MC1495P [MOTOROLA]

LINEAR FOUR-QUADRANT MULTIPLIER; 线性四象限乘法器
MC1495P
型号: MC1495P
厂家: MOTOROLA    MOTOROLA
描述:

LINEAR FOUR-QUADRANT MULTIPLIER
线性四象限乘法器

模拟计算功能 信号电路 光电二极管
文件: 总16页 (文件大小:336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC1495/D  
The MC1495 is designed for use where the output is a linear product of  
two input voltages. Maximum versatility is assured by allowing the user to  
select the level shift method. Typical applications include: multiply, divide*,  
square root*, mean square*, phase detector, frequency doubler, balanced  
modulator/demodulator, and electronic gain control.  
LINEAR  
FOUR-QUADRANT  
MULTIPLIER  
Wide Bandwidth  
Excellent Linearity:  
SEMICONDUCTOR  
TECHNICAL DATA  
2% max Error on X Input, 4% max Error on Y Input Over Temperature  
1% max Error on X Input, 2% max Error on Y Input at + 25°C  
Adjustable Scale Factor, K  
Excellent Temperature Stability  
Wide Input Voltage Range: ± 10 V  
±15 V Operation  
*When used with an operational amplifier.  
14  
1
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A  
(SO-14)  
MAXIMUM RATINGS (T = + 25°C, unless otherwise noted.)  
A
Rating  
Symbol  
Value  
Unit  
Applied Voltage  
V  
30  
Vdc  
14  
(V –V , V –V , V –V , V –V , V –V ,  
2
1
1
8
14 12  
1
7
1
9
9
7
1
8
1
4
1
V –V , V –V , V –V , V –V , V –V )  
12  
7
4
7
Differential Input Signal  
Maximum Bias Current  
V
V –V  
–V  
± (6+I R )  
13  
Vdc  
mA  
°C  
12  
4
9
X
P SUFFIX  
PLASTIC PACKAGE  
CASE 646  
± (6+I R )  
8
3
Y
I
I
10  
10  
3
13  
Operating Temperature Range  
Storage Temperature Range  
T
A
MC1495  
MC1495B  
0 to +70  
– 40 to +125  
T
– 65 to +150  
°C  
stg  
ORDERING INFORMATION  
Tested Operating  
Temperature Range  
Device  
Package  
MC1495D  
MC1495P  
MC1495BP  
SO–14  
T
= 0° to + 70°C  
A
Plastic DIP  
Plastic DIP  
T
= – 40° to +125°C  
A
Motorola, Inc. 1996  
Rev 0  
MC1495  
ELECTRICAL CHARACTERISTICS (+V = + 32 V , –V = –15 V, T = + 25°C, I = I = 1.0 mA, R = R = 15 k, R = 11 k, unless  
A
3
13  
X
Y
L
otherwise noted.)  
Characteristics  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
Linearity (Output Error in percent of full scale)  
5
%
T
A
= + 25°C  
–10 < V < +10 (V = ±10 V)  
E
E
±1.0  
± 2.0  
±1.0  
± 2.0  
X
Y
RX  
RY  
–10 < V < +10 (V = ±10 V)  
Y
Low  
X
T
A
= T  
to T  
High  
–10 < V < +10 (V = ±10 V)  
E
RX  
E
RY  
±1.5  
± 3.0  
± 2.0  
± 4.0  
X
Y
X
–10 < V < +10 (V = ±10 V)  
Y
Square Mode Error (Accuracy in percent of full scale after  
Offset and Scale Factor adjustment)  
5
E
SQ  
%
T
T
A
= + 25°C  
± 0.75  
±1.0  
A
= T  
to T  
Low  
High  
Scale Factor (Adjustable)  
7
K
0.1  
2R  
L
K =  
1
3
R R  
X Y  
Input Resistance (f = 20 Hz)  
R
R
30  
20  
MΩ  
inX  
inY  
Differential Output Resistance (f = 20 Hz)  
Input Bias Current  
8
6
R
300  
kΩ  
µA  
O
T
= + 25°C  
I
I
2.0  
2.0  
8.0  
12  
A
bx, by  
(I + I  
9
)
(I + I )  
4 8  
12  
I
=
T
= T  
= T  
to T  
, I  
=
bx  
A
Low  
High  
by  
2
2
Input Offset Current  
|I – I  
6
µA  
|
T = + 25°C  
A
Low  
|I |, |I  
iox ioy  
|
0.4  
0.4  
1.0  
2.0  
9
4
12  
|I – I |  
T
A
to T  
High  
8
Average Temperature Coefficient of Input Offset Current  
= T to T  
6
6
|TC  
|
nA/°C  
µA  
lio  
T
2.5  
A
Low  
Output Offset Current  
|I – I |  
High  
T
= + 25°C  
|I  
|
10  
20  
50  
100  
A
OO  
T
= T  
to T  
14  
Average Temperature Coefficient of Output Offset Current  
= T to T  
2
A
Low  
High  
6
|TC  
|
nA/°C  
IOO  
T
A
20  
Low  
Frequency Response  
3.0 dB Bandwidth, R = 11 kΩ  
High  
9,10  
BW  
(3dB)  
3.0  
80  
750  
30  
MHz  
MHz  
kHz  
kHz  
L
L
3.0 dB Bandwidth, R = 50 (Transconductance Bandwidth)  
T
BW(3dB)  
3° Relative Phase Shift Between V and V  
fφ  
fθ  
X
Y
1% Absolute Error Due to Input-Output Phase Shift  
Common Mode Input Swing  
(Either Input)  
11  
11  
12  
CMV  
Vdc  
±10.5  
±12  
Common Mode Gain  
(Either Input)  
T
= + 25°C  
A
CM  
– 50  
– 40  
– 60  
– 50  
dB  
A
T
A
= T  
to T  
Low  
High  
Common Mode Quiescent  
Output Voltage  
V
O1  
V
O2  
21  
21  
Vdc  
Differential Output Voltage Swing Capability  
Power Supply Sensitivity  
9
V
±14  
V
pk  
O
+
12  
S
S
5.0  
10  
mV/V  
Power Supply Current  
DC Power Dissipation  
12  
12  
I
6.0  
7.0  
mA  
7
P
135  
170  
mW  
D
NOTES: 1. T  
= +70°C for MC1495  
= +125°C for MC1495B  
T
= 0°C for MC1495  
= – 40°C for MC1495B  
High  
Low  
2
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
Figure 1. Multiplier Transfer Characteristic  
Figure 2. Transconductance Bandwidth  
20  
10  
10  
8.0  
6.0  
+
X
KXY  
Y
4.0  
2.0  
1
k =  
10  
0
0
– 2.0  
– 4.0  
– 6.0  
– 8.0  
–10  
–10  
V
V
X
Y
– 20  
– 30  
–10 – 8.0 – 6.0 – 4.0 – 2.0  
0
2.0  
4.0  
6.0  
8.0  
10  
1.0  
10  
100  
1000  
f, FREQUENCY (MHz)  
V
, INPUT VOLTAGE (V)  
X
Figure 3. Circuit Schematic  
+
2
14  
Output (KXY)  
1
Q5 Q6  
Q7  
Q8  
+
+
8
4
9
X Input  
Y Input  
12  
Q2  
Q3  
Q4  
Q1  
4.0 k  
4.0 k  
4.0 k  
4.0 k  
11  
10  
13  
5
6
3
500  
500  
500  
500  
500  
500  
V–  
7
This device contains 16 active transistors.  
Figure 4. Linearity (Using Null Technique)  
V+  
0.1  
= 27 k R = 7.5 k  
X
µF  
+15 V  
R
10 k  
V
Y
Y
+
3.0 k  
3.0 k  
10 k  
10 k  
40 k  
5
6
10  
11  
V
Y
10 k  
1
2
E
s
+
+
4
7
3.0 k  
V
2
3
7
10 k  
V′  
X
8
X
+
MC1495  
2
10 k  
9
8
6
8
MC1741C  
10 V  
10 k  
6
14  
V
E
MC1741C  
5
3
12  
3
7
13  
12 k  
1
33 k  
Output  
Offset  
Adjust  
5
Offset Adjust  
See Figure 13  
1
4
13 k  
4
10 k  
5.0 k  
Scale  
V–  
Factor  
Adjust  
–15 V  
0.1 µF  
NOTE: Adjust “Scale Factor Adjust” for a null in V .This schematic for  
E
illustrative purposes only, not specified for test conditions.  
3
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
Figure 5. Linearity (Using X-Y Plotter Technique)  
R
= 15 k  
6
R = 15 k  
X
Y
32 V  
To Pin  
4 or 9  
R1  
9.1 k  
5
10  
11  
0.1 µF  
4
9
1
V
Y
+
R
= 11 k  
L1  
V
Z
Y
X
MC1495  
8
2
X–Y  
Plotter  
Plotter  
Y-Input  
Plotter  
X-Input  
R
= 11 k  
L1  
V
Offset Adjust  
(See Figures 13 and 14)  
O
12  
14  
3
I
I
7
13  
3
13  
12 k  
R13 = 13.7 k  
R3  
5.0 k  
Scale  
Factor  
Adjust  
0.1 µF  
–15 V  
Figure 6. Input and Output Current  
Figure 7. Input Resistance  
+ 32 V  
R
= 15 k  
R
= 15 k  
R = 15 k R = 15 k  
Y X  
+ 32 V  
Y
X
e
= 1.0 Vrms  
20 Hz  
1
5
6
10  
11  
5
6
10  
11  
1.0 M  
1.0 M  
9.1 k  
4
9
4
9
1
2
9.1 k  
11 k  
e
1
1
I
4
I
2
e
1
MC1495  
MC1495  
8
I
e
8
9
8
5.6 k  
2
2
I
14  
14  
11 k  
e
12  
14  
12  
I
2
1.0 M  
0.1 µF  
3
7
13  
3
7
13  
I
I
= 1.0 mA  
12  
13  
1.0 M  
12 k  
12 k  
13.75 k  
+
12 k  
0.1 µF  
I
= 1.0 mA  
3
0.1 µF  
5.0 k  
5.0 k  
Scale  
Factor  
Adjust  
5.0 k  
0.1  
–15 V  
µF  
e
e
1
2
R
inX  
= R  
= R  
–2  
–15 V  
inY  
Figure 8. Output Resistance  
Figure 9. Bandwidth (R = 11 k)  
L
R
= 15 k  
R
= 15 k  
+ 32 V  
R = 15 k R = 15 k  
Y X  
+ 32 V  
Y
X
5
6
10  
11  
4
9
5
6
10  
11  
9.1 k  
11 k  
4
9
1
2
9.1 k  
11 k  
e
in  
= 1.0 Vrms  
50  
1
2
e
e
in  
2
RL = 11 k  
MC1495  
MC1495  
8
8
14  
13  
11 k  
+
12  
1.0 V  
12  
14  
3
7
13  
7
3
e
0.1 µF  
1
R13  
13.7 k  
0.1  
µF  
1.0 Vrms  
20 Hz  
12 k  
12 k  
e
o
0.1 µF  
C
< 3.0 pF  
L
13.7 k  
Scale  
Factor  
Adjust  
Scale  
Factor  
Adjust  
5.0 k  
5.0 k  
0.1  
µF  
e
1
2
–15V  
–15 V  
R
= R  
L
–2  
O
e
4
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
Figure 11. Common Mode Gain and  
Common Mode Input Swing  
Figure 10. Bandwidth (R = 50 )  
L
R
= 510  
6
R = 510  
X
+ 32 V  
+ 15 V  
15 k  
15 k  
Y
CMV  
(f = 20 Hz)  
X
5
10  
11  
5
6
10  
11  
4
9
4
9
8
1
2
1.0 k  
50  
1
2
9.1 k  
e
= 1.0 Vrms  
50  
in  
+
e
in  
11 k  
11 k  
+
50  
MC1495  
MC1495  
8
14  
13  
50  
12  
3
+
14  
12  
+
1.0 V  
50  
3
7
13  
7
0.1 µF  
CMV  
(f = 20 Hz)  
V
0.1  
V
µF  
Y
12 k  
R13  
13.7k  
O
1.0 mA  
12 k  
12 k  
1.0 mA  
K = 40  
e
o
5.0 k  
0.1µF  
0.1 µF  
Scale  
Factor  
C
L
< 3.0 pF  
O
5.0 k  
5.0 k  
A
= 20 log  
or 20 log  
CM  
CMV  
Y
Adjust  
V
O
–15V  
–15 V  
CMV  
X
Figure 13. Offset Adjust Circuit  
Figure 12. Power Supply Sensitivity  
+
V
+ 32 V  
+ 32 V (V+)  
15 k  
15 k  
10  
R
2.0 k  
5
6
11  
4
9
1
2
9.1 k  
11 k  
11 k  
Pot #1  
Pot #2  
To Pin 8  
Y Offset  
Adjust  
To Pin 12  
X Offset  
Adjust  
MC1495  
8
10 k 10 k  
2.0 k  
14  
12  
4.3 k  
3
7
13  
13.7 k  
0.1  
6.2 V  
2.0 k  
+
V
V
V
15 V 32 V  
10 k 22 k  
0.1 µF  
O2 O1  
µ
F
10 k  
R
|
(V  
– V )|  
O2  
–15 V  
O1  
V+  
2N2905A  
or Equivalent  
S+ =  
S– =  
22 k  
|∆  
(V  
– V )|  
O2  
O1  
V–  
–15 V  
(V–)  
–15 V  
Figure 14. Offset Adjust Circuit (Alternate)  
+
V
R
5.1 V  
Pot #1  
Pot #2  
To Pin 8  
Y Offset  
Adjust  
To Pin 12  
X Offset  
Adjust  
10 k  
10 k  
5.1 V  
+
V
R
15 V  
32 V  
2.0 k  
2.0 k 5.1 k  
–15 V  
5
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
Figure 15. Linearity versus Temperature  
Figure 16. Scale Factor versus Temperature  
2.0  
0.110  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.105  
0.100  
0.095  
E
K Adjusted to 0.100 at 25  
°C  
RY  
E
RX  
0.2  
0
–55  
–25  
0
25  
50  
75  
100  
125  
–55  
–25  
0
25  
50  
75  
100  
125  
T
, AMBIENT TEMPERATURE (  
°C)  
T
, AMBIENT TEMPERATURE (°C)  
A
A
Figure 17. Error Contributed by Input  
Differential Amplifier  
Figure 18. Error Contributed by  
Input Differential Amplifier  
1.0  
0.8  
0.6  
1.0  
0.8  
0.6  
V
= V  
=
±
10 V Max  
X
I
Y
V
= V  
=
±
5.0 V Max  
X
I
Y
= I = 1.0 mAdc  
= I = 1.0 mAdc  
3
13  
3
13  
0.4  
0.2  
0
0.4  
0.2  
0
6.0  
8.0  
R
10  
12  
14  
10  
12  
14  
R
16  
18  
20  
4.0  
or R (k)  
or R (k  
Y
)  
X
Y
X
Figure 19. Maximum Allowable Input Voltage versus Voltage at Pin 1 or Pin 7  
14  
12  
10  
8.0  
Minimum  
6.0  
4.0  
Recommended  
2.0  
0
0
2.0  
4.0  
6.0  
8.0  
10  
12  
14  
16  
18  
|V | or |V | (V)  
1
7
6
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
OPERATION AND APPLICATIONS INFORMATION  
Theory of Operation  
3 dB Bandwidth and Phase Shift  
The MC1495 is a monolithic, four-quadrant multiplier  
which operates on the principle of variable  
transconductance. A detailed theory of operation is covered  
in Application Note AN489, Analysis and Basic Operation of  
the MC1595. The result of this analysis is that the differential  
output current of the multiplier is given by:  
Bandwidth is primarily determined by the load resistors  
and the stray multiplier output capacitance and/or the  
operational amplifier used to level shift the output. If  
wideband operation is desired, low value load resistors  
and/or a wideband operational amplifier should be used.  
Stray output capacitance will depend to a large extent on  
circuit layout.  
Phase shift in the multiplier circuit results from two  
sources: phase shift common to both X and Y channels (due  
to the load resistor-output capacitance pole mentioned  
above) and relative phase shift between X and Y channels  
(due to differences in transadmittance in the X and Y  
channels). If the input to output phase shift is only 0.6°, the  
output product of two sine waves will exhibit a vector error of  
2V V  
R R I  
X Y 3  
X Y  
I
A
– I = I =  
B
where, I and I are the currents into Pins 14 and 2,  
A
B
respectively, and V and V are the X and Y input voltages at  
X
Y
the multiplier input terminals.  
DESIGN CONSIDERATIONS  
General  
1%. A 3° relative phase shift between V and V results in a  
X
Y
vector error of 5%.  
The MC1495 permits the designer to tailor the multiplier to  
a specific application by proper selection of external  
components. External components may be selected to  
optimize a given parameter (e.g. bandwidth) which may in  
turn restrict another parameter (e.g. maximum output voltage  
swing). Each important parameter is discussed in detail in the  
following paragraphs.  
Maximum Input Voltage  
V
, V input voltages must be such that:  
X(max) Y(max)  
V
<I  
R
Y
X(max) 13  
V (max) <I R  
3 Y  
Y
Exceeding this value will drive one side of the input amplifier  
to “cutoff” and cause nonlinear operation.  
Linearity, Output Error, E  
or E  
Current I and I  
(observing power dissipation limitation) between 0.5 mA and  
2.0 mA, approximately 1.0 mA. Then R and R can be  
determined by considering the input signal handling  
requirements.  
are chosen at a convenient value  
RX  
RY  
3
13  
Linearity error is defined as the maximum deviation of  
output voltage from a straight line transfer function. It is  
expressed as error in percent of full scale (see figure below).  
X
Y
V
O
For V  
= V  
= 10 V;  
X(max)  
Y(max)  
+10 V  
10 V  
1.0 mA  
V
R
X
= R  
>
= 10 k.  
E(max)  
Y
+10V  
or V  
2V  
V
Y
R I  
Y 3  
X
V
x
y
The equation I – I  
=
=
A
B
R
X
2V  
V
Y
X
Y
+
is derived from I – I  
A
B
For example, if the maximum deviation, V  
±100 mV and the full scale output is 10 V, then the  
, is  
E(max)  
2kT  
2kT  
qI  
(R  
+
(R  
)
I
3
)
X
qI  
3
13  
percentage error is:  
2kT  
2kT  
qI  
and R >>  
13  
.
–3  
100 x 10  
10  
with the assumption R >>  
Y
V (max)  
E
=
X
x 100 = ±1.0%.  
qI  
3
E
x 100 =  
R
V (max  
O
)
At T = +25°C and I = I = 1.0 mA,  
13  
A
3
Linearity error may be measured by either of the following  
methods:  
1.Using an X-Y plotter with the circuit shown in Figure 5,  
2kT 2kT  
=
= 52 .  
qI  
qI  
3
13  
obtain plots for X and Y similar to the one shown above.  
Therefore, with R = R = 10 kthe above assumption is  
X
Y
valid. Reference to Figure 19 will indicate limitations of  
orV duetoV andV . Exceedingtheselimits  
2.Use the circuit of Figure 4. This method nulls the level  
shifted output of the multiplier with the original input.The  
peak output of the null operational amplifier will be equal  
V
X(max)  
Y(max)  
1
7
will cause saturation or “cutoff” of the input transistors. See  
Step 4 of General Design Procedure for further details.  
to the error voltage, V  
.
E (max)  
Maximum Output Voltage Swing  
One source of linearity error can arise from large signal  
nonlinearity in the X and Y input differential amplifiers. To  
avoid introducing error from this source, the emitter  
degeneration resistors R and R must be chosen large  
The maximum output voltage swing is dependent upon the  
factors mentioned below and upon the particular circuit being  
considered.  
X
Y
enough so that nonlinear base-emitter voltage variation can  
be ignored. Figures 17 and 18 show the error expected from  
this source as a function of the values of R and R with an  
For Figure 20 the maximum output swing is dependent  
+
upon V for positive swing and upon the voltage at Pin 1 for  
negative swing. The potential at Pin 1 determines the  
X
Y
operating current of 1.0 mA in each side of the differential  
amplifiers (i.e., I = I = 1.0 mA).  
quiescent level for transistors Q , Q , Q and Q . This  
5
6
7
8
potential should be related so that negative swing at Pins 2 or  
14 does not saturate those transistors. See General Design  
Procedure for further information regarding selection of  
these potentials.  
3
13  
7
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
Figure 20. Basic Multiplier  
GENERAL DESIGN PROCEDURE  
+
V
Selection of component values is best demonstrated by  
the following example. Assume resistive dividers are used at  
the X and Y-inputs to limit the maximum multiplier input to ±  
R
R
Y
X
R
R
L
I
10  
11  
5
6
1
R
O
L
9
2
5.0 V [V = V  
] for a ± 10 V input [V = V ]  
X
Y(max)  
XY(max)  
+
+
(see Figure 21). If an overall scale factor of 1/10 is desired,  
V
V
X
12  
4
V
X
O
+
14  
V
V
(2V ) (2V )  
X Y  
XY′  
MC1495  
= 4/10 V  
V
Y
then, V  
=
=
X
O
10  
10  
8
Y
Therefore, K = 4/10 for the multiplier (excluding the divider  
network).  
V
= K V  
V
Y
I
3
13  
7
2R  
L
K =  
Step 1. The fist step is to select current I and current I  
.
3
13  
There are no restrictions on the selection of either of these  
currents except the power dissipation of the device. I and I  
I
R
R
3
X
Y 3  
R13  
R3  
3
13  
will normally be 1.0 mA or 2.0 mA. Further, I does not have  
3
to be equal to I , and there is normally no need to make  
13  
V
them different. For this example, let  
If an operational amplifier is used for level shift, as shown  
in Figure 21, the output swing (of the multiplier) is greatly  
reduced. See Section 3 for further details.  
I = I = 1.0 mA.  
3 13  
Figure 21. Multiplier with Operational Amplifier Level Shift  
– 15 V  
– 15 V  
+15 V  
0.1  
µF  
R
10 k  
R
10 k  
R1  
3.0 k  
X
Y
R0  
3.0 k  
R0  
3.0 k  
0.1  
µF  
7
10  
+
11  
5
6
7
1
4
10 k  
2
3
V
Y
+
+
4
5
V
Y
10 k  
–V  
V
Y
6
X
V
=
MC1741C  
MC1495  
O
10  
9
10 k  
14  
2
+
3
V
X
V
X
10 k  
13  
8
12  
1
I
3
20 k  
18 k  
I
13  
R13  
12 k  
R
R
L
L
5.0 k  
12 k  
Output  
Offset  
Adjust  
R3  
P
4
5.0 k  
P
3
Scale  
Factor  
Adjust  
Y Offset  
Adjust  
X Offset  
Adjust  
P
1
–10V  
–10V  
V
V
+10V  
+10V  
X
Y
10 k  
P
2
2.0 k  
5.1 V  
2.0 k  
5.1 V  
–15 V  
+15 V  
10 k  
8
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
To set currents I and I to the desired value, it is only  
13  
voltage. It should also be noticed that the collector voltage of  
transistors Q and Q is at a potential which is two  
diode-drops below the voltage at Pin 1. Thus, the voltage at  
Pin 1 should be about 2.0 V higher than the maximum input  
voltage. Therefore, to handle +5.0 V at the inputs, the voltage  
3
necessary to connect a resistor between Pin 13 and ground,  
and between Pin 3 and ground. From the schematic shown in  
Figure 3, it can be seen that the resistor values necessary are  
given by:  
3
4
at Pin 1 must be at least +7.0 V. Let V = 9.0 Vdc.  
1
|V–| –0.7 V  
R13 + 500 =  
Since the current flowing into Pin 1 is always equal to 2I ,  
the voltage at Pin 1 can be set by placing a resistor (R ) from  
1
Pin 1 to the positive supply:  
3
I
13  
|V–| –0.7 V  
R3 + 500 =  
I
3
+
V –V  
1
R =  
1
2I  
3
14.3 V  
1.0 mA  
or R13 = 13.8 kΩ  
Let V– = –15 V, then R13 + 500 =  
15 V –9.0 V  
(2) (1.0 mA)  
Let V+ = 15 V, then R =  
1
Let R = 12 kΩ. Similarly, R = 13.8 kΩ, let R = 15 kΩ  
13  
3
3
However, for applications which require an accurate scale  
factor, the adjustment of R and consequently, I , offers a  
convenient method of making a final trim of the scale factor.  
R = 3.0 k.  
1
3
3
Note that the voltage at the base of transistors Q , Q , Q  
7
and Q is one diode-drop below the voltage at Pin 1. Thus, in  
8
5
6
For this reason, as shown in Figure 21, resistor R is shown  
3
order that these transistors stay active, the voltage at Pins 2  
and 14 should be approximately halfway between the voltage  
at Pin 1 and the positive supply voltage. For this example, the  
voltage at Pins 2 and 14 should be approximately 11 V.  
Step 5. For dc applications, such as the multiply, divide  
and square-root functions, it is usually desirable to convert  
the differential output to a single-ended output voltage  
referenced to ground. The circuit shown in Figure 22  
performs this function. It can be shown that the output voltage  
of this circuit is given by:  
as a fixed resistor in series with a potentiometer.  
For applications not requiring an exact scale factor  
(balanced modulator, frequency doubler, AGC amplifier, etc.)  
Pins 3 and 13 can be connected together and a single  
resistor from Pin 3 to ground can be used. In this case, the  
single resistor would have a value of 1/2 the above calculated  
value for R .  
13  
Step 2. The next step is to select R and R . To insure that  
X
Y
the input transistors will always be active, the following  
conditions should be met:  
V
V
Y
R
Y
V
= (I –I ) R  
2 14 L  
X
O
< I  
,
< I  
3
13  
R
2I  
I
2V V  
X Y  
I R R  
3 X Y  
X
X Y  
And since I –I = I –I  
=
=
A
B
2
14  
I
3
A good rule of thumb is to make I R 1.5 V  
.ThelargertheI R andI R productin  
X(max)  
relation to V and V respectively, the more accurate the  
and  
Y(max)  
3 Y  
3 Y 13 X  
I
R 1.5V  
13 X  
2R V V ′  
L
X
Y
then V  
=
where, V V is the voltage at  
O
X
Y
Y
X
4R  
R I  
X 3  
X
multiplier will be (see Figures 17 and 18).  
the input to the voltage dividers.  
Let R = R  
then I R  
3 Y  
= 10 kΩ,  
= 10 V  
= 10 V  
X
Y
Figure 22. Level Shift Circuit  
I
R
+
13 X  
V
sinceV  
=V  
=5.0V,thevalueofR = R = 10 kΩ  
X Y  
X(max) Y(max)  
is sufficient.  
Step 3. Now that R R and I have been chosen, R can  
be determined:  
X,  
Y
3
L
R
2
R
O
O
V
I
+
2
4
2R  
(2) (R )  
4
10  
L
L
=
=
K =  
, or  
V
O
R
R I  
Y 3  
(10 k) (10 k) (1.0 mA) 10  
X
V
14  
I
14  
Thus R = 20 k.  
L
R
Step 4. To determine what power supply voltage is  
necessary for this application, attention must be given to the  
circuit schematic shown in Figure 3. From the circuit  
schematic it can be seen that in order to maintain transistors  
R
L
L
The choice of an operational amplifier for this application  
should have low bias currents, low offset current, and a high  
common mode input voltage range as well as a high common  
mode rejection ratio. The MC1456, and MC1741C  
operational amplifiers meet these requirements.  
Q , Q , Q and Q in an active region when the maximum  
1
2
3
4
input voltages are applied (V = V = 10 V or V = 5.0 V,  
XY′  
X
V
= 5.0 V), their respective collector voltage should be at  
Y
least a few tenths of a volt higher than the maximum input  
9
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
Referring to Figure 21, the level shift components will be  
determined. When V = V = 0, the currents I and I will be  
The versatility of the MC1495 allows the user to to  
optimize its performance for various input and output signal  
levels.  
X
Y
2
14  
equal to I . In Step 3, R was found to be 20 kand in Step  
13  
L
4, V and V were found to be approximately 11 V. From this  
2
14  
information R can be found easily from the following  
O
OFFSET AND SCALE FACTOR ADJUSTMENT  
equation (neglecting the operational amplifiers bias current):  
Offset Voltages  
+
V2  
R
V –V  
2
I
=
+ 13  
Within the monolithic multiplier (Figure 3) transistor base-  
emitter junctions are typically matched within 1.0 mV and  
resistors are typically matched within 2%. Even with this  
careful matching, an output error can occur. This output error  
is comprised of X-input offset voltage, Y-input offset voltage,  
and output offset voltage. These errors can be adjusted to  
zero with the techniques shown in Figure 21. Offset terms  
can be shown analytically by the transfer function:  
R
O
L
11 V  
20 kΩ  
15 V –11 V  
And for this example,  
+ 1.0 mA =  
R
O
Solving for R : R = 2.6 k, thus, select R = 3.0 kΩ  
O
O
O
For R = 3.0 k, the voltage at Pins 2 and 14 is calculated  
O
to be:  
V
= K[V ± V  
iox  
± V  
] [V ± V  
ioy  
± V  
y(off)  
] ± V  
OO  
(1)  
V = V = 10.4 V.  
2 14  
O
x
x(off)  
y
Where:  
K = scale factor  
The linearity of this circuit (Figure 21) is likely to be as  
good or better than the circuit of Figure 5. Further  
V
V
= ‘‘x’’ input voltage  
= ‘‘y’’ input voltage  
x
y
improvements are possible as shown in Figure 23 where R  
Y
V
V
= ‘‘x’’ input offset voltage  
= ‘‘y’’ input offset voltage  
iox  
ioy  
has been increased substantially to improve the Y linearity,  
and R decreased somewhat so as not to materially affect  
X
V
V
= ‘‘x’’ input offset adjust voltage  
= ‘‘y’’ input offset adjust voltage  
= output offset voltage.  
x(off)  
y(off)  
OO  
the X linearity. This avoids increasing R significantly in order  
L
to maintain a K of 0.1.  
V
Figure 23. Multiplier with Improved Linearity  
– 15 V  
– 15 V  
+15 V  
3.0 k  
3.0 k  
3.0 k  
1
7.5 k  
11  
27 k  
5
7
10  
+
6
7
4
9
10 k  
10 k  
14  
3
V
Y′  
+
4
–V  
V
Y
6
X
V
=
±10 V  
MC1741C  
O
MC1495  
10  
10 k  
10 k  
2
2
5
V
+
3
+
X′  
13  
8
12  
1
40 k  
13 k  
33 k  
10 k  
12 k  
5.0 k  
Output  
Offset  
Adjust  
Scale  
Factor  
Adjust  
Y Offset  
Adjust  
X Offset  
Adjust  
20 k  
15 k  
15 k  
+15 V  
–15 V  
20 k  
2.0 k  
2.0 k  
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
X, Y and Output Offset Voltages  
DC APPLICATIONS  
Output  
Offset  
Output  
Offset  
V
V
O
Multiply  
The circuit shown in Figure 21 may be used to multiply  
O
signals from dc to 100 kHz. Input levels to the actual  
multiplier are 5.0 V (max). With resistive voltage dividers the  
maximum could be very large however, for this application  
two-to-one dividers have been used so that the maximum  
input level is 10 V. The maximum output level has also been  
designed for 10 V (max).  
V
V
y
x
X Offset  
Y Offset  
For most dc applications, all three offset adjust  
potentiometers (P , P , P ) will be necessary. One or more  
1
2
4
Squaring Circuit  
offset adjust potentiometers can be eliminated for ac  
applications (see Figures 28, 29, 30, 31).  
If the two inputs are tied together, the resultant function is  
2
squaring; that is V = KV where K is the scale factor. Note  
If well regulated supply voltages are available, the offset  
adjust circuit of Figure 13 is recommended. Otherwise, the  
circuit of Figure 14 will greatly reduce the sensitivity to power  
supply changes.  
O
that all error terms can be eliminated with only three  
adjustment potentiometers, thus eliminating one of the input  
offset adjustments. Procedures for nulling with adjustments  
are given as follows:  
Scale Factor  
A. AC Procedure:  
The scale factor K is set by P (Figure 21). P varies I  
3
which inversely controls the scale factor K. It should be noted  
that current I is one-half the current through R . R sets the  
bias level for Q , Q , Q , and Q (see Figure 3). Therefore, to  
be sure that these devices remain active under all conditions  
of input and output swing, care should be exercised in  
3
3
1. Connect oscillator (1.0 kHz, 15 V ) to input.  
pp  
2. Monitor output at 2.0 kHz with tuned voltmeter  
3
1
1
and adjust P for desired gain. (Be sure to peak  
3
5
6
7
8
response of the voltmeter.)  
3. Tune voltmeter to 1.0 kHz and adjust P for a  
1
minimum output voltage.  
adjusting P over wide voltage ranges (see General Design  
3
4. Ground input and adjust P (output offset) for  
4
Procedure).  
0 Vdc output.  
Adjustment Procedures  
5. Repeat steps 1 through 4 as necessary.  
The following adjustment procedure should be used to null  
the offsets and set the scale factor for the multiply mode of  
operation, (see Figure 21).  
B. DC Procedure:  
1. Set V = V = 0 V and adjust P (output offset  
X
Y
4
potentiometer) such that V = 0 Vdc  
O
1. X-Input Offset  
2. Set V = V = 1.0 V and adjust P (Y-input offset  
X
Y
1
(a) Connect oscillator (1.0 kHz, 5.0 V sinewave)  
potentiometer) such that the output voltage is  
+ 0.100 V.  
pp  
to the Y-input (Pin 4).  
(b) Connect X-input (Pin 9) to ground.  
3. Set V = V = 10 Vdc and adjust P such that  
X
Y
3
(c) Adjust X offset potentiometer (P ) for an ac  
the output voltage is + 10 V.  
4. Set V = V = –10 Vdc. Repeat steps 1 through  
2
null at the output.  
2. Y-Input Offset  
X
Y
3 as necessary.  
(a) Connect oscillator (1.0 kHz, 5.0 V sinewave)  
pp  
to the X-input (Pin 9).  
Figure 24. Basic Divide Circuit  
(b) Connect Y-input (Pin 4) to ground.  
(c) Adjust Y offset potentiometer (P ) for an ac null  
1
KV  
V
Y
X
at the output.  
X
3. Output Offset  
(a) Connect both X and Y-inputs to ground.  
I
1
R1  
V
(b) Adjust output offset potentiometer (P ) until  
X
4
I
2
the output voltage (V ) is 0 Vdc.  
4. Scale Factor  
O
V
+
Z
R2  
V
(a) Apply +10 Vdc to both the X and Y-inputs.  
Y
(b) Adjust P to achieve + 10 V at the output.  
5. Repeat steps 1 through 4 as necessary.  
3
The ability to accurately adjust the MC1495 depends upon  
the characteristics of potentiometers P through P .  
1
4
Multi-turn, infinite resolution potentiometers with low  
temperature coefficients are recommended.  
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
Divide Circuit  
In terms of percentage error,  
Consider the circuit shown in Figure 24 in which the  
multiplier is placed in the feedback path of an operational  
amplifier. For this configuration, the operational amplifier will  
maintain a “virtual ground” at the inverting (–) input.  
Assuming that the bias current of the operational amplifier is  
negligible, then I = I and,  
error  
percentage error =  
actual  
x 100%  
R2  
or from Equation (5),  
E  
KV  
X
R1  
E  
1
2
=
PE  
=
D
R1  
V
(7)  
V
Z
Z
X
KV V  
X Y  
–V  
Z
R2 K V  
=
=
=
(1)  
(2)  
(3)  
R1  
R2  
From Equation 7, the percentage error is inversely related  
to voltage V (i.e., for increasing values of V , the percentage  
–R1  
V
V
Z
Z
Z
X
Solving for V ,  
Y
V
Y
Y
error decreases).  
R2 K  
A circuit that performs the divide function is shown in  
Figure 25.  
Two things should be emphasized concerning Figure 25.  
–V  
KV  
Z
X
If R1=R2,  
V
1. The input voltage (V ) must be greater than zero and  
X′  
must be positive. This insures that the current out of  
Pin 2 of the multiplier will always be in a direction  
–V  
Z
(4)  
If R1= KR2,  
V
=
Y
V
X
compatible with the polarity of V .  
Z
2. Pin 2 and 14 of the multiplier have been interchanged in  
respect to the operational amplifiers input terminals. In  
this instance, Figure 25 differs from the circuit  
connection shown in Figure 21; necessitated to insure  
negative feedback around the loop.  
Hence, the output voltage is the ratio of V to V and  
Z
X
provides a divide function. This analysis is, of course, the  
ideal condition. If the multiplier error is taken into account, the  
output voltage is found to be:  
V
E
R1  
R2 K  
Z
A suggested adjustment procedure for the divide circuit.  
V
= –  
+
Y
(5)  
V
KV  
1. Set V = 0 V and adjust the output offset potentiometer  
X
X
Z
(P ) until the output voltage (V ) remains at some (not  
4
O
where E is the error voltage at the output of the multiplier.  
From this equation, it is seen that divide accuracy is strongly  
dependent upon the accuracy at which the multiplier can be  
set, particularly at small values of V . For example, assume  
that R1 = R2, and K = 1/10. For these conditions the output of  
the divide circuit is given by:  
necessarily zero) constant value as V  
between +1.0 V and +10 V.  
is varied  
X′  
2. Keep V at 0 V, set V at +10 V and adjust the Y input  
Z
X′  
Y
offset potentiometer (P ) until V = 0 V.  
1
O
3. Let V = V and adjust the X-input offsetpotentiometer  
X′  
Z
(P until the output voltage remains at some (not  
2)  
E  
10  
V
X
–10 V  
necessarily – 10 V) constant value as V = V is varied  
Z
Z
X′  
V
=
(6)  
+
Y
between +1.0 and +10 V.  
V
X
4. KeepV = V andadjustthescalefactorpotentiometer  
X′  
Z
From Equation 6, it is seen that only when V = 10 V is the  
X
error voltage of the divide circuit as low as the error of the  
multiply circuit. For example, when V is small, (0.1 V) the  
error voltage of the divide circuit can be expected to be a  
hundred times the error of the basic multiplier circuit.  
(P )untiltheaveragevalueofV is10VasV =V is  
3
O
Z
X′  
varied between +1.0 V and +10 V.  
X
5. Repeat steps 1 through 4 as necessary to achieve  
optimum performance.  
Figure 25. Divide Circuit  
– 15 V  
– 15 V  
+15 V  
0.1 µF  
R
10 k  
R
10 k  
X
Y
10 k  
4
3.9 k  
3.0 k  
3.0 k  
0.1 µF  
7
10  
+
11  
5
6
7
1
14  
3
+
4
10 k  
6
V
V
MC1741C  
O
MC1495  
–10 V  
Z
10 k  
10 k  
9
2
2
V
=
5
O
V
+
3
+
V
X
X′  
13  
8
12  
1
13 k  
Z
18 k  
20 k  
12 k  
5.0 k  
Output  
Offset  
Adjust  
P
To Offset  
Adjust  
(See Figure 13)  
5.0 k  
3
Scale  
Factor  
Adjust  
P
4
0
V
+10 V  
+10 V  
X
–10 V  
V
Z
12  
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
Figure 26. Basic Square Root Circuit  
AC APPLICATIONS  
The applications that follow demonstrate the versatility of  
the monolithic multiplier. If a potted multiplier is used for these  
cases, the results generally would not be as good because  
the potted units have circuits that, although they optimize dc  
multiplication operation, can hinder ac applications.  
Frequency doubling often is done with a diode where  
the fundamental plus a series of harmonics are  
generated. However, extensive filtering is required to obtain  
the desired harmonic, and the second harmonic obtained  
under this technique usually is small in magnitude and  
requires amplification.  
2
KV  
+
O
MC1495  
+
+
V
Z
V
O
+
2
KV  
= –V  
Z
O
or  
|V |  
Z
V
=
O
When a multiplier is used to double frequency the second  
harmonic is obtained directly, except for a dc term, which can  
be removed with ac coupling.  
K
Square Root  
2
2
A special case of the divide circuit in which the two inputs  
to the multiplier are connected together is the square root  
function as indicated in Figure 26. This circuit may suffer from  
latch-up problems similar to those of the divide circuit. Note  
that only one polarity of input is allowed and diode clamping  
(see Figure 27) protects against accidental latch-up.  
This circuit also may be adjusted in the closed-loop mode  
as follows:  
e = KE cos ωt  
o
2
KE  
2
e =  
o
(1 + cos 2ωt).  
A potted multiplier can be used to obtain the double  
frequency component, but frequency would be limited by its  
internal level-shift amplififer. In the monolithic units, the  
amplifier is omitted.  
1. Set V to –0.01 V and adjust P (output offset) for  
Z
4
In a typical doubler circuit, conventional ± 15 V supplies  
are used. An input dynamic range of 5.0 V peak-to-peak is  
allowed. The circuit generates wave-forms that are double  
frequency; less than 1% distortion is encountered without  
filtering. The configuration has been successfully used in  
excess of 200 kHz; reducing the scale factor by decreasing  
the load resistors can further expand the bandwidth.  
Figure 29 represents an application for the monolithic  
multiplier as a balanced modulator. Here, the audio input  
signal is 1.6 kHz and the carrier is 40 kHz.  
V
= +0.316 V, being careful to approach the output  
O
from the positive side to preclude the effect of the output  
diode clamping.  
2. Set V to –0.9 V and adjust P (X adjust) for  
Z
2
V
= +3.0 V.  
O
3. Set V to –10 V and adjust P (scale factor adjust)  
Z
3
for V = +10 V.  
O
4. Steps 1 through 3 may be repeated as necessary to  
achieve desired accuracy.  
Figure 27. Square Root Circuit  
– 15 V  
– 15V  
+15 V  
0.1 µF  
R
10 k  
R
10 k  
X
Y
10 k  
3.9 k  
1
3.0 k  
3.0 k  
0.1 µF  
7
10  
+
11  
5
6
7
4
9
2
3
+
4
5
6
V
O
MC1741C  
MC1495  
V
=
O
10 |V |  
Z
14  
2
+
3
+
(11 V)  
10 k  
13  
8
12  
1
13 k  
V
Z
13 k  
20 k  
12 k  
R
L
5.0 k  
To Offset  
Adjust  
(See Figure 13)  
Output  
Offset  
Adjust  
P
5.0 k  
3
Scale  
Factor  
Adjust  
P
4
–10  
V
+0 V  
Z
13  
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
The defining equation for balanced modulation is  
K(E cos ω t) (E cos ω t) =  
Figure 28. Frequency Doubler  
m
m
c
c
V
+15 V  
+
R
8.2 k  
R
8.2 k  
CC  
Y
X
KE E  
c
m
[ cos (ω + ω )t + cos (ω ω ) t ]  
c
m
c
m
R1  
3.0 k  
5
6
10  
11  
2
1.0 µF  
1
2
4
9
where ω is the carrier frequency, ω is the modulator  
E cos  
ω
)
t
R1  
3.3 k  
c
m
(< 5.0 V  
frequency and K is the multiplier gain constant.  
AC coupling at the output eliminates the need for level  
translation or an operational amplifier; a higher operating  
frequency results.  
pp  
MC1495  
8
Y
Offset  
Adjust  
R1  
3.3 k  
12  
14  
A problem common to communications is to extract the  
intelligence from single-sideband received signal. The ssb  
signal is of the form:  
C1*  
3
13  
7
*Select  
2
E
e
cos 2 ωt  
o
6.8 k  
1.0  
µ
F
20  
e
ssb  
= A cos (ω + ω ) t  
c m  
and if multiplied by the appropriate carrier waveform, cos ω t,  
c
AK  
2
–15 V  
e
e
=
[cos (2ω + ω )t + cos (ω ) t ].  
c m c  
ssb carrier  
When two equal cosine waves are applied to X and Y, the result  
is a wave shape of twice the input frequency. For this example  
the input was a 10 kHz signal, output was 20 kHz.  
If the frequency of the band-limited carrier signal (ω ) is  
ascertained in advance, the designer can insert a low pass  
c
filter and obtain the (AK/2) (cosω t) term with ease. He/she  
c
also can use an operational amplifier for a combination level  
shift-active filter, as an external component. But in potted  
multipliers, even if the frequency range can be covered, the  
operational amplifier is inside and not accessible, so the user  
must accept the level shifting provided, and still add a low  
pass filter.  
Figure 29. Balanced Modulator  
(A)  
+15 V  
R
8.2 k  
R
8.2 k  
Y
X
Amplitude Modulation  
The multiplier performs amplitude modulation, similar to  
balanced modulation, when a dc term is added to the  
modulating signal with the Y-offset adjust potentiometer (see  
Figure 30).  
+
5
6
10  
11  
1.0 µF  
1
2
3.0 k  
4
9
e
= E cos  
ω
t
t
Y
m
R
L
3.3 k  
e
= E cos ω  
c
X
MC1495  
Here, the identity is:  
8
R
L
Y
X
Offset  
Adjust  
3.3 k  
+
12  
14  
E (1 + m cos ω t) E cos ω t = KE E cos ω t  
m c  
m
m
c
c
c
KE E m  
m c  
C1*  
13  
7
3
[ cos(ω + ω )t + cos (ω ω ) t ]  
c
m
c
m
2
*Select  
e
o
where m indicates the degrees of modulation. Since m is  
6.8 k  
1.0 µF  
+
adjustable, via potentiometer P , 100% modulation is  
1
possible. Without extensive tweaking, 96% modulation may  
be obtained where ω and ω are the same as in the  
balanced modulator example.  
–15 V  
c
m
(B)  
Linear Gain Control  
To obtain linear gain control, the designer can feed to one  
of the two MC1495 inputs a signal that will vary the unit’s  
gain. The following example demonstrates the feasibility of  
this application. Suppose a 200 kHz sinewave, 1.0 V  
peak-to-peak, is the signal to which a gain control will be  
added. The dynamic range of the control voltage V is 0 V to  
C
+1.0 V. These must be ascertained and the proper values of  
R and R can be selected for optimum performance. For the  
X
Y
200 kHz operating frequency, load resistors of 100 were  
chosen to broaden the operating bandwidth of the multiplier,  
but gain was sacrificed. It may be made up with an amplifier  
operating at the appropriate frequency (see Figure 31).  
14  
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
Figure 30. Amplitude Modulation  
V
= +15 V  
R
8.2 k  
R
X
CC  
Y
8.2 k  
R1  
3.0 k  
5
6
10  
11  
1
2
4
9
e
e
= E cos  
= E cos  
ω
ω
t
t
Y
m
R
L1  
3.3 k  
X
m
MC1495  
8
Y
X
R
3.3 k  
L1  
% Modulation Adjust  
Offset Adjust  
12  
14  
C1*  
3
13  
7
*Select  
e
, e < 5.0 V  
Y pp  
X
e
o
6.8 k  
1.0 µF  
–15 V  
The signal is applied to the unit’s Y-input. Since the total  
input range is limited to 1.0 V , a 2.0 V swing, a current  
Hence, the scale factor for this configuration is:  
pp  
R
L
source of 2.0 mA and an R value of 1.0 kis chosen. This  
Y
K =  
=
R
R
I
takes best advantage of the dynamic range and insures  
linear operation in the Y-channel.  
X
Y 3  
100  
–1  
V
Since the X-input varies between 0 and +1.0 V, the current  
3
(2 k) (1 k) (2 x 10 )  
source selected was 1.0 mA, and the R value chosen  
X
1
40  
was 2.0 k. This also insures linear operation over the  
–1  
V
=
X-input dynamic range. Choosing R = 100 assures wide  
L
bandwidth operation.  
The 2 in the numerator of the equation is missing in this scale  
factor expression because the output is single-ended and ac  
coupled.  
Figure 31. Linear Gain Control  
+12 V  
1.25  
2.0 k  
11  
1.0 k  
5
V
= 1.0 V  
200 kHz  
in pp  
10  
+
6
1.0  
0.75  
0.5  
Y
4
1
2
1.5 k  
100  
V
in  
51  
MC1495  
1.0 k  
0.1  
X
9
V
+
C
1
k =  
µF  
40  
100  
Y
Offset  
Adjust  
0.25  
0
8
X
14  
Amplifier  
= 40  
V
O
A
V
12  
3
13  
7
0
0.2  
0.4 0.6  
0.8  
(V)  
1.0  
1.2  
V
2.0 mA  
AGC  
3.0 k  
11 k  
1.0 µF  
5.0 k  
+
P
3
NOTE: Linear gain control of a 1.0 V signal is performed with a 0 V  
pp  
C
to 1.0 V control voltage. If V is 0.5 V the output will be 0.5 V  
.
pp  
–12 V  
15  
MOTOROLA ANALOG IC DEVICE DATA  
MC1495  
OUTLINE DIMENSIONS  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A–03  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–A–  
14  
1
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
0.25 (0.010)  
B
MILLIMETERS  
INCHES  
G
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
8.55  
3.80  
1.35  
0.35  
0.40  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
0.337  
0.150  
0.054  
0.014  
0.016  
–T–  
SEATING  
PLANE  
J
M
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T
B
A
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
R
P SUFFIX  
PLASTIC PACKAGE  
CASE 646–06  
ISSUE L  
NOTES:  
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE  
POSITION AT SEATING PLANE AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
4. ROUNDED CORNERS OPTIONAL.  
14  
1
8
7
B
INCHES  
MILLIMETERS  
A
F
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
MAX  
0.770  
0.260  
0.185  
0.021  
0.070  
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
0.715  
0.240  
0.145  
0.015  
0.040  
L
C
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.095  
0.015  
0.135  
1.32  
0.20  
2.92  
2.41  
0.38  
3.43  
J
N
0.300 BSC  
7.62 BSC  
SEATING  
PLANE  
K
0
10  
0
10  
0.015  
0.039  
0.39  
1.01  
H
G
D
M
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC1495/D  

相关型号:

MC1496

BALANCED MODULATORS/DEMODULATORS
ONSEMI

MC1496

BALANCED MODULATOR/DEMODULATOR
MOTOROLA

MC1496

Balanced mudulator/demodulator
NXP

MC1496A

SPECIALTY CONSUMER CIRCUIT, PDIP14
NXP

MC1496B

BALANCED MODULATORS/DEMODULATORS
ONSEMI

MC1496BD

BALANCED MODULATORS/DEMODULATORS
ONSEMI

MC1496BDG

Balanced Modulators/Demodulators
ONSEMI

MC1496BDR2

BALANCED MODULATORS/DEMODULATORS
ONSEMI

MC1496BDR2G

Balanced Modulators/Demodulators
ONSEMI

MC1496BP

BALANCED MODULATORS/DEMODULATORS
MOTOROLA

MC1496BP

BALANCED MODULATORS/DEMODULATORS
ONSEMI

MC1496BPG

Balanced Modulators/Demodulators
ONSEMI