages  
Minimal Power Requirements Ease Power Management and System Design  
On-Chip Features Mean Fewer External Components and Lower System Cost  
Versatile Digital Interface Enhances Design Flexibility  
Superior Transmission Performance Results in Increased System Quality and Performance  
Evaluation Kit and Comprehensive Applications Support from Motorola  
[top]  
MC145574A Parametrics  
Description  
Package  
S/T-Interface Transceiver 28-pin SOIC, 32-pin LQFP  
[top]  
MC145574A Documentation  
Errata  
ID  
Name  
Format Size K Rev # Date Last Modified Order Availability  
MC145574 G20R1 Errata Sheet Device and  
document errata  
MC145574DE/D  
pdf  
72  
5
6/28/1999  
-
Reports or Presentations  
ID  
Name  
Format Size K Rev # Date Last Modified Order Availability  
pdf 61 7/30/2002  
Codec, Communication Processor, and ISDN  
Orderable Parts  
ORDPARTS  
-
-
Selector Guide  
ID  
Name  
Format Size K Rev # Date Last Modified Order Availability  
Timing and Interconnect Solutions SPS Sales  
Guide  
SG1012/D  
pdf  
pdf  
81  
62  
0
0
9/26/2002  
6/24/2002  
Application Selector Guide Index and Cross-  
Reference.  
SG2000CR/D  
Application Summary - Virtual Private Network  
(VPN) Router - Network router for small office  
SG2103/D  
home office applications, providing a gateway and pdf  
firewall for dial-up, cable, or asymmetrical digital  
subscriber line (ADSL) internet connections.  
74  
0
6/24/2002  
Users Guide  
ID  
Name  
Format Size K Rev # Date Last Modified Order Availability  
MC1455574 ISDN S/T-Interface  
Transceiver  
MC145574/D  
pdf  
658  
6
1/10/1999  
MC145574 ISDN S/T Transceiver  
Manual, Rev. 6, Downloadable by  
Sections  
MC145574_CHAPTERS  
html  
4
6
1/10/1999  
-
[top]  
MC145574A Development Tools/Boards  
ID  
Name  
ISDN S/T-Interface Transceiver Evaluation Kit  
Vendor ID  
MOTOROLA  
Order Availability  
-
MC145574EVK  
[top]  
Orderable Parts Information  
Budgetary  
Price  
QTY 1000+  
($US)  
Order  
Availability  
Life Cycle Description (code)  
PartNumber  
Package Info  
Remarks  
-
PRODUCT STABLE  
GROWTH/MATURITY(3)  
MC145574ADW  
MC145574ADWR2  
MC145574APB  
SOIC 28W  
SOIC 28W  
$3.26  
$3.32  
$3.26  
PRODUCT MATURITY/SATURATION(4) -  
LQFP 32  
7*7*1.4P0.8  
PRODUCT MATURITY/SATURATION(4) -  
LQFP 32  
7*7*1.4P0.8  
MC145574APBR2  
PRODUCT MATURITY/SATURATION(4) -  
$5.28  
[top]  
Motorola Home | Semiconductors | Login | Support | Contact Us | Site Map  
Products | Documentation | Tools | Design Resources | Applications  

相关型号:

MC145574APB

Digital SLIC, 1-Func, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, TQFP-32
MOTOROLA

MC145574APBR2

Digital SLIC, 1-Func, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, TQFP-32
MOTOROLA

MC145574DW

DATACOM, ISDN CONTROLLER, PDSO28, 0.600 INCH, PLASTIC, SOIC-28
MOTOROLA

MC145574DWR2

DATACOM, ISDN CONTROLLER, PDSO28, PLASTIC, SOIC-28
MOTOROLA

MC145574FTB

暂无描述
MOTOROLA

MC145574P

ISDN Controller, Basic, 1-Func, CMOS, PDIP28, PLASTIC, DIP-28
MOTOROLA

MC145574PB

ISDN Controller, Basic, 1-Func, CMOS, PQFP32, 0.700 X 0.700 INCH, TQFP-32
MOTOROLA

MC145576EVK

ISDN Single chip NT1 Transceiver Evaluation Kit Rev
FREESCALE

MC14557B

1-to-64 Bit Variable Length Shift Register
ONSEMI

MC14557B

1-TO-64 BIT VARIABLE LENGTH SHIFT REGISTER
MOTOROLA

MC14557BAL

Serial In Serial Out, 4000/14000/40000 Series, 64-Bit, Right Direction, Complementary Output, CMOS, CDIP16, 620-09
MOTOROLA

MC14557BALD

Serial In Serial Out, 4000/14000/40000 Series, 64-Bit, Right Direction, Complementary Output, CMOS, CDIP16, 620-09
MOTOROLA